
DELAY-BASED METHODS FOR
ROBUST GEOLOCATION OF INTERNET HOSTS

by

Inja Youn
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Dana Richards, Dissertation Director

Dr. Brian L. Mark, Dissertation Co-Director

Dr. Kris Gaj, Committee Member

Dr. Daniel B. Carr, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Spring Semester 2013
George Mason University
Fairfax, VA



Delay-Based Methods for Robust Geolocation of Internet Hosts

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Inja Youn
Master of Science

George Mason University, 2004

Dissertation Director: Dr. Dana Richards, Associate Professor
Department of Computer Science

Dissertation Co-Director: Dr. Brian L. Mark, Professor
Department of Electrical and Computer Engineering

Spring Semester 2013
George Mason University

Fairfax, VA



Copyright © 2013 by Inja Youn
All Rights Reserved

ii



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Pure delay-based geolocation schemes . . . . . . . . . . . . . . . . . . . . . 4

2.2 Incorporating prior information . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Delay-Based Proximity Measures for Robust IP Geolocation . . . . . . . . . . . 8

3.1 Definition of proximity measure . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Examples of distance metrics µ . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Examples of norm functions ν . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 “Named” proximity measures . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Shortest Ping (SPing) proximity measure . . . . . . . . . . . . . . . 15

3.4.2 GeoPing proximity measure . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.3 Canberra proximity measure . . . . . . . . . . . . . . . . . . . . . . 15

3.4.4 Clark proximity measure . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.5 Modified Clark proximity measure . . . . . . . . . . . . . . . . . . . 16

3.5 Construction of Measurement Plan . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Lower Bound on Error for Pure Delay-Based Algorithms . . . . . . . . . . . 17

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7.1 Minimum delay and p-norms . . . . . . . . . . . . . . . . . . . . . . 18

3.7.2 Normalized minimum delay and p-norms . . . . . . . . . . . . . . . . 19

3.7.3 Minimum delay and normalized Euclidean or Mahalanobis norm . . 20

3.7.4 Kullback-Leibler divergence and p-norms proximity measures . . . . 22

3.8 Comprehesive Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.9 Analysis and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Statistical Geolocation of Internet Hosts . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Construction of Landmark Profiles . . . . . . . . . . . . . . . . . . . . . . . 40

iii



4.2 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Application of Force-Directed Method . . . . . . . . . . . . . . . . . . . . . 43

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Analysis and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A Vincenty’s Direct and Inverse Formulae . . . . . . . . . . . . . . . . . . . . . . . 53

B Best Line as Solution of a Linear Programming Problem in Constraint-Based

Geolocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C Notes on Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 61

C.1 Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C.2 Bias + Variance Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C.3 Nonparametric Density Estimation . . . . . . . . . . . . . . . . . . . . . . . 62

C.4 Univariate Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . 63

C.5 Bivariate Kernel Density Estimation (Diagonal Bandwidth) . . . . . . . . . 65

C.6 General Multivariate Kernel Density Estimation . . . . . . . . . . . . . . . 66

C.7 Product and Radial Multivariate Kernels . . . . . . . . . . . . . . . . . . . 68

C.8 Gaussian Kernel Density Estimation of Bivariate Probability Density Func-

tions (Diagonal Bandwidth) . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C.9 Rule-of-Thumb Bandwidth Selection . . . . . . . . . . . . . . . . . . . . . . 70

C.10 One-Dimensional Unbiased Cross-Validation . . . . . . . . . . . . . . . . . . 72

C.11 Two-Dimensional Unbiased Cross-Validation (Diagonal Bandwidth) . . . . 75

C.12 Unbiased Cross-Validation for Gaussian Kernels . . . . . . . . . . . . . . . . 78

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iv



List of Tables

Table Page

3.1 Accuracy comparison of p-norms, for p = 1
2 , 1, 2 and ∞. . . . . . . . . . . . 19

3.2 Accuracy comparison of L1, Canberra, Clark, Modified Clark and Shortest-

ping distances vs. minimum attainable error. . . . . . . . . . . . . . . . . . 21

3.3 Accuracy comparison of Shortest Ping and minimum delay difference with

Mahalanobis and normalized Euclidean norms vs. minimum attainable error. 22

3.4 Mean error for 20 active landmarks and 61 passive landmarks . . . . . . . . 25

3.5 Mean error for 40 active landmarks and 41 passive landmarks . . . . . . . . 26

3.6 Mean error for 60 active landmarks and 21 passive landmarks . . . . . . . . 26

3.7 Mean error for 78 active landmarks and 3 passive landmarks . . . . . . . . 27

3.8 Standard deviation of error for 20 active landmarks and 61 passive landmarks 27

3.9 Standard deviation of error for 40 active landmarks and 41 passive landmarks 28

3.10 Standard deviation of error for 60 active landmarks and 21 passive landmarks 28

3.11 Standard deviation of error for 78 active landmarks and 3 passive landmarks 29

3.12 Maximum error for 20 active landmarks and 61 passive landmarks . . . . . 29

3.13 Maximum error for 40 active landmarks and 41 passive landmarks . . . . . 30

3.14 Maximum error for 60 active landmarks and 21 passive landmarks . . . . . 30

3.15 Maximum error for 78 active landmarks and 3 passive landmarks . . . . . . 31

3.16 First quartile error for 20 active landmarks and 61 passive landmarks . . . 32

3.17 First quartile error for 40 active landmarks and 41 passive landmarks . . . 32

3.18 First quartile error for 60 active landmarks and 21 passive landmarks . . . 33

3.19 First quartile error for 78 active landmarks and 3 passive landmarks . . . . 33

3.20 Median error for 20 active landmarks and 61 passive landmarks . . . . . . . 34

3.21 Median error for 40 active landmarks and 41 passive landmarks . . . . . . . 34

3.22 Median error for 60 active landmarks and 21 passive landmarks . . . . . . . 35

3.23 Median error for 78 active landmarks and 3 passive landmarks . . . . . . . 35

3.24 Third quartile error for 20 active landmarks and 61 passive landmarks . . . 36

3.25 Third quartile error for 40 active landmarks and 41 passive landmarks . . . 37

v



3.26 Third quartile error for 60 active landmarks and 21 passive landmarks . . . 37

3.27 Third quartile error for 78 active landmarks and 3 passive landmarks . . . . 38

4.1 Accuracy comparison of SPing, CBG, and SG. . . . . . . . . . . . . . . . . 50

vi



List of Figures

Figure Page

3.1 Lower bound of error (red) for pure delay-based methods. . . . . . . . . . . 17

3.2 Error percentile (25%,50%,75%,90%) of the p-norm combined with the min-

imum delay difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Empirical CDF of p-norms vs. minimum attainable error. . . . . . . . . . . 19

3.4 Error percentile (25%,50%,75%,90%) of the p-norm combined with the nor-

malized minimum delay difference. . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Empirical CDF for the error of L1, Canberra, Clark, Modified Clark and

Shortest Ping distance vs. minimum attainable error. . . . . . . . . . . . . . 21

3.6 Empirical CDF for the error of Shortest Ping and minimum delay with nor-

malized Euclidean and Mahalanobis norms vs. minimum attainable error. . 22

3.7 Empirical CDF for the error of p-norms with empirical Kullback-Leibler di-

vergence estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Landmark distribution over the continental U.S. . . . . . . . . . . . . . . . 40

4.2 Scatterplot of distance and delay from planet1.cs.stanford.edu to 79 other

PlanetLab nodes across the U.S. (see Fig. 4.1). . . . . . . . . . . . . . . . . 45

4.3 Kernel density estimate of bivariate distribution of distance and delay using

Gaussian kernel for planet1.cs.stanford.edu. . . . . . . . . . . . . . . . . . . 46

4.4 Contour plot of kernel density estimate for planet1.cs.stanford.edu. . . . . . 46

4.5 Estimated conditional pdf of distance from planet1.cs.stanford.edu to a tar-

get, given a delay of 50 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Cumulative distribution function of estimation error: statistical geolocation

(SG), CBG, and SPing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.1 Construction of “bestline” for Constraint-Based Geolocation algorithm. . . 59

vii



Abstract

DELAY-BASED METHODS FOR ROBUST GEOLOCATION OF INTERNET HOSTS

Inja Youn, PhD

George Mason University, 2013

Dissertation Directors: Dr. Dana Richards and Dr. Brian L. Mark

In the past few years, there has been a growing need for accurate geolocation of IP

addresses, which is now a must-have feature of many Internet applications. Automated ge-

olocation of IP addresses has important applications, including targeted delivery of localized

content over Internet (news, weather, advertising, restriction of localized content based on

regional policies, etc.), prevention of Internet crimes (credit card and bank fraud, identity

theft, spam, phishing, etc.), detection and prevention of cyberattacks and cyberterrorism,

etc. The current geolocation algorithms can be divided into several classes according to

the data that is used for determining the geographic location: database-based (which use a

database of mappings between Internet prefixes and their corresponding geographical loca-

tions), pure-delay based (which take as input is the round trip delay of the probing hosts

which are called landmarks), location-delay based (which use the information about both

the geographical location and the probing hosts), supplementary information based (which

in addition to delay and geographical location, use other available information, such as DNS

parsing, geographical and demographical data, etc.).



However, use of network delay time for geolocation has proved not very reliable in the

past, because of the non-linear correlation between distances and delays generated by the

network congestion, queuing delay and circuitous routes. This thesis brings important ad-

vancements to two classes of geolocation methods. The first advancement is a family of

pure delay-based algorithms based on a general class of proximity measures. When such

measures are carefully chosen to discard the data which contains little information about

the geographical location of a target IP address, the resulting algorithms have improved

accuracy over the existing pure-delay based schemes. The second advancement, belonging

to the location-delay based class of algorithms, is the development of a statistical geoloca-

tion scheme based on the application of kernel density estimation to delay measurements

amongst a set of landmarks. An estimate of the target IP location is then obtained by

maximizing the likelihood of the distances from the target to the landmarks, given the

measured delays. This is achieved by an algorithm which combines gradient ascent and

force-directed methods. We compare the proposed geolocation schemes with the previous

methods by developing a measurement framework based on PlanetLab infrastructure and

we compare the experimental geolocation error for the proposed algorithms compared with

that for the existing schemes. We find the proposed geolocation algorithms have superior

accuracy to the previously developed ones.



Chapter 1: Introduction

In the past years, there is an increasing number of location-aware application for both mobile

and fixed IP addresses. These applications use the location information for collecting user

data and also for providing location-based services. Thus, geolocation of IP addresses has

widespread important uses, which include:

1. Targeted delivery of local news, weather, advertisement and other content. Thus, for

a visitor from a specific city, a web service can deliver news, embed advertisements,

and weather forecasts for the specific location

2. Restricting digital content and sales to authorized regions, in conformity with company

policies and local law

3. Cloud computing, where some of the organizations have to ensure that their content

stays in the appropriate geographic region

4. Determining the regional distribution of clients (by analyzing the Web logs), which

offers important marketing information

5. Prevention and reduction of Internet frauds, such as credit card fraud, identity theft,

spam and phishing. Thus, when a service request comes from a suspect location, it

can be filtered and thoroughly analyzed. Thus, a service provider (e.g. bank) usually

constructs a profile of each user, based on the geographical locations from where the

user accessed the service. When a user presents the credentials to the service provider

from a different location, the service provider can take preemptive measures to protect

against the potential phishing attacks, such as temporary blocking client’s account,

verification of user’s location by an alternative communication method (e.g. phone),

and, if necessary, requiring the user to change his/her account credentials.
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6. Applications in intrusion detection and prevention of cyberterrorism. Detecting and

eliminating (or at least mitigating) the Internet attacks are a high-priority national

security goal, and IP geolocation is an important instrument for visualizing the overall

situation and identifying the attackers.

The traditional approach to IP geolocation is to construct and maintain large databases

between IP subnets and their geographical location. For this approach, the geolocation

process consists of a simple lookup of a subnet in the database, with the return of the

estimate location. Examples of such databases which provide mapping and lookup services

include: Quova, IP2Location, MaxMind, IPLigence, GeoBytes, and NetAcuity.

However, this database approach has a few obvious disadvantages. First, due to the

dynamic structure of IP addressing, these databases need to be updated on a continuous

basis. The algorithms used to update these databases are proprietary and of questionable

accuracy, as outlined in [1]. Second, this subnet-mapping approach becomes prohibitive to

update and maintain with the advent and adoption of IPv6. Moreover, these databases

cannot adapt easily to the frequent location changes of mobile targets. Thus, there is a

need to have an algorithm which can estimate the location of an IP target on-the-fly by

using delay measurements from a set of hosts, their geographical location, and eventually

supplementary information (DNS hints, population distribution, etc.).

There have been numerous efforts to automate the geolocation of IP addresses. However,

using the distance and delays for accurate geolocation has been proved an elusive goal, due

to the nonlinear correlation between the distance and network delay generate by differences

in network latency and circuitous paths. This leads to unacceptable geolocation errors of

sometimes more than 1000 km of the previous algorithms.

In this thesis, we bring a two-fold contribution in the field of automated IP geolocation.

First, we propose a general framework for specifying a class of delay-based IP geolocation

algorithms, which includes GeoPing and Shortest Ping as special cases. The proposed

framework is based on a proximity measure consisting of a distance metric together with

a norm. The proximity measure is applied to a set of delay measurements obtained from

2



a set of geographically distributed landmark nodes, and used to determine the landmark

in closest proximity to the target. We consider various combinations of distance metrics

and norms to obtain proximity measures which result in different geolocation performance

characteristics. In particular, we are interested in proximity measures that are robust

to measurement errors and reduce the negative influence of landmarks with large delay

measurements to the target. We present an extensive set of experimental results to evaluate

and compare the performance of delay-based geolocation algorithms derived from different

proximity measures, including the Shortest Ping and GeoPing methods as special cases. A

major outcome of our empirical study is a recommendation on the proximity measures that

yield the highest levels of geolocation accuracy and robustness.

Second, we develop a statistical geolocation scheme based on applying kernel density

estimation to delay measurements obtained among a set of landmarks. An estimate of

the target location is then obtained by maximizing the likelihood of the distances from the

target to the landmarks, given the measured delays. This is achieved by an algorithm which

combines gradient ascent and force-directed methods. We present experimental results to

demonstrate the superior accuracy of the proposed geolocation scheme compared to previous

methods.

3



Chapter 2: Background

In this chapter, we discuss the background and related work on measurement-based IP

geolocation algorithms. TODO: make three sentences here.

2.1 Pure delay-based geolocation schemes

Shortest Ping and GeoPing [2] are two of the earliest IP geolocation algorithms based

on delay measurements. Both schemes involve a set of hosts with known locations called

landmarks, which obtain delay measurements by transmitting ICMP ping packets to the

target and possibly other landmarks. The delay measurements are then used to determine

the landmark that is in closest proximity to the target. The location of target is then

approximated by that of the selected landmark.

More precisely, let La denote an index set for the landmarks, so that the set of landmarks

is given by {Li : i ∈ La}. The total number of landmarks is denoted by |La|, where in this

context | · | denotes set cardinality. The latitude and longitude of landmark Li in units of

radians are denoted by φi and λi, respectively. Let diτ denote the round-trip time (RTT)

delay measured between landmark Li and the target τ . In the Shortest Ping scheme, the

location estimate for the target is given by (φk, λk), where

k = arg min
i∈La

diτ . (2.1)

The delay value diτ can be interpreted as a measure of proximity of the target to landmark

Li. Thus, in Shortest Ping, the landmark in closest proximity to the target is defined to be

the one corresponding to the minimum measured delay to the target.

The GeoPing scheme involves a set of nodes called passive landmarks, in addition to
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the active landmarks employed in Shortest Ping. Like the active landmarks, the passive

landmarks have known locations, but the passive landmarks do not perform delay measure-

ments. On the other hand, the active landmarks perform delay measurements between each

other, as well as to the passive landmarks. Let La denote the index set for active landmarks

and let Lp denote the index set for passive landmarks. The number of active and passive

landmarks are denoted by |La| and |Lp|, respectively. The index set for all landmarks is

given by L = La ∪ Lp.

Let dij denote the measured delay between landmarks Li and Lj , where i ∈ La and

j ∈ L. In GeoPing, the location estimate for the target τ is defined as (φk, λk), where

k = arg min
j∈L

∑
i∈La

(dij − diτ )2. (2.2)

Here, the measure of proximity of the target to landmark Lj is determined by the value of∑
i∈La(dij − diτ )2, which can be interpreted as the squared Euclidean distance between the

vectors (dij : i ∈ La) and (diτ : i ∈ La) in R|La|. Intuitively speaking, the location estimate

in GeoPing is taken to be the location of the landmark whose delay measurements to the

set of active landmarks, La, are most “similar” to the corresponding delay measurements

between the active landmarks and the target τ , as defined by the proximity values.

Various subsequent studies [3–8] have shown that GeoPing can suffer from poor accuracy.

The GeoPing algorithm does not penalize landmarks that are far away and do not carry

information about target location. Furthermore, as we shall see in Section 3.7 of this

thesis, the Euclidean distance is not a robust metric for geolocation. Finally, the original

GeoPing scheme does not exploit information that can be obtained from repeated delay

measurements. Ziviani et al. [3] proposed replacing the minimum delay distance metric

and Euclidean norm used in GeoPing with several alternative metrics: the Manhattan

(taxicab) norm, Chebyshev norm, Canberra distance, and cosine or correlation distance. In

the present work, we shall consider a larger class of proximity measures and incorporate

additional information derived from delay measurements to improve the performance of
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pure delay-based geolocation.

2.2 Incorporating prior information

Various types of prior information can be incorporated into measurement-based IP geolo-

cation algorithms. For example, the geographical location and inter-landmark distances

can be used to perform a form of multilateration. Multilateration [9, 10] is the estimation

of location of a target using measurements from two or more stations at known location.

Gueye et al. in their Constraint-Based Geolocation (CBG) algorithm [5] propose using

multilateration together with geographic distance constraints to determine the probable

location of the target. In [7], we proposed a statistical approach to process the end-to-

end delay measurements. The algorithm uses nonparametric kernel density estimation to

process the end-to-end measured delays and inter-landmark distances into “landmark pro-

files.” A force-directed algorithm is used to perform a majority maximization of individual

likelihoods. Arif et al. [11] proposed a variation of this algorithm by replacing the nonpara-

metric density estimation with parametric (log-normal) density estimation, and performing

maximum likelihood estimation of the target location.

Besides inter-landmark distance, other information used by existing algorithms include

the following:

• Delay to intermediate hops, used by Katz-Basset et al. in their Topology-Based

Geolocation (TBG) algorithm [6], which attempts to geolocate the intermediate hosts

and the target simultaneously.

• DNS location information obtained from parsing the DNS or WHOIS database for

geographical information, which can be used either as a standalone method, as in the

GeoTrack method of Padmanabhan and Subramanian [2], or for hints and validation

of other methods, as in Katz-Basset et al. [6].

• The assumption that the hosts from the same subnet are likely co-located. By esti-

mating the true location of a host, we can extrapolate the information to the other

6



hosts in the same subnet. This is the approach of the GeoTrack and GeoCluster

algorithms of Padmanabhan and Subramanian [2].

• Non-uniform demographic distribution of the population. This is used by Wong et

al. in their Octant algorithm [12], which clips out large bodies of water and sparsely-

populated regions in order to improve geolocation accuracy.

In the remainder of this work, we shall focus exclusively on two classes of geolocation

algorithms. In Chapter 3 we will develop a scheme that generalized the pure delay-based

algorithms, such as Shortest Ping and GeoPing schemes. Our objective is to improve the

geolocation accuracy of this class of algorithms and thereby close the performance gap

relative to the algorithms that make use of supplementary prior information. In Chapter

4 we will formulate for the first time a statistical geolocation algorithm, which replaces

the upper bounds constrains used by Constraint-Based Geolocation (CBG) [4, 5] with a

likelihood maximization approach. Finally, we present in Chapter 5 a summary of our

results and improvements to the previous geolocation schemes.
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Chapter 3: Delay-Based Proximity Measures for Robust IP

Geolocation

In this section, we develop a framework that generalizes the proximity measures used in

delay-based IP geolocation schemes such as Shortest Ping and GeoPing. TODO: three

sentences here

3.1 Definition of proximity measure

We assume that a set of m delay measurements is performed between each active landmark

Li, i ∈ La, and each landmark (active or passive) Lj , j ∈ L. We define n = |La| and

N = |L|. Let d
(l)
ij represent the lth smallest delay value between Li and Lj . Define the

vector dij = (d
(1)
ij , d

(2)
ij , . . . , d

(m)
ij ) ∈ Rm+ , which represents the set of m delay measurements

between Li and Lj , in increasing order, i.e., d
(1)
ij ≤ d

(2)
ij ≤ · · · ≤ d

(m)
ij . Similarly, a set of m

delay measurements is performed between each active landmark Li, i ∈ La, and the target

τ . Let d
(l)
iτ denote the lth smallest delay measurement value between Li and the target, and

define the sorted vector diτ = (d
(1)
iτ , d

(2)
iτ , . . . , d

(m)
iτ ) ∈ Rm+ .

Let µ be a distance metric on Rm, i.e., a real-valued function µ(x,y), defined for all

x,y ∈ Rm satisfying the following four properties:

1. µ(x,y) ≥ 0;

2. µ(x,y) = 0 if and only if x = y;

3. Symmetry: µ(x,y) = µ(y,x);

4. Triangle inequality: µ(x,y) ≤ µ(x, z) + µ(z,y) , z ∈ Rm.

8



In practice, we will often ignore some of the measurements, thus we will usually relax

the distance metric requirement, resulting in a premetric, which satisfies the following two

properties:

1. µ(x,y) ≥ 0;

2. µ(x,x) = 0.

For each j ∈ L, let νj be a norm on Rn, i.e., a function νj(x), defined for all x ∈ Rn,

satisfying the following three properties:

1. νj(ax) = |a|νj(x) for all a ∈ R;

2. νj(x + y) ≤ νj(x) + νj(y);

3. νj(x) = 0 if and only if x = 0, where 0 denotes the zero vector.

As we have done for the distance metric µ, in order to encompass all cases, we relax the

requirement of the norm to those of a seminorm by replacing 3) with 3’) as follows:

3’) νj(0) = 0, where 0 denotes the zero vector.

Then the proximity of landmark Lj , j ∈ L, to the target τ is defined by

ρjτ = νj(µ(d1j ,d1τ ), µ(d2j ,d2τ ), . . . , µ(dnj ,dnτ )). (3.1)

In most of our measures (except for Shortest Ping), we have ν1 = ν2 = . . . = νN , ν, in

which case the proximity becomes

ρjτ = ν(µ(d1j ,d1τ ), µ(d2j ,d2τ ), . . . , µ(dnj ,dnτ )). (3.2)

The estimate of the target location is then given by the location of landmark Lk, where

k = arg min
j∈L

ρjτ . (3.3)

The GNNDS steps are detailed in Algorithm 1.
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Algorithm 1 GNNDS: Generalized Nearest-Neighbor Delay-Space Algorithm

G1. Initialize the minimum proximity landmark index and minimum proximity value:
ρmin ←∞
k ← 0

G2. Calculate the distance between delay sets dij and diτ
for i ∈ La do

for j ∈ L do

δijτ ← µ(dij , diτ )

G3. Find the landmark with the lowest proximity
for j ∈ L do

ρjτ ← ν(δ1jτ , δ2jτ . . . δnjτ )
if ρjτ < ρmin then

ρmin ← ρjτ
k ← j

G4. Retun the geographical location (latitude and longitude) of the landmark with the
lowest proximity value

return (ϕk, λk)

3.2 Examples of distance metrics µ

We list several examples of distance metrics µ that are suitable for IP geolocation.

1. Minimum delay:

µ(dij ,diτ ) = |d(1)ij − d
(1)
iτ |. (3.4)

2. kth-order delay:

µ(dij ,diτ ) = |d(k)ij − d
(k)
iτ |. (3.5)

If k = 1, we obtain the minimum delay metric given above. If k = m/2 we get the

median delay. Constraint-Based Geolocation [4] uses the 2.5% percentile delay metric.

3. Normalized kth-order delay:

µ(dij ,diτ ) =
|d(k)ij − d

(k)
iτ |

|d(k)ij |+ |d
(k)
iτ |

. (3.6)
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4. Mean sample absolute difference:

µ(dij ,diτ ) =
1

m

m∑
k=1

|d(k)ij − d
(k)
iτ |. (3.7)

5. Kullback-Leibler divergence estimate [13]:

Let U(x) denote the unit step function:

U(x) =


0, if x < 0,

1
2 , if x = 0,

1, if x > 0.

(3.8)

The empirical cumulative distribution function (CDF) associated with dij is given by

PEij (d) =
1

m

m∑
k=1

U(d− d(k)ij ), (3.9)

which leads to a continuous piecewise linear extension:

PCij (d) =


0, if d < d

(0)
ij ,

aid+ bi, if d
(i−1)
ij < d < d

(i)
ij ,

1, if d
(n+1)
ij < d,

(3.10)

where ai and bi are chosen such that PCij (d
(k)
ij ) = PEij (d

(k)
ij ) for k ∈ {1 . . .m}, and

d
(0)
ij < d

(1)
ij and d

(m+1)
ij > d

(m)
ij are arbitrarily chosen. In practice, we choose d

(0)
ij

and d
(m+1)
ij such that a0 = a1, b0 = b1, respectively, an = an+1, bn = bn+1. The

11



Kullback-Leibler divergence estimator is then given by [13]

µ(dij ,diτ ) =
1

m

m∑
k=1

log
δPCij (d

(k)
ij )

δPCiτ (d
(k)
ij )

, (3.11)

where δPCij (d
(k)
ij ) = PCij (d

(k)
ij )− PCij (d

(k)
ij − ε) and 0 < ε < mink{d

(k)
ij − d

(k−1)
ij }.

6. Chord distance [14–16]:

µ(dij ,diτ ) =

√√√√ m∑
k=1

(
d
(k)
ij

||dij ||2
−

d
(k)
iτ

||diτ ||2

)2

, (3.12)

where || · ||2 denotes the standard Euclidean norm.

7. Chi-square distance [16]:

Let s
(k)
ij = d

(k)
ij + d

(k)
iτ and sij = (s

(k)
ij : 1 ≤ k ≤ m). The chi-square distance metric is

then defined by

µ(dij ,diτ ) =
√
||sij ||1

√√√√√ m∑
k=1

1

s
(k)
ij

(
d
(k)
ij

||dij ||1
−

d
(k)
iτ

||diτ ||1

)2

, (3.13)

where || · ||1 is the standard 1-norm, also known as the taxicab or Manhattan norm.

8. Distance between species profiles [16]:

µ(dij ,diτ ) =

√√√√ m∑
k=1

(
d
(k)
ij

||dij ||1
−

d
(k)
iτ

||diτ ||1

)2

. (3.14)
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9. Hellinger distance [16,17]:

µ(dij ,diτ ) =

√√√√√√ m∑
k=1


√√√√ d

(k)
ij

||dij ||1
−

√
d
(k)
iτ

||diτ ||1


2

. (3.15)

3.3 Examples of norm functions ν

Let x ∈ Rn.

1. p-norms:

For 0 < p <∞, the p-norm is given by

νp(x) = ||x||p =

(
n∑
i=1

|xi|p
)1/p

. (3.16)

Note that for 0 < p < 1, the p-norm is not a true norm (does not satisfy the triangle

inequality). The most important p-norms are listed below. For p = 2 we get the

Euclidean norm

ν2(x) =

√√√√ n∑
i=1

x2i . (3.17)

For p = 1 we get the Manhattan (taxicab) norm:

ν1(x) =
n∑
i=1

|xi|. (3.18)

For p =∞, the p-norm is the well-known Chebyshev norm:

ν∞(x) = max
i=1,2,...n

|xi|. (3.19)
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2. Mahalanobis norm [18]:

Let d
(k)
τ = (d

(k)
1τ , d

(k)
2τ , . . . , d

(k)
nτ ), d̄iτ = 1

m

∑m
k=1 d

(k)
iτ , and d̄τ = (d̄1τ , d̄2τ , . . . d̄nτ ). The

Mahalanobis norm is defined by

ν(x) =
√
xS−1xT (3.20)

where S is the maximum likelihood estimate of the covariance matrix for measure-

ments between active landmarks and target:

S =
1

m

m∑
k=1

(d(k)
τ − d̄τ )T (d(k)

τ − d̄τ ) (3.21)

3. Normalized Euclidean norm:

The normalized Euclidean norm is a particular case of the Mahalanobis norm, where

the covariance matrix is diagonal. Using the notations for the Mahalanobis distance,

we have

ν(x) =

√√√√ n∑
i=1

x2i
σ2i
, (3.22)

where σi is the sample standard deviation of the sample Siτ

σ2i =
1

m

m∑
k=1

(d
(k)
iτ − d̄iτ )2. (3.23)

3.4 “Named” proximity measures

By combining a distance metric with a norm according to (3.1), (3.2) and (3.3), we can

obtain the proximity measures used in several well-known IP geolocation schemes.
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3.4.1 Shortest Ping (SPing) proximity measure

The proximity measure used in Shortest Ping can be characterized by the distance metric

µ(dij ,diτ ) = d
(1)
iτ for all j ∈ L, (3.24)

together with the norm function

νj(x) =


xj , if j ≤ n,

∞, if n < j ≤ N .

(3.25)

In this particular case, µ and νj depend only on the measurements diτ between active land-

marks and target, as no measurements dij are obtained between the landmarks themselves.

3.4.2 GeoPing proximity measure

The proximity measure for GeoPing consists of the distance metric

µ(dij ,diτ ) = |d(1)ij − d
(1)
iτ |, (3.26)

together with the Euclidean norm

ν(x) =

√√√√ n∑
i=1

x2i . (3.27)

3.4.3 Canberra proximity measure

Canberra proximity measure is obtained by combining the normalized kth-order delay dis-

tance metric µ with the Manhattan norm ν. When there is only one measurement (m = 1),

Canberra proximity measure is identical to Canberra distance [3, 19, 20] between the two
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vectors (d
(1)
ij : i ∈ La) and (d

(1)
iτ : i ∈ La)

3.4.4 Clark proximity measure

Clark proximity measure is obtained by combining the normalized kth-order delay µ with the

Euclidean norm ν. Like for the Canberra proximity measure, when m = 1 Clark proximity

measure is identical to Clark distance [21]. TODO: Add formula here

3.4.5 Modified Clark proximity measure

Our experimental results show that using a p-norm with p slightly larger than two (e.g.,

p = 2.15) in conjunction with the normalized delay gives better estimation results for large

distances (we will later see that this choice is reducing the mean error by 4.3% and third

quartile by 13.7%). We refer to this proximity measure as Modified Clark proximity measure.

3.5 Construction of Measurement Plan

We measure the landmark-landmark and landmark-target delays using three types of ping,

which correspond to the following Internet protocols: Internet Control Message Protocol

(ICMP), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP). Be-

cause of firewalls in place, not all landmarks/targets respond to all types of ping. Generally,

the PlanetLab machines always answer to the TCP ping on port 22 (SSH) because of the

requirements of the PlanetLab software; however, only some of the landmarks answer to

ICMP or UDP ping, because of the firewall rules at each university or company gateway,

for protection against outside cyberattacks. In order to get the sample delay dataset, we

take the ICMP ping measurements wherever possible, and substitute with TCP or UDP

ping measurements whenever ICMP ping is blocked by firewalls.
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Figure 3.1: Lower bound of error (red) for pure delay-based methods.

3.6 Lower Bound on Error for Pure Delay-Based Algorithms

The pure delay-based class of IP geolocation algorithms estimate the target location with

that of an active or passive landmark. Thus, an inherent lower bound of the geolocation

error is given by the geographical distance between the target and the geographically closest

landmark. For example in Fig. 3.1 with three landmarks L1, L2 and L3 and the target τ , the

gelocation error of pure delay-based methods cannot be smaller than 50 km, corresponding

to the geographical distance between the target (τ) and the closest lanmark (L1). This

lower bound can however be improved by using supplementary information, e.g., geographic

or demographic. As the number and density of the landmarks increases, however, the

advantage gained by the supplementary information is gradually lost. By comparing the

error CDF for a given proximity measure with the error CDF of the lower bound, one can

get a good idea of its geolocation performance relative to the smallest possible geolocation

error.
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Figure 3.2: Error percentile (25%,50%,75%,90%) of the p-norm combined with the minimum
delay difference.

3.7 Experimental Results

The following analysis is performed using the maximum numbers of active landmark (78

active and 3 passive). A more complete analysis, with 20, 40, 60 and 78 active landmarks

out of 81 is provided in Section 3.8.

3.7.1 Minimum delay and p-norms

In the first experiment, we studied the performance resulting from the use of the minimum

delay metric and the p-norms. We noticed in Fig. 3.2 that for very small and large values

of p the estimation is inefficient. A plausible explanation is that larger values of p give

more emphasis on landmarks which are distant from the target; these landmarks have the

largest variances in measurements and contribute the most to the distance measure. A

comparison of several p-norms and their performance with respect to the lower bound (LB)

of Section 3.6 in terms of cumulative distribution function (CDF) is illustrated in Fig. 3.3.

The poor performance of the infinity norm is a result of the fact that the landmarks far

away from the target, which have the largest differences in terms of delays to the target,

contribute little to the accuracy of geolocation. The most important statistics related to
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Figure 3.3: Empirical CDF of p-norms vs. minimum attainable error.

Error [km] LB p = 1/2 p = 1 p = 2 p =∞
mean 118 222 212 421 560
median 48 95 141 173 243
maximum 563 1544 1544 4307 4307
std. dev. 146 302 269 835 914
1st quartile 10 38 44 47 65
3rd quartile 180 274 269 331 563

Table 3.1: Accuracy comparison of p-norms, for p = 1
2 , 1, 2 and ∞.

with respect to the lower bound (LB)

the geolocation errors are summarized in Table 3.1.

3.7.2 Normalized minimum delay and p-norms

To achieve geolocation results that are more sensitive to smaller delay measurements, which

contain the bulk of the useful geolocation information, we can use proximity measures such

as Shortest Ping, Canberra, and Clark. The Canberra and Clark proximity measures are

particular cases of the normalized delay metric combined with a p-norm when p = 1 and

p = 2, respectively.

The geolocation accuracy achieved using this class of proximity measures is ilustrated
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Figure 3.4: Error percentile (25%,50%,75%,90%) of the p-norm combined with the normal-
ized minimum delay difference.

in Fig. 3.4. We notice that the highest accuracy is obtained when p ≈ 1 and p ≈ 2, and in

particular, the lowest error is attained when p ≈ 2.15. We call this proximity measure, i.e.,

when µ is the normalized delay difference and ν is the p-norm with p = 2.15, the Modified

Clark method.

The empirical CDF of the error of the proximity measures for Shortest Ping, Canberra,

Clark, and Modified Clark, are compared with the lower bound and Manhattan distance

in Fig. 3.5. The error statistics of these methods are listed in Table 3.2. We note that

Shortest Ping performs very well when the landmarks are very close to each other. As the

distances among the landmarks increase, Shortest Ping is gradually outperformed by the

other methods.

3.7.3 Minimum delay and normalized Euclidean or Mahalanobis norm

Another way of improving the accuracy is to replace the p-norms with norms based on the

delay variances, such as in the normalized Euclidean and Mahalanobis norms. The empirical

CDFs of the error using these two proximity measures are illustrated in Fig. 3.6 together

with the curves for the lower bound and Shortest Ping. Unlike the previous methods, this
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Figure 3.5: Empirical CDF for the error of L1, Canberra, Clark, Modified Clark and Shortest
Ping distance vs. minimum attainable error.

Error [km] LB L1 Canberra Clark M. Clark SPing

mean 118 212 203 210 201 270
median 48 141 93 67 67 66
maximum 563 1544 1874 1874 1874 3918
std. dev. 146 269 290 313 302 605
1st quartile 10 44 33 22 22 13
3rd quartile 180 269 271 271 234 317

Table 3.2: Accuracy comparison of L1, Canberra, Clark, Modified Clark and Shortest-ping
distances vs. minimum attainable error.
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Figure 3.6: Empirical CDF for the error of Shortest Ping and minimum delay with normal-
ized Euclidean and Mahalanobis norms vs. minimum attainable error.

Error [km] LB SPing Mah NE

mean 118 270 209 209
median 48 66 62 62
maximum 563 3918 3918 3918
std. dev. 146 605 469 468
1st quartile 10 13 13 13
3rd quartile 180 317 277 277

Table 3.3: Accuracy comparison of Shortest Ping and minimum delay difference with Ma-
halanobis and normalized Euclidean norms vs. minimum attainable error.

method performs consistently better than Shortest Ping over all distances. Error statistics

for this comparison are given in Table 3.3.

3.7.4 Kullback-Leibler divergence and p-norms proximity measures

The results of the next experiment, using Kullback-Leibler divergence with p-norms, are

shown in Fig. 3.7. From this figure we can conclude that the Kullback-Leibler divergence

gives worse results than the minimum delay. Similar results were obtained for other distance

metrics, i.e., chord distance, chi-square distance, distance between species profiles, and
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Figure 3.7: Empirical CDF for the error of p-norms with empirical Kullback-Leibler diver-
gence estimate.

Hellinger distance.

3.8 Comprehesive Empirical Study

In order to determine the best combination of µ and ν, we performed a comprehensive

empirical study with the following setup.

Choices of µ:

• Absolute difference of minimum delays (Min)

• Absolute difference of first quartiles - 25% percentiles (Q1)

• Absolute difference of medians (Median)

• Normalized absolute difference of minimum delays (Norml Min)

• Normalized absolute difference of first quartiles (Norml Q1)

• Normalized absolute difference of medians (Norml Median)

• Mean sample absolute difference (Abs Diff)
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• Kullback-Leibler divergence estimate from samples (KL)

• Chord distance (Chord)

• Chi-square distance (Chi-Square)

• Distance between species profiles (Sp. profiles)

• Hellinger distance between samples

Choices of ν:

• p-norm with p = 1/2

• Manhattan norm - p-norm with p = 1

• Euclidean norm - p-norm with p = 2

• Chebyshev norm - p-norm with p =∞

• Mahalanobis norm (Mah)

• Normalized Euclidean (NE)

Choices of active and passive landmarks:

• 20 active landmarks and 61 passive landmarks

• 40 active landmarks and 41 passive landmarks

• 60 active landmarks and 21 passive landmarks

• 78 active landmarks and 3 passive landmarks

Choices of statistics considered:

• Mean error

• Median error
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 245 348 389 576 351 328
Q1 370 347 444 528 245 289
Median 378 359 429 496 248 273
Norml Min 252 267 301 930 796 797
Norml Q1 376 381 425 929 848 896
Norml Median 411 408 432 918 886 892
Abs Diff 384 403 540 625 279 289
KL 834 945 1041 1566 1266 1090
Chord 1241 1082 1042 999 1771 1643
Chi-Square 1193 1069 1084 1019 1645 1672
Sp. Profiles 1193 1085 1023 964 1730 1636
Hellinger 1230 1094 1078 1094 1652 1679

Table 3.4: Mean error for 20 active landmarks and 61 passive landmarks

• Maximum error

• First quartile of error (25% percentile of error)

• Median of error

• Third quartile of error (75% percentile of error)

Tables 3.4, 3.5, 3.6 and 3.7 we can observe that the mean error is consistently under 300

km when:

• µ is the absolute difference of the minimum delay and ν is the p-norm with p = 1/2;

• µ is the normalized absolute difference of the minimum delay and ν is the p-norm

with either p = 1/2 or p = 1;

• µ is the absolute value difference of the first quartile, median or the mean sample

absolute difference and ν is the Mahalanobis distance.

We remark that the Mahalanobis and normalized Euclidean norms result in more accurate

geolocation than other choices of ν for the case of 78 active landmarks, the error being

about 25% smaller than the minimum error of the alternatives.
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 220 234 423 589 290 314
Q1 376 382 496 519 215 337
Median 395 397 475 472 208 336
Norml Min 207 210 253 1205 1056 1031
Norml Q1 337 339 357 1180 1134 1155
Norml Median 348 347 372 1181 1137 1146
Abs Diff 396 426 516 628 233 353
KL 958 1007 1133 1599 1442 1316
Chord 1124 948 853 958 2248 2178
Chi-Square 1113 950 950 939 2093 2151
Sp. Profiles 1144 952 857 910 2237 2194
Hellinger 1153 1052 855 1019 2267 2278

Table 3.5: Mean error for 40 active landmarks and 41 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 217 208 411 578 289 278
Q1 378 380 526 800 219 261
Median 371 378 440 597 200 255
Norml Min 217 183 199 1348 1263 1257
Norml Q1 343 283 323 1309 1301 1310
Norml Median 347 343 348 1258 1295 1307
Abs Diff 351 408 504 737 209 261
KL 642 678 781 2448 1615 1580
Chord 1009 865 847 978 2617 2595
Chi-Square 1001 891 799 842 2541 2605
Sp. Profiles 1022 898 831 838 2635 2575
Hellinger 1065 922 822 851 2618 2625

Table 3.6: Mean error for 60 active landmarks and 21 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 222 213 422 561 209 209
Q1 374 389 472 804 181 185
Median 371 385 413 595 168 180
Norml Min 254 203 211 1528 1457 1458
Norml Q1 354 309 302 1568 1457 1466
Norml Median 373 340 339 1568 1471 1470
Abs Diff 373 419 481 742 171 187
KL 623 658 781 2125 1856 1778
Chord 1147 979 922 1013 3026 3005
Chi-Square 998 928 863 917 3058 3006
Sp. Profiles 1151 951 889 949 3035 2969
Hellinger 1151 954 933 937 3010 3006

Table 3.7: Mean error for 78 active landmarks and 3 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 283 616 754 915 610 606
Q1 599 552 831 860 276 501
Median 610 574 728 751 274 492
Norml Min 355 394 413 1279 1213 1216
Norml Q1 706 722 744 1306 1218 1314
Norml Median 724 726 761 1308 1228 1317
Abs Diff 575 629 907 1011 323 498
KL 1124 1218 1270 1434 1276 1215
Chord 1055 1067 951 837 1348 1286
Chi-Square 1062 1017 1020 924 1326 1294
Sp. Profiles 985 1018 885 903 1372 1282
Hellinger 1074 1010 986 1020 1320 1322

Table 3.8: Standard deviation of error for 20 active landmarks and 61 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 279 281 828 920 582 593
Q1 684 689 919 856 219 650
Median 705 716 844 751 218 656
Norml Min 268 267 313 1330 1258 1264
Norml Q1 678 682 681 1313 1257 1331
Norml Median 678 683 691 1314 1253 1335
Abs Diff 690 706 833 1016 286 664
KL 1174 1222 1305 1406 1323 1299
Chord 847 786 730 887 1395 1330
Chi-Square 934 865 928 911 1455 1394
Sp. Profiles 912 787 754 843 1396 1332
Hellinger 958 958 754 910 1441 1326

Table 3.9: Standard deviation of error for 40 active landmarks and 41 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 264 236 828 919 591 592
Q1 686 694 851 983 262 507
Median 680 699 776 736 230 505
Norml Min 273 234 246 1387 1346 1354
Norml Q1 678 660 682 1378 1350 1381
Norml Median 679 683 689 1349 1332 1383
Abs Diff 682 711 836 1070 236 506
KL 704 813 971 1556 1416 1441
Chord 854 776 826 895 1277 1238
Chi-Square 918 848 897 956 1325 1277
Sp. Profiles 856 772 826 754 1274 1266
Hellinger 925 855 828 785 1284 1248

Table 3.10: Standard deviation of error for 60 active landmarks and 21 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 302 270 835 914 469 468
Q1 686 699 791 986 241 241
Median 688 706 702 735 213 235
Norml Min 347 290 313 1338 1358 1358
Norml Q1 687 677 679 1376 1358 1351
Norml Median 693 682 685 1376 1349 1349
Abs Diff 699 713 812 1070 212 234
KL 707 740 993 1474 1499 1497
Chord 924 870 817 918 1008 1006
Chi-Square 971 882 922 1031 982 1042
Sp. Profiles 872 829 801 892 987 1060
Hellinger 974 907 930 855 1034 1042

Table 3.11: Standard deviation of error for 78 active landmarks and 3 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 1260 3945 4307 4307 3918 3918
Q1 4149 4149 4149 4149 1233 4149
Median 4149 4149 4149 4149 1233 4149
Norml Min 2352 2352 2352 4307 4307 4307
Norml Q1 4149 4149 4149 4307 4307 4307
Norml Median 4149 4149 4149 4307 4307 4307
Abs Diff 4149 4149 4149 4149 1883 4149
KL 4149 4149 4149 4149 4137 4138
Chord 4109 4296 4296 4296 4264 4264
Chi-Square 4149 4149 4296 4296 4264 4264
Sp. Profiles 4089 4296 4296 4195 4264 4264
Hellinger 4149 4149 4296 4314 4264 4264

Table 3.12: Maximum error for 20 active landmarks and 61 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 1376 1376 4307 4307 3918 3918
Q1 4149 4149 4149 4149 1130 4149
Median 4149 4149 4149 4149 1130 4149
Norml Min 1218 1218 1376 4307 4307 4307
Norml Q1 4149 4149 4149 4307 4307 4307
Norml Median 4149 4149 4149 4307 4307 4307
Abs Diff 4149 4149 4149 4149 1883 4149
KL 4149 4149 4149 4149 4149 4149
Chord 3877 3877 3877 4089 4313 4264
Chi-Square 4149 4149 4149 4149 4313 4264
Sp. Profiles 4288 3877 4296 4089 4313 4264
Hellinger 4149 4149 4149 4296 4313 4264

Table 3.13: Maximum error for 40 active landmarks and 41 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 1146 1056 4307 4307 3918 3918
Q1 4149 4149 4149 4149 1188 4149
Median 4149 4149 4149 4149 1130 4149
Norml Min 1146 1130 1143 4325 4308 4308
Norml Q1 4149 4149 4149 4308 4308 4308
Norml Median 4149 4149 4149 4308 4308 4308
Abs Diff 4149 4149 4149 4149 1130 4149
KL 3186 3842 4120 4328 4258 4258
Chord 3877 3877 3896 4108 4264 4264
Chi-Square 4149 4149 4149 4312 4264 4264
Sp. Profiles 3877 3877 3896 4011 4264 4264
Hellinger 4149 4149 4149 4328 4264 4264

Table 3.14: Maximum error for 60 active landmarks and 21 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 1544 1544 4307 4307 3918 3918
Q1 4149 4149 4149 4149 1188 1188
Median 4149 4149 4149 4149 1130 1130
Norml Min 1875 1875 1875 4321 4321 4321
Norml Q1 4149 4149 4149 4321 4321 4321
Norml Median 4149 4149 4149 4321 4321 4321
Abs Diff 4149 4149 4149 4149 1130 1130
KL 3186 3186 4120 4328 4325 4325
Chord 3877 3877 3877 4326 4294 4264
Chi-Square 4149 4149 4149 4312 4264 4264
Sp. Profiles 3877 3877 3877 4089 4328 4264
Hellinger 4149 4149 4149 4328 4264 4264

Table 3.15: Maximum error for 78 active landmarks and 3 passive landmarks

From Tables 3.8, 3.9, 3.10 and 3.11, we find that the best combinations of µ and ν,

namely p-norm with p = 1/2 in combination with the absolute difference of the minimum

delay and Mahalanobis norm in combination with either the absolute difference of the first

quartile or the absolute difference of the median, have also the lowest variance. Tables 3.12,

3.13, 3.14 and 3.15 show that the maximum error is quite large, most likely because of the

incorrect locations reported by a couple of the landmarks. However, the estimators which

performed well with respect to the other statistics also have lower values for the maximum

error.

From Tables 3.16, 3.17, 3.18 and 3.19 we can identify two algorithms which provide a low

first quartile of estimation error: Clark proximity measure (which is Euclidean norm com-

bined with normalized minimum, first quartile or median normalized absolute difference),

and, to a lesser extent, Canberra proximity measure. The notable exception is the case of

78 active landmarks, when Mahalanobis and normalized Euclidean distance are combined

with minimum, first quartile, median or mean sample absolute difference, resulting in an

25% quantile error of only 13 km, the same as with the Shortest Ping algorithm, and only

3 km larger than the lower bound (10 km).
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 42 44 44 64 45 44
Q1 44 44 44 73 44 44
Median 44 42 44 96 46 40
Norml Min 40 44 44 58 56 51
Norml Q1 44 42 44 58 67 65
Norml Median 44 44 45 71 91 58
Abs Diff 44 47 62 56 45 44
KL 131 131 143 271 172 143
Chord 420 338 420 371 547 482
Chi-Square 395 367 411 367 422 482
Sp. Profiles 411 367 420 351 414 482
Hellinger 395 374 420 364 449 454

Table 3.16: First quartile error for 20 active landmarks and 61 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 42 44 45 60 44 45
Q1 42 44 45 68 44 45
Median 42 42 44 60 43 45
Norml Min 25 35 44 141 67 58
Norml Q1 42 35 44 145 105 98
Norml Median 39 42 45 141 105 73
Abs Diff 44 47 62 73 44 46
KL 143 169 198 367 367 303
Chord 504 360 311 347 1044 1060
Chi-Square 462 374 340 285 745 936
Sp. Profiles 504 360 383 413 967 1089
Hellinger 462 418 302 410 935 1270

Table 3.17: First quartile error for 40 active landmarks and 41 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 42 44 46 60 41 40
Q1 44 45 73 217 41 40
Median 42 37 41 124 39 37
Norml Min 35 33 43 193 162 65
Norml Q1 44 35 35 185 189 161
Norml Median 35 39 35 161 192 126
Abs Diff 44 46 49 119 44 39
KL 125 125 178 722 468 359
Chord 394 297 276 312 1510 1515
Chi-Square 333 297 226 246 1315 1529
Sp. Profiles 433 311 268 307 1542 1515
Hellinger 387 300 277 303 1528 1529

Table 3.18: First quartile error for 60 active landmarks and 21 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 38 44 48 65 13 13
Q1 44 44 61 217 13 13
Median 39 39 41 124 13 13
Norml Min 40 33 22 416 330 330
Norml Q1 40 35 25 416 330 343
Norml Median 35 32 21 416 359 343
Abs Diff 44 46 49 124 13 13
KL 125 125 125 870 472 363
Chord 477 354 297 314 2315 2315
Chi-Square 276 302 218 209 2324 2315
Sp. Profiles 474 354 277 371 2315 2197
Hellinger 443 302 283 289 2315 2315

Table 3.19: First quartile error for 78 active landmarks and 3 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 142 174 174 255 181 143
Q1 174 181 181 199 168 173
Median 181 181 191 255 173 173
Norml Min 143 143 143 288 191 191
Norml Q1 168 143 205 299 295 302
Norml Median 181 174 193 288 295 227
Abs Diff 188 188 193 235 174 174
KL 326 349 368 1186 893 679
Chord 888 814 801 788 1497 1345
Chi-Square 822 814 814 718 1334 1477
Sp. Profiles 925 814 801 706 1497 1345
Hellinger 860 822 814 758 1334 1477

Table 3.20: Median error for 20 active landmarks and 61 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 142 143 174 255 143 168
Q1 143 173 174 188 168 168
Median 173 174 181 245 143 174
Norml Min 93 141 142 657 402 362
Norml Q1 142 142 143 534 534 534
Norml Median 143 143 143 629 657 534
Abs Diff 173 181 188 222 168 174
KL 376 376 507 1186 1031 867
Chord 830 758 691 718 2399 2374
Chi-Square 822 714 691 718 1884 2325
Sp. Profiles 830 758 691 684 2399 2374
Hellinger 822 798 718 758 2506 2444

Table 3.21: Median error for 40 active landmarks and 41 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 142 142 173 209 116 75
Q1 168 174 222 423 142 142
Median 168 173 181 388 142 118
Norml Min 96 67 116 876 764 764
Norml Q1 143 92 132 764 832 876
Norml Median 143 143 168 657 876 876
Abs Diff 168 174 188 288 142 142
KL 376 365 376 2980 1186 1148
Chord 792 578 571 718 3041 2946
Chi-Square 792 665 490 578 3027 3027
Sp. Profiles 792 670 509 653 3041 2946
Hellinger 828 691 665 677 3041 3027

Table 3.22: Median error for 60 active landmarks and 21 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 96 141 173 244 62 62
Q1 168 174 199 402 64 67
Median 143 173 181 364 67 68
Norml Min 141 93 68 1313 989 989
Norml Q1 142 112 75 1313 989 989
Norml Median 143 142 142 1313 1032 1014
Abs Diff 168 181 188 347 68 75
KL 351 354 351 1746 1301 1189
Chord 860 756 674 893 3329 3288
Chi-Square 689 670 485 514 3354 3329
Sp. Profiles 941 670 677 668 3329 3288
Hellinger 860 674 663 712 3329 3329

Table 3.23: Median error for 78 active landmarks and 3 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 377 406 377 732 383 402
Q1 399 446 378 560 338 383
Median 378 399 378 509 332 375
Norml Min 374 333 373 1328 939 841
Norml Q1 384 377 427 1328 1100 1328
Norml Median 394 446 394 1328 1236 1328
Abs Diff 469 446 494 586 402 383
KL 1059 1232 1406 2666 1702 1406
Chord 1653 1267 1231 1272 3064 2735
Chi-Square 1616 1376 1272 1205 2804 2634
Sp. Profiles 1616 1342 1267 1177 2949 2583
Hellinger 1653 1411 1267 1344 2804 2801

Table 3.24: Third quartile error for 20 active landmarks and 61 passive landmarks

From Tables 3.20, 3.21, 3.22, and 3.23 we note that for a small percentage of active

landmarks (20, 40 and 60 active landmarks) several methods are comparable: minimum

absolute delay difference with p-norm (p = 1/2), normalized minimum absolute delay dif-

ference with p-norms (p = 1 or p = 2), and minimum absolute delay difference or first

quartile absolute delay difference in combination with the normalized Euclidean norm. For

a large percentage of active landmarks (78 active landmarks), minimum absolute delay dif-

ference and first quartile absolute delay difference in combination with either Mahalanobis

distance or normalized Euclidean distance dominate the rest of the methods.

From Tables 3.24, 3.25, 3.26, and 3.27 we conclude that several of the measures give

similar results, such as minimum absolute delay difference in combination with p-norms (for

p = 1/2, p = 1, or p = 2), Mahalanobis distance or normalized Euclidean. Similar results

are yielded by the normalized minimum absolute delay difference in combination with p-

norms for p = 1 or p = 2. The Kullback-Leibler divergence, chord, chi-square, species

profiles, and Hellinger distance metrics resulted in relatively poor geolocation performance.
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 303 329 369 707 333 332
Q1 375 375 383 563 333 383
Median 332 332 394 514 331 383
Norml Min 303 303 329 1752 1490 1490
Norml Q1 341 329 330 1567 1567 1567
Norml Median 342 330 331 1567 1527 1567
Abs Diff 499 499 672 586 344 416
KL 1270 1321 1845 2666 2325 2248
Chord 1539 1422 1108 1139 3583 3305
Chi-Square 1495 1255 1127 1160 3545 3444
Sp. Profiles 1539 1422 1094 1132 3583 3370
Hellinger 1551 1376 1117 1255 3664 3528

Table 3.25: Third quartile error for 40 active landmarks and 41 passive landmarks

Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 303 272 338 707 332 320
Q1 394 375 629 1120 327 329
Median 394 330 394 806 315 329
Norml Min 310 263 284 2420 1933 1933
Norml Q1 340 284 327 2147 2147 2147
Norml Median 342 331 330 1933 1933 2147
Abs Diff 357 446 670 914 320 332
KL 1033 1033 1063 3834 2680 2680
Chord 1393 1231 1078 1285 3791 3755
Chi-Square 1372 1220 1060 1130 3791 3780
Sp. Profiles 1487 1288 1041 1154 3791 3755
Hellinger 1428 1231 1108 1130 3791 3780

Table 3.26: Third quartile error for 60 active landmarks and 21 passive landmarks
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Error [km] p=1/2 p=1 p=2 p=∞ Mah NE

Min 274 270 331 563 277 277
Q1 377 377 427 1120 277 317
Median 394 330 394 795 262 277
Norml Min 340 272 272 2482 2420 2420
Norml Q1 392 284 286 2515 2420 2420
Norml Median 446 341 341 2515 2420 2420
Abs Diff 416 459 446 875 261 307
KL 842 1056 1088 3842 3446 3426
Chord 1605 1231 1298 1429 3842 3826
Chi-Square 1490 1220 1114 1150 3849 3842
Sp. Profiles 1620 1231 1220 1311 3842 3826
Hellinger 1604 1243 1377 1230 3842 3842

Table 3.27: Third quartile error for 78 active landmarks and 3 passive landmarks

3.9 Analysis and Interpretation

The accuracy of the pure delay-based class of IP geolocation algorithms is mainly impacted

by the fact that not all the active landmarks give the same amount of information about

the target location. Landmarks that are close to the target and have a relatively direct

connection to it via few intermediate hops provide most of the useful information for target

localization. By contrast, the active landmarks which are far away from the target, or

connected to the target via a circuitous path are of little or no value in localizing the target

location.

The main challenge in improving the precision of geolocation consists in choosing µ and

ν to penalize the active landmarks that provide little value for geolocation. Our research

has led to the discovery of two successful ways of achieving a proper weighting of the

information. One way of applying the penalty is to use the normalized delay distance

|x−y|
|x|+|y| . Thus, when one of the delays is large as a result of large distance between the active

landmark and target and/or circuitous path, its contribution to the objective function is

scaled down. Conversely, when both x and y are small, the influence of the delay difference

over the objective function is emphasized. The normalized delay distance can be combined
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with different p-norms, distinguishable cases being p = 1, which gives Canberra distance,

and p = 2 which gives Clark’s distance.

The second way of weighting the measurements is to use the sample variance/covariance

as a penalty for the unreliable landmarks. This is based on the empirical observation that

the reliability of the active landmarks is negatively correlated with the sample variance/co-

variance of multiple measurements from the active landmarks to the target. Consequently,

a large variance indicates that either a landmark is far away from the target or connected to

it via a circuitous path, since multiple intermediate hops have a positive contribution to the

variance. Conversely, a small variance suggests that the information from an active land-

mark is reliable and therefore its contribution to the overall geolocation procedure should be

enhanced. This is the case for the Mahalanobis and normalized Euclidean distance metrics,

which provide improved geolocation accuracy compared to the earlier methods. TODO:

explain about influence of passive/active landmarks ratio
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Chapter 4: Statistical Geolocation of Internet Hosts

In this chapter we develop a statistical approach to IP geolocation. Our approach consists

of several steps. First, a “profile” of each landmark is constructed using the distance-delay

pairs amongst the landmarks, resulting in a scatterplot for each landmark. Second, the

joint probability distribution of the distance and delay is approximated using bivariate

kernel density estimation. A Gaussian kernel is used for density estimation. Finally, a

force-directed algorithm is used to obtain an estimate of the target location.

4.1 Construction of Landmark Profiles

The profile of an active landmark Li, i ∈ La consists of the set of all distance-delay pair

measurements originating at Li towards the other (active or passive) landmarks Lj , where1

j ∈ L\{i}. Our construction of landmark profiles is similar to that of Gueye et al. [5].

Multiple measurements are obtained between every pair of landmarks at different times,

yielding different delays (the distance between each pair of landmarks remains constant, as

Figure 4.1: Landmark distribution over the continental U.S.

1Here, A\B , A ∩Bc, where Bc denotes the complement of the set B.
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landmarks are not mobile). In our experimental study, we used 85 servers in the PlanetLab

research network [22]. The server locations are shown in Fig. 4.1. We obtained RTT

measurements using the ping utility five times every 15 minutes for a period of one week,

yielding up to M = 282, 240 measurements for each target (in practice, not all measurements

are successful). From the measurements, we obtained a scatterplot for each active landmark

Li, i ∈ La by taking delay measurements from Li to all other landmarks (see Fig. 4.2).

For clarity of presentation, the scatterplot in Fig. 4.2 shows only the minimum delay

measurements between planet1.cs.stanford.edu and 79 other PlanetLab nodes. The SPing

and GeoPing methods use only minimum delay measurements. The CBG scheme uses the

2.5 percentile of measurements. By contrast, the statistical geolocation scheme proposed in

this thesis uses all of the delay measurement data for statistical analysis.

4.2 Kernel Density Estimation

Once the profile of each landmark is built, the second step is the estimation of the joint

distribution of (Gi, Di), where Gi represents the great circle distance between active land-

mark Li, i ∈ La and the target τ , and Di is the measured delay between Li and τ . The

joint probability density function of (Gi, Di) is denoted by fGi,Di(g, d). The sample data to

be collected is represented as follows:

Si =
{

(gij , d
(l)
ij ) : j ∈ La, 1 ≤ l ≤ m

}
, i ∈ La, (4.1)

where m is the number of delay measurements taken between a given pair of landmarks Li

and Lj . In our experiments, m = 5×4×24×7, since 5 delay measurements from landmark

Li to landmark Lj , j 6= i, were taken once every 15 minutes over a period of one week. Let

M , |Si| denote the total number of delay measurements taken from a given landmark.

For a set of 85 active landmarks, we have M = 84m = 282, 240.
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We apply the following kernel density estimator [23–25]:

f̂i,H(g, d)=
1

M det(H)

∑
j∈La\{i}

m∑
l=1

K((g − gij , d− d(l)ij )H−1),

where (g, d) is a vector consisting of great circle distance g and delay d; H is a nonsingular

matrix, called the bandwidth matrix ; and K denotes the kernel. In our experimental work,

we use a diagonal bandwidth matrix and a Gaussian kernel:

H =

 h1 0

0 h2

 , K(g, d) =
1

2π
e−

1
2
(g2+d2). (4.2)

Thus, the kernel density estimator becomes

f̂i,H(g, d) =
1

2πh1h2

∑
j∈L\{i}

m∑
l=1

e
− 1

2

( g−gij
h1

)2
+

(
d−d

(l)
ij

h2

)2

. (4.3)

Several methods are available for choosing the bandwidth parameters h1 and h2. Popular

choices include various rules-of-thumb, bootstrap methods, plug-in methods, unbiased cross

validation, and biased cross validation. Scott’s rule-of-thumb is given by [23,24]

ĥj = M−1/6σ̂j , j ∈ {1, 2}. (4.4)

Although Scott’s rule-of-thumb choice of bandwidth parameters makes normality assump-

tions of underlying unknown distribution, we prefer this method due to its low complexity,

i.e., O(M) as opposed to O(M2) for the other methods. This is especially important as we

deal with large data sets (e.g., on the order of 250,000 samples).
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4.3 Application of Force-Directed Method

We employ a force-directed algorithm as an approximation algorithm to maximize the like-

lihood of the target location estimate given the delay measurement data. The force-directed

method iteratively applies a force on the target proportional to the gradient of the estimated

conditional distribution of distance from each landmark to the target given the delay. At

each step of the algorithm, the resultant of the forces from all landmarks is calculated and

then the target location estimate is moved in accordance with the resultant force. Thus,

our algorithm combines the force-directed method with gradient ascent optimization. The

initial estimate of the target location can be set as the landmark with the shortest delay to

the target.

The gradient ascent steps {ηi} form a decreasing sequence converging to zero, to ensure

the convergence of the force-directed method. The initial gradient ascent step η0 is chosen

to be such that the target is moved a given distance from its initial position (e.g., 100 km,

which is the magnitude of 108 for the rule-of-thumb bandwidth). The algorithm stops when

the target moved less than a value ε, where ε is chosen in such a way to achieve a tradeoff

between computational overhead and accuracy requirement.

Since the landmarks and targets are located on the earth, great circle distances must be

considered. We use the WGS-84 ellipsoid [26] as a model for Earth and apply the Vincenty

formulas to compute great circle distances [27]. We have implemented the direct and inverse

Vincenty’s formula in two functions.

Direct Vincenty Formula:

((ϕ2, λ2), b2) = vfwd((ϕ1, λ1), b1, g), (4.5)

which calculates the destination point (ϕ2, λ2) and the final bearing b2 given the starting

point (ϕ1, λ1), initial bearing b1, and the great circle distance g from the starting point to

the destination.
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Inverse Vincenty Formula:

(g, b1, b2) = vinv((ϕ1, λ1), (ϕ2, λ2)), (4.6)

which calculates the great circle distance g, the initial bearing b1, and the final bearing b2

given the starting point (ϕ1, λ1) and the destination point (ϕ2, λ2)

Our proposed force-directed steepest ascent algorithm is summarized in Algorithm 2.

Algorithm 2 SG: Statistical Geolocation Algorithm

F1. Start with a guess of the latitude and longitude of the target (ϕ
(0)
τ , λ

(0)
τ ). Initialize

k ← 0.

F2. Calculate the distance and final bearing from each landmark to the target using the
inverse Vincenty formula:

(g
(k)
i , b

(k)
i )← vinv((ϕi, λi), (ϕ

(k)
τ , λ(k)τ )), i ∈ La.

F3. Execute one step of gradient ascent:

l
(k)
i ←g

(k)
i + ηkf̂

′
Gi|Di

(g
(k)
i | diτ ), i ∈ La.

F4. For each i ∈ La calculate the force vector F
(k)
i as follows:

If f̂Gi|Di
(l
(k)
i | diτ ) > f̂Gi|Di

(g
(k)
i | diτ ) then

|F(k)
i | ← l

(k)
i − g

(k)
i ; bear(F

(k)
i )← b

(k)
i

Else F
(k)
i ← 0.

F5. Calculate the resultant force vector

F = |La|gm(F
(k)
i : i ∈ La)

F6. Move the target location estimate in the direction of the resultant force using the
direct Vincenty formula:

(ϕ(k+1)
τ , λ(k+1)τ )←vfwd((ϕ(k)

τ , λ(k)τ ), bear(F), |F|)

Increment k by one.
If target estimate moved more than ε then go to F2.

Else STOP

The conditional pdf estimate f̂Gi|Di
(g|d) in F3 and F4 can easily be obtained from the

joint kernel density estimate (4.3). In step F4, a force vector F, in geographical coordinates,

is represented as being comprised of a magnitude |F| and a bearing bear(F). This is similar
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Figure 4.2: Scatterplot of distance and delay from planet1.cs.stanford.edu to 79 other Plan-
etLab nodes across the U.S. (see Fig. 4.1).

to the magnitude-phase representation in the complex plane. Referring to step F5, the

operator gm(·) (geographical mean) computes the centroid of a set of points on a spherical

surface. To compute the geographical mean, we make use of the built-in Matlab function

MEANM. When the algorithm terminates in Step F6, the estimated location of the target

is given by (ϕ
(k)
τ , λ

(k)
τ ). The initial target location in Step F1 can be obtained by applying

a computationally simple geolocation method such as SPing or GeoPing [2, 6].

4.4 Experimental Results

We conducted experiments over the PlanetLab network using 85 landmarks. The distribu-

tion of the landmarks over the continental U.S. is illustrated in Fig. 4.1. The PlanetLab

database includes information on the latitude and longitude of each of the PlanetLab nodes.

We used the CoMon project of PlanetLab to retrieve a list of the active nodes, filtered to
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Figure 4.3: Kernel density estimate of bivariate distribution of distance and delay using
Gaussian kernel for planet1.cs.stanford.edu.
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Figure 4.4: Contour plot of kernel density estimate for planet1.cs.stanford.edu.
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Figure 4.5: Estimated conditional pdf of distance from planet1.cs.stanford.edu to a target,
given a delay of 50 ms.
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select only one node per site. By means of a geocoding webpage written using JavaScript

and the Google Map API, we filtered out a total of 93 sites located in the continental U.S.

We tested each of these sites, of which only 85 nodes responded to ping commands (the

others had firewall constraints).

We uploaded and executed a Python script in a distributed manner using the codeploy

tool and saved the output in a log file. The log files were later downloaded and parsed

using another Python script, and the measurement results were placed in comma separated

value (CSV) files. As a result of our delay measurements over PlanetLab, we obtained 85

scatterplots and kernel density estimates of the joint pdf of distance and delay from each

landmark to the target. Fig. 4.3 shows the KDE surface obtained at the PlanetLab node

planet1.cs.stanford.edu. A contour plot of the kernel density estimate for the same landmark

node is illustrated in Fig. 4.4. For this landmark, the conditional density of geographical

distance given a 50 ms delay is shown in Fig. 4.5

The kernel density estimates were applied to the force-directed algorithm described in

Section 4.3 to obtain the estimate of the target location. We validated the proposed geolo-

cation scheme by removing each landmark from the set of all landmarks, and running our

algorithms with the removed landmark as the target and the remaining landmarks. The

initial target location estimate is the landmark which is closest from the point of view of

RTT delay. The force-directed algorithm is designed to iteratively push the initial loca-

tion estimate towards its true location, based on conditional distributions of geographical

distance given delay. We observed that when the initial estimate is far from the real posi-

tion of the target, our algorithm improves the estimate dramatically. However, when the

initial estimate is close to the target, not much improvement is observed. To improve the

resolution and accuracy, one has to increase the number of landmarks.

For comparison, we have implemented and executed the CBG and SPing algorithms.

The CBG algorithm failed three times, yielding an empty confidence region. We removed

these cases from the CBG statistics. In other five cases the confidence region did not include

the target. By reducing the large errors, the average error of our statistical approach is
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Figure 4.6: Cumulative distribution function of estimation error: statistical geolocation
(SG), CBG, and SPing.

92 km. This is a dramatic improvement compared to 141 km for CBG and 184 km for

SPing. The median error also decreases to 53 km, in comparison to 73 km for SPing and

78 km for CBG. We note that 77% of the location estimates from SG estimates were in

the 100 km range, compared to 59% for CBG and 57% for SPing. Furthermore, 15% of

the CBG estimates and 19% of the SPing estimations had an error of 300 km or more,

while all but one of the SG estimates falled within the 300 km mark. Fig. 4.6 shows plots

of the cumulative distribution function (cdf) of the estimation error for SPing, CBG, and

SG. From this figure, it is clear that the statistical geolocation scheme is significantly more

accurate than the CBG and SPing.

Table 4.1 displays the geolocation error performance of SPing, CBG, and SG. The error

statistics shown in the left-hand column are the mean error, median error, maximum error,

standard deviation of error, first quartile, and third quartile. All of the error values shown

in the table are in units of km. In terms of mean error, SG shows a significant improvement

over CBG, which in turn shows a significant improvement over SPing. The median errors

of SPing and CBG are similar, while SG has a markedly smaller median error. Similarly,

whereas the maximum error values for SPing and CBG are approximately the same, that

of SG is about a factor of two smaller. Interestingly, the standard deviation of the error is
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Error [km] SPing CBG SG

mean 184 141 92
median 73 78 53
maximum 2167 2155 1054
std. dev. 309 176 238
1st quartile 30 28 32
3rd quartile 198 180 99

Table 4.1: Accuracy comparison of SPing, CBG, and SG.

smaller for CBG than for SG. The first quartile of the errors are approximately the same

for all three schemes, but SG clearly outperforms the other two schemes in terms of the

third quartile of error. In summary, the SG scheme appears to provide significantly higher

accuracy than SG and CBG. There is however, room for improvement, as indicated by the

result for the standard deviation of error. Aspects of the SG scheme that could be refined

further include the kernel density estimation approach and the force-directed gradient ascent

algorithm.

4.5 Analysis and Interpretation

We proposed a statistical approach to geolocation of Internet hosts, based on a the collection

of delay measurements among a set of landmark nodes. In contrast to earlier measurement-

based geolocation schemes, which provide loose deterministic bounds on the target location,

the proposed scheme captures the statistical variations in Internet delay measurements.

Besides the collection of active delay measurements, the key elements of the approach

include kernel density estimation to obtain an estimate of the joint density function of the

geographical distances and delays between landmarks, and a force-directed algorithm to

move the target location estimate towards a point that maximizes the likelihood function.

We conducted experiments over PlanetLab using 85 landmark nodes. Our results show

a significant improvement in accuracy over the previous approaches, in particular, CBG

and SPing.
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Chapter 5: Conclusions

This thesis brings two major contributions in the area of geolocation of Internet hosts. In

order to test thoroughly these advancements, we have created a measurement framework us-

ing PlanetLab infrastructure. We have collected our test data by performing measurements

amongst the 81-85 landmarks with unique location provided by Planetlab.

The first contribution in the class of purely-delay based algorithms creates a mathemati-

cal framework which generalizes well-known geolocation schemes like GeoPing and Shortest

Ping, by expressing the objective function as a combination of a proximity measure and

a norm. Using a careful choice of the proximity measure and norm, one can discern be-

tween informative landmarks (whose measurements provide information about the target

location), and non-informative landmark (which do not provide useful information with

regard to target location). Using a real-data study, we find two classes of measures which

provide superior robustness and accuracy in comparison to the GeoPing and Shortest Ping

methods. The first class is provided by combining the kth order normalized delay with the

Manhattan norm, which gives the Canberra distance (this is known to be a measure which

is biased around origin and very sensitive for values close to zero). We found that other

p-norms with 1/2 < p < 1 give also similar good results. The second class is given by using

the variance of measurements of a target as a measure of its reliability. This class uses Ma-

halanobis/Normalized Euclidean norm in combination with the kth order (unnormalized)

delay.

The second major contribution of this thesis, in the area of algorithms which are based

on both delay and location of the landmarks, proposes for the first time a statistical ap-

proach to the geolocation of Internet hosts. Unlike previous algorithms which provided only

loose deterministic bounds on the target location, this method captures statistical variation
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of the active delay measurements by constructing a profile for each landmark using kernel

density estimation of the joint probability density function of delay/distance measurements.

This estimate is later used by a force-directed algorithm to maximize the likelihood func-

tion. Using empirical data, the output estimate of this force-based method is proven to

reduce the geolocation error, by having much improved accuracy for the targets which

other algorithms either fail to locate completely, or give large errors. We have used the

collected measurements to run our algorithms and demonstrate the superior performance

of the proposed geolocation schemes in comparison to the existing algoritms.
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Appendix A: Vincenty’s Direct and Inverse Formulae

Vincenty’s Formulae are two algorithms used in geodesy to accurately calculate the great

circle (ellipsoidal) distance between two points. The model used is the WGS-84 standard,

which approximates the Earth surface with an ellipsoid. Using rapidly converging series for

the distance and angle over the surface of the ellipsoid, the formulae are accurate within 0.5

mm (the actual distance might be slightly different due to the differences in elevation). The

MATLAB implementation of these formulae follows [27] and its Javascript implementation

in [28].

The direct Vincenty formula takes as input the initial latitude, longitude, bearing (com-

pass bearing at the starting point), and the travel distance. It returns the latitude and

longitude of the destination point, and the final bearing (compass bearing at the destina-

tion point). The MATLAB code is listed below:

1 function [lat2, lon2, revAz] = gcdest(lat1, lon1, brng, dist)

2 %GCDEST Destination point, given start point, distance and bearing

3 % [LAT2, LON2, REVAZ] = GCDEST(LAT1, LON1, BRNG, DIST) calculates the

4 % destination point P2(LAT2,LON2) and the final bearing REVAZ, given the

5 % start point P1(LAT1,LON1), bearing BRNG and the great circle distance

6 % DIST between P1 and P2

7

8 % WGS−84 ellipsoid

9 % major, minor, and flattening of the Earth

10 a = 6378.137; % km (+/−2m)

11 b = 6356.7523142; % km

12 f = 1/298.257223563;

13

14 s = dist;

15 alpha1 = brng * pi/180;

16 sinAlpha1 = sin(alpha1);

17 cosAlpha1 = cos(alpha1);
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18

19 tanU1 = (1−f) * tan(lat1 * pi/180);

20 cosU1 = 1 / sqrt((1 + tanU1*tanU1));

21 sinU1 = tanU1*cosU1;

22 sigma1 = atan2(tanU1, cosAlpha1);

23 sinAlpha = cosU1 * sinAlpha1;

24 cosSqAlpha = 1 − sinAlpha*sinAlpha;

25 uSq = cosSqAlpha * (a*a − b*b) / (b*b);

26 A = 1 + uSq/16384*(4096+uSq*(−768+uSq*(320−175*uSq)));

27 B = uSq/1024 * (256+uSq*(−128+uSq*(74−47*uSq)));

28

29 sigma = s / (b*A);

30 sigmaP = 2*pi;

31 while abs(sigma−sigmaP) > 1e−12

32 cos2SigmaM = cos(2*sigma1 + sigma);

33 sinSigma = sin(sigma); cosSigma = cos(sigma);

34 deltaSigma = B*sinSigma*(cos2SigmaM+B/4* ...

35 (cosSigma*(−1+2*cos2SigmaM*cos2SigmaM)− ...

36 B/6*cos2SigmaM*(−3+4*sinSigma*sinSigma)* ...

37 (−3+4*cos2SigmaM*cos2SigmaM)));

38 sigmaP = sigma;

39 sigma = s / (b*A) + deltaSigma;

40 end

41

42 tmp = sinU1*sinSigma − cosU1*cosSigma*cosAlpha1;

43 lat2 = atan2(sinU1*cosSigma + cosU1*sinSigma*cosAlpha1, ...

44 (1−f)*sqrt(sinAlpha*sinAlpha + tmp*tmp));

45 lambda = atan2(sinSigma*sinAlpha1, ...

46 cosU1*cosSigma − sinU1*sinSigma*cosAlpha1);

47 C = f/16*cosSqAlpha*(4+f*(4−3*cosSqAlpha));

48 L = lambda − (1−C) * f * sinAlpha * ...

49 (sigma + C*sinSigma*(cos2SigmaM+C*cosSigma* ...

50 (−1+2*cos2SigmaM*cos2SigmaM)));

51

52 lat2 = lat2 * 180/pi;
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53 lon2 = lon1 + L * 180/pi;

54 if nargout > 2

55 revAz = atan2(sinAlpha, −tmp); % final bearing

56 revAz = mod(revAz,2*pi) * 180/pi;

57 end

The inverse Vincenty formula takes as input the latitude and longitude of the initial and

destination points. It returns the great circle (ellipsoidal) distance between the two points

and the initial and final compass bearings. The MATLAB code is listed below:

1 function [s, alpha1, alpha2] = gcdist(lat1, lon1, lat2, lon2)

2 %GCDIST Great circle distance using Vincenty's formula

3 % [S, ALPHA1, ALPHA2] = GCDIST(LAT1, LON1, LAT2, LON2) calculates the

4 % great circle distance S between P1 and P2 using Vincenty's formula,

5 % where P1(LAT1,LON1) is the start point, P2(LAT2,LON2) is the

6 % destination point, ALPHA1 is the initial bearing, and ALPHA2 is the

7 % final bearing in the P1−>P2 direction

8

9 % WGS−84 ellipsoid

10 % major, minor, and flattening of the Earth

11 a = 6378.137; % km (+/−2m)

12 b = 6356.7523142; % km

13 f = 1/298.257223563;

14

15 L = (lon2−lon1) * pi/180;

16 U1 = atan((1−f) * tan(lat1 * pi/180));

17 U2 = atan((1−f) * tan(lat2 * pi/180));

18 sinU1 = sin(U1); cosU1 = cos(U1);

19 sinU2 = sin(U2); cosU2 = cos(U2);

20

21 lambda = L; lambdaP = inf; iterLimit = 20;

22 while abs(lambda − lambdaP) > 1e−12 && iterLimit > 0
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23 sinLambda = sin(lambda); cosLambda = cos(lambda);

24 sinSigma = sqrt((cosU2*sinLambda)ˆ2 + ...

25 (cosU1*sinU2−sinU1*cosU2*cosLambda)ˆ2);

26 if sinSigma == 0

27 s = 0;

28 return;

29 end % if

30 cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda;

31 sigma = atan2(sinSigma, cosSigma);

32 sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;

33 cosSqAlpha = 1 − sinAlphaˆ2;

34 cos2SigmaM = cosSigma − 2*sinU1*sinU2/cosSqAlpha;

35 if isnan(cos2SigmaM)

36 cos2SigmaM = 0; % equatorial line: cosSqAlpha=0

37 end %if

38 C = f/16*cosSqAlpha*(4+f*(4−3*cosSqAlpha));

39 lambdaP = lambda;

40 lambda = L + (1−C) * f * sinAlpha * ...

41 (sigma + C*sinSigma*(cos2SigmaM+ ...

42 C*cosSigma*(−1+2*cos2SigmaM*cos2SigmaM)));

43 iterLimit = iterLimit − 1;

44 end %while

45

46 if iterLimit==0 % formula failed to converge

47 s = NaN;

48 return;

49 end %if

50

51 uSq = cosSqAlpha * (a*a − b*b) / (b*b);

52 A = 1 + uSq/16384*(4096+uSq*(−768+uSq*(320−175*uSq)));

53 B = uSq/1024 * (256+uSq*(−128+uSq*(74−47*uSq)));

54 deltaSigma = B*sinSigma* ...

55 (cos2SigmaM+B/4*(cosSigma*(−1+2*cos2SigmaM*cos2SigmaM)− ...

56 B/6*cos2SigmaM*(−3+4*sinSigma*sinSigma)* ...

57 (−3+4*cos2SigmaM*cos2SigmaM)));

56



58 s = b*A*(sigma−deltaSigma);

59 if nargout > 1

60 alpha1 = atan2(cos(U2)*sin(lambda), ...

61 cos(U1)*sin(U2)−sin(U1)*cos(U2)*cos(lambda));

62 alpha1 = mod(alpha1,2*pi) * 180/pi;

63 end

64 if nargout > 2

65 alpha2 = atan2(cos(U1)*sin(lambda), ...

66 −sin(U1)*cos(U2)+cos(U1)*sin(U2)*cos(lambda));

67 alpha2 = mod(alpha2,2*pi) * 180/pi;

68 end
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Appendix B: Best Line as Solution of a Linear Programming

Problem in Constraint-Based Geolocation

As outlined in [4, 5] the packet propagation speed on the Internet is at most the speed of

light through the optical fiber cable, which in turn is about 2/3 of the speed of light. This

restriction induces circle-like bounds on the location of the target. In the delay-distance

plane, this constraint translates in a line, which [4] calls baseline’. The equation of this

line is g = 1
100d, where g is the geographical distance in kilometers and d is the delay in

milliseconds, as seen in Fig. B.1. However, the bounds on geographical distance given by

the baseline are too loose to be of practical interest. To obtain tighter bounds, Gueye et. al.

in [4, 5] construct a “best” linear lower bound based on inter-landmark delay and distance

measurements, which they call bestline. If we denote by di and gi the geographical distance

in kilometers, respectively the 2.5 percentile delay in milliseconds from current landmark

to landmark i, with 1 ≤ i ≤ n, then the slope m and the intercept b of the bestline can be

expressed as the solution of the following linear programming problem:

minimize
n∑
i=1

(di −mgi − b) (B.1)

subject to di −mgi − b ≥ 0 , 1 ≤ i ≤ n (B.2)

m ≥ 1

100
(B.3)

b ≥ 0 (B.4)

As seen in Fig. B.1, the objective function B.1 to be minimized is the sum of the y-distances

between the distance-delay points and the bestline. The set of constraints in B.2 simply

expresses that each point of coordinate (gi, di) is situated above the bestline in the Fig. B.1

graph. The constraint B.3 is the mathematical formulation that the slope of the bestline

should be at least as large as the slope of the baseline, to guarantee there is no interesection
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Figure B.1: Construction of “bestline” for Constraint-Based Geolocation algorithm.

between baseline and bestline for positive distances g. Thus, the bestline should be situated

entirely above the baseline for positive g. The final constraint B.4 prevents the negative

is also a necessary condition for the bestline to be situated above baseline for all positive

distances g.

We can also notice one of the drawbacks of the Constraint-Based Geolocation scheme:

just because all the measured inter-landmark distance-delay pairs falled above the bestline

does not guarantee that the distance-delay measurement pair for the target is also situated

above the bestline. If the measurement pair falls below the bestline, this geolocation scheme

is guaranteed to provide an estimated region of the target which does not contain the actual

location of the target.

The objective function can be written as:

n∑
i=1

(di −mgi − b) =

n∑
i=1

di −

(
n∑
i=1

gi

)
m− nb (B.5)

59



Since the first term on the right hand side does not depend on m or b, it suffices to minimize

the simplified objective function: − (
∑n

i=1 gi)m−nb. Thus, the linear programming problem

can be written in the following form:

minimize −

(
n∑
i=1

gi

)
m− nb (B.6)

subject to mgi + b ≤ di , 1 ≤ i ≤ n (B.7)

−m ≤ − 1

100
(B.8)

− b ≤ 0 (B.9)

which becomes the matrix form:

minimize cTx (B.10)

subject to Ax ≤ v (B.11)

where:

c =

−∑n
i=1 gi

−n

 , A =



g1 b

g2 b

...
...

gn b

−1 0

0 −1


, v =



d1

d2
...

dn

− 1
100

0


(B.12)

This is the form which is accepted by MATLAB’s linprog function, which solves this linear

programming problem returning the slope m and intercept b of the bestline.
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Appendix C: Notes on Kernel Density Estimation

This appendix provides details on the univariate and multivariate nonparametric density

estimation, as well as three well-known bandwidth selection rules (Scott’s rule of thumb,

Silverman’s rule of thumb and unbiased cross-validation). It follows closely classical texts

[23–25,29–31].

C.1 Parametric Estimation

Suppose X1, X2 . . . Xn are independent and identically distributed (i.i.d.) random variables

with common probability density function f(x; θ), where f is known and θ is unknown.

We would like to estimate θ with an estimator (random variable) θ̂ = θ̂(X1, X2 . . . Xn).

We observe the values X1 = x1, X2 = x2 . . .Xn = xn and estimate θ̂ = θ̂(x1 . . . xn). In

order to achieve a good estimation, we need a criteria to decide which estimator performs

best. The most common indicator of an estimator’s performance is the Square Error (SE):

SE(θ̂, θ) = (θ̂ − θ)2 (C.1)

However, the square error is a random variable itself. Therefore, we need to minimize the

expected value of the Square error, called Mean Square Error (MSE). The Mean Square

Error reflects the average difference between the estimator and the underlying parameter,

and is defined as follows:

MSE(θ̂, θ) = E[(θ̂ − θ)2]

= E[(θ̂(X1 . . . Xn)− θ)2]

=

∫
· · ·
∫

(θ̂(x1, x2 . . . xn)− θ)2fX1...Xn(x1, x2 . . . xn) dx1dx2 . . . dxn

(C.2)
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C.2 Bias + Variance Theorem

The mean square error can be expressed as the sum between the variance of the estimator

and its squared bias:

MSE(θ̂, θ) = Var(θ̂) + (bias(θ̂, θ))2 (C.3)

where bias(θ̂, θ) = E[θ̂]− θ. Indeed:

MSE(θ̂, θ) = E[(θ̂ − θ)2]

= E[(θ̂ − E[θ̂] + E[θ̂]− θ)2]

= E[(θ̂ − E[θ̂])2] + E[2(θ̂ − E[θ̂])(E[θ̂]− θ)] + E[(E[θ̂]− θ)2]

The middle term of the right hand side cancels, and the last term inside the expectation

operator is a constant, therefore:

MSE(θ̂, θ) = E[(θ̂ − E[θ̂])2] + (E[θ̂]− θ)2

= Var(θ̂) + (bias(θ̂, θ))

C.3 Nonparametric Density Estimation

Suppose X1, X2 . . . Xn are independent and identically distributed (i.i.d.) random variables

with common probability density function f(x), where f is unknown. We estimate f(x) by

a random variable as f̂ follows

f(x) = f̂(x;X1, X2 . . . Xn) (C.4)
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In terms of observed values, we observe X1 = x1, X2 = x2 . . .Xn = xn and we estimate

f(x) as:

f(x) = f̂(x;x1, x2 . . . xn) (C.5)

As in Appendix C.1, we need a minimization criteria in order to find the best estimator.

The most common used criteria is the Integrated Square Error (ISE) random variable:

ISE(f̂ , f) =

∫
(f̂(x)− f(x))2 dx

=

∫
(f̂(x;X1, X2 . . . , Xn)− f(x))2 dx

(C.6)

As ISE is a random variable, we minimize its expected value, called Mean Integrated

Squared Error (MISE) in order to find the optimal estimator.

MISE(f̂ , f) = E[ISE(f̂ , f)]

= E

[∫
(f̂(x;X1, X2 . . . Xn)

]

=

∫
· · ·
∫ [∫

(f̂(x;x1, x2 . . . xn)− f(x))2fX1X2...Xn(x1, x2, . . . xn) dx

]
dx1 . . . dxn

=

∫ [∫
· · ·
∫

(f̂(x;x1, x2 . . . xn)− f(x))2fX1X2...Xn(x1, x2, . . . xn) dx1 . . . dxn

]
dx

(C.7)

C.4 Univariate Kernel Density Estimation

Suppose X1, X2 . . . Xn are independent and identically distributed (i.i.d.) random variables

with common probability density function f(x), where f is unknown. Then we can estimate
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f(x) by:

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
=

1

n

n∑
i=1

Kh(x−Xi) (C.8)

where Kh(x) = 1
hK(xh). K has the properties:

K(x) ≥ 0 (C.9)

K(x) = K(−x) (C.10)

∫
K(x) dx = 1 (C.11)

If we observe the values X1 = x1, X2 = x2 . . .Xn = xn, then

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
=

1

n

n∑
i=1

Kh(x− xi) (C.12)

As a consequence, we have:

∫
f̂h(x) dx =

1

n

n∑
i=1

∫
1

h
K

(
x− xi
h

)
dx =

1

n
n = 1 (C.13)

Thus, f̂h is a true probability density function.
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C.5 Bivariate Kernel Density Estimation (Diagonal Band-

width)

Suppose we have (X1, Y1), (X2, Y2) . . . (Xn, Yn) independent and identically distributed

bivariate random variables with common probability density function f(x, y), which is un-

known. Then we can estimate f(x, y) by the folowing random variable (estimator):

f̂h1h2(x, y) =
1

nh1h2

n∑
i=1

K

(
x−Xi

h1
,
y − Yi
h2

)
=

1

n

n∑
i=1

Kh1h2(x−Xi, y − Yi) (C.14)

where K has the following properties:

K(x, y) ≥ 0 (C.15)

K(x, y) = K(−x, y) = K(x,−y) (C.16)

∫∫
K(x, y) dxdy = 0 (C.17)

If the observed values are (X1, Y1), (X2, Y2) . . . (Xn, Yn), then:

f̂h1h2(x, y) =
1

nh1h2

n∑
i=1

K

(
x− xi
h1

,
y − yi
h2

)
=

1

n

n∑
i=1

Kh1h2(x− xi, y − yi) (C.18)
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As a consequence, f̂h1h2 is a true pdf:

∫∫
f̂h1h2(x, y) dxdy =

1

nh1h2

n∑
i=1

∫∫
K

(
x− xi
h1

,
y − yi
h2

)
dxdy

=
1

n

n∑
i=1

∫∫
1

h1h2
K

(
x− xi
h1

,
y − yi
h2

)
dxdy

=
1

n

n∑
i=1

∫∫
1

h1h2
K(u, v)h1h2 dxdy =

1

n
n = 1

with the substitution u = x−xi
h1

, v = y−yi
h2

, and determinant of Jacobian matrix h1h2.

C.6 General Multivariate Kernel Density Estimation

Suppose X1, X2 . . . Xn are independent and identically distributed random vectors with

the common probability density function f(x) = f(x1, x2 . . . xd), where f is unknown and

Xi is a d-dimensional vector (Xi = [Xi1, Xi2 . . . Xid]
T ). Suppose that:

H =



h11 h12 · · · h1d

h21 h22 · · · h2d
...

...
. . .

...

hd1 hd2 · · · hdd



is a non-singular matrix with positive determinant (det(H) > 0). Then we can estimate the

probability density function f by the random variable fH as follows:

fH(x) =
1

n det(H)

n∑
i=1

K(H−1(x−Xi))

=
1

n

n∑
i=1

KH(H−1(x−Xi))

(C.19)
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where KH(x) = 1
det(H)K(H−1x). K should have the properties:

K(x) ≥ 0

K(x1, x2 . . .− xi . . . xn) = K(x1, x2 . . . xi . . . xn)

∫
· · ·
∫
K(x1, x2 . . . xn) dx1 . . . dxn = 1

(C.20)

Thus, if we observe the values X1 = x1, X2 = x2 . . . Xn = xn then the estimation of

f(x) is:

f̂H(x) =
1

n det(H)

n∑
i=1

K(H−1(x− xi)) (C.21)

By substituting y = H−1(x− xi) we can prove that the kernel integrates to 1:

∫
· · ·
∫

1

det(H)
K(H−1(x− xi)) dx =

∫
· · ·
∫

1

det(H)
K(y) det(H) dy

=

∫
· · ·
∫
K(y) dy = 1

Therefore fH is a true probability density function:

∫
· · ·
∫
f̂H(x) dx =

1

n

n∑
i=1

∫
· · ·
∫

1

det(H)
K(H−1(x− xi)) dx

=
1

n
n = 1
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If H is a diagonal matrix:

H = diag(h1, h2 . . . hd) =



h1 0 · · · 0

0 h2 · · · 0

...
...

. . .
...

0 0 · · · hd



then we get the n-dimensional version of the bivariate diagonal bandwidth kernel density

estimate:

det(H) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 0 · · · 0

0 h2 · · · 0

...
...

. . .
...

0 0 · · · hd

∣∣∣∣∣∣∣∣∣∣∣∣∣
= h1h2 . . . hd

H−1 = diag(
1

h1
,

1

h2
. . .

1

hd
) =



1/h1 0 · · · 0

0 1/h2 · · · 0

...
...

. . .
...

0 0 · · · 1/hd


and

f̂H(x) = f̂H(x1, x2 . . . xd)

=
1

nh1h2 . . . hd

n∑
i=1

K

(
x1 − xi1
h1

,
x2 − xi2
h2

. . .
xd − xid
hd

) (C.22)

C.7 Product and Radial Multivariate Kernels

The most popular multivariate kernels constructed from univariate kernels are the prod-

uct and radial multivariate kernels. The product or multiplicative kernel is derived from
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multiplication of n (possibly different) univariate kernels:

K(x) = K(x1, x2 . . . xd) = K(x1)K(x2) . . .K(xd) (C.23)

Another way of deriving a multivariate kernel from a univariate one is to consider rotation

invariant multivariate kernels:

K(x) =
1

c
K (‖x‖2)

=
1

c
K
(√

xTx
)

=
1

c
K

(√
x21 + x22 + . . .+ x2d

)
(C.24)

where c is chosen so that the kernel integrates to 1. Thus, the Gaussian kernel:

K(x) = (2π)−
d
2 e−

‖x‖22
2 (C.25)

is a kernel which is both product and radial. This property makes it suitable as the choice

kernel for our algorithms.

C.8 Gaussian Kernel Density Estimation of Bivariate Prob-

ability Density Functions (Diagonal Bandwidth)

As mentioned in the previous section, the Gaussian kernel is a special kernel for which the

product and the radial kernels are identical:

K(x, y) = K(x)K(y) =
1√
2π
e−

x2

2
1√
2π
e−

y2

2 =
1

2π
e−

x2+y2

2 (C.26)
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By plugging K and H =
[
h1 0
0 h2

]
into C.22 we get:

f̂h1h2(x, y) =
1

2πnh1h2

n∑
i=1

exp

{
−1

2

[(
x− xi
h1

)2

+

(
y − yi
h2

)2
]}

(C.27)

From C.27 we can get the conditional pdf and its derivative. The marginal pdf with respect

to the second variable is:

f̂h2(y) =

∫
f̂h1h2(x, y) dx

=

∫
1

2πnh1h2

n∑
i=1

exp

{
−1

2

[(
x− xi
h1

)2

+

(
y − yi
h2

)2
]}

dx

=
1

nh2
√

2π

n∑
i=1

exp

{
−1

2

(
y − yi
h2

)2
}∫

1

h1
√

2π
exp

{
−1

2

(
x− xi
h1

)2
}
dx

=
1

nh2
√

2π

n∑
i=1

exp

{
−1

2

(
y − yi
h2

)2
}
dx

(C.28)

Thus the conditional pdf is given by the following formula:

f̂h1h2(x|y) =
f̂h1h2(x, y)

f̂h2(y)

=

1
2πnh1h2

∑n
i=1 exp

{
−1

2

[(
x−xi
h1

)2
+
(
y−yi
h2

)2]}
1

nh2
√
2π

∑n
i=1 exp

{
−1

2

(
y−yi
h2

)2}
dx

(C.29)

C.9 Rule-of-Thumb Bandwidth Selection

In order to use the kernel density estimation as part of an algorithm, it is important to

have a procedure of automatic kernel bandwidth selection. One of the simplest methods

70



is the plug-in method proposed in [23]. The “rule of thumb” methods make normality

assumption N(µ,Σ) of the underlying distribution. Under certain regularity conditions,

one can approximate the bias and variance by using a second order (multivariate) Taylor

expansion:

bias(f̂H(x)), f(x) ≈
1

4
µ22(K)

∫
[tr(HTHfH)]2 dx (C.30)

Var(f̂H(x))) ≈
1

det(H)
‖K‖22f(x) (C.31)

where µ22(K)Id =
∫
·· ·
∫
xxTK(x) dx, Hf is the Hessian matrix of second order partial

derivatives of f , and ‖K‖22 is the d-dimensional squared L2 norm of K. The Mean Integrated

Square Error (MISE) can then be approximated by Asymptotic Mean Integrated Square

Error (AMISE):

AMISE(H) =
1

4
µ22(K)

∫
[tr(HTHfH)]2 dx +

1

det(H)
‖K‖22f(x) (C.32)

In the simplest case when both f and K are multivariate Gaussian random vectors dis-

tributed as N(µ,Σ) respectively N(0, Id), and both H and Σ are diagonal matrices H =

diag(h1, h2, . . . hd) and Σ = diag(σ21, σ
2
2 . . . σ

2
d), the optimal bandwidth which minimizes the

AMISE is derived in [31]:

h?j =

(
4

d+ 2

) 1
d+4

n−
1

d+4σj (C.33)

By replacing the theoretical standard deviation σj with the sample standard deviation σ̂j ,

we get a generalization of Silverman’s rule of thumb [23]:

h?j =

(
4

d+ 2

) 1
d+4

n−
1

d+4 σ̂j (C.34)
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As the first term
(

4
d+2

)1/(d+4)
is always between 0.924 and 1.059, one can ignore it, thus

obtaining Scott’s rule:

h?j = n−
1

d+4 σ̂j (C.35)

However, in our case of interest (d = 2) Scott’s rule and Silverman’s rule are identical:

h?j = n−
1
6 σ̂j (C.36)

C.10 One-Dimensional Unbiased Cross-Validation

Another way of choosing the bandwidth is by using Unbiased Cross Validation (UCV) It

starts with minimizing the Integrated Square Error (ISE):

ISE(f̂h, f) =

∫ (
f̂h(x)− f(x)

)2
dx

=

∫ (
f̂h(x)

)2
− 2 · f̂h(x) · f(x) + (f(x))2 dx

=

∫ (
f̂h(x)

)2
dx− 2 ·

∫
f̂h(x) · f(x) dx+

∫
(f(x))2 dx

(C.37)

Minimizing ISE is equivalent to minimizing:

CV (h) = ISE(f̂h, f)−
∫

(f(x))2 dx

=

∫ (
f̂h(x)

)2
dx︸ ︷︷ ︸

A

− 2 ·
∫
f̂h(x) · f(x)dx︸ ︷︷ ︸

B

(C.38)

Part A can be easily calculated by using the substitution z = x−xi
h , which yields:
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∫ (
f̂h(x)

)2
dx =

∫ (
1

nh

n∑
i=1

K

(
x− xi
h

))2

dx

=
1

n2h2

∫ ( n∑
i=1

K

(
x− xi
h

)) n∑
j=1

K

(
x− xj
h

) dx

=
1

n2h2

n∑
i=1

n∑
j=1

∫
K

(
x− xi
h

)
K

(
x− xj
h

)
dx

=
1

n2h2

n∑
i=1

n∑
j=1

∫
K(z)K

(
z − xj − xi

h

)
h dz

=
1

n2h

n∑
i=1

n∑
j=1

∫
K(z)K

(
xj − xi
h

− z
)
dz

=
1

n2h

n∑
i=1

n∑
j=1

K ∗K
(
xj − xi
h

)

(C.39)

To estimate part B we notice that if X is distributed with the unknown probability density

function f(x) then:

E[f̂h(X)] =

∫
f̂h(x)f(x) dx (C.40)

Thus E[f̂h(X)] can be approximated by the average of the observed values:

E[f̂h(X)] ≈
f̂h(x1) + f̂h(x2) + · · ·+ f̂h(xn)

n
≈

1

n

n∑
i=1

f̂h(xi) (C.41)

However, it is incorrect to use the xi observation to calculate f̂h(xi). Therefore we estimate
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f̂h(xi) from the other n− 1 observations:

f̂h(x) ≈ f̂h,−i(xi) (C.42)

where f̂h,−i(xi) can be written using the kernel symmetry, K(−x) = K(x), as:

f̂h,−i(xi) =
1

n− 1

n∑
j=1
j 6=i

1

h
K

(
xi − xj
h

)
=

1

n− 1

n∑
j=1
j 6=i

1

h
K

(
xj − xi
h

)
(C.43)

The final approximation is

E[f̂h(X)] ≈
1

n(n− 1)h

n∑
i=1

∑
j 6=i

K

(
xj − xi
h

)
(C.44)

By plugging A and B in the definition of CV (h) we get:

CV (h) =
1

n2h

n∑
i=1

∑
j 6=i

K ∗K
(
xj − xi
h

)
− 2

n(n− 1)h

n∑
i=1

∑
j 6=i

K

(
xj − xi
h

)
(C.45)

The optimal h is the one which minimizes CV (h):

h? = arg min
h

CV (h) (C.46)

If K is the Gaussian Kernel (i.e. pdf of a N(0, 1) random variable) then K ∗ K is also a

Gaussian Kernel, pdf of a N(0, 2) random variable, with standard deviation: σ =
√

2.
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C.11 Two-Dimensional Unbiased Cross-Validation (Diagonal

Bandwidth)

As in the one-dimensional case, the objective is to minimize the integrated square error:

ISE(f̂h1,h2 , f) =

∫∫ (
f̂h1,h2(x, y)− f(x, y)

)2
dxdy

=

∫∫ (
f̂h1,h2(x, y)

)2
dxdy − 2

∫∫
f̂h1,h2(x, y)f(x, y) dxdy +

∫∫
(f(x, y))2 dxdy

(C.47)

The last term (
∫∫

(f(x, y))2 dxdy) does not depend on h1 or h2, therefore in order to

minimize ISE(f̂h1,h2 , f) it is sufficient to minimize:

CV (h1, h2) = ISE(f̂h1,h2 , f)−
∫∫

(f(x, y))2 dxdy

=

∫∫ (
f̂h1,h2(x, y)

)2
dxdy − 2

∫∫
f̂h1,h2(x, y)f(x, y) dxdy

=

∫∫ (
f̂h1,h2(x, y)

)2
dxdy − 2E[f̂h1,h2(X,Y )]

(C.48)

where (X,Y ) is distributed with the probability density function f(x, y)
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Using the substitution u = x−xi
h1

, v = y−yi
h2

the first term of C.48 can be written as:

∫∫ (
f̂h1,h2(x, y)

)2
dxdy =

∫∫ (
1

nh1h2

n∑
i=1

K

(
x− xi
h1

,
y − yi
h2

))2

dxdy

=
1

n2h1
2h2

2

∫∫ ( n∑
i=1

K

(
x− xi
h1

,
y − yi
h2

)) n∑
j=1

K

(
x− xj
h1

,
y − yj
h2

) dxdy

=
1

n2h1
2h2

2

n∑
i=1

n∑
j=1

∫∫
K

(
x− xi
h1

,
y − yi
h2

)
K

(
x− xj
h1

,
y − yj
h2

)
dxdy

=
1

n2h1
2h2

2

n∑
i=1

n∑
j=1

∫∫
K(u, v)K

(
u− x− xj

h1
, v − y − yj

h2

)
h1h2 dudv

=
1

n2h1
2h2

2

n∑
i=1

n∑
j=1

K ∗K
(
xj − xi
h1

,
yj − yi
h2

)

(C.49)

As in the one-dimensional case, we approximate E[f̂h1,h2(X,Y )] with the sample average and

use the symmetry property of the kernel K(x, y) = K(−x,−y). In order to get an estimate

of f̂h1,h2(xi, yi) we skip the measurement with index i, so we use only n− 1 measurements
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to get the density estimate denoted by f̂h1,h2,−i(xi, yi)

E[f̂h1,h2(X,Y )] ≈
f̂h1,h2(x1, y1) + f̂h1,h2(x2, y2) . . . f̂h1,h2(xn, yn)

n

≈
1

n

n∑
i=1

f̂h1,h2(xi, yi)

≈
n∑
i=1

f̂h1,h2,−i(xi, yi)

≈
1

n

n∑
i=1

1

n− 1

n∑
j=1
j 6=i

1

h1h2
K

(
xi − xj
h1

,
yi − yj
h2

)

≈
n∑
i=1

∑
j 6=i

K

(
xj − xi
h1

,
yj − yi
h2

)

Therefore the objective function to be minimized is:

CV (h1, h2) =
1

n2h1h2

n∑
i=1

n∑
j=1

K ∗K
(
xj − xi
h1

,
yj − yi
h2

)

− 2

n(n− 1)h1h2

n∑
i=1

∑
j 6=i

K

(
xj − xi
h1

,
yj − yi
h2

) (C.50)

We choose h1 and h2 which minimizes CV (h1, h2). If K(x, y) is the probability density

function of the product Gaussian Kernel, which is N(0, I2), where I2 denotes the 2 × 2

identity matrix, then K ∗ K is the probability density function of a N(0, 2I2) random

variable.
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C.12 Unbiased Cross-Validation for Gaussian Kernels

In the general case

UCV (H) =
1

n2 det(H)

n∑
i=1

n∑
j=1

K ∗K(H−1(xj − xi))

− 2

n(n− 1) det(H)

n∑
i=1

∑
j 6=i

K(H−1(xj − xi))

(C.51)

If H is a diagonal 2× 2 matrix
[
h1 0
0 h2

]
, then:

UCV (h1, h2) =
1

n2h1h2

n∑
i=1

n∑
j=1

K ∗K
(
xj − xi
h1

,
yj − yi
h2

)

− 2

n(n− 1)h1h2

n∑
i=1

∑
j 6=i

K

(
xj − xi
h1

,
yj − yi
h2

) (C.52)

Assuming K is the pdf of a N(0, I2) random variable, i.e.:

K(x, y) = K(x)K(y) =
1√
2π

exp

{
−x

2

2

}
1√
2π

exp

{
−y

2

2

}
=

1

2π
exp

{
−x

2 + y2

2

}
(C.53)

the convolution K ∗K is the pdf of a N(0, 2I2) random variable, i.e.:

K ∗K(x, y) =
1√

2π
√

2
exp

{
− x2

2(
√

2)2

}
1√

2π
√

2
exp

{
− y2

2(
√

2)2

}
=

1

4π
exp

{
−x

2 + y2

4

}
(C.54)
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Thus, the formula for the unbiased cross validation objective function becomes:

UCV (h1, h2) =
1

n2h1h2

n∑
i=1

n∑
j=1

1

4π
exp

{
−1

4

[(
xj − xi
h1

)2

+

(
yj − yi
h2

)2
]}

− 2

n2h1h2

n∑
i=1

∑
j 6=i

1

2π
exp

{
−1

2

[(
xj − xi
h1

)2

+

(
yj − yi
h2

)2
]} (C.55)

If we denote by

Tij = exp

{
−1

4

[(
xj − xi
h1

)2

+

(
yj − yi
h2

)2
]}

(C.56)

then we have:

exp

{
−1

2

[(
xj − xi
h1

)2

+

(
yj − yi
h2

)2
]}

= T 2
ij (C.57)

If i = j then:

Tij = exp

{
−1

4

[(
xj − xi
h1

)2

+

(
yj − yi
h2

)2
]}

= e0 = 1 (C.58)

and we also have Tij = Tji, therefore it is sufficient to calculate Tij only for i < j. Thus,

the formula for unbiased cross-validation becomes:
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UCV (h1, h2) =
1

4πn2h1h2

n∑
i=1

n∑
j=1

Tij −
1

πn2h1h2

n∑
i=1

∑
j 6=i

T 2
ij

=
1

4πn2h1h2

n∑
i=1

1 + 2
∑
j>i

Tij

− 1

πn2h1h2

n∑
i=1

2
∑
j>i

T 2
ij



=
1

4πn2h1h2

n+ 2
∑
i=1

∑
j>i

T 2
ij



=
1

4πnh1h2
+

1

2πn2h1h2

∑
i=1

∑
j>i

Tij − 4
∑
i=1

∑
j>i

T 2
ij


=

1

4πnh1h2
+

1

2πn2h1h2

∑
i=1

∑
j>i

[Tij (1− 4Tij)]

(C.59)
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