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(a) Objective 1 

 

(b) Objective 2 

Figure 3-3 Prediction of objective functions by Kriging model 
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        (a)    Uncertainty                                   (b) Expected Improvement 

Figure 3-4 Distribution of Uncertainty and Expected Improvement 

 
 

 

 

Figure 3-5 Transition of maximum Expected Improvement along number of additional 

samplings 
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Figure 3-6 Pareto solutions obtained by random 1e5 and 6e3 MOGA points
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4. Application to a blast simulation 
 
 
 

4.1   Implementation 

In this chapter, the entire framework is applied to a blast origin optimization problem. 

The target geometry is a place in front of Tokyo governor’s office in Shinjuku-Japan, 

which is surrounded by many high-rise buildings. The geometry, shown in figure 4-1 was 

taken from Google-Earth. The image was read into the FEFLO pre-processor FECAD 

and the dimensions of the buildings corrected with Google-Earth. The geometry was then 

put into a computational box, and the boundary conditions, mesh size distribution in 

space and diagnostic information was specified. An initial mesh was generated for 

checking purposes. This process took one afternoon. 5,000 kg of TNT bomb is assumed 

to be used for this simulation. As mentioned above, two damages, to people and buildings, 

are considered. Given an arbitrary blast origin, these damages are estimated by the 

number of probes where either pressure or impulse exceeds certain thresholds. In figure 

4-2, probes are shown as colored dots. As a constraint, blast origin is limited inside public 

roads (figure 4-5), assuming terrorists use auto for attacking. Firstly 49 initial sample 

points were selected randomly.
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4.2   Results 

Expected improvement of the second objective decreased to zero favorably. Since the 

global peak region of the first objective is rather flat, the expected improvement did not 

decrease even after 15 additional samplings (figure 4-5). However, the potential increase 

in this region is considered small, and hence its effect on the Pareto front insignificant. In 

this study, further accuracy of the global peak was not pursued to save time and 

computational resources. Figure 4-3 shows the Pareto front with the Pareto front 

predicted by Kriging at this point. There are large deviations from sampled points at 

middle region of the Pareto front. This deviation is interpreted as uncertainties of the 

prediction. At this point, it is impossible to know which front (Kriging or observation) to 

trust because Kriging has uncertainties and possibly observation is not a Pareto front.  

Among the predicted Pareto front, the point with highest normalized uncertainty was 

sampled iteratively. After two iterations, the maximum normalized uncertainty dropped 

from 0.924 to 0.612.  Figure 4-4 shows Pareto front at this time. The fact that the 

predicted Pareto front moved closer to observations indicates reduction of uncertainties. 

Figure 4-5 shows Pareto rank in the order of sampling. This indicates that most of the 

sampled points introduced by Kriging (after 50th) are ranked within 3rd, which is 

significantly better than initial samples. 

Figure 4-6 and 4-7 show damage to people and buildings, namely number of damaged 

probes as mentioned above, against design space respectively. Figure 4-8 shows Pareto 

rank of all observations. Damaged windows and buildings caused by a Pareto solution 

with design variable [-10860, -18609] are illustrated in figure 4-9. Figures 4-10 and 4-11 
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show surface pressures for the blast that originates at this location. Proximity of blast 

location to buildings is important (in order to damage them). On the other hand, the 

amount of TNT selected is such that casualties occur in a large range, thus leading to 

higher casualties at locations different from those that inflict high damage to buildings. 

As a result of this tradeoff, a region independent from global peaks is on Pareto front. 

 

 

Figure 4-1 Overhead view from Google Earth 
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Figure 4-2 Probes 

 

 

Figure 4-3 Pareto front with Kriging prediction after 1st step 
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Figure 4-4 Pareto front with Kriging prediction after 2nd step 

 

 

Figure 4-5 Pareto rank in the order of sampling 
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Figure 4-6 Damage to people 

 

 

Figure 4-7 Damage to buildings 
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Figure 4-8 Pareto rank of sampled location 

 

     

(a)  Window                                              (b) Building 

Figure 4-9 Damages caused by a Pareto solution
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Figure 4-10 Surface pressure caused by a Pareto solution (top view) 
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Figure 4-11 Surface pressure caused by a Pareto solution (side view) 
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5. Conclusions and future work 
 
 
 

5.1   Conclusions 

A multi objective optimization framework using a Kriging model has been developed for 

the approximation and optimization of complex spatial functions with multiple peaks. In 

a first step the potential global maxima of each objective are searched using the Kriging 

model. Thereafter the middle region of the Pareto front is explored.  

The results indicate that only few sampling reduced prediction error at Pareto front 

greatly, yielding a more reliable Pareto front. The additional implementation after the 1st 

step requires MOGAs, which can be obtained from modified GAs. 

 

5.2   Future work 

Future work will focus on: 

1. Damage criteria; especially coupling to Computational Structural Dynamics (CSD) is 

essential to estimate damage to buildings accurately. 

2. Improved fidelity of flow physics; e.g. the entry of shocks into buildings. 

3. Criteria for choosing sample points inside the Pareto front; there are multiple 

uncertainties corresponding to each objective function. Choosing one from them 

needs a criterion (in this study, the candidate which has maximum uncertainty).
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