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ABSTRACT

PERFORMANCE, TRUSTAND WORKLOAD IN AN AUTOMATION-AIDED
VISUAL SEARCH TASK

Samuel S. MonfortM.A.
George Mason Universitg017

DissertatiorDirector: Dr.Patrick E. McKnight

Identifying vehicles on the battlefield quickly and accurately is an important part of

soldier performance. Currently, automation is being developed to aid in target
identification dforts, but some ambiguity remains regarding the accuracy required for
these systems to be helpful. Past regtalytic efforts have identified a 70% reliability
threshold between when automated systems help performance and when they interfere
with performance. However, this threshold was calculated as an aggregate estimate from
a great variety of studies, and warrants further exploration before being applied to a target
search and identification context. Therefore, this dissertation was designed to identify
moderators specific to target search and identification that might shift the 70% reliability

threshold. | found that the type of error issued by the automation (misses versus false



alarms), the range of the targets (close versus far), as well as tlué jiyggment

required of the soldier (search: vehiclefrghicle versus identification: type of vehicle),

all affect the reliability required for automation to have apusitive effect on

performance. The reliability threshold also varies substantialbubyome, leading to

very little consistency between thresholds. Further, although these moderators have
strong relationships with target search and identification performance, they have less of
an impact on subjective trust and workload, suggesting bs&treers might not be
consciously aware of how their own performance is changing as a function of automation
properties. These results are discussed in light of the way that soldiers are trained and

how automation is designed to aid performance on thietieitd.



OVERVIEW

Soldiers rely on automation to assist target identification (Biros, Daly, & Gunsch,
2004; Yeh & Wickens, 2001), but these systems are rarely perfect. Aamegdigis on
the subject suggests that automation 70% reliable or higher welddngtpositive
effects on search performance (Wickens & Dixon, 2007), but this estimate is an
approximation that ignores at least three important factors relevant to target
identification. These factodsthe automation error type (i.e., misses vs. falaeves), the
difficulty in perceiving the target (i.e., near vs. far targets), and the need to make specific
judgments about targets rather than simple ones (i.e., judgment specificity: identifying all
targets vs. military targets vs. specific military &ts)p likely affect the impact of
reliability on target identification performance. The extent to which decreased reliability
adversely affects performance may depend on the nature of the errors that come from
reduced reliabilitg that is, whether errors amsisses or false alarms. A great number of
false alarms in a target identification task may be particularly damaging because they
simultaneously fail to provide a correct cue while also distracting the observer with visual
clutter (Yeh et al., 2003). Missgin contrast, only fail to provide a correct cue, and
consequently may not be as closely linked to performance. Second, as targets become
more difficult to perceive, unreliable automation may be more likely to adversely affect

performance (Meyer, 20015inally, the need to make specific judgments about targets



rather than simple ones may affect performance in two ways: through a general task
difficulty effect (similar to perceptual difficulty) and also by draining a limited supply of
informationprocessig resources. An observer who needs to perceive and categorize a
target is facing a greater cognitive challenge than one who simply has to perceive it.

Perceptual difficulty, error type, and the need to make specific judgments about
targets rather thanmple ones are three factors relevant to target identification that may
affect the 70% reliability estimate obtained by Wickens and Dixon (2007). The current
study was designed to investigate the importance of these three factors. Identifying the
types of atomation errors that are the most damaging and the task characteristics where
automation reliability is most important will allow designers to best leverage the
capabilities of automation in target identification tasks.

Relevant Outcomes

Before elaboratig on the three factors listed above, | will briefly describe the four
outcomes relevant to the current study: task performance, trustsdifience, mental
workload, and remaining mental resources. The factors | discussed above may
differentially affectthese outcomes so | treat them as unique and important in their own
right. For each outcome, the comparison between the task when it is automated versus
when it is not represents the fAnet gaino f
when deciding whiber or not to pair a human operator with a machine.
Task performance

The first and perhaps most obvious outcome is task performance: the speed and

accuracy with which observers perceive targets in a scene. In any signal detection task,



response accuracemm b e decomposed into probability
well as probability of false positives (I
these two aspects of accuracy separately. Although accuracy is the primary performance
outcome speed of completion may provide useful supplemental fluency information.
Participants were asked to complete each scene as quickly as they can without sacrificing
accuracy, so those who complete scenes more quickly (with comparable accuracy) should
be comsidered superior to those who complete them more slowly (Fitts, 1954).
Trust and seftonfidence

Research suggests that the decision to use automation (or not) stems from a
compari son between an operatorods leonfidenc
automationdés reliability (Al exander, Franz
Midden, & Bouwhuis, 2003; Franz et al., 2016). Put simply, people will use an automated
system if they believe it to be more capable of performing a task than they thesnselv
are. Subjective perceptions of automation reliability are not always accurate, however,
and human observers may mistakenly believe the automation to be less capable than they
are. Thus, in addition to actual automation reliability, it is importantdoeas s o bser ver
subjective trust in the automation, as well as trust in their own abilities (i.e., their self
confidence).
Mental workload

The decision to rely on an automated ai
mental workload (Biros, Daly, & Gunsc004). An observer who reports feeling

cognitively overburdened will likely favor automated cues over their own observations,



using automation fias a heuristic repl aceme
processingo (Mosier & Skitka, 1996, p. 205
Mental resources

Attentional resource theory suggests that observers have a limited supply of
mental resources that are expended as they engage in difficult tasks (Parasuraman &
Davies, 1977). As task demands increase, human operators respond by drawing mor
heavily on their limited supply of expendable mental resources, and the fewer resources
that remain, the less likely that observers will remain engaged with the task. Although in
many cases mental workload is used as a proxy for mental resourceg€lyithhat
difficult tasks will heavily drain mental resources, e.g., Helton & Warm, 2008), the two
constructs are theoretically separable. For this reason, | will assess remaining mental
resources independently of mental workload. If automation is tgdfeluthe resource
drain imposed on a human observer must be less than the drain experienced when the
same task is completed without automation.

Understanding Mechanisms

Equally important to performance differences between groups are the mechanisms
that mght underlie them. That is, there are many reasons an individual might perform
poorly with an automated system, and understanding the explanation for poor
performance is required for designing effective interventions. If poor performance were
due to congtent undetrust of the automation, for example, interventions ought to target
observersodé subjective perceptions. Il n cont

difficulty (i.e., excessive mental workload), interventions ought to target training



procedures or qualities of the task. Lastly, in the event that worsening performance is not
accompanied by any changes in subjective trust or workload, interventions ought to focus
on increasing operator awareness (Taylor, Shadrake, & Haugh, 1995)e$®rd¢hsons,

any performance differences will be interpreted in light of convergent differences in trust,

workload, and mental resources.



INTRODUCTION

Manual tasks are automated out of a desire to improve performance. There are a
great number of sucss stories in this regard, from commercial aviation (e.g., Wiener &
Curry, 1980) and medical procedures (e.g., Armato et al., 2002), to military operations
(e.g., Deng, Han, & Mishra, 2003). However, far from removing human responsibility
altogether, autoation has largely altered and, in some instances, increased the
responsibilities of human operators who now must assume managerial positions over
automated systems. Even for tasks that are entirely automateda(dol ed A unmanneo
tasks), a human operatartiypically placed in a supervisory role. The assumption of
supervisory duties introduces the potenti a
attend or respond to the automationds mist
& Riley, 1997). Autonation that fails frequently may have a net negative effect on
overall performance if those failures go unnoticed, if the failures hurt operator trust to an
extent that notfailures are viewed skeptically, or if they simply distract the operator
from perfoming some other task. Thus, at a certain level, having pperfprming
automation may be worse than having no automation at all.

The reliability level at which automated cues cease to be useful in a target
identification context (compared to a-aatomaion baseline) is the focus of this

dissertation. Although the minimum reliability required for successful hesmémmation



pairing has already been estimated through +aetdysis (Wickens & Dixon, 2007), the
aggregation across task and automation typeltsein a general estimate that neglects
important taskspecific moderators relevant to target search/identification tasks. At the
behest of the U.S. Army Night Vision and Electronic Sensors Directorate, this
dissertation seeks to estimate the minimunomation reliability required for soldiers
searching a scene for armored vehicles, as well as the effect of certain moderators
specific to this task (each described in turn below).
Automation Error Type

The extent that unreliability hurts performance rdapend on the nature of that
unreliability: whether errors are misses or false alarms. In many instances, automation
provides feedback to a human operator through algntempting subsequent action
through its presence or suggesting inaction through #srade ¢f. errors of
omission/commission; Parasuraman & Manzey, 2010). In such an arrangement, system
designers can affect whether automation errors will tend to be misses (i.e., false
negatives) or false alarms (i.e., false positives) by adjusting alesitisity. In this signal
detection context, automation misses and false alarms have qualitatively different effects
on operator behavior: the former encourages action and the latter inaction (Meyer, 2001,
Meyer, 2004).

Research suggests that misses afsgfalarmd although both erros may have
differential effects on performance, trust, and workload. Dixon, Wickens, and McCarley
(2007) suggest that because false alarms are salient, intrusive, and annoying, the same

level of overall unreliability shouldedomore impactful if automation errors are false



alarms than if they are misses. However, other research has found false alarms and misses
to have a similar negative effect on performance (Madhavan, Wiegmann, & Lacson,
2006; Rovira & Parasuraman, 2010), anéw studies have even found that participants
may trust false alarfprone automation more than mig®ne automation (Davenport &
Bustamante, 2010). Whether misses or false alarms induce lower trust and/or are more
detrimental to performance likely deqs on the particular task at hand. For visual
search tasks, the intrusiveness of false alarms should make it more difficult for humans to
leverage bottorup attention to improve their performance (Treisman, 1985; Nothdurft,
1992). That is, a great numbmrfalse alarms will spread visual attention too diffusely,
mitigating the benefits of wvalue cues (Avi
salience of false alarms may also interfere withdopn attention, causing observers to
distrustths y st em entirely and ignore valid Vvisuece
Parasuraman & Riley, 1997). Thus, in a target identification context, false alarms may
interfere with both bottorup and topdown attentional processing.

Although false alaraprone atomation in a visual search task may be closely
related to performance, trust, and workload, rpisgie automation may not. One study
on visual search found that even automationnasedas many as 70% of targets
nonetheless improved performance ovap@automation baseline (de Visser &
Parasuraman, 2011). The authors suggest that in a field of multiple targets, any that are
identified by an automated system will alleviate the workload of a human observer. Put
simply, even misprone automation may belipful for a visual each task because the

errors are not distracting. Indeed, a perfectly unreliable-prmse automation is



equivalent to a n@automation condition in a visual search scenario (in both cases, all
targets are unmarked). Thus, in contradatse alarms, misses may not interfere with
bottomup or topdown attentional processes, and may therefore be relatively unrelated to
performance, trust, and workload.

To explore the moderating effect of error type on the relationship between
reliability and overall performance, participants were either assigned tepmiss or
false alarrprone automation error type conditions while keeping overall number of
errors consistent between groups. There should be a strong negative relationship between
the nunber of automation false alarms and participant performance (both for user misses,
false alarms, and search speed), but only a weak negative relationship between the
number of automation misses and participant performance. A similar effect should arise
between error type and subjective measures (e.g., trust, workload).

Perceptual Difficulty

Research consistently finds that greater task difficulty increases the potential risks
of unreliable automation (Dixon & Wickens, 2006; Meyer, 2001; Parasuraman et al.,
1993). As targets become more difficult to perceive, unreliable automation may therefore
be more |ikely to adversely affect perform
metaanalysis found that automation reliability only affected performance focudliffi
tasks; easy tasks were associated with relatively high, invariant performance. However,
the authorsé6 analysis was based on a rel at
of which involved visual search (Dzindolet, Pierce, Pomranky, PetetsBack, 2001),

which itself only required observers to perceive a target presented rapidly (i.e., flashing



for 750 ms). Thus, the second focus of this dissertation is to validate the effect of
perceptual difficulty on the relationship between automatibahiéty and performance
in a longefpresentation, muliarget environment. Perceptual difficulty was manipulated
by varying the targetds distance from the
identifying small targets at extreme ranges, often whenvisual cues are present
(McDowell, 1992; Sterling & Jacobson, 2006). Thus, of great import to the literature and
for more practical applications is the effect of automation reliability when targets are
distant and difficult to perceive.
Judgment Specifcity

In some casg soldiers may be requiredrtmnitor an area for the presenceaaf/
targets (i.e., a general judgment). In others, they may be required to monitor an area for a
particular target (i.e., a specific judgment). Specific judgments are clalenging to
make than general ones because the former require more attention and effort; observers
must attend more deliberately to the part:i
turret?0) rather than idsofgesnnemal kisthdDde) .( e
judgment specificity may therefore consume more informgtimcessing resources and
hasten resource drain and exacerbate performance decrements (Parasuraman & Davies,
1977).

Aut omati on stands t o alddneahenmakiegamybser ver
judgment, but this alleviation might be most beneficial for specific judgments. For
example, a readilydentifiable logo of a tank should be less cognitively taxing to identify

than the vehicle itself, whose identifiable features mighbbscured by distance or

10



viewing angle. When readHigentifiable logos are placed above all targets in a specific
judgment task, the observers are no longer required to attend to potentially small
elements of difficulto-perceive targets. However, whthe automation reliability is
poor (e.g., a logo of a truck placed above a tank), having to ignore erroneous automation
represents an additional burden on top of the one imposed by the primary identification
tasl® essentially a visual Stroop task (Strobp35). As the task becomes more exacting,
the likelihood that an automation error is relevant to performance increases. Thus,
although observers making specific judgments may reap the greatest benefits from
automation while it is reliable, they may also dt the greatest risk of performing poorly
if the automation becomes unreliable. As a result, the automation reliability required to
improve performance above a-anotomation baseline is likely higher for specific
judgments than it is for general judgment

Because specific judgments are more difficult, they should also be associated with
lower selfconfidence and relatively higher trust (Biros et al., 2004). When participants
trust the automation to perform better than they can, they should rely/contply on
automation more than on their own abilities, resulting in overall performance that is more
closely linked to automation reliability. In sum, more specific search instructions both
increase the likelihood that an automation error provides incorreddmee and increases
the likelihood that an observer will rely on that guidance rather than on their own

abilities.
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Summary and Hypotheses

The exact reliability threshold between helpful and unhelpful automation has been
the subject of metanalysis (70% febility; Wickens & Dixon, 2007), but may depend
on a number of contextual factors. Those factors may also include the outcome of
interest; here, | specified task performance (misses, false alarms, search time), trust/self
confidence, mental workload, antental resources. In short, although general trends
may hold that less reliable automation tends to result in worse perforidahee
strength of this relationship may depend heavily on the nature of the automation and on
the requirements of the task (LeeSge, 2004; Parasuraman & Manzey, 2010). | aim to
clarify several factors relevant to automataided target identification: automation error
type, perceptual difficulty, and judgment specificity, to determine the relative automation
reliability necessarto positively affect the user experience with respect to task
performance, trust/setfonfidence, mental workload, and mental resource utilization. In
light of these goals, | propose the following four hypotheses:
Hl:Repl i cat e Wi c k e w@sthrastoid.rConkistemtdvithrpast reséarcla
automation should only improve performance over-amomation baseline once it
crosses the 70% reliability threshold. Below this point, it should be less helpful than no
automation at all.
H2: Assess the inflence of error type on the estimated reliability threshold. The
reliability threshold between helpful and hurtful automation should shift depending on

the error type produced by the automation (i.e.tytpeof unreliability). False alarm

12



prone automatiowill need to be more reliable than miggone automation will to avoid
having a nehegative effect on performance.
H3: Assess the influence of perceptual difficulty on the estimated reliability threshold.
For any given observation, the reliability reguirent will be higher when a target is
difficult to perceive (distant/small) than when it is easy to perceive (close/large). Further,
the effect of target distance will interact with error type, such that distant targets in a false
alarmprone environment il require the highest reliability of all.
H4: Assess the influence of task specificity on the estimated reliability threshold. The
reliability required to improve performance over asadomation baseline will also
depend on the specificity required bétobservers. When observers are required to find a
specific subset of targets, automation will need to be more reliable than when they are
required to find any/all targets.
Study Overview

Study 1 was designed to test the first three hypotheses, whilg Stuals
designed to test the fourth hypothesis. Wickens and Dixon (2007) acknowledge the
relevance of taskpecific contextual factors in the 70% reliability threshold and so the
results of these two studies should provide a nuanced estimate for auteaiidn
target identification tasks.

Both experiments were conductedparson (SONA) and online (MTurk) as
within-subjects, randomized studies. In Study 1, participants were randomly assigned to
one of two conditions corresponding to the type of errareddy the automation: either

misses or false alarms. In either case, reliability of the automation varied throughout the

13



experiment, wittp(Correct)={.25, .40, .55, .70, .85, 1.00}. In Study 2, all participants

were assigned to the same condition, buirtkuctions for how to conduct their search
changed throughout the study {all targets, military targets, tanks only}. Reliability of the
automation in Study 2 also varied, but was selected from a smaller list, with
p(Correct)={.40, .70, 1.00}. Becausethcstudies employed similar materials and
procedures, both will be described in full prior to listing the results of each. The results of

both studies will be presented together.

14



METHOD

Study 1

In Study 1, participants were instructed to cahwetnumber of tanks in a series of
static forest scenes. Participants were told that six different automated systems would
take turns assisting them with their search, and that some systems would provide more
accurate guidance than others. Guidance toekdrm of augmented reality icons
superimposed over targets (described in more detail later). As participants searched for
tanks, they were asked to evaluate the six systems according to their reliability and
trustworthiness.
Participants

A total of 184participants were recruited, both from the George Mason
Uni versity undergraduate research pool (n
(MTurk; n = 101). Because the task involved searching an image of fixed resolution for
targets, MTurk participants weinstructed to only complete the study if they had a-high
resolution monitor (i.e., with at least 900 pixels of vertical resolution). After excluding
MTurk participants who ignored this request (n=32) or started but did not complete the
experiment (n=12}he final MTurk pool was reduced to 57 for a total sample size of 140.
Undergraduate participants were compensated with research credit hours and MTurk

participants were paid $3. Undergraduate participants were younger on average (M=21.3,
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SD=2.62) comparkto MTurk participants (M=35.9, SD=10.6), and tended to take
slightly less time to complete the experiment (31.6 vs 38.6 minutes).
Materials

A total of 54 forest scenes were generated prior to the experiment for participants
to search. These 54 scenestcani ned bet ween zero and eight
were either tanks with tank icons above them (accurate), tanks without tank icons above
them (inaccurate: miss), or houses with tank icons above them (inaccurate: false alarm).
Only one of the ldér two inaccuracies were shown to any single participant, as each was
assigned to either the miss condition or the false alarm condition (a betugents

factor; Figure 1).

Miss condition
Accurate Inaccurate

False alarm condition
Accurate Inaccurate

Figure 1 The targets for each error type
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Whether or not a given target was accurate depended on the reliability block to
which the scene belonged. The 54 forest scenes were divided into six blocks
corresponding tane various reliabilities of the automated systemwmaaitld be assisting
participantsEach reliability block contained nine scenes (54+6), with a single instance of
each 0 to 8 targets (i.e., fulbrossed). In other words, all reliability blocks contdioae
scene that had 0 targets, one scene that had 1 target, one scene that had 2 targets, and so
on, for a total of 36 target3.he proportion of the 36 targets that were aataiwas either
25% (9/36), 40% (14/3655% (236), 70% (2336), 85% (3036), or 100% (3636).

The location of targets in each scene was generated randomly prior to the
experiment by sparsely sampling from two uniform distributions, representing both the x
and ycoordinates of the scene.kAmeans cluster analysis was then perfatroe the
sampled uniform distributions, and the resulting centroids were used to place targets
(Figure 2). This procedure allowed targets to be placed at random without placing too

many adjacent to each other.
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Figure 2 Exemplar depicting how target locdions were selected for each scene. In this example, five targets were
selected from the same number of clust centers, denoted by diamonds

In addition to the targets described above, each scene contained 30 trees (Figure
3); three villages that appedrat short, medium, and long ranges (Figure 4); and three
small buildings (Figure 5). With the exception of the three villages that appeared at fixed
ranges (300, 500, and 700 meters), the placement of the various background elements
was determined randoynfor each scene. The horizon was populated with a dense forest

(see Figure 6 for complete example).

Tree 1 Tree 2

Figure 3 The two types of trees used to provide natural clutter to each scene
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Shortrange village Mediumrange village

Long-range Vlage

Figure 4 Three clusters of buildings used to provide mamade clutter to each scene

Small Building 1 Small Building 2 Small Building 3

Figure 5 Single structures used to provide additional mamade clutter to each scene
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Figure 6 One scene from the experiment, selected from the 85% reliable false alaprone automation block;
the incorrectly-marked target (a house) is fourth from the left

Measures

A number of selreport surveys were also used. Subjective assessmentdeprovi

insight into participantsd mental state as
Di screpancies or similarities between part
performance affect how the results are discussed. The first pertained to trust in

autamat i on, modi fied from Lee and Morayods (1

workload scale taken from the NASALX (Figure 7; Hart & Staveland, 1988); and the
last was the GTQ, assessing remaining mental resources (Figure 8; Monforhet al.,
press). Participants also completed nine scenes without any automation; the trust scale

items that followed these scenes were modified to refer t@seffidence instead.
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Table 1 Lee and Moray (1992) Trust Scale with Psychometricé&Study 1)

Item total
correlation
The system performed in a predictable way. .98
| could count on the system to do its job. .96
| have confidence that the system will perform well in the future .96
| trust the system. .96
Cronbach .97

Table 2 Lee and Moray (1992) Trust Scale, Modified for SelConfidence with Psychometric{Study 1)

Item total
correlation
| performed predictably and consistently. .90
| could count on myself to do the job. .97
| have confidence that | will perform wefl the future. .97
| trust myself to perform well. .97
Cronbach .96

How demanding was the task you just completed? Click along the line below to answer.

Very Low Very High

Figure 7 The NASATLX Overall Workload Scale
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Think about your brain as an engine.
Click inside the fuel tank below to show how much gas you have left right now.

FULL

EMPTY
Figure 8 The Gas Tank Questionnaire (GTQ)

Procedure

After arriving at the lab, participants completed informed consent and were
assigned to an experimental condit{er., automation error type). They then underwent
a tutorial and training session to familiarize themselves with the task. This session
included descriptive text as well as two sets of training scenes: one with very reliable
automation (100%), and onetiivery unreliable automation (25%). These trials were
presented in sequence to familiarize the participants with the concept of variable
automation reliability, and to highlight the fact that some systems were more reliable than
others. Depending on thermdition to which they were assigned, participants either
completed a tutorial for a miggone tank detection system or for a false alprone
tank detection system.

After completing the training, participants were asked to complete a trial without

anyaut omation (AFirst, you wil!/ perform t he
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detection systemso). I n this trial, none o
marks. At its conclusion, participants were asked to rate theicaefidence (i,e, A S| i de
the bars below to express your feelings about your ability to spot tanks without help from
the tank detection systemo). They were al s
and to rate their remaining mental resources. Subsequent trials toithadion marks
also used these scales, but inquired about trust rather thaosidfence.
Participants were then advised that the
online, 0 and that they would be completing
They were told that they would be rating the trustworthiness of six systems, and were
instructed to rate each system independent

9).

Warning after each trial

YOU ARE ABOUT TO EVALUATE A NEW TANK DETECTIONSYSTEM.

This system has its own reliability and may perform differently than the previg
systemPlease "reset" your truahd consider this new system independently of
past one.

Figure 9 Trust reset warning that was displayed after each reliabilif block (every nine scenes).
After rating all six systems, participants were thanked and debriefed. See Figure 10 for a graphical summary of
the procedure
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Group Assignment

Training 100%% — 23%

No-AR *

5%, 40%. 25%}

3

Expeniment

Reliability
%, 70%,

5

£100%, 8

Figure 10 Graphical summary of Study 1; rectangles represent trials, curly brackets enclose randdred
elements, and asterisksepresent survey administrations

Study 2
The second study was designed in a similar manner to the first. The primary
difference between the two was that Study 2 contained images of three types of vehicles
ratherthanjustan. The Atank detection systemo was
detection system, 0 and placed icons above

arrayed in forest scenes. The instructions given to participants also differed from Study 1.
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During the experiment, participants were alternatingly instructed to either count all
vehicles, all military vehicles, or only tanks. Each of the three instruction sets contained
all of the automation reliability blocks (i.e., 45%, 70%, and 100%).
Participants

A total of 167 participants were recruited, both from the George Mason
University undergraduate research pool (n
(MTurk; n = 100). MTurk participants were again instructed to only complete the study if
they had a highesolution monitor (i.e., with at least 900 pixels of vertical resolution),
but a sizeable proportion ignored this request. After excluding MTurk participants who
completed the experiment with a monitor of insufficient resolution (n=34), as well as
those wio began but did not complete the experiment (n=29), the final MTurk pool was
reduced to 37 for a total sample size of 104.

Undergraduate participants were compensated with research credit hours and
MTurk participants were paid $3. Consistent with Studyntiergraduate participants
were younger on average (M=20.4, SD=2.23) compared to MTurk participants (M=33.2,
SD=8.31), and tended to take less time to complete the experiment (50.9 vs. 75.8
minutes).
Materials

A total of 72 forest scenes were generateolr ho the experiment for participants
to search. The forest scenes in Study 2 were similar to those in Study 1, but they

contained three types of vehicles: tanks, armored personnel carriers (APCs), and trucks.

25



Each scene contained between one and eidjitles, all of which were highlighted by
augmented reality icons.

Whether or not a given icon matched the target below it depended on the
reliability block to which the scene belonged. The forest scenes were evenly divided into
three reliability blocks (@%, 70%, 100%), such that each block contained 24 scenes
(72+3). These 24 scenes were further subdivided into three, wherein participants were
either instructed to locate all vehicles, to locate military vehicles, or to locate only tanks.
Thus, three reliaility levels were fullycrossed with the three instruction sets, resulting in
nine sets of eight scenes. Participants were told that each of these nine sets was the result
of a different target detection system. Similar to Study 1, each set containalod 86
targets

The proportion of the 36 targets that were accurately marked was either 40% (14
accurate, 27 inaccurate), 70% (25 accurate, 11 inaccurate), or 100% (36 accurate, 0
inaccurate). Accurate targets were always vehicles marked with thehingatcon.
|l naccurate targets were vehicles marked wi
at random. The marks also divided the vehicles into two classes, military and non
combatant, by using red and green, respectively (see Figure 11). &lot tie three
icons (in pixel area) was matched to within 1% of each other. Clicks left small red circles

on the image and were recorded #g gixel coordinates.
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[ =300

Truck (17,797 pixels) Tank (17,781 pixels) APC (17,796 pixels)

Figure 11 Three tagets paired with their automation marks

With the exception of using three vehicle types rather than one, each scenes for
Study 2 was generated in an identical fashion to those in Study 1. Each scene contained
30 randomlyplaced trees; three villages tlappeared at short, medium, and long ranges;
and three randomiglaced small buildings. The horizon was populated with a dense
forest.
Measures

The selfreport scales were also the same as those used in Study 1: trust in
automation (Lee & Moray, 1992), wdoad (Hart & Staveland, 1988), and remaining
mental resources (Monfort et ah,pres3. Participants again completed nine scenes
without any automation; the trust scale items that followed these scenes were modified to

refer to seHconfidence instead.
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Table 3 Lee and Moray (1992) Trust Scale with Psychometri¢Study 2)

Item total
correlation
The system performed in a predictable way. A
| could count on the system to do its job. .99
| have confidence that the system will perform well in tharkt .97
| trust the system. .97
Cronbach .98

Table 4 Lee and Moray (1992) Trust Scale, Modified for Sel€onfidence with Psychometric{Study 2)

Item total
correlation
| performed predictably and consistently. A
| could count on mysetb do the job. .96
| have confidence that | will perform well in the future. .97
| trust myself to perform well. .95
Cronbach .97

Procedure

After arriving at the lab, participants completed informed consent and were
assigned to an experimehtandition. They were instructed that they would be shown

several scenes, and that their job would be to count the number of vehicles in each by
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clicking on them. They were further instructed that the type of vehicle they would be
counting would change tbughout the experiment, and that depending on the
instructions, they should either count all vehicles, all military vehicles, or only tanks. At
this point, images of the three vehicles were shown from various angles (Figure 12).
Participants were asked study the vehicles until they felt confident that they could

identify them.

TANK

FRONT SIDE BACK
ARMORED PERSONNEL CARRIER (APC)

FRONT SIDE BACK

TRUCK

FRONT SIDE BACK

Figure 12 Tutorial images used to familiarize participants with the three vehicles

Participants were then told that several automatic vehicle identification systems
would beassisting them during the experiment, and that some may be better at
identifying vehicles than others. To reinforce this point, participants were shown an

example of reliable automation and an example of unreliable automation. The latter scene
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was createtb have an obvious error in the front center of the image, to which the tutorial

text drew attention. Participants then completed six hand¥ractice scenes with each of

the instruction types (all targets, military targets, only tanks) crossed witleweis lof

reliability (100%, 40%). A single representative scene for each of the six categories was
used in place of a full set to shorten the
cognitive resources for the experiment.

After completing the traimg, participants were asked to complete several trials

without any automation (AFirst, you wil/| p
the vehicle identification systemso). Il n t
scenes (containingetween8 t ar get s) for each instructio
Acount only military vehicles, 0 and fAcount

AR marks, and the order of these instructions was determined randomly for each

participant. Aftercompleting each of the three-aotomation trials, participants were

asked to rate theirsetfonf i dence (i .e., ASlIlide the bars
about your ability to identify [all/military/tank] vehicles without help from the sensor

s y s t). @hmapwere also asked how demanding they found the task and to rate their
remaining mental resources.

Participants were then advised that the AR vehicle identification system was
Acoming online, 0 and that they diferent d be co
systems. Just as in Study 1, they were instructed to rate each system independently of any
that preceded it. They were also reminded to attend to the specific instructions that would

accompany each system.
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The order of the three instruction setas determined randomly for each
participant, but all participants completed the three reliability trials for each instruction
set before proceeding to the next instruction set. This blocked design was employed to
minimize switch costs and to reduce thelihood of perseverative errors (e.g.,
Wisconsin Card Sorting Task; Puente, 1985). After each reliability block, participants
completed surveys to measure their trust in the system, perceived task demand, and their
remaining mental resources (see Figuddr experiment flow). After completing all

nine trials, participants were thanked and debriefed.

S All Military Tank
Training
& All Military Tank
-+
No AR [ EHIE A Instructions ) "
2 {AlL Military, Tank}
[ L Reliability || )
. & {40%, 70%. 100%}
8 &
. e & Reliability
= = kd - kad M
Experiment =8e 140%, 70%. 100%}
g =
> .| Reliability |, .
- {40%, 70%. 100%}

Figure 13 Flow of Study 2; rectangles represent trials, values in curly brackets represent randomized elements,
and asterisks epresent survey administraions
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Data Analysis

All analyses were conducted using generalized linear mefiedts regression
models (Bates, Machler, Bolker, & Walker, 2015), and Sattherwaite (1946)
approximations were used to determine denominator degrees of freedsanidp-
values. Performance outcomes were mostly captured at the redpoeisas binary data:
whet her or not a given target was clicked
on a target (fAfalse alarmod). These out come
models. How long participants spent searching each scene was recorded in seconds and
analyzed using Poisson regression models. Threeegmift assessments (trust,
workload, and remaining mental resources) were collected at the end of easbemae
reliability block, and were analyzed using linear regression models. A mental resource
drain variable was calcul ated by subtract:i
response from the one that preceded it.
No-automation baseline adjustment

Because | anmterested in determining the reliability required to improve
performance above a fautomation baseline, all regressions were adjusted using data
from the neautomation baseline. To make this adjustment, | conducted an additional
mixed-effects regressiopredicting each of the six outcomes during theaatomation
block. These regressions were all empty models, with a nested error structure but no
predictors. | extracted the empty model intercepts for each of these regression by
participant, which were timesubtracted from their intercepts in subsequent-Bplgcified

models produced an adjusted intercept term that represented the deviation from the no
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automation baseline. These adjusted intercepts were used to calculate an estimated value
foreachoutcomand partici pant across reliability
own ncautomation baseline.

To clarify the baseline adjustment process, | will briefly discuss the calculation
for Participant 1. For Participant 1, the intercept for the empty npwddicting workload
during the neautomation baseline was .200. That is, this participant reported workload
that was 20.0% of maximum after completing theantomation baseline. This value was
saved for later use. | next ran a fuflgecified model to gdict workload during the six
automation blocks, which included an intercep) é®d three predictongliability (B.),
error type (contrast coded;)Band a reliability by error type interaction.YB~or this

regression, Par t igbts gredisted inTable5.r egr essi on wei

Table 5 Regression weights for Participant 1

|Bo B1 B2 Bs
Participant1| 230 T .02 .0496 1 .00
Using a value of 11 to repremamait his er

contrast coded), his workload during the 70% reliability block could be estimated by the
following equation:

TLXw= . 2307 .0353* (. 70(.+7 0*47916)* (5 1.)I16 0,0 607r2 °
To convert this workload value in units relative to baseline, | subtracted the intercept

from the empty model from the estimated wo
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4% less than the rautomation baseline. This procedwras repeated for each

participant and each outcome at 0%, 25%, 40%, 55%, 70%, 85%, and 100% reliability
levels. The results of this procedure were used to estimate a separate line for each
participant that represented the changing values of an outcamtiee ¢t its value during

t hat p ar tautanatprabagelihves Anrexample of this procedure for all
participants is depicted below (Figure 14). The migffdcts models allowed each
participant to have a unique intercept and slope; note the blao&dise representing

the value at n@utomation baseline (i.e., the value of the outcome during manual

performance).
Group 1 Group 2
— S 2 *L,»
g 20% — ~\\- ~
= —— “\‘
v & NS
§ = - _——— >
o O — S =
D - () o S S o SR S W s g o o e s - S, ——
=) ——— e - ——— \‘\ =
S .2 ————e————— N
= = = —— — S ~
] — ~ . - —
O = . T _—
& -20% = S
X =~
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

Automation Reliability

Figure 14 Hypothetical outcome by automation reliability. Each color repesents a different participant
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The individual lines for eacparticipant were then averaged to produce an
interpretable estimate for each research question, and 95% confidence intervals were
calculated for the aggregated groups. Going forward, each outcome will be understood as
not significantly different than theo-automation baselingg& .05) so long as the 95%
confidence interval overlaps zero. This interval was shaded gray for all outcomes, and
represents the reliability interval where automation has no meaningful effect on
performance. In contrast, the autdioa will be said to have a detrimental or beneficial
effect on performance (< .05) when the bounds of the confidence interval first deviate
from zero. These regions were shaded red and green, respectively. The reliability values
where these bounds ocauere labeled; an example of this procedure is depicted below

(Figure 15).

Giroup 1 Group 2

2084

= . .
2 10% Benefit of
Ly = Automation
E =
§ =] Detrimental
é g e Mo Effect
‘.-_f Beneficial
—

-10%%

o 20% 40% o0%% S0% 1002 0% 200 40% olPe  S0% 100%

Automation Reliability Automation Reliability

Figure 15 Hypothetical outcome by automation reliability. The shaded region(s) represent the reliability
intervals when joint human-automation performance was worse (red; p<.05y0 better or worse (gray; p>.05),
and/or better (green; p<.05) than humaronly performance
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Labeling three distinct regions where automation is helpful, harmful, and when it has no
effect represents a slightly more nuanced interpretation than the oreyethpy

Wickens and Dixon (2007), who obtained the 70% reliability estimate by observing
where a regression line representing a raet@ytic average crossed theaustomation
baseline level (not accounting for the variability around that value; Figure 16)
Interpretation of these shaded regions will mostly replace the null hypothesis tests from
the fully-specified models. However, the bivariate tests (predicting each outcome with
reliability aloné® hypothesis 1) will be retained to test if the various omtes change

with automation reliability.

Regression cost benefit onto reliability
(overall)

Cost benefit

Reliability

Figure 16 Figure taken from Wickens & Dixon (2007); regression of benefits/costs relative to baseline, on
automation reliability with a 95% confidence interval
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RESULTS

Model Specification

For the majority omodels, specifying a random intercept term for participant
explained variance in the outcomes (i.e., nesting observations within participants). For a
subset of those models, adding a random intercept term for condition assignment
explained a significant aitional amount. If the addition of a second random intercept
term for condition explained more variance in the outcome it was retained; otherwise, the
more parsimonious model was used (random intercepts for participants only). Similarly,
when the additioof a random slope term for reliability improved model fit it was
retained; otherwise, the models only contained random intercepts. Jefifemtis models
were used primarily to inform the shadexjion analysis, but the results from simple
bivariate modelsvill be included for hypothesis 1 to show the effect of reliability on each
of the outcomes.

False alarms were relatively rare for the miss condition in Study 1 and-the all
targets goal in Study 2, which prevented the models for these tests from conw&rging
single false alarm was added for each participant in both cases. This did not meaningfully

affect the average false alarm rate except for allowing standard errors to be estimated.
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Relationships Between Outcomes
Before proceeding with the hypothesist$es$ present the correlations between the
six outcomes below (Table 6) for Study 1 (hypothes8sdnd Study 2 (hypothesis 4).

The six outcomes of interest were only weakly intercorrelated.

Table 6 Correlation matrix for each of the six outcomes. Valuesn the left represent correlations for Study 1
and values on the right represent correlations for Study 2. Values in grey are not ststically significant (p > .05)

Miss False Search Trust | Workload| Resource
Alarm Time Drain
Miss 0
Fls. Alarm | .16 .22 0
Srch. Time |T . 27T . ] .09 o}
Trust [ I I A IR T . ] 0
Workload A2 | .09 .26 [ o}
Res. Drain | .08 .05 .08 T. 1. 1.13 .27 o

Hypothesis 1
| first predicted that automation should only become useful compareaboto a
automation baseline once it surpassed 70% reliability. Specifically, that automation of
70% reliability or higher would result in better operator task performance (fewer misses,

false alarms, and faster search time) and an improved subjective expéhigher trust,
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lower workload, lower resource drain) compared to thautomation baseline. The data
aggregated over all moderators should be consistent with the effect observed by Wickens
and Di x on 6 sanalystsOtiiaZaptonmateon lawer than 708kability would be
Aworse than no automation at all o (p. 201)
Probability of missing a target

As reliability of the automation improved, participants were less likely to miss
targets, Exp(B)=.685, 95% CI [.496, .94p%.0217. Participants missed fewargets
with no automation (i.e., manually) until the automation reached the 51% reliability
mark. Performance began to improve over thaummmation baseline when automation
became 80% reliable (Figure 17). Altet hough
falls within these bounds, the reliability required for automation to improve performance

varied substantially across participants.
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Figure 17 Probability of missing a target by automation reliability. The shaded region(s) represent the reliability
intervals when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05),
and/or better (green; p<.05) than hunan-only performance

Probability of issuing a false alarm

As reliability of the automation improved, particijga were less likely to issue
false alarms, Exp(B)=.596, 95% CI [.442, .8(0#,001. However, the reliability required
for automation to reduce participant false alarms belowaut@mation baseline shifted
dramatically compared to the value requiredeiduce participant misses. In fact,
participants were more likely to issue false alarms for almost all reliability levels than
they were during their rautomation baseline. Only at 89% reliability did participants
issue equivalent numbers of false alanosipared to their baselines (Figure 18), and at

no level did they issue fewer.
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Figure 18 Probability of issuing a false alarm by automation reliability. The shaded region(s) represent the
reliability intervals when joint human -automation performance wasworse (red; p<.05), no better or worse
(gray; p>.05), and/or better (green; p<05) than humanonly performance

Search time

Counter to expectations, unreliable automation did not reduce the amount of time
participants spent searching the scenes. Indacgliable automation slightly increased
search speed, Exp(B)=1.03, 95% CI [1.02, 1.05], and there was no meaningful reliability
threshold between detrimental and beneficial. On average, participants spent more time
searching during the rautomation baskle than they did at any point subsequently

(Figure 19).
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Benefit of
Automation

Beneficial

Search Time (s)

Relative to Manual

Tad

0% 0%  40%  60%  80%  100%

Automation Reliability

Figure 19 Search time by automation reliability. The shaded region(s) represent the reliability intervals when
joint human-automation performance was worse (red; p<.05), no better or worse (grap;>.05), and/or better
(green; p<.05) than humaronly performance

Subjective trust

Although reliability was related to trust in the hypothesized direction B=1.87,
SE=.0834,1(128.)<. 001, ©participantsd6 trust i-n the
confidence for all reliability levelsAgain, counter to expectations, there was no
meani ngful threshold where participantsd

self-confidence during the rautomation baseline (Figure 20).
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Figure 20 Subjectivetrust by automation reliability. The shaded region(s) represent the reliability intervals
when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05), and/or
better (green; p<05) than humanonly performance

Subjectie workload

As expected, workload decreased as auto
SE=.00401, t(128)=18.48, p<.001. Participa
to their neautomation baseline until 22% reliability, and began to report lower workload

once automation became more than 47% reliable (Figure 21).
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Figure 21 Subjective workload by automation reliability. The shaded region(s) represent the reliability intervals
when joint human-automation performance was worse (red; p<.05), no better or worsgray; p>.05), and/or
better (green; p<05) than humanonly performance

Resource drain

Automation reliability was related to resource drain in the expected direction,
such that more reliable automation produced less resource drain, B=.0229, SE=.000482,
df(722)=4.75p<.001. Further, participants reported more resource drain while
interacting with automation less than 68% reliable than they did with no automation at all
(Figure 22). However, participants never repotéesgresource drain than they did dugi

the neautomation baseline, even for 100% reliable automation.
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Figure 22 Change in mental resources by automation reliability. The shaded region(s) represent the reliability
intervals when joint human-automation performance was worse (red; p<.05), nbetter or worse (gray; p>.05),
and/or better (green; p<05) than humanonly performance

Summary hypothesis 1

The hypothesis that automation reliability would be positively related to
performance, and that 70% reliability would be the approximate thcebktheen
helpful and hurtful was not generally supported by the data. As expected, improving
reliability caused observers to miss fewer targets, issue fewer false alarms, increase their
trust, and report lower workload and resource drain. However, ihbiligy threshold
where these outcomes began to improve ovautomation varied considerably.

Objective measures of task performance required higher automation reliability
compared to subjective measures of task difficulty (workload and resourceidrmaidgr
to become equivalent to (or better than) eantomation baseline. Lastly, there was no

crossover point for search time or subjective trust. Participants always spent less time
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searching for targets while assisted with automation compared to-tgamation
baseline, and always reported trusting the automation less than themselves. The variance
between outcomes in the reliability required to improve performance over baseline was
not anticipated, but is consistent with the relative independenbes# outcomes (see
outcome correlation matrix, Table 3). Next, | explore potential moderators to these
effects.
Hypothesis 2

The second hypothesis predicted that the effect of automation reliability on the
various outcomes of interest should depend ertythe of error produced by that
automation. Specifically, that participants searching for targets with false-ptarma
automation will require a more reliable system compared to participants paired with miss
prone automation. Unreliable automation skidug more likely to result in human error
when the errors fail to provide useful information as well as distract from the primary
task (i.e., intrusive false alarms) compared to when they merely fail to provide useful
information (i.e., unhelpful missed)o test this hypothesis, | predicted the six outcomes
with automation reliability, error type, and a reliability by error type interaction term.
Probability of missing a target

The data aggregated across error type found that automation needed todie at lea
80% reliable before it made participants miss fewer targets than they did during the no
automation baseline. However, this threshold shifted depending on the type of error
issued by the automation. Worsening automation reliability was more likely $e cau

participants to miss targets when it was false afarome than when it was migsone
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(Figure 23). As a result, the reliability required to improve performance was higher for
false alarmprone automation than it was for mi@one automation. Only whehe false
alarmprone automation was nearly perfect (97%) did these participants miss fewer
targets. In contrast, miggone automation reduced participant misses even while it was

very unreliable (16%).
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Figure 23 Probability of missing a target by auomation reliability and error type. The shaded region(s)
represent the reliability intervals when joint human-automation performance was worse (red; p<.05), no better
or worse (gray; p>.05), and/or better (green; p<Q5) than humanonly performance

Probability of issuing a false alarm

The data aggregated across error type found that automation increased the number
of false alarms issued by participants until it reached 88% reliability. However,
worsening automation reliability was more likely to causdig@pants to issue false

alarms when it was false alafmnone than when it was migsone (Figure 24). As a
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result, false alaraprone automation needed to be more reliable than miss-prone
automation to avoid increasing participant false alarms (92% vs). T88eed, the false
alarm rate for participants in the miggone condition was relatively invariant, remaining

below 1% for the duration of the experiment.
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Figure 24 Probability of issuing a false alarm by automation reliability and error type. The sladed region(s)
represent the reliability intervals when joint human-automation performance was worse (red; p<.05), no better
or worse (gray; p>.05), and/or better (green; p<Q5) than humanonly performance

Search time

The aggregate analysis for searchetidid not support hypothesis 1, instead
showing that participants spent less time searching a scene for all reliability blocks
compared to the nautomation baseline. However, the effect of automation reliability on
search time depended on the error ty@mipulation. The trend for worsening

automation to result in shorter search time only occurred for participants in the false
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alarm condition (Figure 25). Participants paired with Apissne responded to worsening
automation instead bgcreasingthe amounhof time spent searching for targets,
converging with the n@automation baseline at 18% reliability. Thus, worsening

reliability had opposite effects on search time for the two error type conditions.
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Figure 25 Search time by automation reliability anderror type. The shaded region(s) represent the reliability
intervals when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05),
and/or better (green; p<.05) than humaronly performance

Subjective trust

When aggredgad across error type, participants rated their trust in the automation
as lower than their setfonfidence for all reliability blocks. Adding error type to this
regression did not change this interpretation. Counter to expectations, participants in both

error type conditions reported comparable trust throughout the experiment (Figure 26).

49



Error Type

= g 2.5 = False Alarm-Prone

E g .

== ==+ Miss-Prone

o =

22

ER-EEY .

-;—.E ' Benefit of

] .

o Automation

= .

Detrimental

0% 0%  40%  60%  80%  100%
Automation Reliability

Figure 26 Subjective trust by automation reliability and error type. The shaded region(s) represent the
reliability intervals when joint human -automation performance wa worse (red; p<.05), no better or worse
(gray; p>.05), and/or better (green; p<05) than humanonly performance

Subjective workload

Both false alarmprone and misprone automation induced workload to a similar
extent across reliability blocks, and ttediability threshold between helpful and harmful
automation varied only slightly between them (Figure 27). These small differences were
in the opposite direction as expected, however, such that participants with false alarm
prone automation reaped worktbbenefits from lowereliability automation compared

to participants with misprone automation.
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Figure 27 Subjective workload by automation reliability and error type. The shaded region(s) represent the
reliability intervals when joint human -automation performance was worse (red; p<.05), no better or worse
(gray; p>.05), and/or better (green; p<.05) than humasonly performance

Resource drain

The data aggregated across error type found that automation increased
participant s® me ntteached 88&osebabilityc @nsstenawitimtheu nt i |
effect for subjective workload, the reliability threshold between helpful and harmful
automation for mental resource drain did vary somewhat by error type (Figure 28).
Participants paired with false alafprone automation benefitted from loweliability
automation compared to participants paired with fpresme automation. Participants in
the missprone condition reported greater resource drain than Hagitoonation baseline
until automation reached 73%iedility, while participants in the false alarprone

condition reported comparable resource drain starting at just 58% reliability. The effect
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was small, but the fact that mipsone automation imparted a greater sensitivity to losses

in automation reliaility than false alaraprone automation ran counter to expectations.
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Figure 28 Change in mental resources by automation reliability and error type. The shaded region(s) represent
the reliability intervals when joint human-automation performance was wose (red; p<.05), no better or worse
(gray; p>.05), and/or better (green; p<05) than humanonly performance

Summary hypothesis 2

For the majority of the six outcomes, the type of error issued by the automation
for this visual search task shifted the abllity threshold between helpful and hurtful
automation.

Error type affected all of the behavioral outcomes: the probability of missing a
target, the probability of issuing a false alarm, and the amount of time spent searching the
scene. False alarproneautomation tended to produce more misses, more false alarms,

and shorter search times during loghability blocks. As a result, the reliability of false
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alarmprone automation had to be nearly perfect to reduce the number of missed targets
below a neauomation baseline, while miggone automation reduced misses even at

very low reliability levels. Participants with false alaprone automation also required

higher reliabilities to avoid issuing more false alarms than baseline compared to
participants wh missprone automation. Lastly, differences in search time arose by error
type, such that participants with miggone automation began to benefit from automation
once it had become 18% reliable. Oddly enough, participants in the falsepataren

condtion spent less time searching the more unreliable the automation became, spending
less time searching even when the automation was entirely falseradden (0%

reliable).

Although error type also affected the reliability required to improve worklodd a
resource drain compared to theantomation baseline, the direction of the effects was
opposite to the one predicted. Participants paired with false-glamne automation
reported lower workload than baseline at 44% reliability (compared to 49%der mi
prone) and less resource drain at 58% (compared to 73% foproiss). There were no
differences in subjective trust. In sum, false alpmone automation needed to be more
reliable than misprone automation to avoid increasing participant searchsebot the
reliability required to I mprove participan
false alarrprone than misprone automation. It is possible that the reliability required
for false alarmprone automation to help participants was higirecisely because the

reliability required for it to reduce workload, resource drain, and search time was lower.
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(Many automation false alarms caused participants to disengage from the task: lower
workload, less drain, shorter search, worse performance.)
Hypothesis 3

The third hypothesis predicted that the automation reliability required to improve
performance over a rautomation baseline would also shift depending on the distance of
a given target from an observer attempting to locate it. Specifidadliyatitomation
would need to be more reliable when the associated targets are difficult to perceive
(distant/small) than when they are easy to perceive (close/large). Further, it was
hypothesized that error type would moderate this effect, such thattdiata@alarm
errors would hurt performance more than distant, miss errors.

To test this hypothesis, | repeated the analyses from hypothesis 2, but added target
distance (and all its twand threeway interactions), a continuous variable representing
ech targetds distance from the observer.
within a scene, it was impossible to test differences in search time, subjective trust,
subjective workload, or resource drain for this hypothesis.

Probability of missig a target

Overall, distant targets required higher automation reliability than close targets in
order to be perceived at rates comparable to theeutmmation baseline (Figure 29). For
example, a target one standard deviation farther away than aveyjaged&5% reliable
automation to be spotted at a comparable rate to Haeiteonation baseline, while a

target one standard deviation closer than average only required 28% reliable automation.
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Figure 29 Binary logistic regression predicting probability of miss with target distance. Continuous distance is
depicted as a +/1 1 SD split. The shaded region(s) repre
automation performance was worse (red; p<.05), no better or worse (gray; p>.05), and/or better &gn; p<05)

than human-only performance

The degree to which distant targets increased reliability requirements fer miss
reduction further depended on the automation error type. While paired with false alarm
prone automation, distant targets required 92Hable automation to be spotted at a
comparable rate to the fautomation baseline. In contrast, even 0% reliable-prisse
automation produced comparable miss rates to treutmmation baseline for distant
targets, and began to improve performanae 2% reliability level. Thus, although
target distance increased automation reliability requirements for participants paired with
false alarmprone automation, it had a comparably minor effect on participants paired
with missprone automation (Figure 30)hese findings support hypothesis 3 that the

relationship between automation reliability and human performance would depend on the
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context surrounding the task, both in the qualities of the task (target distance) and in the

gualities of the automation fer type).

Figure 30Binary logistic regression predicting probability of miss with error type, target distance, and their
interaction. Continuous distance is depicted as a +/1 1
intervals when joint human-automation performance was worse (red; p<.05), no better or worse (gray; p>.05),

and/or better (green; p<05) than humanonly performance

Probability of issuing a false alarm

Overall, distant targets required higher automation reliability thase targets to
evoke false alarms at rates comparable to theutomation baseline (Figure 31). A
target one standard deviation farther away than average evoked more participant false
alarms than the nautomation baseline even when the automationtaggihem was
100% reliable. A target one standard deviation closer than average, in contrast, resulted in
comparable performance to baseline even at 0% reliability, and performance exceeded

baseline at 60% reliability. Again, as hypothesized, the rabalireshold required to
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