A SPATIAL, TEMPORAL, AND GEOGRAPHIC ANALYSIS OF THE INCREASING INCIDENCE OF DENGUE FEVER IN KENYA AND AFRICA

by

David Frost Attaway
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
in Partial Fulfillment of
The Requirements for the Degree
of
Doctor of Philosophy
Earth Systems and GeoInformation Sciences

Committee:

[Signature]
Dr. Nigel M. Waters, Dissertation Director

[Signature]
Dr. Kathryn H. Jacobsen, Committee Member

[Signature]
Dr. Allan Falconer, Committee Member

[Signature]
Dr. Germana Manca, Committee Member

[Signature]
Dr. Anthony Stefanidis, Acting Department Chairperson

[Signature]
Dr. Donna M. Fox, Associate Dean, Office of Student Affairs & Special Programs, College of Science

[Signature]
Dr. Peggy Agouris, Dean, College of Science

Date: 14 April 2014

Spring Semester 2014
George Mason University
Fairfax, VA
A Spatial, Temporal, and Geographic Analysis of the Increasing Incidence of Dengue Fever in Kenya and Africa

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University

By

David Frost Attaway
Master of Geographic Information Science
University of Texas at Dallas, 2009
Honors Bachelor of Arts
University of Texas at Dallas, 2007

Director: Nigel M. Waters, Professor
Department of Geography and Geoinformation Science

Spring Semester 2014
George Mason University
Fairfax, VA
This work is licensed under a creative commons attribution-noderivs 3.0 unported license.
DEDICATION

This is dedicated to my loving wife Melinda, my wonderful mom DeLana whose life was a reflection of diligence and strength, my dad Dick who gave me motivation to continue with my studies, my brother Dustin, and the Crume and Wilson Family who gave me support through this endeavor.
ACKNOWLEDGEMENTS

I would like to thank Dr. Nigel Waters, Department of Geography and Geoinformation Science, George Mason University, for his mentoring, coaching, and dedication throughout this research. You have encouraged me to seek out research that is not only interesting and challenging, but research that will also have an impact on others. You have pushed me to be a better student and man. It has been a true pleasure to have worked with you and I am forever grateful to you.

I would also like to express my gratitude to the members of my committee: Dr. Kathryn H. Jacobsen, Dr. Allan Falconer, and Dr. Germana Manca. You have provided the guidance that has inspired me to write as a scholar, dig deeper into the literature and to explore new methods and tools to improve my research skills. You have helped further my knowledge of Geospatial Information Science, medical geography, and provided many hours of assistance with completing this dissertation.

I would like to thank the many friends, relatives, and supporters who have made this happen. My loving wife, Melinda, provided the role of Editor in Chief. My friends who motivated me with completing my work. My families consisting of the Attaway, Wilson, and Crume clan. Finally, thanks go out to my mom who after fighting a battle with brain cancer provided the inspiration to hope in Heaven for the things of this earth shall pass.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>5</td>
</tr>
<tr>
<td>List of Figures</td>
<td>6</td>
</tr>
<tr>
<td>List of Equations</td>
<td>7</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>8</td>
</tr>
<tr>
<td>Abstract</td>
<td>9</td>
</tr>
<tr>
<td>Chapter One: Motivation and Problem statement</td>
<td>11</td>
</tr>
<tr>
<td>Motivation</td>
<td>11</td>
</tr>
<tr>
<td>Problem Statement</td>
<td>11</td>
</tr>
<tr>
<td>Dengue Fever</td>
<td>13</td>
</tr>
<tr>
<td>Dengue Cycle</td>
<td>14</td>
</tr>
<tr>
<td>Environments around the globe that are reservoirs for dengue fever</td>
<td>15</td>
</tr>
<tr>
<td>Dissertation Organization</td>
<td>17</td>
</tr>
<tr>
<td>References</td>
<td>19</td>
</tr>
<tr>
<td>Chapter Two: Dengue Mapping limitations</td>
<td>20</td>
</tr>
<tr>
<td>Introduction</td>
<td>22</td>
</tr>
<tr>
<td>Methods</td>
<td>22</td>
</tr>
<tr>
<td>Results</td>
<td>26</td>
</tr>
<tr>
<td>Discussion</td>
<td>35</td>
</tr>
<tr>
<td>Conclusion</td>
<td>37</td>
</tr>
<tr>
<td>References</td>
<td>39</td>
</tr>
<tr>
<td>Chapter Three: Similarity Search</td>
<td>45</td>
</tr>
<tr>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>50</td>
</tr>
<tr>
<td>Results</td>
<td>60</td>
</tr>
<tr>
<td>Discussion</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>67</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Summary of the 19 eligible dengue mapping articles</td>
<td>23</td>
</tr>
<tr>
<td>Table 2</td>
<td>Key for Table 1</td>
<td>24</td>
</tr>
<tr>
<td>Table 3</td>
<td>SWOT analysis for improved dengue mapping</td>
<td>37</td>
</tr>
<tr>
<td>Table 4</td>
<td>Seroprevalence and dengue outbreak reports from Kenya, 1982-2013</td>
<td>48</td>
</tr>
<tr>
<td>Table 5</td>
<td>Definitions of the 19 bioclimatic variables</td>
<td>53</td>
</tr>
<tr>
<td>Table 6</td>
<td>Calculated results from the composite for matching all features when performing Similarity Search (287 cells)</td>
<td>56</td>
</tr>
<tr>
<td>Table 7</td>
<td>Peer reviewed literature documenting environmental constraints for dengue</td>
<td>74</td>
</tr>
<tr>
<td>Table 8</td>
<td>Layers included in the model</td>
<td>76</td>
</tr>
<tr>
<td>Table 9</td>
<td>Proportion of the 360 cases captured by various layers in the GIS</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1 - Cyclical cycle of dengue transmission (WHO 2012) ... 14
Figure 2 - Summary of dengue mapping limitations ... 25
Figure 3 - Map of seroprevalence and dengue outbreak reports from Kenya, 1982-2013. ... 49
Figure 4 - Visual results of the composite for matching all features when performing Similarity Search (287 cells) .. 57
Figure 5 - Sample of processing completed to determine Similarity Search between two points (PT1 and PT2) compared to the composite for matching all features (MPX). 58
Figure 6 - Graphic view of systematic cycle completed using Similarity Search. 59
Figure 7 - Risk map created using the averages of all 287 reference points comparing bioclimatic variables, population density, and elevation ... 61
Figure 8 - Risk map created using individual iterations of all 287 reference points comparing bioclimatic variables, population density, and elevation 62
Figure 9 - Susceptibility models run for various univariate variables 80
Figure 10 - Susceptibility models run for various bivariate variables 81
Figure 11 - Africa PAT Analysis .. 87
Figure 12 - Comparison of two PAT models run for dengue susceptibility in Africa 88
LIST OF EQUATIONS

<table>
<thead>
<tr>
<th>Equation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1 - Z-Transformation Equation (Esri 2013b)</td>
<td>54</td>
</tr>
<tr>
<td>Equation 2 - Similarity Search</td>
<td>55</td>
</tr>
<tr>
<td>Equation 3 - Query Expression Editor Equation</td>
<td>79</td>
</tr>
<tr>
<td>Equation 4 - Query Factor Input Table (QFit) Equation</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ArcGIS Predictive Analysis Toolset.. PAT
Center for Disease Control... CDC
Dengue 1 ... DENV-1
Dengue 2 ... DENV-2
Dengue 3 ... DENV-3
Dengue 4 ... DENV-4
Dengue fever ... DF
Dengue hemorrhagic fever ... DHF
Dengue shock syndrome .. DSS
Department of Defense ... DoD
Digital Elevation Model .. DEM
Division of Disease Surveillance and Response .. DDSR
Electronic medical records ... EMRs
Enzyme-linked immunosorbent assay ... ELISA
European Space Agency .. ESA
Geographic Information Science/System ... GIS
Geographical user interface ... GUI
Global Administrative Areas database .. GADM
Global Land Cover .. GLC
Health information systems .. HIS
Immunoglobulin M ... IgM
Kenya Medical Research Institute ... KEMRI
Kenya Ministry of Health .. MOH
Kenyan Field and Laboratory training Program .. FELTP
Low and middle income countries ... LMICs
Medium resolution imaging spectrometer full resolution MERIS FR
Normalized Difference Vegetation Index .. NDVI
Normalized Difference Water Index .. NDWI
Oak Ridge National Laboratory .. ORNL
Quality Control ... QC
Query Factor Input Table ... QFit
Strengths, Weaknesses, Opportunities, and Threats SWOT
United Nations’ Food and Agriculture Organization FAO
Université Catholique de Louvain ... UCL
World Health Organization Library Database .. WHOLIS
World Health Organization .. WHO
ABSTRACT

A SPATIAL, TEMPORAL, AND GEOGRAPHIC ANALYSIS OF THE INCREASING INCIDENCE OF DENGUE FEVER IN KENYA AND AFRICA

David Frost Attaway, Ph.D.

George Mason University, 2014

Dissertation Director: Dr. Nigel M. Waters

While many studies have focused on the causes of dengue fever and the occurrence of specific outbreaks, little research has focused on the increasing spatial range, increasing incidence of infected individuals, and the use of algorithms/models to increase risk mapping in Kenya and Africa. GIS incorporates methods to evaluate results, identify geographic locations, and incorporate risk when dengue occurrence data are limited. This dissertation first outlines the limitations to dengue mapping then examines the strengths, weaknesses, opportunities, and threats (SWOT) to determine the limitations for mapping. Next, a similarity search approach was used to map dengue risk in Kenya. This method estimated the high and low risk areas for dengue by evaluating the similarity between environmental layers, population density, and elevation with respect to dengue and mosquito occurrence points. This analysis identified the most cost-effective locations to target dengue prevention activities such as vector control and public awareness campaigns. Finally, a PAT approach was used to map dengue susceptibility across the
African continent using the Query Expression Editor and QFit tools. High susceptible risk areas were estimated by comparing peer reviewed literature, determining susceptibility for risk, and then improving the visualization through mapping. The Query Expression Editor evaluated dengue susceptibility risk based on environmental high risk parameters. The QFit tool provided a methodology to estimate high susceptibility risk between points of occurrence and a set of raster datasets. This dissertation contributes to improving risk analysis and susceptibility risk for disease through the localized visualization of risk and situational awareness between health officials, geographers, epidemiologists, and entomologists.
CHAPTER ONE: MOTIVATION AND PROBLEM STATEMENT

Motivation

GIS provides the necessary tools to disseminate information through mapping, by identifying similarity between geographic risk locations for disease and susceptibility risk where dengue occurrence data is limited. This dissertation uses two methods to expand risk and susceptibility risk mapping in Kenya and Africa. Estimating dengue risk is dependent on utilizing localized data to conduct the study. We used a localized mapping method to increase the effectiveness and improve dengue disease mapping that has previously been completed at a higher resolution. Our methods not only improved the mapping for dengue, but also allowed us to utilize this method for other diseases.

Problem Statement

With dengue being primarily an equatorial disease focused in many parts of the tropics and subtropics, the focus on Kenya and Africa will allow for diverse weather conditions to affect models using GIS. GIS provides a platform for visualizing results, identifying risk locations, and utilizing geospatial data to evaluate locations and parameters for disease. Kenya and many areas in Africa are affected by the annual cycle for dengue, which usually occurs during the season when Aedes mosquito populations are high and when rainfall is optimal for breeding. Modeling risk and susceptibility risk would provide additional benefits for risk assessment of dengue, when large numbers of
people become infected during a short period. Environmental, population density, and elevation data provide the variables added to a susceptibility risk model or similarity risk model. Dengue epidemics require a co-incidence of large numbers of vector mosquitoes, large numbers of people with no immunity to one of the four virus types, and the opportunity for contact between the vector and host (mosquito and human, respectively). The risk of dengue both spatially (range) and temporal frequency – time of year – are two key aspects that can advance the models accuracy and analysis capabilities. Research suggests that dengue risk is highest in geographic locations between August through December, with the highest incidence of infection during the months of September and October (Reiter, 2001). The ability to formulate the spatial range of incidence will allow for the analysis of isolated events or patterns of multiple outbreaks to determine factors affecting the range of the disease. With increased urbanization, incidence, and susceptibility risk a model that incorporates algorithmic procedures for the range of disease will be essential. In contacting Dr. Rosemary C. Sang (2012), she stated that:

“Your planned study would be interesting and informative as we still do not have a clear picture about how dengue is moving in East Africa. Unfortunately, we do not have any focused systematic collation of data on dengue cases in Kenya. Apart from the outbreaks of the 1979/1980s the records on dengue incidence are poorly kept”.

The objective of this paper will be to use Similarity Search modeling in conjunction with the ArcGIS Predictive Analysis Tools (PAT) to analyze the ability to improve risk modeling of the similarity and susceptibility of individuals in contracting dengue based on various peer reviewed high risk parameter variables (Esri 2013, Esri 2014).

Dengue Fever

Dengue Fever (DF) is a virus that occurs in at least 100 countries in Asia, Africa, the Pacific, the Americas, and the Caribbean. Areas such as Thailand, Vietnam, Singapore, Brazil, and Malaysia have all reported an increase in cases over the last few years (WHO 2012). Dengue is not a virus that is transmitted directly from human to human, but passes through insects that transmit the disease as vectors. DF infects mosquitos (*Aedes aegypti* and *Aedes albopictus*) with the dengue virus when mosquitos receive blood meals from humans infected with dengue. Humans can subsequently become infected by being bitten by a mosquito infected with the dengue virus. It may only take one blood meal for the virus to be transmitted to other individuals (Amarasinghe et al. 2011). Symptoms of infection usually begin 4 to 7 days after the mosquito bite and typically last 3 to 10 days. In order for transmission to occur the mosquito must feed on an infected person during a 5-day period when large amounts of virus are in the blood. This period usually begins a little before the person becomes symptomatic. Some people may never have significant symptoms but can still infect mosquitoes. After dengue enters the mosquito through a blood meal, the virus will require an additional 8 to 12 days incubation before it can then be transmitted to another human. The mosquito remains infected for the remainder of its life, which might be days or a few weeks. Once a mosquito has the virus, it then will be able to infect other individuals. As a result, other mosquitoes that receive blood meals from infected individuals then transmit the disease to others. Therefore, the cyclical spread of dengue is repeated. The ability to understand the environments of the vector, the analysis of
infected individuals, and the susceptibility of the population to infection are justification for both a geographic and medical analysis for this disease.

Dengue Cycle

![Dengue Cycle Diagram](image-url)

Figure 1 - Cyclical cycle of dengue transmission (WHO 2012).

The onset of a likely dengue epidemic is caused by a mosquito who receives a blood meal from a host individual who is infected with dengue (DENV 1, DENV 2, DENV 3, or DENV 4) (Figure 1). The initial host could be an individual who has traveled from an area where dengue is endemic or it could be a person who has suffered dengue in the past and now serves as a host for transmission. Since there are four separate types of dengue the potential for spread depends on the regions where the virus is contracted. One
aspect of note it that it may only take one blood meal for the virus to be transmitted to other individuals (Amarasinghe et al. 2011). Once a mosquito has the virus, it then will be able to infect other individuals. As a result, other mosquitoes that receive blood meals from infected individuals then transmit the disease to others causing a cyclical spread of dengue. The environmental factors such as temperature, precipitation, and Aedes aegypti abundance will determine the rate at which this will happen. Environmental factors will be later discussed in the paper.

Environments around the globe that are reservoirs for dengue fever

Dengue environments around the world provide many characteristic and opportunities for increased range of dengue fever. Areas in tropical and subtropical locations provide the ideal climate in which the range of dengue can occur based upon the habitat of *Aedes aegypti*. These environmental areas serve to show how the range of dengue is limited by the presence of the mosquito to transmit dengue as well as the climate able to sustain the mosquitoes’ habitat. Individuals in most of these areas are concentrated in urban environments which allow for the mosquito to flourish based upon adaptations to the urban habitat by the mosquitoes. Urbanization in these regions of the world poses close relationships between individuals as well as the ideal habitats for which the *Aedes aegypti* mosquito can thrive. The presence of individuals who have contracted the disease provide the sustainment for dengue being a reservoir in the associated countries. As individuals migrate and travel to new locations the transmission of dengue continues to progress across the geographic landscape. Africa in particular poses cultural characteristics that make the range of dengue contingent on individuals
migrating to locations from which dengue is present. With increased global warming the geographic trend for increased dengue incidence is compounded by the ability for the mosquito to travel further north and south and to higher elevations. Temperature, humidity, and precipitation continue to prove to be key vectors for the survival of mosquitos. Another key factor involves the presence of public awareness. The prevalence of dengue often goes unrecognized in African countries, where the lack of surveillance systems, or their poor implementation, is the cause of missing information on dengue virus activity (Franco et al. 2010). However, other regions of the world besides those in Africa, have experienced an increase in the incidence of dengue even with higher levels of reporting. Reasons for such increased incidence involve the temperature being ideal for the mosquitos, the urbanization of many of these countries, and the increased/decreased presence of precipitation.

There too are areas within these environments that are dengue fever free. Some of the main reasons involve the cultural and economic patterns in the established locations. For example, Texas provides a climate in which Aedes aegypti can flourish; however, the rate of incidence has been greatly reduced through dengue awareness campaigns, preventative spraying, and combative measures by the government (CDC 1996). Areas around the world in which dengue occurs have greatly reduced the rate of incidence for dengue through policies of government intervention. Furthermore, as developing countries use insecticide netting to cover water containers, remove excess water from plants and other containers, and spray their houses periodically the ability to limit the
environment of dengue is greatly reduced. Even with such measures though, the potential for dengue is based upon the habitat for the mosquito *Aedes aegypti*.

Dissertation Organization

Several key areas of Geographic Information Science including mapping limitations, risk analysis, and utilizing published literature to expand mapping are addressed with this dissertation. This dissertation assists health officials, geographers, epidemiologists, and entomologists by increasing situational awareness and improving visualization of risk. Specifically, this research project presents two models: Similarity Search and a susceptibility risk model. The following provides a summary of the remainder of the dissertation. In Chapter 2, I provide an overview of the limitations to dengue mapping. The different methods, analyses, and models are scrutinized through a search of the literature to allow us to identify limitations with dengue mapping. This provides an overview of the methods and models needed to improve mapping and provides the ability to identify opportunities for improvement. In Chapter 3, I discuss the development and testing of Similarity Search for determining characteristics analogous to dengue occurrence locations. This method uses dengue occurrence data and mosquito habitat to determine similarity to locations within the country of Kenya. This approach seeks to minimize risk, while maximizing the location where resources and awareness campaigns will be most beneficial. In Chapter 4, I introduce the ArcGIS Predictive Analysis Tools (PAT) which estimates dengue susceptibility risk for the continent of Africa. Two separate susceptibility risk tools within PAT (Query Expression Editor and QFit) extend the analyses of dengue risk previously published for Africa using both
dengue occurrence data and environmental data. In Chapter 5, I provide a summary of the contributions of this research. Finally, Chapter 6 provides recommendations for future research.
REFERENCES

Sang RC. (2012). Dengue fever Research. E-mail correspondence 5 April 2012.

CHAPTER TWO¹ : DENGUE MAPPING LIMITATIONS

Abstract

Introduction: Dengue fever, a mosquito-borne viral infection, is a growing threat to human health in tropical and subtropical areas worldwide. There is a demand from public officials for maps that capture the current distribution of dengue and maps that analyze risk factors to predict the future burden of disease.

Methods: To identify relevant articles, we searched Google Scholar, PubMed, BioMed Central, and WHOLIS (World Health Organization Library Database) for published articles with a specific set of dengue criteria between January 2002 and July 2013.

Results: After evaluating the currently available dengue models, we identified four key barriers to the creation of high-quality dengue maps: (1) data limitations related to the expense of diagnosing and reporting dengue cases in places where health information systems are underdeveloped; (2) issues related to the use of socioeconomic proxies in places with limited dengue incidence data; (3) mosquito ranges which may be changing as a result of climate changes; and (4) the challenges of mapping dengue events at a variety of scales.

Conclusion: An ideal dengue map will present endemic and epidemic dengue information from both rural and urban areas. Overcoming the current barriers requires

expanded collaboration and data sharing by geographers, epidemiologists, and entomologists. Enhanced mapping techniques would allow for improved visualizations of dengue rates and risks.

Keywords: dengue; geographic information systems; climate change; developing countries; medical geography
Introduction

Dengue fever (DF) is a mosquito-borne viral infection that causes high fevers and joint pain in the residents of at least 100 countries in Asia, Africa, the Pacific, the Americas, and the Caribbean. Mosquitoes (*Aedes aegypti* and *Aedes albopictus*) can become infected with any one of the four dengue virus strains when they take blood meals from humans infected with dengue; susceptible humans are then infected by these viral-infected mosquitoes. Some people with DF develop dengue hemorrhagic fever (DHF), which can be fatal.

Although many published studies have examined the behavioral and environmental risk factors for DF as well as the rates of human infection during outbreaks, a definitive methodology for mapping the incidence of this disease has yet to be established. These methodological deficiencies and gaps in the available data have limited the ability of geographers and other researchers to create effective visualizations for DF. An improved set of data and more effective mapping tools for the creation of local and regional dengue maps would facilitate communication about health risks among public health officials, healthcare providers, policymakers, and the public.

Methods

To identify relevant articles, we searched Google Scholar, PubMed, BioMed Central, and WHOLIS (World Health Organization Library Database) for articles published between January 2002 and July 2013. The following search terms were used: [(dengue OR dengue fever) AND (spatial analysis OR geospatial analysis OR GIS OR]
geographic information systems). No language restrictions were imposed. In total, 19 articles were selected for inclusion in the analysis (Table 1).

Table 1 - Summary of the 19 eligible dengue mapping articles

<table>
<thead>
<tr>
<th>Ref #</th>
<th>Model Type *</th>
<th>Sub Model *</th>
<th>Imagery</th>
<th>Incidence Data</th>
<th>Mosquito Data</th>
<th>Precip Data</th>
<th>Temp Data</th>
<th>Humidity Data</th>
<th>Pop Data</th>
<th>Elevation</th>
<th>Quant / Qual Study</th>
<th>Scale *</th>
<th>Location</th>
<th>Focus *</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Qual</td>
<td>1</td>
<td>Belem & Brasilia, Brazil; Easter Island</td>
<td>1</td>
<td>Village or neighborhood</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Qual</td>
<td>2</td>
<td>Recife, Brazil</td>
<td>2</td>
<td>Hypothetical Sample</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>3</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Quant</td>
<td>5</td>
<td>1</td>
<td>Port Louis, Mauritius</td>
<td>1</td>
<td>0.1 x 0.1 km cells</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
<td>5</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Quant</td>
<td>2</td>
<td>Ribeirão Preto, Brazil</td>
<td>1</td>
<td>Pixel (designed by user)</td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td>6</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Qual</td>
<td>5</td>
<td>Malaysia</td>
<td>1</td>
<td>Country</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Qual</td>
<td>3</td>
<td>3</td>
<td>Jeddah County, Saudi Arabia</td>
<td>1</td>
<td>Point incidence data</td>
</tr>
<tr>
<td>46</td>
<td>5</td>
<td>7</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Qual</td>
<td>6</td>
<td>6</td>
<td>Global</td>
<td>1</td>
<td>5km cells</td>
</tr>
<tr>
<td>47</td>
<td>6</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Quant</td>
<td>3</td>
<td>3</td>
<td>Jeddah County, Saudi Arabia</td>
<td>1</td>
<td>DF Data - district level imagery - 2.5 m spatial resolution</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>8</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Qual</td>
<td>3</td>
<td>3</td>
<td>Taiwan</td>
<td>1</td>
<td>“Li”, the lowest administrative unit in Taiwan</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>9</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Quant</td>
<td>4</td>
<td>4</td>
<td>Jharkhand State, India</td>
<td>1</td>
<td>Point / District Level analysis</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Qual</td>
<td>6</td>
<td>6</td>
<td>Global</td>
<td>3</td>
<td>1km cells</td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td>12</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Qual</td>
<td>6</td>
<td>6</td>
<td>Global</td>
<td>1</td>
<td>0.10° x 0.10° degrees (about 11.12 km)</td>
</tr>
<tr>
<td>51</td>
<td>10</td>
<td>13</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Both</td>
<td>5</td>
<td>5</td>
<td>Taiwan</td>
<td>1</td>
<td>14 counties (210 cities analyzed/aggregate to county level)</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>14</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Quant</td>
<td>6</td>
<td>Global</td>
<td>4</td>
<td>Varies</td>
</tr>
<tr>
<td>52</td>
<td>12</td>
<td>15</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Quant</td>
<td>4</td>
<td>4</td>
<td>Hawaii, USA</td>
<td>2</td>
<td>450 meter Resolution</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Quant</td>
<td>5</td>
<td>5</td>
<td>Singapore</td>
<td>3</td>
<td>Country</td>
</tr>
<tr>
<td>22</td>
<td>14</td>
<td></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Quant</td>
<td>6</td>
<td>6</td>
<td>Global</td>
<td>1</td>
<td>.5 x .5 degree cells (53.56 km)</td>
</tr>
</tbody>
</table>

To be included in the data extraction table, the articles had to (a) be published in or after 2002, (b) present a spatial analysis of dengue fever or *Aedes aegypti* mosquitoes, (c) incorporate qualitative or quantitative analytic techniques or a combination of both, and (d) use real-life rather than hypothetical data. The eligible articles represent data from a variety of world regions and model DF distribution using a variety of data sources and analytical techniques. This diversity of source material provided a solid evidentiary foundation from which to evaluate the current limitations for dengue visualization.
This paper categorizes the current barriers to the creation of high-quality maps of dengue risk at the local, national, and global levels (Figure 2). We begin by characterizing current data and mapping limitations as a first step toward overcoming the barriers to accurate visualizations of dengue rates and risks. We group these observations into four themes: (1) human health data limitations, (2) human geography issues, (3) Mosquito Data

- Challenging Differential Diagnosis
- Limited Access to Laboratory Testing
- Health Information Systems

(4) Physical Geography and Environment

- Endemic versus Epidemic Mapping Methods
- Urban versus Rural Mapping Methods
- Scale issues

Figure 2 - Summary of dengue mapping limitations.
mosquito data limitations, and (4) physical geography and environmental limitations. These four fundamental elements encompass critical issues for a successful Geographic Information System (GIS) for mapping dengue: appropriate mapping methods use valid and complete disease, vector, and environmental data. We further classify our observations by identifying sub-themes within each of the four main categories, which are presented in the Review section below. Finally, we use a SWOT analysis approach to clarify the strengths, weaknesses, opportunities, and threats to improved dengue mapping (Table 3) [1-2].

Results
Identifying barriers to dengue mapping is a necessary first step in improving the visualization of dengue. Each of the four key factors must be considered independently and in relationship with the other issues if the goal is to identify strengths and weaknesses of current models and opportunities to create better maps in the future.

Human Health Data. The ability to create useful maps of those areas of the world that are at risk of dengue transmission is dependent on the availability of accurate epidemiological data from those areas. Although dengue primarily affects low and middle income countries (LMICs), few LMICs have effective systems in place for dengue diagnosis and reporting. These human health data limitations exist for a variety of interrelated reasons.

Challenging Differential Diagnosis. Dengue fever symptoms tend to be clinically indistinguishable from many other tropical febrile infections. In many lower-income areas, patients with fevers are presumptively treated with anti-malarial medications, and
those who fail to respond to anti-malarial medications or antibiotics are presumed to have a viral infection [3]. In malaria-endemic countries, over-diagnosis of malaria based on clinical symptoms rather than laboratory testing may be common [3], and presumptive diagnoses of malaria may cause the undercounting of cases of other febrile illnesses, including dengue. Since there are almost no effective treatments available for acute viral infections, there is often no clinical reason to conduct laboratory tests to determine the causative agent.

Limited Access to Laboratory Testing. Dengue testing is somewhat more complicated than testing for many other viral infections [4]. The IgM (immunoglobulin M) levels in the blood that are markers of acute infection may not be detectable until several days after the onset of symptoms and then remain elevated for 2 to 3 months after the initial illness. Thus, a negative ELISA (enzyme-linked immunosorbent assay) IgM test in a patient with acute symptoms may not be proof that dengue is not the causative agent, and a positive ELISA in a person who has had a previous febrile illness in the past several months cannot be considered proof that dengue is the cause of the current fever. Another challenge to accurate diagnosis is the cross-reactivity of dengue with other flaviviruses, such as West Nile virus or yellow fever, which may cause false positive results. Because of these challenges, and because there are four different dengue virus strains, the results of serological (IgM) tests may need to be confirmed by molecular methods or isolation of the virus. Consequently, testing for dengue is an expensive proposition when compared to malaria, which can be diagnosed with just a microscope, or to viruses like HIV and yellow fever for which accurate rapid diagnostic tests are
available. Even if health officials identified increased dengue surveillance as a priority in
their countries, the costs of initial and confirmatory testing is in many instances
prohibitive to patients and to health systems [5].

Health Information Systems. Maps are only as good as the data they are
displaying, and an accurate global map of dengue risk is dependent on having at least
some reasonably valid statistics from every country affected by endemic and/or epidemic
dengue. At present, many countries have no official statistics for the incidence of dengue,
even if they may have a presumed high burden of infection. Many countries where
dengue is endemic or epidemic lack the resources to support robust health information
systems (HIS) and extensive surveillance. A good HIS requires computer infrastructure,
including internet connectivity; the ability to protect confidential electronic patient
records; electronic medical records (EMRs) that are linked across hospitals, clinics,
pharmacies, and other providers; communication between clinicians, laboratory
specialists, public health officers; and a cadre of highly-trained data managers and
analysts. Ideally, a strong HIS will include active surveillance in which public health
authorities reach out to local clinicians to solicit case reports rather than merely relying
on a passive surveillance system in which public health officials wait for healthcare
providers to take the initiative to report a case. Passive surveillance systems may miss the
majority of dengue cases, and even active surveillance systems face under-reporting of
cases [5-6].

The lack of infrastructure and the personnel and technology costs associated with
establishing and operating an effective HIS are significant barriers for LMICs which must
generally prioritize urgent patient care needs over the implementation of longer-term public health activities. Even if subsidies are available to help offset the costs of software licenses and equipment, the costs of training and supporting epidemiologists and GIS analysts would be substantial, especially if the goal is to run sophisticated geospatial analyses [7-10].

The advent of internet-based data collection systems may provide an opportunity for dengue researchers and others with related interests to share data that may allow for better mapping of dengue risk. For example, MosquitoMap is an online database within VectorMap that compiles geospatially-referenced mosquito data [11]. The repository includes information from the Walter Reed Biosystematics Unit, the School of Integrative Biology at the University of Queensland, the U.S. Army Medical Research Unit-Kenya (USAMRU-K) and Kenya Medical Research Institute (KEMRI), and other reporting agencies [11], and includes, among other resources, maps of the environments that are suitable for Aedes aegypti [12]. However, while geospatial mosquito data may contribute to predictive models of dengue risk, mosquito range data alone are not sufficient for mapping actual dengue incidence and prevalence. The data from MosquitoMap must be seen as supplemental to accurate data on human dengue fever cases and not as a substitute for human data.

The collection and dissemination of additional spatially-linked data on human dengue cases will require careful attention to maintaining the confidentiality of personal health and other data and protecting the privacy of individuals. Aggregating data to a
local scale can protect sensitive medical records while allowing for greater map sensitivity.

Human Geography. Human geography, which describes the socioeconomic and cultural factors that influence how various populations interact internally, with other populations, and with the environment, is an important tool for medical geographers and other researchers. Dengue researchers must understand how changes in economic development, international and rural/urban travel, and human patterns of interaction relate to dengue epidemiology. Several human geography issues contribute to dengue mapping limitations.

Socioeconomic Proxies. When dengue incidence rates are not available, proxy variables may be used to identify populations likely to be at risk. Proxies infer the likelihood of incident dengue occurring based on socioeconomic, demographic, and/or environmental trends rather than data from confirmed or suspected cases. As a result, the estimates may significantly underestimate or overestimate the actual dengue risk in various populations. For example, economic proxies, such as the relative poverty of neighborhoods within a particular urban area, may be used since lower-income areas tend to have greater dengue risk [13,14].

Records of human behavior such as travel records [3,5,15] are also sometimes used as proxies for exposure to dengue. Studies tracking human movement that might bring susceptible individuals into contact with *Aedes*-inhabited zones have used GPS data-loggers, but the data obtained from a small sample of individuals in one town are not necessarily generalizable to an entire region [16]. Thus, the current social and
environmental proxies for dengue have some “scale” limitations: measures like GDP and GNI are relevant only at the national level while data collected at the neighborhood level, such as one city or one part of a city within a country, are not able to generalize to a larger area.

Relationship between Humans and Mosquitoes. A variety of factors may change the vector density of *Aedes* mosquitoes in a particular area, including climate change (global warming) and human activities such as poor water and waste management, which can create standing pools of water that can serve as breeding sites. Human behaviors also influence the rate of infection of mosquitoes with dengue virus: increasing human population density (especially when associated with poor environmental management from unplanned urbanization), the growth of international trade and tourism (which facilitates the spread of dengue to new places), and changes in public health policies and practices (including those related to environmental management and vector control)[17-20]. Additionally, hyperendemicity with more than one strain of dengue in some places puts people at risk from multiple strains [21], a situation that is best understood when it can be visualized. Because both human and mosquito population density and behavior contribute to dengue incidence and spread, data from both populations must be incorporated into dengue mapping models.

Mosquito Data. The expected expansion of mosquito habitats due to climate change means that current maps that show the ranges of mosquito species may soon be obsolete. Changes in mosquito ranges may limit the ability of existing mosquito habitat
data to serve as a proxy for dengue endemicity data, because the mosquito data will no longer be up-to-date and relevant.

Expanding Mosquito Habitat. Given the relationship between mosquito habitat and climate, the range of many mosquitoes, including the *Aedes* species, is expected to expand with climate change, exposing more people to dengue [22-23]. Prediction models suggest that global warming may increase the latitudinal range, the altitudinal range, and the duration of the transmission season for *Aedes* mosquitoes [24]. Several dengue maps have attempted to translate *Aedes* range models to predictions of changes in dengue distribution, but all admit serious limitations due to the complexity of the analysis and the limited accuracy and completeness of data for model parameters [26-28]. If the range of mosquitoes changes significantly in coming years, new dengue maps will have to be created often in order to be of use to health policymakers and practitioners.

Environmental Proxies. If the range of *Aedes* mosquitoes is demonstrated to be changing more frequently than in the past, mosquito maps may no longer be sufficient proxies for dengue infection. Many of the published projections of dengue endemicity from recent years were created from map layers showing temperature, rainfall, and land features that are meant to identify areas that are biologically suitable *Aedes* habitats [22,24,29]. If these parameters can no longer be measured or estimated with accuracy due to climate change, estimates of dengue range will have to depend on other forms of proxy data.

Physical Geography and the Environment. Dengue is often considered to be primarily an urban infection, in large part because *Aedes* mosquitoes thrive in urban
environments, but dengue also occurs in rural areas [30-32]. The need for endemic and epidemic maps that provide reasonable estimates for both rural and urban areas requires addressing several physical (environmental) geography concerns. Additionally, most current models display only the presence or absence of dengue, and there is a need for a more nuanced portrayal of levels of risk and levels of the burden of disease from dengue within affected areas.

Endemic versus Epidemic Mapping Methods. Dengue maps tend to fall into two categories. Endemic maps show which places experience dengue transmission during at least some months in a typical year, usually presenting estimates of dengue presence at the country or regional level [3,5]. Epidemic maps display outbreak information from places where the infection rates are considerably higher than normal, and tend to show data specific to neighborhoods, cities, or districts [33-35].

Public health officials need geographic information about both endemic and epidemic dengue. The maps included in the U.S. Centers for Disease Control and Prevention’s (CDC) *Yellow Book*—the travel vaccine guidelines are re-issued every two years—show which countries are considered endemic for dengue [35]. This book is widely used by clinicians who provide travel advice. In contrast, the DengueMap project updates an online map every hour to show the precise locations of cases of dengue that have been reported by public health officials, newspapers, and internet sources such as ProMED mail, which is sponsored by the International Society for Infectious Diseases and allows anyone in the world to submit brief case reports about emerging epidemics. These approaches provide complementary information for use in decision-making about
public health and personal health, but it is difficult to provide one map that captures both ways of viewing risk.

Urban versus Rural Mapping Methods. Dengue mapping has focused mainly on studies of urban areas, in part because most dengue infection surveillance is conducted in high-density population areas. Urban dengue maps factor in considerations of human and mosquito population density, demographic and environmental factors, and vector control initiatives. Rural areas have lower population densities, different demographic and environmental considerations and data availability, and limited vector control efforts. In particular, urban and rural areas have distinct energy balances, temperatures, humidity levels, and storm runoff (and standing water) patterns [36]. As a result of these special environmental considerations, current mapping techniques require different approaches in urban and rural areas. The lack of human and mosquito data for rural areas often requires greater dependence on temperature, precipitation, landforms, and other purely environmental data and estimates, and demands a small scale approach even though more detailed scales would be beneficial to map users [37]. Dengue maps would be more useful to policymakers and others if they provided a more complete analysis of dengue distribution and risk factors across the spectrum of population density.

Scale Issues. Depending on the availability of geographically referenced data, effective mapping should include both temporal and scale considerations. Dengue maps highlight the scale differences between global, regional, and local mapping. Mapping of dengue endemicity on the global scale is usually coarse because global climate datasets have relatively coarse spatial resolution [29]. Recent models suggest that mapping
dengue at the country level underrepresents dengue occurrence [3,5,38,39]. At the same time, local models with site-specific data are often limited in generalizability to locations with similar climate, geography, urbanization, and various human geography factors, and may be so specific to one place that they cannot easily be applied to other regions [23,24]. Comprehensive dengue mapping projects will need to develop methods for integrating global climate scenario-based analysis together with local demographic and environmental factors, including those from both rural and urban areas.

Discussion

A SWOT analysis, though traditionally recognized as a tool to evaluate businesses and projects, provides valuable insight into methods necessary for improved dengue mapping. SWOT uses evaluations of current performance to develop strategic plans for improving future operations [25]. The four components of a SWOT analysis examine (1) the current strengths that should be maintained and built on, (2) the weaknesses that need to be addressed, (3) the opportunities that are available for moving toward more optimal function, and (4) the threats that may prevent progress from being made [2,25]. SWOT provides a framework for evaluating the benefits and limitations of current models that should be considered as new techniques for advancing mapping and visualization are developed. Table 2 summarizes the SWOT factors for dengue mapping that were presented in the Results section. The SWOT analysis points toward actions that would allow for improved spatial analysis of dengue fever distributions and risks.
One major theme that emerges from the SWOT analysis is the critical need for better data collection and sharing. Improved data collection would require a commitment to global cooperation and allocation of appropriate resources to this project (which for cost savings could include many infectious diseases of global interest rather than focusing exclusively on dengue). Once more data are being collected using comparable methodologies, the creation of well-maintained and accessible cross-national data repositories will be incredibly helpful for advancing public health knowledge and for allowing geographers to develop, test, and compare methods for mapping dengue endemicity.

As better data sources are developed along with more robust software for integrating various types of data, there will be an opportunity for new models to incorporate a more diverse set of data about spatially-specific incidence, human demography and behavior, mosquito ranges, and other environmental factors, such as elevation and precipitation. An ideal multi-level model will be viable for local and regional analysis as well as for examinations of the global burden of dengue. Additionally, the model will be one that can be updated as often as new data become available, including live-time data uploaded during outbreaks.
Table 3 - SWOT analysis for improved dengue mapping.

<table>
<thead>
<tr>
<th>Strengths of current dengue maps…</th>
<th>Opportunities for future dengue maps…</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identify areas that are historically more susceptible to dengue</td>
<td>• Improve the availability of data and decrease costs of acquiring data</td>
</tr>
<tr>
<td>• Use advanced spatial analysis techniques</td>
<td>• Increase access to new GIS technology by reducing the cost of software</td>
</tr>
<tr>
<td>• Use multi-level modeling (such as Combinatorial Complexity Analysis)</td>
<td>• Incorporate additional dengue variables, such as information about migration</td>
</tr>
<tr>
<td>• Inform epidemiologists, geographers, and citizens to utilize GIS Maps to identify existing dengue conditions</td>
<td>• Inform epidemiologists, geographers, and citizens to utilize GIS Maps to identify existing dengue conditions</td>
</tr>
<tr>
<td>• Improve the availability of data and decrease costs of acquiring data</td>
<td>• Capture data systematically through ongoing data collection and reporting</td>
</tr>
<tr>
<td>• Increase access to new GIS technology by reducing the cost of software</td>
<td>• Provide a wider use of tools like MosquitoMap and DengueMap (internet data collection and geospatial data sharing)</td>
</tr>
<tr>
<td>• Incorporate additional dengue variables, such as information about migration</td>
<td>• Improve stronger evidentiary base for targeted dengue prevention and control activities by increasing public awareness of risks</td>
</tr>
<tr>
<td>• Inform epidemiologists, geographers, and citizens to utilize GIS Maps to identify existing dengue conditions</td>
<td>• Analyze existing models to create a platform for future multi-level models</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weaknesses of current dengue maps…</th>
<th>Threats for future dengue maps…</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Are challenged by clinically indistinguishable dengue fever symptoms</td>
<td>• Require potentially pricy laboratory testing to validate possible cases</td>
</tr>
<tr>
<td>• Rely on limited data sources (and therefore limit the currency and timeliness of maps)</td>
<td>• Lack sufficient resources for systematically capturing, identifying, and storing GIS data</td>
</tr>
<tr>
<td>• Involve complex spatial analysis methods which cannot be conducted without specialized (and often prohibitively expensive) software packages</td>
<td>• Need to ensure the confidentiality of personal data</td>
</tr>
<tr>
<td>• Limits GIS analysis by using a quantitative approach</td>
<td>• Require equally complete or reliable data for rural and urban areas</td>
</tr>
<tr>
<td>• Focus on the global scale and are too coarse for local use or focus on the local scale and are too fine for global use</td>
<td>• Differ in their data compilation methods, which do not promote data accuracy and data sharing</td>
</tr>
</tbody>
</table>

Conclusion
Understanding current data and mapping limitations is an important first step toward overcoming the barriers to accurate visualizations of dengue rates and risks. The development of new maps that inform public health policy and practice will require...
geographers, epidemiologists, and entomologists to commit to sharing resources and knowledge and to working together to build robust systems for data collection and dissemination, data analysis, and distribution of up-to-date maps. New technologies may then allow for the integration of multiple input variables across global, regional, and local scales and the creation of better dengue maps for use in public health decision-making.
REFERENCES

17. Gubler DJ. Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp. 2006; 277:3-16

47. Khormi HM, Kumar L. Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study. Sci Total Environ. 2011; 409(22):4713-4719

52. Kolivras KN. Mosquito habitat and dengue risk potential in Hawaii: a conceptual framework and GIS application. Prof Geog. 2006; 58(2):139-154
CHAPTER THREE2: SIMILARITY SEARCH

Abstract

Outbreaks, epidemics, and endemic conditions make dengue a disease that has emerged as a major threat in tropical and sub-tropical countries over the past thirty years. Dengue fever creates a growing burden for public health systems and has the potential to affect over 40\% of the world population. This paper presents a geospatial analysis called Similarity Search to identify locations within Kenya with the highest and lowest areas of dengue risk. Similarity Search develops a risk map by combining environmental susceptibility analysis and GIS, and then compares areas with dengue prevalence to all other locations. Kenya has had outbreaks of dengue during the past three years, and we identify areas with the highest susceptibility to dengue infection using bioclimatic variables, elevation, and mosquito habitat as input to the model. Comparison of the modeled risk map with the reported dengue epidemic cases obtained from ProMED, open source reporting, and government news reports from 1982-2013, confirmed the highest risk locations. These were used as the Similarity Search presence cells. Developing the risk model based upon the bioclimatic variables, elevation, and mosquito habitat increased the efficiency and effectiveness of the dengue fever risk mapping process.

Keywords: dengue; geographic information systems; risk mapping; developing countries; medical geography; Kenya
Introduction

Dengue fever (DF) is a viral infection transmitted by Aedes mosquitoes. Infection with any of the four strains (DEN-1 to DEN-4) may cause febrile illness and joint pain and has the potential for serious complications, including dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Nearly 40% of the world’s population lives in areas where dengue fever is endemic (Guzman and Istúriz 2010), and about to 50 to 100 million infections occur globally each year (WHO 2012). Dengue virus infection is not yet vaccine-preventable, so public health efforts must focus on mosquito control.

Recent research has suggested that the burden of dengue infection in Africa is lower than that in Asia but is comparable to that reported in the Americas (Bhatt et al. 2013; Franco et al. 2010). The first confirmed outbreak in Kenya, East Africa, occurred in 1982 (Johnson et al. 1982a). More recent studies from Kenya have reported cases from both the subtropical coastal regions and the arid northeast part of the country (Sang 2007). Table 4 and Figure 3 highlight the dengue reports from Kenya. Several of the cross-sectional surveys show that a sizeable proportion of Kenyans have serologic evidence of past dengue infection, and this suggests that the reported dengue incidence may be significantly underestimated. Dengue transmission in Kenya is facilitated by the humid and rainy climate along the coast, where mosquitoes thrive, as well as by expanding road and rail transportation networks (Gubler 2004).
<table>
<thead>
<tr>
<th>Event Year</th>
<th>Location</th>
<th>Study Design</th>
<th>Sample Size</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>Malindi</td>
<td>Case report</td>
<td>1</td>
<td>Tourist visiting Malindi positive for DEN-2</td>
<td>Johnson et al. 1982b</td>
</tr>
<tr>
<td>1982 - 1983</td>
<td>Kilifi</td>
<td>Serosurvey of outpatients</td>
<td>96</td>
<td>Seroprevalence: increased from 7% in 1982 to 57% in 1983 (DEN-2)</td>
<td>Johnson et al. 1982a; 1982b; 1990</td>
</tr>
<tr>
<td>1987</td>
<td>Kilifi and Malindi</td>
<td>Serosurvey of outpatients</td>
<td>1059</td>
<td>Seroprevalence: 1.3% (DEN-2)</td>
<td>Johnson et al. 1990</td>
</tr>
<tr>
<td>1999</td>
<td>Kilifi</td>
<td>Case report</td>
<td>1</td>
<td>Child positive for DEN-2</td>
<td>Sang et al. 2001</td>
</tr>
<tr>
<td>2000-2003</td>
<td>Msambweni District</td>
<td>Serosurvey of pregnant women</td>
<td>419</td>
<td>Seroprevalence rates: 63% (DEN-1), 67% (DEN-2), 55% (DEN-3), 44% (DEN-4)</td>
<td>Sutherland et al. 2011</td>
</tr>
<tr>
<td>2004</td>
<td>Malindi</td>
<td>Population-based cross-sectional survey</td>
<td>442</td>
<td>Seroprevalence: 34.2% (DEN-2)</td>
<td>Mease et al. 2011</td>
</tr>
<tr>
<td>2011</td>
<td>Mandera</td>
<td>Case series</td>
<td>5000</td>
<td>5000 cases and 10 dengue deaths reported between September and October</td>
<td>ProMED-mail 2011</td>
</tr>
<tr>
<td>2010 - 2011</td>
<td>Busia and Trans-Nzoia counties (Western Kenya)</td>
<td>Serosurvey of outpatients</td>
<td>422</td>
<td>Seroprevalence: 8.5% by indirect ELISA and 1.2% by PRNT testing (DEN-2)</td>
<td>Awando et al. 2013</td>
</tr>
<tr>
<td>2013</td>
<td>Mandera</td>
<td>Case series</td>
<td>300</td>
<td>300 cases and 3 dengue deaths between January and February</td>
<td>ProMED-mail 2013c; 2013f</td>
</tr>
<tr>
<td>2013</td>
<td>Mombasa (Kwale and Kilifi Counties)</td>
<td>Case series</td>
<td>140</td>
<td>KEMRI identified more than 56% (140 cases) of dengue cases as positive for dengue virus: DEN-1(69%), DEN-2(28%), and DEN-3 (3%). One sample positive for both DEN-1 and DEN-2.</td>
<td>ProMED-mail 2013a; 2013b; 2013d; 2013e</td>
</tr>
</tbody>
</table>
Figure 3 - Map of seroprevalence and dengue outbreak reports from Kenya, 1982-2013.
The goal of the analysis presented in this paper was to create a more accurate and robust map of dengue risk in Kenya based on bioclimatic layers, elevation data, high resolution population data, and information about the range of the *Aedes* vector, and to integrate these data into a localized high resolution format (1 km x 1 km). *Aedes* data are compiled in Kenya by the Kenya Medical Research Institute (KEMRI) and collaborating agencies (Sang 2007; Sang et al., 2001); additional sources of climatic and other geographic information are also available for integration into spatial models. Improved visualizations of dengue risk will be of use to the Kenya Ministry of Health (MOH) Division of Disease Surveillance and Response (DDSR), the Kenyan Field and Laboratory training Program (FELTP), KEMRI, and their partners in infectious disease prevention and control (Akhwale 2013). The techniques used for the creation of this new risk map are also applicable to other infectious diseases and their settings.

Materials and Methods

Data sources

Spatial data. Administrative boundary data for Kenya were obtained from the Kenya Central Bureau of Statistics (2005) and verified against the Global Administrative Areas (GADM), which is a spatial database of the location of the world's administrative areas (or administrative boundaries) (GADM, 2012). The datasets were set to a custom projection using a projected coordinate system (World_Equidistant_Cylindrical) centered within the country of Kenya to limit the distortion of spatial data on the edges of the map. Potential border issues were addressed by analyzing the data with a 100 mile buffer around Kenya and retesting the Similarity Search analysis.
Population density data. Human population density data were obtained from the LandScan 2011 Global Population Database, which was developed by Oak Ridge National Laboratory (ORNL) for the United States Department of Defense (DoD) (Bright et al. 2011). Data obtained were in a 1 km x 1 km gridded format using the ORNL methodology to derive population counts (Bright et al. 2011). Incorporating human population density provides an essential factor in calculating risk (Bhatt et al. 2013, Hassan et al. 2012, Moffett et al. 2007, Rogers et al. 2006).

Dengue data. Information about areas in which epidemics occurred were obtained from ProMed (a website where individuals worldwide can submit reports of infectious disease outbreaks), PubMed (a journal abstract database maintained by the U.S. National Institutes of Health), and the Weekly Epidemiological Report published by the World Health Organization. (Kenya’s infectious disease system does not compile and release reliable dengue incidence data, since diagnosis is expensive and the health information system is not set up to easily collect case reports from across the country.) Once the geographic locations of dengue cases were identified, a 1 km buffer was used to select the cells in which dengue occurred.

Mosquito data. MosquitoMap is a repository of information that identifies locations where *Aedes aegypti* mosquitoes can survive. In addition to the data from MosquitoMap, places within Kenya where cases had been reported in the files included in Table 4 were noted as areas that were suitable environments for *Aedes*. A search of the MosquitoMap database in Kenya from 1982 through 2013 resulted in 365 mosquito survey collection sites. The 365 collection sites were combined into a single geospatial
layer, which resulted in 167 cells (1 km x 1 km) where Aedes were collected within Kenya. There was no testing of the mosquitos to determine if they were positive for any DENV strains. Previous research demonstrated the value of museum mosquito collection records for understanding mosquito biogeography and ecology, and for planning mosquito surveys (Foley et al. 2008).

Elevation data. The WorldClim Elevation database contained additional high-resolution information useful for predicting dengue range, which allowed for environmental analysis at a resolution of 1 km x 1 km (Hijmans et al. 2005). Elevation data were incorporated to determine whether risk of dengue as reported in Colombia was limited above 1,500 meters (Hagenlocher et al. 2013).

Bioclimatic layers data. The WorldClim Bioclimatic variables database was used to derive monthly temperature and rainfall values, which are known to be related to mosquito distribution and dengue transmission (Bhatt et al. 2013, Brady et al. 2012, Simmons et al. 2012, Rogers et al. 2006, and Hijmans et al. 2005). From these data, interpolated global climate surfaces were produced using the ANUSPLIN-SPLINA software (Hutchinson, 1995). The bioclimatic variables used for this analysis were selected based on published literature about dengue risk factors (Nyari et al. 2011) and on previous dengue models (Bhatt et al. 2013, Brady et al. 2012, Simmons et al. 2012, Rogers 2006, Rogers et al. 2006).
Table 5 - Definitions of the 19 bioclimatic variables.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO1</td>
<td>Annual mean temperature</td>
</tr>
<tr>
<td>BIO2</td>
<td>Mean diurnal range (mean of monthly (max temp - min temp))</td>
</tr>
<tr>
<td>BIO3 *</td>
<td>Isothermality (BIO2/BIO7) (* 100)</td>
</tr>
<tr>
<td>BIO4</td>
<td>Temperature seasonality (standard deviation *100)</td>
</tr>
<tr>
<td>BIO5 *</td>
<td>Max temperature of warmest month</td>
</tr>
<tr>
<td>BIO6</td>
<td>Min temperature of coldest month</td>
</tr>
<tr>
<td>BIO7 *</td>
<td>Temperature annual range (BIO5-BIO6)</td>
</tr>
<tr>
<td>BIO8 *</td>
<td>Mean temperature of wettest quarter</td>
</tr>
<tr>
<td>BIO9</td>
<td>Mean temperature of driest quarter</td>
</tr>
<tr>
<td>BIO10 *</td>
<td>Mean temperature of warmest quarter</td>
</tr>
<tr>
<td>BIO11 *</td>
<td>Mean temperature of coldest quarter</td>
</tr>
<tr>
<td>BIO12</td>
<td>Annual precipitation</td>
</tr>
<tr>
<td>BIO13</td>
<td>Precipitation of wettest month</td>
</tr>
<tr>
<td>BIO14</td>
<td>Precipitation of driest month</td>
</tr>
<tr>
<td>BIO15</td>
<td>Precipitation seasonality (coefficient of variation)</td>
</tr>
<tr>
<td>BIO16 *</td>
<td>Precipitation of wettest quarter</td>
</tr>
<tr>
<td>BIO17 *</td>
<td>Precipitation of driest quarter</td>
</tr>
<tr>
<td>BIO18 *</td>
<td>Precipitation of warmest quarter</td>
</tr>
<tr>
<td>BIO19</td>
<td>Precipitation of coldest quarter</td>
</tr>
</tbody>
</table>

*Not used in Similarity Search Index

Table 5 summarizes all of the Bioclimatic variables considered for inclusion in the model. Based on previous analyses by Foley and Nyari, the variables selected for this analysis were BIO1, BIO2, BIO4, BIO5, BIO6, BIO9, BIO12, BIO13, BIO14, BIO15, BIO19, and altitude (Foley et al. 2012, Nyari et al. 2011, Foley et al. 2010, Foley et al. 2008). We included the LandScan population data to enhance the model by integrating population data into the Similarity Search equation (Bright et al. 2012). This produced a more localized analysis at a higher resolution than previous studies which used a more

Analysis

The various types of data listed in the previous section were transformed from 1 km x 1 km grid cells to a point layer so as to bring all the data together into a single dataset, rather than multiple raster layers, and so that we could use the newly developed Similarity Search tool in ArcGIS 10.2 software (Esri 2013a). Similarity Search allows users to find points of interest by resolving a similarity query such as “find the 10 most similar cities to Los Angeles. Esri’s Similarity Search categorizes the results in an index from most similar to least similar (Esri 2013a). The different variables used in the analysis were standardized prior to the analysis. Standardizing the attribute values utilized a z-transform where each value (X) is subtracted from the mean for all values (δ) and divided by the standard deviation for all values (σ) (Esri 2013b). The equation is below:

\[
Z\text{-Transform} = X - \frac{Mean (\delta)}{Standard\ Deviation (\sigma)}
\]

The analysis then sums the differences between each feature for all variables against the composite for matching all features (MPX) which is explained in further
detail below. Then these sums are ranked. Models were run with the 11 Bioclimatic (BioClim) variables listed above, population density, and elevation (ALT) (Hijmans et al. 2005).

As noted in the methods section, the presence cells are locations where *Aedes* mosquitos were collected through surveys or where cases of human dengue were reported. The 365 mosquito points in the MosquitoMap database were reduced to 167 cells after adjusting for the duplicate points within the same 1 km x 1 km cells. Additional presence cells were marked in the four regions of the country (Mombasa, Mandera, Malindi, and Kilifi) where major dengue outbreaks had been reported in articles indexed in PubMed (documented in Table 4). In total, 287 presence cells (out of 681,442 total cells) were identified as at risk for dengue. The geospatial dengue outbreak parameters included a 1 km buffer around the urban cities where dengue was reported in the PubMed sources. From these cells, the spatial parameters were modified to extract pertinent information to the centroid of the cell so the adjusted data set could be used within the Similarity Search process. The regions most susceptible to dengue were identified using the equation below:

Equation 2 - Similarity Search

\[
\text{cosine similarity index} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \sqrt{\sum_{i=1}^{n} (B_i)^2}}
\]
The equation above calculates two vectors of attributes A and B using cosine similarity mathematics, \(\cos(\theta) \). The cosine similarity index measures the increasing difference as the index (Similarity) decreases. Using this method, two different analyses were used to create the maps in Figures 8 and 9. The purpose of the first analysis was to determine how risk could be visualized with limited dengue data. This analysis created an average based on the entire set of presence cells for each of the variables and then compared those average values as the composite target feature (MPX) (Table 6).

Table 6 - Calculated results from the composite for matching all features when performing Similarity Search (287 cells).

<table>
<thead>
<tr>
<th>Field</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Variable value for which SimRank based</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>0</td>
<td>1621</td>
<td>494.401</td>
<td>318.2056</td>
</tr>
<tr>
<td>BIO_1</td>
<td>0</td>
<td>292</td>
<td>68.7527</td>
<td>238.7596</td>
</tr>
<tr>
<td>BIO_2</td>
<td>0</td>
<td>169</td>
<td>40.4955</td>
<td>96.2822</td>
</tr>
<tr>
<td>BIO_4</td>
<td>0</td>
<td>1500</td>
<td>425.1529</td>
<td>1079.9965</td>
</tr>
<tr>
<td>BIO_5</td>
<td>0</td>
<td>401</td>
<td>87.8569</td>
<td>308.5052</td>
</tr>
<tr>
<td>BIO_6</td>
<td>0</td>
<td>213</td>
<td>55.0595</td>
<td>176.324</td>
</tr>
<tr>
<td>BIO_9</td>
<td>0</td>
<td>285</td>
<td>71.5984</td>
<td>245.0348</td>
</tr>
<tr>
<td>BIO_12</td>
<td>0</td>
<td>1949</td>
<td>432.7004</td>
<td>960.1951</td>
</tr>
<tr>
<td>BIO_13</td>
<td>0</td>
<td>327</td>
<td>91.8909</td>
<td>215.8118</td>
</tr>
<tr>
<td>BIO_14</td>
<td>0</td>
<td>69</td>
<td>16.2808</td>
<td>17.1882</td>
</tr>
<tr>
<td>BIO_15</td>
<td>0</td>
<td>125</td>
<td>28.2855</td>
<td>68.0418</td>
</tr>
<tr>
<td>BIO_19</td>
<td>0</td>
<td>551</td>
<td>114.9552</td>
<td>196.338</td>
</tr>
<tr>
<td>LNDSCN_POP</td>
<td>0</td>
<td>56657</td>
<td>8245.9614</td>
<td>3749.6551</td>
</tr>
</tbody>
</table>

The second analysis visualized more detailed risk by incorporating isolated presence cells locations and the unique variable values at each location into the final analysis. This analysis involved running the Similarity Search against each of the
presence cells, iteratively, and then creating an average rank based on the rank value of each cell for each iteration.

For the first analysis, the attributes for each candidate cell (consisting of 13 variables) are compared to the vector of standardized attributes for the composite target feature based on the 287 presence cells (Figure 4).

![Similarity Search Model Parameters (MPX)](image)

Figure 4 - Visual results of the composite for matching all features when performing Similarity Search (287 cells).

Once all of the 681,442 candidate cells have been processed, candidates are ranked from the smallest cosine similarity index (most similar) to the largest index (least similar). The tabular graphic displays how two points (PT1 and PT2) are compared to the
variable values for which Similarity Search is based (MPX) on all 13 variables values and not one specific value (Figure 5).

![Figure 5 - Sample of processing completed to determine Similarity Search between two points (PT1 and PT2) compared to the composite for matching all features (MPX).](image)

This method is not based on the magnitude of the variables, but focuses on the relationships between the attributes once they have been compared to the target feature attributes (Esri 2013b). The resulting similarity ranges from -1 (which suggests that the
candidate cell is perfectly, inversely related to the profile of presence cells) to 1 (which suggests that the candidate cell is perfectly, directly related to the profile of presence cells), with 0 usually indicating independence and in-between values indicating intermediate similarity or dissimilarity. Figure 6 shows the methodological steps used for developing the dengue risk maps for Kenya.

Figure 6 - Graphic view of systematic cycle completed using Similarity Search.
The second analysis (Figure 8) was run using each individual presence cell (the 287 total presence cells each with 13 variables) against all the other 681,442 cells. We combined all 287 iterations, each possessing 681,442 cells which were ranked from 1 to 681,442 in each iteration. In total, this constituted over 195,573,854 cells that were ranked based upon the 2,542,460,102 variables that were compared with Similarity Search and then combined into one layer using tools within ArcGIS (union). This analysis allowed the conditions existing at each presence location to be ranked against all other cells in the country. It also limited the spatial bias incurred from only using presence points (Hijmans 2012). Performing the analysis using this methodology allowed for locations such as Mandera (upper northeast region of Kenya) to have a higher input into the final analysis by incorporating more analysis points and visualizing results to specific high and low risk areas throughout the country.

Results

The average risk map (Figure 7) and the individually combined risk map (Figure 8) created with this Similarity Search method indicate that dengue risk is highest along the coast and in the central areas of Kenya, which are home to nearly 15 million people. These areas (indicated in red on the map) are the most cost-effective locations to target for dengue prevention activities such as vector control.
Figure 7 - Risk map created using the averages of all 287 reference points comparing bioclimatic variables, population density, and elevation.
Figure 8 - Risk map created using individual iterations of all 287 reference points comparing bioclimatic variables, population density, and elevation.
In previous research, vector disease models determined human population density as an essential factor in calculating risk (Moffett et al. 2007). Greater population density equates to a higher risk of contracting disease. Outbreaks are more likely to be detected in high population density areas and in those areas that are close to major hospitals as opposed to rural areas that are far from health services.

The risk maps also show that the risk of dengue outbreaks is minimal in the mountainous areas in the center and west of Kenya. Previous research has expressed this concept in explaining a decrease for dengue risk in Colombia above 1,500 meters (Hagenlocher et al. 2013), but our research found that elevation above 1,800 meters limited dengue risk in Kenya. Determining the highest risk areas identifies the locations where more centralized and focused dengue prevention and control activities efforts can be prioritized in combating dengue.

Discussion
This paper demonstrated the utility of the Similarity Search function for ranking and visualizing locations with similar risk profiles. Using Similarity Search, we created a risk profile for dengue fever in Kenya based on the environmental characteristics of a small number of 1 km2 cells that were known to be at high risk of dengue. We then used Similarity Search to identify other cells that are likely to have high dengue risk. Our model incorporated data about human demography and health, mosquito distributions, and a variety of social environmental factors to create a more complex and larger-scale map of risk at the country level than has previously been possible.
The advantages of Similarity Search include the power that comes with defining a target based on the average characteristics of hundreds of presence cells, the utilization of a method previously confined to textual searches (Adelfio et al. 2011, Bayardo et al. 2007), the provision of greater flexibility in testing variables, and the ranking of the attribute values to the target features by most similar to least similar. The main limitation of Similarity Search is the lengthy computer processing time required for the completion of the individual cell analysis (used to make the map shown in Figure 8). If a hierarchical computer process method is not used, the analysis can take days to complete. The use of an iterative process is often necessary to prevent the computer from running out of memory but this has the disadvantage of again increasing the processing time. Nevertheless, the high-resolution local analysis allowed by Similarity Search makes this a useful tool for identifying the relationships between the attributes and the target feature.

The primary limitations for this model relate to the very incomplete surveillance and mosquito data available for most cities, towns, and rural areas within Kenya and the need for more frequent updates of the environmental data. Human health data are dependent on the accurate diagnosis of dengue through testing, surveillance, and dissemination of the data. A particular concern is that most case reports come from urban areas where surveillance and reporting systems are more developed, thus skewing the maps toward assuming higher risk in urban areas than is appropriate. Given the lack of nationwide case finding efforts, absence of data about cases from much of the country cannot be considered evidence of there being no cases in those regions. Mosquito habitats vary due to climate change, making current data essential for accurate mapping and
reporting. The need for updated mosquito data will become especially important if global climate changes alter the range of *Aedes mosquitoes* (Hales et al. 2002, Patz et al. 1998). Global climate change may mean that environmental data quickly become inaccurate and this will constrain the ability to predict vector borne disease hotspots based on similarity searches and limited human health data. Ideally, environmental data must be updated often enough to allow for adjustments to models based on floods, droughts, and urbanization (or other patterns of human migration) and must exist at a sufficient scale for use in both rural and urban areas. (For example, one risk factor for dengue is the presence of standing water which has collected in old tires or small cans (WHO 2012), and this is not captured by current databases nor by maps with a 1 km² resolution.)

The effectiveness of these techniques highlights the value that this methodology could bring to other applications both within and beyond public health. This kind of Similarity Search could be used to determine areas of a city that are more vulnerable to certain types of crime based on existing crime locations, for economic development by benchmarking one city against its most similar counterparts (such as based on education, taxes, population), to evaluate real estate trends and foreclosure risks, or to justify salaries by looking at other areas with similar cost of living, amenities, size of household, and more. Comparison of cities based upon social media preference (Seth et al. 2011), the geographic locality of cuisine (Zhu et al. 2013), and calculating similarity between user-generated information about locations (Scheffler et al. 2012) provide real world examples utilizing cosine similarity mathematics. The prediction maps created with Similarity Search can provide critical information for government officials, businesses,
epidemiologists, and others involved in planning and preparing for future events and making decisions about resource dissemination and public outreach.

More specifically, the dengue risk maps we created for Kenya provide additional information for Kenyan health officials and may point to parts of the country where intensified dengue prevention and control activities may be most beneficial for public health and, conversely, the regions where resources do not need to be deployed at this time. The use of tools like Similarity Search to identify areas at high risk for vector borne disease and other threats to health will increase the effectiveness of public health interventions by allowing them to be more precisely targeted toward the populations that will most benefit from them.
REFERENCES

CHAPTER FOUR: SUSCEPTIBILITY ANALYSIS

Abstract

The goal of this paper is to create a more accurate, robust, and localized (1 km x 1 km) dengue risk map for Africa based on bioclimatic layers, elevation data, high-resolution population data, and other environmental factors that a search of the peer-reviewed literature showed to be associated with dengue risk. We apply a newly-available add-in called ArcGIS Predictive Analysis Toolset (PAT) to identify locations within Africa with environmental characteristics that the literature suggest will be susceptible to dengue transmission. We compare the results of the PAT analysis to case reports of dengue from across the African continent. Our new, localized analysis of dengue risk provides valuable new information for public health officials and others making decisions about where to increase disease surveillance activities and implement dengue prevention and control efforts. PAT and other adaptable methodologies for mapping emerging disease risks will allow these baseline dengue maps to be updated as climate changes occur.

Keywords

dengue; geographic information systems; risk mapping; developing countries; medical geography; Africa

Introduction

With global average temperatures projected to increase between 1.4 and 5.8 °C by the end of this century (Intergovernmental Panel on Climate Change 2001), an efficient method for modeling how these changes will affect human disease susceptibility is needed (Houghton et al. 2001). In this paper, we examine the climate factors that predict the presence of dengue fever in Africa. The incidence of dengue is known to be underestimated in African countries, where viral testing capacity is limited and data reporting and surveillance systems are sparse (Amarasinghe et al. 2011, Bhatt et al. 2013, Brady et al. 2012, Franco et al. 2010, Sessions et al. 2013), so there is a need for improved maps of dengue risk in this region.

Dengue fever is thought to be the most rapidly spreading mosquito-borne viral disease in the world (WHO, 2012). In the last 50 years, the incidence of dengue has increased 30-fold (WHO, 2012). In the past decade, the range of the disease has expanded to new countries and been found across a range of urban and rural settings. Although outbreaks of dengue in Africa have been reported, data on baseline incidence and prevalence rates are not readily available for the region (Amarasinghe et al. 2011).

The specific goal of this paper is to create a more accurate, robust, and localized analysis (1 km x 1 km) of dengue risk mapping in Africa based on bioclimatic layers, elevation data, high-resolution population data, and other environmental factors that our search of the peer-reviewed literature showed to be associated with dengue risk (Table 7).
Table 7 - Peer reviewed literature documenting environmental constraints for dengue.

<table>
<thead>
<tr>
<th>Category</th>
<th>Evidence</th>
<th>Location</th>
<th>Source</th>
<th>High Risk Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation & Land cover</td>
<td>Anything above 1500 meters limits dengue</td>
<td>Brazil</td>
<td>Hagenlocher et al. 2013</td>
<td>ALT ≤ 1800 AND (11 ≤ GLC ≤ 190 OR WBD ≤ 200km)</td>
</tr>
<tr>
<td></td>
<td>Ae. aegypti mosquitos were abundant at elevations up to 1300 m, moderately abundant from 1300 to 1700 m, and still present but rare from 1700 to 2150 m</td>
<td>Mexico</td>
<td>Lozano-Fuentes et al. 2012</td>
<td></td>
</tr>
<tr>
<td>Population Density</td>
<td>Dengue fever is characterized by high human population densities more or less wherever it occurs</td>
<td>Global</td>
<td>Rogers et al. 2014</td>
<td>POP > 0</td>
</tr>
<tr>
<td></td>
<td>Population density in itself is a good measure of risk.</td>
<td>Malaysia</td>
<td>Hassan et al. 2012</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>Greater amounts of precipitation are associated with higher dengue infection risk</td>
<td>Thailand</td>
<td>Wiwanitkit 2006, Heng et al. 1998</td>
<td>BIO12 ≥ 55mm, BIO13 > 0, BIO14 > .2mm, BIO16> 0, BIO17 > 0, AND BIO19 > 0</td>
</tr>
<tr>
<td></td>
<td>High volume of rainfall increases Aedes survival by providing more breeding sites.</td>
<td>Malaysia</td>
<td>Hassan et al. 2012</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Infertile eggs at 10 degrees Celsius</td>
<td>Laboratory Test</td>
<td>Turrell and Lundstrom 1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ae. aegypti needs a winter isotherm higher than 10°C for its survival</td>
<td>Global</td>
<td>Halstead 2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ae. aegypti are capable of transmitting virus under laboratory conditions after incubation at temperatures as low as 13°C</td>
<td>Laboratory Test</td>
<td>McLean et al. 1975, Watts et al. 1987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature around an intermediate mean (26°C) can alter life-history traits, population dynamics, and the ability of a mosquito to become infected with and transmit dengue virus (DENV)</td>
<td>Laboratory Test</td>
<td>McLean et al. 1974, Watts et al. 1987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ae. aegypti vector competence for DENV has been detected up to a maximum of 35°C</td>
<td>Global</td>
<td>Watts et al. 1987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult reproductive function is impaired in the high 30’s with adult Ae. aegypti survival declining as temperature continues to rise</td>
<td>Australia, Laboratory Test</td>
<td>Tun-Lin et al. 2000, Carrington et al. 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The variables ‘minimum temperature of the coldest month’ and ‘mean temperature of the coldest quarter’ were the most important variables for modeling dengue.</td>
<td>Mexico</td>
<td>Machado-Machado et al. 2012.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extrinsic incubation period (EIP) of the dengue virus decreases at temperatures between 30 and 35°C in the mosquito</td>
<td>Laboratory Test</td>
<td>McLean et al. 1974, Watts et al. 1987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher temperatures are associated with higher dengue incidence in humans</td>
<td>Peru, Singapore, India</td>
<td>Chowell et al. 2011, Pinto et al. 2011, Raheel et al. 2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occurrence of dengue in Aedes at temperatures above 18-20°C</td>
<td>Peru, U.S.A.</td>
<td>Chowell et al. 2011, Mclean et al. 1974</td>
<td></td>
</tr>
</tbody>
</table>
The key analytical method used in this paper is the ArcGIS Predictive Analysis Tools (PAT) function, which incorporates adaptable analysis within the geographic user interface (GUI) and therefore allows immediate visualizations of how various climate and other inputs affect the susceptibility model (Esri, 2014). Improved visualizations of the risk areas for dengue will enable public health officials and policymakers to identify high-risk areas and allow for the most efficient use of dengue prevention and control resources. PAT could be applied to a variety of infectious diseases and world regions, but in this paper we use dengue in Africa as a way to highlight the tool’s utility.

Data Sources

After reviewing the dengue literature (Table 7), we identified a need to acquire a variety of spatial data, population density data, environmental data (including bioclimatic layers, land cover data, and water bodies data), and disease data. The sources of the data used in our model are specified below. Table 8 summarizes the various layers included in the model.
Table 8 - Layers included in the model.

<table>
<thead>
<tr>
<th>Category</th>
<th>Abbreviation</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation & Land cover</td>
<td>ALT, GLC, &</td>
<td>Elevation data, 2009 Global land cover data, & 2000 Africa water bodies</td>
<td>WorldClim, European Space Agency (ESA) and the Université Catholique de</td>
</tr>
<tr>
<td></td>
<td>WBD</td>
<td>data</td>
<td>Louvain (UCL) & UNFAO</td>
</tr>
<tr>
<td>Population Density</td>
<td>POP</td>
<td>2011 Human population density data</td>
<td>ORNL - Landscan</td>
</tr>
<tr>
<td>Precipitation</td>
<td>BIO12 - MaxPrecip</td>
<td>Annual precipitation</td>
<td>WorldClim</td>
</tr>
<tr>
<td></td>
<td>BIO13 - MaxPrecip</td>
<td>Precipitation of wettest month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO14 - MinPrecip</td>
<td>Precipitation of driest month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO16 - MaxPrecip</td>
<td>Precipitation of wettest quarter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO17 - MinPrecip</td>
<td>Precipitation of driest quarter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO19 - MinPrecip</td>
<td>Precipitation of coldest quarter</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>BIO1 - MaxTemp</td>
<td>Annual mean temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO2 - MinTemp</td>
<td>Mean diurnal range (mean of monthly (max temp - min temp))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO4 - MinTemp</td>
<td>Temperature seasonality (standard deviation *100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO5 - MaxTemp</td>
<td>Max temperature of warmest month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO6 - MinTemp</td>
<td>Min temperature of coldest month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO9 - MaxTemp</td>
<td>Mean temperature of driest quarter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIO10 - MaxTemp</td>
<td>Mean temperature of warmest quarter</td>
<td></td>
</tr>
</tbody>
</table>

Spatial data. The Global Administrative Areas (GADM) database contained the current administrative boundary data for Africa (GADM, 2012). Data were projected via a projected coordinate system (WGS_1984_Web_Mercator_Auxiliary_Sphere).

Dengue data. Dengue data were graciously shared with us by Professor Simon Hay and his research team, who have previously published analyses of their dataset.
(Bhatt et al. 2013a). These 360 cases from Africa were identified through searches of online databases, including PubMed, ISI Web of Science, and PROMED, and HealthMap (Bhatt et al. 2013b). Data were current as of 2012 and were vetted through a rigorous quality control assessment (Bhatt et al. 2013b). In order to make our maps comparable to the earlier visualizations created by the Hay group, we restricted our case data to only those points shared by the Hay research team.

Population density data. The accuracy of human infection susceptibility estimates is dependent on accurate human population density data (Bhatt et al. 2013, Hassan et al. 2012, Moffett et al. 2007, Rogers et al. 2006). The LandScan 2011 Global Population Database contains high-resolution (1 km x 1 km) population density data developed by Oak Ridge National Laboratory (ORNL) for the United States Department of Defense (DoD) (Bright et al. 2011).

Elevation data. The WorldClim Elevation database contains high-resolution (1 km x 1 km) environmental information (Hijmans et al. 2005). Previous studies have suggested that dengue transmission is limited above 1700 meters (Lozano-Fuentes et al. 2012).

Land cover data. A raster version of the GlobCover land cover map produced for the year 2009 was obtained from the European Space Agency (ESA) and the Université Catholique de Louvain (UCL) (Bontemps et al. 2010). The dataset, a 300 m global land cover map produced from an automated classification of the medium resolution imaging spectrometer and full resolution time series (MERIS FR), includes 22 global classes within the raster dataset (Bontemps et al. 2011, Bontemps et al. 2010).
Bioclimatic layers data. The WorldClim Bioclimatic variables database provided the temperature and rainfall parameters for the model. These were selected from previous scientific studies of mosquito distribution and dengue transmission (Bhatt et al. 2013, Brady et al. 2012, Hijmans et al. 2005, Rogers et al. 2014, Rogers 2006, Rogers et al. 2006, Simmons et al. 2012).

Water Bodies data. The United Nations’ Food and Agriculture Organization (FAO) database contained water body vector information at a scale of 1:1000000 and current as of 2000 (Gassert et al. 2013, Jenness et al. 2007, Hoogeveen 2000). This dataset was cross-referenced with the GlobCover 2009 dataset for consistency with classifications.

Analysis

As a first step toward identifying areas susceptible to dengue, we evaluated the variables known to be associated with dengue risk, and used a search of the literature to identify parameters for a dengue model (Table 7). For example, temperature parameters were set to the minimum and maximum thresholds established by published literature, 10 °C and 30 °C (Carrington et al. 2013, Halstead 2008, Tun-Lin et al. 2000, Turrell and Lundstrom 1990). Similar restrictions were set for elevation, population density, and precipitation.

The Query Expression Editor within PAT allowed us to find locations where zero to four of the four key environmental risks for dengue were true for a group of single-band rasters (Equation 3).
Equation 3 - Query Expression Editor Equation

\[
Query \text{ Expression Equation} = ((Y_1 (HRP_1) + Y_2 (HRP_2) + Y_3 (HRP_3) + Y_4 (HRP_4)))
\]

Y = raster datasets for four high risk parameters
HRP = Four High Risk Parameters from Table 7
- Highly susceptible = All 4 parameters
- Somewhat susceptible = 3 parameters
- Limited susceptibility = 2 parameters
- Highly unsusceptible = 1 parameter
- Not susceptible = 0 parameters

To confirm the relevance of these parameters to dengue risk, we calculated the proportion of the 360 case data points from Professor Simon Hay and his colleagues that were captured by each layer of the map (Figure 9) and by combinations of map layers (Figure 10).
Figure 9 - Susceptibility models run for various univariate variables.
The results of these calculations are presented in Table 9. These analyses were made using tools within ArcGIS PAT. The Query Factor Input Table (QFit) generates a predictive analysis query using a set of input data points and a set of raster datasets. The QFit tool allows the user to take a set of observations, such as dengue occurrence points, and then compare these observations to a group of rasters to determine what values are characteristic of these points (Equation 4) (Esri, 2014).
Table 9 - Proportion of the 360 cases captured by various layers in the GIS.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Parameters</th>
<th>Count</th>
<th>Total</th>
<th>Percentage Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIVARIATE MODELS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>ALT ≤ 1800 (meters)</td>
<td>346</td>
<td>360</td>
<td>96%</td>
</tr>
<tr>
<td>Minimum Temperature</td>
<td>MinTemp ≥ 100 (10° C)</td>
<td>341</td>
<td>360</td>
<td>95%</td>
</tr>
<tr>
<td>Maximum Temperature</td>
<td>MaxTemp ≤ 300 (30° C)</td>
<td>297</td>
<td>360</td>
<td>83%</td>
</tr>
<tr>
<td>Max Precipitation Average</td>
<td>BIO13 > 0, BIO16> 0, AND BIO12 ≥ 550 (55mm)</td>
<td>208</td>
<td>360</td>
<td>58%</td>
</tr>
<tr>
<td>Min Precipitation Average</td>
<td>BIO14 > 20 (.2mm) AND BIO17 > 0</td>
<td>78</td>
<td>360</td>
<td>22%</td>
</tr>
<tr>
<td>Human Population Density*</td>
<td>POP > 0</td>
<td>308</td>
<td>337</td>
<td>91%</td>
</tr>
<tr>
<td>Land Cover (2009)</td>
<td>GLC ≥ 11 (Irrigated Crops) AND GLC ≤ 190 (Artificial areas)</td>
<td>306</td>
<td>360</td>
<td>85%</td>
</tr>
<tr>
<td>Distance from Water**</td>
<td>WBD ≤ 200km</td>
<td>147</td>
<td>301</td>
<td>49%</td>
</tr>
<tr>
<td>BIVARIATE MODELS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation AND Min Temp</td>
<td>ALT ≤ 1800 (meters) AND MinTemp ≥ 10° C</td>
<td>341</td>
<td>360</td>
<td>95%</td>
</tr>
<tr>
<td>Min Temp AND Population*</td>
<td>MinTemp ≥ 10° C AND POP > 0</td>
<td>290</td>
<td>337</td>
<td>86%</td>
</tr>
<tr>
<td>Elevation AND Max Temp</td>
<td>ALT ≤ 1800 (meters) AND MaxTemp ≤ 30° C</td>
<td>297</td>
<td>360</td>
<td>83%</td>
</tr>
<tr>
<td>Land Cover AND Population*</td>
<td>GLC ≥ 11 (Irrigated Crops) AND GLC ≤ 190 (Artificial areas) AND POP > 0</td>
<td>268</td>
<td>337</td>
<td>80%</td>
</tr>
<tr>
<td>Max Temp AND Human Population Density*</td>
<td>MaxTemp ≤ 30° C AND POP > 0</td>
<td>258</td>
<td>337</td>
<td>77%</td>
</tr>
<tr>
<td>Land Cover AND Min Temp</td>
<td>GLC ≥ 11 (Irrigated Crops) AND GLC ≤ 190 (Artificial areas) AND MinTemp ≥ 10° C</td>
<td>265</td>
<td>360</td>
<td>74%</td>
</tr>
<tr>
<td>Elevation AND Population*</td>
<td>ALT ≤ 1800 (meters) AND POP > 0</td>
<td>233</td>
<td>337</td>
<td>69%</td>
</tr>
<tr>
<td>Land Cover AND Max Temp</td>
<td>GLC ≥ 11 (Irrigated Crops) AND GLC ≤ 190 (Artificial areas) AND Max Temp ≤ 300 (30° C)</td>
<td>233</td>
<td>360</td>
<td>65%</td>
</tr>
<tr>
<td>Elevation AND Max Precipitation</td>
<td>ALT ≤ 1800 (meters) AND MaxPrecip Avg Parameters</td>
<td>213</td>
<td>360</td>
<td>59%</td>
</tr>
<tr>
<td>Min Temp AND Max Precip</td>
<td>MinTemp ≥ 10° C AND MaxPrecip Avg Parameters</td>
<td>207</td>
<td>360</td>
<td>58%</td>
</tr>
<tr>
<td>Elevation AND Precip (Max OR Min)</td>
<td>ALT ≤ 1800 (meters) AND MaxPrecip Avg Parameters OR MinPrecip Avg Parameters</td>
<td>206</td>
<td>360</td>
<td>57%</td>
</tr>
<tr>
<td>Land Cover AND Max Precipitation</td>
<td>GLC ≥ 11 (Irrigated Crops) AND GLC ≤ 190 (Artificial areas) AND MaxPrecip Avg Parameters</td>
<td>201</td>
<td>360</td>
<td>56%</td>
</tr>
<tr>
<td>Max Temp AND Max Precip</td>
<td>MaxTemp ≤ 30° C AND MaxPrecip Avg Parameters</td>
<td>183</td>
<td>360</td>
<td>51%</td>
</tr>
<tr>
<td>Min Temp AND MinPrecip</td>
<td>MinTemp ≥ 10° C AND MinPrecip Avg Parameters</td>
<td>80</td>
<td>360</td>
<td>22%</td>
</tr>
<tr>
<td>Land Cover AND Min Precipitation</td>
<td>GLC ≥ 11 (Irrigated Crops) AND GLC ≤ 190 (Artificial areas) AND MinPrecip Avg Parameters</td>
<td>80</td>
<td>360</td>
<td>22%</td>
</tr>
<tr>
<td>Elevation AND Min Precipitation</td>
<td>ALT ≤ 1800 (meters) AND MinPrecip Avg Parameters</td>
<td>70</td>
<td>360</td>
<td>19%</td>
</tr>
<tr>
<td>Max Temp AND Min Precip</td>
<td>MaxTemp ≤ 30° C AND MinPrecip Avg Parameters</td>
<td>49</td>
<td>360</td>
<td>14%</td>
</tr>
</tbody>
</table>

*Points falling in Jeddah, Saudi Arabia, fell outside the AOI for Population Density Data for Africa (23 points were removed)
** Only water bodies for Africa were calculated with this analysis (59 points falling outside Africa were removed)
*** Points within the Bhatt dataset were not completely the same as points collected in the all variables and parameters w/ 3km buffer.
Model was calculated utilizing the Query Factor Input Table (QFit) which generates a predictive analysis query using a set of input data points and a set of raster datasets. Temperature parameters were set to the min and max thresholds established by published literature (10° C and 30° C)
Equation 4 - Query Factor Input Table (QFit) Equation:

\[QFit\ Equation\ =\ Z(X(n = 360) : Y_1 - Y_{15}) \]

\(Z \) = Final result from running model with all 15 variables listed in Table 8
\(X \) = Dengue case data (n = 360 dengue data points)
\(Y_n \) = Layers included in model

Since we already knew the values for the various environmental factors that were most important in determining the location with high risk of dengue (Table 7), we manually constructed the query and then applied it to our rasters to see which locations satisfied those conditions. The use of an adaptable raster format allows for greater efficiency in computer processing of the models as well as for easy dissemination of results. Model specifications are saved in xml format, which limits the file size and enables easier loading of queries and sharing of analytic workflows.

One of the key advantages to using PAT is the greater efficiency in processing which occurs from only one raster layer being adaptively processed at a time. PAT does not change the pixels of the original raster datasets; it only modifies a single function raster dataset, which can be saved as an .afr file (A function raster dataset, when saved to a file (.afr), defines the processing to be performed on a dataset (Esri, 2014).) This increases the flexibility of the model when new case data are added as inputs, as might occur when mapping an outbreak, and when a model is run numerous times with modified parameters. More importantly, this method limits the amount of memory required to complete the analysis. Before the PAT tool was created, this analysis required the researcher to process each and every individual layer for each specification separately.
and then to use time, computer resources, and data space to combine all layers into one single analysis layer. The researcher would then have to export each iteration that occurred using different variables. For example, if the researcher wanted to calculate the difference between elevation and temperature datasets, the analyst would have to perform the calculations and then export the results, run statistics on the data, and recalculate the susceptibility. PAT speeds up this processing, even on older computers, by using QFit and the Query Expression Editor to quickly and efficiently visualize the effects of various model inputs.

The dengue susceptibility analysis in this paper uses PAT to demonstrate how different variables contribute to predictions of dengue risk. This analytic approach limits the spatial bias that results from only using presence points as the basis for susceptibility, but also uses previous research data to validate the model outputs. Emerging infections like dengue highlight the need for more efficient, quicker, and cheaper processing of health risks. Susceptibility mapping provides entomological, epidemiological, and geographical researchers with an opportunity to increase their analytic efficiency.

Results

We used the risk factors identified in published literature to assign risk values to various parameters (Table 7). For example, we assumed that places with low temperatures below 10°C (BIO6) and places with high temperatures above 30°C (BIO1, BIO5, BIO9, and BIO10) were considered to have very low risk of dengue. We confirmed that these environmentally high-risk areas were conducive to dengue
transmission by evaluating how many of the 360 case points from the Hay research group were captured within high risk areas (Table 9).

Figure 11 shows the map that was created by mapping all areas where one or more of the risk factors from Table 7—elevation, population density, temperature, or precipitation—were present. Dark red areas mark 1 km x 1 km squares where all four parameters were present, indicating high susceptibility for dengue outbreaks. Light red shows places where three of the parameters were present: elevation, population density, and temperature. Yellow identifies locations where elevation and temperature criteria were met. Blue areas met the elevation criteria. Dark blue shows locations where none of the four high risk parameters exist.

Figure 12 shows a map that compares the high risk (dark red) areas from Figure 11, which were identified by PAT using environmental data only, with a layer created from the dengue case data from Professor Hay (shown in blue in Figure 12). The blue areas in Figure 12 were mapped by using the QFit Modeler to identify areas with elevation, population density, temperature, and precipitation data similar to the values found at the locations of the 360 dengue cases. In short, the QFit Modeler captures not only the dengue points but also those points that have the same environmental characteristics as the places where dengue has been observed. The QFit model captured 86% of the dengue case data. (The model did not capture 100% of the points because locations within Chad, Mali, Saudi Arabia, Sudan, Northern Somalia, and Yemen represented anomalies where locations did not fulfill the high risk parameters in Table 7.) The PAT susceptibility risk analysis based on environmental parameters (in red) captured
83% of the cases from the original dataset from Professor Hay when using a 3km search distance and 67% of the cases with no search radius.
Figure 11 - Africa PAT Analysis.
Figure 12 - Comparison of two PAT models run for dengue susceptibility in Africa.
Human population density at a localized scale is a crucial variable for disease susceptibility modeling (Bhatt et al. 2013, Hassan et al. 2012, Moffett et al. 2007, Rogers et al. 2006). We found that, after considering the environmental parameters for the infection, higher population density is associated with a higher susceptibility to dengue. Our model incorporated a more localized population density analysis than previous studies (Bhatt et al. 2013, Brady et al. 2012, Rogers et al. 2014, Simmons et al. 2012). We found that cases are more likely to be identified in high-density population centers than those located far from health services. This finding may be due in part to urban cases of dengue being more likely to be diagnosed and reported than rural cases. However, this finding is consistent with other studies of dengue around the world, as noted in our literature search.

Our PAT risk map also found additional locations, such as Luanda, Angola, which are susceptible environments for dengue outbreaks. Dengue cases from Angola were not included in the data from Professor Hay that were compiled through the end of 2012, so no Angolan cases were included in our QFit risk model. However, the PAT risk map accurately predicted that Luanda was a susceptible dengue habitat: an outbreak in Angola occurred from April to June 2013 (Sessions et al. 2013). We can therefore confirm that high susceptibility areas could be located using PAT even without nearby occurrence points. We also identified other isolated locations that could be high risk areas for dengue, such as:

- Central African Republic near Bangui and near the western border adjacent to Cameroon
- Democratic Republic of Congo (DRC) along the border between South Sudan and the south west border neighboring Angola
- the northwestern portion of Ethiopia along the border between Sudan and South Sudan
- Kenya along one isolated location adjacent to the northern border between Ethiopia and near the coastal areas of Mombasa, Malindi, and Kilifi.
- portions of the countries Liberia and Sierra Leone
- South Sudan near Juba and along the border between Uganda and the DRC
- Tanzania along the coast near Dar es Salaam and continuing sporadically in isolated locations along the coast to Mozambique

The identification of potential hotspots allows for proactive disease prevention and control measures to be implemented before outbreaks occur. As environmental conditions change, re-running the PAT model with revised inputs will provide critical predictions of additional locations that have become susceptible environments for dengue fever. (It will also be important to update the high-risk values in Table 7 to refine the mapping parameters as new risk factor data become available.)

Discussion

Our new maps extend the analyses of dengue risk previously published for Africa (Bhatt et al. 2013), and incorporate additional parameters for predicting the locations where dengue susceptibility is highest. This localized high-resolution analysis for Africa provides a more detailed map of dengue risk than previous studies that focused on global scale analyses (Bhatt et al. 2013, Brady et al. 2012, Rogers 2006, Rogers et al. 2006, Rogers et al. 2014, Simmons et al. 2012). The places shown in red in Figures 12 and 13...
are the locations currently at highest risk of dengue, and are therefore the sites where
dengue prevention activities such as vector control and public health education will be
most cost-effective. The maps will need to be updated as new climate data become
available and as more dengue case reports are compiled.

The adaptable analysis incorporated within this paper demonstrates how more
localized and useful disease risk maps can be efficiently created with PAT. The dengue
susceptibility maps produced using PAT and presented in this paper used a variety of
spatial data and risk factor information from the peer-reviewed literature to provide a
more detailed assessment of the places in Africa that are likely to have the highest risk for
dengue fever. PAT allowed us to efficiently, quickly, and inexpensively create new maps
of dengue risk that can be used for planning public health interventions. This type of
dengue risk analysis provides the localized predictions necessary for various
governmental entities (both local and national) to make informed decisions about where
to focus their disease prevention and control efforts and where to step up health
surveillance activities. The PAT methodology demonstrated here also provides a baseline
model of dengue range that can be updated with PAT as new environmental, population,
and health data become available. Adaptable methodologies for mapping emerging
disease risks will be vital as global climate changes occur.
REFERENCES

CHAPTER 5: DISCUSSION

Our research provided the localized disease mapping in locations throughout Africa and Kenya, where it is possible that dengue does occur but is not reported due to a lack of surveillance and reporting. Incidence data alone, though valuable, does not identify where dengue is probable, what circumstances heighten the risk, and what actions may reduce dengue range. Though dengue risk is highest immediately following an outbreak, traditional diagnosis methods can take two weeks or longer to confirm the medical test results. Interdisciplinary collaboration between the fields of geography, entomology, epidemiology, and health services research can bring together complementary methods, practices, and foundational theories that can be applied to solve problems focused on spatial risk associated with disease.

This research highlights the value of using geospatial methods to evaluate the geographic range, susceptibility, and risk of populations to dengue and provides evidence to help decision makers engaged in the process of planning or revising health information systems. Five contributions in this research include:

1. Providing a summary that addresses the four primary limitations to dengue mapping based upon a review of the literature.
2. Creating a localized model that highlights the areas of highest dengue risk in Kenya.
3. Developing a model utilizing susceptibility risk analysis for dengue in Africa (limiting the spatial bias incurred from only using dengue occurrence data). This model is not limited to dengue and has the potential to be modified for other diseases as well.

4. Providing the Query Expression Editor and QFit tools that can be easily shared and modified as better localized data becomes available.

5. Producing a susceptibility risk analysis where the impact of variables are classified based on a scale ranging from (high, somewhat high, limited risk, low risk, and not susceptible). This analysis improves the representation of data from previously limiting binary (yes/no) results.

Our results, using administrative data, environmental data, population density data, and physical geography data, suggest that the visualization of dengue risk can be improved through incorporating GIS with multiple disciplines. These findings incorporated evidence-based risk analysis in the published literature demonstrating the benefits for calculating risk environments for disease. Our research also increased awareness that the range associated with dengue may be underestimated, and highlighted additional locations of risk. Furthermore, we searched the literature and recognize the four main limitations to dengue mapping. The previous models could benefit from incorporating localized data analysis as more localized data becomes available. The application of utilizing a dengue susceptibility analysis based on a weighted schema reduced the spatial bias from only using dengue occurrence data for analysis and increased the susceptibility risk model.
GIS is a valuable tool for evaluating methods to disseminate results through mapping, identifying similarity between geographic risk locations for disease, and identifying susceptibility risk where dengue occurrence data is limited. The accuracy and quality of the analysis using GIS, as with any other type of method, is dependent on the data used to conduct the study. In our initial study, we highlighted the four primary limitations to dengue mapping which compared the differing methods of visualization seen in published literature then performed an analysis (SWOT) which had previously been limited to business-related studies. We utilized Similarity Search to statistically validate a region of Africa (Kenya) and provided the necessary localized analysis for determining locations where awareness campaigns and dengue surveillance activities would be most beneficial. PAT provided a tool for testing dengue occurrence data against the environmental constraints and provided the localized insight into risk associated with dengue. Our research was able to limit the spatial bias from only using occurrence data for disease mapping. However, until we received a vetted dataset of dengue occurrence data we were limited in our analysis capabilities and testing of environmental constraints for dengue.

The implications of this research are important to consider. The purpose for defining the limitations to dengue mapping and then areas at risk for dengue is to determine those areas where localized models focused on reducing dengue risk could be implemented. Population density, temperature parameters, and limitations to dengue mapping are sensitive to the modeling assumptions used. Given these sensitivities, it may be appropriate to define areas with “buffer” boundaries to avoid the use of inflexible
parameters where anomalies along country borders will not impact risk modeling. Since many areas across Africa are deemed to have insufficient reporting of dengue, it is important to consider alternative methods for visualizing risk with limited data. Recent studies have suggested the risk and susceptibility to dengue using a consensus study (Brady et al. 2012) and have suggested methods for improving dengue research (Rogers et al. 2014, Bhatt et al. 2013, Simmons et al. 2012, and Brady et al. 2012).

The research in this dissertation has revealed that methods used for calculating disease risk are constantly evolving. With the world climate changing, the need to disseminate recent research becomes more essential. At the time of the second sub-study, we used the most current published dengue data for Africa to test susceptibility risk analysis. This provided a basis to validate and further test how susceptibility risk analysis affected the population and range of disease in Africa. Although we were able to improve upon the previous methods by creating a localized risk analysis, we were only able to validate the modeling assumptions with data from one source (Bhatt et al. 2013). The lack of dengue reporting in Africa emphasizes the need for standardized dengue data collection from countries and jurisdictions across Africa.

This research provides vital evidence to guide health policies and improve dengue surveillance and public awareness campaigns. As this study focuses on better understanding limitations to dengue mapping, the broader goal was to develop methods to measure the risk and susceptibility risk of disease at a localized scale. This study contributes to the fields of medical geography, entomology, and epidemiology by generating an interdisciplinary method that can be applied to a variety of disease
problems in the world. The findings from these three sub-studies lead to an integrated understanding of the feasibility of using GIS methods, environmental data, administrative data, population density data, and elevation data for determining areas where localized combative and awareness campaigns could be implemented within Africa. Integrating the transfer of information through the dissemination of findings at the academic level with publications in peer reviewed journals, presentations at geography conferences and medical conferences, and provided systematic models and information for disease risk at the localized level allow the knowledge achieved in this study to be replicated and scalable as more localized data becomes available. The methods presented in this dissertation are transferable to other diseases and could be applied to studies focused on a variety of other methodologies ranging from disease mapping, to susceptible environments for refugee evacuation routes, and site suitability for defense purposes.
REFERENCES

CHAPTER 6: FUTURE ANALYSIS

Future research in dengue visualization should include the integration and development of dynamic data with methods for disseminating dengue data and information within developing countries. Visualization techniques for presenting dengue risk should be integrated to use on mobile devices such as smartphones, tablet computers, and laptop computers where further research can be carried into the field by researchers. Social media and search queries are relatively recent phenomena (first reported in 2006) that have enormous potential for increasing awareness of disease (Bernardo et al. 2013). However, researchers must constantly work to reduce the noise that surrounds social media and refine their analysis. Africa has recently seen rapid growth of the internet where overall there has been an average annual growth in users of 40 percent (Warf 2010). Further developments in digital disease surveillance have the potential to improve sensitivity and specificity towards disease attentiveness: passively through advances in machine learning and actively through engagement of users. Future research should collaborate with local, regional, national, and international authorities to incorporate social media with a structured methodology.

Future research should address methodologies for collecting dengue data at a large scale within developing countries. Models must limit the spatial bias incurred from only using presence cell data by including environmental parameters, population density,
and elevation specifications which limit disease. Data collection will be vital as potential climate change impacts the range of disease. Standardizing the collection for dengue data and mosquito data for *Ae. aegypti* and *Ae. albopictus* will increase the modeling and visualization capabilities for Africa. With the continued conflict and movement of refugees in Africa, the reporting and collection of dengue will greatly impact the understanding of potential locations for outbreaks. Incorporating susceptibility risk and risk analysis for non-monitored areas including locations within Africa will have to be continually monitored as the potential impact of climate change could drastically influence the population susceptible to contracting disease.

Novel technology to break dengue transmission cycles should incorporate the recent trend for the development of a dengue vaccine or use of *Wolbachia* as a means for reducing dengue risk. Traditional control measures have focused on reducing populations of the main transmission vector, the mosquito *Ae. aegypti*, but these have largely failed to slow the current dengue cycle. As of now, several vaccines are in various stages of advanced development, with clinical trials currently underway on five candidate vaccines (Coller and Clements 2011). The development of a vaccine has been combated by both a lack of understanding the population’s immune response to a dosing schedule, and the factors determining disease severity (Coller and Clements 2011). Recently, studies have looked towards *Wolbachia* as the solution to reducing dengue risk (Bain et al. 2013). *Wolbachia* is a bacterium that lives only within insect cells and is only passed from one generation to the next through the female insect’s eggs. This bacterium is not infectious and cannot be transmitted to any warm blooded animals, including humans. Recent
studies have found that the Wolbachia bacterium reduces the ability for insects to become infected with viruses (Bull and Turelli 2013, Bain et al. 2013, Walker et al. 2011, Hoffman et al. 2011). Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission could provide a new method to reducing the risk to dengue. However, not enough data exists to determine the long term effects from introducing Wolbachia into mosquitoes at this time where the evolution of dengue virulence cannot be predicted even qualitatively (Bull and Turelli 2013). Future research can utilize the location and population of Ae. aegypti to determine where Wolbachia infected mosquitoes could impact the range of dengue as they are released into the environment. Therefore determining the impact and potential range where releasing Wolbachia infected mosquitoes will be most beneficial. With increased use of GIS and processing we may provide localized models and methods where analysis provides an important impact on limiting the risk of disease for public health communities.

The scalability of the susceptibility risk (PAT) and Similarity Search methodology will allow for more high resolution to be tested as such data becomes available. Whether data are raster datasets being utilized to test susceptibility risk in PAT or whether a higher concentration of points being utilized with Similarity Search, the scalability of the tools will handle the increased processing and incorporation of high resolution localized data (in both vector and raster formats). The same methodologies used to disseminate the models run through PAT can be altered to run higher resolution data as it becomes available. Future studies could re-run the models through incorporating additional localized variables seen as impacts for disease risk to make their
research more susceptible. These tools serve as a basis for creating a risk modeling approach that can be scalable and increases the ability to disseminate the models and information quickly and efficiently.

In countries with limited resources, the ability to provide pre-created models with localized knowledge of disease environments would greatly enhance the dissemination and awareness of disease mapping. In underdeveloped countries, incorporating a schema where models and methodologies for disease mapping could prove beneficial to Non-Government Organizations (NGOs) for estimating resources to respond to endemic and epidemic conditions of disease. In conclusion, this dissertation moves beyond dengue to apply methodologies such as Similarity Search, PAT, QFit and GIS to other diseases. These methods provide the platform to visualize susceptibility at a localized level by disseminating information, which is a growing concern as potential climate effects will likely expand the range of disease.
REFERENCES

BIOGRAPHY

David Frost Attaway graduated from Coppell High School, Coppell, Texas, in 2003. He received his Bachelor of Arts in Geography from The University of Texas at Dallas (UTD) in 2007. He then continued his studies at UTD and received his Masters in Geographic Information Science in 2009. He has over ten years’ experience in GIS work and has been employed for various government contracting companies. He currently works for Esri as a Solution Engineer on the Federal Team in Vienna, VA. He also serves as a member on the Northern Virginia (NOVA) Geospatial Academic Advisory Board. He plans to continue working for Esri once completion and will look towards a career in academia.