Mason Archival Repository Service

Studies in Blood-Brain Barrier Disruption in Anthrax Meningitis

Show simple item record

dc.contributor.author Mukherjee, Dhritiman V.
dc.creator Mukherjee, Dhritiman V.
dc.date 2009-04-21
dc.date.accessioned 2009-05-27T19:26:17Z
dc.date.available NO_RESTRICTION en
dc.date.available 2009-05-27T19:26:17Z
dc.date.issued 2009-05-27T19:26:17Z
dc.identifier.uri https://hdl.handle.net/1920/4522
dc.description.abstract B. anthracis causes hemorrhagic meningitis. The pathogenesis and molecular mechanisms associated with blood-brain barrier (BBB) dysfunction in anthrax meningitis remain poorly understood. We reported previously that anthrax-secreted metalloprotease Immune-Inhibitor A (InhA) degrades various substrates, including extracellular matrix proteins, endogenous inhibitors, and coagulation proteins. To understand the possible role and mechanism(s) of this potential virulence factor in disruption of BBB, we investigated its effects on the integrity and permeability of human brain microvasculature endothelial cells (HBMEC), as a model of blood-endothelial barriers. A time-dependent decrease of trans-epithelial and endothelial resistance by InhA suggests that HBMEC are highly sensitive to InhA. One of the major tight junction (TJ) proteins in vascular endothelial cells, ZO-1, was found to be a molecular target of InhA treatment. ZO-1 existing in cell lysates, intact cells, and recombinant forms was effectively degraded by InhA. Inhibition of phagocytosis by cytochalasin D and monodansylcadaverine disrupted the ZO-1 degradation, and immunostaining of InhA showed its colocalization with ZO-1 in cell periphery, strongly suggesting that InhA is delivered to target ZO-1 by phagocytosis. In addition, InhA-transformed B. subtilis efficiently invaded, compared to its wild type, and anti-InhA antibodies inhibited this invasion of B. anthracis spores into HBMEC, suggesting thereby InhA-mediated spore entry. Finally, mice challenged with purified InhA underwent the BBB leakage in a time-dependent manner. Injection of Quantum dot-conjugated InhA into mice provided further evidence that InhA is required at the BBB leakage of anthrax meningitis. These findings present a previously unknown role and mechanism of the bacterial (B. anthracis) protease, InhA, in CNS vascular endothelial disruption, involving a mechanism facilitated by degradation of ZO-1 by InhA. Persuasive evidence is presented of the selective targeting of the major scaffolding protein, zonulin, in brain endothelial tight junction by the anthrax-secreted metalloprotease, InhA, and its close association with increased BBB permeability and in vivo extravasation (hemorrhage) in brain. These observations suggest that B. anthracis meningitis may primarily result from disintegration of the structural organization of the junctional complex of endothelial cells by bacterial product (InhA). However, it remains uncertain whether or not direct passage of the bacterial has a role in barrier disruption. Nonetheless, the mechanism proposed adds a new dimension to our understanding of anthrax meningitis.
dc.language.iso en_US en
dc.subject Anthrax en_US
dc.subject Metalloprotease en_US
dc.subject Permeability en_US
dc.subject Meningitis en_US
dc.subject Blood-brain barrier en_US
dc.title Studies in Blood-Brain Barrier Disruption in Anthrax Meningitis en
dc.type Dissertation en
thesis.degree.name Doctor of Philosophy in Biosciences en
thesis.degree.level Doctoral en
thesis.degree.discipline Biosciences en
thesis.degree.grantor George Mason University en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MARS


Browse

My Account

Statistics