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Abstract 
 
Uncertainty is a fundamental and irreducible aspect of our knowledge about the world.  
Probability is the most well-understood and widely applied logic for computational scientific 
reasoning under uncertainty. As theory and practice advance, general-purpose languages are 
beginning to emerge for which the fundamental logical basis is probability. However, such 
languages have lacked a logical foundation that fully integrates classical first-order logic with 
probability theory.  This paper presents such an integrated logical foundation.  A formal 
specification is presented for multi-entity Bayesian networks (MEBN), a knowledge 
representation language based on directed graphical probability models. A proof is given that a 
probability distribution over interpretations of any consistent, finitely axiomatizable first-order 
theory can be defined using MEBN. A semantics based on random variables provides a logically 
coherent foundation for open world reasoning and a means of analyzing tradeoffs between 
accuracy and computation cost. Furthermore, the underlying Bayesian logic is inherently open, 
having the ability to absorb new facts about the world, incorporate them into existing theories, 
and/or modify theories in the light of evidence. Bayesian inference provides both a proof theory 
for combining prior knowledge with observations, and a learning theory for refining a 
representation as evidence accrues. The results of this paper provide a logical foundation for the 
rapidly evolving literature on first-order Bayesian knowledge representation, and point the way 
toward Bayesian languages suitable for general-purpose knowledge representation and computing. 
Because first-order Bayesian logic contains classical first-order logic as a deterministic subset, it is 
a natural candidate as a universal representation for integrating domain ontologies expressed in 
languages based on classical first-order logic or subsets thereof. 
 
Keywords: Bayesian networks, Bayesian learning, graphical probability models, knowledge 
representation, multi-entity Bayesian network, random variable, probabilistic ontology 

1 Introduction  
First-order logic is primary among logical systems from both a theoretical and a practical 

standpoint.  It has been proposed as a unifying logical foundation for defining extended logics 
and interchanging knowledge among applications written in different languages. However, its 
applicability has been limited by the lack of a coherent semantics for plausible reasoning. A 
theory in first-order logic assigns definite truth-values only to sentences that have the same truth-
value (either true or false) in all interpretations of the theory.  The most that can be said about any 
other sentence is that its truth-value is indeterminate. A reasoner that requires logical proof before 
it can draw conclusions is inadequate for many practical applications. This problem has been 
addressed with a proliferation of plausible reasoning logics, but these have lacked firm theoretical 
grounding.  The need for plausible reasoning is especially acute for the problem of knowledge 
interchange. Different applications have different ontologies, different semantics, and different 
knowledge and data stores.  Legacy applications are usually only partially documented, and may 
rely on tacit usage conventions that even proficient users do not fully understand or appreciate. 
Even if these problems could be circumvented and a full formal specification for each application 
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could be achieved in first-order logic, the alignment of different applications into a single unified 
ontology, semantics, and data store is an ill-specified problem with no unique solution. This is a 
consequence of the fundamental truth that axiom sets in first-order logic do not in general admit 
unique interpretations. Because knowledge interchange is fraught with irreducible uncertainty, it 
should be founded on a logic that supports plausible inference. 

Among the many proposed logics for plausible inference, probability is the strongest 
contender as a universal representation for translating among different plausible reasoning logics. 
There are numerous arguments in favor of probability as a rationally justified calculus for 
plausible inference under uncertainty (e.g., de Finetti, 1934/1975; Howson and Urbach, 1993, 
Jaynes, 2003; Savage, 1954). Until recently, the development of a fully general probabilistic logic 
was hindered by the lack of modularity of probabilistic reasoning, the intractability of worst-case 
probabilistic inference, and the difficulty of ensuring that a set of probability assignments 
specified a unique and well-defined probability distribution.  Probability is not truth-functional.  
That is, the probability of a compound expression cannot be expressed solely as a function of the 
probabilities of its constituent expressions.  The number of probabilities required to express a 
fully general probability distribution over truth-values of a collection of assertions is exponential 
in the number of assertions, making a brute-force approach to specification and inference 
infeasible for all but the smallest problems. Typically, independence assumptions are used to 
decompose complex problems into manageable sub-problems. Recently developed graphical 
probability languages (e.g., Jensen, 2001; Neapolitan, 2003; Pearl, 1988) exploit independence 
relationships to achieve parsimonious representation and efficient inference. The introduction of 
graphs to represent conditional dependence relationships has sparked rapid evolution of 
increasingly powerful languages for computational probabilistic reasoning (e.g., Buntine, 1994; 
D’Ambrosio, et al, 2001; Getoor et al, 2000, 2001; Gilks et al, 1994; Glesner and Koller, 1995; 
Halpern, 1991; Koller and Pfeffer, 1997; Laskey, et al, 2001; Laskey and Mahoney, 1997; Ngo 
and Haddawy, 1997; Pfeffer, 2001; Sato, 1998; et al., 1996).  Different communities appear to be 
converging around certain fundamental approaches to representing uncertain information about 
the attributes, behavior, and interrelationships of structured entities (cf., Heckerman, et al., 2004).   

This paper presents a logical foundation for this emerging consensus. First-order Bayesian 
logic combines the expressive power of first-order logic with a sound and logically consistent 
treatment of uncertainty. Multi-entity Bayesian networks (MEBN)1 is a language for expressing 
first-order Bayesian theories.  MEBN semantics unifies the standard model-theoretic semantics 
for first-order logic with the theory of random variables as used in mathematical statistics. 
Although MEBN syntax is designed to highlight the relationship between a MEBN theory and its 
first-order logic counterpart, the main focus of the paper is the underlying logic and not the 
language itself. That is, MEBN syntax should be viewed not as a competitor to other syntactic 
conventions for expressing first-order probabilistic knowledge, but as a vehicle for expressing 
logical notions that cut across surface syntactic differences.   

MEBN fragments (MFrags) use directed graphs to specify local dependencies among a 
collection of related hypotheses. MTheories, or collections of MFrags that satisfy global 
consistency constraints, implicitly specify joint probability distributions over unbounded and 
possibly infinite numbers of hypotheses. MTheories can be used to reason consistently about 
complex expressions involving nested function application, arbitrary logical formulas, and 
quantification. A set of built-in MFrags provides the full expressive power of first-order logic 
with functions and equality, the most commonly used variant of first-order logic.  

MEBN semantics assigns probabilities to sets of models of an associated first-order logic 
(FOL) theory. The probability of a sentence is defined as the probability of the set of models in 
which it is true. An important feature of the MEBN formalism is the ability to specify nested 

                                                        
1 MEBN is pronounced “MEE-ben.” 
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sequences of theories, in which each theory incorporates new axioms that do not contradict 
previously asserted axioms.  The probability calculus provides an inference and learning theory 
for MTheories. An inference algorithm called situation-specific Bayesian network (SSBN) 
construction is presented.  In response to a probabilistic query, SSBN construction produces a 
sequence of Bayesian networks that approximates the probability distribution implicitly 
represented by the MTheory. If the associated FOL theory is inconsistent, SSBN construction 
discovers the inconsistency in finitely many steps. For queries about consistent, finitely 
axiomatizable FOL theories, SSBN construction may terminate with an exact answer or may 
converge to the correct answer in the infinite limit. Theories with infinitely many axioms are 
represented as nested sequences of MTheories. Such an infinite sequence may or may not 
converge to a globally consistent joint distribution over interpretations, depending on whether the 
axioms define a generative process capable of representing the statistical behavior of the 
sequence. No probabilistic logic can do better than this.  A construction due to Oakes (1986) 
demonstrates that for any generative probabilistic theory, no matter how expressive and flexible, 
there exist infinite sequences of findings that falsify the probabilistic predictions of the theory. 

The remainder of the paper is organized as follows.  Section 2 provides an overview of first-
order logic and introduces notational conventions that will be used throughout the paper.  Section 
3 provides an overview of ordinary Bayesian networks, the propositional knowledge 
representation formalism for which MEBN is a first-order extension.  Section 4 defines the syntax 
and semantics of MEBN logic and relates MEBN logic to other work in probabilistic knowledge 
representation.  Section 5 sketches how MEBN logic can be applied to representing different 
kinds of knowledge.  Section 6 describes learning and theory refinement, and demonstrates that 
learning is an integral part of MEBN logic.  The final section is a summary and discussion.  
Proofs and algorithms are given in the appendix. 

2 First-Order Logic 
Davis (1990) defines a logic as a schema for defining languages to describe and reason about 
entities in different domains of application. Certain key issues in representation and inference 
arise across a variety of application domains.  A logic encodes particular approaches to these 
issues in a form that can be reused across domains. A logic has the following basic elements (cf., 
Sowa, 2000): 

 The vocabulary consists of symbols that can be combined to form expressions to 
represent and reason about entities in a given domain of discourse.  Symbols are of two 
kinds: 
a. Logical symbols (e.g., variables, connectives, punctuation) are common to any 

language based on the logic; 
b. Non-logical symbols (e.g., constant symbols, function symbols, relation symbols) 

vary from language to language, and provide vocabulary tailored to a particular 
domain of application. 

 The syntax consists of rules for combining these symbols to form legal expressions. The 
proof rules specify ways in which new legal expressions can be derived from existing 
legal expressions. The proof rules provide the operational semantics for computer 
languages that implement the logic. 

 The semantics characterizes the meaning of expressions. Semantics includes two aspects: 
a. The theory of reference specifies what the expressions denote in the domain of 

discourse.  The theory of reference corresponds to the denotational semantics of a 
computer language implementing the logic.   

b. The model theory specifies domain-independent aspects of meaning that are purely 
logical consequences of collections of expressions.  The model theory establishes an 
isomorphism, or one-to-one meaning-preserving mapping, between different formally 
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equivalent collections of expressions, regardless of the domain of discourse to which 
each collection refers or the objects to which the expressions refer.  The model theory 
corresponds to the axiomatic semantics of a computer language implementing the 
logic. 

A theory is a collection of sentences in a given language2, called the proper axioms of the 
theory, together with all the consequences of those sentences as determined by the semantics of 
the logic. In a computational theory, expressions are encoded as data structures on a computer 
and the proof rules are implemented as computer programs.  To be useful for practical problems, 
a computational theory must be able to represent task-relevant aspects of the domain well enough 
for the purpose, and must admit implementations that quickly and accurately map expressions 
representing user queries to the logical consequences of the axioms with respect to the query. 

A logic with propositional expressive power can reason about particular individuals but 
cannot express generalizations. A logic with first-order expressive power can reason about 
general properties and relationships that apply to collections of individuals.  Higher-order logics 
can generalize not just over particular individuals in the application domain, but also over 
functions, relations, sets, and/or sentences defined on the domain.  Modal logics allow reasoning 
not just about the truth-values of expressions, but also about necessity, possibility, belief, 
desirability, permissibility, and other non truth-functional qualifiers of statements. The greater 
expressive power of higher-order and modal logics allows one to say complex things more 
compactly, but tends to complicate proof and model theories.   

By far the most commonly used, studied, and implemented logical system is first-order logic 
(FOL), invented independently by Frege and Pierce in the late nineteenth century (Frege, 
1879/1967; Pierce, 1898).  The notational conventions of this paper are similar to those used in 
standard references (e.g., Davis, 1990; Genesereth and Nielsson, 1987; Russell and Norvig, 2002; 
Sowa, 2000).  The basic syntax of first-order logic can be summarized as follows:  

 The logical symbols consist of the logical connectives ¬ (not), ∧ (and), ∨ (or), ⇒ 
(implies), and ⇔ (if and only if); the equality relation =; the universal and existential 
quantifiers ∀ and ∃;3 the comma, the open and close parentheses, and a countably infinite 
collection of variable symbols. Variables are denoted as alphanumeric strings beginning 
with lowercase letters, e.g., x, person32, something.4  

 The nonlogical symbols consist of constant symbols, function symbols, and predicate 
symbols.  Constant symbols are written as alphanumeric strings beginning with either 
numbers or uppercase letters, e.g., 1978; Marcus, Machine37.  Function and predicate 
symbols are denoted as alphanumeric strings beginning with uppercase letters, e.g., Red, 
BrotherOf, StandardDeviation.  Each function and predicate symbol has an associated 
integer indicating the number of arguments it takes. 

 A term is a constant symbol, a variable symbol, or a function symbol followed by a 
parenthesized list of terms separated by commas, e.g., Machine37, m, 
RoomTemp(MachineLocation(m)), Manager(Maintenance,2003).  Terms are used to refer 
to entities in the domain.  They serve as arguments to functions and predicates.  

 An atomic formula is:  
o A predicate symbol followed by a parenthesized list of terms, e.g., 

Warmer(MachineLocation(m),30,Celsius); or 
                                                        
2 Sentences are legal expressions that make assertions about the domain. 
3 A formal specification of first-order logic requires only two connectives and one quantifier (e.g., ¬, ⇒, and ∃); the 
others can be defined from these. 
4 Although words are often used to convey intended meaning, the variable, function and predicate symbols are treated 
by the logic as meaningless tokens.  A theory may contain axioms that enforce intended meanings, but there is nothing 
in the logic itself to prevent person32 from being used to refer to a frog or an asteroid. 
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o A parenthesized expression consisting of a term followed by an equal sign followed 
by another term, e.g., (Fernandez = Manager(Maintenance,2003)).   

 A formula is: 
o An atomic formula; 
o An expression of the form ¬α, (α∧β); (α∨β); (α⇒β), or (α⇔β), where α and β are 

formulas, e.g.,  
((Fernandez = Manager(Maintenance,2003))  

∨ (Nguyen = Manager(Maintenance,2003))); or 
o An expression of the form ∀µα or ∃µα, where µ is a variable symbol and α is a 

formula, e.g. ∃x (Employee(x) ∧ (x = Manager(department,year))). 
 An open formula is a formula in which some variables are free, or not within the scope of 

a quantifier, e.g., (r=MachineLocation(m)).  A closed formula, or sentence, is a formula 
in which there are no free variables, e.g.,  

∀m (Isa(Machine,m) ⇒ ∃r (Isa(MachineRoom,r) ∧ (r=MachineLocation(m)))). 

Parentheses may be omitted in any of the above expressions if no confusion will result. 
First-order logic is applied by defining a set of axioms, or sentences intended to assert 

relevant truths or assumptions about a domain.  The axioms, together with the set of logical 
consequences of the axioms, comprise a theory of the domain. If the axioms are consistent, the set 
of consequences is a proper subset of all syntactically correct sentences.  Because anything 
follows from a contradiction, if the axioms are inconsistent, the set of consequences consists of 
all sentences.  Until referents for the symbols are specified, a theory is a syntactic structure 
devoid of meaning. An interpretation for a theory specifies a definition of each constant, 
predicate and function symbol in terms of the domain.  An interpretation assigns each constant 
symbol to a specific individual entity, each predicate to a set containing the entities for which the 
predicate holds, and each function symbol to a function defined on the domain.  The purely 
logical consequences of a set of axioms consist of the sentences that are true in all interpretations, 
also called the valid sentences. A logical system is complete if all valid sentences can be proven 
and negation complete if for every sentence, either the sentence or its negation can be proven. 
Kurt Gödel proved both that first-order logic is complete, and that no consistent logical system 
strong enough to axiomatize arithmetic can be negation complete (cf., Stoll, 1963; Enderton, 
2001).   

A number of proof systems have been defined for first-order logic.  Resolution with 
Skolemization is a refutation-complete proof system5 that is straightforward to specify, 
implement and control. Russell and Norvig (2002) present a detailed description of resolution 
with Skolemization and a proof of refutation-completeness. Natural deduction is a complete proof 
system that is more intuitive than resolution, but harder to implement.  Davis (1990) presents a 
natural deduction proof system for first-order logic. 

Special-purpose logics built on first-order logic give pre-defined meaning to reserved 
constant, function and/or predicate symbols. Such logics provide built-in constructs that are 
useful in many applications.  For example, there are logics that provide constants, predicates, and 
functions for reasoning about types, space and time, parts and wholes, actions and plans, etc. 
When a logic is applied to reason about a particular domain, the modeler assigns meaning to 
additional domain-specific constant, predicate and function symbols.  This is accomplished by 
specifying a set of proper axioms encoding knowledge about the domain. A domain ontology 
(Gruber, 1993; Sowa, 2000) expresses knowledge about the types of entities in a domain of 
application, the attributes and allowable behaviors of entities of a given type, allowable 
relationships among entities of different types, and (optionally) characteristics of particular 

                                                        
5 That is, if a sentence is unsatisfiable, resolution will generate a proof of unsatisfiability in finitely many steps. 
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individual entities. Formal ontologies are usually expressed in languages based on first-order 
logic or one of its subsets. 

MEBN logic extends first-order logic to provide a means to assign probabilities to sentences 
of FOL theories in a logically consistent manner. For any MEBN theory there is a corresponding 
FOL theory having the same purely logical consequences.  A consistent, finitely axiomatizable 
FOL theory can be translated to an infinity of MEBN theories, all having the same purely logical 
consequences, that assign different probabilities to statements whose truth-values are not 
determined by the axioms of the FOL theory. MEBN logic extends the propositional logic of 
directed graphical probability models, or Bayesian networks.  Before providing a formal 
specification for MEBN logic, the next section gives a brief overview of Bayesian networks. 

3 Bayesian Networks 
Graphical probability and decision models (Whittaker, 1990, Cowell, et al., 1999) have become 
increasingly popular both as a parsimonious language for representing knowledge about uncertain 
phenomena and as an architecture to support efficient algorithms for inference, search, 
optimization, and learning.  A graphical probability model expresses a probability distribution 
over a collection of interrelated hypotheses as a graph and a collection of local probability 
distributions.  The graph encodes dependencies among the hypotheses. The local probability 
distributions specify numerical probability information.  Specification is tractable because each 
local distribution depends on only a small set of directly related hypotheses. Tractable exact or 
approximate inference is possible for complex tasks because independence relationships allow 
inference to be decomposed into local inference problems involving only small numbers of 
hypotheses.  

A Bayesian network (e.g., Pearl, 1988; Jensen, 2001; Neapolitan, 2003) is a graphical 
probability model in which the dependency graph is an acyclic directed graph. Figure 1 shows a 
Bayesian network for a diagnosis task.  The nodes in the graph denote random variables. In 
mathematical statistics, a random variable is defined as a function that maps elements of a set 
called the sample space to elements of another set called the outcome space.6 Random variables 
in a Bayesian network map entities in a domain of application to attributes or features of the 
entities. For example, in the Bayesian network of Figure 1, the EngineStatus random variable 
maps a piece of equipment to a value in the set {Satisfactory,Overheated}, depending on whether 
its engine is operating normally or is overheated. Each random variable can take on one of a 
mutually exclusive and collectively exhaustive set of possible values.  Given any state of 
information about the other random variables, each possible value for a random variable has a 
probability that ranges between zero and one.  This probability represents the likelihood, given 
the available information, that the attribute in question takes on the indicated value.  

Probabilities for the possible values of the random variables are specified by means of local 
distributions that together implicitly specify a joint distribution over all possible configurations of 
values for the random variables. The graph for a Bayesian network represents a set of conditional 
independence assertions satisfied by the implicitly encoded probability distribution (Cowell, et 
al., 1999; Jensen, 2001; Lauritzen, 1996; Pearl, 1988; Whittaker, 1990). The graph must contain 
no directed cycles, ensuring non-circularity in the specification of probabilities. The parents of a 
node in the graph denote the random variables whose values directly influence the probability of 
the node’s random variable. The probability that a random variable takes on a given value is 
independent of the values of the random variable’s non-descendants given the values of its 
parents. For example, in Figure 1, if the values of BeltStatus and RoomTemp are specified, the 

                                                        
6 Additional technical conditions must be satisfied for a function to be a random variable:  the sample space must be a 
probability space; the outcome space must be a measurable space; and the function must be measurable.  The graph and 
local distributions of a Bayesian network implicitly specify a set of random variables satisfying these conditions. 
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probabilities for the values of EngineStatus do not depend on the value of MaintenancePractice 
or TempSensor.  That is, although the organization’s maintenance practices and the temperature 
sensor reading are relevant to whether the engine is functioning properly, the influence operates 
via the condition of the belt and temperature of the room.  Once the condition of the belt and the 
temperature of the room are given, there is no remaining influence from other ancestors of 
EngineStatus. 

The local distribution for a root node consists of a single probability distribution.  For non-
root nodes, a probability distribution is specified for each combination of possible values of the 
node’s parents. In Figure 1, for example, only one probability distribution needs to be specified 
for MaintenancePractice. For EngineStatus, a probability distribution must be specified for each 
combination of values of its parents.  If the possible values of BeltStatus and RoomTemp are {OK, 
Broken} and {Normal, High}, respectively, then four probability distributions must be specified – 
one for each member of the set {(OK, Normal), (OK, High), (Broken, Normal), (Broken, High)}.  

Some authors assume that random variables in a Bayesian network have finitely many 
possible values. Some require only that each random variable have an associated function 
mapping values of its parents to probability distributions on its set of possible values. In an 
unconstrained local distribution on finite-cardinality random variables, a separate probability is 
specified for each value of a random variable given each combination of values of its parents. 
Because the complexity of specifying local distributions is exponential in the number of parents, 
constrained families of local distributions are often used to simplify specification and inference.  
In distributions exhibiting context-specific independence (Geiger and Heckerman, 1991; 
Boutilier, et al., 1996; Mahoney and Laskey, 1999; Mahoney, 1999), the parent configurations are 
partitioned into subsets having a common distribution for the child random variable.  
Independence of causal influence (ICI) refers to a class of local distributions in which each parent 
random variable makes an independent contribution to the probability distribution of the child 
random variable.  The most common ICI models are the “noisy or” and other noisy functional 
dependence models (Jensen, 2001; Pearl, 1988).  Local expression languages (D’Ambrosio, 

1991) can be used to specify arbitrary 
functional relationships between states 
of the parent random variables and 
probabilities of the child random 
variable.  When a random variable 
and/or its parents have infinitely many 
possible values, local distributions 
cannot be listed explicitly, but can be 
specified as parameterized functions.  
When a random variable has an 
uncountable set of possible values, then 
the local distributions specify prob-
ability density functions with respect to 
a measure on the set of possible 
outcomes (cf., DeGroot and Schervish, 
2002; Robert, 2001).  

A Bayesian network can be used to 
compute probabilities of some random 
variables given information about other 
random variables.  For example, we 
might use the Bayesian network of 

Figure 1 to compute the probability of producing a defective product, and to update this 
distribution to incorporate evidence such whether the temperature light is blinking.  Efficient 
algorithms have been developed for computing probabilities and propagating the impact of 

ProductDefect

ACStatus

MaintenancePractice

BeltStatus

RoomTemp

EngineStatus TempSensor

TempLight  
Figure 1:  Bayesian Network for Diagnostic Task 
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evidence (D’Ambrosio, 1999).  Methods have also been developed for learning Bayesian 
networks from data and for combining observations with expert knowledge (e.g., Heckerman, et 
al., 1995; Dybowski, et al., 2003).  By further reducing the dimensionality of the parameter space, 
use of local expressions can ease the specification burden, reduce the sample size required to 
learn the local distributions, and improve the tractability of inference.  

The simple attribute-value representation of standard Bayesian networks is insufficiently 
expressive for many problems.  For example, the Bayesian network of Figure 1 applies to a single 
piece of equipment located in a particular room and owned and maintained by a single 
organization. We may need to consider problems that involve multiple organizations, each of 
which owns and maintains multiple pieces of equipment of different types, some of which are in 
rooms that contain other items of equipment.  The room temperature and air conditioner status 
random variables would have the same value for co-located items, and the maintenance practice 
random variable would have the same value for items with the same owner. Standard Bayesian 
networks provide no way of compactly representing the correlation between failures of co-located 
and/or commonly owned items of equipment or of properly accounting for these correlations 
when learning from observation. There has been a great deal of interest in extending the Bayesian 
network formalism to provide greater expressive power (e.g., Buntine, 1994; D’Ambrosio, et al, 
2001; Getoor et al, 2000, 2001; Gilks et al, 1994; Heckerman, et al., 2004; Koller and Pfeffer, 
1997; Laskey, et al, 2001; Laskey and Mahoney, 1997; Ngo and Haddawy, 1997; Pfeffer, 2001; 
Sato, 1998; Spiegelhalter et al., 1996). MEBN logic provides a unifying logical foundation for the 
emerging collection of more expressive probabilistic languages. 

4 Multi-Entity Bayesian Networks 
Like Bayesian networks, MTheories use directed graphs to specify joint probability distributions 
for a collection of interrelated random variables. Like Bayesian networks, MEBN logic represents 
relationships among hypotheses using directed graphs in which nodes represent uncertain 
hypotheses and edges represent probabilistic dependencies.  MEBN logic extends ordinary 
Bayesian networks to provide first-order expressive power, and also extends first-order logic 
(FOL) to provide a means of specifying probability distributions over interpretations of first-order 
theories.  

Knowledge in MEBN theories is expressed via MEBN Fragments (MFrags), each of which 
represents probability information about a group of related random variables. Just as first-order 
logic extends propositional logic to provide an inner structure for sentences, MEBN logic extends 
ordinary Bayesian networks to provide an inner structure for random variables.  Random 
variables in MEBN logic take arguments that refer to entities in the domain of application.  For 
example, Manager(d,y) might represent the manager of the department designated by the variable 
d during the year designated by the variable y. To refer to the manager of the maintenance 
department in 2003, we would fill in values for d and y to obtain an instance 
Manager(Maintenance,2003) of the Manager random variable. A given situation might involve 
any number of instances of the Manager random variable, referring to different departments 
and/or different years. As shown below, the Boolean connectives and quantifiers of first-order 
logic are represented as pre-defined MFrags whose meaning is fixed by the semantics.  Any 
sentence that can be expressed in first-order logic can be represented as a random variable in 
MEBN logic.  An MTheory implicitly expresses a joint probability distribution over truth-values 
of sets of FOL sentences.  MEBN logic is modular and compositional.  That is, probability 
distributions are specified locally over small groups of hypotheses and composed into globally 
consistent probability distributions over sets of hypotheses. 
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4.1 Entities and Random Variables 
MEBN logic treats the world as being comprised of entities that have attributes and are related to 
other entities. Constant and variable symbols are used to refer to entities.  There are three logical 
constants with meaning fixed by the semantics of the logic, an infinite collection of variable 
symbols, and an infinite collection of non-logical constant symbols with no pre-specified 
referents. MEBN logic uses random variables to represent features of entities and relationships 
among entities. MEBN logic has a collection of logical random variable symbols with meaning 
fixed by the semantics of the logic, and an infinite collection of non-logical random variable 
symbols with no pre-specified referents.  The logical constants and random variables are common 
to all MTheories; the non-logical constants and random variables provide terminology for 
referring to objects and relationships in a domain of application. 

Constant and variable symbols: 
 (Ordinary) variable symbols: As in FOL, variables are used as placeholders to refer to 

non-specific entities.  Variables are written as alphanumeric strings beginning with 
lowercase letters, e.g., department7.  To avoid confusion, the adjective “ordinary” is 
sometimes used to distinguish ordinary variables from random variables. 

 Non-logical constant symbols: Particular named entities are represented using constant 
symbols. As in our FOL notation, non-logical constant symbols are written as 
alphanumeric strings beginning with uppercase letters, e.g., Machine37, Fernandez.   

 Unique Identifier symbols: The same entity may be represented by different non-logical 
constant symbols. MEBN logic avoids ambiguity by assigning a unique identifier symbol 
to each entity. The unique identifiers are the possible values of random variables. There 
are two kinds of unique identifier symbols: 
o Truth-value symbols and the undefined symbol:  The reserved symbols T, F and ⊥, 

are logical constants with pre-defined meaning fixed by the semantics of MEBN 
logic. The symbol ⊥ denotes meaningless, undefined or contradictory hypotheses, 
i.e., hypotheses to which a truth-value cannot be assigned. The symbols T and F 
denote truth-values of meaningful hypotheses. 

o Entity identifier symbols. There is an infinite set E of entity identifier symbols.  An 
interpretation of the theory uses entity identifiers as labels to refer to entities in the 
domain. Entity identifiers are written either as numerals or as alphanumeric strings 
beginning with an exclamation point, e.g., !M3, 48723.  

Random variable symbols: 
 Logical connectives and the equality operator:  The logical connective symbols ¬, ∧, ∨, 

⇒, and ⇔, together with the equality relation =, are reserved random variable symbols 
with pre-defined meanings fixed by the semantics of MEBN logic. Logical expressions 
may be written using prefix notation (e.g,, ¬(x), ∨(x,y), =(x,y)), or in the more familiar 
infix notation (e.g., ¬x, (x∨y); (x=y)).  Different ways of writing the same expression 
(e.g., =(x,y), (y=x)) are treated as the same random variable. 

 Quantifiers: The symbols ∀ and ∃ are reserved random variable symbols with pre-
defined meaning fixed by the semantics of MEBN logic.  They are used to construct 
MEBN random variables to represent FOL sentences containing quantifiers.  

 Identity: The reserved random variable symbol ◊ denotes the identity random variable.  It 
is the identity function on T, F, ⊥, and the set of entity identifiers that denote meaningful 
entities in a domain.  It maps meaningless, irrelevant, or contradictory random variable 
terms to ⊥. 

 Findings: The finding random variable symbol, denoted Φ, is used to represent observed 
evidence, and also to represent constraints assumed to hold among entities in a domain of 
application. 
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 Non-logical random variable symbols: The domain-specific random variable symbols are 
written as alphanumeric strings beginning with an uppercase letter.  With each random 
variable symbol is associated a positive integer indicating the number of arguments it 
takes.  Each random variable also has an associated set of possible values consisting of a 
subset of the unique identifier symbols.  The set of possible values may be infinite, but if 
so, there must exist an effective procedure (provably terminating algorithm) that lists all 
the possible values and an effective procedure for determining whether any unique 
identifier symbol is one of the possible values. A random variable for which the set of 
possible values is {T,F,⊥} is called a Boolean random variable.  The set of possible 
values for any non-Boolean random variable is contained in E∪{⊥}. Boolean random 
variables correspond to predicates and non-Boolean random variables correspond to 
functions in FOL.  

 Exemplar symbols.  There is an infinite set of exemplar symbols used to refer to 
representative entities in the range of quantifiers. A exemplar symbol is denoted by $ 
followed by an alphanumeric string, e.g., $b32. 

Punctuation: 
 MEBN random variable terms are constructed using the above symbols and the 

punctuation symbols comma, open parenthesis and close parenthesis.  

A random variable term is a random variable symbol followed by a parenthesized list of 
arguments separated by commas, where the arguments may be variables, constant symbols, or 
(recursively) random variable terms. When α is a constant or ordinary variable, the random 
variable term ◊(α) may be denoted simply as α.  If φ is a random variable symbol, a value 
assignment term for φ has the form =(ψ,α), where ψ is a random variable term and α is either an 
ordinary variable symbol or one of the possible values of φ.  The strings =(α,ψ), (α=ψ), and 
(ψ=α) are treated as synonyms for =(ψ,α). A random variable term is closed if it contains no 
ordinary variable symbols and open if it contains ordinary variable symbols. An open random 
variable term is also called a random variable class; a closed random variable term is called a 
random variable instance.  If a random variable instance is obtained by substituting constant 
terms for the variable terms in a random variable class, then it is called an instance of the class. 
For example, the value assignment term =(BeltStatus(!B1), !OK), also written (BeltStatus(!B1) = 
!OK), is an instance of both (BeltStatus(b)=x) and (BeltStatus(!B1)=x), but not of (BeltStatus(b) = 
!Broken). When no confusion is likely to result, the term random variable may be used to refer 
either to a class or to an instance.  A random variable term is called simple if all its arguments are 
either unique identifier symbols or variable symbols; otherwise, it is called composite.  For 
example, =(BeltStatus(!B1), !OK) is a composite random variable term containing the simple 
random variable term BeltStatus(!B1) as an argument. It is assumed that the sets consisting of 
ordinary variable symbols, unique identifier symbols, exemplar random variable symbols, non-
logical constant symbols, and non-logical random variable symbols are all recursive.   

4.2 MEBN Fragments  
In MEBN logic, multivariate probability distributions are built up from MEBN fragments or 
MFrags (see Figure 2). An MFrag defines a probability distribution for a set of resident random 
variables conditional on the values of context and input random variables.  Random variables are 
represented as nodes in a fragment graph whose arcs represent dependency relationships.  
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Definition 1:  An MFrag F = (C,I,R,G,D) consists of a finite set C of context value assignment 
terms;7 a finite set I of input random variable terms; a finite set R of resident random variable 
terms; a fragment graph G; and a set D of local distributions, one for each member of R. The 
sets C, I, and R are pairwise disjoint. The fragment graph G is an acyclic directed graph whose 
nodes are in one-to-one correspondence with the random variables in I∪R, such that random 
variables in I correspond to root nodes in G. Local distributions specify conditional probability 
distributions for the resident random variables as described in Definition 3 below.   

An MFrag is a schema for specifying conditional probability distributions for instances of its 
resident random variables given the values of instances of their parents in the fragment graph and 
given the context constraints. A collection of MFrags that satisfies the global consistency 
constraints defined in Section 4.3 below represents a joint probability distribution on an 
unbounded and possibly infinite number of instances of its random variable terms. The joint 
distribution is specified via the local distributions, which are defined formally below, together 
with the conditional independence relationships implied by the fragment graphs. Context terms 
are used to specify constraints under which the local distributions apply.  

                                                        
7 If φ is a Boolean random variable, the context constraint φ=T may be abbreviated φ and the context constraint φ=F 
may be abbreviated ¬φ. 
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Figure 2:  MEBN Fragments for Equipment Diagnosis Problem 
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As in ordinary Bayesian networks, a local distribution maps configurations of values of the 
parents of a random variable instance to probability distributions for its possible values.  When all 
ordinary variables in the parents of a resident random variable term also appear in the resident 
term itself, as for the RoomTemp and TempLight random variables of the temperature 
observability MFrag of Figure 2, a local distribution can be specified simply by listing a 
probability distribution for the child random variable for each combination of values of the parent 
random variables. The situation is more complicated when ordinary variables in a parent random 
variable do not appear in the child.  In this case, there may be an arbitrary, possibly infinite 
number of relevant instances of a parent for any given instance of the child.  For example, in the 
engine status fragment of Figure 2, if it is uncertain where a machine is located, the temperature 
in any room in which it might be located is relevant to the distribution of the EngineStatus 
random variable.  If a machine has more than one belt, then the status of any of its belts is 
relevant to the distribution of the EngineStatus random variable. Thus, any number of instances of 
the RoomTemp and BeltStatus random variables might be relevant to the distributions of the 
EngineStatus random variable. The local distribution for a random variable must specify how to 
combine influences from all relevant instances of its parents. 

Definition 2: Let F be an MFrag containing ordinary variables θ1, …, θk, and let ψ(θ)  denote a 
resident random variable in F that may depend on some or all of the θi. 

2a. A binding set B = {(θ1:ε1), (θ2:ε2), … (θk:εk)} for F is a set of ordered pairs associating a 
unique identifier symbol εi with each ordinary variable θi of F. The constant symbol εi is 
called the binding for variable θi determined by B.  The εi are not required to be distinct. 

2b. Let B = {(θ1:ε1), (θ2:ε2), … (θk:εk)} be a binding set for F, and let ψ(ε) denote the 
instance of ψ obtained by substituting εi for each occurrence of θi in ψ(θ). A potential 
influencing configuration for ψ(ε) and B is a set of value assignment terms {(γ=φ(ε))}, 
one for each parent of ψ and one for each context random variable of F.  Here, φ(ε) 
denotes the instance of the context or parent random variable φ(θ) obtained by 
substituting εi for each occurrence of θi;8 and γ denotes one of the possible values of φ(ε) 
(as specified by the local distribution πψ; see Definition 3 below). An influencing 
configuration for ψ(ε) and B is a potential influencing configuration in which the value 
assignments match the context constraints of F.  Two influencing configurations are 
equivalent if substituting θi back in for εi yields the same result for both configurations.  
The equivalence classes for this equivalence relation correspond to distinct configurations 
of parents of ψ(θ) in F. 

2c. Let {ε1, ε2, …, εn } be a non-empty, finite set of unique identifier symbols.  The partial 
world W for ψ and {ε1, ε2, …, εn } is the set consisting of all instances of the parents of ψ  
and the context random variables of F that can be formed by substituting the εi for 
ordinary variables of F. A partial world state SW for a partial world is a set of value 
assignment terms, one for each random variable in the partial world. 

2d. Let W be a partial world for ψ and {ε1, ε2, …, εn }, let SW be a partial world state for W,  
let B = {(θ1:εB1), (θ2:εB2), … (θk:εBk)} be a binding set for F with bindings chosen from 

                                                        
8 If a context value assignment term (γ=φ) has no arguments, then no substitution is needed. 
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{ε1, ε2, …, εn }, and let ψ(εB) be the instance of ψ(θ) from B.  The influence counts #SWψ 
for ψ(αB) in SW consist of the number of influencing configurations SW contains for each 
equivalence class of influencing configurations (i.e., each configuration of the parents of 
ψ(θ)  in F).  

As an example, Table 1 shows a partial world state for the EngineStatus(m) random variable 
from Figure 2 with unique identifiers {!M1, !R1, !R2, !B1, !B2, !O1}.  In the intended meaning of 
the partial world of Table 1, !M1 denotes a machine, !B1 and !B2 denote belts located in !M1, !R1 
denotes the room where !M1 is located, !R2 denotes a room where !M1 is not located, and !O1 
denotes an entity that is not a machine, a room, or a belt. The partial world state specifies the 
value of each random variable for each of the entity identifiers.  Random variables map 
meaningless attributes (e.g., the value of RoomTemp for an entity that is not a room) to the absurd 
symbol ⊥.  

The partial world state of Table 1 contains two equivalent influencing configurations for 
EngineStatus(!M1): 

IC1: { (Isa(Machine,!M1)=T), (Isa(Belt,!B1)=T), (Isa(Room,!R1)=T), 
(BeltLocation(!B1)=!M1), (MachineLocation(!M1)=!R1), (RoomTemp(!R1)=!Normal), 
(BeltStatus(!B1)=!OK)};  

IC2: { Isa(Machine,!M1)=T), (Isa(Belt,!B2)=T), (Isa(Room,!R1)=T), 
(BeltLocation(!B2)=M1), (MachineLocation(!M1)=!R1), (RoomTemp(!R1)=!Normal), 
(BeltStatus(!B2)=!OK)}. 

It contains no other influencing configurations for EngineStatus(M1). Thus, the influence counts 
for EngineStatus(M1) in this possible world state are: 

RoomTemp=!Normal, BeltStatus=!OK : 2 
RoomTemp=!Normal,  BeltStatus=!Broken : 0    
RoomTemp=!Hot, BeltStatus=!OK : 0 
RoomTemp=!Hot, BeltStatus=!Broken : 0 . 

The local distribution assigned to EngineStatus(M1) in this partial world would thus be the one 
for a machine having two intact and no broken belts, and located in a room with normal room 
temperature. 

Definition 3:  The local distribution πψ for resident random variable ψ in MFrag F is a function 
πψ(α|S) that maps unique identifiers α and partial world states S to real numbers, such that the 
following conditions are satisfied: 

3a. For a given partial world state S, πψ(⋅|S) is a probability distribution on the unique 
identifier symbols.  That is, πψ(α|S) ≥ 0 for all unique identifiers α, and 

 
!" (# | S)#$ = 1 .9 

3b. For each instance ψ(ε) of ψ, the set Vψ(ε) of possible values of the instance ψ(ε) is a 
recursively enumerable subset of the unique identifiers, and πψ(ε)(Vψ(ε)|S)  = 1 for each 
partial world S. 

3c. There is an algorithm such that for any recursive subset A of the possible values of ψ not 
containing ⊥, and any partial world state S for ψ, either the algorithm halts with output 

                                                        
9 Although random variables in MEBN logic have finite or countably infinite sample spaces, and local distributions are 
discrete, MEBN logic can represent continuous distributions (see Section 5 below). 
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πψ(A|S) or there exists a value N(A,S) such that if the algorithm is interrupted after a 
number of time steps greater than N(A,S),  the output is πψ(A|S).10 

3d. πψ depends on the partial world state only through the influence counts.  That is, any two 
partial world states having the same influence counts map to the same probability 
distribution; 

3e. Let S1 ⊂ S2 ⊂ … be an increasing sequence of partial world states for ψ.  There exists an 
integer N such that if k > N, πψ(Sk) = πψ(SN).11 

The probability distribution πψ(ε|∅) is called the default distribution for ψ.  It is the 
probability distribution for ψ given that no potential influencing configurations satisfy the 
conditioning constraints of F. If ψ is a root node in an MFrag F containing no context constraints, 
then the local distribution for ψ is just the default distribution.  

Isa(Machine,!M1)=T 
Isa(Belt,!M1)=F 
Isa(Room,!M1)=F  
BeltLocation(!M1)=⊥ 
MachineLocation(!M1)=!R1 
RoomTemp(!M1)=⊥ 
BeltStatus(!M1)=⊥ 

Isa(Machine,!R1)=F 
Isa(Belt,!R1)=F 
Isa(Room,!R1)=T  
BeltLocation(!R1)=⊥ 
MachineLocation(!R1)=⊥ 
RoomTemp(!R1)=!Normal 
BeltStatus(!R1)=⊥ 

Isa(Machine,!R2)=F 
Isa(Belt,!R2)=F 
Isa(Room,!R2)=T  
BeltLocation(!R2)=⊥ 
MachineLocation(!R2)=⊥ 
RoomTemp(!R2)=Hot 
BeltStatus(!R2)=⊥ 

Isa(Machine,!B1)=F 
Isa(Belt,!B1)=T 
Isa(Room,!B1)=F  
BeltLocation(!B1)=!M1 
MachineLocation(!B1)=⊥ 
RoomTemp(!B1)=⊥ 
BeltStatus(!B1)=!OK 

Isa(Machine,!B2)=F 
Isa(Belt,!B2)=T 
Isa(Room,!B2)=F  
BeltLocation(!B2)=!M1 
MachineLocation(!B2)=⊥ 
RoomTemp(!B2)=⊥ 
BeltStatus(!B2)=!OK 

Isa(Machine,!O1)=F 
Isa(Belt,!O1)=F 
Isa(Room,!O1)=F  
BeltLocation(!O1)=⊥ 
MachineLocation(!O1)=⊥ 
RoomTemp(!O1)=⊥ 
BeltStatus(!O1)=⊥ 

Table 1:  Partial World State for EngineStatus Partial World 

Conditions such as 3c and 3e are needed to ensure that a global joint distribution exists and 
can be approximated by a sequence of finite Bayesian networks.  They are stronger than strictly 
necessary for this purpose, but they are satisfied in the MTheory presented in Section 4.5 below 
that specifies a probability distribution over interpretations of theories in first-order logic. 

Table 2 shows an example of a local distribution for the engine status MFrag.  The 
conditioning constraints imply there can be at most one RoomTemp parent that satisfies the 
context constraint MachineLocation(m) = r.  When this parent has value !Normal, probability αk,n 
is assigned to !Normal and probability 1-αk,n is assigned to !Overheated, where k is the number of 
distinct BeltStatus parents having the value OK, out of a total of n>0 distinct BeltStatus parents.  
When the RoomTemp parent corresponding to MachineLocation(m) has value !Hot,  the 
probability of a satisfactory engine is βk,n and the probability  of an overheated engine is 1-βk,n, 
where again k denotes the number of distinct belts with value OK and n>0 denotes the total 
number of distinct belts. The default distribution applies when no combination of entities meets 
the conditioning constraints. Condition 3e implies that the local distribution for any instance of 
                                                        
10 It is required that N(A,S) exists, but there need not be an effective procedure for computing it. The author is indebted 
to an anonymous reviewer for pointing out that a minor modification of this condition is required for the proof of 
Theorem 2. 
11 Again, it is not required that there be an effective procedure for computing N. 
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MachineLocation(m) in any world can be calculated 
from at most finitely many BeltStatus parents.  Given 
CC1, EngineStatus(!M1)=!Satisfactory has probability 
α2,0 and EngineStatus(!M2) = !Overheated has 
probability 1-α2,0. If CC1 were modified by changing 
RoomTemp(!R2) from !Hot to !Normal, the distribution 
would not change, because the influence counts for CC1 
do not depend on RoomTemp(!R2).  On the other hand, if 
RoomTemp(!R1) had value !Hot, then the probabilities of 
EngineStatus(!M1)=!Satisfactory and EngineStatus(!M2) 

=!Overheated would be β2,0 and 1-β2,0, respectively.  The 
default distribution applies when there are no influencing 

configurations.  The default distribution assigns probability 1 to ⊥, meaning that EngineStatus(m) 
is meaningless when the context constraints are not met (i.e., m does not denote a machine, m is 
not located in a room, or m has no belt). Default distributions are not required to assign 
probability 1 to ⊥.  For example, the default distribution could be used to represent the engine 
status of beltless machines.  Note, however, that the default distribution does not distinguish 
situations in which m refers to a machine with no belt from situations in which m is not a 
machine. Thus, this modeling approach would assign the same EngineStatus distribution to non-
machines as to machines with no belt. 

MFrags may contain recursive influences. Recursive influences allow instances of a random 
variable to depend directly or indirectly on other instances of the same random variable.  One 
common type of recursive graphical model is a dynamic Bayesian network (Ghahramani, 1998; 
Murphy, 1998).  Recursion is permissible as long as no random variable instance can directly or 
indirectly influence itself.  This requirement is satisfied when the conditioning constraints prevent 
circular influences. For example, Figure 3 modifies the belt status MFrag from Figure 2 so that 
the status of a belt depends not only on the maintenance practice of the organization, but also on 
the status of the belt at the previous time. The function Prev(n), defined for natural numbers, 
maps a positive natural number to the previous natural number, and has value ⊥ when n is zero. 
The context constraint s = Prev(t), prevents circular influences in instances of the MFrag.  If the 
variable t is bound to zero, there will be no influencing configurations satisfying the context 
constraints (because Prev(0) has value ⊥ and NatNumber(⊥)=⊥.).  Thus, any instance of the 
BeltStatus random variable for which s is bound to zero will have no parents, and its local 
distribution will be the default distribution. 

MFrags can represent a rich family of probability distributions over interpretations of first-
order theories.  The ability of MFrags to represent uncertainty about parameters of local 
distributions provides a logical foundation for parameter learning in first-order probabilistic 
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Figure 3:  Recursive MFrag 

 

EngineStatus(m) Context RoomTemp(r) BeltStatus(b) 
Satisfactory Overheated ⊥  

!OK : k 
!Normal !Broken : n-k αk,n 1-αk,n 0 

!OK : k 

Belt b located 
in machine m, 

located in 
room r !High !Broken : n-k βk,n 1-βk,n 0 

Default 0 0 1 

Table 2: Local Distribution as Function of Influence Counts 
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theories. Uncertainty about structure can be 
represented by sets of MFrags having 
mutually exclusive context constraints and 
different fragment graphs, thus providing a 
logical foundation for structure learning.  
Further discussion of learning from 
observation can be found in Section 6 
below. 

MEBN logic comes equipped with a set of built-in MFrags representing logical operations, 
function composition, and quantification.  There are also constraints that must be satisfied by 
domain-specific MFrags.  The built-in MFrags, the constraints on domain-specific MFrag 
definitions, and the rules for combining MFrags and performing inference provide the logical 
content of pure MEBN logic. An applied MTheory specifies a set of domain-dependent MFrags 
that provide empirical and/or mathematical content.   

The built-in MFrags are defined below:  
 Indirect reference.  The rules for instantiating MFrags allow only unique identifier 

symbols to be substituted for the ordinary variable symbols.  Probability distributions for 
indirect references are handled with built-in composition MFrags, as illustrated in Figure 
4.  These MFrags enforce logical constraints on function composition. Let ψ(φ1(α1), …, 
φk(αk)) be a random variable instance, where ψ and φi  are random variable symbols and 
each αi is a list of arguments.  The random variable instance ψ(φ1(α1), … ,φk(αk)) has a 
parent φi(αi) for each of the arguments and a reference parent ψ(y1, …, yk), where the yi 
denote ordinary variable symbols such that yi may be the same as yj only if φi(αi) and 
φj(αj) are logically equivalent expressions.12 The local distribution for ψ(φ1(α1),…,φk(αk)) 
assigns it the same value as ψ(y1,…,yk) when the value of yi is the same as the value of 
φi(αi). Although there are infinitely many possible substitutions for ψ(y1,…,yk) and hence 
infinitely many potential influencing configurations, in any given world only one of the 
influences is active.  Thus, condition 3e is satisfied. The default distribution specifies a 
value for ψ(φ1(α1),…,φk(αk)) when there are no influencing configurations.  

 Equality random variable. The resident random variable in the equality MFrag has the 
form =(u,v), also written (u=v). There are two parents, one for each argument. The 
equality operator has value ⊥ if either u or v has value ⊥, T if φ and ψ have the same 
value and are not equal to ⊥, and F otherwise.  It is assumed that meaningful entity 
identifiers are distinct.  That is, if ε1 and ε2 are distinct entity identifiers, then (ε1=ε2) has 
value ⊥ if ◊(ε1) or ◊(ε2) 
has value ⊥, and F 
otherwise. 

 Logical connectives.  The 
random variable ¬(u) has 
a single parent, ◊(u); the 
other logical connectives 
have two parents, ◊(u) 
and ◊(v). The value of 
¬(u) is T if its parent has 
value F, F if its parent 

                                                        
12 It is always permissible to use distinct variables in a composition MFrag, but it is more efficient to use the same 
variable when the expressions are known to be logically equivalent. 
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has value T, and ⊥ otherwise.      The other logical connectives map truth-values 
according to the usual truth tables and parents other than T or F to ⊥ (see Figure 5).  

 Quantifiers. Let φ(γ) be an open Boolean random variable term containing the ordinary 
variable γ. A quantifier random variable has the form ∀(σ, φ(σ)) or ∃(σ, φ(σ)), where  
φ(σ) is obtained by substituting the exemplar term σ into φ(γ). A quantifier random 
variable instance has a single parent φ(γ). The value of ∀(σ, φ(σ)) is T by default and F if 
any instance of φ(γ) has value F. The value of ∃(σ, φ(σ)) is F by default and T if any 
instance of φ(γ) has value T. It is assumed that a unique exemplar symbol is assigned to 
each ordinary variable of each Boolean random variable term of the language.13  Figure 6 
shows quantifier MFrags representing the hypothesis that  every machine has a belt.  In 
FOL, the corresponding sentence is: 

∀m∃b (Isa(Machine,m)⇒Belt(b)∧(m=BeltLocation(b))). 

An important feature of MEBN logic is its logically consistent treatment of reference uncer-
tainty.  For example, suppose the random variable instance CertificationLevel(Manager(Mainten-
ance, 2003)) is intended to refer to the individual who managed the maintenance department in 
2003. If the possible managers are !Employee37 and !Employee49, MEBN logic ensures that the 
probability distribution for CertificationLevel(Manager(Maintenance, 2003))  will be a weighted 
average of the probability distributions for CertificationLevel(!Employee37) and Certification-
Level(!Employee49), where the weights are the probabilities that Manager(Maintenance, 2003) 
has value !Employee37 and !Employee49, respectively. Furthermore, if !Employee39 refers to an 
individual who is also referred to as Carlos, Fernandez, and Father(Miguel), any information ger-
mane to the certification level of Carlos, Fernandez or Father(Miguel) will propagate con-
sistently to CertificationLevel(Manager(Maintenance, 2003)) when Bayesian inference is applied 
(see Figure 7). 

The built-in MFrags defined above 
provide sufficient expressive power to 
represent a probability distribution over 
interpretations of any finitely 
axiomatizable FOL theory, and to use 
Bayesian conditioning to generate a 
sequence of MTheories, where each 
MTheory in the sequence is obtained by 
conditioning the preceding MTheory on 
                                                        
13 A countable infinity of exemplar symbols is sufficient for this purpose. 

!($m, "($b($m), Machine($m)#Belt($b($m))$($m=BeltLocation($b($m)))))

"($b(m), Machine(m)#Belt($b(m))$(m=BeltLocation($b(m))))%($m)
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Figure 6: Quantifier MFrags 

Alternate Name MFrag

CertificationLevel(Fernandez)

CertificationLevel(p)!(Fernandez)

 
Figure 7:  Relating a Name to a Unique Identifier 



K B LASKEY  

C4I-06-01 18 2/5/06 

new axioms that are consistent with the preceding MTheories. MTheories can be used to define 
special-purpose logics such as the planning and decision-making logics described in Section 5 
below.  Each such special-purpose logic is a subclass of MEBN logic containing a set of MFrags 
common to all theories in the subclass.   

In MEBN logic, there are two kinds of domain-specific MFrags:  generative MFrags and 
finding MFrags. The distinction between generative MFrags and finding MFrags corresponds 
roughly to the terminological box, or T-box, and the assertional reasoner, or A-box (Brachman, 
et al., 1983). The generative domain-specific MFrags specify information about statistical 
regularities characterizing the class of situations to which an MTheory applies. Findings can be 
used to specify particular information about a specific situation in the class defined by the 
generative theory. Findings can also be used to represent constraints assumed to hold in the 
domain (cf., Jensen, 2001; Heckerman, et al., 2004), although there are both computational and 
interpretation advantages to using generative MFrags when “constraint findings” can be avoided. 

Definition 4: A finding MFrag satisfies the following conditions: 
4a. There is a single resident random variable, Φ(ψ), where ψ is a closed value assignment 

term. For Boolean random variable instances, we may abbreviate Φ(φ=T) as Φ(φ), and 
Φ(φ=F) as Φ(¬(φ)). 

4b. There are no context random variable terms.  There is a single input random variable term 
ψ, which is a parent of the resident random variable Φ(ψ). 

4c. The local distribution for Φ(ψ) is deterministic, assigning value T if ψ has value T and 
⊥  if it has value F or ⊥.  

Definition 5:  A generative domain-specific MFrag F must satisfy the following conditions.  
5a. None of the random variable terms in F is a finding random variable term. 
5b. Each resident random variable term in F is a simple open random variable term, i.e., a 

constant symbol, an ordinary variable symbol, or a random variable term that consists of 
a random variable symbol followed by a parenthesized list of ordinary variable symbols.  

5c. The only possible values for the identity random variable ◊(ε) are ε and ⊥. Furthermore, 
◊(T)=T; ◊(F)=F; and ◊(⊥)=⊥.14  

5d. For any resident random variable term ψ other than the identity, the local distribution for 
ψ must assign probability zero to any unique identifier ε for which ◊(ε) ≠ ε. One way to 
ensure this constraint is met is to make ◊(ε) a parent of ψ for any possible value ε for 
which there is non-zero probability that ◊(ε) ≠ ε, and to specify a local distribution that 
assigns probability zero to ε if ◊(ε) ≠ ε.  

In summary, MFrags represent influences among clusters of related random variables.  
Repeated patterns can be represented using ordinary variables as placeholders into which entity 
identifiers can be substituted. Probability information for an MFrag’s resident random variables 
are specified via local distributions, which map influence counts for a random variable’s parents 
to probability distributions over its possible values. When ordinary variables appear in a parent 
but not in a child, the local distribution specifies how to combine influences from multiple copies 
of the parent random variables.  Restricting variable bindings to unique identifiers prevents 
double counting of repeated instances.  Multiple ways of referring to an entity are handled 

                                                        
14 A finite domain can be represented by specifying an ordering ε1, ε2,… on the unique identifiers, and specifying a 
probability of 1 that ◊(εi+1) = ⊥ if ◊(εi) = ⊥.  In this case, the cardinality of the domain is the last i for which ◊(εi) ≠ ⊥.  
The cardinality may of course be uncertain.  
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through built-in MFrags that enforce logical constraints on function composition. Context 
constraints permit recursive relationships to be specified without circular references.  

4.3 MEBN Theories 

A MEBN theory, or MTheory, is a collection of MFrags that satisfies consistency constraints 
ensuring the existence of a unique joint probability distribution over the random variables 
mentioned in the theory.  The built-in MFrags provide logical content and the domain-specific 
MFrags provide empirical content.  This section defines an MTheory and states the main 
existence theorem, that a joint distribution exists for the random variable instances of an 
MTheory.  A proof is given in the Appendix. 

An MTheory containing only generative domain-specific MFrags is called a generative 
MTheory. Generative MTheories can be used to express domain-specific ontologies that capture 
statistical regularities in a particular domain of application.  MTheories with findings can 
augment statistical information with particular facts germane to a given reasoning problem.  
MEBN logic uses Bayesian learning to refine domain-specific ontologies to incorporate observed 
evidence.  

The MFrags of Figure 2 specify a generative MTheory for the equipment diagnosis problem. 
These MFrags specify local probability distributions for their resident random variables. The 
conditioning constraints in each MFrag specify type restrictions (e.g., the symbol m must be 
replaced by an identifier for an entity of type Machine) and functional relationships an 
influencing configuration must satisfy (e.g., the room identifier r must be equal to the value of 
MachineLocation(m)). Each local distribution provides a rule for calculating the distribution of a 
resident random variable given any instance of the MFrag.  

Reasoning about a particular task proceeds as follows.  First, finding MFrags are added to a 
generative MTheory to represent task-specific information.  Next, random variables are identified 
to represent queries of interest.  Finally, Bayesian inference is applied to compute a response to 
the queries. Bayesian inference can also be applied to refine the local distributions and/or MFrag 
structures given the task-specific data (see Section 6 below).  For example, to assert that the 
temperature light is blinking in the machine denoted by !Machine37, which is located in the room 
denoted by !Room103A, we could add the findings Φ(TempLight(!Machine37)=!Blinking) and 
Φ(MachineLocation(Machine37)=!Room103A) to the generative MTheory of Figure 2.  To 
inquire about the likelihood that there are any overheated engines, the FOL sentence 
∃m (Isa(Machine,m)∧(EngineStatus(m)=!Overheated)) would be translated into the quantifier 
random variable instance ∃($m, Isa(Machine,$m)∧(EngineStatus($m)=!Overheated)). A Bayesian 
inference algorithm would be applied to evaluate its posterior probability given the evidence.  

As with ordinary Bayesian networks, global consistency conditions are required to ensure that 
the local distributions collectively specify a well-defined probability distribution over 
interpretations. Specifically, the MFrags must combine in such a way that no random variable 
instance can directly or indirectly influence itself, and initial conditions must be specified for 
recursive definitions.  Non-circularity is ensured in ordinary Bayesian networks by defining a 
partial order on random variables and requiring that a random variable’s parents precede it in the 
partial ordering.  In dynamic Bayesian networks, random variables are indexed by time, an 
unconditional distribution is specified at the first time step, and each subsequent distribution may 
depend on the values of the random variables at the previous time step.  Non-circularity is 
ensured by prohibiting links from future to past and by requiring that links within a time step 
respect the random variable partial ordering. Other kinds of recursive relationships, such as 
genetic inheritance, have been discussed in the literature (cf., Pfeffer, 2000). Recursive Bayesian 
networks (Jaeger, 2001) can represent a very general class of recursively specified probability 
distributions for Boolean random variables on finite domains. No previously published 
probabilistic knowledge representation language provides general-purpose rules for defining 
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probability distributions that can include both recursive and non-recursive influences for random 
variables Boolean and non-Boolean random variables on finite and/or countably infinite domains. 

Definition 6:  Let T = {F1, F2 … } be a set of MFrags. The sequence φd(εd) → φd-1(εd-1) 
→…→φ0(ε0) is called an ancestor chain for T if there exist B0, …, Bd such that: 

6a. Each Bi is a binding set for one of the MFrags Fji∈T; 
6b. The random variable instance φi(εi) is obtained by applying the bindings in Bi to a 

resident random variable term φi(θi) of Fji; 
6c. For i<d, either:  

  φi+1(εi+1) is obtained by applying the bindings in Bi to an input random variable term 
φi+1(θi+1) of Fji, and there is an influencing configuration for φi(εi) and Bi that 
contains φi+1(θi+1), or 

  φi+1(εi+1) is obtained by applying the bindings in Bi to a context value assignment 
term φi+1(θi+1) of Fji. 

The integer d is called the depth of the ancestor chain.  The random variable instance φj(εj) is an 
ancestor of φ0(ε0) if there exists an ancestor chain φd(εd) →…→ φj(εj) →…→φ0(ε0) for T.  

Definition 7: Let T = { F1, F2 … } be a set of MFrags. Let VT denote the set of random variable 
terms contained in the Fi, and let NT denote the set of random variable instances T that can be 
formed from VT. T is a simple MTheory if the following conditions hold:  

7a. No cycles. No random variable instance is an ancestor of itself;15 
7b. Bounded causal depth.  For any random variable instance φ(ε)∈NT  containing the 

(possibly empty) unique identifier symbols ε, there exists an integer Nφ(ε) such that if 
φd(εd) → φd-1(εd-1) →…→φ(ε) is an ancestor chain for T, then d ≤ Nφ(ε). The smallest such 
Nφ(ε) is called the depth dφ(ε) of φ(ε).  

7c. Unique home MFrags. For each φ(ε)∈NT , there exists exactly one MFrag Fφ(ε)∈T, 
called the home MFrag of φ(ε), such that φ(ε) is an instance of a resident random variable 
φ(θ) of Fφ(ε).16 

7d. Recursive specification. T may contain infinitely many domain-specific MFrags, but if 
so, the MFrag specifications must be recursively enumerable.  That is, there must be an 
algorithm that lists a specification (i.e., an algorithm that generates the input, output, 
context random variables, fragment graph, and local distributions) for each MFrag in 
turn, and eventually lists a specification for each MFrag of T.   

Theorem 1:  Let T = { F1, F2 … } be a simple MTheory. There exists a joint probability 
distribution 

 
P

T

gen  on the set of instances of the random variables of its MFrags that is consistent 

with the local distributions assigned by the MFrags of T.  
                                                        
15 This condition can be relaxed as long as it can be demonstrated that the local distributions are specified non-
circularly.  
16 It may be desirable to relax this condition.  For example, in an independence of causal influence model, it might be 
convenient to specify influences due to different clusters of related causes to be specified in separate MFrags.  In a 
polymorphic version of MEBN logic, it might be convenient to specify local distributions for separate subtypes in 
separate MFrags.  It is clear that the main results would remain valid under appropriately weakened conditions. 
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The proof of Theorem 1 is found in the appendix. 
MEBN inference is defined as conditioning the joint probability distribution implied by 

Theorem 1 on the proposition that all findings have value T.  This conditional distribution clearly 
exists if there is a non-zero probability that all findings have value T. However, when there is an 
infinite sequence of findings or there are findings on quantifier random variables, then any 
individual sequence of findings may have probability zero even though some such sequence is 
certain to occur. For example, each possible realization of an infinite sequence of rolls of a fair 
die has zero probability, yet some such sequence will occur if tossing continues indefinitely. 
Although any individual sequence of tosses has probability zero, the assumption that the die is 
fair allows us to draw conclusions about properties of the sequences of tosses that will actually 
occur.  In particular, it is a practical (although not a logical) certainty that if the die is fair, then 
the limiting frequency of rolling a four will be once in every six trials. That is, although a 
sequence having limiting probability 1/6 and a sequence having limiting probability 1/3 both have 
probability zero, the former is infinitely more probable than the latter. Practical certainties about 
stochastic phenomena are formalized as propositions that are true “almost surely” or “except on a 
set of measure zero” (Billingsley, 1995). Almost sure propositions are not true in all possible 
interpretations of the FOL theory corresponding to an MTheory, but the set of worlds in which 
they are true has probability 1 under the probability distribution represented by the MTheory.  

Definition 8:  The distribution 
 
P

T

gen  is called the generative or prior distribution for T. Let 

Φ={Φ(ψ1=α1), Φ(ψ2=α2), … } be the finding MFrags for T. A finding alternative for T is a set 
{Φ(ψ1=α’1), Φ(ψ2=α’2), … } of values for the finding random variables of T, possibly assigning 
different values to the finding random variables from the values assigned by T. Finding 
alternatives represent counterfactual worlds for T – that is, worlds that were a priori possible but 
are different from the world asserted by the findings to have occurred.  

Corollary 2:  Let T be an MTheory with findings {Φ(ψ1=α1), Φ(ψ2=α2), … }.  Then a 
conditional distribution exists for 

 
P

T

gen  given {ψ1, ψ2, …}.  This distribution is unique in the 
sense that any two such distributions differ at most on a set of finding alternatives assigned 
probability zero by 

 
P

T

gen .   

Corollary 2 follows immediately from Theorem 1 and the Radon-Nikodym Theorem 
(Billingsley, 1995). The distribution 
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obtained by conditioning 
 
P

T

gen on all findings having value T is called the posterior distribution 

for T given its findings. The posterior distribution is abbreviated 
 
P

T
! |"(# = $ )( ) .  The 

following corollary states that even when the joint probability of an infinite sequence of findings 
is zero, if the individual findings have positive probability and a limiting posterior distribution 
exists, it is unique.  
Corollary 3: Suppose 

 
P

T

gen  assigns strictly positive probability to the event that the first n 
findings Φ(ψ1=α1), Φ(ψ2=α2), …, Φ(ψn=αn) all have value T. Then there is a unique conditional 
distribution for 

 
P

T

gen  given that the first n findings Φ(ψ1=α1), Φ(ψ2=α2), …, Φ(ψn=αn) all have 
value T. Furthermore, if the positivity condition holds for all n and a limiting distribution 

  
lim
n!"

P
T
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n
)( ) exists, then the limit is unique.  

Corollary 3 is a straightforward consequence of basic identities of conditional probability. 
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MTheories represent a conjugate family of probability distributions.  That is, if finding 
random variables are added to an MTheory, the result is another MTheory. Section 5 below 
discusses some operations that can be performed on MFrags to transform an MTheory into 
another MTheory that represents the same probability distribution.  Such transformations can be 
used to improve the computational efficiency of MEBN inference, to find a more compact and/or 
cognitively natural representation for an MTheory, or to translate between different partially 
overlapping MTheories. 

Although simple MTheories are adequate to express probability distributions over 
interpretations of arbitrary finitely axiomatizable FOL theories, expressing structural uncertainty 
with simple MTheories is cumbersome.  Structural uncertainty can be more compactly expressed 
using mixture MTheories, which provide the logical basis for a typed version of MEBN (Costa 
and Laskey, 2005). 

Definition 9:  If the posterior distribution for T 
 
P

T
! |"(# = $ )( )  is not unique, T is said to be 

disconfirmed by its findings.  

Definition 10:  A mixture MTheory is a set T = { (T1, p1), (T2, p2), … } of MFrags satisfying the 
following conditions: 

10a. Each Ti is a simple MTheory; 
10b. None of the Ti is disconfirmed by its findings; 
10c. The pi are positive numbers that sum to 1; 
10d. There must be an effective procedure for computing each pi;  
10e. For each finding Φ(ψ=ε) of one of the Ti, and for each j≠i, the posterior 

distribution of Tj assigns probability 1 to ψ=ε.   
The Ti are called mixture components with mixture weights pi.  An MTheory is either a simple 
MTheory or a mixture MTheory.  
Corollary 4: Let T  be an MTheory. Then there exists a joint probability distribution on the set of 
instances of the random variables in its MFrags that is consistent with the local distributions 
assigned by the MFrags of T.  

Corollary 4 is an immediate consequence of Theorem 1. 

4.4 Random Variable Semantics and Tarski Semantics 
In the standard semantics for first-order logic developed by Tarski (1944), a FOL theory is 
interpreted in a domain by assigning each constant symbol to an element of the domain, each 
function symbol on k arguments to a function mapping k-tuples of domain elements to domain 
elements, and each predicate symbol on k arguments to a subset of k-tuples of domain elements 
corresponding to the entities for which the predicate is true (or, equivalently, to a function 
mapping k-tuples of domain elements to truth-values).  If the axioms are consistent, this can be 
done in such a way that all the axioms of the theory are true assertions about the domain, given 
the correspondences defined by the interpretation.  Such an interpretation is called a model for the 
axioms. 

MTheories define probability distributions over interpretations of an associated FOL theory.  
Each k-argument random variable in an MTheory represents a function mapping k-tuples of 
unique identifiers to possible values of the random variable. Any function consistent with the 
logical constraints of the MTheory is allowable, and the probability that the function takes on 
given values is specified by the joint probability distribution represented by the MTheory.  For 
Boolean random variables, the possible values of the function are T, F, and ⊥; for non-Boolean 
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random variables, the possible values are entity identifiers. Through the correspondence between 
entity identifiers and entities in the domain, a non-Boolean random variable also represents a 
function mapping k-tuples of domain entities either to domain entities (for non-Boolean random 
variables) or to truth-values of assertions about the domain (for random variables).  

Interpreting random variable symbols as functions on the unique identifiers is consistent with 
the way random variables are formalized in mathematical statistics.  A random variable is defined 
as a function that maps a sample space endowed with a probability measure to a set of possible 
outcomes (e.g., Billingsley, 1995; DeGroot and Schervish, 2002).  In the standard definition, the 
global joint distribution is taken as given, and distributions for smaller sets of random variables 
are obtained by marginalizing the global joint probability measure. MEBN logic provides a 
logically coherent means of specifying a global joint distribution by composing local conditional 
distributions involving small sets of random variables. Formerly, this could be achieved only for 
restricted kinds of distributions.  Standard Bayesian networks allow joint distributions on a finite 
number of random variables to be composed from locally defined conditional distributions.  
There are well-known special cases, such as independent and identically distributed trials or 
Markov chains, for which joint distributions on infinite sets of random variables can be composed 
from locally defined conditional distributions. MEBN logic provides the ability to construct joint 
distributions from local elements for a very general class of distributions on infinite collections of 
random variables, and is the first Bayesian logic that has been shown to be capable of defining a 
joint distribution over interpretations of any finitely axiomatizable theory in classical first-order 
logic. 

Consider an MTheory TM in a language LM having domain-specific non-Boolean random 
variable symbols X={ξi}, domain-specific constant symbols A={αi}, domain-specific Boolean 
random variable symbols B={βi}, exemplar symbols S={σφi} and entity identifier symbols 
E={εi}. It is assumed that the sets X, A, B, and E are pairwise disjoint, are either finite or 
countably infinite, and do not contain the symbols T, F, or ⊥. It is assumed that S contains a 
distinct exemplar symbol σφi∉ X∪A∪B∪E∪{T,F,⊥} for each pair consisting of an open 
Boolean random variable term φ(γ1,…, γn) of LM and index i of an ordinary variable γi occurring in 
φ(γ1,…, γn). 

To facilitate the comparison with Tarski semantics, we begin by considering only the 
quantifier-free part of TM.  Suppose TM satisfies the following conditions: 

FOL1: There are no quantifier random variable terms among the context terms in any of 
the MFrags of TM, and no simple random variable term of TM has a quantifier 
random variable term as a parent. 

FOL2: Random variables ξ∈X or β∈B have value ⊥ if any of their arguments belong to 
{T, F, ⊥};  

FOL3: If the values of all arguments to a non-Boolean random variable ξ belong to E, 
then the value of ξ belongs to E with probability 1;  

FOL4: Any constant symbol α∈A has value in E with probability 1; 
FOL5: If the values of all arguments to a Boolean random variable β belong to E, then 

the value of β belongs to {T, F} with probability 1.  

Given these conditions, 
 
P

T
M

gen  generates random interpretations of the domain-specific random 

variable symbols of LM in the domain {ε∈E : ◊(ε)≠⊥)} of meaningful entity identifiers.  That is, 
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for each constant symbol, 
 
P

T
M

gen  generates a meaningful entity identifier. For each non-Boolean 

random variable symbol, 
 
P

T
M

gen  generates a random function mapping k-tuples of meaningful entity 

identifiers to meaningful entity identifiers. For each Boolean random variable symbol, 
 
P

T
M

gen  

generates a random function mapping k-tuples of meaningful entity identifiers to {T, F} (or 
equivalently, the subset of k-tuples for which the randomly generated function has value T).  

 A classical first-order theory TF that represents the logical content of TM is defined as 
follows: 

1. The language LF for TF has function symbols X, constant symbols A∪E∪{⊥}, and 
predicate symbols B, where the number of arguments for functions and predicates in LF 
is the same as the number of arguments for the corresponding random variables in TM. 

2. For each pair ε1 and ε2 of distinct entity identifiers, TF contains an axiom (ε1=ε2)⇒ 
(ε1=⊥) ∧ (ε2=⊥). 

3. For each non-Boolean random variable symbol ξ, TF contains axioms asserting that no 
instance of ξ may take on values outside the set of possible values as defined in the home 
MFrag for ξ.   

4. If a local distribution in a domain-specific MFrag of TM assigns probability zero to 
possible value ε of a non-Boolean resident random variable ξ(x) for some set #SWξ(x) of 
influence counts, there is an axiom of TF specifying that the function corresponding to 
ξ(x) is not equal to ε when the context constraints hold and the parents of ξ(x) satisfy 
#SWξ(x). Each such axiom is universally quantified over any ordinary variables appearing 
in ξ and/or its parents and/or the context random variables in the home MFrag of ξ. 
Formally, TF contains an axiom ∀x ((κ(x)∧#SWξ(x)) ⇒ ¬(ξ(x)= ε)). Here, κ(x) and #SWξ(x) 
denote formulae in LF asserting that the context constraints hold and that the influence 
counts for the parents of ξ(x) are equal to ξ(x); and x denotes any ordinary variables on 
which ξ, κ, and/or the parents of ξ depend. 

5. If a local distribution in a domain-specific MFrag of TM assigns probability one to T for a 
Boolean random variable β(x) for some set #SWβ(x) of influence counts, there is an axiom 
of TF specifying that the predicate β(x) is true under these conditions. That is, TF 
contains an axiom ∀x ((κ(x)∧#SWβ(x)) ⇒ β(x)).  Here, κ(x) and #SWβ(x) denote formulae in 
LF asserting that the context constraints hold and that the influence counts for the parents 
of β(x) are equal to β(x), respectively; and x denotes any ordinary variables on which β, 
κ, and/or the parents of β depend.  

6. If a local distribution in a domain-specific MFrag of TM assigns probability one to F for a 
Boolean random variable β(x) for some set #SWβ(x) of influence counts, there is an axiom 
of TF specifying that the predicate β(x) is false under these conditions. That is, TF 
contains an axiom ∀x ((κ(x)∧#SWβ(x)) ⇒ ¬β(x)). Here, κ(x) and #SWβ(x) denote formulae in 
LF asserting that the context constraints hold and that the influence counts for the parents 
of β(x) are equal to β(x), respectively; and x denotes any ordinary variables on which β, 
κ, and/or the parents of β depend. 
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The logical combination MFrags (see Figure 8) ensure that any interpretation generated by 

 
P

T
M

gen , specifies a well-defined truth-value for any sentence of TF. The assumptions FOL1-FOL5 

ensure that these truth-values satisfy the axioms defining TF.  That is, 
 
P

T
M

gen  generates random 

models of the axioms of TF. However, there may be sentences satisfiable under the axioms of TF 
to which 

 
P

T
M

gen  assigns probability zero.  When a satisfiable sentence of TF is assigned probability 

zero by
 
P

T
M

gen , there is no assurance that a well-defined conditional distribution exists given that the 

corresponding Boolean random variable has value T.  The following additional condition ensures 
that a well-defined conditional distribution exists given any finite set of logically possible 
findings on random variables of TM. 

FOL6: If φ(γ1,…, γn) is a Boolean random variable of TM that corresponds to a satisfiable 
formula of TF, and σφi is the exemplar symbol for ordinary variable γi in 
φ(γ1,…, γn), then  

 
P

T
M

gen assigns strictly positive probability to the value T for the 

quantifier random variables θ(σφ1, θ(σφ2, …, θ(σφn, φ(σφ1, σφ2, …, σφn)))), where θ 
is one of the quantifier symbols ∃ or ∀. 

Corollary 5: Suppose TM satisfies FOL1-FOL6, and suppose that TF is the first-order theory, 
constructed as above, expressing the logical content of TM. Let {Φ(ψ1=α1), Φ(ψ2=α2), …, 
Φ(ψn=αn)} be a finite set of findings such that the conjunction of the (ψi=αi) is satisfiable as a 
sentence of TF.  Then the posterior distribution 

 
P

T
M

! |"(# = $ )( )  exists and is unique.  

Corollary 5 is a straightforward consequence of Corollary 3. Specifying a generative 
distribution that satisfies FOL1-FOL5 is relatively straightforward. A construction is provided in 
Section 4.5 of an MTheory TM* for which 

 
P

T
M*

gen  satisfies FOL6. 

An MTheory is interpreted in a domain of application by associating each entity identifier 
symbol with an entity in the domain.  Through this correspondence between identifiers and the 
entities they represent, the probability distribution on entity identifiers induces a probability 

 
Figure 8:  Logical MFrags 
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distribution on attributes of and relationships among entities in the domain of application. In 
particular, although the generative distribution for an MTheory constructs interpretations in the 
countable domain of entity identifiers, an MTheory can be applied to reason about domains of 
any cardinality.  Under the assumption that the entities associated with the entity identifiers 
constitute a representative sample of entities in the domain, statistical conclusions drawn about 
the domain are valid for domains of any cardinality. 

Because MEBN allows joint distributions to be expressed over arbitrary first-order theories, 
MEBN can be used to define a Bayesian semantics for constructive mathematics.  Mathematics is 
commonly (although not universally) viewed as being founded on set theory and first-order logic.  
When a mathematician claims to have found a proof for a theorem, typically what he or she 
means is a proof that the community of mathematicians agrees could be formalized, with 
sufficient diligence, as a formal derivation using the rules of first-order logic from the axioms of 
set theory (cf., Enderton, 2001).  The most commonly used axiom system for set theory, the 
Zermelo-Frankel system with the axiom of choice (ZFC), has infinitely many axioms.  There is 
another axiom system for set theory, the von Neumann-Bernays-Gödel system (NBG), that has 
finitely many axioms.  Although no contradiction has been found in either of these axiom 
systems, mathematicians are not certain of their consistency. If one is consistent, then so is the 
other, and the two axiom sets have been shown to be essentially of equal strength (c.f., Stoll, 
1963).  A construction is provided below that implicitly defines a joint distribution on models of 
any consistent finite set of first-order logic sentences. Thus, one can construct an MTheory that, if 
NBG is consistent, implicitly represents a joint distribution on models of NBG.  If NBG is 
inconsistent, then SSBN construction would, in principle, if continued persistently for a long 
enough period of time, find a proof that there is a contradiction in NBG (as would any refutation-
complete proof procedure for classical first-order logic).  We could conceive of the enterprise of 
mathematics as a collective process of performing approximate SSBN construction for 
MTheories whose findings consist of the NBG axioms together with proper axioms defining 
theory-specific mathematical content.  In this view, finding a proof of a theorem would 
correspond to constructing a SSBN in which the proven sentence has value T with probability 1. 
Mathematicians sometimes say informally that a proposition they have not proven is “probably 
true.” Such a statement is meaningless in the standard formalization of classical FOL.  The 
proposition may follow from the axioms; it may generate a contradiction when conjoined with the 
axioms; or its truth-value given the axioms may be indeterminate.  According to classical FOL, 
one of these situations is the actual state of affairs, and it is meaningless to speak of probabilities.  
Taking a Bayesian view, if we assume that the mathematician’s axiom set is consistent, an 
MTheory implicitly represents a probability distribution over models of the axioms.  Any given 
proposition has a probability in the closed unit interval.  A probability of one corresponds to a 
theorem; a probability of zero corresponds to a statement inconsistent with the axioms, and 
intermediate values correspond to propositions having indeterminate truth-values.  The 
probability assigned by the mathematician’s current SSBN may be equal to the probability 
implicitly defined by the MTheory, or it may approximate that probability.  In the latter case, the 
mathematician might say the proposition is “probably true” if the approximate SSBN assigns it a 
high probability. This might mean that the mathematician thinks it likely that a proof will 
eventually be found, or that a proof could likely be found by adding additional high probability 
axioms.  These two alternatives can themselves be formalized as higher-order probability 
statements.   

Of course, there is no scientific justification for claiming that the brains of mathematicians 
actually store MTheories, or that mathematicians are actually performing SSBN construction 
when they are developing proofs.   Nevertheless, there are a number of advantages to formalizing 
mathematics as approximate Bayesian logic.  In this view, it is perfectly meaningful for a 
mathematician to say he or she thinks NBG is probably consistent, or that any given mathematical 
hypothesis is probably a theorem. The mathematical enterprise is both meaningful and useful 
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even if it should turn out that NBG is inconsistent.  Alternative proposals for the foundations of 
mathematics, such as category theory, can also be formalized as Bayesian logic (although there 
are no guarantees that a joint distribution exists over models of proposed foundational theories 
with infinite numbers of axioms, even if the axioms are not mutually contradictory). One can 
formalize exploratory mathematics decision theoretically, as well as the collective process of 
identifying and eliminating errors in proofs. 

Important advantages of MEBN random variable semantics are clarity and modularity. For 
example, we could add a new collection of MFrags to our equipment diagnosis MTheory, say for 
reasoning about the vacation and holiday schedule of maintenance technicians, without affecting 
the probabilities of any assertions unrelated to the change. Furthermore, the probability 
distribution represented by an MTheory is a well-defined mathematical object independent of its 
correspondence with actual objects in the world, having a clearly specified semantics as a 
probability distribution on E∪{⊥}.  Its adequacy for reasoning about the actual world rests in 
how well the relationships in the model reflect the empirical relationships among the entities to 
which the symbols refer in a given domain of application. Our approach thus enforces a 
distinction between logical and empirical aspects of a representation and provides a clearly 
defined interface between the two. This supports a principled approach to empirical evaluation 
and refinement of domain ontologies. 

4.5 A Generative Distribution for First-Order Logic 
This section constructs a generative MTheory TM* such that 
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the number of arguments taken by ϕi. A distribution is also defined for the exemplar constants.  
The remaining random variables are defined via the logical MFrags of Figure 8.  

The joint distribution for simple open random variables and exemplar constants is defined as 
follows. Let ψ1, ψ2, … be a total ordering of the quantifier random variables; let π1, π2, … be a 
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o If ψk is unsatisfiable as a formula of LF* given the constraints on ψ1, …, ψk-1 
implied by the values of its parents, then ◊(!" k

)  has value ⊥ with probability 
1. 

o If ¬ψk is unsatisfiable as a formula of LF* given the constraints on ψ1, …, 
ψk-1 implied by the values of its parents, then ◊(!"

i

)  has value εj with 

probability πj.  
o Otherwise, ◊(!"

i

)  has value⊥ with probability θ and εj with probability 

(1- θ)πj. 
Domain-specific random variable distributions:  The distribution of 
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Theorem 6: If ψ is a closed Boolean random variable corresponding to a satisfiable sentence of 
LF*, then 
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T
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gen places non-zero probability on the value T for ψ.  
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Proof: The above construction ensures that if ψ corresponds to a satisfiable sentence of TF*, then 
there is a non-zero probability that ◊(!

¬" )  has value ⊥. When ◊(!
¬" )  has value ⊥, the local 

distributions for the domain-specific random variables are assigned in a way that constrains ψ to 
have value T. Therefore, there is a non-zero probability that ψ has value T. 

4.6 Inference in MEBN Logic:  Situation-Specific Bayesian Networks 
As noted above, MEBN inference conditions the prior distribution represented by an MTheory on 
its findings.  The Appendix presents an inference algorithm that uses knowledge-based model 
construction (Wellman, et al., 1992) to produce a sequence of approximate situation-specific 
Bayesian networks. Mahoney and Laskey (1998) define a situation-specific Bayesian network 
(SSBN) as a minimal Bayesian network sufficient to compute the response to a query, where a 
query consists of obtaining the posterior distribution for a set of target random variable instances 
given a set of finding random variable instances. Their simple bottom-up construction algorithm 
for constructing situation-specific Bayesian networks is provided in the Appendix.  The algorithm 
begins with a query set consisting of a finite set of target random variable instances and a finite 
set of finding random variable instances. These are combined to construct an approximate SSBN.  
The approximate SSBN has an arc between a pair of random variables when one is an instance of 
an influencing configuration for the other in its home MFrag.  At each step, the algorithm obtains 
a new approximate SSBN by adding findings, instantiating the home MFrags of the random 
variables in the query set and their ancestors, adding the resulting random variable instances to 
the query set, removing any that are not relevant to the query, and combining the resulting set of 
random variable instances into a new approximate SSBN.  This process continues until either 
there are no changes to the approximate SSBN, or a stopping criterion is met. If the algorithm is 
run without a stopping criterion, then if SSBN construction terminates, the resulting SSBN 
provides an exact response to the query or an indication that the findings are inconsistent. When 
the algorithm does not terminate, it defines an anytime process that yields a sequence of 
approximate SSBNs converging to the correct query response if one exists. In general, there may 
be no finite-length proof that a set of findings is consistent, but inconsistent findings can be 
detected in a finite number of steps of SSBN construction. 

Figure 9 shows two SSBNs constructed from the MTheory of Figure 2 for a query on the 
engine status of two machines, the first for the case in which the two machines are known to be in 
the same room, and the second for the case in which the two machines are known to be in 
different rooms.  In the first case, learning that the engine in one machine is overheated results in 
an increase in the probability that the other engine is overheated; in the second case, the same 
information has almost no effect on the probability distribution for the other machine (there is a 
small impact because of the influence of the evidence on beliefs about the maintenance practices 
of the owner). 

As noted above, when an ordinary variable appears in a parent but not in its child, the random 
variable can have an unbounded number of parent instances in the constructed approximate 
SSBN. Each step of SSBN construction instantiates finitely many parents of any random variable.  
When there are infinitely many computationally relevant parent instances, additional instances are 
added at each step until a termination condition is reached. Even when a finite-size SSBN exists, 
constructing it and computing a query response is often intractable.  It is typically necessary to 
approximate the SSBN by pruning arcs and random variables that have little influence on a query, 
and/or compiling parts of the SSBN to send to inference engines optimized for special problem 
types. The process of controlling the addition and pruning of random variable instances and arcs 
is called hypothesis management. More generally, execution management controls the inference 
process to balance accuracy against computational resources. Often, portions of an inference task 
can be solved exactly or approximately using efficient special-purpose reasoners. Such reasoners 
include constraint satisfaction systems, deductive theorem provers, differential equation solvers, 
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heuristic search and optimization algorithms, Markov chain Monte Carlo algorithms, particle 
filters, etc. At the meta level, MEBN logic itself can be used to reason about which 
approximation method to apply to a given query. Online reasoning systems may interleave 
addition of new findings, refinement of the current approximate SSBN, computation of query 
responses given the current approximate SSBN, and learning (see Section 6 below). 

Laskey, et al. (2000, 2001) treat hypothesis management as a problem of balancing the 
computational overhead of representing additional random variable instances against accuracy in 
responding to queries. Charniak and Goldman (1993) and Levitt et al. (1995; Binford and Levitt, 
2003) also consider hypothesis management in open-world computational probabilistic reasoning 
systems. Hypothesis management is discussed extensively in the literature on tracking and multi-
source fusion (e.g., Stone, et al., 2000). 

We are justified in applying MEBN inference to draw conclusions about the world when: (i) 
the generative theory accurately represents the process by which outcomes of the finding random 
variables occur in the world and (ii) the process by which findings come to be observed is 
ignorable. A data generating process is ignorable if either there is no systematic relationship 
between the random variable(s) of interest and the process by which findings come to be 
observed, or if the relationship can be accounted for by the observed random variables (Little and 
Rubin, 1987). The following is an example of a non-ignorable observation process: (i) a finding 
on the TempLight random variable may not be observed if the temperature light is not working 
properly; (ii) an overheated engine can cause the temperature light to malfunction; and (iii) the 
MTheory does not account for the relationship between whether there is a finding and whether 
the engine is overheated. Whether findings are ignorable depends both on the generative theory 
and on the process that determines which random variable instances have findings. Inferences can 
be adjusted for a non-ignorable observation process by explicitly modeling the observation 
process and by collecting information on additional random variables that may be related to the 
observation process. MEBN fragments are a useful tool for representing common patterns in 
observation mechanisms, data gathering conditions, and data reporting processes. Libraries of 
common patterns can be developed, tailored for specific applications, and used to model and 
adjust for the effects of the conditions of observation.  This is especially important when an 
MTheory combines information from different sources that may have been gathered under 
different conditions (e.g., Schum, 1994). 

Along with the response to a query, MEBN inference can also return a conflict indicator 
(Jensen, 1991; Laskey, 1991).  Unusually large values of a conflict indicator indicate that the 
findings are a poor fit to the generative theory. Commonly applied conflict indicators measure 
calibration of predictions against observed findings. Typically, the probability assigned by an 
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Figure 9: Situation-Specific Bayesian Networks 
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MTheory T to the event that all findings have value T is compared with the probability under an 
alternative model that is both simple to compute and expected to fit more poorly than T if T is 
correct (Laskey, 1991). While occasional short-term runs of poor calibration sometimes occur in 
an probabilistic process, if the generative MTheory can represent the statistical regularities in the 
sequence of findings, there is zero probability that findings will be uncalibrated in the infinite 
limit (Dawid, 1984).  A conflict indicator can be used to control SSBN construction, performing 
additional construction when the current SSBN provides a poor fit to findings (Laskey, et al., 
2001). 

4.7 Relationship of MEBN to Other Probabilistic Logics and Languages  
There is a growing literature on languages for representing probabilistic knowledge, the 
semantics of probabilistic representations, and well-foundedness, tractability and decidability of 
inference in probabilistic theories.  The success of graphical models for parsimonious 
representation and tractable inference has generated strong interest in more expressive languages 
for reasoning with probability.  Work in knowledge-based model construction (e.g., Wellman, et 
al., 1992) focused on constructing Bayesian networks from knowledge bases consisting of 
modular elements representing knowledge about small clusters of variables.  Early KBMC 
systems were not built on decision theoretically coherent declarative domain theories, and relied 
on heuristic knowledge, typically encoded as procedural rules, for constructing complex models 
from simpler components.  As work in knowledge-based model construction progressed, interest 
grew in the theoretical foundations of probabilistic representation languages, and in their 
relationship to classical first-order logic. A number of authors have investigated approaches to 
integrating classical logic with probability.  A common approach has been to provide language 
constructs that allow one to express first-order theories not just about objects in a domain of 
discourse, but also about proportions and/or degrees of belief for statements about these objects. 
Bacchus et al. (1997; Bacchus, 1990) augment first-order logic with proportion expressions that 
represent the knowledge that a given proportion of objects in a domain have a certain property. A 
principle of indifference is applied to assign degrees of belief to interpretations satisfying the 
constraints imposed by ordinary first-order quantification and the proportion expressions. 
Halpern’s (1991) logic can express both proportion expressions and degrees of belief, and 
provides a semantics relating proportions to degrees of belief. Neither of these logical systems 
provides a natural way to express theories in terms of modular and composable elements. Unlike 
Bayesian networks, which have easy to verify conditions ensuring the existence of a complete 
and consistent domain theory, it is in general quite difficult in these logical systems to specify 
complete and consistent probabilistic domain theories, or to verify that a theory is complete and 
consistent. 

A number of languages have been developed that represent probabilistic knowledge as 
modular units that can have repeated substructures, and that can be composed into complex 
domain models. These include pattern theory (Grenander, 1995), hidden Markov models (Elliott, 
et al., 1995), the plates language implemented in BUGS (Gilks, et al., 1994; Buntine, 1994; 
Spiegelhalter, et all, 1996), object-oriented Bayesian networks (Koller and Pfeffer, 1997; Bangsø 
and Wuillemin, 2000; Langseth and Nielsen, 2003), and probabilistic relational models (Getoor, 
et al., 2000, 2001; Pfeffer, 2001). There is a great deal of commonality among languages for 
compactly expressing complex probabilistic domain theories (cf., Heckerman, et al., 2004). Plates 
in BUGS, object classes in object-oriented Bayesian networks, and PRM structures in 
probabilistic relational models all correspond to MFrag classes.  
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Figure 10 compares MEBN, PRM and plate representations for a theory fragment in the 
equipment diagnosis domain. Like Bayesian networks, plates represent a joint distribution as an 
acyclic directed graph in which nodes represent random variables, arcs represent direct 
dependence relationships, and each node is annotated with a specification of a conditional 
distribution of the random variable given its parents. Repeated structure in a plates model is 
represented by indexing repeated random variables with subscripts, and enclosing the set of 
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Figure 10: MFrags, PRM and Plates for Equipment Diagnosis Domain 
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random variables indexed by a given subscript in a rectangle called a “plate.” These indices play 
the role of the ordinary variables in an MFrag. As in MEBN, a random variable’s parents may 
contain indices not mentioned in the random variable, in which case the local distribution for the 
child random variable must specify how to aggregate influences from multiple instances of the 
parent random variable.  Plate models are restricted to a finite number of instances of each 
random variable. The number of instances of each random variable is a fixed attribute of the plate 
model.  BUGS has sophisticated capability for parameter learning, and although there is no built-
in mechanism for structure learning, plate models can be constructed to represent the problem of 
reasoning about the presence or absence of conditional dependency relationships between random 
variables. 

A PRM contains the following elements (Heckerman, et al., 2004; see Figure 10b):  
 A relational schema that specifies the types of objects and relationships that can exist 

in the domain; 
 A PRM structure that represents probabilistic dependencies and numerical 

probability information; 
 A skeleton that specifies a unique identifier and a blank template for each individual 

entity instance; 
 The data to fill the entries in the blank template. 

Like an MTheory, a PRM represents a probability distribution over possible worlds. Any 
given PRM can be expanded into a finite Bayesian network over attributes of and relationships 
between the individuals explicitly represented in the skeleton. PRMs use aggregation rules to 
combine influences when multiple instances of a parent random variable influence a child random 
variable (as when multiple reports influence the WatchStatus random variable in Figure 10).  In 
addition to attribute value uncertainty, PRMs have been extended to handle type uncertainty, 
reference uncertainty, and identity uncertainty.  PRM learning theory provides a formal basis for 
both parameter and structure learning. Learning methods have been published (e.g., Getoor, et al., 
2001) for learning both the structure and parameters of PRMs from instances in the skeleton. If 
the probability distribution represented by a PRM is assumed to apply to similar entities not 
explicitly represented in the skeleton, then PRM learning methods can be extended to allow 
sequential learning as new individuals are added to the skeleton over time, thus providing the 
logical basis for a form of open-world reasoning.  One can also extend the relational schema and 
PRM structure “by hand” to add new entity types. 

Heckerman, et al. (2004) introduce a new language, DAPER, for expressing probabilistic 
knowledge about structured entities and their relationships.  DAPER combines the entity-relation 
model from database theory with directed graphical models for expressing probabilistic 
relationships.  DAPER is capable of expressing both PRMs and plates, thus providing a unified 
syntax and semantics for expressing probabilistic knowledge about structured entities and their 
relationships.  As presented in Heckerman, et al. (2004), DAPER expresses probabilistic models 
over finite databases, and cannot express arbitrary first-order formulas involving quantifiers. That 
is, DAPER (and by extension PRMs and plates) is a macro language for compactly expressing 
finite Bayesian networks with repeated structure, and not a true first-order probabilistic logic.  On 
the other hand, the random variable semantics described in Section 4.4 could provide a theoretical 
basis for extending DAPER, and thus PRMs and plates, into a true first-order logic. Conditions 
could be identified under which DAPER models of unbounded cardinality express well-defined 
probability distributions over models. If developed more fully, the relationship sketched here 
between MTheories, PRMs and plates would facilitate construction of such an extension. 

Object-oriented Bayesian networks represent entities as instances of object classes with class-
specific attributes and probability distributions. Reference attributes allow representation of 
function composition.  Although OOBNs do not have multi-place relations, these can be handled 
by defining new object types to represent multi-place relations.  Structure and parameter learning 
methods for OOBNs have been developed (e.g., Langseth and Nielsen, 2003; Langseth and 
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Bangsø, 2001).  The current literature on OOBNs does not treat type and reference uncertainty, 
although clearly it would be possible to extend OOBNs to handle these kinds of uncertainty.  An 
advantage of OOBNs is the ability to represent encapsulated information, or random variables 
defined internally to an object that are independent of external random variables given the 
interface random variables that shield an object from its environment.  The semantics of 
encapsulation is based on conditional independence relationships.  Thus, the concept of 
encapsulation could be extended to other languages based on graphical models, including 
MTheories and DAPER models with encapsulated random variables. As with plates and PRMs, 
the random variable semantics described in Section 4.4 could provide a theoretical basis for 
extending OOBNs toward full first-order expressiveness. 

A feature of MEBN not present in PRMs, plates or OOBNs is the use of context constraints 
to specify logical conditions that determine whether one random variable influences another.  A 
similar effect can be achieved by using aggregation functions that ignore influences ruled out by 
the context, but this is more cumbersome.  PRMs and OOBNs are founded on a type system, and 
sophisticated implementations have subtypes and inheritance (e.g., IET, 2004).  MEBN can be 
extended to a typed logic that has many of the advantages of typed relational languages (Costa 
and Laskey 2005).  Because there presently is no direct implementation of MEBN logic, several 
published applications have translated MTheories into relational models and used the 
Quiddity*Suite probabilistic relational modeling and KBMC toolkit (IET, 2004) to construct 
situation-specific Bayesian networks (e.g., Costa, et al., 2005; AlGhamdi, et al., 2005).  There are 
some features of MEBN logic (most notably context constraints) that cannot be represented 
declaratively in standard relational languages, but the ability of Quiddity*Suite to combine 
Prolog-style rules with a frame-based relational modeling language provides the ability to specify 
much more powerful declarative representations (e.g., Fung, et al., 2005). 

Like MEBN logic, relational Bayesian networks (Jaeger 1997; 1998; 2001) provides formal 
semantics for probability languages that extend Bayesian networks to achieve first-order 
expressiveness. Random variables in a relational Bayesian network are all Boolean.  A RBN has a 
set of pre-defined relations used in defining the local distributions and a set of probabilistic 
relational symbols, which represent uncertain relations on the domain. A RBN defines a joint 
probability distribution on models of the uncertain relations.  Probability formulas specify how to 
combine influences from multiple instances of the parents of a random variable to obtain a 
conditional distribution for the random variable given finite sets of instances of its parents. 
General relational Bayesian networks can represent probability distributions only over finite 
domains, although non-recursive RBNs have been extended to represent probability distributions 
over countably infinite domains (Jaeger, 1998).  

 Bayesian logic programs (e.g., Kersting and deRaedt, 2001a,b; deRaedt and Kersting, 2003; 
Sato, 1998) also express uncertainty over interpretations of first-order theories. To ensure 
decidability, BLPs have typically been restricted to Horn clause theories. The PRISM language is 
a powerful and efficient implementation of Bayesian logic programming. Bayesian logic 
programs and MTheories represent complementary approaches to specifying first-order 
probabilistic theories.  BLPs represent fragments of Bayesian networks in first-order logic; 
MTheories represent first-order logic sentences as MFrags. Although the restriction to Horn 
clause logic limits the expressiveness of BLP languages, this limitation is balanced by the 
efficiency of algorithms specialized to Horn clause theories.  Research in Bayesian logic 
programming is applicable to the problem of execution management in SSBN construction.  That 
is, an execution manager can identify portions of an inference task that involve only Horn 
clauses, and send these to an inference engine specialized for efficient reasoning with Horn 
clauses. MEBN semantics could be used to develop extensions to BLP languages that could 
handle knowledge bases not limited to Horn clauses.  

Other research on integrating logic and probability includes Poole’s (2003) parameterized 
Bayesian networks, Ngo and Haddawy’s (1997) work on context-specific probabilistic 



MEBN LOGIC 

C4I-06-01 35 2/5/06 

knowledge bases, and BLOG (Milch, 2005), a new language that enables reasoning about 
unknown objects. Parameterized Bayesian networks are designed to provide the ability to reason 
about individuals not explicitly named, an important capability lacking in most probabilistic 
languages.  Like MEBN, random variables in a parameterized Bayesian network can take 
arguments; individuals in a population can be substituted for the parameters to form instances of 
the random variables. Like MEBN, the population over which the parameters range can be finite 
or infinite.  Poole considers only models without recursion.  Thus, a parameterized Bayesian 
network corresponds to an MTheory with no recursive links. Ngo and Haddawy represent 
probabilistic knowledge as universally quantified sentences that depend on context.  Like MEBN, 
Ngo and Haddawy exploit context constraints to focus inference on relevant portions of the 
knowledge base. Unlike MEBN, Ngo and Haddawy separate context, which is non-probabilistic, 
from uncertain hypotheses, for which context-specific probability distributions are defined. A 
context-sensitive knowledge base corresponds to a partially specified MTheory in which there is 
a reserved subset of Boolean random variables that may appear as context random variables in 
MFrags, but that have no home MFrags and whose truth-values are assumed to be known at 
problem solving time. BLOG (Milch, et al., 2005) is a new language that enables probabilistic 
reasoning about unknown entities, and about domains that can contain unknown numbers of 
entities. 

Hidden Markov models are applied extensively in pattern recognition tasks such as speech 
and handwriting recognition.  Formally, a hidden Markov model can be represented as a dynamic 
Bayesian network in which an observable random variable depends on a latent or hidden variable 
that follows a Markov transition.  Dynamic Bayesian networks and partially dynamic Bayesian 
networks (Bayesian networks containing both static and dynamic nodes) allow a richer range of 
representation possibilities, in that complex dependency structures for hidden and observable 
random variables can be compactly represented. There is a large literature on efficient estimation 
and inference methods for hidden Markov models. HMMs and DBNs represent temporal 
recursion.  Pfeffer (2000) also considers recursive probabilistic models, which can express non-
temporal recursive relationships. It is straightforward to express HMMs, DBNs, and recursive 
probabilistic models as MEBN theories (e.g., Figure 3).   

Pattern theory (Grenander, 1993) is a graphical modeling language based on undirected 
graphs. There is an extensive literature on applications of undirected graphical models to image 
understanding, geospatial data, and other problems in which there is no natural direction of 
influence. A hybrid language could be defined that extends MEBN logic to permit both directed 
and undirected arcs. Such an extension is not considered here. 

Many languages designed for implementation have taken the strategy of restricting 
expressiveness to ensure that answers to probabilistic queries are decidable.  In an open world, 
the answer to many queries of interest will be undecidable, and the best that can be expected is an 
approximate answer.  Languages that provide decidable, closed-form responses to limited classes 
of queries have an important place both theoretically and practically. Nevertheless, intelligent 
reasoning in a complex world requires principled methods of coping with undecidable or 
intractable problems. MEBN logic exploits the language of graphical models to compose 
consistent domain theories out of modular components connected via clearly defined interfaces, 
and thus can support efficient implementations of tractable domain theories.  Yet, MEBN logic 
can represent highly complex, intractable, and even undecidable domain theories. Although the 
answer to a probabilistic query may be undecidable, and may be intractable even when it is 
decidable, Bayesian decision theory provides a sound mathematical basis for designing and 
analyzing the properties of processes that converge to the correct response to undecidable queries, 
and resource-bounded processes that balance efficiency against accuracy. Bayesian theory also 
provides semantics for the relationship between empirical proportions and probabilities, as well 
as a logically justified and theoretically principled way to combine empirical frequencies with 
prior knowledge to refine theories in the light of observed evidence.  
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5 Representing Knowledge using MEBN Theories 
A logic for knowledge representation requires both a mechanism for representing individual 
assertions and an ability to organize assertions into structures that permit a reasoner to derive 
related assertions from existing assertions. FOL is the de facto standard logic for formalizing both 
individual assertions and knowledge structures. A number of references describe how to translate 
individual natural language sentences into first-order logic (e.g., Enderton, 2001; Quine, 1982). 
Special-purpose knowledge structures have evolved for dealing with many generally useful 
aspects of the world, such as types and subtypes, parts and wholes, structured objects and their 
attributes, space, time, events, values, decisions, actions, and plans. A typical progression in the 
development of a generically useful knowledge structure begins with independent emergence of 
several informally specified and closely related variants, followed by increasing formalization, 
and eventual convergence on core standards. These core standards have typically been formalized 
either directly in FOL, or in some language for which a translation into FOL has been worked 
out.  Such an evolution process is occurring with probabilistic logic, and there appears to be 
convergence toward first-order languages based on graphical models.  MEBN logic is to our 
knowledge the first such language having all the following properties:  (1) the ability to express a 
globally consistent joint distribution over models of any consistent FOL theory; (2) a proof theory 
capable of identifying inconsistent theories in finitely many steps and converging to correct 
responses to probabilistic queries; and (3) a built-in mechanism for refining theories in the light 
of observations. 

Beyond viewing the world as composed of entities having attributes and existing in 
relationship to other entities, bare first-order logic makes no commitments about the best way to 
represent knowledge.  This provides a knowledge base designer with great flexibility, but also 
with the responsibility for defining adequate representations for an enormous variety of entity 
types.  Considerable savings are possible in development, maintenance, and integration to the 
extent that existing representations can be adapted rapidly and efficiently for use on related 
problems.  However, the potential savings is often outweighed by the effort and risk involved in 
adapting a representation for reuse in another context.  These difficulties would be mitigated if 
the de facto standard logic had principled uncertainty handling as a core capability built into the 
structure of the logic.  This argues for moving toward first-order probabilistic logic as a standard 
formal basis for knowledge representation and interchange. 

Because MEBN logic includes FOL as a subset, any knowledge structure formalized in FOL 
can automatically be translated to a family of MEBN theories all having the same logical content.  
Bare MEBN logic makes no specific commitment regarding probability assignments, leaving this 
up to the designer of an integration architecture, although extensions can be defined that make 
default assignments according to popular heuristics such as minimum description length or 
maximum entropy.  Modulo the specification of intelligent default probability assignments, 
MEBN logic can fully exploit previous efforts at formalizing standard knowledge structures. For 
an example of an early effort at converting a large knowledge base from logic to probabilities, see 
the literature on the QMR-DT project (e.g., Parker and Miller, 1987).  A similar approach could 
be applied to translating other large knowledge bases into theories expressed in a probabilistic 
logic. 

Following the approach described in standard references (e.g., Sowa, 2000), a typed version 
of MEBN logic can be defined by specifying a lattice of types, a Type random variable that maps 
an entity to the label for its base type, and a predicate for each type that maps an entity to T if it is 
of the type indicated by the type label. Context random variables for a random variable’s home 
fragment perform type checking, and a random variable maps entities to ⊥ that do not match its 
input type. Because MEBN logic includes first-order logic as a subset, any abstract type that can 
be formalized using first-order logic can be represented in MEBN logic. Efficient specialized 
inference engines could be used to perform rapid type-checking as part of SSBN construction. 
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Standard techniques can be applied to define a polymorphic version of MEBN logic.  For 
example, we might define the BeltedMachineEngineStatus and BeltlessMachineEngineStatus 
random variables to represent the status of the engine in machines that do and do not have belts, 
respectively.  The former has BeltStatus as a parent; the home MFrag of the latter does not have a 
BeltStatus random variable.  An EngineStatus random variable would then be defined that applies 
to all machines.  It maps a machine m to BeltedMachineEngineStatus(m) if it has a belt and to 
BeltlessMachineEngineStatus(m) if it has no belt.  Polymorphic MEBN  (Costa and Laskey, 
2005) would make this mapping automatic and invisible to the knowledge base designer. 

A typed MEBN logic would have several powerful capabilities lacked by typed languages 
founded on FOL.  First, typed MEBN logic can express and reason with uncertainty about the 
type of an entity.  If we don’t know whether an engine has a belt, then a query on BeltStatus(m) 
results in a probability weighted average of the result of a query on BeltedMachine-
EngineStatus(m) and BeltlessMachineEngineStatus(m).  Second, we often know some but not all 
of the attributes of an object.  In such situations, standard typed logics and object-oriented 
systems must either assign values of unknown attributes by default or leave them unspecified. 
The former leads to brittle, ad hoc rules for retracting default assignments when additional 
information renders them implausible; the latter renders the logic too weak for interesting 
practical problems.  MEBN logic assigns probabilities to the possible values of unspecified 
attributes.  These probabilities incorporate all relevant knowledge about the entity itself and other 
related entities.  This leads to theoretically principled nonmonotonic reasoning, in which 
probabilities for unknown attribute values move up and down appropriately as relevant evidence 
accrues.  Third, it is often useful to generate a representative instance of a given type.  MEBN 
logic provides a probability distribution for randomly generating an entity instance given its type, 
any pre-specified attributes, and any relevant information about related entities.  Finally, MEBN 
logic has a built-in learning theory for refining type-specific probability distributions.  Bayesian 
learning provides a principled mechanism for learning probability distributions from a sample of 
observed instances.  When there are few observations, a type-specific distribution can “borrow 
strength” from samples of entities of similar types, weighting the information appropriately 
according to degree of similarity (Gelman, et al, 1995).  

Another advantage of MEBN logic is its ability to represent hypothetical entities, such as the 
belt in a machine that may or may not have a belt, or the person who tripped the security alarm if 
the alarm may have been tripped by a power surge.  We can define an attribute Exists(x) that has 
value T if and only if x refers to an actual entity. For some applications, we may want to assign 
the value ⊥ to all attributes of a hypothetical entity; for other applications it may be useful to 
assign probabilities that are representative of what would be expected if the hypothetical entity 
were real. This ability to represent and reason with hypothetical entities makes MEBN logic a 
natural tool for counterfactual reasoning and reasoning about causality (cf., Druzdzel and Simon, 
1993; Pearl, 2000).  MEBN logic also can represent identity uncertainty, or uncertainty about 
whether two expressions refer to the same entity.  

Other categories of knowledge for which specialized logics have been developed include 
parts and wholes, actors and roles, and space and time.  MEBN logic makes no definite 
commitments regarding the proper way to treat these categories, but is compatible with many 
common approaches.  

Actions, plans and decisions can be represented with an extension to MEBN logic called 
multi-entity decision graph (MEDG, or “medge”) logic.   A MEDG theory is an MEBN theory in 
which: 

 Each random variable is labeled as a world state, decision, or value random variable. 
 The possible values of value random variables are numbers. 
 If a value random variable has children, they must be value random variables. 
 The total value for a MEDG theory is the expected value of the sum of all value 

random variables.  
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 A MEDG policy set is a set of MEDG theories that differ only in the local 
distributions assigned to decision random variables.  A MEDG theory is optimal for a 
policy set if its total value is at least as great as any other MEDG theory in the policy 
set.  

A multi-agent MEDG theory has different actors who may play different roles.  Each actor 
has his/her own value and decision random variables. An agent’s value and decision random 
variables are world state random variables to all other agents.  Each actor’s optimal course of 
action is to maximize its total expected value given the probability distributions it assigns to the 
actions of the other actors.  It is common in economics and game theory to assume rational 
expectations (Sargent, 2003), i.e., that an actor’s probability distributions are obtained by 
conditioning a global MEDG probability distribution on the agent’s information, and this global 
MEDG distribution is a generative distribution for the actual outcomes of both world state and 
action random variables.  MEDG logic has no built-in requirement for rational expectations, but a 
knowledge base designer may include axioms that imply rational expectations.  MEDG logic 
could provide a logical foundation for first-order graphical models for economic and game 
theoretic problems (see Kearns and Mansour, 2002). 

Many different special-purpose logics have been proposed for space and time.  MEBN logic 
provides a unifying formal basis for expressing probabilistic logics for space and time.  MEBN 
logic can represent stochastic processes such as dynamic Bayesian networks (Murphy, 1998; 
Gharamani, 1998) and partially dynamic Bayesian networks (Takikawa, et al, 2002), as well as 
Bayesian network models for spatial reasoning (e.g., Wright, 2002). Many common 
representations for spatial and temporal reasoning can be formalized in FOL (see Davis, 1990 or 
Sowa, 2000) and then translated to MEBN logic.   

Spatio-temporal reasoning and parameter learning typically require probability distributions 
on uncountably infinite sets such as the real or complex numbers. Just as classical first-order 
languages with countable symbol sets can represent theories about uncountable infinities, so can 
MEBN logic. It is important to note that an identifier in MEBN logic is a label for the entity, not 
the entity itself. Although there are uncountably many real numbers, mathematicians have been 
able to develop powerful theories for reasoning about real numbers using languages with only 
countably many symbols. Any application of an MTheory could represent at most countably 
many labeled objects that take values in the real numbers (e.g., lengths of objects; weights of 
objects; parameters of probability distributions). This does not imply that there are only countably 
many possibilities for object lengths, object weights, or parameters.  In particular, arbitrary 
continuous distributions can be approximated as mixture distributions over a countable family of 
continuous density functions (c.f., Robert, 2001).  Real-valued random variables in an MTheory 
could be approximated to arbitrary accuracy by defining their possible values to be indices 
referring to kernel density functions defined over the real numbers. 

Another important application of MEBN logic is the problem of aligning ontologies and in-
terchanging knowledge between different reasoners.  If we think of the problem of integrating 
different reasoners as a problem in inference and decision making under uncertainty, MEDG is a 
natural logic for representing the integration process.  A meta-level MEDG theory can be speci-
fied in which each of the reasoners to be integrated is viewed as an entity.  A set of MEDG frag-
ments can be defined to reason about the inputs, outputs, and performance characteristics of each 
reasoner.  The context random variables for these MEDG fragments represent information such as 
the kind of problem, the time available for solution, the format of the inputs, the desired format of 
the outputs, the desired output quality, etc.  MFrags can be developed to represent the flow of 
inputs and outputs among different reasoners (e.g., temporal reasoners, analogical reasoners, 
statistical reasoners, modal logics, etc.), where each reasoner can focus on aspects of the problem 
for which it is suited.  The meta-MEDG can examine different architectures for combining the 
reasoners to evaluate which provide better overall solutions against the anticipated class of 
queries.  Based on this model, a set of heuristic rules, or suggestors, can be specified that trigger 



MEBN LOGIC 

C4I-06-01 39 2/5/06 

calls to different reasoners based on features of the query and characteristics of intermediate 
results (D’Ambrosio, et al., 2001).  As experience is gained, the meta-MEDG can be refined to 
provide a more accurate assessment of the predicted performance, improvements in the 
integration architecture can be identified, and improved suggestors can be developed. 

6 Combining Knowledge with Observation 
Cognitively natural and computationally tractable approaches to fusing knowledge and data 

are essential enabling technologies for large-scale application of probabilistic knowledge repre-
sentations (Dybowski, et al., 2003; Druzdzel and van der Gaag, 2000). MEBN logic provides the 
ability to update and refine theories as observational evidence accrues.  The generative MFrags in 
an MTheory represent general knowledge about statistical regularities in a class of problems.   
Findings represent specific information about particular situations drawn from the class.  As 
findings accrue, MEBN logic draws implications about regular patterns and updates knowledge 
accordingly. 

6.1 Overview of MEBN Learning 
MEBN treats the learning problem as a sequence of MTheories, where each new theory in the 

sequence is obtained by adding additional findings to the previous theory and (optionally) 
restructuring the MFrags into a form amenable to efficient computation given the values of past 
observations.  It is standard practice in the literature on learning graphical models to decompose 
learning into separate sub-problems of learning parameters conditional on a given structure and 
learning the structure. Structure of an MTheory includes the possible values of the random 
variables, their organization into MFrags, the fragment graphs, and the functional forms of the 
local distributions.  Local distributions may be specified using parameterized families of dist-
ributions.  If the value of a parameter is unknown, the parameter can be represented as a random 
variable that conditions the local distribution.  In parameter learning, observations are used to 
refine the estimate of the value of the parameter. 

Figure 11 illustrates parameter learning in MEBN logic.  The figure depicts an MTheory for a 
simple statistical model of widths of entities.  The generative part of the theory consists of a 
parameter MFrag that specifies a prior distribution for the average width of objects of different 
types and a generative attribute MFrag that predicts the width of an object conditional on the 
average widths for objects of 
its type.  Each object type 
has a different prior 
distribution for widths. The 
generative MFrag for widths 
specifies a probability 
distribution for the width of 
an object as a function of the 
average width for objects of 
its type.  The model implies 
that conditional on the 
average width, the width of 
an object is independent of 
the widths of other objects.  
The findings for this theory 
are the measured widths of 
four objects of type !Belt.  
The figure shows a 
situation-specific Bayesian network for a query on the width of the fifth belt.  Note that context 
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Figure 11:  Parameter Learning 
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random variable instances with known values (e.g., Type(!bi)=!Belt in the generative width 
MFrag and the unique identifier instance !Belt in the parameter MFrag) do not appear in the 
SSBN. If more findings were added, the SSBN for predicting the width of the next belt would 
have exactly the same form as the SSBN of Figure 11, except that more findings would be added 
below AvgWidth(!Belt). If this model is an accurate representation of the observation generation 
process, then as observations accrue, the distribution of AvgWidth(!Belt) will become more and 
more concentrated about the population average.  This theory is capable of learning the value of 
AvgWidth(!Belt) to arbitrarily high precision, and also of predicting the widths of not yet 
observed belts up to an accuracy limit determined by the dispersion of belt widths about the 
population average. 

The type of MFrag shown in Figure 11 is common to a broad class of statistical models. A re-
structuring operation called finding absorption  can be applied when the local distribution in the 
generative attribute fragment belongs to a family of distributions having a sufficient statistic (see 
Buntine, 1994). When applicable, finding absorption can greatly improve the tractability of 
learning and SSBN inference. 

Figure 12 illustrates a MEBN representation of finding absorption under the assumption that 
the sample average of the previously observed belt weights is a sufficient statistic for the distri-
bution of the random variable AvgWdith(Belt). The finding absorption MFrag specifies that the 
sample average of the first m observations depends on the sample average of the first m-1 ob-
servations and the mth observation. The parameter fragment specifies that the distribution of the 
average width for an object type depends on the sample average of previously observed objects of 
that type. Finally, the generative attribute fragment specifies a distribution only for objects for 
which findings have not yet been absorbed (i.e., objects e for which ObsNum(e) is greater than or 
equal to Next). Conditional on all findings having value T, this MTheory represents the same joint 
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probability distribution over all remaining random variable instances as the MTheory of Figure 
11.17 Note that no findings are represented in the SSBN, which is simpler than the SSBN Figure 
11. For complex models, finding absorption can result in substantial computational savings in 
both query processing and learning.  Buntine (1994) provides an extensive discussion of re-
structuring operations that can improve the efficiency of inference and learning in graphical 
models.  With the translation between plate models and MTheories illustrated in Figure 10, these 
operations can be expressed as MFrags, thus providing a formal logical foundation for operations 
on graphical models. 

MEBN logic can also be used to learn the structure of a MEBN theory from a set of findings.  
Structure learning can be represented mixture distributions over simple MTheories representing 
different structural hypotheses.  A more compact representation for structure learning could be 
developed in an extension to MEBN logic that has types and polymorphism.  In a typed language, 
different structural assumptions for a local distribution could be represented as different subtypes 
of a given random variable type.  

Figure 13 shows an example of structure learning. Continuing the belt width example, we 
might consider two structural hypotheses: (1) widths are drawn from a one-parameter distribution 
that depends on the average width of belts, or (2) widths are drawn from a two-parameter 
distribution that depends on the mean and standard deviation of belt widths. Figure 13a shows a 
representation using a mixture MTheory. The two mixture components have all the same MFrags 
except for the Width MFrags, which differ as shown in the figure. This way of representing 
structure uncertainty becomes unwieldy when there are many different uncertain structural 
assumptions. A polymorphic MEBN would allow several home MFrags for the width of an 
entity, each applicable under different structural assumptions. In Figure 13b, there are two Width 
MFrags, each representing different structural assumptions for the distribution of object widths.  
The first depends on a single parameter, the average width of objects of the given type. The 
second depends on two parameters: the average and the standard deviation of widths of objects of 
the given type.  Which distribution to use depends on the value of the context random variable 
UnitSDev(Type(e)), representing whether entities of the give type have standard deviation 1, or 
whether the standard deviation is a type-specific parameter. This kind of construction is capable 
of representing the standard approaches to Bayesian structure learning in graphical models (e.g., 
Cooper and Herskovits, 1992; Friedman and Koller, 2000; Heckerman, et al., 1995; Jordan, 
1999). A polymorphic MEBN logic would need to have clearly defined rules for determining 
which home MFrag was applicable in a given situation. 

                                                        
17 This is a complete micro-MTheory for this parameter learning problem, expressing from first principles a 
fragmentary theory of the natural numbers sufficient to provide the necessary logical basis for finding absorption. 
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6.2 The Dirichlet Process Conjugate Family  
Standard methods for learning structure and parameters of ordinary Bayesian networks are based 
on the Dirichlet family of distributions (e.g., Heckerman, et al, 1995). Dirichlet distributions are 
attractive because they are conjugate distributions for multinomial sampling.  That is, if the prior 
distribution for the parameters of a local distribution in a Bayesian network are Dirichlet 
distributions satisfying certain independence assumptions, then the posterior distributions given a 
sample of cases drawn from the network are also Dirichlet distributions satisfying the same 
independence relationships.  Conjugate families of distributions are useful because they give rise 
to computationally tractable recursive updating formulas.  To define a conjugate family of 
distributions for MEBN logic, we need to extend the Dirichlet distributions to cover the 
possibility that a random variable may have infinitely many possible values. We use Dirichlet 
process distributions (Ferguson, 1973), which extend the Dirichlet distribution to random 
variables that can have infinitely many possible values. 

Definition 11:  Let Ω be a set, let µ be a probability measure on a σ-field A of measurable 
subsets of Ω, and let N be a strictly positive number.  The random probability measure P on 
(Ω,A) is a Dirichlet process distribution with base probability measure µ and virtual sample size 

N if for any finite partition B1, …, Bn of  Ω (i.e., Bi∩Bj=∅ for i≠j and ∪iBi=Ω), the joint 
distribution of the random probabilities is Dirichlet with parameters (Nµ(B1), …, Nµ(Bn)).  

To formalize the learning problem, we first consider a simple MTheory T. The MFrags of T 
represent dependency relationships we expect to hold, and the local distributions represent our 
best estimate of the probability distributions that obtain in the domain to which we intend T to 
apply. However, we may be unsure whether the distribution expressed by T is adequate.  We 
would like to use observations to refine both the structural relationships and the local distributions 
expressed by the MFrags of T.   

Imagine that we are given a sequence of situations, where a situation is defined as a set of 
findings for some of the random variables of T. After observing a situation, we would like to use 
Bayesian conditioning to obtain a new MTheory T* for which the probability distributions for 
structure and parameters incorporate information from the observed situation. This whole process 
can be represented by embedding T in a learning process MTheory, denoted T→T*.  A learning 
process MTheory has the same random variable symbols as T, each depending on an additional 
integer situation number argument. We assume that completely specified situations are 
exchangeable, or equivalently, are drawn independently from a “true” generative distribution with 
unknown structure and parameters.  The posterior distribution on structure and parameters given a 
sequence of completely or partially specified situations can then be obtained by Bayesian 
conditioning, whenever the posterior distribution is mathematically well defined. 

Definition 12: Let N be a positive number and let µ be a probability measure on the set of 
simple18 random variable instances V={ξ1(ε1i), ξ2(ε1i), …}∪{β1(ε1i), β2(ε2i), …} of L. Here, ξk(εki) 
(βk(εki)) denotes the lth non-Boolean (Boolean) random variable symbol, and i indexes the 
combinations of entity identifiers forming arguments (if any) to ξj (βj). It is assumed that the 
measure µ satisfies FOL1-FOL6. The complete Dirichlet conjugate distribution for V given N 

                                                        
18 Recall that an instance of a random variable is simple if all its arguments are entity identifiers. 
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and µ, denoted Πc(N,µ), is a Dirichlet process distribution such that each finite subset {ξi1(ε1i), 
ξi2(ε2i), …, ξim(εmi)}∪{βi1(ε1i), βi2(ε2i), …, βin(εni)} of V has a Dirichlet process distribution with 
base measure µ({ξi1(ε1i), ξi2(ε2i), …, ξim(εmi)} ∪ {βi1(ε1i), βi2(ε2i), …, βin(εni)}) and virtual sample 
size N.  

Lemma 7:  The family of complete conjugate Dirichlet distributions for V is closed under 
independent, identically distributed sampling of completely specified worlds.  Given the prior 
distribution Πc(N,µ) and a completely specified world W = {ξ1i(ε1i) = γ1i, ξ2i(ε2i) = γ2i, 
…}∪{β1i(ε1i) = τ1i, β2i(ε2i) = τ2i, …}, where  εki∈E; γki∈E, and τki∈{T, F}, the posterior 
distribution given W is Πc(N+1,µ*), where the marginal distribution of µ* on any finite sub-
collection of the random variables is calculated using the standard conjugate updating procedure 
for Dirichlet / multinomial sampling.19  

Lemma 8:  Let T be a generative MTheory with generative probability distribution 
 
P

T

gen . Let TN 

be a new MTheory defined as follows.  For each MFrag F of T, we define a corresponding 
MFrag FN of TN containing random variables with the same names, but each having an additional 
situation index argument. In addition to its parents in F, each random variable ϕ contains a set of 
parameter parents, one for each influencing configuration of the parents of ϕ in F.  The possible 
values of the parameter parents are probability distributions on the possible values of ϕ.  Each of 
these distributions has a Dirichlet process prior distribution with virtual sample size N and base 
distribution πϕ(ε|S), the local distribution for ϕ in 

 
P

T

gen . Let W = {ξ1i(ε1i) = γ1i, ξ2i(ε2i) = γ2i, … 
}∪{β1i(ε1i) = τ1i, β2i(ε2i) = τ2i, …} be a completely specified world, and suppose 

 
P

T

gen (•) assigns 
strictly positive probability to each ξki(εki) = γki and βki(εki) = τki.  Then the conditional distribution 
of 

 
P

T
N

gen  given W exists as a well-defined limiting distribution conditional on an increasing 

sequence of subsets of W.  The MTheory with the same structure as 
 
P

T
N

gen  and probabilities 

!"

* (ε|S) obtained by conjugate updating of πϕ(ε|S) represents the same generative distribution for 

worlds as the MTheory obtained by augmenting T with the findings { Φ(ξi1(β1i) = α1i), Φ(ξi2(β2i) 
= α2i), … }∪{ Φ(δi1(β1i) = β1i), Φ(δi2(β2i) = β2i), …}.   

The proof of Lemmas 7 and 8 follow from properties of the Dirichlet distribution (e.g., 
Heckerman, et al., 1995), extended in the natural way to Dirichlet processes.  

We call 
 
P

T
N

gen  the natural conjugate distribution with virtual sample size N for T. Lemmas 7 

and 8 suggest the following heuristic interpretation of the natural conjugate distribution.  Imagine 
a process that samples worlds according to an unknown distribution.  We can think of 

 
P

T
N

gen  as 

representing the prior information that (i) If πϕ(ε|S) = 0, then according to T, ε is a logically 
impossible value for ϕ when the parents of ϕ are in configuration S; (ii) we have observed N 
previous worlds; and (iii) the observed frequencies from the previously observed worlds are the 
frequencies specified by 

 
P

T

gen .   Of course, because 
 
P

T

gen  may contain frequencies that are not 

                                                        
19 That is, the virtual count for the observed configuration of a finite subset of the random variables is N times the prior 
base probability plus 1; the virtual count for each non-observed configurations is N times its prior count; these virtual 
counts are divided by N+1 to obtain the posterior base probabilities. 
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integral multiples of N, this heuristic interpretation is not an accurate description of the true state 
of affairs. Nevertheless, it can be helpful for gaining some intuition for the meaning of 

 
P

T

gen .   

Lemma 9: A set B = ∪i Bi of consistent20 binding sets for T induces a partial order 
  
!

B
 on 

random variable instances constructed by applying the bindings in B to the random variable terms 
of T. This partial order satisfies the condition that if φk(εk) 

  
!

B
 φk-1(εk-1) 

  
!

B
…

  
!

B
φ(ε1)

  
!

B
φ(ε) is 

any increasing sequences of instances ending in φ(ε), then k < dφ(ε).21 
Proof:  This is an immediate consequence of the no cycles and finite causal depth conditions 

of Definition 8.  
 
The following theorem extends Theorem 2 of Heckerman, et al. (1995). 

Theorem 10:  Let V={ξ1(ε1i), ξ2(ε1i), …}∪{β1(ε1i), β2(ε2i), …} be the set of domain-specific non-
Boolean and Boolean random variable instances for language L. Let T be an MTheory and let 
Πc(N, 

 
P

T

gen ) be the complete conjugate Dirichlet distribution for T with virtual sample size N. Let 

 
!  be a partial ordering on the random variable instances consistent with the MFrags of T (such a 
partial order exists by Lemma 6). Suppose the prior distribution Π(µ) for a random probability 
measure µ on V satisfies the following assumptions: 

1. Mixture of conjugate distributions: Π(µ) = 
  

qiPTi

gen (i| N )
i!  is a finite or countably infinite 

mixture of natural conjugate distributions for MTheories with different structures, such 
that the weights qi on the mixture elements are non-zero and sum to 1; 

2. Parameter independence:  For each MTheory Ti having positive weight in the mixture 
distribution, the local distributions πϕ(ε | S, Ti) for different ϕ are independent of each 
other.  For a given ϕ, the local distributions πϕ(ε|S, Ti) for different equivalence classes 
of influence configurations are independent of each other.   

3. Parameter modularity:  If random variable instance ϕ has exactly the same parent 
configurations in two different MTheories, it has the same local distribution in each 
MTheory. 

4. Likelihood equivalence:  If two MTheories with different structures encode the same 
independence assertions, then the likelihood of any completely specified world W  is the 
same given the two MTheories. 

5. Structure possibility: Suppose {ϕ1, ϕ2, …} is a complete ordering of the random variable 
instances of T consistent with the partial ordering 

 
! , and let {ϕi1, ϕi2, …, ϕin} be any 

permutation of the first n random variable instances {ϕ1, ϕ2, …, ϕn}. All complete 

                                                        
20 Bi is consistent with Bi if whenever a variable x is bound to unique identifer α in Bi, if x appears in Bj, it is also 
bound to α. 
21 Recall that dφ(ε) is the depth of φ(ε) as defined in Definition 7. 
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structures with the random variable instances ordered {ϕi1, ϕi2, …, ϕin, ϕn+1, ϕn+2, …} for 
all permutations of the first n instances and all n have non-zero probability.22 

Then the distribution Πc(N, 
 
P

T

gen ) completely determines the parameter distribution for each 
structure.  

Proof: The proof of Theorem 10 proceeds by noting that Theorem 2 of Heckerman, et al. 
(1995) implies the theorem is true for the complete MTheory that (i) agrees with T on any finite 
sub-collection of the random variable instances of T arranged in a completely connected graph 
and (ii) assigns value ⊥ (not relevant) to all other random variable instances.  All the distributions 
thus obtained are consistent with each other on the instances they share, and these jointly imply 
the existence of an infinite-dimensional distribution satisfying all these mutually consistent 
constraints on the marginal virtual counts.  

The family of natural conjugate distributions is very restrictive in that it can represent only 
prior information equivalent to having sampled a known number of completely specified worlds.  
This is even more restrictive than in the finite-dimensional case, because worlds contain infinitely 
many entities.  It is unrealistic to imagine that one could have observed even a single fully 
specified world, let alone a sample of size N.  However, the family of countable mixtures of 
natural conjugate distributions is closed under sampling of worlds with missing observations (i.e., 
situations). This family of distributions can represent prior information in which observations 
consist of samples of different size for different sub-collections of random variables, and is closed 
under sampling of situations. 

7 Summary and Discussion  
Graphical models were initially limited to problems in which the relevant random variables 

and relationships could be specified in advance. Languages based on graphical models are rapidly 
reaching the expressive power required for general computing applications. It is becoming 
possible to base computational inference and learning systems on rationally coherent domain 
models implicitly encoded as sets of graphical model fragments, and to use such coherent deep 
structure models to guide reasoning and knowledge discovery.  Probability theory provides a 
logically coherent calculus for combining prior knowledge with data to evolve an agent’s 
knowledge as observations accrue.  Probability theory also provides a principled approach to 
knowledge interchange among different reasoners.  This paper presents a logical system that 
unifies Bayesian probability and statistics with classical first-order logic.  An instance of a first-
order Bayesian language called Multi-Entity Bayesian Networks (MEBN) is presented. The 
syntactic similarity of MEBN to standard first-order logic notation clarifies the relationship 
between first-order logic and probabilistic logic.  A MEBN theory (MTheory) assigns 
probabilities to models of an associated FOL theory.  MTheories partition FOL theories into 
equivalence classes of theories with the same logical content but different probabilities assigned 
to models. Provable statements in FOL correspond to statements in the associated MTheory for 
which SSBN construction terminates with a probability of 1 assigned to the value T. An MTheory 
corresponding to an inconsistent FOL theory has at least one finding equal to ⊥ with probability 
1.  If the associated MTheory is inconsistent, SSBN can determine in finitely many steps that it is 
inconsistent. When SSBN construction does not terminate but the MTheory represents a globally 
consistent joint distribution, the construction process gives rise to an anytime sequence of 

                                                        
22 There are n! structures for each n, all of which have non-zero probability.  Thus, most of these completely connected 
structures have astronomically small probabilities, but the structure possibility assumption says none has probability 
equal to zero. 
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approximations that converges in the infinite limit to the correct response to the query. MEBN 
logic is inherently open.  Bayesian learning theory provides an inbuilt capability for MEBN-based 
systems to learn better representations as observations accrue.  Parameter learning can be 
expressed as inference in MTheories that contain parameter random variables.  Structure learning 
can also be handled by introducing multiple versions of random variables having home MFrags 
with different structures.  A more natural approach to structure learning, as well as a more 
flexible type system, requires a polymorphic extension of MEBN logic. Clearly, a typed MEBN 
with polymorphism would be desirable for many applications.  We chose in this paper to focus on 
the basic version of the logic to highlight its relationship to classical first-order logic and 
demonstrate that the logic is sufficiently powerful to represent general first-order theories.  
Extensions of MEBN are planned to incorporate additional expressivity. 

Appendix A: Proofs and Algorithms 
This appendix proves that an MTheory represents a globally consistent joint distribution over 
random variable instances, proves that an MTheory constructed as described in Section 4.5 places 
non-zero probability of value T on Boolean random variables corresponding to satisfiable first-
order sentences, presents the SSBN construction algorithm, shows that SSBN construction 
identifies an unsatisfiable set of findings in finitely many steps, and proves that when findings are 
consistent, SSBN construction converges with probability 1 to the posterior distribution over an 
MTheory’s random variables given that all finding random variables have value T. 

A.1. Proof of Existence Theorem 
Theorem 1:  Let T = { F1, F2 … } be a simple MTheory. Then there exists a joint probability 
distribution on the set of instances of its random variables that is consistent with the local 
distributions assigned by the MFrags of T. 

Proof: Let Z={φ1(α1), …, φm(αm)} be a finite subset of NT, and let D = max [dφ(α) : 
φ(α)∈{φ1(α1), …, φm(αm)} ] be the maximum depth of the instances of Z. Suppose D = 0. Let 
πT1(φ1(α1), …, φm(αm)) be a distribution in which  the φi(αi) are independent and distributed 
according to the default distributions 

 
!"

i
(#
i
)
(i|$)  from their home MFrags 

 
F!

i
("

i
)
.  All finite-

dimensional distributions constructed in this way from depth 0 elements of NT are consistent 
with each other and with the local distributions of T. Therefore, Kolmogorov’s existence 
theorem23 implies that these finite-dimensional distributions can be extended to a joint 
distribution πT1 over all instances of depth zero random variables, and this joint distribution is 
consistent with the local distributions of T. 

Now, suppose T represents a joint distribution πTD over all instances of all random variables 
of depth less than D. Let Z = {φ1(α1), …, φm(αm)} be a finite subset of NT such that no φi(αi) ∈ Z 
has depth greater than D. Let A denote the (possibly infinite) subset of NT consisting of the 
ancestors of depth D elements of Z, together with any elements of Z with depth strictly less than 
D.  Clearly, any instance ϕ(β)∈A must have depth less than D. Therefore, the marginal 

                                                        
23 Kolmogorov’s existence theorem (c.f., Billingsley, 1995) states that if joint distributions exist for all finite subsets of 
a collection of random variables, and if all these finite-dimensional distributions are consistent with each other, then a 
joint distribution exists for the infinite collection of random variables. 
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distribution of πTD represents a joint distribution for A consistent with the local distributions of 
T.   

Let S={ϕ(β)=γ : ϕ(β)∈A}  be a set of value assignment terms, one for each element of A. 
Suppose φi(αi) ∈ Z.  If φi(αi) has depth less than D, then φi(αi) ∈A and S assigns a particular value 
to φi(αi) with probability 1. Otherwise, condition 3e implies that there is a finite subset 

 
S!

i
("

i
)
⊂ S 

such that 
  
!"

i
(#

i
)
(i| S"

i
(#

i
)
)=

  
!"

i
(#

i
)
(i| S*)  whenever 

 
S!

i
("

i
)
⊂ S*⊂ S.24 Thus, given the value assign-

ments in S, T assigns a well-defined conditional distribution to each φi(αi) ∈ Z, which is denoted 

  
!"

i
(#

i
)
(i| S) . Define a joint conditional distribution  

πT(D+1)(φ1(α1)=γ1, …, φm(αm)=γm | S ) = 
 

!"
i
(#

i
)
("

i
(#

i
) = $

i
| S)

i=1

m

% . 

in which the φi(αi) are independent and distributed as assigned by the local distributions in their 
home MFrags conditional on the value assignments in S.  Existence of both a joint conditional 
distribution for the φi(αi) and a marginal distribution for S implies that the marginal joint 
distribution  

  πT(D+1)(φ1(α1), …, φm(αm)) = 
 

!"i (#i )
("

i
(#

i
) | S)d!

TD
(S)

i=1

m

$% . (1) 

exists and is consistent with the local distributions of T.  The marginal distribution (1) is 
expressed as an integral rather than a sum because there may be uncountably many different ways 
to choose the value assignments S={ϕ(β)=γ : ϕ(β)∈A}.  

This construction can be carried out for any finite set of depth D instances, and it is clear that 
all the distributions thus defined are consistent with each other and with the local distributions of 
T.  This implies that T represents a joint distribution over arbitrary finite subsets of NT, and that 
the distributions constructed in this way are consistent with each other and with the local 
distributions of T. A second application of Kolmogorov’s existence theorem implies that T 
represents a joint distribution over all instances of random variables in VT.  It is clear that this 
distribution is consistent with the local distributions of T.    

A.2. SSBN Construction Algorithm 
The situation-specific Bayesian network construction algorithm takes an MTheory T, a finite 

(possibly empty) set of target random variable instances, and a (possibly empty) set of finding 
random variable instances, and computes a sequence of Bayesian networks containing the target 
and finding random variable instances.  If the algorithm terminates, and the findings are 
consistent, the last Bayesian network in the sequence can be used to compute the joint distribution 
of the target random variable instances given that all finding random variable instances have 
value T.  That is, additional model construction would not change the result of the query.  For 
many problems of interest, the algorithm never terminates, but the approximate SSBN can be 
used to compute approximate responses to queries. 

We give the SSBN construction for simple MTheories only.  The modification for mixture 
MTheories is straightforward. SSBN construction proceeds as follows: 

                                                        
24 Theorem 1 holds under weaker conditions on the local distributions, but condition 3e suffices to show that MEBN 
can represent classical first-order logic. 
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SSBNConstruct: The inputs to SSBNConstruct are: 
 A simple MTheory T with partial ordering  and modeler-defined MFrags F defined 

on a set X of random variable symbols and a set A of constant symbols;  
 A finite (possibly empty) set {τi}i≤T of non-finding random variable instances called 

the  target random variable instances;  
 A (possibly empty) set {φi}i≤F of finding random variable instances. 

The steps in SSBNConstruct are: 
1. Set the initial query set Q0 equal to the union of the target instances and a 

finite subset of the finding instances. Let N0 be a positive integer. 
2. Set B0 equal to a Bayesian network in which the nodes are the random 

variables in Q0, and there is an arc from random variable α to β if α is an 
instance of a parent of β in the home fragment of β. Remove any arcs from 
B0 that do not correspond to influencing configurations. B0 is called the 
approximate SSBN. Set the cached marginal distribution for each node β to 
its default distribution.  

3. Set the iteration number i equal to 0. 
4. Do until no more changes to Bi occur: 

 Remove from Bi all barren nodes, that is, nodes having no 
descendants in Qi; 

 Remove from Bi all nodes that are d-separated by finding nodes 
from any target nodes; 

 Remove from Bi any nuisance nodes for which the cached marginal 
distribution is the correct distribution for Bi.   A nuisance node (Lin 

In situation-specific network

Not in situation-specific network
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Figure 14:  Situation-Specific Bayesian Network 
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and Druzdzel, 1997) is a node that is computationally relevant given 
the query, but is on no evidential trail25 between an evidence and a 
target node. 

5. Set the local distributions in Bi.  These distributions are calculated from the 
local distributions in the MFrags of T, with modifications to restrict random 
variables to have no more than Ni possible values and to approximate the 
effects of random variables that have not been enumerated.  

 If a random variable α has more than Ni possible values, the Nk
th, 

Nk+1st, Nk+2nd, etc. (not including ⊥) values are grouped into a single 
aggregate value. In the local distribution for α in its home MFrag, for 
each influencing configuration ICα of the parents of α, assign the 
aggregate value a probability equal to the sum of the probabilities of 
the Nk

th, Nk+1st, Nk+2nd, etc. possible values given ICα.  For any child 
β of α, and any influencing configuration ICβ of the parents of β for 
which the distribution of β depends on which of the Nk

th, Nk+1st, 
Nk+2nd, etc. is the case, assign β a default distribution.  This may be 
the default distribution from β’s home MFrag or an SSBN 
construction distribution, but it must satisfy the condition that none 
of the possible values represented in the approximate SSBN has 
probability zero. 

 The local distributions of T provide a recipe for computing the 
probability of a random variable given all the parents that have been 
enumerated thus far.  If a random variable α has computationally 
relevant, non-nuisance instances that are not included in Bi, add a 
single “leak parent” λα to approximate these unrepresented 
influences.   The leak parent has value T with probability ε and F 
with probability 1-ε, where ε is a small number.  Conditional on λα = 
F, α has the distribution conditional on the enumerated parents, as 
modified above to restrict to Ni or fewer values.   Conditional on λα = 
T, α is assigned a default distribution, also grouping values to restrict 
to Ni or fewer values. This may be the default distribution from β’s 
home MFrag or an SSBN construction distribution, but it must 
satisfy the condition that none of the possible values represented in 
the approximate SSBN has probability zero. 

6. Apply a standard Bayesian network inference algorithm to compute the joint 
distribution of the target random variables in Bi.  (If there are no target 
random variables, then apply Bayesian network inference to compute 
marginal distributions on all random variables in Bi.) 

 If the inference algorithm returns a probability of zero that all 
findings have value T, then set the SSBN S equal to Bi, output S, and 

                                                        
25 A node is computationally relevant if it remains after iteratively removing all barren and d-separated nodes.  An 
evidential trail between two sets of nodes is a minimal active undirected path from a node in one set to a node in the 
other.  If a global joint distribution exists, then nuisance nodes can be marginalized out without affecting the result of 
the query. 
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stop with an indication that SSBN construction terminated and T is 
inconsistent. 

 Else, if all computationally relevant random variables have been 
added and no random variable in Bi has more than Ni possible values, 
then set the SSBN S equal to Bi.  Output S and the joint distribution 
of the target random variables.  Stop with a flag indicating that 
SSBN construction terminated. 

 Else, set the cached marginal distribution for each node β to its 
marginal distribution in Bi and go to Step 7. 

7. If a stopping criterion is met, output Bi and the joint distribution computed in 
Step 6, and stop with an indication that SSBN construction did not terminate. 

8. Else, for each random variable instance β∈Bi for which a change in the local 
distribution may occur if additional parents are added, add a finite number of 
instances of parents of β, using a process that ensures eventual addition of all 
instances of parents of β.  If there are computationally relevant findings that 
have not been added, add a finite number of additional findings, using a 
process that ensures eventual addition of all computationally relevant 
findings.  

9. Set Ni+1 to a positive integer strictly greater than Ni, increment i, and go to 
Step 4. 

 
The following theorem states that an inconsistent theory can be discovered in a finite number 

of steps of SSBN construction.  

Theorem 11:  If the logical constraints represented by T are unsatisfiable and Step 7 of 
SSBNConstruct is set never to stop, then SSBN construction on a query set consisting only of the 
findings of T terminates in finitely many steps with an indication that T is inconsistent. 
Proof: Each approximate SSBN Bi represents a probability distribution over interpretations of a 
theory for which the logical axioms form a subset of the logical axioms of T.  The domain of this 
interpretation is a finite set consisting of all possible assignments of values to the random 
variables of Bi such that all finding random variables have value T. The approximate SSBN Bi 
assigns non-zero probability to the hypothesis that all finding random variables have value T if 
and only if there is at least one interpretation on this finite domain that satisfies all the logical 
axioms represented in Bi, which in turn is the case if and only if the logical axioms represented in 
Bi are simultaneously satisfiable. For k>i, the approximate SSBN Bk includes all logical 
constraints included in Bi, along with any additional constraints implied by the local distributions 
of random variables appearing in Bi+1 but not in Bi.  The SSBN construction process eventually 
adds all computationally relevant random variables, and therefore eventually includes all logical 
constraints represented by the local distributions of any random variable instances that are either 
findings or ancestors of findings in the random variable partial ordering  .  Thus, if the findings 
are unsatisfiable, eventually there will be an approximate SSBN in the sequence that represents 
an unsatisfiable set of constraints.  

It is well known that if a set of sentences in FOL is unsatisfiable, then there exists a finite set 
of ground instances of a set of logically equivalent sentences that is also unsatisfiable (see, for 
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example, Russell and Norvig, 2002).  The SSBN construction algorithm produces a sequence of 
Bayesian networks, each of which can be translated into a set of constraints on truth-values of a 
finite set of ground instances of FOL sentences implied by the MEBN theory T.  Each of these 
Bayesian networks encodes a probability distribution that assigns non-zero probability to any 
assignment of truth-values consistent with the constraints it encodes.  Each approximate SSBN 
includes all constraints represented in the preceding approximate SSBNs, together with additional 
constraints.   If the query set contains only the findings, then eventually all logical constraints 
implied by the findings and their predecessors in the random variable instance partial order are 
enumerated.  If the set of all logical constraints is unsatisfiable, then so is a finite subset, and 
eventually the constraints encoded in the SSBN will include a finite unsatisfiable subset.   

Note that SSBN construction will never add random variables d-separated from the target 
random variables by findings.  Therefore, if the query set contains non-finding target random 
variables, then inconsistencies that would be introduced only by adding d-separated random 
variables will not be discovered.  It is often asserted in logic texts that an inconsistent theory is 
“useless” because anything can be proven from a contradiction. In practice, though, inconsistent 
theories can be quite useful. MEBN logic can be used to reason with inconsistent theories, as long 
as queries are structured so that the target of any given query is d-separated by a subset of the 
findings from any findings that contradict this subset.  Thus, MEBN logic may turn out to be a 
useful tool for studying conditions under which inconsistent theories can provide accurate results 
to probabilistic queries.  
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