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Abstract

The El Nino Southern Oscillation (ENSQ) is the largest known global climate phe-
nomenon on inter-annual time scales. It can have devastating social-economic consequences
and is responsible for a large number of weather-related disasters. Thanks to the advent of
modern remote sensing technology, understanding of ENSO has progressed substantically in
the last decade. However, the relationship between El Nino signals and other geophysical
parameters, especially those that may indicate teleconnections still remains unknown. In
this work, the inductive learning system AQ15¢c, has been applied to explor the geophysical
global satellite datasets in order to investigate possible teleconnections between the El Nino
signals and other climate parameters. Results of experiments produce testable hypotheses

and provide insights in understanding the El Nino teleconnection phenomenonn.
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