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Abstract

NEUROMORPHIC HARDWARE DESIGN FOR EXECUTING DEEP NEURAL NET-
WORKS ON LOW POWER AND LIMITED RESOURCE INFRASTRUCTURES

Ali Mirzaeian, PhD

George Mason University, 2021

Dissertation Director: Dr. Avesta Sasan

The applications of machine learning algorithms are innumerable and cover nearly ev-

ery domain of modern technology. During this rapid growth of this area, more and more

companies have expressed a desire to utilize machine learning techniques in smaller devices,

such as cell phones or smart Internet of Things (IoT) instruments. However, as machine

learning has so far required a power source with more capacity and higher efficiency than

a conventional battery. Therefore, introducing neural network accelerators with low en-

ergy demands and low latency for executing machine learning techniques has drawn lots of

attention in both the academia and industry.

In this work, we first propose the design of Temporal-Carry-deferring MAC (TCD-MAC)

and illustrate how our proposed solution can gain significant energy and performance benefit

when utilized to process a stream of input data. We then propose using the TCD-MAC

to build a reconfigurable, high speed, and low power Neural Processing Engine (TCD-

NPE). Furthermore, we expand the idea of TCD-MAC to present NESTA, which is a

specialized Neural engine that reformats Convolutions into 3�3 batches and uses a hierarchy

of Hamming Weight Compressors to process each batch.



Chapter 1: Introduction

In recent years, machine learning has provided a foundation for rapid technological advance-

ment and massive economic growth. The global value of the machine learning market is

estimated at over $7 billion, and this figure is predicted to become much larger in the coming

decade. Machine learning is one of the most exciting frontiers in computer engineering. By

training computer algorithms to conduct tasks that normally require human involvement,

engineers have saved countless industries both time and money.

Around the globe, machine learning is widely employed in industries like medicine and

finance. To take medicine as an example, machine learning is being employed to personalize

health care to suit specific patients and to diagnose illnesses. Machine learning has become

more ubiquitous as engineers refine the available technology. However, the progress of

machine learning and the expansion of its use in the medical industry, as well as many

other industries, depends in large part on the progress of efficient computing technologies.

Machine learning is becoming a more and more computationally expensive operation.

At the same time, more and more companies have expressed a desire to utilize machine

learning techniques in smaller devices, such as cell phones or smart Internet of Things

(IoT) instruments. The size restrictions of remote and wireless devices have presented a

barrier to this initiative, however, as machine learning has so far required a power source

with more capacity and higher efficiency than a conventional battery.

On the hardware platform side, the GPU solutions have rapidly evolved over the past

decade and are considered a prominent mean of training and executing DNN models. Al-

though GPU has been a real energizer for this research domain, its is not an ideal solu-

tion for efficient learning, and it is shown that development and deployment of hardware

solutions dedicated to processing the learning models can significantly outperform GPU

solutions. This has lead to the development of Tensor Processing Units (TPU) [5], Field

1
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Programmable Gate Array (FPGA) accelerator solutions [6], and many variants of dedicated

ASIC solutions [7–10].

Today, there exist many different flavors of ASIC neural processing engines. The com-

mon theme between these architectures is the usage of a large number of simple Processing

Elements (PEs) to exploit the inherent parallelism in DNN models. Compare to a regular

CPU with a capable Arithmetical Logic Unit (ALU), the PE of these dedicated ASIC solu-

tions is stripped down to a simple Multiplication and Accumulation (MAC) unit. However,

many PEs are used to either form a specialized data flow [8], or tiled into a configurable

NoC for parallel processing DNNs [10,12,13]. The observable trend in the evolution of these

solutions starting from DianNao [7], to DaDianNao [8], to ShiDianNao [9], to Eyris [10] (to

name a few) is the optimization of data flow to increase the re-use of information read from

memory, and to reduce the data movement (in NOC and to/from memory).

Common between previously named ASIC solutions, is designing for data reuse at NOC

level but ignoring the possible optimization of the PE’s MAC unit. A conventional MAC

operates on two input values at a time, computes the multiplication result, adds it to

its previously accumulated sum, and output a new and correct accumulated sum. When

working with streams of input data, this process takes place for every input pair taken

from the stream. But in many applications, we are not interested in the correct value of

intermediate partial sums, and we are only interested in the correct final result.

The first design question that we answer is if we can design a faster and more efficient

MAC if we remove the requirement of generating a correct intermediate sum when working

on a stream of input data. This question led us to the design of a novel building block

to improve the speed of machine learning techniques. We called this basic block Temporal

Carry Deferring MAC (TCD-MAC). Later on, we introduced TCD-MAC++ as an extended

version of TCD-MAC. We employed these basic blocks for building a Multi-Layer Perceptron

(MLP) processing engine and also a Convolutional Neural Network (CNN) engine.



Chapter 2: TCD-NPE: A Re-con�gurable and E�cient

Neural Processing Engine, Powered by Novel

Temporal-Carry-Deferring MACs

2.1 Introduction

Deep neural networks (DNNs) has attracted a lot of attention over the past few years, and

researchers have made tremendous progress in developing deeper and more accurate models

for a wide range of learning-related applications [3, 4, 14–21]. The desire to bring these

complex models to resource-constrained hardware platforms such as Embedded, Mobile

and IoT devices has motivated many researchers to investigate various means of improving

the DNN models’ complexity and computing platform’s efficiency [22, 23]. In terms of

model efficiency, researchers have explored different techniques including quantization of

weights and features [24, 25], formulating compressed and compact model architectures

[25–31], increasing model sparsity and pruning [25, 32], binarization [24, 33], and other

model-centered alternatives.

In this chapter, we propose the design of Temporally-deferring-Carry MAC (TCD-

MAC), and use the TCD-MAC to build a reconfigurable, high speed, and low power

MLP Neural Processing Engine (NPE). We illustrated that TCD-MAC can produce an

approximate-yet-correctable result for intermediate operations, and could correct the out-

put in the last state of stream operation to generate the correct output. We then build a

Re-configurable and specialized MLP Processing Engine using a farm of TCD-MACs (used

as PEs) supported by a reconfigurable global buffer (memory) and illustrate its superior

performance and lower energy consumption when compared with the state of the art ASIC

3
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NPU solutions. To remove the data flow dependency from the picture, we used our pro-

posed NPE to process various Fully Connected Multi-Layer Perceptrons (MLP) to simplify

and reduce the number of data flow possibilities and to focus our attention on the impact

of PE in the efficiency of the resulting accelerator.

2.2 Related Work

The work in [10], categorizes the possible data flows into four major categories: 1) No

Local Reuse (NLR) where neither the PE (MAC) output nor filter weight is stored in the

PE. Examples of accelerator solutions using NLR data flow include [7, 8, 35]. 2) Output

Stationary (OS) where the filter and weight values are input in each cycle, but the MAC

output is locally stored. Examples of accelerator solutions using OS data flow include

[9, 36–38]. 3) Weight Stationery (WS) where the filter values are locally stored, but the

MAC result is passed on. Examples of accelerators using WS data flow include [39–41], and

4) Row Stationary (RS and its variant RS+) where some of the reusable MAC outputs and

filter weights remain within a local group of PE to reduce data movement for computing

the next round of computation. An example of accelerator using RS is [10].

The OS and NLR are generic data flow and could be applied to any DNN, while the

WS and RS only apply to Convolutional Neural Networks (CNN) to promote the reuse of

filter weights. Hence, the type of applicable data reuse (output and/or weight) depends

on the model being processed. The Multi-Layer Perceptrons (MLP) is a sub-class of NNs

that has extensively used for modeling complex and hard to develop functions [42]. An

MLP has a feed-forward structure, and is comprised of three types of layers: (1) An input

layer for feeding the information to the model, 2) one or more hidden layer(s) for extracting

features, and (3) an output layer that produces the desired output which could be regression,

classification, function estimation, etc. Unfortunately, when it comes to MLPs, or when

processing Fully Connected (FC) layers, unlike CNNS, no filter weight could be reused.

In these models the viable data flows are the OS and NLR. The only possible solution
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for using the WS solution in processing MLPs is the case of multi-batch processing that

may benefit from weight reuse. Another related work is the NPE proposed in [2]. This

solution, denoted as RNA, is a special case of NLR, where data flow is controlled through

NoC connectivity between different PEs; RNA breaks the MLP model into multi-layer loops

that are successively mapped to the accelerator PEs, and uses the PEs as either a multiplier

or an adder, dynamically forming a systolic array.

In the result section of this paper, We demonstrate that the OS solutions are in general

more efficient than NLR solutions. We further illustrate that our proposed TCD-MAC,

when used in the context of our proposed NPE, outperform state of the art accelerators

that rely on (fastest and most efficient) conventional MAC solutions.

2.3 Our Proposed MLP Processing Engine

Before describing our proposed NPE solution, we first describe the concept of temporal

carry and illustrate how this concept can be utilized to build a Temporal Carry deferring

Multiplication and Accumulation (TCD-MAC) unit. Then, we describe, how an array of

TCD-MAC are used to design a re-configurable and high-speed MLP processing engine, and

how the sequence of operations in such NPE is scheduled to compute multiple batches of

MLP models.

2.3.1 Temporal Carry Deferring MAC (TCD-MAC)

Suppose two vectors A and B each have N M-bit values, and the goal is to compute their

dot product,
PN�1

i=0 (Ai �Bi) (similar to what is done during the activation process of each

neuron in a NN). This could be achieved using a single Multiply-Accumulate (MAC) unit,

by working on 2 inputs at a time for N rounds. Fig. 2.1(A-top) shows the general view of a

typical MAC architecture that is comprised of a multiplier and an adder (with 4-bit input

width), while Fig. 2.1(A-bottom) provides a more detailed view of this architecture. The

partial products (M partial product for M-bits) are first generated in Data Reshape Unit
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(DRU). Then the hamming weight compressors (HWC) in the Compression and Expansion

Layer (CEL) transform the addition of M partial products into a single addition of two

larger binaries, the addition of which in an adder generates the multiplication result.

Figure 2.1: Comparing the architecture of A) a typical MAC, versus B) a simpli�ed 2-input version of TCD-

MAC. In all variables in form of Di
m, the subscript (m) captures the bit position values, and postscript (i)

capture the cycle (iteration). For example, Ai; Bi are the input data in the ith iteration (corresponding to

the ith cycle) of the multiply accumulate operation. The bim; aim, and pim are accordingly the mth signi�cant

bits of inputs A, B, and partial sum at the ith cycle (iteration). The division of CPA into GEN and PCPA
is also shown in this �gure. Note that the P CP A is only executed at the last cycle.

The building block of the CEL unit are the HWC. A HWC, denoted by CHW (m:n), is

a combinational logic that implements the Hamming Weight (HW) function for m input-

bits (of the same bit-significance value) and generates an n-bit binary output. The output

n of HWC is related to its input m by: n = dlogm2 e. For example “011010”, “111000”,

and “000111” could be the input to a CHW (6:3), and all three inputs generate the same

Hamming weight value represented by ”011”. A Completed HWC function CCHW (m:n) is
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defined as a CHW function, in which m is 2n � 1 (e.g., CC(3:2) or CC(7:3)). Each HWC

takes a column of m input bits (of the same significance value) and generates its n-bit

hamming weight. In the CEL unit, the output n-bits of each HWC is fed (according to

its bit significance values) as an input to the proper CHW (s) in the next-layer CEL. This

process is repeated until each column contains no more than 2-bits, which is a proper input

size for a simple adder. In Fig. 2.1 it is assumed that a Carry Propagation Adder Unit

(CPAU) is used. The result is then added to the previously accumulated value in the output

register in the second adder to generate a new accumulated sum. Note that in conventional

MAC, the carry (propagation) bits in the CPAUs are spatially propagated through the carry

chain which constitutes the critical timing path for both adder and multiplier.

Fig.2.1.B shows our proposed TCD-MAC. In this solution, only a single CPAU is used.

Furthermore, the CPAU is broken into two distinct segments 1) The GENeration (GEN)

and Partial CPA (PCPA). The Gen is the first layer of CPA logic that produces the Generate

(Gci ) and Propagate (P ci ) signals for each bit position i at cycle c. The TCD-MAC relies on

the assumption that we only need to correctly compute the final result of multiplication and

accumulation over an array of inputs (e.g.
PN�1

i=0 (Ai �Bi)), while relaxing the requirement

for generating correct intermediate sums. This relaxed specification is applicable when a

MAC is used to compute a Neuron value in a DNN. Benefiting from this relaxed requirement,

the TCD-MAC skips the computation of PCPA, and injects (defers) theGci and P ci generated

in cycle c, to the CEL unit in cycle c+ 1. Using this approach, the propagation of carry-bit

in the long carry chain (in PCPA) is skipped, and without loss of accuracy, the impact of

the carry bit is injected to the correct bit position in the next cycle of computation. We

refer to this process as temporal (in time) carry propagation. The Temporally carried Gci is

stored in a new set of registers denoted as Carry Buffer Unit (CBU), while the P ci in each

cycle is stored in the output register Unit (ORU). Note that CBU bits can be injected to

any of the CHW (m : n) in any of the CEL layers in the same bit position. However, it is

desired to inject the CB bits to a CHW (m : n) that is incomplete to avoid an increase in
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the size and critical path delay of the CEL.

Figure 2.2: TCD-MAC cycle time is computed by excluding the PCPA. In the last cycle of computation,
the TCD-MAC activates the PCPA to propagate the unconsumed carry bits.

Assuming that a TCD-MAC works on an array of N input pairs, the temporal carry

injection is done N-1 times. In the last round, however, the PCPA should be executed. As

illustrated in Fig. 2.2, in this approach, the cycle time of the TCD-MAC could be reduced

to that excluding the PCPA, allowing the computation over PCPA to take place in an extra

cycle. The one extra cycle allows the unconsumed carry bits to be propagated in PCPA

carry chain, forcing the TCD-MAC to generate the correct output. Using this technique we

shortened the cycle time of TCD-MAC for a large number of cycles. The saving obtained

from shorter cycles over a large number of cycles significantly outweighs the penalty of one

extra cycle.

To support signed inputs, in TCD-MAC we pre-process the input data. For a partial

product p = a � b, if one value (a or b) is negative, it is used as the multiplier. With this

arrangement, we treat the generated partial sums as positive values and later correct this

assumption by adding the two’s complement of the multiplicand during the last step of

generating the partial sum. Following example clarify this concept: let’s suppose that a is

a positive and b is a negative b-bit binary. The multiplication b� a can be reformulated as:

b� a = (�27 +

6X
i=0

xi2
i)� a = �27a+ (

6X
i=0

xi2
i)� a (2.1)
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The term �27a is the two’s complement of multiplicand which is lef-shifted by 7 bits,

and the term (
P6

i=0 xi2
i)� a is only accumulating shifted version of the multiplicand.

2.3.2 TCD-NPE: Our Proposed MLP Neural Processing Engine

TCD-NPE is a configurable neural processing engine which is composed of a 2-D array of

TCD-MACs. The TCD-MAC array is connected to a global buffer using a configurable

Network on Chip (NOC) that supports various forms of data flow as described in section

4.1. However, for simplicity, we limit our discussion to supporting OS and NLR data flows

for executing MLPs. This choice is made to help us focus on the performance and energy

impact of utilizing TCD-MACs in designing an efficient NPE without complicating the

discussion with the support of many different data flows.

Figure 2.3 captures the overall TCD-NPE architecture. It is composed of 1) Processing

Element (PE) array which is a tiled array of TCD-MACs, 2) Local Distribution Networks

(LDN) that manages the PE-array connectivity to memories, 3) Two global buffers, one for

storing the filter weights and one for storing the feature maps, and 4) The Mapper-and-

controller unit which translates the MLP model into a supported data and control flow.

The functionality and design of each of these units are described next:
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Figure 2.3: TCD-NPE overall architecture. The Mapper algorithm is executed externally, and the sequence
of events is loaded into the controller for governing the OS data and control ow.

PE Array

The PE-array is the computational engine of our proposed TCD-NPE. Each PE in this tiled

array is a TCD-MAC. Each TCD-MAC could be operated in two modes: 1) Carry Deferring

Mode (CDM), or 2) Carry Propagation Mode (CPM). According to the discussion in section

2.3.1, when working with an input stream of size N, the TCD-MAC is operated in the CDM

model for N cycles (computing approximate sum), and in the CPM mode in the last cycle

to generate the correct output. This is in line with OS data flow as described in section

2.2. Note that the TCD-MAC in this PE-array could be operated in CPM mode in every

cycle allowing the same PE-array architecture to also support the NLR. After computing

the raw neuron value (prior to activation), the TCD-MAC writes the computed sum into

the NOC bus. The Neuron value is then passed to the quantization and activation unit

before being written back to the global buffer. Fig. 3.5 captures the logic implementation

for quantization (to 16 bits) and Relu[4] activation in this unit.
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Figure 2.4: The logic implementation of Quantization (Left) and Relu Activation (right) for signed �xed-
point 16bit values

Consider two layers of an MLP where the input layer contains M feature-values (neurons)

and the second layer contains N Neurons. To compute the value of N Neurons, we need

to utilize N TCD-MACs (each for M+1 cycles). If the number of available TCD-MACS is

smaller than N, the computation of the neurons in the second layer should be unrolled to

multiple rolls (rounds). If the number of available TCD-MACs is larger than neurons in

the second layer (for small models), we can simultaneously process multiple batches (of the

model) to increase the NPE utilization. Note that the size of the input layer (M) will not

affect the number of needed TCD-MACs, but dictates how many cycles (M+1) are needed

for the computation of each neuron.

When mapping a batch of MLP to the PE-array, we should decide how the computation

is unrolled and how many batches (K), and how many output neurons (N) should be mapped

to the PE-array in each roll. The optimal choice would result in the least number of rolls

and the maximum utilization of the NPE. To illustrate the trade-offs in choosing the value

of (K, N) let us consider a PE-array of size 18, which is arranged in 6 rows and 3 columns

of TCD-MACs (similar to that in Fig. 2.3). We refer to each row of TCD-MACs as a TCD-

MAC Group (TG). In our implementation, to reduce NOC complexity, the TG groups work

on computing neurons in the same batch, while different TG groups could be assigned to

work on the same or different batches. The architecture in Fig. 2.3 has 6 TG groups. Let
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us use NPE(K, N) to denote the choice of using the PE-array to compute N neuron values

in K batches where N �K = 18. In our example PE-array the following selections of K and

N are supported: (K;N) 2 (1; 18); (2; 9); (3; 6); (6; 3). The (9; 2) and (18; 1) configuration

are not supported as the value of N in this configurations is smaller than TG size = 3.

Fig. 2.5.left shows an abstract view of TCD-NPE and describe how the weights and

input features (from one or more batches) are fed to the TCD-NPE for different choices of K

and N. As an example 2.5.(left).A shows that input features from one batch are broadcasted

between all TGs, while the weights are unicasted to each TCD-MAC. Let us represent the

input scenario of processing B batches of U neurons in a hidden or output layer of an

MLP model with I input features using Γ(B; I; U). Fig. 2.5.(right) shows the NPE status

when a Γ(3; I; 9) model (3 batches of a hidden layer with 9 neurons in a hidden layer each

fed from I input neurons) is executed using each of 4 different NPE(K, N) choices. For

example Fig. 2.5.(right).top shows that using configuration NPE(1,18), we process one

batch with 18 neurons at a time. In this example, when using this configuration, the NPE

is underutilized (50%) as there exist only 9 neurons in each batch. Following a similar

argument, the NPE(6,3) arrangement also have 50% utilization. However the arrangement

NPE(2,9), and NPE(3,6) reach 75% utilization (100% for the roll, and 50% for the second

roll), hence either NPE(2,9) or NPE(3,6) arrangement is optimal for the Γ(3; I; 9) problem

as they produce the least number of rolls. Note that the value of I in Γ(3; I; 9) denotes the

number of input features which dictate the number of cycles that the NPE(K,N) should be

executed.
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Figure 2.5: Assuming a 6 � 3 PE-array of TCD-MACs, the NPE(K, N) could be con�gured such that (K,

N) 2 f(1,18), (2,9), (3,6), (6,3)g. This �gure illustrate the number of rolls, and utilization when each of

NPE(K,N) con�gurations is used to run a �(3,I,9). model. Each roll is executed I times.

Mapping Unit

An MLP has one or more hidden layers and could be presented using Model(I �H1�H2�

:::�HN �O), in which I is the number of input features, Hi is the number of Neurons in

the hidden layer i, and O is the number of output layer neurons. The role of the mapping

unit is to find the best unrolling scenario for mapping the sequence of problems Γ(B; I;H1),

Γ(B;H1; H2), ..., Γ(B;HN�1; HN ), and Γ(B;HN ; O) into minimum number of NPE(K,N)

computational rounds.

Algorithm 1 describes the mapper function for unrolling a multi-batch multi-layer MLP

problem. In this Algorithm, B is the batch size that could fit in the NPE’s feature-memory

(if larger, we can unroll the B into N � B* computation round, where B* is the number

of batches that fit in the memory). M [L] is the MLP layer size information, where M [i] is
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the number of nodes in layer i (with i = 0 being Input, and i = N + 1 being Output, and

all others are hidden layers). The algorithm schedules a sequence of NPE(K, N) events to

compute each MLP layer across all batches.

Algorithm 1 Schedule NPE(K,N) rolls (events) to execute B batches of M(L) =
MLP (I;H1; :::;HN ; O).

procedure PracticalCfgFinder(Model M [L], BatchSize B)

for (l = 1; size(M); l + +) do

Treehead = CreateTree(B;M [l])

ExecTree  Shallowest binary tree (least rolls) from Treehead
Schedule  Schedule computational events by using BFS

on ExecTree to report NPE(K,N) and r at each node.

return Schedule

procedure CreateTree(B;�)

C[i] �nd each (Ki; Ni)jKi; Ni 2 N, & Ki < B

& size(NPE) = Ki �Ni
for (i = 0; i < size(C); i+ +) do

MB = min(B;C[i][1]). . C[i][1] = Ki
M� = min(�; C[i][2]). . C[i][2] = Ni
 = (MB ;M�) .  : NPE’s (K,N) con�guration

r = bB=MBc � b�=M�c . r: # of rolls with NPE(MB ;M�)

if (B%MB) ! = 0 then

NodeB  CreateTree(B%MB ;�)

if (K%M�) ! = 0 then

Node�  CreateTree(B �B%MB ; K%M�)

Node  createNode(r;  ;NodeB ; Node�)

return Node

Figure 2.6: An example execution of algorithm 1 when processing �(5; I; 7) model using a TCD-MAC with

a 6� 3 PE-array. (A): the complete computational Tree from CreateTree procedure, (B): binary execution

tree obtained from BFS scheduling, (C): the sequence of scheduled events to compute the model based on
binary execution tree.



15

To schedule the sequence of events, the Alg. 1 first generates the expanded computa-

tional tree of the NPE using CreateTree procedure. This procedure first finds all possible

ways that NPE could be segmented for processing N neurons of K batches, where K � B

and stores them into configuration database C. Then for each of configurations of NPE(K,

N), it derives how many rounds (r) of NPE(K, N) computations could be executed. Then it

computes a) the number of remaining batches (with no computation) and b) the number of

missing neurons in partially computed batches. It, then, creates a tree-node, with 4 major

fields 1) the load-configuration Ψ(K�i ; N
�
i ) that is used to partially compute the model using

the selected NPE(Ki; Ni) such that (K�i � Ki)&(N�i � Ni), 2) the number of rounds (rolls)

r taken with computational configuration Ψ to reach that node, 3) a pointer to a new prob-

lem NodeB that specifies the number of remaining batches (with no computation), and 4)

a pointer to a new problem Node� for partially computed batches. Then the CreateTree

procedure is recursively called on each of the NodeB and Node� until the batches left, and

partial computation left in a (leaf) node is zero. At this point, the procedure returns. After

computing the computational tree, the mapper extracts the best execution tree by finding a

binary tree with the least number of rolls (where all leaf nodes have zero computation left).

The number of rolls is computed by summing up the r field of all computational nodes.

Finally, the mapper uses a Breath First Search (BFS) on the Execution Tree (ExecTree

and report the sequence of r�NPE(K, N) for processing the entire binary execution tree.

The reported sequence is the optimal execution schedule. Fig. 2.6 provides an example for

executing 5 batches of a hidden MLP layer with 7 neurons. As illustrated the computation-

tree (Fig. 2.6.A) is first generated, and then the optimal binary execution tree (Fig. 2.6.B)

resulting in the minimum number of rolls is extracted. Fig. 2.6.C captures the result of

scheduling step where BFS search schedule the sequence of r�NPE(K, N) events.

Controller

The controller is an FSM that receives the ”Schedule” from Mapper and generated the

appropriate control signals to control the proper OS data flow for executing the scheduled
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sequence of events.

Figure 2.7: The arrangement of data in W-mem and FM-mem when our proposed TCD-NPE is used in
NPE(K,N)=(2,64) con�guration mode to process B = 2 batches of a hidden layer of an MLP model as

de�ned by �(B; I; H) = (2; 200; 100).

Memory Architecture

The NPE global memory is divided into feature-map memory (FM-Mem), and Filter Weight

memory (W-Mem). The FM-Mem consist of two memories with ping-pong style of access,

where the input features are read from one memory, and output neurons for the next NN

layer, are written to the other memory. When working with multiple batches (B), the

input features from the largest number of fitting batches (B*) is read into feature memory.

For simplicity, we have assumed that the feature map is large enough to hold the features

(neurons) in the largest layer of at least one MLP (usually the input) layer. Note that the

NPE still can be used if this assumption is violated, however, now some of the computed

neuron values have to be transferred back and forth between main memory (DRAM) and

the FM-Mem for lack of space. The filter memory is a single memory that is filled with the

filter weights for the layer of interest. The transfer of data from main memory (DRAM)
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to the W-Mem and FM-Mem is regulated using Run Length Coding (RLC) compression to

reduce data transfer size and energy.

The data arrangement of features and weights inside the FM-Mem and W-Mem is shown

in Fig. 2.7. The data storage philosophy is to sequentially store the data (weight and input

features) needed by NPE (according to its configuration) in consecutive cycles in a single

row. This data reshaping solution allows us to reduce the number of memory accesses by

reading one row at a time into a buffer, and then consuming the data in the buffer in the

next few cycles. We explain this data arrangement concept using the example shown in

Fig. 2.7.

Fig. 2.7 shows the arrangement of data when we use our proposed TCD-NPE in

NPE(K,N)=(2,64) configuration to process B = 2 batches of a hidden layer of an MLP

model as defined by Γ(B; I;H) = (2; 200; 100). Note that the PE array size, in this case is

16� 8 which is divided into two 8� 8 arrays for processing each of 2 batches. The W-Mem,

shown in left, is filled by storing the first N=64 weights of each outgoing edge from input

Neurons (features) to each of the neurons in the hidden layer. Considering that the width

of W-Mem is 256 bytes, and each weight is 2 bytes, the width of W-Mem (WW�mem) is

128 words. Hence, we can store 64 weights of the outgoing edge from each 2 input neurons

in one row. The memory-write process is repeated for d(I=(WW�mem=N))e = 100 rows,

and then the next N = 64 weights of outgoing edges from each input neuron are written

(in this case we only have 36 weights left, as there exist a total of 100 outgoing edges from

each input neuron, 64 of which is previously stored) in the next d(I=(WW�mem=N))e = 100

rows. At processing time, by using the NPE(2,64) configuration, the TCD-NPE consumes

N = 64 weights in each cycle. Hence, with one read from W-Mem, it receives the weights

needed for WW�mem=N = 128=64 = 2 cycles, reducing the number of memory accesses by

half.

The FM memory, on the other hand, is divided into B = 2 segments. Assuming that the

width of FM memory is WFM�mem = 64 words, each segment can store WFM�mem=B =

64=2 = 32 input features. The memory, as shown in Fig. 2.7, is filled by writing the input
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features of each batch into subsequent rows of each virtually segmented memory. Note that

both FM-Mem and W-Mem should be word writable to support writing to a section of a

row without changing the value of other memory bits in the same row. The input features

from each batch is written to the d(I=(WFM�mem=B))e = d(200=(64=2)) = 7e rows. At

processing time, using the NPE(2,64) configuration, the TCD-NPE in one access (Reading

one row) will receive WF =B input features from B different batches and store them in

a buffer. In each subsequent cycle, it consumes one input from each batch, hence, the

arrangement of data and sequential read of data into a buffer will reduce the number of

memory accesses by a factor of WFM�mem=B = 64=2 = 32.

Local Distribution Network (LDN)

The Local Distribution Networks (LDN) interface the read/write buffers and the Network

on Chip (NOC). They manage the desired multi- or uni-casting scenarios required for dis-

tributing the filter values and feature values across TGs. Figure 2.8 illustrate an example

of LDNs in an NPE constructed using 6 � 3 array of TCD-MACs. As illustrated in this

example, the LDNs are used for 1) reading/writing from/to buffers of FM-mem while sup-

porting the desired multi-/uni-casting configuration (generated by controller) to support

the selected NPE(K, N) configuration (Fig.2.8.A) and 2) reading from W-mem buffer and

multi-/uni-casting the result into TGs (Fig.2.8.B). Note that the LDN in Fig, 2.8 is specific

to NPE of size 6� 3. For other array sizes, a similar LDN should be constructed.
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Figure 2.8: An example of LDN for managing the connection between a (6�3)-PE-array’s NoC and memory.

(A).left: LDN for writing from NoC data bus to FM-mem. (A).right: LDN for reading from FM-mem to

NoC bus. (B): LDN for reading from W-mem into NoC �lter bus. The FM-mem in this case, is divided into
6 partitions, supporting the simultaneous process of 6 batches at a time.

2.4 Results

In this section, we first evaluate the Power, Performance, and Area (PPA) gain of using

TCD-MAC, and then evaluate the impact of using the TCD-MAC in our proposed TCD-

NPE. The TCD-MAC and all MACs evaluated in this section operate on signed 16-bit

fixed-point inputs.

2.4.1 Evaluation and Comparison Framework

The PPA metrics are extracted from the post-layout simulation of each design. Each MAC

is designed in VHDL, synthesized using Synopsis Design Compiler [43] using 32nm standard

cell libraries, and is subjected to physical design (targeting max frequency) by using the

Synopsys reference flow in IC Compiler [44]. The area and delay metrics are reported using

Synopsys Primetime [45]. The reported power is the averaged power across 20K cycles

of simulation with random input data that is fed to Prime timePX [45] in FSDB format.

The general structure of MACs used for comparison is captured in Fig. 2.1. We have


