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ABSTRACT 

PERFORMANCE, TRUST, AND WORKLOAD IN AN AUTOMATION-AIDED 

VISUAL SEARCH TASK 

Samuel S. Monfort, M.A. 

George Mason University, 2017 

Dissertation Director: Dr. Patrick E. McKnight 

 

Identifying vehicles on the battlefield quickly and accurately is an important part of 

soldier performance. Currently, automation is being developed to aid in target 

identification efforts, but some ambiguity remains regarding the accuracy required for 

these systems to be helpful. Past meta-analytic efforts have identified a 70% reliability 

threshold between when automated systems help performance and when they interfere 

with performance. However, this threshold was calculated as an aggregate estimate from 

a great variety of studies, and warrants further exploration before being applied to a target 

search and identification context. Therefore, this dissertation was designed to identify 

moderators specific to target search and identification that might shift the 70% reliability 

threshold. I found that the type of error issued by the automation (misses versus false 
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alarms), the range of the targets (close versus far), as well as the type of judgment 

required of the soldier (search: vehicle/no-vehicle versus identification: type of vehicle), 

all affect the reliability required for automation to have a net-positive effect on 

performance. The reliability threshold also varies substantially by outcome, leading to 

very little consistency between thresholds. Further, although these moderators have 

strong relationships with target search and identification performance, they have less of 

an impact on subjective trust and workload, suggesting that observers might not be 

consciously aware of how their own performance is changing as a function of automation 

properties. These results are discussed in light of the way that soldiers are trained and 

how automation is designed to aid performance on the battlefield. 
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OVERVIEW  

Soldiers rely on automation to assist target identification (Biros, Daly, & Gunsch, 

2004; Yeh & Wickens, 2001), but these systems are rarely perfect. A meta-analysis on 

the subject suggests that automation 70% reliable or higher would yield net-positive 

effects on search performance (Wickens & Dixon, 2007), but this estimate is an 

approximation that ignores at least three important factors relevant to target 

identification. These factorsðthe automation error type (i.e., misses vs. false alarms), the 

difficulty in perceiving the target (i.e., near vs. far targets), and the need to make specific 

judgments about targets rather than simple ones (i.e., judgment specificity: identifying all 

targets vs. military targets vs. specific military targets)ðlikely affect the impact of 

reliability on target identification performance. The extent to which decreased reliability 

adversely affects performance may depend on the nature of the errors that come from 

reduced reliabilityðthat is, whether errors are misses or false alarms. A great number of 

false alarms in a target identification task may be particularly damaging because they 

simultaneously fail to provide a correct cue while also distracting the observer with visual 

clutter (Yeh et al., 2003). Misses, in contrast, only fail to provide a correct cue, and 

consequently may not be as closely linked to performance. Second, as targets become 

more difficult to perceive, unreliable automation may be more likely to adversely affect 

performance (Meyer, 2001). Finally, the need to make specific judgments about targets 
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rather than simple ones may affect performance in two ways: through a general task 

difficulty effect (similar to perceptual difficulty) and also by draining a limited supply of 

information-processing resources. An observer who needs to perceive and categorize a 

target is facing a greater cognitive challenge than one who simply has to perceive it.  

Perceptual difficulty, error type, and the need to make specific judgments about 

targets rather than simple ones are three factors relevant to target identification that may 

affect the 70% reliability estimate obtained by Wickens and Dixon (2007). The current 

study was designed to investigate the importance of these three factors. Identifying the 

types of automation errors that are the most damaging and the task characteristics where 

automation reliability is most important will allow designers to best leverage the 

capabilities of automation in target identification tasks.  

Relevant Outcomes 

Before elaborating on the three factors listed above, I will briefly describe the four 

outcomes relevant to the current study: task performance, trust/self-confidence, mental 

workload, and remaining mental resources. The factors I discussed above may 

differentially affect these outcomes so I treat them as unique and important in their own 

right. For each outcome, the comparison between the task when it is automated versus 

when it is not represents the ñnet gainò from automation, an important consideration 

when deciding whether or not to pair a human operator with a machine. 

Task performance 

The first and perhaps most obvious outcome is task performance: the speed and 

accuracy with which observers perceive targets in a scene. In any signal detection task, 
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response accuracy can be decomposed into probability of true positives (i.e., ñhitsò) as 

well as probability of false positives (i.e., ñfalse alarmsò). The current study considers 

these two aspects of accuracy separately. Although accuracy is the primary performance 

outcome, speed of completion may provide useful supplemental fluency information. 

Participants were asked to complete each scene as quickly as they can without sacrificing 

accuracy, so those who complete scenes more quickly (with comparable accuracy) should 

be considered superior to those who complete them more slowly (Fitts, 1954). 

Trust and self-confidence 

Research suggests that the decision to use automation (or not) stems from a 

comparison between an operatorôs confidence in their own skill and their trust in the 

automationôs reliability (Alexander, Franz, McKnight, & Kashdan, 2016; de Vries, 

Midden, & Bouwhuis, 2003; Franz et al., 2016). Put simply, people will use an automated 

system if they believe it to be more capable of performing a task than they themselves 

are. Subjective perceptions of automation reliability are not always accurate, however, 

and human observers may mistakenly believe the automation to be less capable than they 

are. Thus, in addition to actual automation reliability, it is important to assess observersô 

subjective trust in the automation, as well as trust in their own abilities (i.e., their self-

confidence). 

Mental workload 

The decision to rely on an automated aid should also be affected by observersô 

mental workload (Biros, Daly, & Gunsch, 2004). An observer who reports feeling 

cognitively overburdened will likely favor automated cues over their own observations, 



4 

 

using automation ñas a heuristic replacement for vigilant information seeking and 

processingò (Mosier & Skitka, 1996, p. 205). 

Mental resources 

Attentional resource theory suggests that observers have a limited supply of 

mental resources that are expended as they engage in difficult tasks (Parasuraman & 

Davies, 1977). As task demands increase, human operators respond by drawing more 

heavily on their limited supply of expendable mental resources, and the fewer resources 

that remain, the less likely that observers will remain engaged with the task. Although in 

many cases mental workload is used as a proxy for mental resources (it is likely that 

difficult tasks will heavily drain mental resources, e.g., Helton & Warm, 2008), the two 

constructs are theoretically separable. For this reason, I will assess remaining mental 

resources independently of mental workload. If automation is to be useful, the resource 

drain imposed on a human observer must be less than the drain experienced when the 

same task is completed without automation. 

Understanding Mechanisms 

Equally important to performance differences between groups are the mechanisms 

that might underlie them. That is, there are many reasons an individual might perform 

poorly with an automated system, and understanding the explanation for poor 

performance is required for designing effective interventions. If poor performance were 

due to consistent under-trust of the automation, for example, interventions ought to target 

observersô subjective perceptions. In contrast, if performance differences were due to task 

difficulty (i.e., excessive mental workload), interventions ought to target training 
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procedures or qualities of the task. Lastly, in the event that worsening performance is not 

accompanied by any changes in subjective trust or workload, interventions ought to focus 

on increasing operator awareness (Taylor, Shadrake, & Haugh, 1995). For these reasons, 

any performance differences will be interpreted in light of convergent differences in trust, 

workload, and mental resources.  
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INTRODUCTION  

Manual tasks are automated out of a desire to improve performance. There are a 

great number of success stories in this regard, from commercial aviation (e.g., Wiener & 

Curry, 1980) and medical procedures (e.g., Armato et al., 2002), to military operations 

(e.g., Deng, Han, & Mishra, 2003). However, far from removing human responsibility 

altogether, automation has largely altered and, in some instances, increased the 

responsibilities of human operators who now must assume managerial positions over 

automated systems. Even for tasks that are entirely automated (so-called ñunmannedò 

tasks), a human operator is typically placed in a supervisory role. The assumption of 

supervisory duties introduces the potential for errors related to the humanôs failure to 

attend or respond to the automationôs mistakes (Bagheri & Jamieson, 2004; Parasuraman 

& Riley, 1997). Automation that fails frequently may have a net negative effect on 

overall performance if those failures go unnoticed, if the failures hurt operator trust to an 

extent that non-failures are viewed skeptically, or if they simply distract the operator 

from performing some other task. Thus, at a certain level, having poorly-performing 

automation may be worse than having no automation at all.  

The reliability level at which automated cues cease to be useful in a target 

identification context (compared to a no-automation baseline) is the focus of this 

dissertation. Although the minimum reliability required for successful human-automation 
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pairing has already been estimated through meta-analysis (Wickens & Dixon, 2007), the 

aggregation across task and automation type results in a general estimate that neglects 

important task-specific moderators relevant to target search/identification tasks. At the 

behest of the U.S. Army Night Vision and Electronic Sensors Directorate, this 

dissertation seeks to estimate the minimum automation reliability required for soldiers 

searching a scene for armored vehicles, as well as the effect of certain moderators 

specific to this task (each described in turn below).   

Automation Error Type  

The extent that unreliability hurts performance may depend on the nature of that 

unreliability: whether errors are misses or false alarms. In many instances, automation 

provides feedback to a human operator through alertsðprompting subsequent action 

through its presence or suggesting inaction through its absence (cf. errors of 

omission/commission; Parasuraman & Manzey, 2010). In such an arrangement, system 

designers can affect whether automation errors will tend to be misses (i.e., false 

negatives) or false alarms (i.e., false positives) by adjusting alert sensitivity. In this signal 

detection context, automation misses and false alarms have qualitatively different effects 

on operator behavior: the former encourages action and the latter inaction (Meyer, 2001; 

Meyer, 2004). 

Research suggests that misses and false alarmsðalthough both errorsðmay have 

differential effects on performance, trust, and workload. Dixon, Wickens, and McCarley 

(2007) suggest that because false alarms are salient, intrusive, and annoying, the same 

level of overall unreliability should be more impactful if automation errors are false 
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alarms than if they are misses. However, other research has found false alarms and misses 

to have a similar negative effect on performance (Madhavan, Wiegmann, & Lacson, 

2006; Rovira & Parasuraman, 2010), and a few studies have even found that participants 

may trust false alarm-prone automation more than miss-prone automation (Davenport & 

Bustamante, 2010). Whether misses or false alarms induce lower trust and/or are more 

detrimental to performance likely depends on the particular task at hand. For visual 

search tasks, the intrusiveness of false alarms should make it more difficult for humans to 

leverage bottom-up attention to improve their performance (Treisman, 1985; Nothdurft, 

1992). That is, a great number of false alarms will spread visual attention too diffusely, 

mitigating the benefits of value cues (ñvisual clutterò: Yeh et al., 2003). Furthermore, the 

salience of false alarms may also interfere with top-down attention, causing observers to 

distrust the system entirely and ignore valid visual cues (i.e., automation ñdisuseò: 

Parasuraman & Riley, 1997). Thus, in a target identification context, false alarms may 

interfere with both bottom-up and top-down attentional processing. 

Although false alarm-prone automation in a visual search task may be closely 

related to performance, trust, and workload, miss-prone automation may not. One study 

on visual search found that even automation that missed as many as 70% of targets 

nonetheless improved performance over a no-automation baseline (de Visser & 

Parasuraman, 2011). The authors suggest that in a field of multiple targets, any that are 

identified by an automated system will alleviate the workload of a human observer. Put 

simply, even miss-prone automation may be helpful for a visual each task because the 

errors are not distracting. Indeed, a perfectly unreliable miss-prone automation is 
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equivalent to a no-automation condition in a visual search scenario (in both cases, all 

targets are unmarked). Thus, in contrast to false alarms, misses may not interfere with 

bottom-up or top-down attentional processes, and may therefore be relatively unrelated to 

performance, trust, and workload. 

To explore the moderating effect of error type on the relationship between 

reliability and overall performance, participants were either assigned to miss-prone or 

false alarm-prone automation error type conditions while keeping overall number of 

errors consistent between groups. There should be a strong negative relationship between 

the number of automation false alarms and participant performance (both for user misses, 

false alarms, and search speed), but only a weak negative relationship between the 

number of automation misses and participant performance. A similar effect should arise 

between error type and subjective measures (e.g., trust, workload).  

Perceptual Difficulty 

Research consistently finds that greater task difficulty increases the potential risks 

of unreliable automation (Dixon & Wickens, 2006; Meyer, 2001; Parasuraman et al., 

1993). As targets become more difficult to perceive, unreliable automation may therefore 

be more likely to adversely affect performance. In fact, Wickens and Dixonôs (2007) 

meta-analysis found that automation reliability only affected performance for difficult 

tasks; easy tasks were associated with relatively high, invariant performance. However, 

the authorsô analysis was based on a relatively small sample of studies (n = 22), only one 

of which involved visual search (Dzindolet, Pierce, Pomranky, Peterson, & Beck, 2001), 

which itself only required observers to perceive a target presented rapidly (i.e., flashing 
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for 750 ms). Thus, the second focus of this dissertation is to validate the effect of 

perceptual difficulty on the relationship between automation reliability and performance 

in a longer-presentation, multi-target environment. Perceptual difficulty was manipulated 

by varying the targetôs distance from the observer. Army scouts must be capable of 

identifying small targets at extreme ranges, often when few visual cues are present 

(McDowell, 1992; Sterling & Jacobson, 2006). Thus, of great import to the literature and 

for more practical applications is the effect of automation reliability when targets are 

distant and difficult to perceive. 

Judgment Specificity 

In some cases, soldiers may be required to monitor an area for the presence of any 

targets (i.e., a general judgment). In others, they may be required to monitor an area for a 

particular target (i.e., a specific judgment). Specific judgments are more challenging to 

make than general ones because the former require more attention and effort; observers 

must attend more deliberately to the particular elements of a target (e.g., ñDoes it have a 

turret?ò) rather than its general shape (e.g., ñIs it a vehicle of some kind?ò). Greater 

judgment specificity may therefore consume more information-processing resources and 

hasten resource drain and exacerbate performance decrements (Parasuraman & Davies, 

1977). 

Automation stands to alleviate observersô cognitive burden when making any 

judgment, but this alleviation might be most beneficial for specific judgments. For 

example, a readily-identifiable logo of a tank should be less cognitively taxing to identify 

than the vehicle itself, whose identifiable features might be obscured by distance or 
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viewing angle. When readily-identifiable logos are placed above all targets in a specific 

judgment task, the observers are no longer required to attend to potentially small 

elements of difficult-to-perceive targets. However, when the automation reliability is 

poor (e.g., a logo of a truck placed above a tank), having to ignore erroneous automation 

represents an additional burden on top of the one imposed by the primary identification 

taskðessentially a visual Stroop task (Stroop, 1935). As the task becomes more exacting, 

the likelihood that an automation error is relevant to performance increases. Thus, 

although observers making specific judgments may reap the greatest benefits from 

automation while it is reliable, they may also be at the greatest risk of performing poorly 

if the automation becomes unreliable. As a result, the automation reliability required to 

improve performance above a no-automation baseline is likely higher for specific 

judgments than it is for general judgments. 

Because specific judgments are more difficult, they should also be associated with 

lower self-confidence and relatively higher trust (Biros et al., 2004). When participants 

trust the automation to perform better than they can, they should rely/comply on the 

automation more than on their own abilities, resulting in overall performance that is more 

closely linked to automation reliability. In sum, more specific search instructions both 

increase the likelihood that an automation error provides incorrect guidance and increases 

the likelihood that an observer will rely on that guidance rather than on their own 

abilities. 
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Summary and Hypotheses 

The exact reliability threshold between helpful and unhelpful automation has been 

the subject of meta-analysis (70% reliability; Wickens & Dixon, 2007), but may depend 

on a number of contextual factors. Those factors may also include the outcome of 

interest; here, I specified task performance (misses, false alarms, search time), trust/self-

confidence, mental workload, and mental resources. In short, although general trends 

may holdðthat less reliable automation tends to result in worse performanceðthe 

strength of this relationship may depend heavily on the nature of the automation and on 

the requirements of the task (Lee & See, 2004; Parasuraman & Manzey, 2010). I aim to 

clarify several factors relevant to automation-aided target identification: automation error 

type, perceptual difficulty, and judgment specificity, to determine the relative automation 

reliability necessary to positively affect the user experience with respect to task 

performance, trust/self-confidence, mental workload, and mental resource utilization. In 

light of these goals, I propose the following four hypotheses: 

H1: Replicate Wickenôs main finding of a 70% threshold. Consistent with past research, 

automation should only improve performance over a no-automation baseline once it 

crosses the 70% reliability threshold. Below this point, it should be less helpful than no 

automation at all. 

H2: Assess the influence of error type on the estimated reliability threshold. The 

reliability threshold between helpful and hurtful automation should shift depending on 

the error type produced by the automation (i.e., the type of unreliability). False alarm-
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prone automation will need to be more reliable than miss-prone automation will to avoid 

having a net-negative effect on performance. 

H3: Assess the influence of perceptual difficulty on the estimated reliability threshold. 

For any given observation, the reliability requirement will be higher when a target is 

difficult to perceive (distant/small) than when it is easy to perceive (close/large). Further, 

the effect of target distance will interact with error type, such that distant targets in a false 

alarm-prone environment will require the highest reliability of all. 

H4: Assess the influence of task specificity on the estimated reliability threshold. The 

reliability required to improve performance over a no-automation baseline will also 

depend on the specificity required of the observers. When observers are required to find a 

specific subset of targets, automation will need to be more reliable than when they are 

required to find any/all targets. 

Study Overview 

Study 1 was designed to test the first three hypotheses, while Study 2 was 

designed to test the fourth hypothesis. Wickens and Dixon (2007) acknowledge the 

relevance of task-specific contextual factors in the 70% reliability threshold and so the 

results of these two studies should provide a nuanced estimate for automation-aided 

target identification tasks.  

Both experiments were conducted in-person (SONA) and online (MTurk) as 

within-subjects, randomized studies. In Study 1, participants were randomly assigned to 

one of two conditions corresponding to the type of error issued by the automation: either 

misses or false alarms. In either case, reliability of the automation varied throughout the 
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experiment, with p(Correct)={.25, .40, .55, .70, .85, 1.00}. In Study 2, all participants 

were assigned to the same condition, but the instructions for how to conduct their search 

changed throughout the study {all targets, military targets, tanks only}. Reliability of the 

automation in Study 2 also varied, but was selected from a smaller list, with 

p(Correct)={.40, .70, 1.00}. Because both studies employed similar materials and 

procedures, both will be described in full prior to listing the results of each. The results of 

both studies will be presented together. 
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METHOD  

Study 1 

In Study 1, participants were instructed to count the number of tanks in a series of 

static forest scenes. Participants were told that six different automated systems would 

take turns assisting them with their search, and that some systems would provide more 

accurate guidance than others. Guidance took the form of augmented reality icons 

superimposed over targets (described in more detail later). As participants searched for 

tanks, they were asked to evaluate the six systems according to their reliability and 

trustworthiness. 

Participants 

 A total of 184 participants were recruited, both from the George Mason 

University undergraduate research pool (n = 83) and from Amazonôs Mechanical Turk 

(MTurk; n = 101). Because the task involved searching an image of fixed resolution for 

targets, MTurk participants were instructed to only complete the study if they had a high-

resolution monitor (i.e., with at least 900 pixels of vertical resolution). After excluding 

MTurk participants who ignored this request (n=32) or started but did not complete the 

experiment (n=12), the final MTurk pool was reduced to 57 for a total sample size of 140. 

Undergraduate participants were compensated with research credit hours and MTurk 

participants were paid $3. Undergraduate participants were younger on average (M=21.3, 
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SD=2.62) compared to MTurk participants (M=35.9, SD=10.6), and tended to take 

slightly less time to complete the experiment (31.6 vs 38.6 minutes). 

Materials 

A total of 54 forest scenes were generated prior to the experiment for participants 

to search. These 54 scenes contained between zero and eight ñtargetsò each. These targets 

were either tanks with tank icons above them (accurate), tanks without tank icons above 

them (inaccurate: miss), or houses with tank icons above them (inaccurate: false alarm). 

Only one of the latter two inaccuracies were shown to any single participant, as each was 

assigned to either the miss condition or the false alarm condition (a between-subjects 

factor; Figure 1). 

 

Miss condition 

Accurate Inaccurate 

  
False alarm condition 

Accurate Inaccurate 

  
 
Figure 1 The targets for each error type 
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Whether or not a given target was accurate depended on the reliability block to 

which the scene belonged. The 54 forest scenes were divided into six blocks 

corresponding to the various reliabilities of the automated system that would be assisting 

participants. Each reliability block contained nine scenes (54÷6), with a single instance of 

each 0 to 8 targets (i.e., fully-crossed). In other words, all reliability blocks contained one 

scene that had 0 targets, one scene that had 1 target, one scene that had 2 targets, and so 

on, for a total of 36 targets. The proportion of the 36 targets that were accurate was either 

25% (9/36), 40% (14/36), 55% (20/36), 70% (25/36), 85% (30/36), or 100% (36/36). 

The location of targets in each scene was generated randomly prior to the 

experiment by sparsely sampling from two uniform distributions, representing both the x- 

and y-coordinates of the scene. A k-means cluster analysis was then performed on the 

sampled uniform distributions, and the resulting centroids were used to place targets 

(Figure 2). This procedure allowed targets to be placed at random without placing too 

many adjacent to each other. 
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Figure 2 Exemplar depicting how target locations were selected for each scene. In this example, five targets were 

selected from the same number of cluster centers, denoted by diamonds 

 

 

In addition to the targets described above, each scene contained 30 trees (Figure 

3); three villages that appeared at short, medium, and long ranges (Figure 4); and three 

small buildings (Figure 5). With the exception of the three villages that appeared at fixed 

ranges (300, 500, and 700 meters), the placement of the various background elements 

was determined randomly for each scene. The horizon was populated with a dense forest 

(see Figure 6 for complete example). 

 

Tree 1 Tree 2 

  
 

Figure 3 The two types of trees used to provide natural clutter to each scene 
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Short-range village Medium-range village Long-range village 

   
 

Figure 4 Three clusters of buildings used to provide man-made clutter to each scene 

 

 

 

Small Building 1 Small Building 2 Small Building 3 

   
 

Figure 5 Single structures used to provide additional man-made clutter to each scene 
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Figure 6 One scene from the experiment, selected from the 85% reliable false alarm-prone automation block; 

the incorrectly-marked target (a house) is fourth from the left 

 

 

 

Measures 

A number of self-report surveys were also used. Subjective assessments provide 

insight into participantsô mental state as they complete the various search tasks. 

Discrepancies or similarities between participantsô subjective experience and their 

performance affect how the results are discussed. The first pertained to trust in 

automation, modified from Lee and Morayôs (1992) trust scale; the second was an overall 

workload scale taken from the NASA-TLX (Figure 7; Hart & Staveland, 1988); and the 

last was the GTQ, assessing remaining mental resources (Figure 8; Monfort et al., in 

press). Participants also completed nine scenes without any automation; the trust scale 

items that followed these scenes were modified to refer to self-confidence instead. 
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Table 1 Lee and Moray (1992) Trust Scale with Psychometrics (Study 1) 

 
 

Item total 

correlation 

The system performed in a predictable way. .98 

I could count on the system to do its job. .96 

I have confidence that the system will perform well in the future. .96 

I trust the system. .96 

Cronbachôs alpha .97 

 

 

 
Table 2 Lee and Moray (1992) Trust Scale, Modified for Self-Confidence with Psychometrics (Study 1) 

 
 

Item total 

correlation 

I performed predictably and consistently. .90 

I could count on myself to do the job. .97 

I have confidence that I will perform well in the future. .97 

I trust myself to perform well. .97 

Cronbachôs alpha .96 

 

 

How demanding was the task you just completed? Click along the line below to answer. 

 

Figure 7 The NASA-TLX Overall Workload Scale 
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Think about your brain as an engine. 

 

Click inside the fuel tank below to show how much gas you have left right now. 

 

FULL  

 
EMPTY  

Figure 8 The Gas Tank Questionnaire (GTQ) 

 

 

 

Procedure 

After arriving at the lab, participants completed informed consent and were 

assigned to an experimental condition (i.e., automation error type). They then underwent 

a tutorial and training session to familiarize themselves with the task. This session 

included descriptive text as well as two sets of training scenes: one with very reliable 

automation (100%), and one with very unreliable automation (25%). These trials were 

presented in sequence to familiarize the participants with the concept of variable 

automation reliability, and to highlight the fact that some systems were more reliable than 

others. Depending on the condition to which they were assigned, participants either 

completed a tutorial for a miss-prone tank detection system or for a false alarm-prone 

tank detection system.  

 After completing the training, participants were asked to complete a trial without 

any automation (ñFirst, you will perform the task without assistance from any of the tank 



23 

 

detection systemsò). In this trial, none of the nine scenes contained any automation 

marks. At its conclusion, participants were asked to rate their self-confidence (i.e., ñSlide 

the bars below to express your feelings about your ability to spot tanks without help from 

the tank detection systemò). They were also asked how demanding they found the task 

and to rate their remaining mental resources. Subsequent trials with automation marks 

also used these scales, but inquired about trust rather than self-confidence. 

 Participants were then advised that the tank detection system was ñcoming 

online,ò and that they would be completing a number of trials with different systems. 

They were told that they would be rating the trustworthiness of six systems, and were 

instructed to rate each system independently (to ñreset their trustò after each trial; Figure 

9). 

 

 

Warning after each trial  

YOU ARE ABOUT TO EVALUATE A NEW TANK DETECTION SYSTEM. 

 

This system has its own reliability and may perform differently than the previous 

system. Please "reset" your trust and consider this new system independently of the 

past one. 

Figure 9 Trust reset warning that was displayed after each reliability block (every nine scenes). 

After rating all six systems, participants were thanked and debriefed. See Figure 10 for a graphical summary of 

the procedure 
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Figure 10 Graphical summary of Study 1; rectangles represent trials, curly brackets enclose randomized 

elements, and asterisks represent survey administrations 

 

 

 

Study 2 

The second study was designed in a similar manner to the first. The primary 

difference between the two was that Study 2 contained images of three types of vehicles 

rather than just one. The ñtank detection systemò was instead described as a ñvehicle 

detection system,ò and placed icons above tanks, armored personnel carriers, and trucks 

arrayed in forest scenes. The instructions given to participants also differed from Study 1. 
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During the experiment, participants were alternatingly instructed to either count all 

vehicles, all military vehicles, or only tanks. Each of the three instruction sets contained 

all of the automation reliability blocks (i.e., 45%, 70%, and 100%). 

Participants 

A total of 167 participants were recruited, both from the George Mason 

University undergraduate research pool (n = 67) and from Amazonôs Mechanical Turk 

(MTurk; n = 100). MTurk participants were again instructed to only complete the study if 

they had a high-resolution monitor (i.e., with at least 900 pixels of vertical resolution), 

but a sizeable proportion ignored this request. After excluding MTurk participants who 

completed the experiment with a monitor of insufficient resolution (n=34), as well as 

those who began but did not complete the experiment (n=29), the final MTurk pool was 

reduced to 37 for a total sample size of 104.  

Undergraduate participants were compensated with research credit hours and 

MTurk participants were paid $3. Consistent with Study 1, undergraduate participants 

were younger on average (M=20.4, SD=2.23) compared to MTurk participants (M=33.2, 

SD=8.31), and tended to take less time to complete the experiment (50.9 vs. 75.8 

minutes). 

Materials 

A total of 72 forest scenes were generated prior to the experiment for participants 

to search. The forest scenes in Study 2 were similar to those in Study 1, but they 

contained three types of vehicles: tanks, armored personnel carriers (APCs), and trucks. 
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Each scene contained between one and eight vehicles, all of which were highlighted by 

augmented reality icons.  

Whether or not a given icon matched the target below it depended on the 

reliability block to which the scene belonged. The forest scenes were evenly divided into 

three reliability blocks (40%, 70%, 100%), such that each block contained 24 scenes 

(72÷3). These 24 scenes were further subdivided into three, wherein participants were 

either instructed to locate all vehicles, to locate military vehicles, or to locate only tanks. 

Thus, three reliability levels were fully-crossed with the three instruction sets, resulting in 

nine sets of eight scenes. Participants were told that each of these nine sets was the result 

of a different target detection system. Similar to Study 1, each set contained a total of 36 

targets. 

The proportion of the 36 targets that were accurately marked was either 40% (14 

accurate, 27 inaccurate), 70% (25 accurate, 11 inaccurate), or 100% (36 accurate, 0 

inaccurate). Accurate targets were always vehicles marked with their matching icon. 

Inaccurate targets were vehicles marked with one of the two other targetsô icons, selected 

at random. The marks also divided the vehicles into two classes, military and non-

combatant, by using red and green, respectively (see Figure 11). The size of the three 

icons (in pixel area) was matched to within 1% of each other. Clicks left small red circles 

on the image and were recorded in x-y pixel coordinates. 
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Truck (17,797 pixels) Tank (17,781 pixels) APC (17,796 pixels) 

Figure 11 Three targets paired with their automation marks 

 

 

With the exception of using three vehicle types rather than one, each scenes for 

Study 2 was generated in an identical fashion to those in Study 1. Each scene contained 

30 randomly-placed trees; three villages that appeared at short, medium, and long ranges; 

and three randomly-placed small buildings. The horizon was populated with a dense 

forest. 

Measures 

The self-report scales were also the same as those used in Study 1: trust in 

automation (Lee & Moray, 1992), workload (Hart & Staveland, 1988), and remaining 

mental resources (Monfort et al., in press). Participants again completed nine scenes 

without any automation; the trust scale items that followed these scenes were modified to 

refer to self-confidence instead. 
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Table 3 Lee and Moray (1992) Trust Scale with Psychometrics (Study 2) 

 
 

Item total 

correlation 

The system performed in a predictable way. .94 

I could count on the system to do its job. .99 

I have confidence that the system will perform well in the future. .97 

I trust the system. .97 

Cronbachôs alpha .98 

 

 

Table 4 Lee and Moray (1992) Trust Scale, Modified for Self-Confidence with Psychometrics (Study 2) 

 
 

Item total 

correlation 

I performed predictably and consistently. .94 

I could count on myself to do the job. .96 

I have confidence that I will perform well in the future. .97 

I trust myself to perform well. .95 

Cronbachôs alpha .97 

 

 

Procedure 

After arriving at the lab, participants completed informed consent and were 

assigned to an experimental condition. They were instructed that they would be shown 

several scenes, and that their job would be to count the number of vehicles in each by 
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clicking on them. They were further instructed that the type of vehicle they would be 

counting would change throughout the experiment, and that depending on the 

instructions, they should either count all vehicles, all military vehicles, or only tanks. At 

this point, images of the three vehicles were shown from various angles (Figure 12). 

Participants were asked to study the vehicles until they felt confident that they could 

identify them. 

 

 

Figure 12 Tutorial images used to familiarize participants with the three vehicles 

 

 

Participants were then told that several automatic vehicle identification systems 

would be assisting them during the experiment, and that some may be better at 

identifying vehicles than others. To reinforce this point, participants were shown an 

example of reliable automation and an example of unreliable automation. The latter scene 
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was created to have an obvious error in the front center of the image, to which the tutorial 

text drew attention. Participants then completed six hands-on practice scenes with each of 

the instruction types (all targets, military targets, only tanks) crossed with two levels of 

reliability (100%, 40%). A single representative scene for each of the six categories was 

used in place of a full set to shorten the instruction period and preserve participantsô 

cognitive resources for the experiment. 

 After completing the training, participants were asked to complete several trials 

without any automation (ñFirst, you will perform the task without assistance from any of 

the vehicle identification systemsò). In these trials, participants were presented with eight 

scenes (containing between 1-8 targets) for each instruction set: ñcount all vehicles,ò 

ñcount only military vehicles,ò and ñcount only tanks.ò None of the scenes contained any 

AR marks, and the order of these instructions was determined randomly for each 

participant. After completing each of the three no-automation trials, participants were 

asked to rate their self-confidence (i.e., ñSlide the bars below to express your feelings 

about your ability to identify [all/military/tank] vehicles without help from the sensor 

systemò). They were also asked how demanding they found the task and to rate their 

remaining mental resources. 

Participants were then advised that the AR vehicle identification system was 

ñcoming online,ò and that they would be completing a number of trials with different 

systems. Just as in Study 1, they were instructed to rate each system independently of any 

that preceded it. They were also reminded to attend to the specific instructions that would 

accompany each system. 
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The order of the three instruction sets was determined randomly for each 

participant, but all participants completed the three reliability trials for each instruction 

set before proceeding to the next instruction set. This blocked design was employed to 

minimize switch costs and to reduce the likelihood of perseverative errors (e.g., 

Wisconsin Card Sorting Task; Puente, 1985). After each reliability block, participants 

completed surveys to measure their trust in the system, perceived task demand, and their 

remaining mental resources (see Figure 13 for experiment flow). After completing all 

nine trials, participants were thanked and debriefed. 

 

 

Figure 13 Flow of Study 2; rectangles represent trials, values in curly brackets represent randomized elements, 

and asterisks represent survey administrations 
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Data Analysis 

All analyses were conducted using generalized linear mixed-effects regression 

models (Bates, Mächler, Bolker, & Walker, 2015), and Sattherwaite (1946) 

approximations were used to determine denominator degrees of freedom for t- and p-

values. Performance outcomes were mostly captured at the response-level as binary data: 

whether or not a given target was clicked (ñmissò) and whether or not a given click was 

on a target (ñfalse alarmò). These outcomes were analyzed using logistic regression 

models. How long participants spent searching each scene was recorded in seconds and 

analyzed using Poisson regression models. Three self-report assessments (trust, 

workload, and remaining mental resources) were collected at the end of each nine-scene 

reliability block, and were analyzed using linear regression models. A mental resource 

drain variable was calculated by subtracting each blockôs remaining mental resources 

response from the one that preceded it. 

No-automation baseline adjustment 

Because I am interested in determining the reliability required to improve 

performance above a no-automation baseline, all regressions were adjusted using data 

from the no-automation baseline. To make this adjustment, I conducted an additional 

mixed-effects regression predicting each of the six outcomes during the no-automation 

block. These regressions were all empty models, with a nested error structure but no 

predictors. I extracted the empty model intercepts for each of these regression by 

participant, which were then subtracted from their intercepts in subsequent fully-specified 

models produced an adjusted intercept term that represented the deviation from the no-
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automation baseline. These adjusted intercepts were used to calculate an estimated value 

for each outcome and participant across reliability levels relative to each participantôs 

own no-automation baseline. 

To clarify the baseline adjustment process, I will briefly discuss the calculation 

for Participant 1. For Participant 1, the intercept for the empty model predicting workload 

during the no-automation baseline was .200. That is, this participant reported workload 

that was 20.0% of maximum after completing the no-automation baseline. This value was 

saved for later use. I next ran a fully-specified model to predict workload during the six 

automation blocks, which included an intercept (B0) and three predictors: reliability (B1), 

error type (contrast coded; B2), and a reliability by error type interaction (B3). For this 

regression, Participant 1ôs regression weights are listed in Table 5. 

 

 
Table 5 Regression weights for Participant 1 

 
 

B0 B1 B2 B3 

Participant 1 .230 ī.0353 .0496 ī.00672 

 

 

 

Using a value of ī1 to represent his error type condition (false alarm-prone, 

contrast coded), his workload during the 70% reliability block could be estimated by the 

following equation: 

TLX 70% = .230ī.0353*(.70)+.0496*(ī1)ī.00672*(.70*ī1) = .160, or 16.0% 

To convert this workload value in units relative to baseline, I subtracted the intercept 

from the empty model from the estimated workload value, yielding ī.04 (.160ī.200), or 
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4% less than the no-automation baseline. This procedure was repeated for each 

participant and each outcome at 0%, 25%, 40%, 55%, 70%, 85%, and 100% reliability 

levels. The results of this procedure were used to estimate a separate line for each 

participant that represented the changing values of an outcome relative to its value during 

that participantôs no-automation baseline. An example of this procedure for all 

participants is depicted below (Figure 14). The mixed-effects models allowed each 

participant to have a unique intercept and slope; note the black dashed line representing 

the value at no-automation baseline (i.e., the value of the outcome during manual 

performance). 

 

 

Figure 14 Hypothetical outcome by automation reliability. Each color represents a different participant 
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The individual lines for each participant were then averaged to produce an 

interpretable estimate for each research question, and 95% confidence intervals were 

calculated for the aggregated groups. Going forward, each outcome will be understood as 

not significantly different than the no-automation baseline (p > .05) so long as the 95% 

confidence interval overlaps zero. This interval was shaded gray for all outcomes, and 

represents the reliability interval where automation has no meaningful effect on 

performance. In contrast, the automation will be said to have a detrimental or beneficial 

effect on performance (p < .05) when the bounds of the confidence interval first deviate 

from zero. These regions were shaded red and green, respectively. The reliability values 

where these bounds occur were labeled; an example of this procedure is depicted below 

(Figure 15). 

 

 

Figure 15 Hypothetical outcome by automation reliability. The shaded region(s) represent the reliability 

intervals when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05), 

and/or better (green; p<.05) than human-only performance 
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Labeling three distinct regions where automation is helpful, harmful, and when it has no 

effect represents a slightly more nuanced interpretation than the one employed by 

Wickens and Dixon (2007), who obtained the 70% reliability estimate by observing 

where a regression line representing a meta-analytic average crossed the no-automation 

baseline level (not accounting for the variability around that value; Figure 16). 

Interpretation of these shaded regions will mostly replace the null hypothesis tests from 

the fully-specified models. However, the bivariate tests (predicting each outcome with 

reliability aloneðhypothesis 1) will be retained to test if the various outcomes change 

with automation reliability. 

 

 

Figure 16 Figure taken from Wickens & Dixon (2007); regression of benefits/costs relative to baseline, on 

automation reliability with a 95% confidence interval 
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RESULTS 

Model Specification 

For the majority of models, specifying a random intercept term for participant 

explained variance in the outcomes (i.e., nesting observations within participants). For a 

subset of those models, adding a random intercept term for condition assignment 

explained a significant additional amount. If the addition of a second random intercept 

term for condition explained more variance in the outcome it was retained; otherwise, the 

more parsimonious model was used (random intercepts for participants only). Similarly, 

when the addition of a random slope term for reliability improved model fit it was 

retained; otherwise, the models only contained random intercepts. Mixed-effects models 

were used primarily to inform the shaded-region analysis, but the results from simple 

bivariate models will be included for hypothesis 1 to show the effect of reliability on each 

of the outcomes. 

False alarms were relatively rare for the miss condition in Study 1 and the all-

targets goal in Study 2, which prevented the models for these tests from converging. A 

single false alarm was added for each participant in both cases. This did not meaningfully 

affect the average false alarm rate except for allowing standard errors to be estimated. 
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Relationships Between Outcomes 

Before proceeding with the hypothesis tests, I present the correlations between the 

six outcomes below (Table 6) for Study 1 (hypotheses 1-3) and Study 2 (hypothesis 4). 

The six outcomes of interest were only weakly intercorrelated. 

 

Table 6 Correlation matrix for each of the six outcomes. Values on the left represent correlations for Study 1 

and values on the right represent correlations for Study 2. Values in grey are not statistically significant (p > .05) 

 
 

Miss False 

Alarm 

Search 

Time 

Trust Workload Resource 

Drain 

Miss ð 
     

Fls. Alarm .16 .22 ð 
    

Srch. Time ī.23 ī.12 ī.01 .09 ð 
   

Trust ī.14 ī.13 ī.15 ī.14 .01 ī.19 ð 
  

Workload .06 .12 .09 .26 .05 .07 ī.21 ī.32 ð 
 

Res. Drain .08 .05 .01 .08 .01 .02 ī.17 ī.22 .13 .27 ð 

 

 

Hypothesis 1 

I first predicted that automation should only become useful compared to a no-

automation baseline once it surpassed 70% reliability. Specifically, that automation of 

70% reliability or higher would result in better operator task performance (fewer misses, 

false alarms, and faster search time) and an improved subjective experience (higher trust, 
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lower workload, lower resource drain) compared to the no-automation baseline. The data 

aggregated over all moderators should be consistent with the effect observed by Wickens 

and Dixonôs (2007) meta-analysis: that automation lower than 70% reliability would be 

ñworse than no automation at allò (p. 201). 

Probability of missing a target 

As reliability of the automation improved, participants were less likely to miss 

targets, Exp(B)=.685, 95% CI [.496, .946], p=.0217. Participants missed fewer targets 

with no automation (i.e., manually) until the automation reached the 51% reliability 

mark. Performance began to improve over the no-automation baseline when automation 

became 80% reliable (Figure 17). Although Wickens and Dixonôs (2007) 70% estimate 

falls within these bounds, the reliability required for automation to improve performance 

varied substantially across participants. 
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Figure 17 Probability of missing a target by automation reliability. The shaded region(s) represent the reliability 

intervals when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05), 

and/or better (green; p<.05) than human-only performance 

 

 

Probability of issuing a false alarm 

As reliability of the automation improved, participants were less likely to issue 

false alarms, Exp(B)=.596, 95% CI [.442, .802], p<.001. However, the reliability required 

for automation to reduce participant false alarms below a no-automation baseline shifted 

dramatically compared to the value required to reduce participant misses. In fact, 

participants were more likely to issue false alarms for almost all reliability levels than 

they were during their no-automation baseline. Only at 89% reliability did participants 

issue equivalent numbers of false alarms compared to their baselines (Figure 18), and at 

no level did they issue fewer. 
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Figure 18 Probability of issuing a false alarm by automation reliability. The shaded region(s) represent the 

reliability intervals when joint human -automation performance was worse (red; p<.05), no better or worse 

(gray; p>.05), and/or better (green; p<.05) than human-only performance 

 

 

Search time 

Counter to expectations, unreliable automation did not reduce the amount of time 

participants spent searching the scenes. In fact, unreliable automation slightly increased 

search speed, Exp(B)=1.03, 95% CI [1.02, 1.05], and there was no meaningful reliability 

threshold between detrimental and beneficial. On average, participants spent more time 

searching during the no-automation baseline than they did at any point subsequently 

(Figure 19).  
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Figure 19 Search time by automation reliability. The shaded region(s) represent the reliability intervals when 

joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05), and/or better 

(green; p<.05) than human-only performance 

 

 

Subjective trust 

Although reliability was related to trust in the hypothesized direction B=1.87, 

SE=.0834, t(128.0) p<.001, participantsô trust in the automation was lower than their self-

confidence for all reliability levels. Again, counter to expectations, there was no 

meaningful threshold where participantsô trust in the automation began to exceed their 

self-confidence during the no-automation baseline (Figure 20). 



43 

 

 

Figure 20 Subjective trust by automation reliability. The shaded region(s) represent the reliability intervals 

when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05), and/or 

better (green; p<.05) than human-only performance 

 

 

Subjective workload 

As expected, workload decreased as automation reliability improved, B=ī.0507, 

SE=.00401, t(128)=ī8.48, p<.001. Participants reported higher workload than compared 

to their no-automation baseline until 22% reliability, and began to report lower workload 

once automation became more than 47% reliable (Figure 21). 
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Figure 21 Subjective workload by automation reliability. The shaded region(s) represent the reliability intervals 

when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05), and/or 

better (green; p<.05) than human-only performance 

 

 

Resource drain 

Automation reliability was related to resource drain in the expected direction, 

such that more reliable automation produced less resource drain, B=.0229, SE=.000482, 

df(722)=4.75, p<.001. Further, participants reported more resource drain while 

interacting with automation less than 68% reliable than they did with no automation at all 

(Figure 22). However, participants never reported less resource drain than they did during 

the no-automation baseline, even for 100% reliable automation. 
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Figure 22 Change in mental resources by automation reliability. The shaded region(s) represent the reliability 

intervals when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05), 

and/or better (green; p<.05) than human-only performance 

 

 

Summary hypothesis 1 

The hypothesis that automation reliability would be positively related to 

performance, and that 70% reliability would be the approximate threshold between 

helpful and hurtful was not generally supported by the data. As expected, improving 

reliability caused observers to miss fewer targets, issue fewer false alarms, increase their 

trust, and report lower workload and resource drain. However, the reliability threshold 

where these outcomes began to improve over no-automation varied considerably. 

Objective measures of task performance required higher automation reliability 

compared to subjective measures of task difficulty (workload and resource drain) in order 

to become equivalent to (or better than) a no-automation baseline. Lastly, there was no 

crossover point for search time or subjective trust. Participants always spent less time 
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searching for targets while assisted with automation compared to the no-automation 

baseline, and always reported trusting the automation less than themselves. The variance 

between outcomes in the reliability required to improve performance over baseline was 

not anticipated, but is consistent with the relative independence of these outcomes (see 

outcome correlation matrix, Table 3). Next, I explore potential moderators to these 

effects. 

Hypothesis 2 

The second hypothesis predicted that the effect of automation reliability on the 

various outcomes of interest should depend on the type of error produced by that 

automation. Specifically, that participants searching for targets with false alarm-prone 

automation will require a more reliable system compared to participants paired with miss-

prone automation. Unreliable automation should be more likely to result in human error 

when the errors fail to provide useful information as well as distract from the primary 

task (i.e., intrusive false alarms) compared to when they merely fail to provide useful 

information (i.e., unhelpful misses). To test this hypothesis, I predicted the six outcomes 

with automation reliability, error type, and a reliability by error type interaction term. 

Probability of missing a target 

The data aggregated across error type found that automation needed to be at least 

80% reliable before it made participants miss fewer targets than they did during the no-

automation baseline. However, this threshold shifted depending on the type of error 

issued by the automation. Worsening automation reliability was more likely to cause 

participants to miss targets when it was false alarm-prone than when it was miss-prone 



47 

 

(Figure 23). As a result, the reliability required to improve performance was higher for 

false alarm-prone automation than it was for miss-prone automation. Only when the false 

alarm-prone automation was nearly perfect (97%) did these participants miss fewer 

targets. In contrast, miss-prone automation reduced participant misses even while it was 

very unreliable (16%).  

 

 

Figure 23 Probability of missing a target by automation reliability and error type. The shaded region(s) 

represent the reliability intervals when joint human-automation performance was worse (red; p<.05), no better 

or worse (gray; p>.05), and/or better (green; p<.05) than human-only performance 

 

 

Probability of issuing a false alarm 

The data aggregated across error type found that automation increased the number 

of false alarms issued by participants until it reached 88% reliability. However, 

worsening automation reliability was more likely to cause participants to issue false 

alarms when it was false alarm-prone than when it was miss-prone (Figure 24). As a 
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result, false alarm-prone automation needed to be more reliable than miss prone-

automation to avoid increasing participant false alarms (92% vs. 73%). Indeed, the false 

alarm rate for participants in the miss-prone condition was relatively invariant, remaining 

below 1% for the duration of the experiment. 

 

 

Figure 24 Probability of issuing a false alarm by automation reliability and error type. The shaded region(s) 

represent the reliability intervals when joint human-automation performance was worse (red; p<.05), no better 

or worse (gray; p>.05), and/or better (green; p<.05) than human-only performance 

 

 

Search time 

The aggregate analysis for search time did not support hypothesis 1, instead 

showing that participants spent less time searching a scene for all reliability blocks 

compared to the no-automation baseline. However, the effect of automation reliability on 

search time depended on the error type manipulation. The trend for worsening 

automation to result in shorter search time only occurred for participants in the false 
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alarm condition (Figure 25). Participants paired with miss-prone responded to worsening 

automation instead by increasing the amount of time spent searching for targets, 

converging with the no-automation baseline at 18% reliability. Thus, worsening 

reliability had opposite effects on search time for the two error type conditions.  

 

 

Figure 25 Search time by automation reliability and error type. The shaded region(s) represent the reliability 

intervals when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05), 

and/or better (green; p<.05) than human-only performance 

 

 

Subjective trust 

When aggregated across error type, participants rated their trust in the automation 

as lower than their self-confidence for all reliability blocks. Adding error type to this 

regression did not change this interpretation. Counter to expectations, participants in both 

error type conditions reported comparable trust throughout the experiment (Figure 26). 
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Figure 26 Subjective trust by automation reliability and error type. The shaded region(s) represent the 

reliability intervals when joint human -automation performance was worse (red; p<.05), no better or worse 

(gray; p>.05), and/or better (green; p<.05) than human-only performance 

 

 

Subjective workload 

Both false alarm-prone and miss-prone automation induced workload to a similar 

extent across reliability blocks, and the reliability threshold between helpful and harmful 

automation varied only slightly between them (Figure 27). These small differences were 

in the opposite direction as expected, however, such that participants with false alarm-

prone automation reaped workload benefits from lower-reliability automation compared 

to participants with miss-prone automation. 
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Figure 27 Subjective workload by automation reliability and error type. The shaded region(s) represent the 

reliability intervals when joint human -automation performance was worse (red; p<.05), no better or worse 

(gray; p>.05), and/or better (green; p<.05) than human-only performance 

 

 

Resource drain 

The data aggregated across error type found that automation increased 

participantsô mental resource drain until it reached 88% reliability. Consistent with the 

effect for subjective workload, the reliability threshold between helpful and harmful 

automation for mental resource drain did vary somewhat by error type (Figure 28). 

Participants paired with false alarm-prone automation benefitted from lower-reliability 

automation compared to participants paired with miss-prone automation. Participants in 

the miss-prone condition reported greater resource drain than the no-automation baseline 

until automation reached 73% reliability, while participants in the false alarm-prone 

condition reported comparable resource drain starting at just 58% reliability. The effect 
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was small, but the fact that miss-prone automation imparted a greater sensitivity to losses 

in automation reliability than false alarm-prone automation ran counter to expectations. 

 

 

Figure 28 Change in mental resources by automation reliability and error type. The shaded region(s) represent 

the reliability intervals when joint human-automation performance was worse (red; p<.05), no better or worse 

(gray; p>.05), and/or better (green; p<.05) than human-only performance 

 

 

Summary hypothesis 2 

For the majority of the six outcomes, the type of error issued by the automation 

for this visual search task shifted the reliability threshold between helpful and hurtful 

automation. 

Error type affected all of the behavioral outcomes: the probability of missing a 

target, the probability of issuing a false alarm, and the amount of time spent searching the 

scene. False alarm-prone automation tended to produce more misses, more false alarms, 

and shorter search times during low-reliability blocks. As a result, the reliability of false 
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alarm-prone automation had to be nearly perfect to reduce the number of missed targets 

below a no-automation baseline, while miss-prone automation reduced misses even at 

very low reliability levels. Participants with false alarm-prone automation also required 

higher reliabilities to avoid issuing more false alarms than baseline compared to 

participants with miss-prone automation. Lastly, differences in search time arose by error 

type, such that participants with miss-prone automation began to benefit from automation 

once it had become 18% reliable. Oddly enough, participants in the false alarm-prone 

condition spent less time searching the more unreliable the automation became, spending 

less time searching even when the automation was entirely false alarm-ridden (0% 

reliable).  

Although error type also affected the reliability required to improve workload and 

resource drain compared to the no-automation baseline, the direction of the effects was 

opposite to the one predicted. Participants paired with false alarm-prone automation 

reported lower workload than baseline at 44% reliability (compared to 49% for miss-

prone) and less resource drain at 58% (compared to 73% for miss-prone). There were no 

differences in subjective trust. In sum, false alarm-prone automation needed to be more 

reliable than miss-prone automation to avoid increasing participant search errors, but the 

reliability required to improve participantsô workload and resource drain was lower from 

false alarm-prone than miss-prone automation. It is possible that the reliability required 

for false alarm-prone automation to help participants was higher precisely because the 

reliability required for it to reduce workload, resource drain, and search time was lower. 
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(Many automation false alarms caused participants to disengage from the task: lower 

workload, less drain, shorter search, worse performance.) 

Hypothesis 3 

The third hypothesis predicted that the automation reliability required to improve 

performance over a no-automation baseline would also shift depending on the distance of 

a given target from an observer attempting to locate it. Specifically, that automation 

would need to be more reliable when the associated targets are difficult to perceive 

(distant/small) than when they are easy to perceive (close/large). Further, it was 

hypothesized that error type would moderate this effect, such that distant, false-alarm 

errors would hurt performance more than distant, miss errors.  

To test this hypothesis, I repeated the analyses from hypothesis 2, but added target 

distance (and all its two- and three-way interactions), a continuous variable representing 

each targetôs distance from the observer. Because targets of all ranges were interspersed 

within a scene, it was impossible to test differences in search time, subjective trust, 

subjective workload, or resource drain for this hypothesis. 

Probability of missing a target 

Overall, distant targets required higher automation reliability than close targets in 

order to be perceived at rates comparable to the no-automation baseline (Figure 29). For 

example, a target one standard deviation farther away than average required 75% reliable 

automation to be spotted at a comparable rate to the no-automation baseline, while a 

target one standard deviation closer than average only required 28% reliable automation.  
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Figure 29 Binary logistic regression predicting probability of miss with target distance. Continuous distance is 

depicted as a +/ī 1 SD split. The shaded region(s) represent the reliability intervals when joint human-

automation performance was worse (red; p<.05), no better or worse (gray; p>.05), and/or better (green; p<.05) 

than human-only performance 

 

 

The degree to which distant targets increased reliability requirements for miss-

reduction further depended on the automation error type. While paired with false alarm-

prone automation, distant targets required 92% reliable automation to be spotted at a 

comparable rate to the no-automation baseline. In contrast, even 0% reliable miss-prone 

automation produced comparable miss rates to the no-automation baseline for distant 

targets, and began to improve performance at a 30% reliability level. Thus, although 

target distance increased automation reliability requirements for participants paired with 

false alarm-prone automation, it had a comparably minor effect on participants paired 

with miss-prone automation (Figure 30). These findings support hypothesis 3 that the 

relationship between automation reliability and human performance would depend on the 
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context surrounding the task, both in the qualities of the task (target distance) and in the 

qualities of the automation (error type). 

 

 

Figure 30 Binary logistic regression predicting probability of miss with error type, target distance, and their 

interaction. Continuous distance is depicted as a +/ī 1 SD split. The shaded region(s) represent the reliability 

intervals when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05), 

and/or better (green; p<.05) than human-only performance 

 

 

Probability of issuing a false alarm 

Overall, distant targets required higher automation reliability than close targets to 

evoke false alarms at rates comparable to the no-automation baseline (Figure 31). A 

target one standard deviation farther away than average evoked more participant false 

alarms than the no-automation baseline even when the automation assisting them was 

100% reliable. A target one standard deviation closer than average, in contrast, resulted in 

comparable performance to baseline even at 0% reliability, and performance exceeded 

baseline at 60% reliability. Again, as hypothesized, the reliability threshold required to 














































