
GMU C4I Center Technical Report C4I-06-01

©2004 Kathryn Blackmond Laskey 2/5/06

MEBN: A Logic for Open-World Probabilistic Reasoning

Kathryn Blackmond Laskey KLASKEY@GMU.EDU
Department of Systems Engineering and Operations Research
MS4A6
George Mason University
Fairfax, VA 22030, USA

Abstract

Uncertainty is a fundamental and irreducible aspect of our knowledge about the world.
Probability is the most well-understood and widely applied logic for computational scientific
reasoning under uncertainty. As theory and practice advance, general-purpose languages are
beginning to emerge for which the fundamental logical basis is probability. However, such
languages have lacked a logical foundation that fully integrates classical first-order logic with
probability theory. This paper presents such an integrated logical foundation. A formal
specification is presented for multi-entity Bayesian networks (MEBN), a knowledge
representation language based on directed graphical probability models. A proof is given that a
probability distribution over interpretations of any consistent, finitely axiomatizable first-order
theory can be defined using MEBN. A semantics based on random variables provides a logically
coherent foundation for open world reasoning and a means of analyzing tradeoffs between
accuracy and computation cost. Furthermore, the underlying Bayesian logic is inherently open,
having the ability to absorb new facts about the world, incorporate them into existing theories,
and/or modify theories in the light of evidence. Bayesian inference provides both a proof theory
for combining prior knowledge with observations, and a learning theory for refining a
representation as evidence accrues. The results of this paper provide a logical foundation for the
rapidly evolving literature on first-order Bayesian knowledge representation, and point the way
toward Bayesian languages suitable for general-purpose knowledge representation and computing.
Because first-order Bayesian logic contains classical first-order logic as a deterministic subset, it is
a natural candidate as a universal representation for integrating domain ontologies expressed in
languages based on classical first-order logic or subsets thereof.

Keywords: Bayesian networks, Bayesian learning, graphical probability models, knowledge
representation, multi-entity Bayesian network, random variable, probabilistic ontology

1 Introduction
First-order logic is primary among logical systems from both a theoretical and a practical

standpoint. It has been proposed as a unifying logical foundation for defining extended logics
and interchanging knowledge among applications written in different languages. However, its
applicability has been limited by the lack of a coherent semantics for plausible reasoning. A
theory in first-order logic assigns definite truth-values only to sentences that have the same truth-
value (either true or false) in all interpretations of the theory. The most that can be said about any
other sentence is that its truth-value is indeterminate. A reasoner that requires logical proof before
it can draw conclusions is inadequate for many practical applications. This problem has been
addressed with a proliferation of plausible reasoning logics, but these have lacked firm theoretical
grounding. The need for plausible reasoning is especially acute for the problem of knowledge
interchange. Different applications have different ontologies, different semantics, and different
knowledge and data stores. Legacy applications are usually only partially documented, and may
rely on tacit usage conventions that even proficient users do not fully understand or appreciate.
Even if these problems could be circumvented and a full formal specification for each application

K B LASKEY

C4I-06-01 2 2/5/06

could be achieved in first-order logic, the alignment of different applications into a single unified
ontology, semantics, and data store is an ill-specified problem with no unique solution. This is a
consequence of the fundamental truth that axiom sets in first-order logic do not in general admit
unique interpretations. Because knowledge interchange is fraught with irreducible uncertainty, it
should be founded on a logic that supports plausible inference.

Among the many proposed logics for plausible inference, probability is the strongest
contender as a universal representation for translating among different plausible reasoning logics.
There are numerous arguments in favor of probability as a rationally justified calculus for
plausible inference under uncertainty (e.g., de Finetti, 1934/1975; Howson and Urbach, 1993,
Jaynes, 2003; Savage, 1954). Until recently, the development of a fully general probabilistic logic
was hindered by the lack of modularity of probabilistic reasoning, the intractability of worst-case
probabilistic inference, and the difficulty of ensuring that a set of probability assignments
specified a unique and well-defined probability distribution. Probability is not truth-functional.
That is, the probability of a compound expression cannot be expressed solely as a function of the
probabilities of its constituent expressions. The number of probabilities required to express a
fully general probability distribution over truth-values of a collection of assertions is exponential
in the number of assertions, making a brute-force approach to specification and inference
infeasible for all but the smallest problems. Typically, independence assumptions are used to
decompose complex problems into manageable sub-problems. Recently developed graphical
probability languages (e.g., Jensen, 2001; Neapolitan, 2003; Pearl, 1988) exploit independence
relationships to achieve parsimonious representation and efficient inference. The introduction of
graphs to represent conditional dependence relationships has sparked rapid evolution of
increasingly powerful languages for computational probabilistic reasoning (e.g., Buntine, 1994;
D’Ambrosio, et al, 2001; Getoor et al, 2000, 2001; Gilks et al, 1994; Glesner and Koller, 1995;
Halpern, 1991; Koller and Pfeffer, 1997; Laskey, et al, 2001; Laskey and Mahoney, 1997; Ngo
and Haddawy, 1997; Pfeffer, 2001; Sato, 1998; et al., 1996). Different communities appear to be
converging around certain fundamental approaches to representing uncertain information about
the attributes, behavior, and interrelationships of structured entities (cf., Heckerman, et al., 2004).

This paper presents a logical foundation for this emerging consensus. First-order Bayesian
logic combines the expressive power of first-order logic with a sound and logically consistent
treatment of uncertainty. Multi-entity Bayesian networks (MEBN)1 is a language for expressing
first-order Bayesian theories. MEBN semantics unifies the standard model-theoretic semantics
for first-order logic with the theory of random variables as used in mathematical statistics.
Although MEBN syntax is designed to highlight the relationship between a MEBN theory and its
first-order logic counterpart, the main focus of the paper is the underlying logic and not the
language itself. That is, MEBN syntax should be viewed not as a competitor to other syntactic
conventions for expressing first-order probabilistic knowledge, but as a vehicle for expressing
logical notions that cut across surface syntactic differences.

MEBN fragments (MFrags) use directed graphs to specify local dependencies among a
collection of related hypotheses. MTheories, or collections of MFrags that satisfy global
consistency constraints, implicitly specify joint probability distributions over unbounded and
possibly infinite numbers of hypotheses. MTheories can be used to reason consistently about
complex expressions involving nested function application, arbitrary logical formulas, and
quantification. A set of built-in MFrags provides the full expressive power of first-order logic
with functions and equality, the most commonly used variant of first-order logic.

MEBN semantics assigns probabilities to sets of models of an associated first-order logic
(FOL) theory. The probability of a sentence is defined as the probability of the set of models in
which it is true. An important feature of the MEBN formalism is the ability to specify nested

1 MEBN is pronounced “MEE-ben.”

MEBN LOGIC

C4I-06-01 3 2/5/06

sequences of theories, in which each theory incorporates new axioms that do not contradict
previously asserted axioms. The probability calculus provides an inference and learning theory
for MTheories. An inference algorithm called situation-specific Bayesian network (SSBN)
construction is presented. In response to a probabilistic query, SSBN construction produces a
sequence of Bayesian networks that approximates the probability distribution implicitly
represented by the MTheory. If the associated FOL theory is inconsistent, SSBN construction
discovers the inconsistency in finitely many steps. For queries about consistent, finitely
axiomatizable FOL theories, SSBN construction may terminate with an exact answer or may
converge to the correct answer in the infinite limit. Theories with infinitely many axioms are
represented as nested sequences of MTheories. Such an infinite sequence may or may not
converge to a globally consistent joint distribution over interpretations, depending on whether the
axioms define a generative process capable of representing the statistical behavior of the
sequence. No probabilistic logic can do better than this. A construction due to Oakes (1986)
demonstrates that for any generative probabilistic theory, no matter how expressive and flexible,
there exist infinite sequences of findings that falsify the probabilistic predictions of the theory.

The remainder of the paper is organized as follows. Section 2 provides an overview of first-
order logic and introduces notational conventions that will be used throughout the paper. Section
3 provides an overview of ordinary Bayesian networks, the propositional knowledge
representation formalism for which MEBN is a first-order extension. Section 4 defines the syntax
and semantics of MEBN logic and relates MEBN logic to other work in probabilistic knowledge
representation. Section 5 sketches how MEBN logic can be applied to representing different
kinds of knowledge. Section 6 describes learning and theory refinement, and demonstrates that
learning is an integral part of MEBN logic. The final section is a summary and discussion.
Proofs and algorithms are given in the appendix.

2 First-Order Logic
Davis (1990) defines a logic as a schema for defining languages to describe and reason about
entities in different domains of application. Certain key issues in representation and inference
arise across a variety of application domains. A logic encodes particular approaches to these
issues in a form that can be reused across domains. A logic has the following basic elements (cf.,
Sowa, 2000):

 The vocabulary consists of symbols that can be combined to form expressions to
represent and reason about entities in a given domain of discourse. Symbols are of two
kinds:
a. Logical symbols (e.g., variables, connectives, punctuation) are common to any

language based on the logic;
b. Non-logical symbols (e.g., constant symbols, function symbols, relation symbols)

vary from language to language, and provide vocabulary tailored to a particular
domain of application.

 The syntax consists of rules for combining these symbols to form legal expressions. The
proof rules specify ways in which new legal expressions can be derived from existing
legal expressions. The proof rules provide the operational semantics for computer
languages that implement the logic.

 The semantics characterizes the meaning of expressions. Semantics includes two aspects:
a. The theory of reference specifies what the expressions denote in the domain of

discourse. The theory of reference corresponds to the denotational semantics of a
computer language implementing the logic.

b. The model theory specifies domain-independent aspects of meaning that are purely
logical consequences of collections of expressions. The model theory establishes an
isomorphism, or one-to-one meaning-preserving mapping, between different formally

K B LASKEY

C4I-06-01 4 2/5/06

equivalent collections of expressions, regardless of the domain of discourse to which
each collection refers or the objects to which the expressions refer. The model theory
corresponds to the axiomatic semantics of a computer language implementing the
logic.

A theory is a collection of sentences in a given language2, called the proper axioms of the
theory, together with all the consequences of those sentences as determined by the semantics of
the logic. In a computational theory, expressions are encoded as data structures on a computer
and the proof rules are implemented as computer programs. To be useful for practical problems,
a computational theory must be able to represent task-relevant aspects of the domain well enough
for the purpose, and must admit implementations that quickly and accurately map expressions
representing user queries to the logical consequences of the axioms with respect to the query.

A logic with propositional expressive power can reason about particular individuals but
cannot express generalizations. A logic with first-order expressive power can reason about
general properties and relationships that apply to collections of individuals. Higher-order logics
can generalize not just over particular individuals in the application domain, but also over
functions, relations, sets, and/or sentences defined on the domain. Modal logics allow reasoning
not just about the truth-values of expressions, but also about necessity, possibility, belief,
desirability, permissibility, and other non truth-functional qualifiers of statements. The greater
expressive power of higher-order and modal logics allows one to say complex things more
compactly, but tends to complicate proof and model theories.

By far the most commonly used, studied, and implemented logical system is first-order logic
(FOL), invented independently by Frege and Pierce in the late nineteenth century (Frege,
1879/1967; Pierce, 1898). The notational conventions of this paper are similar to those used in
standard references (e.g., Davis, 1990; Genesereth and Nielsson, 1987; Russell and Norvig, 2002;
Sowa, 2000). The basic syntax of first-order logic can be summarized as follows:

 The logical symbols consist of the logical connectives ¬ (not), ∧ (and), ∨ (or), ⇒
(implies), and ⇔ (if and only if); the equality relation =; the universal and existential
quantifiers ∀ and ∃;3 the comma, the open and close parentheses, and a countably infinite
collection of variable symbols. Variables are denoted as alphanumeric strings beginning
with lowercase letters, e.g., x, person32, something.4

 The nonlogical symbols consist of constant symbols, function symbols, and predicate
symbols. Constant symbols are written as alphanumeric strings beginning with either
numbers or uppercase letters, e.g., 1978; Marcus, Machine37. Function and predicate
symbols are denoted as alphanumeric strings beginning with uppercase letters, e.g., Red,
BrotherOf, StandardDeviation. Each function and predicate symbol has an associated
integer indicating the number of arguments it takes.

 A term is a constant symbol, a variable symbol, or a function symbol followed by a
parenthesized list of terms separated by commas, e.g., Machine37, m,
RoomTemp(MachineLocation(m)), Manager(Maintenance,2003). Terms are used to refer
to entities in the domain. They serve as arguments to functions and predicates.

 An atomic formula is:
o A predicate symbol followed by a parenthesized list of terms, e.g.,

Warmer(MachineLocation(m),30,Celsius); or

2 Sentences are legal expressions that make assertions about the domain.
3 A formal specification of first-order logic requires only two connectives and one quantifier (e.g., ¬, ⇒, and ∃); the
others can be defined from these.
4 Although words are often used to convey intended meaning, the variable, function and predicate symbols are treated
by the logic as meaningless tokens. A theory may contain axioms that enforce intended meanings, but there is nothing
in the logic itself to prevent person32 from being used to refer to a frog or an asteroid.

MEBN LOGIC

C4I-06-01 5 2/5/06

o A parenthesized expression consisting of a term followed by an equal sign followed
by another term, e.g., (Fernandez = Manager(Maintenance,2003)).

 A formula is:
o An atomic formula;
o An expression of the form ¬α, (α∧β); (α∨β); (α⇒β), or (α⇔β), where α and β are

formulas, e.g.,
((Fernandez = Manager(Maintenance,2003))

∨ (Nguyen = Manager(Maintenance,2003))); or
o An expression of the form ∀µα or ∃µα, where µ is a variable symbol and α is a

formula, e.g. ∃x (Employee(x) ∧ (x = Manager(department,year))).
 An open formula is a formula in which some variables are free, or not within the scope of

a quantifier, e.g., (r=MachineLocation(m)). A closed formula, or sentence, is a formula
in which there are no free variables, e.g.,

∀m (Isa(Machine,m) ⇒ ∃r (Isa(MachineRoom,r) ∧ (r=MachineLocation(m)))).

Parentheses may be omitted in any of the above expressions if no confusion will result.
First-order logic is applied by defining a set of axioms, or sentences intended to assert

relevant truths or assumptions about a domain. The axioms, together with the set of logical
consequences of the axioms, comprise a theory of the domain. If the axioms are consistent, the set
of consequences is a proper subset of all syntactically correct sentences. Because anything
follows from a contradiction, if the axioms are inconsistent, the set of consequences consists of
all sentences. Until referents for the symbols are specified, a theory is a syntactic structure
devoid of meaning. An interpretation for a theory specifies a definition of each constant,
predicate and function symbol in terms of the domain. An interpretation assigns each constant
symbol to a specific individual entity, each predicate to a set containing the entities for which the
predicate holds, and each function symbol to a function defined on the domain. The purely
logical consequences of a set of axioms consist of the sentences that are true in all interpretations,
also called the valid sentences. A logical system is complete if all valid sentences can be proven
and negation complete if for every sentence, either the sentence or its negation can be proven.
Kurt Gödel proved both that first-order logic is complete, and that no consistent logical system
strong enough to axiomatize arithmetic can be negation complete (cf., Stoll, 1963; Enderton,
2001).

A number of proof systems have been defined for first-order logic. Resolution with
Skolemization is a refutation-complete proof system5 that is straightforward to specify,
implement and control. Russell and Norvig (2002) present a detailed description of resolution
with Skolemization and a proof of refutation-completeness. Natural deduction is a complete proof
system that is more intuitive than resolution, but harder to implement. Davis (1990) presents a
natural deduction proof system for first-order logic.

Special-purpose logics built on first-order logic give pre-defined meaning to reserved
constant, function and/or predicate symbols. Such logics provide built-in constructs that are
useful in many applications. For example, there are logics that provide constants, predicates, and
functions for reasoning about types, space and time, parts and wholes, actions and plans, etc.
When a logic is applied to reason about a particular domain, the modeler assigns meaning to
additional domain-specific constant, predicate and function symbols. This is accomplished by
specifying a set of proper axioms encoding knowledge about the domain. A domain ontology
(Gruber, 1993; Sowa, 2000) expresses knowledge about the types of entities in a domain of
application, the attributes and allowable behaviors of entities of a given type, allowable
relationships among entities of different types, and (optionally) characteristics of particular

5 That is, if a sentence is unsatisfiable, resolution will generate a proof of unsatisfiability in finitely many steps.

K B LASKEY

C4I-06-01 6 2/5/06

individual entities. Formal ontologies are usually expressed in languages based on first-order
logic or one of its subsets.

MEBN logic extends first-order logic to provide a means to assign probabilities to sentences
of FOL theories in a logically consistent manner. For any MEBN theory there is a corresponding
FOL theory having the same purely logical consequences. A consistent, finitely axiomatizable
FOL theory can be translated to an infinity of MEBN theories, all having the same purely logical
consequences, that assign different probabilities to statements whose truth-values are not
determined by the axioms of the FOL theory. MEBN logic extends the propositional logic of
directed graphical probability models, or Bayesian networks. Before providing a formal
specification for MEBN logic, the next section gives a brief overview of Bayesian networks.

3 Bayesian Networks
Graphical probability and decision models (Whittaker, 1990, Cowell, et al., 1999) have become
increasingly popular both as a parsimonious language for representing knowledge about uncertain
phenomena and as an architecture to support efficient algorithms for inference, search,
optimization, and learning. A graphical probability model expresses a probability distribution
over a collection of interrelated hypotheses as a graph and a collection of local probability
distributions. The graph encodes dependencies among the hypotheses. The local probability
distributions specify numerical probability information. Specification is tractable because each
local distribution depends on only a small set of directly related hypotheses. Tractable exact or
approximate inference is possible for complex tasks because independence relationships allow
inference to be decomposed into local inference problems involving only small numbers of
hypotheses.

A Bayesian network (e.g., Pearl, 1988; Jensen, 2001; Neapolitan, 2003) is a graphical
probability model in which the dependency graph is an acyclic directed graph. Figure 1 shows a
Bayesian network for a diagnosis task. The nodes in the graph denote random variables. In
mathematical statistics, a random variable is defined as a function that maps elements of a set
called the sample space to elements of another set called the outcome space.6 Random variables
in a Bayesian network map entities in a domain of application to attributes or features of the
entities. For example, in the Bayesian network of Figure 1, the EngineStatus random variable
maps a piece of equipment to a value in the set {Satisfactory,Overheated}, depending on whether
its engine is operating normally or is overheated. Each random variable can take on one of a
mutually exclusive and collectively exhaustive set of possible values. Given any state of
information about the other random variables, each possible value for a random variable has a
probability that ranges between zero and one. This probability represents the likelihood, given
the available information, that the attribute in question takes on the indicated value.

Probabilities for the possible values of the random variables are specified by means of local
distributions that together implicitly specify a joint distribution over all possible configurations of
values for the random variables. The graph for a Bayesian network represents a set of conditional
independence assertions satisfied by the implicitly encoded probability distribution (Cowell, et
al., 1999; Jensen, 2001; Lauritzen, 1996; Pearl, 1988; Whittaker, 1990). The graph must contain
no directed cycles, ensuring non-circularity in the specification of probabilities. The parents of a
node in the graph denote the random variables whose values directly influence the probability of
the node’s random variable. The probability that a random variable takes on a given value is
independent of the values of the random variable’s non-descendants given the values of its
parents. For example, in Figure 1, if the values of BeltStatus and RoomTemp are specified, the

6 Additional technical conditions must be satisfied for a function to be a random variable: the sample space must be a
probability space; the outcome space must be a measurable space; and the function must be measurable. The graph and
local distributions of a Bayesian network implicitly specify a set of random variables satisfying these conditions.

MEBN LOGIC

C4I-06-01 7 2/5/06

probabilities for the values of EngineStatus do not depend on the value of MaintenancePractice
or TempSensor. That is, although the organization’s maintenance practices and the temperature
sensor reading are relevant to whether the engine is functioning properly, the influence operates
via the condition of the belt and temperature of the room. Once the condition of the belt and the
temperature of the room are given, there is no remaining influence from other ancestors of
EngineStatus.

The local distribution for a root node consists of a single probability distribution. For non-
root nodes, a probability distribution is specified for each combination of possible values of the
node’s parents. In Figure 1, for example, only one probability distribution needs to be specified
for MaintenancePractice. For EngineStatus, a probability distribution must be specified for each
combination of values of its parents. If the possible values of BeltStatus and RoomTemp are {OK,
Broken} and {Normal, High}, respectively, then four probability distributions must be specified –
one for each member of the set {(OK, Normal), (OK, High), (Broken, Normal), (Broken, High)}.

Some authors assume that random variables in a Bayesian network have finitely many
possible values. Some require only that each random variable have an associated function
mapping values of its parents to probability distributions on its set of possible values. In an
unconstrained local distribution on finite-cardinality random variables, a separate probability is
specified for each value of a random variable given each combination of values of its parents.
Because the complexity of specifying local distributions is exponential in the number of parents,
constrained families of local distributions are often used to simplify specification and inference.
In distributions exhibiting context-specific independence (Geiger and Heckerman, 1991;
Boutilier, et al., 1996; Mahoney and Laskey, 1999; Mahoney, 1999), the parent configurations are
partitioned into subsets having a common distribution for the child random variable.
Independence of causal influence (ICI) refers to a class of local distributions in which each parent
random variable makes an independent contribution to the probability distribution of the child
random variable. The most common ICI models are the “noisy or” and other noisy functional
dependence models (Jensen, 2001; Pearl, 1988). Local expression languages (D’Ambrosio,

1991) can be used to specify arbitrary
functional relationships between states
of the parent random variables and
probabilities of the child random
variable. When a random variable
and/or its parents have infinitely many
possible values, local distributions
cannot be listed explicitly, but can be
specified as parameterized functions.
When a random variable has an
uncountable set of possible values, then
the local distributions specify prob-
ability density functions with respect to
a measure on the set of possible
outcomes (cf., DeGroot and Schervish,
2002; Robert, 2001).

A Bayesian network can be used to
compute probabilities of some random
variables given information about other
random variables. For example, we
might use the Bayesian network of

Figure 1 to compute the probability of producing a defective product, and to update this
distribution to incorporate evidence such whether the temperature light is blinking. Efficient
algorithms have been developed for computing probabilities and propagating the impact of

ProductDefect

ACStatus

MaintenancePractice

BeltStatus

RoomTemp

EngineStatus TempSensor

TempLight
Figure 1: Bayesian Network for Diagnostic Task

K B LASKEY

C4I-06-01 8 2/5/06

evidence (D’Ambrosio, 1999). Methods have also been developed for learning Bayesian
networks from data and for combining observations with expert knowledge (e.g., Heckerman, et
al., 1995; Dybowski, et al., 2003). By further reducing the dimensionality of the parameter space,
use of local expressions can ease the specification burden, reduce the sample size required to
learn the local distributions, and improve the tractability of inference.

The simple attribute-value representation of standard Bayesian networks is insufficiently
expressive for many problems. For example, the Bayesian network of Figure 1 applies to a single
piece of equipment located in a particular room and owned and maintained by a single
organization. We may need to consider problems that involve multiple organizations, each of
which owns and maintains multiple pieces of equipment of different types, some of which are in
rooms that contain other items of equipment. The room temperature and air conditioner status
random variables would have the same value for co-located items, and the maintenance practice
random variable would have the same value for items with the same owner. Standard Bayesian
networks provide no way of compactly representing the correlation between failures of co-located
and/or commonly owned items of equipment or of properly accounting for these correlations
when learning from observation. There has been a great deal of interest in extending the Bayesian
network formalism to provide greater expressive power (e.g., Buntine, 1994; D’Ambrosio, et al,
2001; Getoor et al, 2000, 2001; Gilks et al, 1994; Heckerman, et al., 2004; Koller and Pfeffer,
1997; Laskey, et al, 2001; Laskey and Mahoney, 1997; Ngo and Haddawy, 1997; Pfeffer, 2001;
Sato, 1998; Spiegelhalter et al., 1996). MEBN logic provides a unifying logical foundation for the
emerging collection of more expressive probabilistic languages.

4 Multi-Entity Bayesian Networks
Like Bayesian networks, MTheories use directed graphs to specify joint probability distributions
for a collection of interrelated random variables. Like Bayesian networks, MEBN logic represents
relationships among hypotheses using directed graphs in which nodes represent uncertain
hypotheses and edges represent probabilistic dependencies. MEBN logic extends ordinary
Bayesian networks to provide first-order expressive power, and also extends first-order logic
(FOL) to provide a means of specifying probability distributions over interpretations of first-order
theories.

Knowledge in MEBN theories is expressed via MEBN Fragments (MFrags), each of which
represents probability information about a group of related random variables. Just as first-order
logic extends propositional logic to provide an inner structure for sentences, MEBN logic extends
ordinary Bayesian networks to provide an inner structure for random variables. Random
variables in MEBN logic take arguments that refer to entities in the domain of application. For
example, Manager(d,y) might represent the manager of the department designated by the variable
d during the year designated by the variable y. To refer to the manager of the maintenance
department in 2003, we would fill in values for d and y to obtain an instance
Manager(Maintenance,2003) of the Manager random variable. A given situation might involve
any number of instances of the Manager random variable, referring to different departments
and/or different years. As shown below, the Boolean connectives and quantifiers of first-order
logic are represented as pre-defined MFrags whose meaning is fixed by the semantics. Any
sentence that can be expressed in first-order logic can be represented as a random variable in
MEBN logic. An MTheory implicitly expresses a joint probability distribution over truth-values
of sets of FOL sentences. MEBN logic is modular and compositional. That is, probability
distributions are specified locally over small groups of hypotheses and composed into globally
consistent probability distributions over sets of hypotheses.

MEBN LOGIC

C4I-06-01 9 2/5/06

4.1 Entities and Random Variables
MEBN logic treats the world as being comprised of entities that have attributes and are related to
other entities. Constant and variable symbols are used to refer to entities. There are three logical
constants with meaning fixed by the semantics of the logic, an infinite collection of variable
symbols, and an infinite collection of non-logical constant symbols with no pre-specified
referents. MEBN logic uses random variables to represent features of entities and relationships
among entities. MEBN logic has a collection of logical random variable symbols with meaning
fixed by the semantics of the logic, and an infinite collection of non-logical random variable
symbols with no pre-specified referents. The logical constants and random variables are common
to all MTheories; the non-logical constants and random variables provide terminology for
referring to objects and relationships in a domain of application.

Constant and variable symbols:
 (Ordinary) variable symbols: As in FOL, variables are used as placeholders to refer to

non-specific entities. Variables are written as alphanumeric strings beginning with
lowercase letters, e.g., department7. To avoid confusion, the adjective “ordinary” is
sometimes used to distinguish ordinary variables from random variables.

 Non-logical constant symbols: Particular named entities are represented using constant
symbols. As in our FOL notation, non-logical constant symbols are written as
alphanumeric strings beginning with uppercase letters, e.g., Machine37, Fernandez.

 Unique Identifier symbols: The same entity may be represented by different non-logical
constant symbols. MEBN logic avoids ambiguity by assigning a unique identifier symbol
to each entity. The unique identifiers are the possible values of random variables. There
are two kinds of unique identifier symbols:
o Truth-value symbols and the undefined symbol: The reserved symbols T, F and ⊥,

are logical constants with pre-defined meaning fixed by the semantics of MEBN
logic. The symbol ⊥ denotes meaningless, undefined or contradictory hypotheses,
i.e., hypotheses to which a truth-value cannot be assigned. The symbols T and F
denote truth-values of meaningful hypotheses.

o Entity identifier symbols. There is an infinite set E of entity identifier symbols. An
interpretation of the theory uses entity identifiers as labels to refer to entities in the
domain. Entity identifiers are written either as numerals or as alphanumeric strings
beginning with an exclamation point, e.g., !M3, 48723.

Random variable symbols:
 Logical connectives and the equality operator: The logical connective symbols ¬, ∧, ∨,

⇒, and ⇔, together with the equality relation =, are reserved random variable symbols
with pre-defined meanings fixed by the semantics of MEBN logic. Logical expressions
may be written using prefix notation (e.g,, ¬(x), ∨(x,y), =(x,y)), or in the more familiar
infix notation (e.g., ¬x, (x∨y); (x=y)). Different ways of writing the same expression
(e.g., =(x,y), (y=x)) are treated as the same random variable.

 Quantifiers: The symbols ∀ and ∃ are reserved random variable symbols with pre-
defined meaning fixed by the semantics of MEBN logic. They are used to construct
MEBN random variables to represent FOL sentences containing quantifiers.

 Identity: The reserved random variable symbol ◊ denotes the identity random variable. It
is the identity function on T, F, ⊥, and the set of entity identifiers that denote meaningful
entities in a domain. It maps meaningless, irrelevant, or contradictory random variable
terms to ⊥.

 Findings: The finding random variable symbol, denoted Φ, is used to represent observed
evidence, and also to represent constraints assumed to hold among entities in a domain of
application.

K B LASKEY

C4I-06-01 10 2/5/06

 Non-logical random variable symbols: The domain-specific random variable symbols are
written as alphanumeric strings beginning with an uppercase letter. With each random
variable symbol is associated a positive integer indicating the number of arguments it
takes. Each random variable also has an associated set of possible values consisting of a
subset of the unique identifier symbols. The set of possible values may be infinite, but if
so, there must exist an effective procedure (provably terminating algorithm) that lists all
the possible values and an effective procedure for determining whether any unique
identifier symbol is one of the possible values. A random variable for which the set of
possible values is {T,F,⊥} is called a Boolean random variable. The set of possible
values for any non-Boolean random variable is contained in E∪{⊥}. Boolean random
variables correspond to predicates and non-Boolean random variables correspond to
functions in FOL.

 Exemplar symbols. There is an infinite set of exemplar symbols used to refer to
representative entities in the range of quantifiers. A exemplar symbol is denoted by $
followed by an alphanumeric string, e.g., $b32.

Punctuation:
 MEBN random variable terms are constructed using the above symbols and the

punctuation symbols comma, open parenthesis and close parenthesis.

A random variable term is a random variable symbol followed by a parenthesized list of
arguments separated by commas, where the arguments may be variables, constant symbols, or
(recursively) random variable terms. When α is a constant or ordinary variable, the random
variable term ◊(α) may be denoted simply as α. If φ is a random variable symbol, a value
assignment term for φ has the form =(ψ,α), where ψ is a random variable term and α is either an
ordinary variable symbol or one of the possible values of φ. The strings =(α,ψ), (α=ψ), and
(ψ=α) are treated as synonyms for =(ψ,α). A random variable term is closed if it contains no
ordinary variable symbols and open if it contains ordinary variable symbols. An open random
variable term is also called a random variable class; a closed random variable term is called a
random variable instance. If a random variable instance is obtained by substituting constant
terms for the variable terms in a random variable class, then it is called an instance of the class.
For example, the value assignment term =(BeltStatus(!B1), !OK), also written (BeltStatus(!B1) =
!OK), is an instance of both (BeltStatus(b)=x) and (BeltStatus(!B1)=x), but not of (BeltStatus(b) =
!Broken). When no confusion is likely to result, the term random variable may be used to refer
either to a class or to an instance. A random variable term is called simple if all its arguments are
either unique identifier symbols or variable symbols; otherwise, it is called composite. For
example, =(BeltStatus(!B1), !OK) is a composite random variable term containing the simple
random variable term BeltStatus(!B1) as an argument. It is assumed that the sets consisting of
ordinary variable symbols, unique identifier symbols, exemplar random variable symbols, non-
logical constant symbols, and non-logical random variable symbols are all recursive.

4.2 MEBN Fragments
In MEBN logic, multivariate probability distributions are built up from MEBN fragments or
MFrags (see Figure 2). An MFrag defines a probability distribution for a set of resident random
variables conditional on the values of context and input random variables. Random variables are
represented as nodes in a fragment graph whose arcs represent dependency relationships.

MEBN LOGIC

C4I-06-01 11 2/5/06

Definition 1: An MFrag F = (C,I,R,G,D) consists of a finite set C of context value assignment
terms;7 a finite set I of input random variable terms; a finite set R of resident random variable
terms; a fragment graph G; and a set D of local distributions, one for each member of R. The
sets C, I, and R are pairwise disjoint. The fragment graph G is an acyclic directed graph whose
nodes are in one-to-one correspondence with the random variables in I∪R, such that random
variables in I correspond to root nodes in G. Local distributions specify conditional probability
distributions for the resident random variables as described in Definition 3 below.

An MFrag is a schema for specifying conditional probability distributions for instances of its
resident random variables given the values of instances of their parents in the fragment graph and
given the context constraints. A collection of MFrags that satisfies the global consistency
constraints defined in Section 4.3 below represents a joint probability distribution on an
unbounded and possibly infinite number of instances of its random variable terms. The joint
distribution is specified via the local distributions, which are defined formally below, together
with the conditional independence relationships implied by the fragment graphs. Context terms
are used to specify constraints under which the local distributions apply.

7 If φ is a Boolean random variable, the context constraint φ=T may be abbreviated φ and the context constraint φ=F
may be abbreviated ¬φ.

Context

Input

Resident

m=Producer(p)

ProductDefect(p)

EngineStatus(m)

Product Defect

MFrag

Isa(Machine,m)

Isa(Product,p)

BeltLocation(b)

Isa(Belt,b)

Belt Location MFrag

Belt Status MFrag

o=Owner(m)

Isa(Machine,m)

Isa(Organization,o)

Isa(Belt,b)

m=BeltLocation(b)

BeltStatus(b)

MaintPractice(o)

Isa(Product,p)

Producer(p)

Producer MFrag

Temperature

Observability

MFrag

r=MachineLocation(m)

SensorStatus(m)

RoomTemp(r)

EngineStatus(m)

Isa(Machine,m)

Isa(Room,r)

TempLight(m)

Engine

Status

MFrag

RoomTemp(r)BeltStatus(b)

EngineStatus(m)

r=MachineLocation(m)

Isa(Machine,m) Isa(Room,r)

Isa(Belt,b)m=BeltLocation(b)

Room

Temperature

MFrag

o=Tenant(r)

RoomTemp(r)

ACStatus(r)

MaintPractice(o)

Isa(Room,r)

Isa(Organization,o)Isa(Organization,o)

MaintPractice(o)

Maintenance MFrag

Machine

Location

MFrag MachineLocation(m)

Tenant(r)Owner(m)

Isa(Machine,m) Isa(Room,r)

Entity Type

MFrag Isa(t,e)

Type(e)!(e)

Figure 2: MEBN Fragments for Equipment Diagnosis Problem

K B LASKEY

C4I-06-01 12 2/5/06

As in ordinary Bayesian networks, a local distribution maps configurations of values of the
parents of a random variable instance to probability distributions for its possible values. When all
ordinary variables in the parents of a resident random variable term also appear in the resident
term itself, as for the RoomTemp and TempLight random variables of the temperature
observability MFrag of Figure 2, a local distribution can be specified simply by listing a
probability distribution for the child random variable for each combination of values of the parent
random variables. The situation is more complicated when ordinary variables in a parent random
variable do not appear in the child. In this case, there may be an arbitrary, possibly infinite
number of relevant instances of a parent for any given instance of the child. For example, in the
engine status fragment of Figure 2, if it is uncertain where a machine is located, the temperature
in any room in which it might be located is relevant to the distribution of the EngineStatus
random variable. If a machine has more than one belt, then the status of any of its belts is
relevant to the distribution of the EngineStatus random variable. Thus, any number of instances of
the RoomTemp and BeltStatus random variables might be relevant to the distributions of the
EngineStatus random variable. The local distribution for a random variable must specify how to
combine influences from all relevant instances of its parents.

Definition 2: Let F be an MFrag containing ordinary variables θ1, …, θk, and let ψ(θ) denote a
resident random variable in F that may depend on some or all of the θi.

2a. A binding set B = {(θ1:ε1), (θ2:ε2), … (θk:εk)} for F is a set of ordered pairs associating a
unique identifier symbol εi with each ordinary variable θi of F. The constant symbol εi is
called the binding for variable θi determined by B. The εi are not required to be distinct.

2b. Let B = {(θ1:ε1), (θ2:ε2), … (θk:εk)} be a binding set for F, and let ψ(ε) denote the
instance of ψ obtained by substituting εi for each occurrence of θi in ψ(θ). A potential
influencing configuration for ψ(ε) and B is a set of value assignment terms {(γ=φ(ε))},
one for each parent of ψ and one for each context random variable of F. Here, φ(ε)
denotes the instance of the context or parent random variable φ(θ) obtained by
substituting εi for each occurrence of θi;8 and γ denotes one of the possible values of φ(ε)
(as specified by the local distribution πψ; see Definition 3 below). An influencing
configuration for ψ(ε) and B is a potential influencing configuration in which the value
assignments match the context constraints of F. Two influencing configurations are
equivalent if substituting θi back in for εi yields the same result for both configurations.
The equivalence classes for this equivalence relation correspond to distinct configurations
of parents of ψ(θ) in F.

2c. Let {ε1, ε2, …, εn } be a non-empty, finite set of unique identifier symbols. The partial
world W for ψ and {ε1, ε2, …, εn } is the set consisting of all instances of the parents of ψ
and the context random variables of F that can be formed by substituting the εi for
ordinary variables of F. A partial world state SW for a partial world is a set of value
assignment terms, one for each random variable in the partial world.

2d. Let W be a partial world for ψ and {ε1, ε2, …, εn }, let SW be a partial world state for W,
let B = {(θ1:εB1), (θ2:εB2), … (θk:εBk)} be a binding set for F with bindings chosen from

8 If a context value assignment term (γ=φ) has no arguments, then no substitution is needed.

MEBN LOGIC

C4I-06-01 13 2/5/06

{ε1, ε2, …, εn }, and let ψ(εB) be the instance of ψ(θ) from B. The influence counts #SWψ
for ψ(αB) in SW consist of the number of influencing configurations SW contains for each
equivalence class of influencing configurations (i.e., each configuration of the parents of
ψ(θ) in F).

As an example, Table 1 shows a partial world state for the EngineStatus(m) random variable
from Figure 2 with unique identifiers {!M1, !R1, !R2, !B1, !B2, !O1}. In the intended meaning of
the partial world of Table 1, !M1 denotes a machine, !B1 and !B2 denote belts located in !M1, !R1
denotes the room where !M1 is located, !R2 denotes a room where !M1 is not located, and !O1
denotes an entity that is not a machine, a room, or a belt. The partial world state specifies the
value of each random variable for each of the entity identifiers. Random variables map
meaningless attributes (e.g., the value of RoomTemp for an entity that is not a room) to the absurd
symbol ⊥.

The partial world state of Table 1 contains two equivalent influencing configurations for
EngineStatus(!M1):

IC1: { (Isa(Machine,!M1)=T), (Isa(Belt,!B1)=T), (Isa(Room,!R1)=T),
(BeltLocation(!B1)=!M1), (MachineLocation(!M1)=!R1), (RoomTemp(!R1)=!Normal),
(BeltStatus(!B1)=!OK)};

IC2: { Isa(Machine,!M1)=T), (Isa(Belt,!B2)=T), (Isa(Room,!R1)=T),
(BeltLocation(!B2)=M1), (MachineLocation(!M1)=!R1), (RoomTemp(!R1)=!Normal),
(BeltStatus(!B2)=!OK)}.

It contains no other influencing configurations for EngineStatus(M1). Thus, the influence counts
for EngineStatus(M1) in this possible world state are:

RoomTemp=!Normal, BeltStatus=!OK : 2
RoomTemp=!Normal, BeltStatus=!Broken : 0
RoomTemp=!Hot, BeltStatus=!OK : 0
RoomTemp=!Hot, BeltStatus=!Broken : 0 .

The local distribution assigned to EngineStatus(M1) in this partial world would thus be the one
for a machine having two intact and no broken belts, and located in a room with normal room
temperature.

Definition 3: The local distribution πψ for resident random variable ψ in MFrag F is a function
πψ(α|S) that maps unique identifiers α and partial world states S to real numbers, such that the
following conditions are satisfied:

3a. For a given partial world state S, πψ(⋅|S) is a probability distribution on the unique
identifier symbols. That is, πψ(α|S) ≥ 0 for all unique identifiers α, and

!" (# | S)#$ = 1 .9

3b. For each instance ψ(ε) of ψ, the set Vψ(ε) of possible values of the instance ψ(ε) is a
recursively enumerable subset of the unique identifiers, and πψ(ε)(Vψ(ε)|S) = 1 for each
partial world S.

3c. There is an algorithm such that for any recursive subset A of the possible values of ψ not
containing ⊥, and any partial world state S for ψ, either the algorithm halts with output

9 Although random variables in MEBN logic have finite or countably infinite sample spaces, and local distributions are
discrete, MEBN logic can represent continuous distributions (see Section 5 below).

K B LASKEY

C4I-06-01 14 2/5/06

πψ(A|S) or there exists a value N(A,S) such that if the algorithm is interrupted after a
number of time steps greater than N(A,S), the output is πψ(A|S).10

3d. πψ depends on the partial world state only through the influence counts. That is, any two
partial world states having the same influence counts map to the same probability
distribution;

3e. Let S1 ⊂ S2 ⊂ … be an increasing sequence of partial world states for ψ. There exists an
integer N such that if k > N, πψ(Sk) = πψ(SN).11

The probability distribution πψ(ε|∅) is called the default distribution for ψ. It is the
probability distribution for ψ given that no potential influencing configurations satisfy the
conditioning constraints of F. If ψ is a root node in an MFrag F containing no context constraints,
then the local distribution for ψ is just the default distribution.

Isa(Machine,!M1)=T
Isa(Belt,!M1)=F
Isa(Room,!M1)=F
BeltLocation(!M1)=⊥
MachineLocation(!M1)=!R1
RoomTemp(!M1)=⊥
BeltStatus(!M1)=⊥

Isa(Machine,!R1)=F
Isa(Belt,!R1)=F
Isa(Room,!R1)=T
BeltLocation(!R1)=⊥
MachineLocation(!R1)=⊥
RoomTemp(!R1)=!Normal
BeltStatus(!R1)=⊥

Isa(Machine,!R2)=F
Isa(Belt,!R2)=F
Isa(Room,!R2)=T
BeltLocation(!R2)=⊥
MachineLocation(!R2)=⊥
RoomTemp(!R2)=Hot
BeltStatus(!R2)=⊥

Isa(Machine,!B1)=F
Isa(Belt,!B1)=T
Isa(Room,!B1)=F
BeltLocation(!B1)=!M1
MachineLocation(!B1)=⊥
RoomTemp(!B1)=⊥
BeltStatus(!B1)=!OK

Isa(Machine,!B2)=F
Isa(Belt,!B2)=T
Isa(Room,!B2)=F
BeltLocation(!B2)=!M1
MachineLocation(!B2)=⊥
RoomTemp(!B2)=⊥
BeltStatus(!B2)=!OK

Isa(Machine,!O1)=F
Isa(Belt,!O1)=F
Isa(Room,!O1)=F
BeltLocation(!O1)=⊥
MachineLocation(!O1)=⊥
RoomTemp(!O1)=⊥
BeltStatus(!O1)=⊥

Table 1: Partial World State for EngineStatus Partial World

Conditions such as 3c and 3e are needed to ensure that a global joint distribution exists and
can be approximated by a sequence of finite Bayesian networks. They are stronger than strictly
necessary for this purpose, but they are satisfied in the MTheory presented in Section 4.5 below
that specifies a probability distribution over interpretations of theories in first-order logic.

Table 2 shows an example of a local distribution for the engine status MFrag. The
conditioning constraints imply there can be at most one RoomTemp parent that satisfies the
context constraint MachineLocation(m) = r. When this parent has value !Normal, probability αk,n
is assigned to !Normal and probability 1-αk,n is assigned to !Overheated, where k is the number of
distinct BeltStatus parents having the value OK, out of a total of n>0 distinct BeltStatus parents.
When the RoomTemp parent corresponding to MachineLocation(m) has value !Hot, the
probability of a satisfactory engine is βk,n and the probability of an overheated engine is 1-βk,n,
where again k denotes the number of distinct belts with value OK and n>0 denotes the total
number of distinct belts. The default distribution applies when no combination of entities meets
the conditioning constraints. Condition 3e implies that the local distribution for any instance of

10 It is required that N(A,S) exists, but there need not be an effective procedure for computing it. The author is indebted
to an anonymous reviewer for pointing out that a minor modification of this condition is required for the proof of
Theorem 2.
11 Again, it is not required that there be an effective procedure for computing N.

MEBN LOGIC

C4I-06-01 15 2/5/06

MachineLocation(m) in any world can be calculated
from at most finitely many BeltStatus parents. Given
CC1, EngineStatus(!M1)=!Satisfactory has probability
α2,0 and EngineStatus(!M2) = !Overheated has
probability 1-α2,0. If CC1 were modified by changing
RoomTemp(!R2) from !Hot to !Normal, the distribution
would not change, because the influence counts for CC1
do not depend on RoomTemp(!R2). On the other hand, if
RoomTemp(!R1) had value !Hot, then the probabilities of
EngineStatus(!M1)=!Satisfactory and EngineStatus(!M2)

=!Overheated would be β2,0 and 1-β2,0, respectively. The
default distribution applies when there are no influencing

configurations. The default distribution assigns probability 1 to ⊥, meaning that EngineStatus(m)
is meaningless when the context constraints are not met (i.e., m does not denote a machine, m is
not located in a room, or m has no belt). Default distributions are not required to assign
probability 1 to ⊥. For example, the default distribution could be used to represent the engine
status of beltless machines. Note, however, that the default distribution does not distinguish
situations in which m refers to a machine with no belt from situations in which m is not a
machine. Thus, this modeling approach would assign the same EngineStatus distribution to non-
machines as to machines with no belt.

MFrags may contain recursive influences. Recursive influences allow instances of a random
variable to depend directly or indirectly on other instances of the same random variable. One
common type of recursive graphical model is a dynamic Bayesian network (Ghahramani, 1998;
Murphy, 1998). Recursion is permissible as long as no random variable instance can directly or
indirectly influence itself. This requirement is satisfied when the conditioning constraints prevent
circular influences. For example, Figure 3 modifies the belt status MFrag from Figure 2 so that
the status of a belt depends not only on the maintenance practice of the organization, but also on
the status of the belt at the previous time. The function Prev(n), defined for natural numbers,
maps a positive natural number to the previous natural number, and has value ⊥ when n is zero.
The context constraint s = Prev(t), prevents circular influences in instances of the MFrag. If the
variable t is bound to zero, there will be no influencing configurations satisfying the context
constraints (because Prev(0) has value ⊥ and NatNumber(⊥)=⊥.). Thus, any instance of the
BeltStatus random variable for which s is bound to zero will have no parents, and its local
distribution will be the default distribution.

MFrags can represent a rich family of probability distributions over interpretations of first-
order theories. The ability of MFrags to represent uncertainty about parameters of local
distributions provides a logical foundation for parameter learning in first-order probabilistic

Dynamic Belt

Status MFrag

o=Owner(m)

BeltStatus(b,t)

MaintPractice(o)

Isa(Machine,m)

Isa(Organization,o)

Isa(Belt,b)

m=BeltLocation(b)

BeltStatus(b,s)

s=Prev(t)

Isa(NatNumber,s)

Isa(NatNumber,t)

Figure 3: Recursive MFrag

EngineStatus(m) Context RoomTemp(r) BeltStatus(b)
Satisfactory Overheated ⊥

!OK : k
!Normal !Broken : n-k αk,n 1-αk,n 0

!OK : k

Belt b located
in machine m,

located in
room r !High !Broken : n-k βk,n 1-βk,n 0

Default 0 0 1

Table 2: Local Distribution as Function of Influence Counts

K B LASKEY

C4I-06-01 16 2/5/06

theories. Uncertainty about structure can be
represented by sets of MFrags having
mutually exclusive context constraints and
different fragment graphs, thus providing a
logical foundation for structure learning.
Further discussion of learning from
observation can be found in Section 6
below.

MEBN logic comes equipped with a set of built-in MFrags representing logical operations,
function composition, and quantification. There are also constraints that must be satisfied by
domain-specific MFrags. The built-in MFrags, the constraints on domain-specific MFrag
definitions, and the rules for combining MFrags and performing inference provide the logical
content of pure MEBN logic. An applied MTheory specifies a set of domain-dependent MFrags
that provide empirical and/or mathematical content.

The built-in MFrags are defined below:
 Indirect reference. The rules for instantiating MFrags allow only unique identifier

symbols to be substituted for the ordinary variable symbols. Probability distributions for
indirect references are handled with built-in composition MFrags, as illustrated in Figure
4. These MFrags enforce logical constraints on function composition. Let ψ(φ1(α1), …,
φk(αk)) be a random variable instance, where ψ and φi are random variable symbols and
each αi is a list of arguments. The random variable instance ψ(φ1(α1), … ,φk(αk)) has a
parent φi(αi) for each of the arguments and a reference parent ψ(y1, …, yk), where the yi
denote ordinary variable symbols such that yi may be the same as yj only if φi(αi) and
φj(αj) are logically equivalent expressions.12 The local distribution for ψ(φ1(α1),…,φk(αk))
assigns it the same value as ψ(y1,…,yk) when the value of yi is the same as the value of
φi(αi). Although there are infinitely many possible substitutions for ψ(y1,…,yk) and hence
infinitely many potential influencing configurations, in any given world only one of the
influences is active. Thus, condition 3e is satisfied. The default distribution specifies a
value for ψ(φ1(α1),…,φk(αk)) when there are no influencing configurations.

 Equality random variable. The resident random variable in the equality MFrag has the
form =(u,v), also written (u=v). There are two parents, one for each argument. The
equality operator has value ⊥ if either u or v has value ⊥, T if φ and ψ have the same
value and are not equal to ⊥, and F otherwise. It is assumed that meaningful entity
identifiers are distinct. That is, if ε1 and ε2 are distinct entity identifiers, then (ε1=ε2) has
value ⊥ if ◊(ε1) or ◊(ε2)
has value ⊥, and F
otherwise.

 Logical connectives. The
random variable ¬(u) has
a single parent, ◊(u); the
other logical connectives
have two parents, ◊(u)
and ◊(v). The value of
¬(u) is T if its parent has
value F, F if its parent

12 It is always permissible to use distinct variables in a composition MFrag, but it is more efficient to use the same
variable when the expressions are known to be logically equivalent.

Random Variable

Composition MFrag

CertificationLevel(Manager(Maintenance, 2003))

CertificationLevel(p)

Manager(Maintenance,2003)

Figure 4: Indirect Reference

Figure 5: Logical Connective MFrag

MEBN LOGIC

C4I-06-01 17 2/5/06

has value T, and ⊥ otherwise. The other logical connectives map truth-values
according to the usual truth tables and parents other than T or F to ⊥ (see Figure 5).

 Quantifiers. Let φ(γ) be an open Boolean random variable term containing the ordinary
variable γ. A quantifier random variable has the form ∀(σ, φ(σ)) or ∃(σ, φ(σ)), where
φ(σ) is obtained by substituting the exemplar term σ into φ(γ). A quantifier random
variable instance has a single parent φ(γ). The value of ∀(σ, φ(σ)) is T by default and F if
any instance of φ(γ) has value F. The value of ∃(σ, φ(σ)) is F by default and T if any
instance of φ(γ) has value T. It is assumed that a unique exemplar symbol is assigned to
each ordinary variable of each Boolean random variable term of the language.13 Figure 6
shows quantifier MFrags representing the hypothesis that every machine has a belt. In
FOL, the corresponding sentence is:

∀m∃b (Isa(Machine,m)⇒Belt(b)∧(m=BeltLocation(b))).

An important feature of MEBN logic is its logically consistent treatment of reference uncer-
tainty. For example, suppose the random variable instance CertificationLevel(Manager(Mainten-
ance, 2003)) is intended to refer to the individual who managed the maintenance department in
2003. If the possible managers are !Employee37 and !Employee49, MEBN logic ensures that the
probability distribution for CertificationLevel(Manager(Maintenance, 2003)) will be a weighted
average of the probability distributions for CertificationLevel(!Employee37) and Certification-
Level(!Employee49), where the weights are the probabilities that Manager(Maintenance, 2003)
has value !Employee37 and !Employee49, respectively. Furthermore, if !Employee39 refers to an
individual who is also referred to as Carlos, Fernandez, and Father(Miguel), any information ger-
mane to the certification level of Carlos, Fernandez or Father(Miguel) will propagate con-
sistently to CertificationLevel(Manager(Maintenance, 2003)) when Bayesian inference is applied
(see Figure 7).

The built-in MFrags defined above
provide sufficient expressive power to
represent a probability distribution over
interpretations of any finitely
axiomatizable FOL theory, and to use
Bayesian conditioning to generate a
sequence of MTheories, where each
MTheory in the sequence is obtained by
conditioning the preceding MTheory on

13 A countable infinity of exemplar symbols is sufficient for this purpose.

!($m, "($b($m), Machine($m)#Belt($b($m))$($m=BeltLocation($b($m)))))

"($b(m), Machine(m)#Belt($b(m))$(m=BeltLocation($b(m))))%($m)

"($b(m), Machine(m)#Belt($b(m))$(m=BeltLocation($b(m))))

Machine(m)#Belt(b)$(m=BeltLocation(b))$b(m)

Figure 6: Quantifier MFrags

Alternate Name MFrag

CertificationLevel(Fernandez)

CertificationLevel(p)!(Fernandez)

Figure 7: Relating a Name to a Unique Identifier

K B LASKEY

C4I-06-01 18 2/5/06

new axioms that are consistent with the preceding MTheories. MTheories can be used to define
special-purpose logics such as the planning and decision-making logics described in Section 5
below. Each such special-purpose logic is a subclass of MEBN logic containing a set of MFrags
common to all theories in the subclass.

In MEBN logic, there are two kinds of domain-specific MFrags: generative MFrags and
finding MFrags. The distinction between generative MFrags and finding MFrags corresponds
roughly to the terminological box, or T-box, and the assertional reasoner, or A-box (Brachman,
et al., 1983). The generative domain-specific MFrags specify information about statistical
regularities characterizing the class of situations to which an MTheory applies. Findings can be
used to specify particular information about a specific situation in the class defined by the
generative theory. Findings can also be used to represent constraints assumed to hold in the
domain (cf., Jensen, 2001; Heckerman, et al., 2004), although there are both computational and
interpretation advantages to using generative MFrags when “constraint findings” can be avoided.

Definition 4: A finding MFrag satisfies the following conditions:
4a. There is a single resident random variable, Φ(ψ), where ψ is a closed value assignment

term. For Boolean random variable instances, we may abbreviate Φ(φ=T) as Φ(φ), and
Φ(φ=F) as Φ(¬(φ)).

4b. There are no context random variable terms. There is a single input random variable term
ψ, which is a parent of the resident random variable Φ(ψ).

4c. The local distribution for Φ(ψ) is deterministic, assigning value T if ψ has value T and
⊥ if it has value F or ⊥.

Definition 5: A generative domain-specific MFrag F must satisfy the following conditions.
5a. None of the random variable terms in F is a finding random variable term.
5b. Each resident random variable term in F is a simple open random variable term, i.e., a

constant symbol, an ordinary variable symbol, or a random variable term that consists of
a random variable symbol followed by a parenthesized list of ordinary variable symbols.

5c. The only possible values for the identity random variable ◊(ε) are ε and ⊥. Furthermore,
◊(T)=T; ◊(F)=F; and ◊(⊥)=⊥.14

5d. For any resident random variable term ψ other than the identity, the local distribution for
ψ must assign probability zero to any unique identifier ε for which ◊(ε) ≠ ε. One way to
ensure this constraint is met is to make ◊(ε) a parent of ψ for any possible value ε for
which there is non-zero probability that ◊(ε) ≠ ε, and to specify a local distribution that
assigns probability zero to ε if ◊(ε) ≠ ε.

In summary, MFrags represent influences among clusters of related random variables.
Repeated patterns can be represented using ordinary variables as placeholders into which entity
identifiers can be substituted. Probability information for an MFrag’s resident random variables
are specified via local distributions, which map influence counts for a random variable’s parents
to probability distributions over its possible values. When ordinary variables appear in a parent
but not in a child, the local distribution specifies how to combine influences from multiple copies
of the parent random variables. Restricting variable bindings to unique identifiers prevents
double counting of repeated instances. Multiple ways of referring to an entity are handled

14 A finite domain can be represented by specifying an ordering ε1, ε2,… on the unique identifiers, and specifying a
probability of 1 that ◊(εi+1) = ⊥ if ◊(εi) = ⊥. In this case, the cardinality of the domain is the last i for which ◊(εi) ≠ ⊥.
The cardinality may of course be uncertain.

MEBN LOGIC

C4I-06-01 19 2/5/06

through built-in MFrags that enforce logical constraints on function composition. Context
constraints permit recursive relationships to be specified without circular references.

4.3 MEBN Theories

A MEBN theory, or MTheory, is a collection of MFrags that satisfies consistency constraints
ensuring the existence of a unique joint probability distribution over the random variables
mentioned in the theory. The built-in MFrags provide logical content and the domain-specific
MFrags provide empirical content. This section defines an MTheory and states the main
existence theorem, that a joint distribution exists for the random variable instances of an
MTheory. A proof is given in the Appendix.

An MTheory containing only generative domain-specific MFrags is called a generative
MTheory. Generative MTheories can be used to express domain-specific ontologies that capture
statistical regularities in a particular domain of application. MTheories with findings can
augment statistical information with particular facts germane to a given reasoning problem.
MEBN logic uses Bayesian learning to refine domain-specific ontologies to incorporate observed
evidence.

The MFrags of Figure 2 specify a generative MTheory for the equipment diagnosis problem.
These MFrags specify local probability distributions for their resident random variables. The
conditioning constraints in each MFrag specify type restrictions (e.g., the symbol m must be
replaced by an identifier for an entity of type Machine) and functional relationships an
influencing configuration must satisfy (e.g., the room identifier r must be equal to the value of
MachineLocation(m)). Each local distribution provides a rule for calculating the distribution of a
resident random variable given any instance of the MFrag.

Reasoning about a particular task proceeds as follows. First, finding MFrags are added to a
generative MTheory to represent task-specific information. Next, random variables are identified
to represent queries of interest. Finally, Bayesian inference is applied to compute a response to
the queries. Bayesian inference can also be applied to refine the local distributions and/or MFrag
structures given the task-specific data (see Section 6 below). For example, to assert that the
temperature light is blinking in the machine denoted by !Machine37, which is located in the room
denoted by !Room103A, we could add the findings Φ(TempLight(!Machine37)=!Blinking) and
Φ(MachineLocation(Machine37)=!Room103A) to the generative MTheory of Figure 2. To
inquire about the likelihood that there are any overheated engines, the FOL sentence
∃m (Isa(Machine,m)∧(EngineStatus(m)=!Overheated)) would be translated into the quantifier
random variable instance ∃($m, Isa(Machine,$m)∧(EngineStatus($m)=!Overheated)). A Bayesian
inference algorithm would be applied to evaluate its posterior probability given the evidence.

As with ordinary Bayesian networks, global consistency conditions are required to ensure that
the local distributions collectively specify a well-defined probability distribution over
interpretations. Specifically, the MFrags must combine in such a way that no random variable
instance can directly or indirectly influence itself, and initial conditions must be specified for
recursive definitions. Non-circularity is ensured in ordinary Bayesian networks by defining a
partial order on random variables and requiring that a random variable’s parents precede it in the
partial ordering. In dynamic Bayesian networks, random variables are indexed by time, an
unconditional distribution is specified at the first time step, and each subsequent distribution may
depend on the values of the random variables at the previous time step. Non-circularity is
ensured by prohibiting links from future to past and by requiring that links within a time step
respect the random variable partial ordering. Other kinds of recursive relationships, such as
genetic inheritance, have been discussed in the literature (cf., Pfeffer, 2000). Recursive Bayesian
networks (Jaeger, 2001) can represent a very general class of recursively specified probability
distributions for Boolean random variables on finite domains. No previously published
probabilistic knowledge representation language provides general-purpose rules for defining

K B LASKEY

C4I-06-01 20 2/5/06

probability distributions that can include both recursive and non-recursive influences for random
variables Boolean and non-Boolean random variables on finite and/or countably infinite domains.

Definition 6: Let T = {F1, F2 … } be a set of MFrags. The sequence φd(εd) → φd-1(εd-1)
→…→φ0(ε0) is called an ancestor chain for T if there exist B0, …, Bd such that:

6a. Each Bi is a binding set for one of the MFrags Fji∈T;
6b. The random variable instance φi(εi) is obtained by applying the bindings in Bi to a

resident random variable term φi(θi) of Fji;
6c. For i<d, either:

 φi+1(εi+1) is obtained by applying the bindings in Bi to an input random variable term
φi+1(θi+1) of Fji, and there is an influencing configuration for φi(εi) and Bi that
contains φi+1(θi+1), or

 φi+1(εi+1) is obtained by applying the bindings in Bi to a context value assignment
term φi+1(θi+1) of Fji.

The integer d is called the depth of the ancestor chain. The random variable instance φj(εj) is an
ancestor of φ0(ε0) if there exists an ancestor chain φd(εd) →…→ φj(εj) →…→φ0(ε0) for T.

Definition 7: Let T = { F1, F2 … } be a set of MFrags. Let VT denote the set of random variable
terms contained in the Fi, and let NT denote the set of random variable instances T that can be
formed from VT. T is a simple MTheory if the following conditions hold:

7a. No cycles. No random variable instance is an ancestor of itself;15
7b. Bounded causal depth. For any random variable instance φ(ε)∈NT containing the

(possibly empty) unique identifier symbols ε, there exists an integer Nφ(ε) such that if
φd(εd) → φd-1(εd-1) →…→φ(ε) is an ancestor chain for T, then d ≤ Nφ(ε). The smallest such
Nφ(ε) is called the depth dφ(ε) of φ(ε).

7c. Unique home MFrags. For each φ(ε)∈NT , there exists exactly one MFrag Fφ(ε)∈T,
called the home MFrag of φ(ε), such that φ(ε) is an instance of a resident random variable
φ(θ) of Fφ(ε).16

7d. Recursive specification. T may contain infinitely many domain-specific MFrags, but if
so, the MFrag specifications must be recursively enumerable. That is, there must be an
algorithm that lists a specification (i.e., an algorithm that generates the input, output,
context random variables, fragment graph, and local distributions) for each MFrag in
turn, and eventually lists a specification for each MFrag of T.

Theorem 1: Let T = { F1, F2 … } be a simple MTheory. There exists a joint probability
distribution

P

T

gen on the set of instances of the random variables of its MFrags that is consistent

with the local distributions assigned by the MFrags of T.

15 This condition can be relaxed as long as it can be demonstrated that the local distributions are specified non-
circularly.
16 It may be desirable to relax this condition. For example, in an independence of causal influence model, it might be
convenient to specify influences due to different clusters of related causes to be specified in separate MFrags. In a
polymorphic version of MEBN logic, it might be convenient to specify local distributions for separate subtypes in
separate MFrags. It is clear that the main results would remain valid under appropriately weakened conditions.

MEBN LOGIC

C4I-06-01 21 2/5/06

The proof of Theorem 1 is found in the appendix.
MEBN inference is defined as conditioning the joint probability distribution implied by

Theorem 1 on the proposition that all findings have value T. This conditional distribution clearly
exists if there is a non-zero probability that all findings have value T. However, when there is an
infinite sequence of findings or there are findings on quantifier random variables, then any
individual sequence of findings may have probability zero even though some such sequence is
certain to occur. For example, each possible realization of an infinite sequence of rolls of a fair
die has zero probability, yet some such sequence will occur if tossing continues indefinitely.
Although any individual sequence of tosses has probability zero, the assumption that the die is
fair allows us to draw conclusions about properties of the sequences of tosses that will actually
occur. In particular, it is a practical (although not a logical) certainty that if the die is fair, then
the limiting frequency of rolling a four will be once in every six trials. That is, although a
sequence having limiting probability 1/6 and a sequence having limiting probability 1/3 both have
probability zero, the former is infinitely more probable than the latter. Practical certainties about
stochastic phenomena are formalized as propositions that are true “almost surely” or “except on a
set of measure zero” (Billingsley, 1995). Almost sure propositions are not true in all possible
interpretations of the FOL theory corresponding to an MTheory, but the set of worlds in which
they are true has probability 1 under the probability distribution represented by the MTheory.

Definition 8: The distribution

P

T

gen is called the generative or prior distribution for T. Let

Φ={Φ(ψ1=α1), Φ(ψ2=α2), … } be the finding MFrags for T. A finding alternative for T is a set
{Φ(ψ1=α’1), Φ(ψ2=α’2), … } of values for the finding random variables of T, possibly assigning
different values to the finding random variables from the values assigned by T. Finding
alternatives represent counterfactual worlds for T – that is, worlds that were a priori possible but
are different from the world asserted by the findings to have occurred.

Corollary 2: Let T be an MTheory with findings {Φ(ψ1=α1), Φ(ψ2=α2), … }. Then a
conditional distribution exists for

P

T

gen given {ψ1, ψ2, …}. This distribution is unique in the
sense that any two such distributions differ at most on a set of finding alternatives assigned
probability zero by

P

T

gen .

Corollary 2 follows immediately from Theorem 1 and the Radon-Nikodym Theorem
(Billingsley, 1995). The distribution

P

T
!
1
,!
2
... |"(#

1
= $

1
),"(#

2
= $

2
),…() for {ξ1, ξ2, …}

obtained by conditioning

P

T

gen on all findings having value T is called the posterior distribution

for T given its findings. The posterior distribution is abbreviated

P

T
! |"(# = $)() . The

following corollary states that even when the joint probability of an infinite sequence of findings
is zero, if the individual findings have positive probability and a limiting posterior distribution
exists, it is unique.
Corollary 3: Suppose

P

T

gen assigns strictly positive probability to the event that the first n
findings Φ(ψ1=α1), Φ(ψ2=α2), …, Φ(ψn=αn) all have value T. Then there is a unique conditional
distribution for

P

T

gen given that the first n findings Φ(ψ1=α1), Φ(ψ2=α2), …, Φ(ψn=αn) all have
value T. Furthermore, if the positivity condition holds for all n and a limiting distribution

lim
n!"

P
T

#1,#2 ... |$(% 1 = &1),$(% 2 = &2),…,$(%
n
= &

n
)() exists, then the limit is unique.

Corollary 3 is a straightforward consequence of basic identities of conditional probability.

K B LASKEY

C4I-06-01 22 2/5/06

MTheories represent a conjugate family of probability distributions. That is, if finding
random variables are added to an MTheory, the result is another MTheory. Section 5 below
discusses some operations that can be performed on MFrags to transform an MTheory into
another MTheory that represents the same probability distribution. Such transformations can be
used to improve the computational efficiency of MEBN inference, to find a more compact and/or
cognitively natural representation for an MTheory, or to translate between different partially
overlapping MTheories.

Although simple MTheories are adequate to express probability distributions over
interpretations of arbitrary finitely axiomatizable FOL theories, expressing structural uncertainty
with simple MTheories is cumbersome. Structural uncertainty can be more compactly expressed
using mixture MTheories, which provide the logical basis for a typed version of MEBN (Costa
and Laskey, 2005).

Definition 9: If the posterior distribution for T

P

T
! |"(# = $)() is not unique, T is said to be

disconfirmed by its findings.

Definition 10: A mixture MTheory is a set T = { (T1, p1), (T2, p2), … } of MFrags satisfying the
following conditions:

10a. Each Ti is a simple MTheory;
10b. None of the Ti is disconfirmed by its findings;
10c. The pi are positive numbers that sum to 1;
10d. There must be an effective procedure for computing each pi;
10e. For each finding Φ(ψ=ε) of one of the Ti, and for each j≠i, the posterior

distribution of Tj assigns probability 1 to ψ=ε.
The Ti are called mixture components with mixture weights pi. An MTheory is either a simple
MTheory or a mixture MTheory.
Corollary 4: Let T be an MTheory. Then there exists a joint probability distribution on the set of
instances of the random variables in its MFrags that is consistent with the local distributions
assigned by the MFrags of T.

Corollary 4 is an immediate consequence of Theorem 1.

4.4 Random Variable Semantics and Tarski Semantics
In the standard semantics for first-order logic developed by Tarski (1944), a FOL theory is
interpreted in a domain by assigning each constant symbol to an element of the domain, each
function symbol on k arguments to a function mapping k-tuples of domain elements to domain
elements, and each predicate symbol on k arguments to a subset of k-tuples of domain elements
corresponding to the entities for which the predicate is true (or, equivalently, to a function
mapping k-tuples of domain elements to truth-values). If the axioms are consistent, this can be
done in such a way that all the axioms of the theory are true assertions about the domain, given
the correspondences defined by the interpretation. Such an interpretation is called a model for the
axioms.

MTheories define probability distributions over interpretations of an associated FOL theory.
Each k-argument random variable in an MTheory represents a function mapping k-tuples of
unique identifiers to possible values of the random variable. Any function consistent with the
logical constraints of the MTheory is allowable, and the probability that the function takes on
given values is specified by the joint probability distribution represented by the MTheory. For
Boolean random variables, the possible values of the function are T, F, and ⊥; for non-Boolean

MEBN LOGIC

C4I-06-01 23 2/5/06

random variables, the possible values are entity identifiers. Through the correspondence between
entity identifiers and entities in the domain, a non-Boolean random variable also represents a
function mapping k-tuples of domain entities either to domain entities (for non-Boolean random
variables) or to truth-values of assertions about the domain (for random variables).

Interpreting random variable symbols as functions on the unique identifiers is consistent with
the way random variables are formalized in mathematical statistics. A random variable is defined
as a function that maps a sample space endowed with a probability measure to a set of possible
outcomes (e.g., Billingsley, 1995; DeGroot and Schervish, 2002). In the standard definition, the
global joint distribution is taken as given, and distributions for smaller sets of random variables
are obtained by marginalizing the global joint probability measure. MEBN logic provides a
logically coherent means of specifying a global joint distribution by composing local conditional
distributions involving small sets of random variables. Formerly, this could be achieved only for
restricted kinds of distributions. Standard Bayesian networks allow joint distributions on a finite
number of random variables to be composed from locally defined conditional distributions.
There are well-known special cases, such as independent and identically distributed trials or
Markov chains, for which joint distributions on infinite sets of random variables can be composed
from locally defined conditional distributions. MEBN logic provides the ability to construct joint
distributions from local elements for a very general class of distributions on infinite collections of
random variables, and is the first Bayesian logic that has been shown to be capable of defining a
joint distribution over interpretations of any finitely axiomatizable theory in classical first-order
logic.

Consider an MTheory TM in a language LM having domain-specific non-Boolean random
variable symbols X={ξi}, domain-specific constant symbols A={αi}, domain-specific Boolean
random variable symbols B={βi}, exemplar symbols S={σφi} and entity identifier symbols
E={εi}. It is assumed that the sets X, A, B, and E are pairwise disjoint, are either finite or
countably infinite, and do not contain the symbols T, F, or ⊥. It is assumed that S contains a
distinct exemplar symbol σφi∉ X∪A∪B∪E∪{T,F,⊥} for each pair consisting of an open
Boolean random variable term φ(γ1,…, γn) of LM and index i of an ordinary variable γi occurring in
φ(γ1,…, γn).

To facilitate the comparison with Tarski semantics, we begin by considering only the
quantifier-free part of TM. Suppose TM satisfies the following conditions:

FOL1: There are no quantifier random variable terms among the context terms in any of
the MFrags of TM, and no simple random variable term of TM has a quantifier
random variable term as a parent.

FOL2: Random variables ξ∈X or β∈B have value ⊥ if any of their arguments belong to
{T, F, ⊥};

FOL3: If the values of all arguments to a non-Boolean random variable ξ belong to E,
then the value of ξ belongs to E with probability 1;

FOL4: Any constant symbol α∈A has value in E with probability 1;
FOL5: If the values of all arguments to a Boolean random variable β belong to E, then

the value of β belongs to {T, F} with probability 1.

Given these conditions,

P

T
M

gen generates random interpretations of the domain-specific random

variable symbols of LM in the domain {ε∈E : ◊(ε)≠⊥)} of meaningful entity identifiers. That is,

K B LASKEY

C4I-06-01 24 2/5/06

for each constant symbol,

P

T
M

gen generates a meaningful entity identifier. For each non-Boolean

random variable symbol,

P

T
M

gen generates a random function mapping k-tuples of meaningful entity

identifiers to meaningful entity identifiers. For each Boolean random variable symbol,

P

T
M

gen

generates a random function mapping k-tuples of meaningful entity identifiers to {T, F} (or
equivalently, the subset of k-tuples for which the randomly generated function has value T).

 A classical first-order theory TF that represents the logical content of TM is defined as
follows:

1. The language LF for TF has function symbols X, constant symbols A∪E∪{⊥}, and
predicate symbols B, where the number of arguments for functions and predicates in LF
is the same as the number of arguments for the corresponding random variables in TM.

2. For each pair ε1 and ε2 of distinct entity identifiers, TF contains an axiom (ε1=ε2)⇒
(ε1=⊥) ∧ (ε2=⊥).

3. For each non-Boolean random variable symbol ξ, TF contains axioms asserting that no
instance of ξ may take on values outside the set of possible values as defined in the home
MFrag for ξ.

4. If a local distribution in a domain-specific MFrag of TM assigns probability zero to
possible value ε of a non-Boolean resident random variable ξ(x) for some set #SWξ(x) of
influence counts, there is an axiom of TF specifying that the function corresponding to
ξ(x) is not equal to ε when the context constraints hold and the parents of ξ(x) satisfy
#SWξ(x). Each such axiom is universally quantified over any ordinary variables appearing
in ξ and/or its parents and/or the context random variables in the home MFrag of ξ.
Formally, TF contains an axiom ∀x ((κ(x)∧#SWξ(x)) ⇒ ¬(ξ(x)= ε)). Here, κ(x) and #SWξ(x)
denote formulae in LF asserting that the context constraints hold and that the influence
counts for the parents of ξ(x) are equal to ξ(x); and x denotes any ordinary variables on
which ξ, κ, and/or the parents of ξ depend.

5. If a local distribution in a domain-specific MFrag of TM assigns probability one to T for a
Boolean random variable β(x) for some set #SWβ(x) of influence counts, there is an axiom
of TF specifying that the predicate β(x) is true under these conditions. That is, TF
contains an axiom ∀x ((κ(x)∧#SWβ(x)) ⇒ β(x)). Here, κ(x) and #SWβ(x) denote formulae in
LF asserting that the context constraints hold and that the influence counts for the parents
of β(x) are equal to β(x), respectively; and x denotes any ordinary variables on which β,
κ, and/or the parents of β depend.

6. If a local distribution in a domain-specific MFrag of TM assigns probability one to F for a
Boolean random variable β(x) for some set #SWβ(x) of influence counts, there is an axiom
of TF specifying that the predicate β(x) is false under these conditions. That is, TF
contains an axiom ∀x ((κ(x)∧#SWβ(x)) ⇒ ¬β(x)). Here, κ(x) and #SWβ(x) denote formulae in
LF asserting that the context constraints hold and that the influence counts for the parents
of β(x) are equal to β(x), respectively; and x denotes any ordinary variables on which β,
κ, and/or the parents of β depend.

MEBN LOGIC

C4I-06-01 25 2/5/06

The logical combination MFrags (see Figure 8) ensure that any interpretation generated by

P

T
M

gen , specifies a well-defined truth-value for any sentence of TF. The assumptions FOL1-FOL5

ensure that these truth-values satisfy the axioms defining TF. That is,

P

T
M

gen generates random

models of the axioms of TF. However, there may be sentences satisfiable under the axioms of TF
to which

P

T
M

gen assigns probability zero. When a satisfiable sentence of TF is assigned probability

zero by

P

T
M

gen , there is no assurance that a well-defined conditional distribution exists given that the

corresponding Boolean random variable has value T. The following additional condition ensures
that a well-defined conditional distribution exists given any finite set of logically possible
findings on random variables of TM.

FOL6: If φ(γ1,…, γn) is a Boolean random variable of TM that corresponds to a satisfiable
formula of TF, and σφi is the exemplar symbol for ordinary variable γi in
φ(γ1,…, γn), then

P

T
M

gen assigns strictly positive probability to the value T for the

quantifier random variables θ(σφ1, θ(σφ2, …, θ(σφn, φ(σφ1, σφ2, …, σφn)))), where θ
is one of the quantifier symbols ∃ or ∀.

Corollary 5: Suppose TM satisfies FOL1-FOL6, and suppose that TF is the first-order theory,
constructed as above, expressing the logical content of TM. Let {Φ(ψ1=α1), Φ(ψ2=α2), …,
Φ(ψn=αn)} be a finite set of findings such that the conjunction of the (ψi=αi) is satisfiable as a
sentence of TF. Then the posterior distribution

P

T
M

! |"(# = $)() exists and is unique.

Corollary 5 is a straightforward consequence of Corollary 3. Specifying a generative
distribution that satisfies FOL1-FOL5 is relatively straightforward. A construction is provided in
Section 4.5 of an MTheory TM* for which

P

T
M*

gen satisfies FOL6.

An MTheory is interpreted in a domain of application by associating each entity identifier
symbol with an entity in the domain. Through this correspondence between identifiers and the
entities they represent, the probability distribution on entity identifiers induces a probability

Figure 8: Logical MFrags

K B LASKEY

C4I-06-01 26 2/5/06

distribution on attributes of and relationships among entities in the domain of application. In
particular, although the generative distribution for an MTheory constructs interpretations in the
countable domain of entity identifiers, an MTheory can be applied to reason about domains of
any cardinality. Under the assumption that the entities associated with the entity identifiers
constitute a representative sample of entities in the domain, statistical conclusions drawn about
the domain are valid for domains of any cardinality.

Because MEBN allows joint distributions to be expressed over arbitrary first-order theories,
MEBN can be used to define a Bayesian semantics for constructive mathematics. Mathematics is
commonly (although not universally) viewed as being founded on set theory and first-order logic.
When a mathematician claims to have found a proof for a theorem, typically what he or she
means is a proof that the community of mathematicians agrees could be formalized, with
sufficient diligence, as a formal derivation using the rules of first-order logic from the axioms of
set theory (cf., Enderton, 2001). The most commonly used axiom system for set theory, the
Zermelo-Frankel system with the axiom of choice (ZFC), has infinitely many axioms. There is
another axiom system for set theory, the von Neumann-Bernays-Gödel system (NBG), that has
finitely many axioms. Although no contradiction has been found in either of these axiom
systems, mathematicians are not certain of their consistency. If one is consistent, then so is the
other, and the two axiom sets have been shown to be essentially of equal strength (c.f., Stoll,
1963). A construction is provided below that implicitly defines a joint distribution on models of
any consistent finite set of first-order logic sentences. Thus, one can construct an MTheory that, if
NBG is consistent, implicitly represents a joint distribution on models of NBG. If NBG is
inconsistent, then SSBN construction would, in principle, if continued persistently for a long
enough period of time, find a proof that there is a contradiction in NBG (as would any refutation-
complete proof procedure for classical first-order logic). We could conceive of the enterprise of
mathematics as a collective process of performing approximate SSBN construction for
MTheories whose findings consist of the NBG axioms together with proper axioms defining
theory-specific mathematical content. In this view, finding a proof of a theorem would
correspond to constructing a SSBN in which the proven sentence has value T with probability 1.
Mathematicians sometimes say informally that a proposition they have not proven is “probably
true.” Such a statement is meaningless in the standard formalization of classical FOL. The
proposition may follow from the axioms; it may generate a contradiction when conjoined with the
axioms; or its truth-value given the axioms may be indeterminate. According to classical FOL,
one of these situations is the actual state of affairs, and it is meaningless to speak of probabilities.
Taking a Bayesian view, if we assume that the mathematician’s axiom set is consistent, an
MTheory implicitly represents a probability distribution over models of the axioms. Any given
proposition has a probability in the closed unit interval. A probability of one corresponds to a
theorem; a probability of zero corresponds to a statement inconsistent with the axioms, and
intermediate values correspond to propositions having indeterminate truth-values. The
probability assigned by the mathematician’s current SSBN may be equal to the probability
implicitly defined by the MTheory, or it may approximate that probability. In the latter case, the
mathematician might say the proposition is “probably true” if the approximate SSBN assigns it a
high probability. This might mean that the mathematician thinks it likely that a proof will
eventually be found, or that a proof could likely be found by adding additional high probability
axioms. These two alternatives can themselves be formalized as higher-order probability
statements.

Of course, there is no scientific justification for claiming that the brains of mathematicians
actually store MTheories, or that mathematicians are actually performing SSBN construction
when they are developing proofs. Nevertheless, there are a number of advantages to formalizing
mathematics as approximate Bayesian logic. In this view, it is perfectly meaningful for a
mathematician to say he or she thinks NBG is probably consistent, or that any given mathematical
hypothesis is probably a theorem. The mathematical enterprise is both meaningful and useful

MEBN LOGIC

C4I-06-01 27 2/5/06

even if it should turn out that NBG is inconsistent. Alternative proposals for the foundations of
mathematics, such as category theory, can also be formalized as Bayesian logic (although there
are no guarantees that a joint distribution exists over models of proposed foundational theories
with infinite numbers of axioms, even if the axioms are not mutually contradictory). One can
formalize exploratory mathematics decision theoretically, as well as the collective process of
identifying and eliminating errors in proofs.

Important advantages of MEBN random variable semantics are clarity and modularity. For
example, we could add a new collection of MFrags to our equipment diagnosis MTheory, say for
reasoning about the vacation and holiday schedule of maintenance technicians, without affecting
the probabilities of any assertions unrelated to the change. Furthermore, the probability
distribution represented by an MTheory is a well-defined mathematical object independent of its
correspondence with actual objects in the world, having a clearly specified semantics as a
probability distribution on E∪{⊥}. Its adequacy for reasoning about the actual world rests in
how well the relationships in the model reflect the empirical relationships among the entities to
which the symbols refer in a given domain of application. Our approach thus enforces a
distinction between logical and empirical aspects of a representation and provides a clearly
defined interface between the two. This supports a principled approach to empirical evaluation
and refinement of domain ontologies.

4.5 A Generative Distribution for First-Order Logic
This section constructs a generative MTheory TM* such that

P

T
M*

gen places positive probability

on value T for any Boolean random variable φ that corresponds to a satisfiable sentence in the
first-order theory TF* constructed from TM* as described in Section 4.4 above.

We assume there is a total ordering ϕ1, ϕ2, … of the domain-specific constant, non-Boolean
and Boolean random variable terms ϕi∈A∪X∪B, and a total ordering ε1, ε2, …∈E of entity
identifiers. The domain-specific MFrags of a generative MTheory must define a distribution for
each simple open random variable term

!
i
(u
1
,…,u

n
i

) , where the uj are ordinary variables and ni is

the number of arguments taken by ϕi. A distribution is also defined for the exemplar constants.
The remaining random variables are defined via the logical MFrags of Figure 8.

The joint distribution for simple open random variables and exemplar constants is defined as
follows. Let ψ1, ψ2, … be a total ordering of the quantifier random variables; let π1, π2, … be a
strictly positive probability distribution on the entity identifiers, and let 0 < θ, ρ < 1 be real
numbers. We use the notation ψk to refer a quantifier random variable and !" k

 to refer to the

exemplar constant for ψk. That is, ψk denotes a Boolean random variable of the form
!("# k

,$("# k

)) or !("# k

,$("# k

)) , where !(u) is an open Boolean random variable called the

body of ψk.
Exemplar constant distributions: The distributions for exemplar constants are defined

inductively such that the exemplar term ◊(!" k

) has value ⊥ in models in which ψk is constrained
to have value F, and otherwise is sampled randomly from the entity identifiers that are logically
possible values for !" k

. Specifically:

• The parents of ◊(!" k

) are ◊(!"
1

), ◊(!"
2

), …, and ◊(!" k#1
).

• It is assumed i<k for the inductive definition that if ◊(!"
i

)=⊥ then ψk has value F.

Conditional ◊(!"
1

), ◊(!"
2

), …, and ◊(!" k#1
), the distribution of ◊(!" k

) is defined as
follows

K B LASKEY

C4I-06-01 28 2/5/06

o If ψk is unsatisfiable as a formula of LF* given the constraints on ψ1, …, ψk-1
implied by the values of its parents, then ◊(!" k

) has value ⊥ with probability
1.

o If ¬ψk is unsatisfiable as a formula of LF* given the constraints on ψ1, …,
ψk-1 implied by the values of its parents, then ◊(!"

i

) has value εj with

probability πj.
o Otherwise, ◊(!"

i

) has value⊥ with probability θ and εj with probability

(1- θ)πj.
Domain-specific random variable distributions: The distribution of

!
k
(u
1
,…,u

nk
) is defined

as follows.
• The parents of

!
k
(u
1
,…,u

nk
) are:

o

!
i
(v
1
,…,v

n
i

) for all i<k, where vj is a different ordinary variable than uj,

implying that all instances of

!
i
(v
1
,…,v

n
i

) are parents of each instance of

!
k
(u
1
,…,u

nk
) ;

o Instances of

!
k
(v
1
,…,v

nk
) such that the entity identifier bound to each uj is

equal to or precedes the entity identifier bound to vj, and strictly precedes it
for at least one j. (This can be specified by a recursive definition with
appropriate context constraints);

o The identity random variables ◊(e).
• If

!
k
(u
1
,…,u

nk
) is a non-Boolean random variable, its probability distribution is

calculated as follows. For any binding

!
1
,…,!

nk
 of entity identifiers to the variables

u
1
,…,u

nk
, the value

!
k
("
1
,…,"

nk
) =εj is assigned randomly, with probability

proportional to πj, from among the entity identifiers whose value is consistent with
the satisfiability constraints implied by the assignment of values to the parents of

!
k
("
1
,…,"

nk
) .

• If

!
k
(u
1
,…,u

nk
) is a Boolean random variable, its probability distribution is

calculated as follows. For any binding

!
1
,…,!

nk
 of entity identifiers to the variables

u
1
,…,u

nk
:

o

!
k
("
1
,…,"

nk
) has value T if

¬!

k
("
1
,…,"

nk
) is inconsistent with the

satisfiability constraints implied by the assignment of values to the parents of

!
k
("
1
,…,"

nk
) ;

o

!
k
("
1
,…,"

nk
) has value F if

!
k
("
1
,…,"

nk
) is inconsistent with the

satisfiability constraints implied by the assignment of values to the parents of

!
k
("
1
,…,"

nk
) ;

o Otherwise,

!
k
(u
1
,…,u

nk
) has value T with probability ρ and F with

probability (1-ρ).
Theorem 6: If ψ is a closed Boolean random variable corresponding to a satisfiable sentence of
LF*, then

P

T
M*

gen places non-zero probability on the value T for ψ.

MEBN LOGIC

C4I-06-01 29 2/5/06

Proof: The above construction ensures that if ψ corresponds to a satisfiable sentence of TF*, then
there is a non-zero probability that ◊(!

¬") has value ⊥. When ◊(!
¬") has value ⊥, the local

distributions for the domain-specific random variables are assigned in a way that constrains ψ to
have value T. Therefore, there is a non-zero probability that ψ has value T.

4.6 Inference in MEBN Logic: Situation-Specific Bayesian Networks
As noted above, MEBN inference conditions the prior distribution represented by an MTheory on
its findings. The Appendix presents an inference algorithm that uses knowledge-based model
construction (Wellman, et al., 1992) to produce a sequence of approximate situation-specific
Bayesian networks. Mahoney and Laskey (1998) define a situation-specific Bayesian network
(SSBN) as a minimal Bayesian network sufficient to compute the response to a query, where a
query consists of obtaining the posterior distribution for a set of target random variable instances
given a set of finding random variable instances. Their simple bottom-up construction algorithm
for constructing situation-specific Bayesian networks is provided in the Appendix. The algorithm
begins with a query set consisting of a finite set of target random variable instances and a finite
set of finding random variable instances. These are combined to construct an approximate SSBN.
The approximate SSBN has an arc between a pair of random variables when one is an instance of
an influencing configuration for the other in its home MFrag. At each step, the algorithm obtains
a new approximate SSBN by adding findings, instantiating the home MFrags of the random
variables in the query set and their ancestors, adding the resulting random variable instances to
the query set, removing any that are not relevant to the query, and combining the resulting set of
random variable instances into a new approximate SSBN. This process continues until either
there are no changes to the approximate SSBN, or a stopping criterion is met. If the algorithm is
run without a stopping criterion, then if SSBN construction terminates, the resulting SSBN
provides an exact response to the query or an indication that the findings are inconsistent. When
the algorithm does not terminate, it defines an anytime process that yields a sequence of
approximate SSBNs converging to the correct query response if one exists. In general, there may
be no finite-length proof that a set of findings is consistent, but inconsistent findings can be
detected in a finite number of steps of SSBN construction.

Figure 9 shows two SSBNs constructed from the MTheory of Figure 2 for a query on the
engine status of two machines, the first for the case in which the two machines are known to be in
the same room, and the second for the case in which the two machines are known to be in
different rooms. In the first case, learning that the engine in one machine is overheated results in
an increase in the probability that the other engine is overheated; in the second case, the same
information has almost no effect on the probability distribution for the other machine (there is a
small impact because of the influence of the evidence on beliefs about the maintenance practices
of the owner).

As noted above, when an ordinary variable appears in a parent but not in its child, the random
variable can have an unbounded number of parent instances in the constructed approximate
SSBN. Each step of SSBN construction instantiates finitely many parents of any random variable.
When there are infinitely many computationally relevant parent instances, additional instances are
added at each step until a termination condition is reached. Even when a finite-size SSBN exists,
constructing it and computing a query response is often intractable. It is typically necessary to
approximate the SSBN by pruning arcs and random variables that have little influence on a query,
and/or compiling parts of the SSBN to send to inference engines optimized for special problem
types. The process of controlling the addition and pruning of random variable instances and arcs
is called hypothesis management. More generally, execution management controls the inference
process to balance accuracy against computational resources. Often, portions of an inference task
can be solved exactly or approximately using efficient special-purpose reasoners. Such reasoners
include constraint satisfaction systems, deductive theorem provers, differential equation solvers,

K B LASKEY

C4I-06-01 30 2/5/06

heuristic search and optimization algorithms, Markov chain Monte Carlo algorithms, particle
filters, etc. At the meta level, MEBN logic itself can be used to reason about which
approximation method to apply to a given query. Online reasoning systems may interleave
addition of new findings, refinement of the current approximate SSBN, computation of query
responses given the current approximate SSBN, and learning (see Section 6 below).

Laskey, et al. (2000, 2001) treat hypothesis management as a problem of balancing the
computational overhead of representing additional random variable instances against accuracy in
responding to queries. Charniak and Goldman (1993) and Levitt et al. (1995; Binford and Levitt,
2003) also consider hypothesis management in open-world computational probabilistic reasoning
systems. Hypothesis management is discussed extensively in the literature on tracking and multi-
source fusion (e.g., Stone, et al., 2000).

We are justified in applying MEBN inference to draw conclusions about the world when: (i)
the generative theory accurately represents the process by which outcomes of the finding random
variables occur in the world and (ii) the process by which findings come to be observed is
ignorable. A data generating process is ignorable if either there is no systematic relationship
between the random variable(s) of interest and the process by which findings come to be
observed, or if the relationship can be accounted for by the observed random variables (Little and
Rubin, 1987). The following is an example of a non-ignorable observation process: (i) a finding
on the TempLight random variable may not be observed if the temperature light is not working
properly; (ii) an overheated engine can cause the temperature light to malfunction; and (iii) the
MTheory does not account for the relationship between whether there is a finding and whether
the engine is overheated. Whether findings are ignorable depends both on the generative theory
and on the process that determines which random variable instances have findings. Inferences can
be adjusted for a non-ignorable observation process by explicitly modeling the observation
process and by collecting information on additional random variables that may be related to the
observation process. MEBN fragments are a useful tool for representing common patterns in
observation mechanisms, data gathering conditions, and data reporting processes. Libraries of
common patterns can be developed, tailored for specific applications, and used to model and
adjust for the effects of the conditions of observation. This is especially important when an
MTheory combines information from different sources that may have been gathered under
different conditions (e.g., Schum, 1994).

Along with the response to a query, MEBN inference can also return a conflict indicator
(Jensen, 1991; Laskey, 1991). Unusually large values of a conflict indicator indicate that the
findings are a poor fit to the generative theory. Commonly applied conflict indicators measure
calibration of predictions against observed findings. Typically, the probability assigned by an

EngineStatus(M1) TempSensor(M1)

TempLight(M1)

EngineStatus(M2) TempSensor(M2)

TempLight(M2)

ACStatus(R)

BeltStatus(M1)

RoomTemp(R)

BeltStatus(M)

MaintenancePractice(O)

EngineStatus(M1) TempSensor(M1)

TempLight(M1)

EngineStatus(M2) TempSensor(M2)

TempLight(M2)

MaintenancePractice(O)

ACStatus(R2)

RoomTemp(R2)

BeltStatus(M2)

ACStatus(R1)

RoomTemp(R1)BeltStatus(M1)

MachineLocation(M1) MachineLocation(M2)

a. Two machines in the same room b. Two machines that might or might

not be in the same room
Figure 9: Situation-Specific Bayesian Networks

MEBN LOGIC

C4I-06-01 31 2/5/06

MTheory T to the event that all findings have value T is compared with the probability under an
alternative model that is both simple to compute and expected to fit more poorly than T if T is
correct (Laskey, 1991). While occasional short-term runs of poor calibration sometimes occur in
an probabilistic process, if the generative MTheory can represent the statistical regularities in the
sequence of findings, there is zero probability that findings will be uncalibrated in the infinite
limit (Dawid, 1984). A conflict indicator can be used to control SSBN construction, performing
additional construction when the current SSBN provides a poor fit to findings (Laskey, et al.,
2001).

4.7 Relationship of MEBN to Other Probabilistic Logics and Languages
There is a growing literature on languages for representing probabilistic knowledge, the
semantics of probabilistic representations, and well-foundedness, tractability and decidability of
inference in probabilistic theories. The success of graphical models for parsimonious
representation and tractable inference has generated strong interest in more expressive languages
for reasoning with probability. Work in knowledge-based model construction (e.g., Wellman, et
al., 1992) focused on constructing Bayesian networks from knowledge bases consisting of
modular elements representing knowledge about small clusters of variables. Early KBMC
systems were not built on decision theoretically coherent declarative domain theories, and relied
on heuristic knowledge, typically encoded as procedural rules, for constructing complex models
from simpler components. As work in knowledge-based model construction progressed, interest
grew in the theoretical foundations of probabilistic representation languages, and in their
relationship to classical first-order logic. A number of authors have investigated approaches to
integrating classical logic with probability. A common approach has been to provide language
constructs that allow one to express first-order theories not just about objects in a domain of
discourse, but also about proportions and/or degrees of belief for statements about these objects.
Bacchus et al. (1997; Bacchus, 1990) augment first-order logic with proportion expressions that
represent the knowledge that a given proportion of objects in a domain have a certain property. A
principle of indifference is applied to assign degrees of belief to interpretations satisfying the
constraints imposed by ordinary first-order quantification and the proportion expressions.
Halpern’s (1991) logic can express both proportion expressions and degrees of belief, and
provides a semantics relating proportions to degrees of belief. Neither of these logical systems
provides a natural way to express theories in terms of modular and composable elements. Unlike
Bayesian networks, which have easy to verify conditions ensuring the existence of a complete
and consistent domain theory, it is in general quite difficult in these logical systems to specify
complete and consistent probabilistic domain theories, or to verify that a theory is complete and
consistent.

A number of languages have been developed that represent probabilistic knowledge as
modular units that can have repeated substructures, and that can be composed into complex
domain models. These include pattern theory (Grenander, 1995), hidden Markov models (Elliott,
et al., 1995), the plates language implemented in BUGS (Gilks, et al., 1994; Buntine, 1994;
Spiegelhalter, et all, 1996), object-oriented Bayesian networks (Koller and Pfeffer, 1997; Bangsø
and Wuillemin, 2000; Langseth and Nielsen, 2003), and probabilistic relational models (Getoor,
et al., 2000, 2001; Pfeffer, 2001). There is a great deal of commonality among languages for
compactly expressing complex probabilistic domain theories (cf., Heckerman, et al., 2004). Plates
in BUGS, object classes in object-oriented Bayesian networks, and PRM structures in
probabilistic relational models all correspond to MFrag classes.

K B LASKEY

C4I-06-01 32 2/5/06

Figure 10 compares MEBN, PRM and plate representations for a theory fragment in the
equipment diagnosis domain. Like Bayesian networks, plates represent a joint distribution as an
acyclic directed graph in which nodes represent random variables, arcs represent direct
dependence relationships, and each node is annotated with a specification of a conditional
distribution of the random variable given its parents. Repeated structure in a plates model is
represented by indexing repeated random variables with subscripts, and enclosing the set of

Condition(m)

Machine(m)

Theta(1)

Experience(i)

Inspector(i)

Theta(2)

InspectedBy(m,i)

Inspector(i)Machine(m)

Theta(n)

Natnum(n)

Inspector(i)

WatchStatus(m)

Report(m,i)

Condition(m)

InspectedBy(m,i) Machine(m)

Experience(i)
!(Theta(3))

Machine(e)

Inspector(e)

Natnum(e)

!(e)

a. MEBN Fragments
(findings are not shown)

c. Probabilistic Relational Model – Relational Schema & PRM Structure

(skeleton and instances are not shown)

Condition[m]

Report[m,i] Experience[i]

WatchStatus[m]

 Machine m 1 : M

Alpha

 Inspector i 1 : I

Beta

Gamma

c. Plates

Figure 10: MFrags, PRM and Plates for Equipment Diagnosis Domain

MEBN LOGIC

C4I-06-01 33 2/5/06

random variables indexed by a given subscript in a rectangle called a “plate.” These indices play
the role of the ordinary variables in an MFrag. As in MEBN, a random variable’s parents may
contain indices not mentioned in the random variable, in which case the local distribution for the
child random variable must specify how to aggregate influences from multiple instances of the
parent random variable. Plate models are restricted to a finite number of instances of each
random variable. The number of instances of each random variable is a fixed attribute of the plate
model. BUGS has sophisticated capability for parameter learning, and although there is no built-
in mechanism for structure learning, plate models can be constructed to represent the problem of
reasoning about the presence or absence of conditional dependency relationships between random
variables.

A PRM contains the following elements (Heckerman, et al., 2004; see Figure 10b):
 A relational schema that specifies the types of objects and relationships that can exist

in the domain;
 A PRM structure that represents probabilistic dependencies and numerical

probability information;
 A skeleton that specifies a unique identifier and a blank template for each individual

entity instance;
 The data to fill the entries in the blank template.

Like an MTheory, a PRM represents a probability distribution over possible worlds. Any
given PRM can be expanded into a finite Bayesian network over attributes of and relationships
between the individuals explicitly represented in the skeleton. PRMs use aggregation rules to
combine influences when multiple instances of a parent random variable influence a child random
variable (as when multiple reports influence the WatchStatus random variable in Figure 10). In
addition to attribute value uncertainty, PRMs have been extended to handle type uncertainty,
reference uncertainty, and identity uncertainty. PRM learning theory provides a formal basis for
both parameter and structure learning. Learning methods have been published (e.g., Getoor, et al.,
2001) for learning both the structure and parameters of PRMs from instances in the skeleton. If
the probability distribution represented by a PRM is assumed to apply to similar entities not
explicitly represented in the skeleton, then PRM learning methods can be extended to allow
sequential learning as new individuals are added to the skeleton over time, thus providing the
logical basis for a form of open-world reasoning. One can also extend the relational schema and
PRM structure “by hand” to add new entity types.

Heckerman, et al. (2004) introduce a new language, DAPER, for expressing probabilistic
knowledge about structured entities and their relationships. DAPER combines the entity-relation
model from database theory with directed graphical models for expressing probabilistic
relationships. DAPER is capable of expressing both PRMs and plates, thus providing a unified
syntax and semantics for expressing probabilistic knowledge about structured entities and their
relationships. As presented in Heckerman, et al. (2004), DAPER expresses probabilistic models
over finite databases, and cannot express arbitrary first-order formulas involving quantifiers. That
is, DAPER (and by extension PRMs and plates) is a macro language for compactly expressing
finite Bayesian networks with repeated structure, and not a true first-order probabilistic logic. On
the other hand, the random variable semantics described in Section 4.4 could provide a theoretical
basis for extending DAPER, and thus PRMs and plates, into a true first-order logic. Conditions
could be identified under which DAPER models of unbounded cardinality express well-defined
probability distributions over models. If developed more fully, the relationship sketched here
between MTheories, PRMs and plates would facilitate construction of such an extension.

Object-oriented Bayesian networks represent entities as instances of object classes with class-
specific attributes and probability distributions. Reference attributes allow representation of
function composition. Although OOBNs do not have multi-place relations, these can be handled
by defining new object types to represent multi-place relations. Structure and parameter learning
methods for OOBNs have been developed (e.g., Langseth and Nielsen, 2003; Langseth and

K B LASKEY

C4I-06-01 34 2/5/06

Bangsø, 2001). The current literature on OOBNs does not treat type and reference uncertainty,
although clearly it would be possible to extend OOBNs to handle these kinds of uncertainty. An
advantage of OOBNs is the ability to represent encapsulated information, or random variables
defined internally to an object that are independent of external random variables given the
interface random variables that shield an object from its environment. The semantics of
encapsulation is based on conditional independence relationships. Thus, the concept of
encapsulation could be extended to other languages based on graphical models, including
MTheories and DAPER models with encapsulated random variables. As with plates and PRMs,
the random variable semantics described in Section 4.4 could provide a theoretical basis for
extending OOBNs toward full first-order expressiveness.

A feature of MEBN not present in PRMs, plates or OOBNs is the use of context constraints
to specify logical conditions that determine whether one random variable influences another. A
similar effect can be achieved by using aggregation functions that ignore influences ruled out by
the context, but this is more cumbersome. PRMs and OOBNs are founded on a type system, and
sophisticated implementations have subtypes and inheritance (e.g., IET, 2004). MEBN can be
extended to a typed logic that has many of the advantages of typed relational languages (Costa
and Laskey 2005). Because there presently is no direct implementation of MEBN logic, several
published applications have translated MTheories into relational models and used the
Quiddity*Suite probabilistic relational modeling and KBMC toolkit (IET, 2004) to construct
situation-specific Bayesian networks (e.g., Costa, et al., 2005; AlGhamdi, et al., 2005). There are
some features of MEBN logic (most notably context constraints) that cannot be represented
declaratively in standard relational languages, but the ability of Quiddity*Suite to combine
Prolog-style rules with a frame-based relational modeling language provides the ability to specify
much more powerful declarative representations (e.g., Fung, et al., 2005).

Like MEBN logic, relational Bayesian networks (Jaeger 1997; 1998; 2001) provides formal
semantics for probability languages that extend Bayesian networks to achieve first-order
expressiveness. Random variables in a relational Bayesian network are all Boolean. A RBN has a
set of pre-defined relations used in defining the local distributions and a set of probabilistic
relational symbols, which represent uncertain relations on the domain. A RBN defines a joint
probability distribution on models of the uncertain relations. Probability formulas specify how to
combine influences from multiple instances of the parents of a random variable to obtain a
conditional distribution for the random variable given finite sets of instances of its parents.
General relational Bayesian networks can represent probability distributions only over finite
domains, although non-recursive RBNs have been extended to represent probability distributions
over countably infinite domains (Jaeger, 1998).

 Bayesian logic programs (e.g., Kersting and deRaedt, 2001a,b; deRaedt and Kersting, 2003;
Sato, 1998) also express uncertainty over interpretations of first-order theories. To ensure
decidability, BLPs have typically been restricted to Horn clause theories. The PRISM language is
a powerful and efficient implementation of Bayesian logic programming. Bayesian logic
programs and MTheories represent complementary approaches to specifying first-order
probabilistic theories. BLPs represent fragments of Bayesian networks in first-order logic;
MTheories represent first-order logic sentences as MFrags. Although the restriction to Horn
clause logic limits the expressiveness of BLP languages, this limitation is balanced by the
efficiency of algorithms specialized to Horn clause theories. Research in Bayesian logic
programming is applicable to the problem of execution management in SSBN construction. That
is, an execution manager can identify portions of an inference task that involve only Horn
clauses, and send these to an inference engine specialized for efficient reasoning with Horn
clauses. MEBN semantics could be used to develop extensions to BLP languages that could
handle knowledge bases not limited to Horn clauses.

Other research on integrating logic and probability includes Poole’s (2003) parameterized
Bayesian networks, Ngo and Haddawy’s (1997) work on context-specific probabilistic

MEBN LOGIC

C4I-06-01 35 2/5/06

knowledge bases, and BLOG (Milch, 2005), a new language that enables reasoning about
unknown objects. Parameterized Bayesian networks are designed to provide the ability to reason
about individuals not explicitly named, an important capability lacking in most probabilistic
languages. Like MEBN, random variables in a parameterized Bayesian network can take
arguments; individuals in a population can be substituted for the parameters to form instances of
the random variables. Like MEBN, the population over which the parameters range can be finite
or infinite. Poole considers only models without recursion. Thus, a parameterized Bayesian
network corresponds to an MTheory with no recursive links. Ngo and Haddawy represent
probabilistic knowledge as universally quantified sentences that depend on context. Like MEBN,
Ngo and Haddawy exploit context constraints to focus inference on relevant portions of the
knowledge base. Unlike MEBN, Ngo and Haddawy separate context, which is non-probabilistic,
from uncertain hypotheses, for which context-specific probability distributions are defined. A
context-sensitive knowledge base corresponds to a partially specified MTheory in which there is
a reserved subset of Boolean random variables that may appear as context random variables in
MFrags, but that have no home MFrags and whose truth-values are assumed to be known at
problem solving time. BLOG (Milch, et al., 2005) is a new language that enables probabilistic
reasoning about unknown entities, and about domains that can contain unknown numbers of
entities.

Hidden Markov models are applied extensively in pattern recognition tasks such as speech
and handwriting recognition. Formally, a hidden Markov model can be represented as a dynamic
Bayesian network in which an observable random variable depends on a latent or hidden variable
that follows a Markov transition. Dynamic Bayesian networks and partially dynamic Bayesian
networks (Bayesian networks containing both static and dynamic nodes) allow a richer range of
representation possibilities, in that complex dependency structures for hidden and observable
random variables can be compactly represented. There is a large literature on efficient estimation
and inference methods for hidden Markov models. HMMs and DBNs represent temporal
recursion. Pfeffer (2000) also considers recursive probabilistic models, which can express non-
temporal recursive relationships. It is straightforward to express HMMs, DBNs, and recursive
probabilistic models as MEBN theories (e.g., Figure 3).

Pattern theory (Grenander, 1993) is a graphical modeling language based on undirected
graphs. There is an extensive literature on applications of undirected graphical models to image
understanding, geospatial data, and other problems in which there is no natural direction of
influence. A hybrid language could be defined that extends MEBN logic to permit both directed
and undirected arcs. Such an extension is not considered here.

Many languages designed for implementation have taken the strategy of restricting
expressiveness to ensure that answers to probabilistic queries are decidable. In an open world,
the answer to many queries of interest will be undecidable, and the best that can be expected is an
approximate answer. Languages that provide decidable, closed-form responses to limited classes
of queries have an important place both theoretically and practically. Nevertheless, intelligent
reasoning in a complex world requires principled methods of coping with undecidable or
intractable problems. MEBN logic exploits the language of graphical models to compose
consistent domain theories out of modular components connected via clearly defined interfaces,
and thus can support efficient implementations of tractable domain theories. Yet, MEBN logic
can represent highly complex, intractable, and even undecidable domain theories. Although the
answer to a probabilistic query may be undecidable, and may be intractable even when it is
decidable, Bayesian decision theory provides a sound mathematical basis for designing and
analyzing the properties of processes that converge to the correct response to undecidable queries,
and resource-bounded processes that balance efficiency against accuracy. Bayesian theory also
provides semantics for the relationship between empirical proportions and probabilities, as well
as a logically justified and theoretically principled way to combine empirical frequencies with
prior knowledge to refine theories in the light of observed evidence.

K B LASKEY

C4I-06-01 36 2/5/06

5 Representing Knowledge using MEBN Theories
A logic for knowledge representation requires both a mechanism for representing individual
assertions and an ability to organize assertions into structures that permit a reasoner to derive
related assertions from existing assertions. FOL is the de facto standard logic for formalizing both
individual assertions and knowledge structures. A number of references describe how to translate
individual natural language sentences into first-order logic (e.g., Enderton, 2001; Quine, 1982).
Special-purpose knowledge structures have evolved for dealing with many generally useful
aspects of the world, such as types and subtypes, parts and wholes, structured objects and their
attributes, space, time, events, values, decisions, actions, and plans. A typical progression in the
development of a generically useful knowledge structure begins with independent emergence of
several informally specified and closely related variants, followed by increasing formalization,
and eventual convergence on core standards. These core standards have typically been formalized
either directly in FOL, or in some language for which a translation into FOL has been worked
out. Such an evolution process is occurring with probabilistic logic, and there appears to be
convergence toward first-order languages based on graphical models. MEBN logic is to our
knowledge the first such language having all the following properties: (1) the ability to express a
globally consistent joint distribution over models of any consistent FOL theory; (2) a proof theory
capable of identifying inconsistent theories in finitely many steps and converging to correct
responses to probabilistic queries; and (3) a built-in mechanism for refining theories in the light
of observations.

Beyond viewing the world as composed of entities having attributes and existing in
relationship to other entities, bare first-order logic makes no commitments about the best way to
represent knowledge. This provides a knowledge base designer with great flexibility, but also
with the responsibility for defining adequate representations for an enormous variety of entity
types. Considerable savings are possible in development, maintenance, and integration to the
extent that existing representations can be adapted rapidly and efficiently for use on related
problems. However, the potential savings is often outweighed by the effort and risk involved in
adapting a representation for reuse in another context. These difficulties would be mitigated if
the de facto standard logic had principled uncertainty handling as a core capability built into the
structure of the logic. This argues for moving toward first-order probabilistic logic as a standard
formal basis for knowledge representation and interchange.

Because MEBN logic includes FOL as a subset, any knowledge structure formalized in FOL
can automatically be translated to a family of MEBN theories all having the same logical content.
Bare MEBN logic makes no specific commitment regarding probability assignments, leaving this
up to the designer of an integration architecture, although extensions can be defined that make
default assignments according to popular heuristics such as minimum description length or
maximum entropy. Modulo the specification of intelligent default probability assignments,
MEBN logic can fully exploit previous efforts at formalizing standard knowledge structures. For
an example of an early effort at converting a large knowledge base from logic to probabilities, see
the literature on the QMR-DT project (e.g., Parker and Miller, 1987). A similar approach could
be applied to translating other large knowledge bases into theories expressed in a probabilistic
logic.

Following the approach described in standard references (e.g., Sowa, 2000), a typed version
of MEBN logic can be defined by specifying a lattice of types, a Type random variable that maps
an entity to the label for its base type, and a predicate for each type that maps an entity to T if it is
of the type indicated by the type label. Context random variables for a random variable’s home
fragment perform type checking, and a random variable maps entities to ⊥ that do not match its
input type. Because MEBN logic includes first-order logic as a subset, any abstract type that can
be formalized using first-order logic can be represented in MEBN logic. Efficient specialized
inference engines could be used to perform rapid type-checking as part of SSBN construction.

MEBN LOGIC

C4I-06-01 37 2/5/06

Standard techniques can be applied to define a polymorphic version of MEBN logic. For
example, we might define the BeltedMachineEngineStatus and BeltlessMachineEngineStatus
random variables to represent the status of the engine in machines that do and do not have belts,
respectively. The former has BeltStatus as a parent; the home MFrag of the latter does not have a
BeltStatus random variable. An EngineStatus random variable would then be defined that applies
to all machines. It maps a machine m to BeltedMachineEngineStatus(m) if it has a belt and to
BeltlessMachineEngineStatus(m) if it has no belt. Polymorphic MEBN (Costa and Laskey,
2005) would make this mapping automatic and invisible to the knowledge base designer.

A typed MEBN logic would have several powerful capabilities lacked by typed languages
founded on FOL. First, typed MEBN logic can express and reason with uncertainty about the
type of an entity. If we don’t know whether an engine has a belt, then a query on BeltStatus(m)
results in a probability weighted average of the result of a query on BeltedMachine-
EngineStatus(m) and BeltlessMachineEngineStatus(m). Second, we often know some but not all
of the attributes of an object. In such situations, standard typed logics and object-oriented
systems must either assign values of unknown attributes by default or leave them unspecified.
The former leads to brittle, ad hoc rules for retracting default assignments when additional
information renders them implausible; the latter renders the logic too weak for interesting
practical problems. MEBN logic assigns probabilities to the possible values of unspecified
attributes. These probabilities incorporate all relevant knowledge about the entity itself and other
related entities. This leads to theoretically principled nonmonotonic reasoning, in which
probabilities for unknown attribute values move up and down appropriately as relevant evidence
accrues. Third, it is often useful to generate a representative instance of a given type. MEBN
logic provides a probability distribution for randomly generating an entity instance given its type,
any pre-specified attributes, and any relevant information about related entities. Finally, MEBN
logic has a built-in learning theory for refining type-specific probability distributions. Bayesian
learning provides a principled mechanism for learning probability distributions from a sample of
observed instances. When there are few observations, a type-specific distribution can “borrow
strength” from samples of entities of similar types, weighting the information appropriately
according to degree of similarity (Gelman, et al, 1995).

Another advantage of MEBN logic is its ability to represent hypothetical entities, such as the
belt in a machine that may or may not have a belt, or the person who tripped the security alarm if
the alarm may have been tripped by a power surge. We can define an attribute Exists(x) that has
value T if and only if x refers to an actual entity. For some applications, we may want to assign
the value ⊥ to all attributes of a hypothetical entity; for other applications it may be useful to
assign probabilities that are representative of what would be expected if the hypothetical entity
were real. This ability to represent and reason with hypothetical entities makes MEBN logic a
natural tool for counterfactual reasoning and reasoning about causality (cf., Druzdzel and Simon,
1993; Pearl, 2000). MEBN logic also can represent identity uncertainty, or uncertainty about
whether two expressions refer to the same entity.

Other categories of knowledge for which specialized logics have been developed include
parts and wholes, actors and roles, and space and time. MEBN logic makes no definite
commitments regarding the proper way to treat these categories, but is compatible with many
common approaches.

Actions, plans and decisions can be represented with an extension to MEBN logic called
multi-entity decision graph (MEDG, or “medge”) logic. A MEDG theory is an MEBN theory in
which:

 Each random variable is labeled as a world state, decision, or value random variable.
 The possible values of value random variables are numbers.
 If a value random variable has children, they must be value random variables.
 The total value for a MEDG theory is the expected value of the sum of all value

random variables.

K B LASKEY

C4I-06-01 38 2/5/06

 A MEDG policy set is a set of MEDG theories that differ only in the local
distributions assigned to decision random variables. A MEDG theory is optimal for a
policy set if its total value is at least as great as any other MEDG theory in the policy
set.

A multi-agent MEDG theory has different actors who may play different roles. Each actor
has his/her own value and decision random variables. An agent’s value and decision random
variables are world state random variables to all other agents. Each actor’s optimal course of
action is to maximize its total expected value given the probability distributions it assigns to the
actions of the other actors. It is common in economics and game theory to assume rational
expectations (Sargent, 2003), i.e., that an actor’s probability distributions are obtained by
conditioning a global MEDG probability distribution on the agent’s information, and this global
MEDG distribution is a generative distribution for the actual outcomes of both world state and
action random variables. MEDG logic has no built-in requirement for rational expectations, but a
knowledge base designer may include axioms that imply rational expectations. MEDG logic
could provide a logical foundation for first-order graphical models for economic and game
theoretic problems (see Kearns and Mansour, 2002).

Many different special-purpose logics have been proposed for space and time. MEBN logic
provides a unifying formal basis for expressing probabilistic logics for space and time. MEBN
logic can represent stochastic processes such as dynamic Bayesian networks (Murphy, 1998;
Gharamani, 1998) and partially dynamic Bayesian networks (Takikawa, et al, 2002), as well as
Bayesian network models for spatial reasoning (e.g., Wright, 2002). Many common
representations for spatial and temporal reasoning can be formalized in FOL (see Davis, 1990 or
Sowa, 2000) and then translated to MEBN logic.

Spatio-temporal reasoning and parameter learning typically require probability distributions
on uncountably infinite sets such as the real or complex numbers. Just as classical first-order
languages with countable symbol sets can represent theories about uncountable infinities, so can
MEBN logic. It is important to note that an identifier in MEBN logic is a label for the entity, not
the entity itself. Although there are uncountably many real numbers, mathematicians have been
able to develop powerful theories for reasoning about real numbers using languages with only
countably many symbols. Any application of an MTheory could represent at most countably
many labeled objects that take values in the real numbers (e.g., lengths of objects; weights of
objects; parameters of probability distributions). This does not imply that there are only countably
many possibilities for object lengths, object weights, or parameters. In particular, arbitrary
continuous distributions can be approximated as mixture distributions over a countable family of
continuous density functions (c.f., Robert, 2001). Real-valued random variables in an MTheory
could be approximated to arbitrary accuracy by defining their possible values to be indices
referring to kernel density functions defined over the real numbers.

Another important application of MEBN logic is the problem of aligning ontologies and in-
terchanging knowledge between different reasoners. If we think of the problem of integrating
different reasoners as a problem in inference and decision making under uncertainty, MEDG is a
natural logic for representing the integration process. A meta-level MEDG theory can be speci-
fied in which each of the reasoners to be integrated is viewed as an entity. A set of MEDG frag-
ments can be defined to reason about the inputs, outputs, and performance characteristics of each
reasoner. The context random variables for these MEDG fragments represent information such as
the kind of problem, the time available for solution, the format of the inputs, the desired format of
the outputs, the desired output quality, etc. MFrags can be developed to represent the flow of
inputs and outputs among different reasoners (e.g., temporal reasoners, analogical reasoners,
statistical reasoners, modal logics, etc.), where each reasoner can focus on aspects of the problem
for which it is suited. The meta-MEDG can examine different architectures for combining the
reasoners to evaluate which provide better overall solutions against the anticipated class of
queries. Based on this model, a set of heuristic rules, or suggestors, can be specified that trigger

MEBN LOGIC

C4I-06-01 39 2/5/06

calls to different reasoners based on features of the query and characteristics of intermediate
results (D’Ambrosio, et al., 2001). As experience is gained, the meta-MEDG can be refined to
provide a more accurate assessment of the predicted performance, improvements in the
integration architecture can be identified, and improved suggestors can be developed.

6 Combining Knowledge with Observation
Cognitively natural and computationally tractable approaches to fusing knowledge and data

are essential enabling technologies for large-scale application of probabilistic knowledge repre-
sentations (Dybowski, et al., 2003; Druzdzel and van der Gaag, 2000). MEBN logic provides the
ability to update and refine theories as observational evidence accrues. The generative MFrags in
an MTheory represent general knowledge about statistical regularities in a class of problems.
Findings represent specific information about particular situations drawn from the class. As
findings accrue, MEBN logic draws implications about regular patterns and updates knowledge
accordingly.

6.1 Overview of MEBN Learning
MEBN treats the learning problem as a sequence of MTheories, where each new theory in the

sequence is obtained by adding additional findings to the previous theory and (optionally)
restructuring the MFrags into a form amenable to efficient computation given the values of past
observations. It is standard practice in the literature on learning graphical models to decompose
learning into separate sub-problems of learning parameters conditional on a given structure and
learning the structure. Structure of an MTheory includes the possible values of the random
variables, their organization into MFrags, the fragment graphs, and the functional forms of the
local distributions. Local distributions may be specified using parameterized families of dist-
ributions. If the value of a parameter is unknown, the parameter can be represented as a random
variable that conditions the local distribution. In parameter learning, observations are used to
refine the estimate of the value of the parameter.

Figure 11 illustrates parameter learning in MEBN logic. The figure depicts an MTheory for a
simple statistical model of widths of entities. The generative part of the theory consists of a
parameter MFrag that specifies a prior distribution for the average width of objects of different
types and a generative attribute MFrag that predicts the width of an object conditional on the
average widths for objects of
its type. Each object type
has a different prior
distribution for widths. The
generative MFrag for widths
specifies a probability
distribution for the width of
an object as a function of the
average width for objects of
its type. The model implies
that conditional on the
average width, the width of
an object is independent of
the widths of other objects.
The findings for this theory
are the measured widths of
four objects of type !Belt.
The figure shows a
situation-specific Bayesian network for a query on the width of the fifth belt. Note that context

Generative

MFrag

 AvgWidth(t)

Width(e)

Type(e)=t

!(Width(!b1)=15)
!(Width(!b2)=19)
!(Width(!b3)=17)
!(Width(!b4)=18)

Width(!b1)Width(!b2)Width(!b3)Width(!b4)

AvgWidth(!Belt)

Width(!b5)

SSBN

Width Findings

!(Width(!b1)=15)
!(Width(!b2)=19)
!(Width(!b3)=17)
!(Width(!b4)=18)

Width(!b1)=15Width(!b2)=19Width(!b3)=17Width(!b4)=18

Type

Findings

!(Type(!b1)=!Belt)
!(Type(!b2)=!Belt)
!(Type(!b3)=!Belt)
!(Type(!b4)=!Belt)
!(Type(!b5)=!Belt)

Type(!b1)=!BeltType(!b2)=!BeltType(!b3)=!BeltType(!b4)=!BeltType(!b5)=!Belt

Figure 11: Parameter Learning

K B LASKEY

C4I-06-01 40 2/5/06

random variable instances with known values (e.g., Type(!bi)=!Belt in the generative width
MFrag and the unique identifier instance !Belt in the parameter MFrag) do not appear in the
SSBN. If more findings were added, the SSBN for predicting the width of the next belt would
have exactly the same form as the SSBN of Figure 11, except that more findings would be added
below AvgWidth(!Belt). If this model is an accurate representation of the observation generation
process, then as observations accrue, the distribution of AvgWidth(!Belt) will become more and
more concentrated about the population average. This theory is capable of learning the value of
AvgWidth(!Belt) to arbitrarily high precision, and also of predicting the widths of not yet
observed belts up to an accuracy limit determined by the dispersion of belt widths about the
population average.

The type of MFrag shown in Figure 11 is common to a broad class of statistical models. A re-
structuring operation called finding absorption can be applied when the local distribution in the
generative attribute fragment belongs to a family of distributions having a sufficient statistic (see
Buntine, 1994). When applicable, finding absorption can greatly improve the tractability of
learning and SSBN inference.

Figure 12 illustrates a MEBN representation of finding absorption under the assumption that
the sample average of the previously observed belt weights is a sufficient statistic for the distri-
bution of the random variable AvgWdith(Belt). The finding absorption MFrag specifies that the
sample average of the first m observations depends on the sample average of the first m-1 ob-
servations and the mth observation. The parameter fragment specifies that the distribution of the
average width for an object type depends on the sample average of previously observed objects of
that type. Finally, the generative attribute fragment specifies a distribution only for objects for
which findings have not yet been absorbed (i.e., objects e for which ObsNum(e) is greater than or
equal to Next). Conditional on all findings having value T, this MTheory represents the same joint

ObsNum(f)

ObsNum(e)

LT(e,f)

Type(e)=Belt

Observation

Ordering MFrag

m=0

LT(n,m)

NatNum(n)

NatNum(m)

n=Prev(m))

Numerical

Order

MFrag

NatNum(m)

Predecessor MFrag

Prev(m)

LT(n,Next)

ObsNum(e)=n

Past Findings

Absorption MFrag

SampleAvgWidth(t,m)

Width(e) SampleAvgWidth(t,n)

NormWidth(t)

n=Prev(m)t=Type(e))

Generative

Width MFrag

AvgWidth(Type(e))

Width(e)

NormWidth(Type(e))

¬LT(k,Next)

ObsNum(e)=k

Parameter

MFrag

SampleAvgWidth(t,Next)

AvgWidth(t)

 NextNormWidth(t)

NormWidth(e)

Type(e)

NatNum(e)

 Next Root MFrag

SSBN with

Absorbed

Findings

AvgWidth(!Belt)

Width(!b5)

!(ObsNum(!b1)=1)

!(Next=5)

!(ObsNum(!b2)=2)
!(ObsNum(!b3)=3)
!(ObsNum(!b4)=4)

Observation

Number Findings

ObsNum(!b1)=1ObsNum(!b2)=2ObsNum(!b3)=3ObsNum(!b4)=4

Next=5
Prev(1)=0

!(NatNum(0))

!(Prev(1)=0)
!(Prev(2)=1)
!(Prev(3)=2)
!(Prev(4)=3)
!(Prev(5)=4)

Number Label Findings

Prev(1)=1Prev(3)=2Prev(4)=3Prev(5)=4NatNum(0)

Type

Findings

!(Type(!b1)=!Belt)
!(Type(!b2)=!Belt)
!(Type(!b3)=!Belt)
!(Type(!b4)=!Belt)
!(Type(!b5)=!Belt)

Type(!b1)=!BeltType(!b2)=!BeltType(!b3)=!BeltType(!b4)=!BeltType(!b5)=!Belt

Width Findings

!(Width(!b1)=15)
!(Width(!b2)=19)
!(Width(!b3)=17)
!(Width(!b4)=18)

Width(!b1)=15Width(!b2)=19Width(!b3)=17Width(!b4)=18

!(NormWidth(!Belt))

NormWidth(!Belt)

Distribution Assumption Finding

Figure 12: Finding Absorption

MEBN LOGIC

C4I-06-01 41 2/5/06

probability distribution over all remaining random variable instances as the MTheory of Figure
11.17 Note that no findings are represented in the SSBN, which is simpler than the SSBN Figure
11. For complex models, finding absorption can result in substantial computational savings in
both query processing and learning. Buntine (1994) provides an extensive discussion of re-
structuring operations that can improve the efficiency of inference and learning in graphical
models. With the translation between plate models and MTheories illustrated in Figure 10, these
operations can be expressed as MFrags, thus providing a formal logical foundation for operations
on graphical models.

MEBN logic can also be used to learn the structure of a MEBN theory from a set of findings.
Structure learning can be represented mixture distributions over simple MTheories representing
different structural hypotheses. A more compact representation for structure learning could be
developed in an extension to MEBN logic that has types and polymorphism. In a typed language,
different structural assumptions for a local distribution could be represented as different subtypes
of a given random variable type.

Figure 13 shows an example of structure learning. Continuing the belt width example, we
might consider two structural hypotheses: (1) widths are drawn from a one-parameter distribution
that depends on the average width of belts, or (2) widths are drawn from a two-parameter
distribution that depends on the mean and standard deviation of belt widths. Figure 13a shows a
representation using a mixture MTheory. The two mixture components have all the same MFrags
except for the Width MFrags, which differ as shown in the figure. This way of representing
structure uncertainty becomes unwieldy when there are many different uncertain structural
assumptions. A polymorphic MEBN would allow several home MFrags for the width of an
entity, each applicable under different structural assumptions. In Figure 13b, there are two Width
MFrags, each representing different structural assumptions for the distribution of object widths.
The first depends on a single parameter, the average width of objects of the given type. The
second depends on two parameters: the average and the standard deviation of widths of objects of
the given type. Which distribution to use depends on the value of the context random variable
UnitSDev(Type(e)), representing whether entities of the give type have standard deviation 1, or
whether the standard deviation is a type-specific parameter. This kind of construction is capable
of representing the standard approaches to Bayesian structure learning in graphical models (e.g.,
Cooper and Herskovits, 1992; Friedman and Koller, 2000; Heckerman, et al., 1995; Jordan,
1999). A polymorphic MEBN logic would need to have clearly defined rules for determining
which home MFrag was applicable in a given situation.

17 This is a complete micro-MTheory for this parameter learning problem, expressing from first principles a
fragmentary theory of the natural numbers sufficient to provide the necessary logical basis for finding absorption.

1-Parameter

Width MFrag

AvgWidth(Type(e))

Width(e)

NormWidth(Type(e))

¬LT(k,Next)

ObsNum(e)=k

(T2, p2)

AvgWidth(Type(e))

Width(e)

SDevWidth(t)

NormWidth(Type(e))

¬LT(k,Next) ObsNum(e)=k

(T1, p1)

2-Parameter

Width MFrag

1-Parameter

Width MFrag

AvgWidth(Type(e))

Width(e)

NormWidth(Type(e))

¬LT(k,Next)

ObsNum(e)=k

UnitSDev(Type(e))

2-Parameter

Width MFrag

AvgWidth(Type(e))

Width(e)

SDevWidth(t)

NormWidth(Type(e))

¬LT(k,Next) ObsNum(e)=k

¬UnitSDev(Type(e))

UnitSDev(Type(e))

NormWidth(Type(e))

Structure Prior Probability

 a. Mixture MTheory b. Polymorphic MTheory

Figure 13: Example of Structure Learning

K B LASKEY

C4I-06-01 42 2/5/06

6.2 The Dirichlet Process Conjugate Family
Standard methods for learning structure and parameters of ordinary Bayesian networks are based
on the Dirichlet family of distributions (e.g., Heckerman, et al, 1995). Dirichlet distributions are
attractive because they are conjugate distributions for multinomial sampling. That is, if the prior
distribution for the parameters of a local distribution in a Bayesian network are Dirichlet
distributions satisfying certain independence assumptions, then the posterior distributions given a
sample of cases drawn from the network are also Dirichlet distributions satisfying the same
independence relationships. Conjugate families of distributions are useful because they give rise
to computationally tractable recursive updating formulas. To define a conjugate family of
distributions for MEBN logic, we need to extend the Dirichlet distributions to cover the
possibility that a random variable may have infinitely many possible values. We use Dirichlet
process distributions (Ferguson, 1973), which extend the Dirichlet distribution to random
variables that can have infinitely many possible values.

Definition 11: Let Ω be a set, let µ be a probability measure on a σ-field A of measurable
subsets of Ω, and let N be a strictly positive number. The random probability measure P on
(Ω,A) is a Dirichlet process distribution with base probability measure µ and virtual sample size

N if for any finite partition B1, …, Bn of Ω (i.e., Bi∩Bj=∅ for i≠j and ∪iBi=Ω), the joint
distribution of the random probabilities is Dirichlet with parameters (Nµ(B1), …, Nµ(Bn)).

To formalize the learning problem, we first consider a simple MTheory T. The MFrags of T
represent dependency relationships we expect to hold, and the local distributions represent our
best estimate of the probability distributions that obtain in the domain to which we intend T to
apply. However, we may be unsure whether the distribution expressed by T is adequate. We
would like to use observations to refine both the structural relationships and the local distributions
expressed by the MFrags of T.

Imagine that we are given a sequence of situations, where a situation is defined as a set of
findings for some of the random variables of T. After observing a situation, we would like to use
Bayesian conditioning to obtain a new MTheory T* for which the probability distributions for
structure and parameters incorporate information from the observed situation. This whole process
can be represented by embedding T in a learning process MTheory, denoted T→T*. A learning
process MTheory has the same random variable symbols as T, each depending on an additional
integer situation number argument. We assume that completely specified situations are
exchangeable, or equivalently, are drawn independently from a “true” generative distribution with
unknown structure and parameters. The posterior distribution on structure and parameters given a
sequence of completely or partially specified situations can then be obtained by Bayesian
conditioning, whenever the posterior distribution is mathematically well defined.

Definition 12: Let N be a positive number and let µ be a probability measure on the set of
simple18 random variable instances V={ξ1(ε1i), ξ2(ε1i), …}∪{β1(ε1i), β2(ε2i), …} of L. Here, ξk(εki)
(βk(εki)) denotes the lth non-Boolean (Boolean) random variable symbol, and i indexes the
combinations of entity identifiers forming arguments (if any) to ξj (βj). It is assumed that the
measure µ satisfies FOL1-FOL6. The complete Dirichlet conjugate distribution for V given N

18 Recall that an instance of a random variable is simple if all its arguments are entity identifiers.

MEBN LOGIC

C4I-06-01 43 2/5/06

and µ, denoted Πc(N,µ), is a Dirichlet process distribution such that each finite subset {ξi1(ε1i),
ξi2(ε2i), …, ξim(εmi)}∪{βi1(ε1i), βi2(ε2i), …, βin(εni)} of V has a Dirichlet process distribution with
base measure µ({ξi1(ε1i), ξi2(ε2i), …, ξim(εmi)} ∪ {βi1(ε1i), βi2(ε2i), …, βin(εni)}) and virtual sample
size N.

Lemma 7: The family of complete conjugate Dirichlet distributions for V is closed under
independent, identically distributed sampling of completely specified worlds. Given the prior
distribution Πc(N,µ) and a completely specified world W = {ξ1i(ε1i) = γ1i, ξ2i(ε2i) = γ2i,
…}∪{β1i(ε1i) = τ1i, β2i(ε2i) = τ2i, …}, where εki∈E; γki∈E, and τki∈{T, F}, the posterior
distribution given W is Πc(N+1,µ*), where the marginal distribution of µ* on any finite sub-
collection of the random variables is calculated using the standard conjugate updating procedure
for Dirichlet / multinomial sampling.19

Lemma 8: Let T be a generative MTheory with generative probability distribution

P

T

gen . Let TN

be a new MTheory defined as follows. For each MFrag F of T, we define a corresponding
MFrag FN of TN containing random variables with the same names, but each having an additional
situation index argument. In addition to its parents in F, each random variable ϕ contains a set of
parameter parents, one for each influencing configuration of the parents of ϕ in F. The possible
values of the parameter parents are probability distributions on the possible values of ϕ. Each of
these distributions has a Dirichlet process prior distribution with virtual sample size N and base
distribution πϕ(ε|S), the local distribution for ϕ in

P

T

gen . Let W = {ξ1i(ε1i) = γ1i, ξ2i(ε2i) = γ2i, …
}∪{β1i(ε1i) = τ1i, β2i(ε2i) = τ2i, …} be a completely specified world, and suppose

P

T

gen (•) assigns
strictly positive probability to each ξki(εki) = γki and βki(εki) = τki. Then the conditional distribution
of

P

T
N

gen given W exists as a well-defined limiting distribution conditional on an increasing

sequence of subsets of W. The MTheory with the same structure as

P

T
N

gen and probabilities

!"

* (ε|S) obtained by conjugate updating of πϕ(ε|S) represents the same generative distribution for

worlds as the MTheory obtained by augmenting T with the findings { Φ(ξi1(β1i) = α1i), Φ(ξi2(β2i)
= α2i), … }∪{ Φ(δi1(β1i) = β1i), Φ(δi2(β2i) = β2i), …}.

The proof of Lemmas 7 and 8 follow from properties of the Dirichlet distribution (e.g.,
Heckerman, et al., 1995), extended in the natural way to Dirichlet processes.

We call

P

T
N

gen the natural conjugate distribution with virtual sample size N for T. Lemmas 7

and 8 suggest the following heuristic interpretation of the natural conjugate distribution. Imagine
a process that samples worlds according to an unknown distribution. We can think of

P

T
N

gen as

representing the prior information that (i) If πϕ(ε|S) = 0, then according to T, ε is a logically
impossible value for ϕ when the parents of ϕ are in configuration S; (ii) we have observed N
previous worlds; and (iii) the observed frequencies from the previously observed worlds are the
frequencies specified by

P

T

gen . Of course, because

P

T

gen may contain frequencies that are not

19 That is, the virtual count for the observed configuration of a finite subset of the random variables is N times the prior
base probability plus 1; the virtual count for each non-observed configurations is N times its prior count; these virtual
counts are divided by N+1 to obtain the posterior base probabilities.

K B LASKEY

C4I-06-01 44 2/5/06

integral multiples of N, this heuristic interpretation is not an accurate description of the true state
of affairs. Nevertheless, it can be helpful for gaining some intuition for the meaning of

P

T

gen .

Lemma 9: A set B = ∪i Bi of consistent20 binding sets for T induces a partial order

!

B
 on

random variable instances constructed by applying the bindings in B to the random variable terms
of T. This partial order satisfies the condition that if φk(εk)

!

B
 φk-1(εk-1)

!

B
…

!

B
φ(ε1)

!

B
φ(ε) is

any increasing sequences of instances ending in φ(ε), then k < dφ(ε).21
Proof: This is an immediate consequence of the no cycles and finite causal depth conditions

of Definition 8.

The following theorem extends Theorem 2 of Heckerman, et al. (1995).

Theorem 10: Let V={ξ1(ε1i), ξ2(ε1i), …}∪{β1(ε1i), β2(ε2i), …} be the set of domain-specific non-
Boolean and Boolean random variable instances for language L. Let T be an MTheory and let
Πc(N,

P

T

gen) be the complete conjugate Dirichlet distribution for T with virtual sample size N. Let

! be a partial ordering on the random variable instances consistent with the MFrags of T (such a
partial order exists by Lemma 6). Suppose the prior distribution Π(µ) for a random probability
measure µ on V satisfies the following assumptions:

1. Mixture of conjugate distributions: Π(µ) =

qiPTi

gen (i| N)
i! is a finite or countably infinite

mixture of natural conjugate distributions for MTheories with different structures, such
that the weights qi on the mixture elements are non-zero and sum to 1;

2. Parameter independence: For each MTheory Ti having positive weight in the mixture
distribution, the local distributions πϕ(ε | S, Ti) for different ϕ are independent of each
other. For a given ϕ, the local distributions πϕ(ε|S, Ti) for different equivalence classes
of influence configurations are independent of each other.

3. Parameter modularity: If random variable instance ϕ has exactly the same parent
configurations in two different MTheories, it has the same local distribution in each
MTheory.

4. Likelihood equivalence: If two MTheories with different structures encode the same
independence assertions, then the likelihood of any completely specified world W is the
same given the two MTheories.

5. Structure possibility: Suppose {ϕ1, ϕ2, …} is a complete ordering of the random variable
instances of T consistent with the partial ordering

! , and let {ϕi1, ϕi2, …, ϕin} be any

permutation of the first n random variable instances {ϕ1, ϕ2, …, ϕn}. All complete

20 Bi is consistent with Bi if whenever a variable x is bound to unique identifer α in Bi, if x appears in Bj, it is also
bound to α.
21 Recall that dφ(ε) is the depth of φ(ε) as defined in Definition 7.

MEBN LOGIC

C4I-06-01 45 2/5/06

structures with the random variable instances ordered {ϕi1, ϕi2, …, ϕin, ϕn+1, ϕn+2, …} for
all permutations of the first n instances and all n have non-zero probability.22

Then the distribution Πc(N,

P

T

gen) completely determines the parameter distribution for each
structure.

Proof: The proof of Theorem 10 proceeds by noting that Theorem 2 of Heckerman, et al.
(1995) implies the theorem is true for the complete MTheory that (i) agrees with T on any finite
sub-collection of the random variable instances of T arranged in a completely connected graph
and (ii) assigns value ⊥ (not relevant) to all other random variable instances. All the distributions
thus obtained are consistent with each other on the instances they share, and these jointly imply
the existence of an infinite-dimensional distribution satisfying all these mutually consistent
constraints on the marginal virtual counts.

The family of natural conjugate distributions is very restrictive in that it can represent only
prior information equivalent to having sampled a known number of completely specified worlds.
This is even more restrictive than in the finite-dimensional case, because worlds contain infinitely
many entities. It is unrealistic to imagine that one could have observed even a single fully
specified world, let alone a sample of size N. However, the family of countable mixtures of
natural conjugate distributions is closed under sampling of worlds with missing observations (i.e.,
situations). This family of distributions can represent prior information in which observations
consist of samples of different size for different sub-collections of random variables, and is closed
under sampling of situations.

7 Summary and Discussion
Graphical models were initially limited to problems in which the relevant random variables

and relationships could be specified in advance. Languages based on graphical models are rapidly
reaching the expressive power required for general computing applications. It is becoming
possible to base computational inference and learning systems on rationally coherent domain
models implicitly encoded as sets of graphical model fragments, and to use such coherent deep
structure models to guide reasoning and knowledge discovery. Probability theory provides a
logically coherent calculus for combining prior knowledge with data to evolve an agent’s
knowledge as observations accrue. Probability theory also provides a principled approach to
knowledge interchange among different reasoners. This paper presents a logical system that
unifies Bayesian probability and statistics with classical first-order logic. An instance of a first-
order Bayesian language called Multi-Entity Bayesian Networks (MEBN) is presented. The
syntactic similarity of MEBN to standard first-order logic notation clarifies the relationship
between first-order logic and probabilistic logic. A MEBN theory (MTheory) assigns
probabilities to models of an associated FOL theory. MTheories partition FOL theories into
equivalence classes of theories with the same logical content but different probabilities assigned
to models. Provable statements in FOL correspond to statements in the associated MTheory for
which SSBN construction terminates with a probability of 1 assigned to the value T. An MTheory
corresponding to an inconsistent FOL theory has at least one finding equal to ⊥ with probability
1. If the associated MTheory is inconsistent, SSBN can determine in finitely many steps that it is
inconsistent. When SSBN construction does not terminate but the MTheory represents a globally
consistent joint distribution, the construction process gives rise to an anytime sequence of

22 There are n! structures for each n, all of which have non-zero probability. Thus, most of these completely connected
structures have astronomically small probabilities, but the structure possibility assumption says none has probability
equal to zero.

K B LASKEY

C4I-06-01 46 2/5/06

approximations that converges in the infinite limit to the correct response to the query. MEBN
logic is inherently open. Bayesian learning theory provides an inbuilt capability for MEBN-based
systems to learn better representations as observations accrue. Parameter learning can be
expressed as inference in MTheories that contain parameter random variables. Structure learning
can also be handled by introducing multiple versions of random variables having home MFrags
with different structures. A more natural approach to structure learning, as well as a more
flexible type system, requires a polymorphic extension of MEBN logic. Clearly, a typed MEBN
with polymorphism would be desirable for many applications. We chose in this paper to focus on
the basic version of the logic to highlight its relationship to classical first-order logic and
demonstrate that the logic is sufficiently powerful to represent general first-order theories.
Extensions of MEBN are planned to incorporate additional expressivity.

Appendix A: Proofs and Algorithms
This appendix proves that an MTheory represents a globally consistent joint distribution over
random variable instances, proves that an MTheory constructed as described in Section 4.5 places
non-zero probability of value T on Boolean random variables corresponding to satisfiable first-
order sentences, presents the SSBN construction algorithm, shows that SSBN construction
identifies an unsatisfiable set of findings in finitely many steps, and proves that when findings are
consistent, SSBN construction converges with probability 1 to the posterior distribution over an
MTheory’s random variables given that all finding random variables have value T.

A.1. Proof of Existence Theorem
Theorem 1: Let T = { F1, F2 … } be a simple MTheory. Then there exists a joint probability
distribution on the set of instances of its random variables that is consistent with the local
distributions assigned by the MFrags of T.

Proof: Let Z={φ1(α1), …, φm(αm)} be a finite subset of NT, and let D = max [dφ(α) :
φ(α)∈{φ1(α1), …, φm(αm)}] be the maximum depth of the instances of Z. Suppose D = 0. Let
πT1(φ1(α1), …, φm(αm)) be a distribution in which the φi(αi) are independent and distributed
according to the default distributions

!"

i
(#
i
)
(i|$) from their home MFrags

F!

i
("

i
)
. All finite-

dimensional distributions constructed in this way from depth 0 elements of NT are consistent
with each other and with the local distributions of T. Therefore, Kolmogorov’s existence
theorem23 implies that these finite-dimensional distributions can be extended to a joint
distribution πT1 over all instances of depth zero random variables, and this joint distribution is
consistent with the local distributions of T.

Now, suppose T represents a joint distribution πTD over all instances of all random variables
of depth less than D. Let Z = {φ1(α1), …, φm(αm)} be a finite subset of NT such that no φi(αi) ∈ Z
has depth greater than D. Let A denote the (possibly infinite) subset of NT consisting of the
ancestors of depth D elements of Z, together with any elements of Z with depth strictly less than
D. Clearly, any instance ϕ(β)∈A must have depth less than D. Therefore, the marginal

23 Kolmogorov’s existence theorem (c.f., Billingsley, 1995) states that if joint distributions exist for all finite subsets of
a collection of random variables, and if all these finite-dimensional distributions are consistent with each other, then a
joint distribution exists for the infinite collection of random variables.

MEBN LOGIC

C4I-06-01 47 2/5/06

distribution of πTD represents a joint distribution for A consistent with the local distributions of
T.

Let S={ϕ(β)=γ : ϕ(β)∈A} be a set of value assignment terms, one for each element of A.
Suppose φi(αi) ∈ Z. If φi(αi) has depth less than D, then φi(αi) ∈A and S assigns a particular value
to φi(αi) with probability 1. Otherwise, condition 3e implies that there is a finite subset

S!

i
("

i
)
⊂ S

such that

!"

i
(#

i
)
(i| S"

i
(#

i
)
)=

!"

i
(#

i
)
(i| S*) whenever

S!

i
("

i
)
⊂ S*⊂ S.24 Thus, given the value assign-

ments in S, T assigns a well-defined conditional distribution to each φi(αi) ∈ Z, which is denoted

!"

i
(#

i
)
(i| S) . Define a joint conditional distribution

πT(D+1)(φ1(α1)=γ1, …, φm(αm)=γm | S) =

!"
i
(#

i
)
("

i
(#

i
) = $

i
| S)

i=1

m

% .

in which the φi(αi) are independent and distributed as assigned by the local distributions in their
home MFrags conditional on the value assignments in S. Existence of both a joint conditional
distribution for the φi(αi) and a marginal distribution for S implies that the marginal joint
distribution

 πT(D+1)(φ1(α1), …, φm(αm)) =

!"i (#i)
("

i
(#

i
) | S)d!

TD
(S)

i=1

m

$% . (1)

exists and is consistent with the local distributions of T. The marginal distribution (1) is
expressed as an integral rather than a sum because there may be uncountably many different ways
to choose the value assignments S={ϕ(β)=γ : ϕ(β)∈A}.

This construction can be carried out for any finite set of depth D instances, and it is clear that
all the distributions thus defined are consistent with each other and with the local distributions of
T. This implies that T represents a joint distribution over arbitrary finite subsets of NT, and that
the distributions constructed in this way are consistent with each other and with the local
distributions of T. A second application of Kolmogorov’s existence theorem implies that T
represents a joint distribution over all instances of random variables in VT. It is clear that this
distribution is consistent with the local distributions of T.

A.2. SSBN Construction Algorithm
The situation-specific Bayesian network construction algorithm takes an MTheory T, a finite

(possibly empty) set of target random variable instances, and a (possibly empty) set of finding
random variable instances, and computes a sequence of Bayesian networks containing the target
and finding random variable instances. If the algorithm terminates, and the findings are
consistent, the last Bayesian network in the sequence can be used to compute the joint distribution
of the target random variable instances given that all finding random variable instances have
value T. That is, additional model construction would not change the result of the query. For
many problems of interest, the algorithm never terminates, but the approximate SSBN can be
used to compute approximate responses to queries.

We give the SSBN construction for simple MTheories only. The modification for mixture
MTheories is straightforward. SSBN construction proceeds as follows:

24 Theorem 1 holds under weaker conditions on the local distributions, but condition 3e suffices to show that MEBN
can represent classical first-order logic.

K B LASKEY

C4I-06-01 48 2/5/06

SSBNConstruct: The inputs to SSBNConstruct are:
 A simple MTheory T with partial ordering and modeler-defined MFrags F defined

on a set X of random variable symbols and a set A of constant symbols;
 A finite (possibly empty) set {τi}i≤T of non-finding random variable instances called

the target random variable instances;
 A (possibly empty) set {φi}i≤F of finding random variable instances.

The steps in SSBNConstruct are:
1. Set the initial query set Q0 equal to the union of the target instances and a

finite subset of the finding instances. Let N0 be a positive integer.
2. Set B0 equal to a Bayesian network in which the nodes are the random

variables in Q0, and there is an arc from random variable α to β if α is an
instance of a parent of β in the home fragment of β. Remove any arcs from
B0 that do not correspond to influencing configurations. B0 is called the
approximate SSBN. Set the cached marginal distribution for each node β to
its default distribution.

3. Set the iteration number i equal to 0.
4. Do until no more changes to Bi occur:

 Remove from Bi all barren nodes, that is, nodes having no
descendants in Qi;

 Remove from Bi all nodes that are d-separated by finding nodes
from any target nodes;

 Remove from Bi any nuisance nodes for which the cached marginal
distribution is the correct distribution for Bi. A nuisance node (Lin

In situation-specific network

Not in situation-specific network

N1 E2

D6

T3

E4

I3

E1

B2

D5

B1

I5

B3

I2

T1

N4

T2

E3

N2

N5

B4

B5

D1

D3

I1

E2

N3

D2

D4
I4

N1

E: Evidence node
T: Target node
I: Internal node
N: Nuisance node
B: Barren node
D: d-separated node

Figure 14: Situation-Specific Bayesian Network

MEBN LOGIC

C4I-06-01 49 2/5/06

and Druzdzel, 1997) is a node that is computationally relevant given
the query, but is on no evidential trail25 between an evidence and a
target node.

5. Set the local distributions in Bi. These distributions are calculated from the
local distributions in the MFrags of T, with modifications to restrict random
variables to have no more than Ni possible values and to approximate the
effects of random variables that have not been enumerated.

 If a random variable α has more than Ni possible values, the Nk
th,

Nk+1st, Nk+2nd, etc. (not including ⊥) values are grouped into a single
aggregate value. In the local distribution for α in its home MFrag, for
each influencing configuration ICα of the parents of α, assign the
aggregate value a probability equal to the sum of the probabilities of
the Nk

th, Nk+1st, Nk+2nd, etc. possible values given ICα. For any child
β of α, and any influencing configuration ICβ of the parents of β for
which the distribution of β depends on which of the Nk

th, Nk+1st,
Nk+2nd, etc. is the case, assign β a default distribution. This may be
the default distribution from β’s home MFrag or an SSBN
construction distribution, but it must satisfy the condition that none
of the possible values represented in the approximate SSBN has
probability zero.

 The local distributions of T provide a recipe for computing the
probability of a random variable given all the parents that have been
enumerated thus far. If a random variable α has computationally
relevant, non-nuisance instances that are not included in Bi, add a
single “leak parent” λα to approximate these unrepresented
influences. The leak parent has value T with probability ε and F
with probability 1-ε, where ε is a small number. Conditional on λα =
F, α has the distribution conditional on the enumerated parents, as
modified above to restrict to Ni or fewer values. Conditional on λα =
T, α is assigned a default distribution, also grouping values to restrict
to Ni or fewer values. This may be the default distribution from β’s
home MFrag or an SSBN construction distribution, but it must
satisfy the condition that none of the possible values represented in
the approximate SSBN has probability zero.

6. Apply a standard Bayesian network inference algorithm to compute the joint
distribution of the target random variables in Bi. (If there are no target
random variables, then apply Bayesian network inference to compute
marginal distributions on all random variables in Bi.)

 If the inference algorithm returns a probability of zero that all
findings have value T, then set the SSBN S equal to Bi, output S, and

25 A node is computationally relevant if it remains after iteratively removing all barren and d-separated nodes. An
evidential trail between two sets of nodes is a minimal active undirected path from a node in one set to a node in the
other. If a global joint distribution exists, then nuisance nodes can be marginalized out without affecting the result of
the query.

K B LASKEY

C4I-06-01 50 2/5/06

stop with an indication that SSBN construction terminated and T is
inconsistent.

 Else, if all computationally relevant random variables have been
added and no random variable in Bi has more than Ni possible values,
then set the SSBN S equal to Bi. Output S and the joint distribution
of the target random variables. Stop with a flag indicating that
SSBN construction terminated.

 Else, set the cached marginal distribution for each node β to its
marginal distribution in Bi and go to Step 7.

7. If a stopping criterion is met, output Bi and the joint distribution computed in
Step 6, and stop with an indication that SSBN construction did not terminate.

8. Else, for each random variable instance β∈Bi for which a change in the local
distribution may occur if additional parents are added, add a finite number of
instances of parents of β, using a process that ensures eventual addition of all
instances of parents of β. If there are computationally relevant findings that
have not been added, add a finite number of additional findings, using a
process that ensures eventual addition of all computationally relevant
findings.

9. Set Ni+1 to a positive integer strictly greater than Ni, increment i, and go to
Step 4.

The following theorem states that an inconsistent theory can be discovered in a finite number

of steps of SSBN construction.

Theorem 11: If the logical constraints represented by T are unsatisfiable and Step 7 of
SSBNConstruct is set never to stop, then SSBN construction on a query set consisting only of the
findings of T terminates in finitely many steps with an indication that T is inconsistent.
Proof: Each approximate SSBN Bi represents a probability distribution over interpretations of a
theory for which the logical axioms form a subset of the logical axioms of T. The domain of this
interpretation is a finite set consisting of all possible assignments of values to the random
variables of Bi such that all finding random variables have value T. The approximate SSBN Bi
assigns non-zero probability to the hypothesis that all finding random variables have value T if
and only if there is at least one interpretation on this finite domain that satisfies all the logical
axioms represented in Bi, which in turn is the case if and only if the logical axioms represented in
Bi are simultaneously satisfiable. For k>i, the approximate SSBN Bk includes all logical
constraints included in Bi, along with any additional constraints implied by the local distributions
of random variables appearing in Bi+1 but not in Bi. The SSBN construction process eventually
adds all computationally relevant random variables, and therefore eventually includes all logical
constraints represented by the local distributions of any random variable instances that are either
findings or ancestors of findings in the random variable partial ordering . Thus, if the findings
are unsatisfiable, eventually there will be an approximate SSBN in the sequence that represents
an unsatisfiable set of constraints.

It is well known that if a set of sentences in FOL is unsatisfiable, then there exists a finite set
of ground instances of a set of logically equivalent sentences that is also unsatisfiable (see, for

MEBN LOGIC

C4I-06-01 51 2/5/06

example, Russell and Norvig, 2002). The SSBN construction algorithm produces a sequence of
Bayesian networks, each of which can be translated into a set of constraints on truth-values of a
finite set of ground instances of FOL sentences implied by the MEBN theory T. Each of these
Bayesian networks encodes a probability distribution that assigns non-zero probability to any
assignment of truth-values consistent with the constraints it encodes. Each approximate SSBN
includes all constraints represented in the preceding approximate SSBNs, together with additional
constraints. If the query set contains only the findings, then eventually all logical constraints
implied by the findings and their predecessors in the random variable instance partial order are
enumerated. If the set of all logical constraints is unsatisfiable, then so is a finite subset, and
eventually the constraints encoded in the SSBN will include a finite unsatisfiable subset.

Note that SSBN construction will never add random variables d-separated from the target
random variables by findings. Therefore, if the query set contains non-finding target random
variables, then inconsistencies that would be introduced only by adding d-separated random
variables will not be discovered. It is often asserted in logic texts that an inconsistent theory is
“useless” because anything can be proven from a contradiction. In practice, though, inconsistent
theories can be quite useful. MEBN logic can be used to reason with inconsistent theories, as long
as queries are structured so that the target of any given query is d-separated by a subset of the
findings from any findings that contradict this subset. Thus, MEBN logic may turn out to be a
useful tool for studying conditions under which inconsistent theories can provide accurate results
to probabilistic queries.

Acknowledgements
Research for this paper was partially supported by DARPA & AFRL contract F33615-98-C-1314,
Alphatech subcontract 98036-7488. Additional support was provided by the Advanced Research
and Development Activity (ARDA), under contract NBCHC030059, issued by the Department of
the Interior. The views, opinions, and findings contained in this paper are those of the author and
should not be construed as an official position, policy, or decision, of DARPA, AFRL, ARDA,
or the Department of the Interior, unless so designated by other official documentation.
Appreciation is extended to Bruce D’Ambrosio, Suzanne Mahoney, Mike Pool, Bikash Sabata,
Masami Takikawa, Dan Upper, and Ed Wright for many helpful discussions. Special thanks are
due to Paulo Costa and Tod Levitt for extensive feedback on earlier drafts. The author is grateful
to the anonymous reviewers of an earlier draft for many insightful comments and useful
suggestions.

References
Ghazi AlGhamdi, Kathryn Laskey, Ed Wright, Daniel Barbará and K.C. Chang. Modeling Insider

Behavior Using Multi-Entity Bayesian Networks. 10th Annual Command and Control
Research and Technology Symposium, 2005.

Fahiem Bacchus. Representing and Reasoning with Probabilistic Knowledge. MIT Press,
Cambridge, Massachusetts, 1990.

Fahiem Bacchus, Adam Grove, Joseph Y. Halpern and Daphne Koller. From statistical
knowledge bases to degrees of belief. Artificial Intelligence 87: 75-143, 1997.

Olav Bangsø and Pierre-Henri Wuillemin. Object Oriented Bayesian Networks: A Framework
for Topdown Specification of Large Bayesian Networks and Repetitive Structures. Technical
Report CIT-87.2-00-obphw1, Department of Computer Science, Aalborg University, 2000.

Patrick Billingsley. Probability and Measure. New York: Wiley, 1995.
Thomas Binford and Tod S. Levitt. Evidential reasoning for object recognition, IEEE

Transactions Pattern Analysis and Machine Intelligence, 25(7): 837-851.

K B LASKEY

C4I-06-01 52 2/5/06

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-Specific
Independence in Bayesian Networks. Proceedings of the Twelfth Conference on Uncertainty
in Artificial Intelligence, San Mateo, CA: Morgan-Kaufman, 1996.

Ronald J. Brachman, Richard E. Fikes, and Hector J. Levesque, KRYPTON: A Functional
Approach to Knowledge Representation, IEEE Computer, 16(10): 67-73, 1983.

Wray Buntine. Operations for Learning with Graphical Models. Journal of Artificial Intelligence
Research, 2: 159-225, 1994.

Eugene Charniak and Robert Goldman. A Bayesian Model of Plan Recognition. Artificial
Intelligence, 64: 53-79, 1993.

Gregory Cooper and Edward Herskovits. A Bayesian Method for the Induction of Probabilistic
Networks from Data. Machine Learning, 9: 309-347, 1992.

Paulo Costa and Kathryn B. Laskey. To Type or Not to Type: A Polymorphic Version of MEBN,
Fairfax, VA: George Mason University, 2005, http://ite.gmu.edu/~klaskey/Costa_Laskey.

Paulo Costa, Kathryn B. Laskey, Francis Fung, Mike Pool, Masami Takikawa and Ed Wright,
MEBN Logic: A Key Enabler for Network-Centric Warfare, 10th Annual Command and
Control Research and Technology Symposium, 2005.

Robert G. Cowell, A. Phillip Dawid, Steffen L. Lauritzen, and David J. Spiegelhalter,
Probabilistic Networks and Expert Systems. Springer-Verlag, New York, NY, 1999.

Bruce D'Ambrosio: Inference in Bayesian Networks. AI Magazine 20 (2): 21-36, 1999.
Bruce D'Ambrosio. Local expression languages for probabilistic dependency. In Proceedings

of the Seventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
Publishers, San Mateo, California, 1991.

Bruce D’Ambrosio, Masami Takikawa, Julie Fitzgerald, Daniel Upper, and Suzanne Mahoney.
Security situation assessment and response evaluation (SSARE). In Proceedings of the
DARPA Information Survivability Conference & Exposition II, volume I, pages 387–394.
IEEE Computer Society, 2001.

Ernest Davis. Representations of Commonsense Knowledge. Morgan Kaufmann Publishers, Inc.,
San Mateo, CA, 1990.

A. Philip Dawid. “Statistical Theory, the Prequential Approach.” Journal of the Royal Statistical
Society A 147: 278-292, 1984.

Morris DeGroot and Mark J. Schervish. Probability and Statistics (3rd edition). Addison Wesley,
Boston, Massachusetts, 2002.

Luc deRaedt and Kristen Kersting, Probabilistic Logic Learning. ACM-SIGKDD Explorations:
Special Issue on Multi-Relational Data Mining, 5(1): 31-48, 2003.

Marek J. Druzdzel and Herbert A. Simon. Causality in Bayesian Belief Networks. In Proceedings
of the Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI-93), pp. 3-11,
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1993.

Marek J. Druzdzel and Linda C. van der Gaag. Building probabilistic networks: "Where do the
numbers come from?" IEEE Transactions on Knowledge and Data Engineering, 12: 481-486,
2000.

Richard Dybowski, Kathryn B. Laskey, James W. Myers, and Simon Parsons. Introduction to
the Special Issue on the Fusion of Domain Knowledge with Data for Decision Support.
Journal of Machine Learning Research 4(Jul):293-294, 2003.

Robert J. Elliott, Lakhdar Aggoun and John B. Moore. Hidden Markov Models: Estimation and
Control. Springer-Verlag, New York, New York, 1995.

H. B. Enderton. A Mathematical Introduction to Logic. New York: Academic Press, 2001.
T.S. Ferguson. A Bayesian Analysis of Some Nonparametric Problems. Annals of Statistics 1,

209-230, 1973.
Bruno de Finetti. Theory of Probability: A Critical Introductory Treatment (2 vols.), New York:

Wiley, 1974-75.

MEBN LOGIC

C4I-06-01 53 2/5/06

Gottlob Frege. Begriffsschrift, 1879, translated in Jean van Heijenoort, ed., From Frege to Gödel,
Cambridge, MA: Harvard University Press, 1967.

Nir Friedman and Daphne Koller. Being Bayesian about Network Structure. In Proceedings of
the Sixteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
Publishers, San Mateo, California, 2000.

Francis Fung, Kathryn B. Laskey, Mike Pool, Masami Takikawa and Ed Wright. PLASMA:
Combining Predicate Logic and Probability for Information Fusion and Decision Support,
presented at AAAI Spring Symposium on Challenges to Decision Support in a Changing
World, 2005.

Daniel Geiger and David Heckerman. Advances in probabilistic reasoning. In Proceedings of
the Seventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann
Publishers, San Mateo, California, 1991.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.
Chapman and Hall, London, 1995.

Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publishers, San Mateo, California, 1987.

Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer. Learning Probabilistic Relational
Models. In Saso Dzeroski and Nada Lavrac, editors. Relational Data Mining, Springer-
Verlag, New York, New York, 2001.

Lise Getoor, Daphne Koller, Benjamin Taskar, and Nir Friedman. Learning Probabilistic
Relational Models with Structural Uncertainty. In Proceedings of the ICML-2000 Workshop
on Attribute-Value and Relational Learning:Crossing the Boundaries, Stanford, California,
2000.

Zoubin Ghahramani. Learning Dynamic Bayesian Networks. In C.L. Giles and M. Gori (eds.),
Adaptive Processing of Sequences and Data Structures. Lecture Notes in Artificial
Intelligence, 168-197. Berlin: Springer-Verlag, 1998.

W. Gilks, A. Thomas, and David J. Spiegelhalter. A language and program for complex
Bayesian modeling. The Statistician, 43: 169-178, 1994.

Sabine Glesner and Daphne Koller. Constructing Flexible Dynamic Belief Networks from First-
Order Probabilistic Knowledge Bases,.In Proceedings of the European Conference on
Symbolic and Quantitative Approaches to Reasoning under Uncertainty (ECSQARU '95),
Fribourg, Switzerland, July 1995. In Lecture Notes in Artificial Intelligence, Ch. Froidevaux
and J. Kohlas (Eds.), Springer Verlag, 1995, pages 217-226.

Ulf Grenander. Elements of Pattern Theory. Johns Hopkins University Press, Baltimore, MD,
1995.

Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2), 199-220, 1993.

Joseph Y. Halpern. An Analysis of First-Order Logics of Probability. Artificial Intelligence 46:
311-350, May 1991.

David Heckerman, Christopher Meek and Daphne Koller, Probabilistic Models for Relational
Data, Technical Report MSR-TR-2004-30, Redmond, WA: Microsoft Corporation, 2004.

David Heckerman, Daniel Geiger, and David Maxwell Chickering. Learning Bayesian Networks:
The Combination of Knowledge and Statistical Data. Machine Learning, 20: 197-243, 1995.

Colin Howson and Peter Urbach. Scientific Reasoning: The Bayesian Approach. Open Court,
1993.

IET. Quiddity*Suite Technical Guide. Technical Report, Information Extraction and
Transport, Inc., Rosslyn, VA, 2004.

Manfred Jaeger. Complex Probabilistic Modeling with Recursive Relational Bayesian Networks,
Annals of Mathematics and Artificial Intelligence, 32: 179-220, 2001.

K B LASKEY

C4I-06-01 54 2/5/06

Manfred Jaeger. Reasoning about infinite random structures with relational Bayesian networks,
in: Principles of Knowledge Representation and Reasoning: Proceedings of the 6th
International Conference (KR’98) (1998) pp. 570–581.

Edward T. Jaynes. Probability Theory: The Logic of Science. Cambridge, UK, Cambridge
University Press, 2003.

Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag, New York, New
York, 2001.

Finn V. Jensen, Bo Chamberlain, Nordahl Torsten, and Frank Jensen. Analysis in HUGIN of
Data Conflict. In Uncertainty in Artificial Intelligence: Proceedings of the Sixth Conference,
Elsevier Science Publishing Company, New York, New York, 1991.

Michael I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge,
Massachussets, 1999.

Michael Kearns and Y. Mansour. Efficient Nash Computation in Large Population Games
with Bounded Influence. In Uncertainty in Artificial Intelligence: Proceedings of the
Eighteenth Conference, Morgan Kaufmann Publishers, San Mateo, California, 2002.

Kristian Kersting and Luc de Raedt. Adaptive Bayesian Logic Programs. In C. Rouveirol and M.
Sebag (eds), Proceedings of the Eleventh International Conference on Inductive Logic
Programming (ILP 2001). Springer-Verlag, 2001a.

Kristian Kersting and Luc De Raedt. Bayesian Logic Programs. Technical Report 151, Institute
for Computer Science, University of Freiburg, Germany, 2001b.

Daphne Koller and Avi Pfeffer. Object-Oriented Bayesian Networks. In Uncertainty in Artificial
Intelligence: Proceedings of the Thirteenth Conference, pages 302-313, Morgan Kaufmann
Publishers, San Mateo, California, 1997.

Helge Langseth and Olav Bangsø. Parameter learning in object oriented Bayesian networks.
Annals of Mathematics and Artificial Intelligence, 31(1/4): 221-243, 2001.

Helge Langseth and Thomas Nielsen. Fusion of Domain Knowledge with Data for Structured
Learning in Object-Oriented Domains. Journal of Machine Learning Research, 2003.

Kathryn B. Laskey. Conflict and Surprise: Heuristics for Model Revision, in Uncertainty in
Artificial Intelligence: Proceedings of the Seventh Conference, pages 197-204, Morgan
Kaufman Publishers, San Mateo, California, 1991.

Kathryn B. Laskey, Bruce D’Ambrosio, Tod S. Levitt, and Suzanne M. Mahoney. Limited
Rationality in Action: Decision Support for Military Situation Assessment. Minds and
Machines, 10(1), 53-77, 2000.

Kathryn B. Laskey and Suzanne M. Mahoney. Network Fragments: Representing Knowledge
for Constructing Probabilistic Models. In Uncertainty in Artificial Intelligence: Proceedings
of the Thirteenth Conference, Morgan Kaufmann Publishers, San Mateo, California, 1997.

Kathryn B. Laskey, Suzanne M. Mahoney, and Edward Wright. Hypothesis Management in
Situation-Specific Network Construction. In Uncertainty in Artificial Intelligence:
Proceedings of the Seventeenth Conference, Morgan Kaufmann Publishers, San Mateo,
California, 2001.

Laskey, K.B., Alghamdi, G., Wang, X., Barbara, D., Shackleford, T., Wright, E., and Fitzgerald,
J., Detecting Threatening Behavior Using Bayesian Networks, Proceedings of the Conference
on Behavioral Representation in Modeling and Simulation, 2004.

Stephan Lauritzen. Graphical Models. Oxford Science Publications, Oxford, 1996.
Tod S. Levitt, C. Larrabee Winter, Charles J. Turner, Richard A. Chestek, Gil J. Ettinger, and

Steve M. Sayre. Bayesian Inference-Based Fusion of Radar Imagery, Military Forces and
Tactical Terrain Models in the Image Exploitation System/Balanced Technology Initiative.
International Journal of Human-Computer Studies, 42, 1995.

Y. Lin and M. J. Druzdzel. Computational Advantages of Relevance Reasoning in Bayesian
Belief Networks. In Geiger, D. and Shenoy, P. (eds) Uncertainty in Artificial Intelligence:

MEBN LOGIC

C4I-06-01 55 2/5/06

Proceedings of the Thirteenth Conference, San Francisco, CA: Morgan Kaufmann. pp. 342-
350, 1997.

Roderick JA Little and Donald B. Rubin. Statistical Analysis with Missing Data. Wiley, New
York, NY, 1987.

Suzanne M. Mahoney. Network Fragments. PhD thesis, George Mason University, Fairfax,
Virginia, 1999.

Suzanne M. Mahoney and Kathryn B. Laskey. Representing and Combining Partially Specified
Conditional Probability Tables. In Uncertainty in Artificial Intelligence: Proceedings of the
Fifteenth Conference, Morgan Kaufmann Publishers, San Mateo, California, 1999.

Suzanne M. Mahoney and Kathryn B. Laskey. Constructing Situation Specific Networks. In
Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference, Morgan
Kaufmann Publishers, San Mateo, California, 1998.

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. "BLOG: Probabilistic Models with Unknown Objects." Proceedings of the
Nineteenth Joint Conference on Artificial Intelligence, 2005.

Elliot Mendelson. Introduction to Mathematical Logic. Lewis Publishers, Inc., 1997.
Murphy, K. 1998. Dynamic Bayesian Networks: Representation, Inference and Learning.

Computer Science Division. Berkeley, University of California.
Richard E. Neapolitan Learning Bayesian Networks. New York: Prentice Hall, 2003.
Alan Newell and Herbert Simon. Computer Science as Empirical Inquiry: Symbols and Search,

Communications of the ACM, 19(3), 1976.
Liem Ngo and Peter Haddawy. Answering Queries from Context-Sensitive Probabilistic

Knowledge Bases. Theoretical Computer Science, 171:147-177, 1997.
D. Oakes. Self Calibrating Priors Do Not Exist. Journal of the American Statistical Association,

80(390), 339.
R. C. Parker and R. A. Miller. Using causal knowledge to create simulated patient cases: the

CPCS project as an extension of Internist-1. Proceedings of the Eleventh Annual Symposium
on Computer Applications in Medica Care. IEEE Comp Soc Press, 473-480, 1987.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, San Francisco, California, 1988.

Judea Pearl. Causality. Cambridge University Press, Cambridge, UK, 2000.
Charles Sanders Peirce. On the Algebra of Logic. American Journal of Mathematics, 7:180-202,

1885.
Avi Pfeffer. Probabilistic Reasoning for Complex Systems. PhD dissertation, Stanford

University, 2000.
Avi Pfeffer. IBAL: A Probabilistic Rational Programming Language International Joint

Conference on Artificial Intelligence (IJCAI), pp. 985-991, 2001.
David Poole. First-Order Probabilistic Inference. In Proceedings of the Eighteenth International

Joint Conference on Artificial Intelligence (IJCAI), 2003.
David Poole, Probabilistic Horn abduction and Bayesian networks, Artificial Intelligence, 64(1),

81-129, 1993.
W. V. Quine. Methods of Logic (4th edition). Cambridge, MA, Harvard University Press, 1982.
Christian Robert. The Bayesian Choice (2nd edition). Springer-Verlag, New York, New York,

2001.
Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. (2nd edition)

Prentice-Hall, New York, New York, 2002. grevious
Thomas J. Sargent, Rational Expectations, in David R. Henderson (ed.) The Concise

Encyclopedia of Economics. Liberty Fund, Inc.: Library of Economics and Liberty. 30 August
2003. http://www.econlib.org/library/Enc/RationalExpectations.html.

K B LASKEY

C4I-06-01 56 2/5/06

Taisuke Sato. Modeling scientific theories as PRISM programs. ECAI98 Workshop on
Machine Discovery, pp.37–45, 1998.

Leonard J. Savage. The Foundations of Statistics. New York: Dover Publications, Inc., 1972.
David Schum. Evidential Foundations of Probabilistic Reasoning. Wiley, New York, New

York, 1994.
John F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Pacific Grove, California, Brooks/Cole Thomson Learning, 2000.
David J. Spiegelhalter, Andrew Thomas, and Nicky Best. Computation on Graphical Models.

Bayesian Statistics, 5: 407-425,1996.
Robert P. Stoll. Set Theory and Logic. New York, Dover Publications Inc., 1963.
Larry D. Stone, C. A. Barlow and Thomas L. Corwin. Bayesian Multiple Target Tracking,

Boston, MA: Artech House, 1999.
Masami Takikawa, Bruce D’Ambrosio and Ed Wright, Real-time Inference with Large-scale

Temporal Bayes nets, Proceedings of the Conference on Uncertainty in Artificial Intelligence,
2002.

Alfred Tarski. The Semantical Concept of Truth and the Foundations of Semantics, Philosophy
and Phenomenological Research 4, 1944.

Michael Wellman, Jack Breese, and Robert Goldman. From Knowledge Bases to Decision
Models. Knowledge Engineering Review 7(1): 35-52, 1992.

Joe Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley, Chichester, 1990.
Edward J. Wright. Understanding and Managing Uncertainty in Geospatial Data for Tactical

Decision Aids. Doctoral dissertation, George Mason University, 2002.
Wright, E., Mahoney, S., Laskey, K., Takikawa, M. and Levitt, T. Multi-Entity Bayesian

Networks for Situation Assessment, Proceedings of the Fifth International Conference on
Information Fusion, July 2002.

Wright E., Mahoney S.M., and Laskey K.B., Use of Domain Knowledge Models to Recognize
Cooperative Force Activities, Proc. 2001 MSS National Symposium on Sensor and Data
Fusion, San Diego, CA, June 2001.

