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ABSTRACT

The paper discusses a distinction between the knowledge used by an
explanation process (explanation knowledge) and the structure built as a
result of this process (explanation structure). An explanation of any data or
phenomenon is viewed as a composition of these two components. Two types of
explanations are discussed: deductive and inductive. Based on these ideas,
empirical, analytical and then constructive learning methods are compared.

Constructive closed-loop learning (or, briefly, constructive Iearning) is an
integrated form of learning, which uses deductive inference when the
observation is logically implied by the background knowledge, and employs
inductive inference when a new piece of knowledge is necessary to establish
the explanation structure. An example of constructive learning as applied to a
problem in robot assembly is presented and analyzed in detail.



1. Introduction_

An explanation of some phenomenon involves finding knowledge that logically entails the
phenomenon, and creating a structure that demonstrates that this knowledge indeed entails
the phenomenon. This distinction is useful for gaining a uniform perspective of various
learning paradigms, and leads us a formulation of a new learning paradigm unifying
inductive and deductive learning (Michalski and Ko, 1988; Michalski and Watanabe,
1988).

To illustrate this distinction, suppose that a person did not come to a meeting with a
friend. Suppose that this person later told his friend that he did not come to the meeting
because his mother got sick. This statement, called explanation knowledge, explains the
person's behavior to his friend, if the friend has the background knowledge that a crisis in
a family typicaily overrides other commitments, and that a mother's sickness is a family
crisis. The explicit demonstration that the explanation knowledge indeed explains the
behavior (which in our example case is a simple two step application of modus ponens) is
called explanation structure. The explanation structure is thus a proof that the explanation
knowledge together with background knowledge logically implies the behavior, or, in
general, any phenomenon that is being explained.

In analytic learning, such as explanation-based learning, without the knowledge of the
person's mother illness, no explanation can be constructed, and the system stops. People
in such cases, however, usually construct some hypothesis to explain the faced
phenomenon, in this case, the absence.at a meeting. The friend, for example, may
hypothesize that something serious might have happened to the person . This leap of
faith is ‘a form of constructive inductive inference (Michalski, 1983). It is done by

employing the background knowledge that if a person, who normally comes to meetings, ]

did not come, then it is likely that something serious is the reason.

To hadle such problems, constructive closed-loop learning (or, briefly, constructive
learning,; Michalski and Watanabe, 1988) uses deductive inference when the observation is
logically implied by background knowledge, but resorts to inductive inference when an
additional (or modified) knowledge is necessary to establish the needed explanation
structure. Thus, such a system can learn when its initial knowledge is inadequate. Many
practical learning situations start with such an inadequate knowledge. An important
example of such a situation is learning by an autonomous robot exploring a partially known
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environment., or a robot assembling a device without a complete control knowledge of the
procedure.

Next section uses the above ideas to distinguish between two types of explanation,
deductive and inductive. Then, based on this distinction, different learning approaches
are discussed. Constructive learning is characterized in terms of these ideas, and illustrated
by a detailed analysis of an example from the area of robot assembly.

2. Types of Explanation

To explain some observation to an agent means to construct a knowledge structure that
conceptually relates the agent's background knowledge (BK) with the observation
statement (OS). Formally, the constructed knowledge structure, called explanation
structure (ES),- must demonstrate that BK logically entails 08, which we write:

BK I> 0S8 M

In other words, OS must be a logical consequence of BK. In many situations, however,
the background knowledge (BK) may not be adequate to establish (1). BK may be
inadequate because it may be insufficient, intractable (too complex), or inconsistent
with the observations. In all such cases, BK has to be modified or enhanced by additional
knowledge, called explanation knowledge (EK). The explanation knowledge may be
given to us from another source, e.g., teacher or environment, or may have to be
hypothesized. In these cases, the explanation structure (ES) is a proof that

BK & EK I> OS #)

Constructing an explanation knowledge may require changing (updating, correcting, etc.)
BK into some modified BK*. Thus, in general, (2) is in the form

BK* & EK I> O§ 3

Based on these considerations , we can say that an explanation of an observation consists
of two components:

EK - explanation knowledge

ES - an explanation structure that demonstrates that explanation knowledge together

with background knowledge logically entails observation .



Using this conceptal framework, we can unify different methods of learning. For
example, in explanation-based learning, EK is null, and one seeks the explanation
structure, ES, that shows (1). In empirical learning, BK is small and inadequate for
explaning OS, so one needs to apply inductive learning to hypothesize an explanation
knowledge EK, based on the input data. In constructive induction BK may be substantial,
but still inadequate for deductively explaning the observation. There may be many different
situations between the two extremes, the purely empirical and purely analytic learning.
When BK is inadequate, and one needs either to create EK so that (2) holds, and/or
modify BK so that (3) holds. Constructive closed-loop learning is an attempt to develop a

' system that can handle all such situations.

@he above leads ygm the distinction between two types of explanation:

« a deductive explanation, which consists merely of the explanation structure
demonstrating that the observation, OS, is a logical consequence of what the system
already knows (BK! ), i.e., that BK I> OS. The explanation knowledge (EK) is null.

* an inductive explanation, which consists of an explanation knowledge (EK), which is
inductively hypothesized, and the explanation structure, which demonstrates that EK
together with (possibly modified) background knowledge, BK*, it implies the
observation: (OS), i.e.,, BK* & EK > OS .

On the basis of these concepts, we will analyze in more detail the empirical, analytical
and constructive learning.

3. Empirical Learning

Empirical learning »presupposes little background knowledge relevant to the task at hand,
so that the main ¢oncem is to hypothesize a concept or rule primarily on the basis of the
observational data supplied to the system [Michalski, 1983, 1987]. Since there is usually
a plethora of possible hypotheses that could explain an observation, the main problem is
to find the most plausible, or generally, the most preferred explanation . Thus, the main
inference scheme of these systems is inductive.

) explanation based learning literature, BK is typically called domain knowledge. In general, BK
contains domain-specific knowledge, domain independent knowledge, and metaknowledge (rules of
inference, constraints, etc.).



The empirical learning task is described as follows:

Given:
« Observational statements (OS) about an object, phenomenon,  or a process.

« Background knowledge (BK) which includes domain concepts, the preference
criterion for choosing among competing hypotheses, and inductive rules of

inference.
Determine:

« Explanation knowledge (EK) that, if true, logically entails the observation and is
most plausible, or, in general, most desirable among all other such hypotheses
according to a given preference criterion.

Explanation structure (ES) in most EIL systems involves subsumption relationships
between EK and OS. Thus, they use a matching procedure rather than a full deductive
decision procedure to establish ES. For example, in SPARC/G [Michalski & Ko & Chen
1987], the observational statements are a sequence of snapshots of some unknown
process. The background knowledge includes attributes used to describe the snapshots,
associated types and structures of the value sets of the attributes, a rule preference criterion,
and generalization rules. In addition, it includes description models that constrain the form
of plausible explanation knowledge. The system determines rules (EK) for each description
model that would qualitatively predict the future continuation of the unknown process.

Analytic Learning

Most known forms of analytical learning are explanation-based generalization [Mitchell
& Keller & Kedar-Cabelli 1986) and explanation-based learning [DeJong & Mooney
1986]. In this approach the system attempts to show that the background knowledge the
observer possesses accounts for the observation. A successful explanation enable the
system to formulate a more efficient or operational rule for accounting for the observation.
The basic inference scheme used in these systems is deductive. Analytic learning can be
described as follows:

Given:

« Observational statements (OS) about some objects, phenomena, or processes



» Background knowledge (BK) which contains general and domain-specific
concepts for interpreting the observations, as well as relevant inference rules.

Determine:

« A reformulation of the background knowledge that logically entails the
observation and is more effective and/or efficient. then the prior knowledge.

The explanation structure (ES) in these systems is either a proof tree generated by a
theorem prover, a trace of the Horn clauses in Prolog, or some other equivalent form.
For example, in ARMS system (Segre 1987), the observational statements include a joint
relationship between two components of an assembly (goal statement) and a sequence of
actions performed by a teacher that achieves the joint relationship successfully. The
background knowledge includes general plans for achieving simpler joint relationships.
The explanatioh process identifies general plans in the background knowledge that
participated in the teacher's actions and establishes a sequence of plan instances
(ES). Then, the learner determines a new general plan for achieving the joint relationship
in the goal statement from ES, a reformulation of background knowledge.

Constructive Closed-loop Learning

Empirical learning, described above, is one form of inductive learning. Another form is
constructive induction (Michalski 1983). Constructive induction incorporates domain
specific knowledge and a deductive reasoning mechanism into an empirical learning
system. The learning system uses this knowledge to construct new descriptors and
concepts not present in the input data, in order to generate more adequate inductive
hypotheses. Recently, the concept of constructive induction was generalized to
constructive closed-loop learning, or, briefly, constructive learning (Michalski, 1987;
Michalski and Watanabe, 1988).

Constructive learning integrates inductive learning (empirical and constructive) with
deductive (analytical) learning, and includes also the ability to determine the task relevant
knowledge in the knowledge base, and to evaluate the constructed knowledge in order to
decide if it is to be stored in the knowledge base for future use. A CCL system is able to
use full deductive decision procedure to establish explanation structure, as well as to
synthesize plausible explanation knowledge, like empirical learning systems. Such an
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integration is needed for a number of applications, for example, for implementing earning

in intelligent robots.

A prototype CCL system is currently being developed for the Intelligent Explorer Project
(IEX), conducted jointly by the George Mason University and University of Illinois.. The
goal of the project is to develop an autonomous robot capable of learning, reasoning and
planning in a partially known environment. The system distinguishes knowledge sources
that are modifiable (hypotheses and/or beliefs) from principles and definitions that are
irrefutable. All the inference steps taken by the system are recorded, using assumption-
based truth maintenance system (de Kleer, 1986).

If any contradictions are detected, the system identifies the knowledge sources which
participated in the justification structure and searches for the blame from the most
modifiable knéwledge. Various modification strategies are applied to avoid similar type
of contradictions. The revised knowledge participates in the explanation process and is
subject to further scrutiny for their validity. Due to the space limitation, we restrict
ourselves to some central aspects of constructive learning, and explain how the system
works by going through an example in the area of automatic assembly.

3. EXAMPLE: Learning Assembly Sequences

Suppose a robot can only carry out one assembly task between two parts ata time
and the assembly operation is successful as long as there is a collision free trajectory for
one part to mate with the other. So, the main task of the robot planner is to order the
tasks for achieving individual spatial relationships prescribed in the final assembly so
that the plan is executed without any collision. The problem for the robot planning module
is defined:

Given:
« Parts of an assembly and their geometric features.
 Initial configuration of the parts.

«  The spatial relationships between parts that exist in the final assembly and their
associated assembly tasks.

+ Task ordering knowledge.

Determine:



« Temporal arderings of the individual assembly tasks.

Once the system learned the temporal orderings, individual assembly instructions are then
executed. Each assembly operation is monitored to determine if the trajectory planner
fails to find a collision free trajectory. If it fails, the monitor reports all the objects that are
blocking the path of the object being moved during an assembly operation. The function
of the execution monitor is defined below:

Given:
« Individual assembly tasks
« Temporal orderings determined by the robot planner

Determine:
« All the objects that blocked the trajectory when an assembly
operation failed.

The learning task is to recognize these failures and rectify the situation by modifying the
task ordering knowledge. The function of the learner is defined as follows:

Given:
« Parts that are being assembled.
» Spatial relationships between parts. -

» Task orderings of individual assembly tasks that were generated by the robot s
planner.

« All the objects that were in the way during the failed assembly operation
determined by the execution monitor.

Determine:

« A modification of the task ordering knowledge that is responsible for the failure so
that similar type of failure will not happen in the future.

Suppose the robot is to assemble the head portion of a bell as shown in figure 1 and the
planner first generates a plan: assemble ring to the pin and then, assemble bell-head to the
pin. The second assembly instruction fails because both the bell-head and the ring are in
the way. In a sense, this is part of the explanation knowledge from the environment.



However, it is not sufficient. We would like to create task ordering knowledge that would
predict this failure in the future. We have:

Observational Statements

1.

2.

Bell-head and ring are being assembled to the pin.

The spatial relationships, mating conditions, between bellhead, ring, and pin: e.g.,
Aligned(pin, bell-head), Against(pin, bell-head), Aligned(pin, ring), Against(ring,
bellhead).

Bell head is above the ring with respect to z-axis of the world inertial reference
frame in the final assembly.

Bell head is below the ring with respect to z-axis of the base frame of the pin.
Task ordering: Assemble(pin, ring) < Assemble(pin, bell head)?

The execution monitor notices both pin and ring are in the way and a simple
interpretation module asserts: not (Assemble(pin, ring) < Assemble(pin, bell head)).

Base frame x

of Pin
3 _~ Pin
Bell Head I -

E? =
Inertial ’ L P =

Reference Ring
frame

Figure 1. Assembly of Bell Head

Let us consider different scenarios for constructing an explanation structure to

answer why the assembly plan failed. First, assume that only domain specific
descriptors about objects between objects in the observation are known.

2 Task1 < Task2 means Taskl should be carried out before Task2. So, in this case, the ring is
assembled to the pin before the bell head.
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Background Knowledge:

7. Geometric desriptions of object types, pin, bell head, and ring including the base
frame of the pin3

8. Spatial reasoning engine that compute relative spatial relationships. kinematic
degrees of freedom, and more* [Ko,1987].

An empirical learning system would postulate a surface explanation knowledge that the
plan failed because, for example:

« the bell head is above the ring with respect to z-axis of the inertial reference frame,
or

« the bell head is below the ring with respect to z-axis of the base frame of the pin.

There are man); more possible EK's. However, there is little guidance as to which is more
plausible than the other. So, the system resorts to multiple explanatons of the same
phenomenon. In the second scenario, the observer may possess more extensive
knowledge of the environment.
Background Knowledge:

7. Geometric desriptions of object types, pin, bell head, and ring.

8. Spatial reasoning engine.

9. When parts are assembled to a shaft, assemble them bottom up with respect to z-
axis of the base frame of the shaft.

10. A pinis a kind of shaft.
Here, the explanation structure is constructed using a deductive decision procedure.
Explanation Structure:

11. The task ordering, assemble(pin,ring) < assemble(pin,bell head), failed because 1,
4,8 and 9.

3 Each part is associated with its base frame and all the geometric features as defined wik respect to the base
frame.

4 Each part is associated with its base frame and all the geometric features are defined with respect to the
base frame.



Although this is enly one step deduction, in general, multiple inference steps are required
to establish the explanation  structure. A temporal reasoning module usually requires
multiple inference steps to detect temporal constraint violation but because of the space
limitation, only one step violation is shown. In analytic learning, a reformulation of initial
knowledge is sought that would make it more effective and/or efficient:

« When parts are being assembled to a pin, assemble them from bottom up alohg the z-
axis of the pin.

Finally, the third scenario involves both capabilities, analytical and empirical learning.
After the first example for bell head assembly, the learner postulates competing hypotheses
using empirical learning capabilities:

1. When partl is above part2 with respect to z-axis of the world inertial reference
frame in the final assembly, assemble part! first.

2. When part] is below part2 with respect to z-axis of the base frame of part3, assemble
partl first.

Then, the robot is presented with a new problem of mounting a bracket as shown in
Figure 2.

Nut

(—— —7{ 3acket

|

Bolt »
g g
Inertial
Reference Base frame x
frame x of Bolt

Figure 2. Bracket Mounting Assembly
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Using the first explanation as a  task ordering knowledge, nut is assembled to the bolt
before the bracket. This fails. On the other hand, the second hypothesis correctly
predicts that the bracket should be assembled before the nut. So, the hypothesis 2 is
more plausible than hypothesis 1.

This example have shown how a constructive learning sytem can handle a learning problem
that neither empirical nor analytic learning system system could.

Summary

We have introduced a distinction between a deductive and inductive explanation. This
distinction was then used to characterize empirical and analytic learning systems. We have
then discussed constructive learning, which integrates empirical and analytic learning. A
constructive learning system was described by a detailed analysis of an example problem
and solution in the area of automated assembly.

The paper dealt only with problems of detemining and emplying different types of
explanation in constructive learning. Other aspect of such learning, such as determination
of relevant knowledge, and an evaluation of generated knowledge was outside of the scope
of this paper. The presented work indicates that constructive learning, which integrates
different learning paradigms within a single concéptual framework, is an important new
research direction for machine learing.
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