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ABSTRACT 

SYMMETRY INFERENCE IN THE PHYSICAL SCIENCES 

Kenneth King, M.A. 

George Mason University, 2019 

Thesis Director: Dr. Christopher A. DiTeresi 

 

Symmetry inferences in the physical sciences have material warrants; these 

warrants can be accounted for in terms of scientific practice and conceptual adaptation. 

This study is a historical epistemology that provides such an account. It covers the 

emergence and development of symmetry warrants in the crystallographic research 

programs of the nineteenth century; it also provides evidence and reasoning undermining 

alternative accounts that characterize symmetry in mathematical rather than material 

terms. The study suggests that symmetry concepts adapted in order to reduce the number 

of arbitrary assumptions and parameters otherwise required by crystallographic research 

programs to account for an expanding range of physical properties that were being 

measured with ever-greater precision. The use of symmetry reasoning in these programs 

lessened the dependence of scientific practice on theory and, by doing so, restrained 

speculative theorizing, established common ground for practitioners with diverse 

ontological assumptions, and facilitated experimental progress even where theoretical 

understanding was weak. Further historical research on the development of symmetry 
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reasoning in crystallography and its spread from that field to others will reveal whether 

there are also material warrants for the continued evolution and transfer of symmetry 

reasoning. The stakes are high because the use of symmetry inference is pervasive, a 

priori reasoning about physical symmetries is common but unwarranted, and errors can 

be costly. 
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PROLOGUE 

  “I think there is interest in introducing into the study of physical phenomena 

the symmetry arguments familiar to crystallographers,” declared Pierre Curie (1859-

1906) in a classic paper in 1894. Curie was an accomplished physicist and knew whereof 

he spoke; he then proceeded to introduce those arguments into physics and to formulate a 

famous principle of symmetry inference now known as the Curie Principle. Curie’s 

standing in relation to symmetry arguments and crystallography is like that of Kant in 

relation to philosophy a century before: he had assimilated the earlier traditions and he 

stimulated the later developments. Physical scientists in the affected fields credit Curie 

with recognizing the role that symmetry arguments play in the physical sciences and for 

promoting their use. 

 Was Curie right to think that symmetry arguments are special and warranted, that 

they arose in crystallography, and that they can be used in physical sciences? My thesis 

focuses on these topics. I do not consider the use of symmetry arguments in other fields 

— such as the arts, law or political theory — nor the use of symmetry for purely 

descriptive or other non-inferential purposes in the physical sciences. 

 In this prologue I provide a narrative overview of the case I make in this thesis that 

symmetry inferences in the physical sciences have empirical warrants. As symmetry 

inferences are material inferences, I argue that their warrants are found in the processes 
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of inquiry, specifically in the mechanisms by which the concept of symmetry used in 

such inferences co-adapts with the sciences it supports. Details of the arguments, 

objections, examples, references, and other scholarly points are reserved for the chapters 

that follow. 

The Concept of Symmetry 

 We draw our ideas about symmetry from a deep and ancient pool. In Chapter 1 I 

note a number of the features commonly found in notions of symmetry (such as aesthetic, 

geometric, algebraic, physical, and abstract features) and the sort of questions we often 

ask about them. There are, however, no a priori timeless verities residing in them that a 

purely conceptual analysis would reveal for us; it is only by determining how symmetry 

is used in any particular case that we can hope to unpack its meaning. The point of noting 

the various features of symmetry at the outset is not to use them as axioms or as any other 

starting point for my analysis, but just to draw attention to the cultural inheritance that 

gives us a wide choice of symmetry metaphors, to the need to establish that any chosen 

metaphor is up to a particular task, and to the possibility we might inadvertently mix up 

the attributes of one of the notions of symmetry with those properly belonging only to 

another.  

 The particular tasks for symmetry I focus on are the inferential tasks. Chapter 1 also 

includes a number of vignettes of symmetry arguments. These are illustrative only. The 

point of relating them there is not to establish any a priori understanding of what a 

symmetry argument must be — indeed many of them have led to conclusions known to 

be false. Rather it is to gesture towards the range of symmetry arguments that have been 
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made historically and to warn against two temptations in particular.  

 The first temptation is aestheticism. This, expressed in science, is the perennial 

trope that symmetry is fundamentally an aesthetic command — as if it were the property 

of a whole constituted of parts in such beautiful proportion as to warrant inferences about 

the universe. For example, even Johannes Kepler, in his early writings, reported finding 

such an aesthetic symmetry in the beautifully proportioned geometric figures that 

‘explain’ the orbits of the planets. We rightly dismiss Kepler’s argument, but we should 

also pause to identify any ways in which the argument he offers formally differs from 

more modern ones. (Is the theory of Supersymmetry in particle physics really “too 

beautiful not to be true”? What extra credibility does an “elegant” theory have?)   

 The second temptation is rationalism. We rightly celebrate the symmetry arguments 

that Archimedes used to derive the thoroughly corroborated body of laws in the field of 

statics (the branch of mechanics treating balances, levers, and pulleys). These seem to 

make so much about the world derivable from thought experiments alone, i.e., a priori. In 

like vein, many well-known conservation laws can nowadays be derived from first 

principles (expressed as a few obvious symmetries). It may be useful to submit 

(temporarily) to this temptation at the outset by imagining the way the universe must be if 

it were created according to principles of reason. For it is only then that we can fully 

empathize with those who have been offended by the behavior of created Nature. (A 

well-known experiment in electromagnetism in 1830 that did not conform to reasons 

based on symmetry was described “an intellectual shock”; a well-known experiment in 

radioactive decay that also defied reasons of symmetry is still described in terms of 
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“violation.”) The temptation of rationalism is to imagine that we can be certain about 

symmetry inferences made a priori; we pay a price for this temptation whenever we 

eschew experiments that could have disabused us of costly mistakes. 

The Inferential Warrants of Symmetry 

 I begin my inquiry proper in Chapter 2 by articulating the task of finding warrants 

for symmetry inferences. This task requires clarifying what symmetry inferences are 

(since my introductory comments on inferences were only provisional and motivational) 

and what warrants are (that is, what justifies them or makes them as effective as they are). 

 Symmetry inferences that are already warranted on the basis of form alone are not 

relevant to the question of warrants that depend somehow on the concept of symmetry 

used. There are in fact many well-known symmetry inferences that are formally valid, 

such as the mathematics governing chemical bonding and that governing spectroscopy 

(which can be greatly simplified using rules of symmetry) and the deduction restricting 

the symmetries that can exist in a crystal lattice. But as the concept of symmetry used in 

these cases has no bearing on validity of the inference in which they are embedded, I do 

not consider them further. 

 Inferences that are specifically symmetry inferences are those whose validity 

depends on the concept of symmetry and also on content, the domain of application. We 

can exhibit the content-dependence of symmetry inferences in more detail by attempting 

to classify certain well-known inferences in a formal way.  

• Deductive inferences — such as those cited in §2.1 concerning chemical bonding, 

spectroscopy, and the permissibility of symmetries in crystal lattices — are all 
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formally valid. That being the case, the warrant for asserting their conclusions then 

depends only on the truth of their premises 

• Abductive (hypothetical) inferences — such as conjectures about the internal 

structure of crystals on the basis of observational data on crystal properties — are not 

formally valid. Their conclusions are not warranted by logic but have to be tested 

empirically. Even then, any corroborated conclusions remain underdetermined by 

observational data, since many hypotheses would be consistent with it. It would be 

very useful to have a formal ‘logic of discovery’ to funnel one’s conjectures towards 

those with the highest prospects of being corroborated empirically. However, no such 

formal logic has been found, nor is there any reason to believe that one might be.  

• Inductive arguments are likewise not formally valid. And again, there are no formal 

rules either for distinguishing strong from weak inductive inferences, nor any reasons 

to think that any are possible. Chapter 2 highlights a famous inductive argument that 

concerns symmetry, namely the argument Louis Pasteur (1822-1895) made, on the 

basis of a very small sample, to associate molecular asymmetry, living processes of 

production, and optical activity. 

 If there were a way to distinguish strong symmetry arguments from weak ones, it 

would depend on what one is talking about, the concepts used and the domain of their 

application. Any such way lies in the realm of material logic, the inferential practices of 

historically situated inquiries, and it has to be discovered empirically. A warrant for 

material inference then would be an explanation for the degree of inferential success 

realized or expected. For syllogisms, warrants are found using formal techniques and 
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expressed in terms of rules. But for symmetry inferences, because they are material 

inferences, we need to seek explanations empirically in terms of the inferential practices 

of inquiry. As inquiry is historically situated, any such explanations would be historical 

too.  

 I distinguish below three kinds of material warrant, i.e., three kinds of explanation, 

each corresponding to the success of a different kind of inference. (Although I express 

and illustrate each of them in relation to symmetry, warrants of these kinds could be 

developed for other kinds of material inference as well.) 

Projectable Warrants 

 The first, which I refer to as the projectable warrant, is the explanation for the 

continued success of repeated applications of what is recognizably the same inferential 

practice within a research program at a given stage of its development. This warrant 

cannot, of course, depend on a formal analysis of the propositions used but must depend 

on context of the inquiry in which those propositions find their meaning. In §2.4, I 

illustrate how this works using the example cited earlier of Pasteur’s famous induction of 

1860 that associated lack of symmetry in molecular and crystal form with living 

production processes and resultant ability of solutions to rotate the plane of polarization 

of light. Pasteur’s inference was clearly a material inference. (As a material inference it 

was also fallible; this is illustrated by the fact that Pasteur’s first attempt was to argue on 

the basis of the concept of form, a basis he had to discard in favor of the concept of 

symmetry when inferential success eluded him.) The same inference pattern continues to 

apply to substances other than the particular ones on the basis of which the original 
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inference was made. In that sense, it is “projectable.” Inspired by Pasteur’s experience, 

Ian Hacking’s concept of self-vindication in experimental practices, and Bas van 

Fraassen’s selectionist explanation for the success of science, I set out to account for the 

projectable warrant of symmetry inferences in terms of conceptual co-adaptation. I seek 

evidence in the historical records for the mechanisms by which the symmetry concept has 

been adjusted over time and in tandem with the science it supports. 

Evolvable Warrants 

 The second, which I refer to as the evolvable warrant, is the explanation for our 

continued success in developing new projectable warrants on the basis of concepts that 

are recognizably variants of earlier concepts of symmetry. These variant concepts differ 

from the earlier ones, of course, but there is a continuity as well that we recognize by 

calling all of them symmetries. Unlike the projectable warrant, which applies at a 

particular stage in the development of a research program, the evolvable warrant stretches 

over time as new problem situations arise.  

 I draw an analogy between the evolvable warrant of symmetry (i.e., its ‘surprising’ 

utility) and two other evolvable warrants that have already been addressed in the 

literature: that for the ‘miraculous’ success of science and that for the ‘unreasonable’ 

effectiveness of mathematics. The most promising explanations given for the latter two 

were based on selection. Below, I speculate on a similar mechanism for the evolvable 

symmetry warrant too.  

Transferable Warrants 

 The third warrant, which I refer to as the transferable warrant, is the explanation for 
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successful transfers of symmetry reasoning from one domain to another. Perhaps these 

warrants are rooted in shared laboratory cultures or perhaps in analogous relationships 

among system elements in both the source and target domains. Transfer is clearly what 

Pierre Curie had in mind in his 1894 paper  — transferring inferential forms from 

crystallography to other physical sciences, specifically electricity and magnetism outside 

crystal boundaries. In the twentieth century it has been abundantly evident that the 

transfer of symmetry reasoning among the physical sciences has often been very 

successful. Although transfer warrants are beyond the study period of this thesis, which 

ends with Curie’s paper, they are important enough to merit investigation in their own 

right.  

The Historical Development of Symmetry 

 In Chapter 3 I focus my attention on where the evidence for the mechanisms 

underpinning symmetry warrants may lie. Inquiry comprises practices and these have a 

history; I therefore need to examine the inferential practices that involve symmetry over 

time. Building on the claim, which has been accepted since Curie’s time, that the 

scientific concept of symmetry emerged in nineteenth-century crystallography, I focus 

my case study on this field and on this time period. That scope is enough to evaluate the 

empirical thesis of conceptual co-adaptation and to evaluate plausible rival claims of non 

co-adaptation that are based on developments in associated branches of contemporary 

mathematics.  

 There are no historical epistemologies of symmetry that I can use directly for my 

case study on the inferential uses of symmetry, even though there are several excellent 
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histories of symmetry written for other purposes. I aim to model my effort therefore on 

the best-practice historical epistemologies about concepts related to symmetry, such as 

objectivity and probability, and to treat the similar kinds of issues. 

Inferential Practices 

 Best-practice histories of epistemic concepts show how practices give meaning to 

concepts. To use that observation in the case of symmetry, I focus on the practices of the 

main protagonists in nineteenth-century crystallography, René-Just Haüy (1743-1822) 

and Christian Samuel Weiss (1780-1856), and to some extent on those of their 

predecessors, associates, and successors. Groups of related practices constitute research 

programs; to facilitate the analysis of research programs, I borrow a number of 

distinctions and conceptual resources from Imre Lakatos (1922-1974) who, unlike Karl 

Popper and Thomas Kuhn, the most renowned of his rivals, takes a historical approach 

without sacrificing conceptual continuity in successive programs and he adopts the 

research program as the unit of analysis rather than the individual theory or claim.  

Conceptual Continuity 

 Best-practice histories also show that there are conditions that allow one to say of a 

concept that it has a history. That is, they distinguish between an identifiable concept 

changing over time and a series of unrelated concepts succeeding one another. That will 

be important for symmetry, as it does seem that variants of the symmetry concept have 

been used sequentially; I will therefore need to show where successive concepts are 

similar — and to be aware of where they are different in order to minimize the danger of 

inadvertently and inappropriately ‘dragging’ the properties of an earlier conception of 
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symmetry to a later one.  

Mechanisms of Change 

 Lastly, the best-practice histories generally posit mechanisms to explain the 

stability of, or changes in, a concept or inferential practice over time. It is crucial for 

establishing a projectable symmetry warrant, conceived as an account of material 

inferential success, that we can do this. This means, first, establishing that the inferential 

practices are in fact successful and, second, identifying mechanisms for the adjustments 

that entrench successful practices or lead us away from unsuccessful ones.  

 Inferential practices are successful if they lead to successful inferences whose 

success is both general and principled. First, while any single inference is successful if 

observed data match its conclusion, an inferential practice would need to be generally 

successful. (Lakatos is again helpful in this regard because of his acceptance of the 

research program as the unit of analysis, rather than an individual model or single 

experiment.) Second, for inferential success to be a useful criterion, the matching of 

observations to conclusions has to be done in a principled (i.e., non-arbitrary) way. This 

is an important caveat, one we owe to yet another distinction that Lakatos draws. This is 

the distinction between the ‘hard core’ of the research program (the key commitments 

and practices that define the program and which are therefore strongly defended) and the 

‘protective belt’ (various ancillary assumptions, some of which could be sacrificed if 

necessary to defend the hard core). Lakatos rightly recognizes that vastly more 

observations can be ‘matched’ to model outputs if we were licensed to make arbitrary 

adjustments to the protective belt. Typical appeals to the protective belt include 
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assumptions about the range of experimental errors likely to be encountered, claims about 

observations that are actually artifacts of the instruments used, and the uniformity or 

irrelevance of other experimental conditions. But for inferential success to be at all 

useful, such appeals have to be principled, i.e., restricted to those based on sound 

scientific grounds according to principles that are themselves general (rather than ad 

hoc). When this can be done, we have what Lakatos terms a progressive research 

program. Where it cannot, we have a degenerating one. In his framework, inferential 

failure is not a simple mismatch between an inference and observational data but the 

inability to make such matches other than by appeal to arbitrary or scientifically 

unwarranted assumptions or to ad hoc adjustments to the protective belt. Such 

degeneration often presages a problemshift, the construction of a new research program, 

with its own ‘hard core.’ There is historiographical evidence for the progressiveness or 

degeneration of the research programs in the study period. 

 The mechanisms of conceptual adjustment we are looking for are those that 

entrench successful inferential practices or lead us away from unsuccessful ones. I shall 

not dwell on ‘external’ mechanisms that may have temporarily shaped research programs, 

such as career opportunities, funding sources, and personal traits; in the case of 

crystallography, for instance, Franco-German nationalist rivalry in the Napoleonic era 

and Haüy’s well-known resistance to criticism certainly played such as role. Rather, I 

will focus on the more enduring factors affecting the scientific problem situation itself, 

such as the increasing precision of instruments and newly discovered physical 

phenomena.  
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 Taking a research program approach keeps open the hypothesis that it was the 

entire research program, including the scientific model in which the symmetry concept 

was embedded, that is responsible for inferential success or failure — not just the 

symmetry concept in isolation. That is, inferential success is due to symmetry’s 

co‑adaptation, not just its adaptation. Needless to say, if the historical record were to show 

that the full burden of conceptual adjustment fell on the scientific model, that no burden 

fell on the concept of symmetry, or that any adjustments in the concept of symmetry were 

fully accounted for in some other way, such as by mathematical research programs alone, 

this hypothesis would be disconfirmed.  

Historiographical Issues 

 In addition to these best-practice considerations for a historical epistemology, one 

needs to be aware of potential historiographical pitfalls.  

 One pitfall is anachronism. While there is always a general risk of inadvertent 

anachronism, there are some specific issues in the case of crystallography that are worth 

noting. In §3.5, I raise ones about the nature of that science, the use of terms like ‘atom’ 

and ‘molecule,’ and the historical ambiguity in the term ‘form.’  

 Another pitfall is rational reconstruction. This is the risk that a historical 

epistemology will slip into being a history that not only highlights the inner logic of the 

discipline but that in doing so it actually misrepresents the chronology or historical 

processes. In §3.5, I set out the situations where rational reconstruction is not only 

legitimate but also useful; history, though, is not one of them. I have two reasons for 

raising this issue explicitly. The first is that I have made free use of many of the 
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conceptual tools of Lakatos; since he is sometimes interpreted as espousing the rational 

reconstruction of history, it is important to say that this is not my aim here. The second is 

that, because I borrow certain categories and distinctions from Lakatos, I may be 

inadvertently imputing the use of such categories and distinctions to the historical actors I 

describe. The most important of these worries is about the process of conceptual 

adjustment. There is historiographical evidence though that contemporary reviewers of 

crystallography research also evaluated rival research programs in this way, i.e., that they 

preferred research programs with fewer ad hoc assumptions to ones with more. 

The Empirical Construction of Symmetry 

 The case study in Chapter 4 shows, as Curie implied, that the concept of symmetry 

emerged and developed in nineteenth-century crystallographic research programs and 

that because this concept co-adapted with empirical science to maximize inferential 

success, the inferences made on the basis of that concept, although fallible, are 

empirically warranted. The study also discredits claims that the scientific concept of 

symmetry was a mathematical one that had been transplanted from mathematical 

research programs.  

 The historical case material is presented as a historical epistemology that tries to 

emulate the best practices listed above, namely those that reveal inferential practices, 

conceptual continuity, and the mechanisms of change. I analyze a sequence of research 

programs in crystallography according to a broadly Lakatosian framework by: situating 

each historically; identifying the problem situation and the symmetry concepts used; 

articulating the positive and negative heuristics defining the program, especially those 



14 
 

concerning the treatment of anomalies; and noting any progressive or degenerating 

features that could have prompted the adaptations maximizing inferential success. 

Crystallography 

 I begin the case study with a brief survey of the state of crystallography just prior to 

the nineteenth century. This is because those pre-scientific programs bequeathed the 

scientific ones that followed both with a problematic that served throughout the 

nineteenth century and with conceptual resources on which they could draw. The 

important problems for crystallography had long been:  

Why do crystals have the number and variety of shapes they do?  

How can crystal shapes be classified?  

What is the relationship between crystal properties and their inner 

structure? 

The most important conceptual resources offered were the concept of symmetry (albeit an 

aesthetic one concerning fitting proportions that had normative force) and the concept of 

substantial form (the form that makes something the thing it is, as opposed to its merely 

‘accidental’ features).  

Projectable Warrants 

 Instead of summarizing in this prologue all aspects of the research programs 

covered, I will focus selectively on the mechanism driving change in the concept of 

symmetry. All the crystallographic programs addressed the degeneration in rival 

programs as well as any perceived in their own. Evidence of degeneration is found in the 

arbitrariness of program specification and in the maneuvers made to protect the ‘hard 
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core’ from anomalous observations. Where such maneuvers cannot be made in a 

principled way — if, say, one has to resort to using many brute facts, free parameters, ad 

hoc assumptions, or arbitrary postulates to do so — the research program is clearly 

degenerating and this presages its ultimate replacement. Concepts of symmetry may be a 

useful defensive maneuver because they offer ways to deem otherwise disparate features 

equivalent, thereby at least reducing the number of free parameters needed to specify a 

system. 

 Jean-Baptiste Louis Romé de l’Isle (1736-1790) had already attempted to reduce 

crystallographic arbitrariness towards the end of the eighteenth century.  He proposed a 

way to reduce the vast number of observed crystal shapes (each of which was otherwise 

just a given) through making a principled distinction between accidental and substantial 

forms. He had observed that crystals had natural cleavage planes and that their shapes can 

be altered in lawlike ways by beveling edges and truncating corners. Such alterations in 

the shape were of course ‘accidental’ in that they did not change either the composition 

or any other properties of the crystal. Despite this insight, his program was roundly 

criticized for its own arbitrariness: the initial choice of a primitive form.  

 Haüy, by contrast, offered a model of internal structure that explained the observed 

crystal shapes and explained why the vast majority of conceivable shapes do not occur in 

nature. His model was a ‘molecular’ account; crystals were regarded as assemblies of 

identical building blocks (primitive forms) stacked up in lawlike ways. That meant that 

researchers would no longer have to accept each crystal shape they observed as just 

another brute fact. Furthermore, Haüy’s primitive forms purportedly escaped from the 
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arbitrariness of his predecessor’s primitive forms. That was for two reasons. One was that 

Haüy had an empirical method that he claimed could determine primitive form — 

repeated cleavage, a process that typically resulted in an asymptotic form, one that no 

longer changed. The other reason was that, as he later posited, an aesthetic symmetry 

supposedly limited  and explained the range of primitive forms that could be found this 

way. This model made the testable prediction that the permissible crystal shapes were 

those that could be generated by stacking blocks of a particular size and a particular 

primitive form; given an empirically determined primitive form and a postulated way of 

stacking them (a ‘Law of Decrement’) he could predict which shapes would, and which 

would not, be possible in nature. Haüy’s program was theoretically progressive because it 

reduced the number of arbitrary parameters and it was empirically progressive to the 

extent that its predictions about shape were (initially) empirically corroborated. Haüy’s 

program though became a degenerating one when precise measurements required 

abandonment of his aesthetic symmetry and once it was clear that newly studied crystal 

phenomena, particularly those with directional attributes, could no longer be absorbed in 

his model in a systematic way. 

 Subsequent research programs in crystallography proceeded through much the 

same cycle — a progressive change in the way of viewing the problem situation that 

eliminated or reduced the arbitrariness of the preceding program; a new heuristic that 

included the use of a revised concept of symmetry; anomalies and appeals to the 

‘protective belt.’ I trace the successive research programs of Weiss and other members of 

the German school, and of some later researchers in the French tradition before the time 
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of Curie.  At each step, not only was the concept of symmetry refined, but also the tacit 

understanding of its application was strengthened. The reliability of symmetry inferences 

thus improved through continual adaptation. 

Rival Claims that Symmetry Warrants are Mathematical 

 I then pause to consider rival claims that symmetry warrants are not empirical, as I 

have argued above, but mathematical. The grounds for these claims are that the concept 

of symmetry originated in mathematics and that it belongs in that field of inquiry. I 

articulate what I take to be the most plausible variants of this claim. All but one of these 

claims is, to my knowledge, implicit. But because they are widely held and quite 

plausible they need to be examined explicitly. 

 The first claim (one that has been advanced in the literature) is that the scientific 

concept of symmetry arose in solid geometry, where the French mathematician Adrien-

Marie Legendre (1752-1833) defined it in 1794. However, apart from the timing of 

Legendre’s definition (just before Haüy’s scientific program in crystallography) and its 

resemblance to modern definitions, there is no historiographical evidence of its 

application to or influence on the empirical progress of crystallography in the early 

period (1801-1830) in which various concepts of symmetry were adopted. In any case, 

Legendre’s definition of the concept of symmetry differs from the ones used by the 

earliest crystallographers: his definition concerns the conditions under which two three-

dimensional shapes that are not superimposable are nevertheless deemed equivalent, and 

that concept was not used until much later (by Pasteur). 

 The second claim (one that is probably more widely held) is that the scientific 
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concept of symmetry arose in group theory, where another French mathematician had 

developed principles of symmetry inference, Évariste Galois (1811-1832). This claim 

also has initial plausibility, especially if we recall just how pervasive group theory has 

become in the physical sciences. But group theory was not available before 1830 (that is, 

after concepts of symmetry had developed in crystallography) and not widely used in 

crystallography until much later in the century. (We must be careful not to accept the 

rationally reconstructed group-theoretic accounts of early crystallography as being 

historically literal.) 

 The last mathematical claim I examine concerns vector analysis, whose role in 

shaping the symmetry concept is a little less direct. On the one hand, vector analysis is 

closely related to an important symmetry operation used in theories of the physical 

sciences (namely, the operation of rotation). This is because vector analysis generalizes 

the formalism used for describing and manipulating rotations in two dimensions into a 

formalism that can be used in three dimensions. On the other hand, the origins of vector 

analysis are indisputably mathematical — it arose in a research program in number 

theory. But, ironically, what may seem like a triumphant mathematical warrant, is 

actually a further testament to the role of empirical science in shaping the concepts the 

sciences use. This is because the original (mathematically derived) vector analysis was 

not merely cumbersome; its interpretation in terms of three-dimensional space was 

disastrously inept. So much so that the vector analysis used in the sciences today is a 

bespoke one, completely rebuilt with a scientific purpose in mind by physicists in the late 

nineteenth century. 
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 In short, the concept of symmetry used in the physical sciences developed in 

response to the inferential needs of the sciences, initially those of crystallography. It did 

not develop in response to any purely mathematical imperatives,  

Conclusion 

 The case study shows that material warrants for symmetry inference can be 

expressed in terms of inferential practices and conceptual adaptation. I was able to track 

the role of symmetry in the development of crystallography and also to characterize 

changes in the symmetry concept as responses to selective pressures on research 

programs to mitigate arbitrariness. 

 As discussed in Chapter 5, additional lessons can be drawn from adventitious 

findings and from reflections on the development of symmetry over time. An important, 

but unanticipated, lesson is that as symmetry concepts rose in importance, ontological 

commitments declined. Aesthetic and geometric concepts of symmetry initially had 

instrumental roles: for Haüy they were in the protective belt to defend a particular 

molecular theory of matter. But later the algebraic concept used in Weiss’s rival research 

program was eventually what came to define it, not the metaphysics that had originally 

inspired it. One salutary effect of this ‘ontological restraint’ was that experimentalists had 

more freedom to collaborate and make progress without having to defend a metaphysical 

position. This, for example, led to a fruitful union between crystal lattice theory, the ghost 

of French molecularism, and mathematization, the ghost of German polar theory. Another 

salutary effect was that considerable progress could be made even in the absence of a 

theoretical understanding of matter, electricity, and light. To that ‘principled ignorance’ 
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we owe the discoveries of optical isomerism by Pasteur in 1848 and piezoelectricity by 

the Curie brothers in 1880.  

 The historical procedures described in this case study were used to establish the 

projectable warrants but, as I speculate in the concluding chapter, could equally well be 

applied to establishing the others (§5.4). It behooves us to understand the nature of 

symmetry inference as well as we can, not only because the philosophical payoffs could 

be significant, but because the symmetry-based investments and research efforts in the 

sciences are large.  
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1. THE CONCEPT OF SYMMETRY 

 In this thesis I examine the warrants for symmetry inferences in the physical sciences. 

For orientation and motivation, I consider in this first chapter some commonly 

encountered features of the concept of symmetry used in such inferences and offer 

samples of historically influential symmetry inferences in the physical sciences.  

1.1 Some Common Uses of Symmetry 

 To indicate the scope of this study, I note some of the ways the concept of symmetry 

is encountered. These illustrations are informal and provisional, merely to provide initial 

orientation. Nevertheless they should alert us to the occurrence of common features in the 

way symmetry is used, which would make it useful to consider how they might be related 

historically. They should also alert us to the concomitant danger that features properly 

ascribed to one way of using symmetry might, on occasions, be inadvertently and 

incorrectly ascribed to another. 

 Typically, when we pose questions of symmetry, we assume some kind of common 

basis for the measurement of multiple elements and have some kind of judgment in mind. 

But there are many different ways in which this is achieved. Imagine the elements are the 

separate features of a building, various triangles in a plane, or alternate visual 

perspectives of a crystal. We may be relating those elements alternately in terms of their 

proportionality, their ability to be superimposed, or the prospects of transforming one into 
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another by some mathematical operation or change of perspective. Depending on whether 

that relationship is seen in a particular case to be ‘ideal,’ ‘exact,’ ‘indistinguishable,’ or 

whatever, we may then judge the object or set of objects to be ‘elegant,’ ‘congruent,’ 

‘equivalent,’ and so on. The end result is normative: the object is praiseworthy or the 

inference merits acceptance, say. 

 To understand the search for warranted assertability more concretely, note the 

different ways in which we commonly regard symmetry: 

• Symmetry has long been regarded aesthetically. Consider, for example, the parts of a 

building (architectural features such as doors, windows, ceilings, and so on). The 

scale and positioning of these elements can be measured and the stipulated 

relationship we are interested in is proportionality. The measured ratios of various 

elements to other elements can be compared to those constituting ‘ideal’ balance. If 

the ratios are close to ideal, the elements may be judged ‘appropriate’ and the 

building as a whole ‘elegant.’      

• Symmetry is often interpreted geometrically. Consider, for example, triangles in the 

plane. Let us move them around and try to superimpose one on another. When the fit 

is exact, the triangles are ‘congruent’ and we infer that geometric properties of one 

apply equally to the others. This is an example of an early technique known to the 

ancient Greeks as “an ὲφαρµόζειν proof — superposition — literally placing one 

thing on top of the other to show equivalences” (Hahn 26-27). We now take such 

symmetry inferences for granted. 
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• Symmetry is sometimes meant algebraically, as a transformation of one’s visual point 

of view. Consider the different perspectives one can have of one and the same near-

perfect snowflake. The stipulated relation in this case is a ‘transformation of the 

coordinate system,’ that is, a particular change of viewpoint, such as a rotation 

through successive angles of 60° about an axis perpendicular to and through the 

center of the snowflake. In this particular example, we would judge the snowflake’s 

appearance (or some other measurable property) after each such rotation to be the 

same; we would say that the snowflake has ‘sixfold rotational symmetry’; and we 

would refer to the transformation of viewpoint itself as an ‘invariance.’ An object 

without any algebraic symmetry in this sense will look the same only if we do not 

change our perspective at all. An object without algebraic symmetry could still be 

said to be symmetric in a geometric sense though, provided it had been assembled 

from congruent (geometrically identical) parts — cubes, say. 

• Symmetry can be exhibited logically. Consider representations of two separate 

problems within the same scientific model. For the sake of definiteness, assume the 

problems are to calculate the shortest distance between two specified points. The 

representations of this problem comprise only those aspects of the problem situation 

that are deemed to be ‘relevant’ to the solution, i.e., they disregard certain features 

(like the color of the object) in some principled way. The remaining features are 

presented on a common basis, their logical or mathematical form. The stipulated 

relationship is one of comparison. If the representations meet the criterion of 

equivalence (that of being ‘essentially the same problem’) we would claim that the 
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problems are ‘symmetric’ (that is, have ‘essentially the same solution’ too). The use 

of symmetry arguments like this are of great practical importance when a hard 

problem and an easy one are symmetric in this sense.1 

 The idea of symmetry implicit in scientific literature today generally follows the 

algebraic conception, although most are rather opaque until actual examples are treated. 

One example, from a theoretical physicist, is: “Symmetry is immunity to a possible 

change” (Rosen 2010 Symmetry Rules Sn. 1.1, p4; Sn. 12.1, p283). A fuller description 

comes from a chemist:  

An action that leaves an object looking the same after it has been carried 

out is called a symmetry operation. Typical symmetry operations include 

rotations, reflections, and inversions. There is a corresponding symmetry 

element for each symmetry operation, which is the point, line, or plane 

with respect to which the symmetry operation is performed. (Atkins, Sn. 

11A.1, p448) 

French mathematician, Adrien-Marie Legendre (1752-1833) offers yet another: “Two 

equal solid angles which are formed (by the same plane angles) but in the inverse order 

will be called angles equal by symmetry, or simply symmetrical angles” (Legendre 

[1794] 1817, p.155 ; qtd. In Hon, From Summetria 2), purportedly a definition of 

symmetry that is id entified by Hon and Goldstein as “revolutionary” (From 

Summetria 2). More recently, German mathematician Hermann Weyl (1885-1955) 
                                                
1  This illustration is based on an example described in much more detail by van 

Fraassen in Laws and Symmetry (234-39). 
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retroactively defines symmetry in terms of its recent mathematical expression in terms of 

group theory (45); a paraphrase of his definition that leaves out the technical terms is: 

“For a given configuration of the elements of a system, those transformations that leave 

the system unchanged form a group and that group exactly defines the symmetry 

possessed by the system.”  

 We can reserve judgment on the various conceptions of symmetry till later; for now 

let’s just take note of a few claims supposedly based on inferences made with those 

conceptions. 

1.2 Sample Inferences Based on Symmetry 

 The following is a sample of historically influential arguments that were based on 

symmetry. These are not ‘paradigms’ in the sense of examples that should be followed; 

indeed, many are no longer convincing and some of the claims are known for other 

reasons to be false. But they have nevertheless motivated the search for general symmetry 

principles and several even create a sense of wonder. They have been selected in part to 

represent a wide range of arguments and in part to highlight important differences — 

some arguments appear a priori and ‘obvious,’ while others lead one to view certain 

empirical outcomes as ‘counter-intuitive.’ 

 Anaximander of Miletus (ca. 610 - ca. 546 BCE) inferred that the Earth is stationary 

because of a logical equivalence: it is equally distant from the ‘extreme points’ and so 

any argument for it to move in one direction is logically symmetric to any argument for it 

to move in another direction.  Aristotle gives us this summary: 
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[T]here are some, Anaximander, for instance, among the ancients, who say 

that the earth keeps its place because of its indifference. Motion upward 

and downward and sideways were all, they thought, equally inappropriate 

to that which is set at the centre and indifferently related to every extreme 

point; and to move in contrary directions at the same time was impossible: 

so it must needs remain still. (De Caelo 295b 10-16; DK 12A26) 

Anaximander’s conclusion, although disputed by many, persisted for thousands of years 

(whether or not that was because of his argument). While it is easy to dismiss it now as 

being silly, given our post-Copernican knowledge, the argument is very interesting 

methodologically as it is not superficially all that different from more recent arguments in 

other material contexts, like probability theory and particle physics. 

 Archimedes of Syracuse (288 - 212 BCE) invoked a similar principle of inference to 

support his postulate about the balance, namely: 

1. Equal weights at equal distances are in equilibrium, and equal weights 

at unequal distances are not in equilibrium but incline towards the weight 

at the greater distance. (Heath 189) 

On the one hand this seems like a trivial example of logical symmetry: whatever 

argument one can make for a balance with equal weights at equal distances from the 

fulcrum to tilt down on the right (say) can be made equally strongly for the balance to tilt 

down on the left. Other reasoning however shows that if the balance arm moves down on 

the right it would have to lift up on the left. But (to recycle Anaximander’s words) “to 

move in contrary directions at the same time is impossible,” so one can infer from the 
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symmetry of the way the problem is described2 that the arm must remain in equilibrium. 

Yet on the other hand it seems surprising: Archimedes succeeded when Anaximander did 

not. Archimedes did not use nor did he apparently need any empirical understanding of 

gravity (other than the fact that it acts downwards). By using various postulates like the 

one above he could develop a science of mechanics that seems entirely a priori.3 The 

system was devised in the spirit of Euclid’s deductive method, but was nevertheless 

immensely useful in practice. Can one dream of a foundational physics that is entirely a 

priori? 

 Hans Christian Ørsted (1777-1851) also took a risk on the way forces operate but, 

unlike Archimedes, his symmetry-based conjecture was not borne out. His famous 

experiments were designed to detect the effect of forces generated by an electric current 

on a magnetic needle. The magnetic needle of a compass aligns itself in a north-south 

direction with the Earth’s magnetic field and gravity of course acts vertically down. 

Ørsted considered the case of an electric current running from south to north, above and 

parallel to the compass needle and inferred, from the symmetry of the situation, that the 
                                                
2  In the implicit model of the system, there are a number of potential asymmetries that 

are not ‘relevant to the solution’ and which can therefore be ignored, e.g., if it were the 

case that the color of the arm on the right is red and the arm on the left is blue. 

3  No one would ever request a grant from the National Science Foundation to test 

Archimedes’ balance postulate for 10 lb. cannonballs, 20 lb. cannonballs, and so on. But 

is this because his answer is obvious a priori or because the operations of gravity have 

been so thoroughly corroborated empirically? 
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current’s effect (if any) on that needle would obviously be in the same vertical plane: any 

argument he could make for it to move right (say) he could make equally well for it to 

move left. Hence, one would conclude, the needle can move neither right nor left but only 

up, down, forward, or backward. Reportedly, Ørsted wasted eight years on other 

experimental configurations until a chance ‘mistake’ revealed that the needle actually 

moves left (Altmann 32). The physicist Ernst Mach (1838-1916), who had reflected 

deeply on the Archimedean system, warned that we should not be led by its success to 

“create a new mysticism out of the instinctive in science and to regard this factor as 

inevitable” (27). 

Even instinctive knowledge of so great logical force as the principle of 

symmetry employed by Archimedes, may lead us astray. Many of my 

readers will recall, perhaps, the intellectual shock they experienced when 

they heard for the first time that a magnetic needle lying in the magnetic 

meridian is deflected in a definite direction away from the meridian by a 

wire conducting a current being carried along a parallel direction above it. 

The instinctive is just as fallible as the distinctly conscious. (27) 

It does matter how the world is and this historical episode is a paradigmatic way to show 

that this cannot be known a priori. Altmann not only draws attention to this but further 

laments that same error was also committed 130 years later when a certain experiment on 

the radioactive decay was long delayed by “preconceived rather than experimental ideas 

about symmetry” (36), i.e., because the outcome seemed obvious, the way the outcome of 

an Archimedes balance experiment seems obvious. (When the experiment in question 



29 
 

was finally performed in 1957 it strongly contradicted the result expected on the basis of 

symmetry considerations.)  

 Niels Abel (1802-1829) was a mathematician and not required to consult experiment 

before drawing his symmetry inferences. He was concerned with discovering whether 

equations containing algebraic expressions raised to the power of five or more can always 

have solutions. Solutions to quadratic equations (those with expressions raised to the 

second power) had been available since the time of the Babylonians and those of the 

cubic (third power) and the quartic (fourth power) since the Renaissance; explicit 

solutions were available as formulas that used rational numbers as well as ‘radicals,’ that 

is, fractional powers of numbers, like square roots, cube roots, and so on. Abel’s initial 

aim was to find solutions to the quintic (fifth power). Abel inferred in 1824, using a 

reductio argument, that in fact no explicit general solution is possible. In what looks like 

a logical version of the Archimedes’ balance argument, he assumed that if there were 

explicit solutions to the quintic then the symmetry of the permutation of the solutions 

would lead to a contradiction. Recall that for Archimedes a conclusion that was a 

physical impossibility meant ‘no tilting,’ whereas for Abel a mathematical contradiction 

meant ‘no solution.’  

 Today, Abel’s proof is mostly known through the more general and more profound 

symmetry argument provided just a few years later by the French prodigy, Galois. This 

was a triumph of abstract algebra and that algebra is now the language of symmetry in the 

physical sciences, but does the certitude of the mathematics transfer to these sciences?  
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 Some of the arguments above have been empirically corroborated and others have not. 

What distinguishes and warrants the successful ones?  



31 
 

2. THE INFERENTIAL WARRANTS OF SYMMETRY 

 In this second chapter I begin my inquiry into what warrants symmetry arguments 

in the physical sciences (i.e., what makes them so surprisingly effective) by clarifying 

what a symmetry argument is and by clarifying what would constitute a warrant for 

asserting its conclusion.  

 First, given the variety of questions one can ask of symmetry inferences, I try to 

classify inferences we might encounter (§2.1). I note that formally valid syllogisms 

cannot cover the scope of what would be needed for scientific inquiry. One initial 

response to this is to re-arrange the propositions that constitute a syllogism, the way 

Peirce does, in order to bring abduction (conjecture) and induction into the classificatory 

scheme as well. But I note that this will not bring symmetry inferences into a formal 

scheme because, as is generally accepted, there are no formal warrants for abductive and 

inductive inferences nor any reason there ever will be. I illustrate this in the case of 

symmetry inferences.  

 Second, I argue that warrants are grounded in material logic. Material logic is not 

universal; it is dependent on the domain of use or discourse. Inferential practices are 

warranted empirically and in turn give meaning to the concepts, like those of symmetry, 

used in the inferences made (§2.2). 

 Third, I distinguish types of material warrant we have been seeking. Symmetry 
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inferences are material and historically situated and their warrants will be based on 

reliable inferential practices. What I term the ‘projectable’ warrant is what justifies the 

repeated use of a particular symmetry concept in inferences. What I term the ‘evolvable’ 

warrant is what justifies the repeated modification of the symmetry concept to 

accommodate changes in the inferential needs of an evolving science. And what I term 

the ‘transferable’ warrant is what justifies the transfer of modes of symmetry inference 

from one domain to another. In this thesis, the case study material demonstrates the 

operation of the projectable warrant and provides grounds for speculating about the 

mechanisms underpinning the other two.  

 Finally, I provide examples to illustrate what would be expected of such warrants. I 

consider how the history of adaptation of the symmetry concept underpins the projectable 

warrant, using the symmetry argument made by Pasteur (§2.4). I then consider how 

mechanisms of conceptual adaptation could underpin the evolvable warrants in symmetry 

and in two conceptually parallel cases, one concerning the success of science and the 

other the effectiveness of mathematics (§2.5). I do not consider the transferable warrants 

explicitly, as they are beyond the scope of this study, but make some remarks in the 

concluding chapter. 

2.1 The Classification of Symmetry Inferences 

 Traditionally, an argument comprises premises and an inference that purportedly 

warrants a conclusion. When the premises are ‘true’ and the inference is ‘valid’ we 

regard the argument overall as ‘sound.’ Aristotle classified the inferences that were valid 

in virtue of their form. This classification, however, does not cover the full scope of 
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inferences we typically make in scientific inquiry; for example, generating a scientific 

hypothesis and testing its predictions against observations involve probabilistic 

inferences that cannot be formally valid. 

 Because traditional argument forms do not cover the full scope of inferences used 

in scientific inquiry, Charles Sanders Peirce (1839-1914) introduced a broader 

classification of inferences that do (C.P 2.619ff). In his formal schema there are three 

phases of scientific inquiry (conjecture, prediction, and confirmation) and these phases 

are associated with distinct types of inference (abduction, deduction, and induction, 

respectively). Those inference types can be expressed as re-arrangements of the 

propositions of a traditionally valid deductive syllogism (major premise, minor premise, 

and conclusion). According to Peirce, we begin inquiry with abductive inference, when 

we move from particular observations to an explanatory hypothesis. We then use 

deductive inference to determine a range of observational consequences of that 

hypothesis, consequences that would correspond not only to the original observations but 

also to newly predicted ones. Finally, we use inductive inference once experiments have 

been performed to determine whether the sample observations can confirm the wider 

population of deductive consequences. Only deduction would be formally valid of 

course, so we still need a basis for judging the validity of abductive and inductive 

inferences. Providing such a basis presents well-known problems for scientific inference 

quite generally, but we can see how it plays out specifically in the case of symmetry 

inference in the following illustrations. 
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Deductive Inferences 

 Deductive inferences, in the Aristotelian sense in which they are formally valid, do 

not in themselves pose any philosophical issues specific to the use of the symmetry 

concept in the physical sciences. This is because their validity would not be affected by 

replacing references to symmetry with placeholders: the soundness of symmetry 

arguments employing a valid deductive inference depends solely on the truth of the 

premises. 

 To see this, consider the role of symmetry arguments in chemical bonding as an 

example of deductive symmetry inference. This argument is rather technical, but the 

essence is given as follows. In the quantum model, atomic bonds are possible only where 

the electron orbitals of the bonding atoms positively overlap, i.e., where those 

overlapping orbitals represent some finite probability of the electrons’ being between the 

atoms. This is expressed mathematically in the theory as the condition that the integral 

over space of the overlap function is non-zero. Quantum mechanical calculations are 

typically very difficult, but there are mathematical techniques, based on symmetry 

considerations, that can show in advance that particular overlap integrals will necessarily 

be zero. In such cases, one can avoid what in general would be very arduous calculations 

and reliably state that those overlaps do not represent chemical bonds. Thus: from 

premises about symmetries of the electron orbitals we can make deductive inferences 

about bonding; but the empirically relevant issue is how we arrived at those premises in 

the first place, not how we then use them in deductive inferences like those above.  

 A similar example is the symmetry argument that has been so successfully 
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deployed in spectroscopy. Electromagnetic waves are absorbed and emitted by atoms and 

molecules when the energy of the photon corresponds to the difference in the energy 

levels of their initial and final states. It turns out that energy absorbed in the infrared 

spectrum is associated with the excitation of vibrational states and in the microwave 

spectrum with rotational states of the atom or molecule. Given the empirical model of the 

atom, in order to know whether a particular absorption or emission is possible, we need 

to determine the quantum ‘transition probability’ from the overlap of the initial state, 

photon state, and final state. If this is non-zero, it is possible. But, as in the case of 

chemical bonding, for the mathematical overlap function to be non-zero certain 

relationships between the symmetries of the states must hold.  

 A more dramatic example is provided by the deductive argument associated with 

the discovery of quasicrystals in 1984. Crystals had been regarded as periodic structures 

composed of space-filling building blocks. By then the range of possible symmetries of 

crystals was well known; in particular it was known from the ‘Crystallographic 

Restriction Theorem’ that fivefold symmetry is mathematically impossible. A crystal 

cannot have fivefold symmetry because a unit cell with fivefold symmetry (like the 

dodecahedron beloved of Plato) cannot be stacked up to completely fill space — gaps 

will form between cells.  So when a crystal that was a novel species of an alloy was 

shown, by X-ray diffraction techniques, to exhibit fivefold symmetry it generated the 

same kind of “intellectual shock” that Mach described as the response to the Ørsted 

experiment. Because the mathematics could not be wrong and the deductive argument 

was valid, the feeling was that Nature had somehow defied the principles of logic. But 
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there’s no mystery about any symmetry inference here. What was (unexpectedly) wrong 

with the argument as a whole concerned an implicit premise that was used with a normal 

deductive inference. That faulty premise was that the substance was actually a crystal in 

the special sense of having a periodic structure.  Alloys of the type investigated seem to 

be crystals_ because their regular space-filling structures display symmetries and give rise 

to other crystal-like properties. But they are unlike crystals in other ways: their space-

filling structures involve two and sometimes more types of unit cell and those cells are 

stacked aperiodically. This was all rather new and surprising — so new in fact that even 

the mathematics of aperiodic tiling, the two-dimensional analogue of these structures, had 

not been generally known before the 1970s. 

 Deductive inferences are not symmetry inferences, even when they are applied to 

premises that happen to refer to symmetry, because they do not depend for their validity 

on the concept of symmetry or on any other non-logical concept in the propositions to 

which they are applied.  

Abductive Inferences 

 A scientific inquiry typically starts with abduction,_ a conjecture about what 

explains some otherwise surprising observations from which they would then follow as a 

natural consequence. The conjecture can then be used as a premise for a forward-

direction deductive argument that yields testable predictions.  

 Consider the example of abductively inferred symmetries of internal structure. 

Woldemar Voigt (1850-1919) suggested in 1887, on the basis of crystallographic studies 

that he and others had undertaken, that one could start with observations of the form of a 
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crystal and then abductively infer what are, in effect, its internal structural symmetries. 

These inferred symmetries would then be the basis for deductive inferences about various 

other properties, such as elastic behavior, the conduction of heat, and the propagation of 

light.  As he says: 

Observations have shown that in all known physical properties (e.g., with 

respect to light and heat) crystals possess at least the symmetry of their 

form, and in most cases still higher symmetries. Therefore, it seems 

appropriate to [infer] from the crystalline form the most general law of 

symmetry of the crystalline substance, and to assume that the crystal 

displays the law including the symmetries in all physical properties. 

(Voigt qtd. in Katzir, Piezoelectricity 79) 

In other words, the symmetry of the internal structure is a scientific hypothesis that goes 

beyond what would be expected to follow from the external form alone; it has ‘excess 

empirical content’_ in that it can be used to make novel, testable predictions. Like all 

hypotheses, an initially posited symmetry may need to be modified to improve agreement 

with further observations, such as when we press it to make predictions about physical 

properties other than the ones from which it was abductively inferred. 

 Abductive inferences are not formally valid; their conclusions (which are 

conjectures) are not certain but can be corroborated or challenged by empirical testing. 

One problem is that hypotheses are underdetermined by empirical data. For abductive 

inferences — not just those concerned with symmetry —  it would be useful to have a 

principled way to choose among the various conjectures compatible with the data.  
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Inductive Inferences 

 Inductive inferences also use particular observations to support general conclusions. 

Unlike abductive inferences, these general conclusions are generalizations about 

particular observations rather than explanations of them. Inductive inferences are neither 

valid nor invalid; they are just strong to some degree. Their conclusions are never certain, 

just probable to some extent. 

 I illustrate induction by Pasteur’s famous claim in 1860 that associated asymmetry 

in crystal form with living processes and associated both asymmetry and living processes 

with optical activity, the capacity of a compound in solution to rotate the plane of 

polarization of light passing through it.  Other scientists  

had already drawn attention to evidence that many natural substances — for example, 

camphor, sugars, oils, oil of turpentine, nicotine, and above all tartaric acid itself — 

displayed optical activity in solution, while no inorganic substance had been found to 

possess this property when dissolved. (Geison, Private Science 101) 

Pasteur then added the results of his own experiments on tartaric acid and amyl alcohol. 

By that time, a small number of particular observations had shown that: 

• Some chemical compounds crystallized in two asymmetrical forms that were mirror 

images of each other. 

• Production of these compounds by artificial (i.e., non-living) processes resulted in 

equal quantities of both forms. 

• Production of these compounds by living processes resulted in only one form. 

• If one wants a sample that contains only one crystal form, one could produce it 
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naturally from a living process or, as Pasteur did, by manually segregating the 

crystals resulting from the mixture that an artificial process produces. 

• Solutions of compounds comprising only one crystal form are optically active; those 

containing both forms in equal quantities are not. 

 Pasteur took an inductive leap. “Pasteur,” Geison claims, “very swiftly extended the 

more limited claims … into a fundamental division of the natural world into optically 

active and optically inactive substances” (Private Science 101). It was his work on 

tartaric acid in particular that suggested to Pasteur that nature created optically active 

substances by favoring only one of a pair of symmetric alternative crystal forms for the 

product. Pasteur claimed that 

optical activity and life are somehow intimately associated, and the 

production of a single optically active substance unaccompanied by its 

mirror image is indeed nature’s prerogative except under highly 

exceptional and basically “asymmetrical” conditions. (Pasteur, qtd. in 

Geison, “Louis Pasteur,” 361) 

 Pasteur’s claim is based on an implicit inductive symmetry inference. To make the 

inductive core of the argument clear, and to highlight why this example will challenge 

any purely formal account of the argument’s strength, I need to make some of the 

complicating details explicit.  

• There are at least two arguments here — one connecting living processes to 

asymmetric mixtures of molecules,_ the other connecting that asymmetry to optical 

activity. Let’s simplify by focusing on the symmetry inference, which I paraphrase as: 
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“Only living processes can produce asymmetric mixtures of molecules.” 

• Since only some living processes lead to asymmetry, the universal claim that is most 

obviously a candidate for inductive support is the one expressed as the negative of the 

original claim. That claim is:  

Each non-living chemical process yields a symmetric mixture of 

molecules. 

Therefore, by induction, all non-living chemical processes yield 

symmetric mixtures of molecules. 

Expressed this way, the claim now seems uninformative; it was clearly the surprising fact 

that living processes often yielded asymmetric molecules that begged explanation. 

• In any case, this universal claim is inductively supported by very few particular cases, 

namely the handful of chemicals that Curie and others before him had investigated. 

The inference would be very weak if it had to be warranted by the number of 

confirming cases. 

• Even then the argument is protected by the phrase “except under highly exceptional 

or basically ‘asymmetrical’ conditions,” on the face of it a question-begging move. 

Pasteur makes it clear elsewhere that he does not want to include in the class of ‘non-

living processes’ any artificial ones that use biological feedstock as this could already 

consist of asymmetrical mixtures of molecules — industrial fermentation, for 

example.  

When I affirm that no artificial substance has yet presented molecular 

[asymmetry],_ I mean to speak of artificial substances, properly so called, 
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formed entirely of mineral elements or derived from non-[asymmetric] 

bodies. (Pasteur 21) 

This is actually a very reasonable restriction, but one that can be further specified in a 

non-arbitrary way using background knowledge of the science. 

 Pasteur’s conclusions have since been highly corroborated and are generally 

accepted today, so it is worth reflecting on what warrants his induction. The upshot of 

this brief description of his claim is that it will be hard to gauge the strength of the 

inductive argument without significant recourse to background information about the 

theories and practices of the science concerned — or even to cleanly characterize the 

argument as an induction at all. 

2.2 The Material Logic of Symmetry 

 I noted above that inferences that are necessarily valid in virtue of their form 

cannot, for that reason, be specific either to a symmetry concept or to any particular 

domain of use or discourse. Therefore to determine how considerations of symmetry 

itself warrant inferences we need to focus on non-deductive inferences. But regardless of 

how we classify these non-deductive inferences (e.g., as ‘abductive’ vs. ‘inductive’ or as 

being specific to some part of the process of scientific inquiry) we will still need a way to 

recognize which of them are warranted and which are not. 

 One conceivable approach to finding warrants for such inferences would be to seek 

universal rules that make no reference to any particular domain of use or discourse. 

Although any such rules would govern hypothetical or probabilistic inferences, they 

would nevertheless be formal and a priori. The quest for such schemas though has 
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proved fruitless for both induction and abduction. Despite a vast literature, there is no 

purely formal solution to ‘the problem of induction,’ in either its Humean or modern 

form. (See Norton, “A Material Dissolution of the Problem of Induction.”) Nor is there 

any formal ‘logic of discovery,’ i.e., no formal solution to the problem of abduction 

either. 

 Another, more promising, approach to finding warrants for inference is to seek 

rules that are specific to a particular domain of use or discourse. Peirce, around 1885, 

identified this approach and called it ‘material logic’: 

Formal logic classifies arguments by producing forms in which, the letters 

of the alphabet being replaced by any terms whatever, the result will be a 

valid, probable, or sophistic argument, as the case may be; material logic 

is a logic which does not produce such perfectly general forms, but 

considers a logical universe having peculiar properties. (CP 2.549) 

 Dewey added that such domain-specific rules cannot be a priori but would 

themselves part of the inquiry: 

[A]ll logical forms (with their characteristic properties) arise within the 

operation of inquiry and are concerned with the control of inquiry so that 

it may yield warranted assertions. (Logic 3-4) 

 Material logic in this sense_ could be conceived either as a set of formally valid 

inferences with missing material premises (i.e., as enthymemes) or as a set of material 

rules of inference. Enthymemes would seemingly make an attractive basis for material 

logic on the grounds of simplicity because no additional forms of inference would have to 
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be entertained. But Wilfrid Sellars argued that one need not interpret material logic this 

way. He analyzed six alternate conceptions of the status of material inferences, and 

concluded that material inference itself is as essential to meaning as formal inference 

because “there are an indefinite number of possible conceptual structures (languages) or 

systems of formal and material rules, each one of which can be regarded as a candidate 

…” (337). Furthermore, these candidate schemes would have to compete in “the market 

place of practice” (337). That is, there is no unique system of logical and material 

inferences and concepts that one can know a priori; one discovers the combination that in 

practice works best.   

 Concepts, correlatively, would also be discovered empirically in “the market place 

of practice” as part of the combination of concepts and inferential rules that provides the 

best empirical account of phenomena. Robert Brandom develops this principle of Sellars 

to base his theory of concepts not on some origin in human experience but on the 

inferential roles they play.   

The kind of inference whose correctnesses determine the conceptual 

contents of its premises and conclusions may be called, following Sellars, 

material inferences. (Reasons 52) 

If we follow Brandom, we can thereby make the various scientific concepts of symmetry 

explicit by determining the roles those concepts play in scientific inferences._  

 Concepts are based in the inferential practices of inquiry and for that reason are 

historically situated as well. “Grasping a concept is mastering the use of a word—and 

uses of words are a paradigm of the sort of thing that must be understood historically” 
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(Brandom, Reasons 27). Concepts (and the inferences that imbue them with meaning) 

will also have a history. An appropriate historical epistemology would make that history 

explicit and explain the mechanisms driving historical change and I seek to use one to 

elucidate the warrants for symmetry inference.4  

2.3 The Material Warrants for Symmetry Inference 

 We have demanded the warrants for material inference based on symmetry, so it is 

important to understand what kind of an account of symmetry would constitute a 

satisfactory response. We ask for warrants because we find it surprising how effective 

symmetry arguments have been in the physical sciences despite the fact that their validity 

cannot demonstrated on formal grounds. Offering synonyms for ‘warrant’ would not be a 

useful response; we are not asking for a paraphrase of the original argument but a reason 

to feel confident about the overall process. 

 The early American pragmatist philosophers Peirce and Dewey hint that the 

response we are seeking is a confidence-building explanation rooted in the nature of 

inquiry, the general systems and processes that are applied to making specific material 

inferences. In the spirit of Peirce the warrant we seek for symmetry inferences would be 

an “an explanatory hypothesis” for the “surprising fact” that symmetry arguments are so 

successful — which he would take to mean that such a warrant can only be conjectured if 

its truth would make that success “a matter of course” (CP 5.188-189). In the spirit of 

Dewey, symmetry inferences would have ‘warranted assertability’ insofar as they were 
                                                
4  Ingo Brigandt shows in “Scientific Reasoning” that all scientific reasoning is material 

inference, which is consistent with the position I take in the analysis. 
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made in the context of on-going and self-correcting processes of inquiry. 

The distinction between true and false conclusions is determined by the 

character of the operational procedures through which propositions about 

data and propositions about inferential elements (meanings, ideas, 

hypotheses) are instituted (“Warranted Assertability” 176). 

 Following their lead, our task is to provide a deflationary account of scientific 

inquiry, one where the conclusions of symmetry arguments, while admittedly fallible, are 

nevertheless warranted whenever they follow ‘as a matter of course’ from generally 

reliable procedures. The general success of symmetry arguments would no longer remain 

‘surprising’ nor the occasional lack of empirical corroboration ‘shocking.’ Conceived this 

way, the task is not to further analyze symmetry definitions, concepts, and propositions in 

the hope of ferreting out hidden premises or any other logical connectives that would 

legitimize the symmetry arguments, but instead to provide a convincing account of the 

historical and fallible processes of empirical inquiry and of the material context in which 

symmetry concepts arose, developed, and were successfully deployed. 

 The specific type of symmetry warrant we seek will depend on the type of surprise 

it alleviates. I distinguish three types so that we can see later whether the historical 

epistemology we employ will address factors that are relevant to determining whether 

such warrants exist and how they operate.  

Projectable Warrant 

 Concerning a given research program at any one time, we might wonder why 

symmetry arguments keep generating conclusions that are then empirically corroborated. 
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What is surprising is that the particular concept of symmetry we are using is projectable, 

that is, extendable to instances beyond any that might have been used to posit the 

symmetry in the first place. For example, what is it about geometric notions of symmetry 

that make them so suitable for classifying the external forms of crystals or predicting 

their physical properties? What I call the projectable warrant is the explanation for the 

continued success of repeated applications of what is recognizably the same inferential 

practice within a research program at a given stage of its development.5  

Evolvable Warrant 

 Concerning a given field but over time, we might wonder why symmetry, broadly 

conceived, can continue to be reconfigured to restore projectability in response to an 

empirical challenge (newly discovered phenomena or increased precision in 

measurements, say). Extending the previous example, how has symmetry been able to 

morph from (say) a geometric to an algebraic concept in crystallography? Are these 

concepts variants of the some more basic concept of symmetry? If so, how likely is it that 

future variants will arise in response further empirical challenges as well? What I call the 

evolvable warrant is the explanation for our continued success in developing new 

projectable warrants on the basis of concepts that are recognizably variants of earlier 

                                                
5  A biological analogue of symmetry warrant in this sense is an understanding of the 

fitness of a population in an environmental niche.  
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concepts of symmetry.6 

Transferable Warrant 

 Finally, we might wonder how symmetry inferences honed in one domain can be 

transferred for use in another. We know that since the time of Pierre Curie, if not before, 

they have been. Curie showed that symmetry inferences used in crystallography can be 

used in electromagnetism and other physical domains. What I call the transferable 

warrant is the explanation for successful transfers of symmetry reasoning from one 

domain to another.7 

2.4 Example of a Projectable Warrant: Pasteur’s Claim 

 Having excluded deductive inference for the reasons given earlier, I will seek 

inferential warrants only for material inferences. There are no formal criteria for validity 

for such inferences; instead we need to regard their inferential strength as dependent on 

context and content_  

 I illustrate this with Pasteur’s claim associating asymmetry, life, and optical 

activity. I briefly described this inference above and noted there the difficulty in 

providing a warrant that was formal as opposed to material. I now argue specifically why 
                                                
6  A biological analogue of this warrant is an understanding of the continuing 

adaptability (at least thus far) of a species, through variation and natural selection, to 

respond to the demands of a changing environment.  

7  The biological analogue here is the more abstract notion of an adaptive trait, which, if 

genetically accessible to any species or population, would facilitate its survival and 

reproduction in some given environment.  
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Pasteur’s claim should be regarded as a material one and warranted accordingly.  

 At the time Pasteur made his claim, it was supported neither by a large mass of data 

nor by any formal inductive schema, such as sampling techniques. The credibility of his 

claim continued to increase, but not just because further case material of the same sort 

was amassed nor because there was any critical breakthrough in formal methods of 

inductive analysis. Rather, his claim seemed to draw strength from the advances in 

experimental technique, instrumentation, and empirical knowledge. This suggests that, if 

we are able to warrant it all, we need to regard the claim as the outcome of a material 

induction, one grounded in facts known in Pasteur’s day, even though those facts hold 

only in restricted domains — such as symmetry in the domain of crystallography, optical 

activity in physics, and so on.  

 Certain features of Pasteur’s inquiry provide evidence that his claim was indeed 

based on a material inference and, as will become apparent, these features show how the 

warrant arises. This evidence can be found by comparing the historical development of 

his ideas (recounted in many places, for example, in cited works by Geison, Benninga, 

and Katzir) with the features that Dewey identified as characteristic of a material logic 

(Logic Chapter XXI).  

 One such feature is the presence of a problem context. The context in Pasteur’s case 

was the spectacular advance organic chemistry between 1820 and 1860, the period in 

which Pasteur was working. Unlike inorganic chemistry, which covers a large number of 

elements combined in simple proportions, organic chemistry focuses primarily on a small 

number of elements (carbon, hydrogen, oxygen, and, to some extent, nitrogen and trace 
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elements) combined in a vast number of ways. Many different organic compounds are 

composed of the same elements in the same proportion. To make sense of that, chemical 

formulas had been adopted to represent not only the proportions of chemical elements in 

the compound but also their structural arrangement, so that different compounds with the 

same composition (i.e., the same chemical proportions) could at least be distinguished by 

their structures. The atomic theory was still controversial in the nineteenth century, and 

although it was not the only way to make sense the proliferation of organic compounds 

and their reaction paths, those favoring this theory certainly regarded these structural 

formulas as literal maps of the atoms in a molecule of the compound and the posited 

arrangements as ways to explain the various reaction paths of those compounds. But the 

emerging problem situation for this developing science was this: in 1844 Eilhard 

Mitscherlich had found an apparent exception. It seemed that the sodium-ammonium 

salts of paratartaric acid and tartaric acid had both the same formula (composition) and 

the same crystal form (structure) yet still differed. They differed in at least this 

remarkable way: solutions of the tartrate were optically active, rotating the polarization of 

light to the right, while solutions of the paratartrate were not optically active at all. This 

was obviously a problem because it was not clear what other than composition and 

structure could possibly account for this difference in properties. Jean-Baptiste Biot 

(1774 - 1862), the undisputed expert in optical activity, referred this problem to Pasteur 

in 1847. 

 A second feature is that the problem is not constituted by immediately given 

observations (as it seems to be in some paradigm inductions about sunrises, white swans, 
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white powders, etc.). Rather, according to Dewey, the problem itself “can be defined here 

only in terms of the operations of transforming antecedently given material of perception 

into prepared material” (Logic 432). This characteristic of material logic is present in the 

inductive phase of a scientific inquiry. In our example, we see the that problem of optical 

activity that Biot bequeathed to Pasteur could not be constituted by immediately given 

observations simply because specially constructed scientific instruments were needed to 

observe optical activity — indeed this had not been done until Biot himself discovered 

the phenomenon in 1812.  We also see the given material (the crystals anyone can see) 

were transformed into material prepared according to the categories (such as crystal 

forms) in which Pasteur was already keenly interested for other reasons. Admittedly, if 

crystallization is done very carefully and if the crystals are large enough, crystal form is 

immediately given to the naked eye. But this would not have been good enough for 

Pasteur’s purposes. Pasteur needed to prepare his material to make it amenable to his 

more sophisticated investigation. He had already noticed something that others had 

missed. While the crystal forms of the paratartrates are the same as those of the tartrates 

(both are an asymmetrical shape classed as ‘hemihedral’), paratartrates are actually a 

50:50 mixture of two variants of that asymmetrical structure. One variant has hemihedral 

facets on the right-hand edge, and are identical to those of the tartrate, while the other had 

hemihedral facets on the left-hand edge. The latter type are not represented in the tartrate 

sample. Pasteur was interested in that distinction and so he prepared the sample of 

material so that it had evidential weight for his inductive generalization. Pasteur, a 

consummate experimentalist with a background in crystallography, used a pair of 
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tweezers to very carefully separate the two mirror-image crystals of the paratartrate. 

Then, in the presence of Biot, showed that the solution of the right-faceted crystals 

rotated the polarization of light to the right, as the tartrate did, that a solution of the 50:50 

paratartrate mixture had no effect, and that the solution of the left-faceted hemihedral 

crystals rotated polarization to the left. The latter was a predicted effect that could not 

have been witnessed until the material had been transformed to provide this new data of 

the relevant kind.  

 A third feature of Pasteur’s is the determination of identities and differences. 

According to Dewey, “scientific inquiries search out relevant data for their problems by 

means of experimental determination of identities and differences” (Logic 426). By 1848, 

through the above experiments, Pasteur was able to provide a complete solution to the 

problem that Biot had posed by introducing a new identity, namely symmetry, and by 

distinguishing ways in which this newly introduced concept was to be applied. First, an 

individual crystal would be regarded as symmetric (or, more accurately, as bilaterally 

symmetric) if it could be superimposed exactly on a mirror image of itself. A perfect cube 

is symmetric in this sense. Objects that are not symmetric in this way (one’s right hand, 

for example) are now referred to as ‘chiral.’ Second, a pair of asymmetric objects would 

be bilaterally symmetric if they comprised a matched pair of chiral objects, i.e., a pair in 

which each was the mirror image of the other. The right and left hands are 

(approximately) symmetric in this second sense. So by then it seemed reasonable to infer 

an association of two observational variables: optical activity and asymmetry, viz. that 

asymmetry (of the crystal form of an organic compound, unmixed with its chiral 
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opposite) was associated with optical activity (of a solution of that compound). This 

inference was then further strengthened not only by the addition of new conforming cases 

but also by his eventual exclusion of a rival theory concerning structure._ 

 A fourth feature is problem selection. Pasteur’s second big breakthrough, the one 

that concerned fermentation, illustrates Dewey’s idea of the way “[p]articulars are 

selectively discriminated so as to determine a problem whose nature is such as to indicate 

possible modes of solution” (Logic 424). In this case, the particular optically active 

substance that Pasteur selected to continue his studies was amyl alcohol. This substance 

was not added just to strengthen the induction by boosting the number of cases, as one 

would expect if inductive strength could be quantified in a purely formal way. Rather, he 

discriminated among the particulars, and this compound had special significance in the 

problem context. If one were writing an ‘external history’ of this work, one could point to 

the problem of the brewing industry in Lille, where Pasteur was working, since amyl 

alcohol is a by-product of alcoholic fermentation and a local distillery had asked him for 

help. But in his own writings Pasteur describes the choice of amyl alcohol as following 

the ‘internal logic’ of his research. He had discovered two forms that had the same 

chemical composition, one of which was optically active. There are in fact a large 

number of optically active compounds that result from fermentation, but what piqued his 

interest in the amyl alcohols in particular was that they constituted the first exception to a 

rival inference, his earlier inductive inference that optical activity was correlated with 

form, specifically hemihedral form (Geison, “From” 95). From these and other studies of 

fermentation over the following decade, Pasteur became convinced of the correlation 
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between asymmetry and living processes. By 1860 he presented his bold conclusions to 

the Chemical Society of Paris (Pasteur 1-32). 

 We should also note that Pasteur’s material reasoning had general support from the 

allied domain of crystallography, in which he was also well versed. In that field it was 

already generally accepted that crystal form, and therefore its symmetries, were 

determinant of the physical properties of crystals as well as of molecular shape. Although 

the atomic hypothesis was still controversial in the nineteenth century, Pasteur himself 

accepted that crystal form was somehow related to molecular structure and thus it would 

have been very reasonable to expect that any asymmetries in crystals would be reflected 

at the molecular level, where a mechanism for molecular interactions with light would 

one day explain optical activity. His induction gave him a useful proxy for substances 

associated with living processes, namely asymmetry, which could be determined by 

optical activity, a far less tedious way than separation and classification of crystals. 

Fermentation, he argued, was a due to a living microorganism because its products were 

asymmetric.  

 There is much more that can be said about Pasteur’s argument, including the way 

he refined and advanced the concept of symmetry to meet his inferential needs, but this 

should suffice for now to suggest that it is no more likely there will be a universal schema 

for inductive symmetry inferences than that there will be a universal logic of discovery 

for all abductive symmetry inferences. If neither of these is universal, how then can one 

say anything at all about their warrants? 

 The characteristics of material logic, illustrated above using Pasteur’s inquiries, 
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suggest that inferential warrants arise and develop through the mutual accommodation of 

the various phases of scientific inquiry. The scientific process is a historical one: cases 

may be selected for investigation because they seem capable of adjudicating between 

current rival models, like those based on the concept of form and those based on the 

concept of symmetry. New experimental techniques may identify phenomena not 

previously observed, like optical activity, and transform objects of study into prepared 

material, like samples of crystals with different previously unrecognized differences in 

symmetry, and so on. The science and the concepts used to make scientific inferences are 

tested and adopted as a package.   

2.5 Examples of Evolvable Warrants: Science, Mathematics, and Symmetry 

 Evolvable warrants, by contrast, apply to conceptual adaptations over time. What 

warrant justifies our continued reliance on modifications to the symmetry concept so as 

to maintain the reliability of inferential practices? I illustrate what is meant by evolvable 

warrants through recent efforts to use conceptual adaptations as warrants in science and 

mathematics more broadly. The first question is: What explains the ‘miraculous’ success 

of science? The second is: What explains the ‘unreasonable’ effectiveness of 

mathematics in science? By parallel reasoning, I posit an answer about symmetry that I 

will develop more fully in the case study. 

The ‘Miraculous’ Success of Science 

 One parallel concerns the evolvable warrant for science itself. The ‘miraculous’ 

success of science parallels the ‘surprising’ utility of the symmetry concept and so it is 

worth looking at the proposed warrants for that success. Karl Popper claimed that the 
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‘miraculous’ success of science could not be explained at all (204). But, subsequently, 

many arguments have been put forward in an endeavor to explain that success. Hilary 

Putnam, for example, famously suggested that scientific realism was “the only 

philosophy that doesn’t make the success of science a miracle” (73). My concern here is 

not with scientific realism or even with how miraculous the success of science actually is 

but only with the types of warrants that have been suggested. 

 Dewey already left us with the idea that the ‘warranted assertability’ of propositions 

arose out of the processes of the inquiry used to generate them rather than out of an 

analysis of logical form or conceptual content alone. Those processes are historical and 

fallible so that leaves us with the question of explaining why any set of processes 

provides ‘true’ answers.  

 Bas van Fraassen in effect solves that issue of truth by reliability, claiming that 

scientific theories (and, by extension, symmetry inferences) can be reliable without 

representing anything ‘real.’ Although he does not need to deny truth,_ it is sufficient for 

his purposes that the theory is empirically adequate, i.e., that it describes actual and 

potential observations in a self-consistent way. We can feel confident that these theories 

will be reliable because unreliable ones will be weeded out. Van Fraassen gives a 

Darwinian account of the success of science as follows: 

I can best make the point by contrasting two accounts of the mouse who 

runs from its enemy, the cat. St. Augustine already remarked on this 

phenomenon, and provided an intentional explanation: the mouse 

perceives that the cat is its enemy, hence the mouse runs. What is 
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postulated here is the 'adequacy' of the mouse’s thought to the order of 

nature: the relation of enmity is correctly reflected in his mind. But the 

Darwinist says: Do not ask why the mouse runs from its enemy. Species 

which did not cope with their natural enemies no longer exist. That is why 

there are only ones who do. (Scientific Image 39) 

He continues: 

In just the same way, I claim that the success of current scientific theories 

is no miracle. It is not even surprising to the scientific (Darwinist) mind. 

For any scientific theory is born into a life of fierce competition, a jungle 

red in tooth and claw. Only the successful theories survive — the ones 

which in fact latched on to actual regularities in nature. (Scientific Image 

40) 

This of course requires that the scheme we use to account for theories or symmetry 

inferences can at least accommodate rival theories, since there is no selection without 

alternatives. Brad Wray lauds van Fraassen’s approach as superior to realist explanations 

of science’s success because it also “provides us with resources to adequately explain the 

failure of past successful theories and the fact that successes can be shared by two 

competing theories” (88-89). But it still leaves us with the question about predictions, of 

why empirically adequate theories and symmetry inferences should be expected to 

continue adapting to new circumstances. 

 Ian Hacking, although not part of the conversation on van Fraassen’s views, 

provides a way out. Theories and symmetry inferences would be, if I can be permitted to 
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extend van Fraassen’s imagery, more like ecosystems than mice. In Hacking’s approach, 

the warrant for the theory or symmetry inference comes from mutual adaptation of 

concepts, theories and experimental practices — a process he terms ‘self-vindication’ 

(“Self-Vindication” 53). If we were to use a biological metaphor, it would not be van 

Fraassen’s image of an organism waiting for mutations to occur but an image of 

organisms not only responding to each other, to other organisms, and to their 

environment but also (like humans) shaping it. Theories and symmetry inferences would 

be far more robust under these conditions and more capable of making predictions. That 

still leaves us with a challenge, albeit a focused one, to be taken up in the development of 

a historical epistemology: What is the mechanism by which all those components 

mutually adapt? 

 If the warrants of symmetry arguments were at all like this, we would need to give 

an account of them in terms of conceptual co-adaptation, more or less along the following 

lines: 

•  Inferential warrants of symmetry are to be found in the fallible, historical processes of 

scientific inquiry, not in conceptual or logical analysis (Dewey). 

•  Those processes lead to reliable patterns of symmetry inference because they out-

compete rival patterns (van Fraassen) and because adaptation is mutual, involving not 

just the concepts of symmetry but also other conditions, such as experimental 

interpretations and practice, scientific theorizing, and mathematics (Hacking). 

•  There are specific mechanisms that drive that adaptation. 
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The ‘Unreasonable’ Effectiveness of Mathematics 

 A second parallel concerns the evolvable warrant for the use of mathematics. In his 

celebrated 1959 essay, “The Unreasonable Effectiveness of Mathematics in the Natural 

Sciences,” Eugene Wigner (1902-1995) identifies a “mystery” that could easily be 

rephrased to express astonishment about the degree of success that symmetry inferences 

have. Wigner makes the point  

that the enormous usefulness of mathematics in the natural sciences is 

something bordering on the mysterious and that there is no rational 

explanation for it. (223) 

If by “rational” Wigner implies “a priori” that need not trouble us too much; symmetry 

inferences are material and a posteriori warrants would be enough to boost our 

confidence in them. 

 To help dispel that mystery about effectiveness one can usefully recast the problem 

as a pragmatic one about the applicability of mathematics. Rather than vainly hoping to 

demonstrate rationally that mathematical reasoning is valid or that mathematical concepts 

refer to something real, one would instead try to show empirically how its structures are 

selectively developed to describe what is known about the world. In this vein, Mark 

Steiner notes two problems with Wigner’s “mystery,” namely that 

[Wigner] ignores the failures, i.e., the instances in which scientists fail to 

find appropriate mathematical descriptions of natural phenomena (which 

outnumber the successes by far). He also ignores the mathematical 

concepts that never have found an application. (9) 
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Steiner also notes that mathematics sometimes provides the very framework in which we 

posit new laws (4) — at least in fundamental physics, where our common sense stock of 

analogies and metaphors no longer serves this purpose. Likewise, Steven French claims 

that “this effectiveness can be seen to be not so unreasonable if attention is paid to the 

various idealising moves undertaken” (103), such moves being the ones needed to 

represent the real world in a way that makes the mathematics either tractable or 

applicable at all. French also makes use of the history of the relationship between 

mathematical structures and the structures of the scientific theories it supports in order to 

illustrate the role of conceptual co-adaptation in bringing about this effectiveness. 

 Conceptual adaptation may well dispel some of the mystery about symmetry 

inference as well. French illustrates the effect of co-adaptation in the context of the 

introduction of the mathematics of group theory, which is the language of symmetry, into 

the science of quantum mechanics. As he notes, this is a good case to propose for 

historical study because it treats new mathematics and new physics, both of which we can 

observe, as it were, in real time — unlike the case of calculus and Newtonian mechanics 

which is more than 300 years old. It also meets Wigner on his home turf. Among other 

matters, French observes that 

both group theory and quantum mechanics were in a state of flux at the 

time they were brought into contact and both subsequently underwent 

further development. The structures may therefore be regarded as 

significantly open in various dimensions … (110) 

French again notes a number of “idealising moves,” in this case study, such as deeming 
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certain particle properties to be equal when they were known to be only approximately so 

in order to make the formalism work. Embedding a scientific theory into a mathematical 

structure essentially benefits the theory by giving it access to the surplus inferential 

capacity of the mathematics, which aids the theory’s further development (104). 

The ‘Surprising’ Utility of the Symmetry Concept 

 Our issue is the evolvable warrant for symmetry. If we follow the spirit of the 

pragmatist philosopher Peirce, a warrant for a symmetry inference would explain its 

success, making it no longer ‘surprising’ but something that happens more or less as ‘a 

matter of course.’ Although we don’t expect to do so using a priori reasoning, we may be 

able to reduce the surprise by revealing the mechanisms by which the concept of 

symmetry and its mathematical language have adapted to the changing inferential needs 

of the sciences that symmetry supports.  
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3. THE HISTORICAL DEVELOPMENT OF SYMMETRY 

 In Chapter 1 I identified several senses in which symmetry is commonly understood 

and in Chapter 2 I illustrated some of the many material inferences that have been based 

on symmetry. In this third chapter I consider how best to provide an account of the 

warrants for symmetry inferences.  

3.1 Inferential Practices 

 Inquiry comprises practices, and so we need to study the inferential practices 

involving symmetry. To root any warrant for symmetry inferences not in logic but in 

these practices of inquiry, we can seek guidance in the studies of scientific practice that 

have been undertaken in the last 30 years or so, following the ‘practical turn’ in the 

philosophy of science. ”[T]he key advance made by science studies in the 1980s,” 

according to Andrew Pickering, in the introduction to his compendium Science as 

Practice and Culture, “is the move toward studying scientific practice, what scientists 

actually do …” (2). Ian Hacking had revived this focus on practice in 1983 in response to 

what he saw as a crisis of rationality in science that followed in the wake of Thomas 

Kuhn’s characterization of scientific change; Hacking moved “to a simpler, more old-

fashioned concept of history, a history not of what we think but of what we do” 

(Representing 17). If we were to follow this historiographical program in regard to 

symmetry we would seek an understanding of changes in and applications of symmetry 
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concepts and principles — not in some deeper theory but in empirically validated 

inferential practices. This in fact was the approach that Lorraine Daston and Peter 

Galison take in their magisterial 2007 study on objectivity — which they term a 

“nebulous notion.” (Like symmetry perhaps?) They treat objectivity not as a concept but 

as a practice (perhaps even as an epistemic virtue) and claim that, “if actions are 

substituted for concepts and practices for meanings, the focus on the nebulous notion of 

objectivity sharpens” (52). 

 Inferential practices involving symmetry, like all practices, are always historically 

situated, and so we need to account for them historically. That is, we need to do more 

than just study inferential practices; we need to study those practices as depending on 

symmetry and as specific to a scientific field at a particular period in its development 

because, as concepts change and as the needs of inquiry vary from time to time, so too do 

inferential practices.  

 We already know that the concept of symmetry has changed from time to time, 

since there have been several histories of the concept. While most of the literature on 

symmetry is technical (covering specific scientific or mathematical applications or 

treating particular philosophical issues) there are some long-view historical surveys. 

None self-consciously adopts any particular historiographical methodology, and all freely 

refer to both external factors and to the internal logic of symmetry in the narration. They 

have different emphases and on specific matters sometimes come to different 

conclusions.8 

                                                
8  See, for example: Du Sautoy; Hon and Goldstein, 2008; Selzer; and Stewart. 
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 We also need to know why the concept of symmetry has changed, since the 

variations in symmetry’s meaning that are recorded in those histories may have been due 

to something other than changing inferential demands. Those histories differ, not because 

one is ‘right’ and the others ‘wrong,’ but just because they represent a healthy plurality of 

aims and interests. For my project, it therefore behooves me to narrate the history of 

symmetry in a way that recognizes the epistemological nature of both science and 

symmetry. Hans-Jörg Rheinberger notes in his influential survey of this issue that various 

ways to do this (i.e., to historicize epistemology) have already been articulated; he 

claims, further, “the historicization of epistemology represents a decisive moment in the 

transformation of twentieth-century philosophy of science” (1). One way to understand 

historicized epistemology is as the study of “higher-order epistemic concepts such as 

objectivity, observation, experimentation, or probability” (Feest and Sturm 285), a list 

which could presumably be expanded to include symmetry.9 

 I propose to study the concept of symmetry, and the inferential practices involving 

it, using a historical epistemology guided by best practice. As the historically situated 

practices are contingent I need to study them a posteriori using historical case material.  

3.2 Historical Case Studies of Symmetry Inferences 

 Historical case studies can be selected in many ways. The scientific field, programs, 

and era are neither unique nor pre-determined in any way; they will depend on, among 
                                                
9  The authors acknowledge pluralism. Two other major categories of historicized 

epistemology include those of ‘epistemic things’ (exemplified in the work of Hans-Jörg 

Rheinberger) and long-term scientific developments (exemplified in that of Jürgen Renn). 
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other things, the research question, the epistemic objects to be tracked, and the plausible 

rival claims we wish to evaluate.  

 My own chosen focus is on the co-adaptation of the symmetry concept in modern 

science, the tracking of symmetry inferences, and the evaluation of identified rival claims 

(co-adaptation and non co-adaptation). It is widely believed that symmetry arguments 

emerged in crystallography in the nineteenth century and from there spread into the 

physical sciences. In the Prologue, I began with the view like this expressed by the 

renowned physicist and crystallographer, Pierre Curie. He is in fact widely credited in the 

physics community for formally initiating that transfer in his influential 1894 paper, “On 

the Symmetry of Physical Phenomena, Symmetry of an Electric Field and of a Magnetic 

Field.”  He began by announcing his goal: “I think that there is interest in introducing 

into the study of physical phenomena the symmetry arguments familiar to 

crystallographers” (17), implicitly claiming that crystallography was what could be called 

the ‘native domain’ for symmetry inferences and that these inference forms could be 

transferred to various subfields of physics. A century later, that was still the dominant 

view. Shlomo Sternberg, a mathematician, acknowledged those particular empirical 

origins this way:  

Symmetry considerations entered into the solutions of physical problems 

at the very beginning of mathematical physics. Mathematical 

crystallography, a major success of 19th century physics, is essentially 

group theoretical, but it had developed before the abstract language of 

group theory had been accepted. (x) 
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This is hardly surprising, since, to use Barding and Castellani’s phrasing, 

[t]he natural objects with the richest and most evident symmetry properties 

are undoubtedly crystals, and so it is not surprising that the systematic 

study of all possible symmetric configurations — the so-called theory of 

symmetry — started in connection with the rise of crystallography. (4) 

 I will provide a material account of the symmetry warrant based on the idea of co-

adaptation in the very promising historical setting of nineteenth-century crystallography. 

I will also critically examine non co-adaptation claims that symmetry concepts arose 

independently in mathematics and only later found application in the sciences (§4.5).  

 We should encourage a pluralist approach to these case studies. One reason of 

course is that we might be wrong and should fairly consider rival claims. A second reason 

is that we can also enrich our understanding by pursuing non-rival claims, claims that just 

target different questions. Yet a third is that we can sometimes recover valuable 

knowledge even from defunct scientific research programs. This will become apparent in 

the case study in Chapter 4. The scientific theories in which symmetry inferences were 

embedded in the early nineteenth century (namely, the French molecular theory and 

German polar theory) are no longer held. Furthermore, it was sometimes possible to 

make important symmetry inferences about phenomena (such as pyroelectricity and 

piezoelectricity) even though there is no underlying theory about the phenomena at all. 

3.3 Historical Epistemology 

  Each type of case study will require its own approach. We may call such 

approaches historical epistemologies, understood in Rheinberger’ s sense as 
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reflecting on the historical conditions under which, and the means with 

which, things are made into objects of knowledge. It focuses thus on the 

process of generating scientific knowledge and the ways in which it is 

initiated and maintained. (2-3) 

Feest and Sturm offer a useful (although non-exhaustive) taxonomy of such 

epistemologies according to the nature of the inquiry.  

 Among the plurality of historical epistemologies, the type that would cover the 

historical development of symmetry is the history of an epistemic concept. Feest and 

Sturm understood this type more specifically as covering “the history of higher-order 

epistemic concepts such as objectivity, observation, experimentation, or probability” 

(285).   

 Although the nature of ‘the history of an epistemic concept’ is not articulated in any 

formal schema, the literature on and paradigmatic examples of historical epistemologies 

of this sort — especially those about concepts closely related to symmetry — mark out 

some basic features that would be important for a conceptual history of symmetry; for 

example:  

• Practices can identify concepts. We see this in Ian Hacking’s The Emergence of 

Probability, one of the earliest works in this genre, which traces the concept of 

probability in its several senses through connections with inferential practices in 

various walks of life.  

• Conditions of identity can allow us to say of a concept that it actually has a history. In 

other words, it’s not always a matter of one concept just replacing an earlier one but 
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sometimes of a concept that changes while still maintaining a continuity with its past 

(Feest 290).  

• Identifiable mechanisms can explain conceptual change (or, alternatively, conceptual 

stability). We need not presuppose any mechanism at the outset, but should remain 

alert to historical evidence for any such mechanisms. For example, if inquiry is self-

correcting, how were success and failure recognized in research programs? Under 

what circumstances was conceptual change regarded as a remedy for failure? 

3.4 Narrating a Historical Epistemology of Symmetry 

 Histories are many for the same reasons that maps are many: they address different 

questions. We need to be selective therefore, but not tendentious, and to highlight 

features that are relevant, one way or another, to the question posed. I propose therefore 

to narrate the case study offered in Chapter 4 in such a way as to focus on those scientific 

inquiries where symmetry inferences were used.  

 To do so I will try to emulate the features identified above that are found in the best 

examples of historicized epistemologies of concepts — that is, by noting the inferential 

practices that are facilitated by a given concept of symmetry, by regarding later senses of 

the symmetry as variants or descendants of earlier ones, and by identifying the 

mechanisms of that hold the concept stable or drive changes. I will also remain vigilant to 

known sources of error. 

Inferential Practices 

 To identify the concept of symmetry through inferential practices, we need to 

analyze the history of research programs. This is because an inferential practice, properly 
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so called, must be evidenced not just in individual inferences but in all the inferences of 

some specified type that a research community does or could use. Examples of research 

programs in crystallography are those of Haüy, in the French molecular school, and of 

Weiss and his associates, in the German dynamist school; examples of research programs 

in mathematics of the nineteenth century are those of Legendre in solid geometry and of 

Camille Jordan (1838-1921) in group theory.  

 To analyze research programs according to the features observed in historical 

epistemologies of concepts, we would need to set out our account in historical, 

programmatic, and evolutionary terms. That is, unlike Popper’s account, it needs to 

unfold historically and to treat entire research programs, not merely individual 

conjectures, as the units of analysis; yet, unlike Kuhn’s historical account, it would need 

to recognize the continuity between successive research programs and actually seek an 

understanding of the mechanisms underlying those successive changes. Lakatos, who was 

a highly influential philosopher of science in the latter part of the twentieth century, 

found a way to steer this middle course between those other once-dominant rival 

accounts of Popper and Kuhn. His Methodology of Scientific Research Programmes 

(MSRP) provides several of the ideas and distinctions that we need in order to make the 

important features of a historicized epistemology of symmetry salient.10 His ideas also 

facilitate a comparison between developments in science and those in contemporary 
                                                
10  I will explain some of Lakatos’s more idiosyncratic terms as needed but will bypass 

certain separable claims that are not relevant to my inquiry (like the rational 

reconstruction of history). 
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mathematics — we might have guessed as much by the fact that although Lakatos was 

known mostly for his work on science, he was initially a philosopher of mathematics 

known for his work on the methodology set out in his Proofs and Refutations, a heuristic 

of conjectures, proofs, and refutations that is very much like the theories, empirical tests, 

and anomalous results of science itself. 

 The MSRP adopts a historical approach. We start, in a Deweyan fashion, with a 

‘problem situation,’ not a definition or an axiom — which is the way a concept like 

symmetry will be used in material logic. Lakatos names dubs a new way of viewing a 

problem as a ‘problemshift’ following which we receive feedback in the form of critique 

and empirical testing. Unlike the Kuhnian ‘paradigm shift,’ which is a non-rational move 

to a new and incommensurable way of viewing the problem, or a Popperian conjecture, 

which is a psychological process beyond philosophical analysis, a research program 

developing in an MSPR-like way is one that has comprehensible changes within an 

identifiable continuity. There are three particularly useful resources on which we can 

draw when we frame a conceptual history of symmetry in a broadly Lakatosian way. 

 The first is progressiveness, MSRP’s historicized notion of success at the level of 

the program. Program success is important because it underlies all the types of symmetry 

warrant we identified previously (§2.3). Using terms similar to those of Lakatos, I 

recognize a research program as ‘progressive,’ i.e., successful, insofar as its models can 

be successfully applied to more cases than the ones used to develop the models the first 

place; and as ‘degenerating’ if continued empirical corroboration of the models can be 

achieved only through positing additional assumptions or parameters ad hoc. 
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Problemshifts, and successions of them, can also be regarded as progressive or 

degenerating if they lead towards or away from the corresponding research programs. 

 The second is MSRP’s way of treating anomalies, one of its central characteristics. 

According to Lakatos, in a scientific program there is a ‘hard core’ of beliefs that define 

it as being that particular program. Hard core beliefs are defended to the utmost using a 

‘protective belt’ of auxiliary assumptions (including approximations, idealizations, ways 

of accounting for experimental error, and initial conditions) that can be adjusted or even 

sacrificed to protect the scientific program from empirical disconfirmation. As long as the 

research program continues to provide descriptions of new phenomena it will be 

‘theoretically progressive’ and insofar as those descriptions are corroborated it will also 

be ‘empirically progressive.’ When it is not, the program becomes a ‘degenerating’ one.  

A new problemshift is called for, and if this cycle can be successfully repeated to meet 

the same criteria the scientific field11 will be progressive too. Lakatos illustrates this 

dynamic for the Newtonian Mechanics research program, with its hard core of laws and 

protective belt of approximations and idealizations, but it is equally applicable to the 

research programs that gave rise to symmetry concepts, such as those in crystal structure 

and electric and magnetic fields. MSRP’s way of treating anomalies suggests a 

hypothesis about the conceptual adaptation of symmetry: symmetry adapts in order to 

reduce anomaly in the scientific research program in which it is embedded, i.e., to 
                                                
11  Lakatos uses the term ‘programme,’ with British spelling, to denote the long-term 

development of the science that may span many successive research programs, each 

defined by its own theoretical approach. 



71 
 

maximize inferential success. If a change in symmetry concept can be employed to make 

a problemshift in the scientific research program that reduces the number of its ad hoc 

assumptions, that conceptual change will continue to be used. We could say, in this sense, 

that such a conceptual change in symmetry is ‘corroborated’ by the progressiveness of 

the scientific research program it models.  

 The third concerns the related idea of heuristic counterexample. Lakatos defends 

the creative aspect of counterexamples — and this too is what researchers in the physical 

sciences need if they are to transform their concepts of symmetry in response to earlier 

failed symmetry inferences and thereby to improve their future inferential success. In the 

method of Proofs and Refutations, Lakatos emphasizes discovery over proof, searching 

instead for counterexamples to conjectures (which may even be ‘theorems’ if proofs have 

already been given). When one is found, we may, according to Lakatos, seek to identify a 

hidden ‘guilty lemma’ in the deductive inference that is falsified by the counterexample, 

with a view to incorporating it as a presupposition in a revised proof so as to exclude the 

counterexample. Analogously, in his Methodology of Scientific Research Programmes, 

into which he imported the above ideas on heuristics, Lakatos emphasizes the importance 

of anomalous experimental results.  

 Anomalies, as mismatches between observations and expectations, are always 

important to science because they provide opportunities to locate the cause of  the 

mismatch within our processes of inquiry and thereby to ameliorate those processes. 

Many mismatches can be fairly explained away by using the ‘protective belt’ (e.g., by 

fairly attributing them to experimental error or experimental artifact); when that cannot 
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be done in a principled way, we need to modify or even abandon one or other of our 

‘hard core’ assumptions. What Lakatos emphasizes is that we should consider the full 

range of those alternatives, as some may afford us more creative opportunities than others 

(e.g., by revealing the presence of important assumptions of which we had not previously 

been aware). When we are faced with a failed symmetry inference, for example, we 

should be open to the possibility that rather than adjust one of the scientific concepts or 

mathematical lemmas to remove the anomaly, we should adjust the concept of symmetry. 

‘Shocking’ historical counterexamples illustrate this choice.  

• Ørsted’s demonstration of magnetic deflection, for one, is consistent with symmetry 

inferences only if we abandon the simple geometric concept of the physical symmetry 

of physical forces that had been implicitly modeled on that of the little arrows we 

traditionally use to represent forces (Altmann 1-40).  

• The discovery of fivefold symmetry in certain crystal-like substances was a 

counterexample to the Crystallographic Restriction Theorem. Yet this ‘anomaly’ was 

not a body blow to crystallography; it was a creative opportunity. It had exposed the 

facile assumption, seldom consciously pondered before, that all space-filling 

assemblages of parts had periodic lattice structures. Once the mathematical possibility 

of aperiodic space-filling patterns was recognized, the field of quasicrystals was born.  

• Archimedes succeeded in his work because the physical symmetry of gravitational 

forces is analogous to the geometric symmetry of arrows used to represent them. 

 I intend to analyze inferential practices that were historically situated. One clear 

risk in doing this is inadvertent anachronism. Since the case study is on nineteenth-
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century crystallography, I have identified a number of interpretative issues concerning the 

literature of that field in that period intended in order to minimize the risk of making 

anachronistic judgments (see §3.5 below). I have also specifically addressed the risk of 

inadvertently using rational reconstructions instead of historical accounts (§3.5). 

Continuity and Replacement 

 To say that symmetry itself has a history, we need to specify the features shared by 

concepts of symmetry that succeed one another. Although clearer indications of these 

shared features should emerge from case studies, common usage suggests that a 

symmetry is a principled way of deeming two or more non-identical parts, states, or 

points of view to be equivalent for some stated purpose (Chapter 1). Expressed 

conversely, what seems to be common to concepts we regard as types of symmetry is the 

identification of aspects of the problem situation that are irrelevant for the purpose we 

have. The variant or descendant concepts differ in how that is done and for what purpose. 

Where this or any other concept does develop over time, as opposed to simply being 

terminated or replaced, it is important to highlight the continuity as a guide to searching 

for the mechanisms that maintain conceptual constancy or drive conceptual change. 

 The opposite error is failing to acknowledge differences important enough to affect 

the validity of the inference. One source of such errors, identified by Mark Wilson in 

Wandering Significance, is ‘property dragging.’ In the case of symmetry, property 

dragging would be any tendency to misattribute to one variant of symmetry the properties 

of another one. I have identified some examples of this (see §3.5). We should avoid 

making such errors ourselves, but if the researchers being studied made them we should 
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note that as those errors could inform us about the historical processes of conceptual 

change. 

Mechanisms that Maintain Constancy and Mechanisms that Drive Change 

 To explain the stability of or change in the concept of symmetry over time, we need 

to posit particular mechanisms for which evidence (for or against) may be found in the 

historical record.  

 To frame the search for the mechanisms underlying the projectable warrant, 

imagine a scientific research program (in crystallography, say) where a particular concept 

of symmetry facilitates inferences (about, say, shape or other crystal properties). The 

researchers try to maintain the progressiveness of their existing research program, i.e., 

they try to maximize the number of corroborated symmetry inferences and to avoid 

unresolved anomalies. In the short term, to defend the use of a particular concept of 

symmetry (said to be part of the Lakatosian ‘hard core’ of their scientific research 

program) they explain away any apparent anomalies by the operation of other factors, 

like experimental error, imperfections in crystal specimens (said, for these reasons, to be 

part of the Lakatosian ‘protective belt’). In the longer term, they may use a number of 

adaptive mechanisms in an effort to preserve the program. As Hacking expresses it, in 

terms of theories: 

Our preserved theories and the world fit together so snugly less because 

we have found out how the world is than because we have tailored each to 

the other. (“Self-Vindication” 31) 

Hacking then lists many practices that comprise what he terms ‘self-vindication’ of the 
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laboratory sciences, ways in which we achieve a “snug” fit by structuring the empirical 

arena in a way that makes corroboration possible. In the example of crystallography, one 

stratagem has been to structure the field so that it applies only to crystals grown in the 

laboratory under standardized and controlled conditions that eliminate the pesky crystal 

asymmetries found in the wild and to develop experimental protocols for establishing 

symmetries. In any case, we should not prejudge any of these protective-belt or self-

vindicating moves but merely remain alert to their possibility and allow the historical 

records to speak for themselves. 

 To frame the search for mechanisms underlying the evolvable warrant, imagine that 

the research program — perhaps now challenged by the increased precision of 

measurements or by new phenomena — can no longer be defended by protective-belt or 

self-vindicating moves. It has, let us say, slipped into being a degenerating program 

because it is sustained only by the continuous infusion of ad hoc assumptions and 

parameters. The researchers, perhaps from a different school, now try to replace the 

program with a progressive one by adjusting what was formerly in the hard core. This 

adjustment could of course be made to any of the elements of the hard core of the 

scientific program. But if the adjustment falls on the symmetry concept itself we may 

want to look for the mechanism12 that makes that repeated change of that concept 
                                                
12  While it seems unlikely that the historical record in crystallography is rich enough to 

illuminate this particular issue, that of high-energy physics suggests that the self-

vindicating strategy is a commitment to keep explaining recalcitrant symmetries at one 

energy level by invoking evermore inclusive symmetries at higher levels. 
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possible. That is, a mechanism to explain why it is that symmetry can be relied on to 

adapt continually. Why not just replace it with something completely different? (It is 

beyond the scope of the current project to do this because a larger sample of research 

programs would be needed to establish the mechanisms involved.) 

 Finally, to frame the search for a mechanism for the transferable warrant, imagine 

that the symmetry inferences from a successful research program in one domain 

(crystallography, say) were used in another (electromagnetism, say). The mechanism for 

this to be possible would seem to be completely decoupling the symmetry inferences 

from the material context of the source domain and re-attaching them by interpretation 

specific to the target domain. That is, in effect, the symmetry inferences would no longer 

be material at all but purely syntactic, mathematical in fact. (It is beyond the scope of the 

current project to do this because the transfers occurred in a later time period, after Pierre 

Curie instigated this transfers to physics.) 

  Specifically, I narrate the emergence of the scientific concept of symmetry in the 

following way. The starting point is a problem situation of the science, which is taken as 

the driver of a dialectical process of conjecture, counterexample, and response in the 

science as well as in ways to model it. Then a problemshift, a conjectured way to address 

the problems of the science, is described. Since we are exploring the role of symmetry, I 

will be selecting cases for which this problemshift is made possible by or described in 

terms of a symmetry concept used to model it, whether that concept is inherited from an 

earlier phase of that science or introduced as a metaphor from outside. Symmetry is used 

in the hope that it makes the science ‘progressive’ in Lakatos’s sense, i.e., that it has 
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excess inferential capacity, the ability to make successful inferences beyond the ones it 

was specifically tailored to make. Counterexamples to those inferences could require 

adjustments to the science or the way it is modeled, such as to the symmetry concept 

employed and consequently to the mathematics used to describe its application to the 

physical situation. 

3.5 Further Details and Potential Objections 

Avoiding Anachronism 

 There are a number of pitfalls in reading the scientific literature on crystallography 

in the nineteenth century. We need to be aware that some terms — like ‘atoms,’ 

‘molecules,’ and even ‘crystal’ — did not have the same connotations they have today 

and that symmetry inferences were made in the context of scientific models that have 

been superseded. 

The Problem Situation  

 The most obvious anachronism, but the one that is easiest to correct, is projecting 

back our problem situation. Researchers in the nineteenth century did not have access to 

current techniques like X-ray diffraction, newer concepts like color symmetry to help 

enumerate the subgroups of crystallographic groups, or more recent notation such as the 

International tables of Crystalline Structure, to help sort out the profusion of systems that 

have evolved. The overwhelming success of X-ray diffraction techniques in the twentieth 

century has shifted the focus of crystallography away from the earlier issues of describing 

and explaining the external form of crystals to describing the classifying the internal 

structures that account for those external forms. So, even when not focused on the 
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subfield of X-ray crystallography itself, introductory surveys today typically begin with 

the internal structure of a definition of a crystal in terms of its periodic structure. (See, for 

example, Borchardt-Ott, Sands, and Szwacki and Szwacka.)  

 In the nineteenth century, however, the problem situation was to account for 

macroscopic phenomena observable in the laboratory, originally crystal form but also 

elastic deformation, electrical and thermal conduction, and various optical phenomena. 

Particular internal structures, together with their symmetries, were the hypotheses. 

Therefore, presenting the subject in reverse chronological order, although no doubt 

pedagogically effective, tends to obscure the actual inferential process. As F. C. Phillips 

laments in Preface to the First Edition of his text of 1946: 

The fact that the main centre of interest in crystallographic studies has 

been changed by the discovery … of the diffraction of X-rays by crystals 

is indisputable. As a consequence, the belief is now widely held that the 

external morphology is no longer of interest or importance, and we are 

urged to adopt a ‘new view-point’ and to begin the study of 

crystallography in terms of the structural pattern of crystals. … It is not the 

least serious drawback of teaching from [this] ‘new view-point’ … that the 

student is asked to accept at the outset so much that he cannot immediately 

grasp for himself. He cannot see and handle the atomic structure, and 

check for himself the regular arrangement, in the same direct way in 

which he can handle the crystals themselves and check the regularity of 

the angular relationships of the faces by direct goniometrical 
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measurements until the existence of an orderly structure in the crystalline 

state becomes something much more real to him than a plausible 

explanation of certain diffraction effects (Phillips, Fourth Edition, vii).  

 A partial solution to this potential source of error is to make use of near-

contemporary sources. Wadsworth’s 1909 text on crystallography was based on his 1873 

lectures and his problem situation was the mineralogical one of determining, for the 

purpose of further inquiry or prospecting, the real external form of a crystal, given that 

the sample that might be rough or broken. He is also sympathetic to the Phillips’s 

sentiment concerning the desirability of laboratory culture. It’s likely that the presence or 

absence of laboratory experience affects the appreciation if not the meaning of geometric 

concepts such as form, structure, and symmetry. Walker’s 1919 textbook likewise 

highlights hands-on methods and the problem of identifying crystal form. 

Atomism 

 Another anachronism concerns the presupposition of atomism. The atomic theory 

of matter is foundational in crystallography in the twentieth century, especially following 

the game-changing invention of X-ray diffraction techniques in 1912. It had also become 

increasingly mainstream in the nineteenth century in the wake of chemical discoveries, 

and so we need not doubt that many crystallographers in the nineteenth century held such 

a view. Atomism is assumed background in modern texts; older texts like those of 

Wadsworth and of Walker, focusing almost entirely on external form, do not invoke 

atomism; and some works use ‘atom’ to refer to an indivisible or unanalyzed unit and 

‘molecule’ to refer to a geometric unit of analysis rather than apply these terms as we do 
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today.   

 The most important danger is that taking atomism to be the default description may 

obscure the nature of the inferences crystallographers were required to make at the time 

they made them — in particular, whether their inferences were regarded as a priori or 

essentially empirical. Some inferences may, for example, be valid for purely geometric 

reasons and do not require us to suppose that it is actual atoms in the modern sense 

determine crystal structure. It is common to regard crystals geometrically as periodic 

arrays of unit cells, rhomboids defined by characteristic lengths in each of three 

directions that do not lie in the same plane. It is also common now to regard atoms as 

marking out those unit cells. Both the unit cells and atoms are constitutive of the crystal 

and ‘indivisible’ in their own ways, geometric and physical. But neither the cells nor the 

eight points in three-dimensional space that mark the unit cells out are equivalent to 

physical atoms: for example, unit cells are space-filling while atoms are not; the points 

marking out the cells are infinitesimal while atoms are extended; and unit cells are 

conventional — alternative constructions being possible — while atoms are not. We 

shouldn’t just assume that a symmetry inference, even one that is discovered empirically, 

is actually empirical, let alone based on the atomic nature of matter.  

 Because crystallography developed first to account for external morphology, I 

generally interpret inferences geometrically as far as this can be done and include 

atomism only when the context requires it.  

Domain 

 A third issue, which is more general than that of atomism, concerns the too-quick 
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assumption that a problem-situation resides in the domain of physics. Because the 

inherited notion of symmetry is a geometric one, we need to determine whether the 

symmetries and forms about which we are reasoning are themselves geometric or, as is 

sometimes supposed, ‘physical’ and ‘out there.’ Because ‘crystal’ commonly connotes a 

body bounded by plane faces and not just a form, it is important to distinguish between 

forms that are impossible (because, say, a certain combination of defining symmetries 

cannot co-exist for mathematical reasons) and forms that are merely absent in nature 

(perhaps because the laws of nature do not favor them). The casual use of ‘crystal forms’ 

to denote forms of interest may obscure this distinction. 

External Form and Internal Structure 

 The last issue is the conflation of external forms with the internal structures that 

purportedly give rise to them. This is occasioned by the shift in the focus of 

crystallography from crystals, finite bodies bounded by plane surface, to crystal structure, 

a periodic array of atoms extending (ideally) infinitely in all directions. But with ‘crystal’ 

now more of an adjective than a noun, it is not always clear when it refers to external 

form and when to internal structure. Until the twentieth century, crystallographers 

classified crystals by the symmetries of their external form, while accounts of such 

crystal form are now more usually given in terms of internal structure, unit cells defined 

by a lattice of points. Confusingly, the same technical terms can sometimes refer to both 

a crystal form and to a lattice system.  

Using Rational Reconstruction Appropriately 

 A rational reconstruction, as I will use the term, is a re-description of an extant 
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science in terms of new concepts in order to demonstrate or highlight the logical 

connections among the concepts used in that science. Such re-descriptions are, therefore, 

avowedly anachronistic rather than historical. Rational reconstructions are generally 

motivated by the drive for unity, clear exposition, or the effective pedagogy rather than 

any historiographical concerns. Although presented as a sequence — describing certain 

facts or laws as ‘following’ from a small number of ‘initial’ assumptions — this form of 

presentation is just a manner of speaking. The sequence presented is logical rather than 

chronological and, if construed temporally, it is counterfactual rather than historical. As 

Mark Steiner puts it, in introducing his own reconstruction of quantum mechanics: 

There is nothing historical … about the following ‘derivation’ of quantum 

mechanics … On the contrary, I reverse the historical order to show that, 

starting with little more than the ‘Maximality Principle,’ quantum 

mechanics could have been discovered by studying the formalism itself, 

rather than studying nature (177). 

 Although a rational reconstruction, in the sense described above, is not a historical 

account of an earlier time, it is a historical fact about its time when the reconstructing is 

done. The arrival of a rational reconstruction may signpost the recent origin of the 

concept that makes such a reconstruction possible or desirable. Consider the following 

examples. After the algebraic concept of symmetry was developed to solve certain 

problems in the theory of equations, it was used to reconstruct and unify a plethora of 

new geometrics that had sprung up in the nineteenth century. The reconstruction does not 

inform us when or how those geometries arose but it may help date the algebraic concept 
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used. After the symmetry concept had migrated from crystallography to physics, classical 

physics could then be reconstructed in the form of the Theory of Relativity. After Emma 

Noether had proved her famous theorems linking physical symmetries to specific 

conserved quantities, new ways of deriving and presenting the fundamental laws of 

physics became possible.  

 The following three uses of symmetry, one in mathematics and two in physics, 

illustrate the variety of purposes for which it is appropriate to do a rational 

reconstruction. History is not one of these appropriate purposes. 

Mathematics 

 Symmetry concepts, whose mathematical relationships were formalized in what 

became known as Group Theory, stimulated and formed the basis of a rational 

reconstruction of the field of geometry itself. Symmetry had once been regarded as 

primarily a geometrical concept, but in Group Theory had become a more general and 

more powerful concept, expressed algebraically. Felix Klein (1849-1925), when he 

became professor at Erlangen University, Bavaria, in 1872, initiated a reconstruction of 

geometry, bringing unity to the diversity of new geometries that had proliferated in the 

nineteenth century by using the concept of a group. This reconstructive effort, which 

became known as the Erlanger Programm, re-described geometries as the investigation 

of those properties of geometric figures that remain invariant under a given group of 

transformations, i.e., their symmetries, in the modern sense of the word. Any 

classification of groups thus becomes a way to classify geometries. One simple example 

is Euclidean Geometry, which has an unstated axiom that areas and lengths remain 
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invariant under a group of transformations in the plane, namely the ‘rigid’ 

transformations of translation and rotation. 

Physics (Pedagogy) 

 Jakob Schwichtenberg wrote Physics from Symmetry, a rational reconstruction of 

standard physics, for pedagogical reasons, not to discover any new physics. He re-derives 

the fundamental equations and theories from a common origin in symmetry, thereby 

reducing their number and making them easier to learn and remember. His approach, like 

that of the others, is explicitly non-historical: 

Many things that may seem arbitrary or a little wild when learnt for the 

first time using the usual historical approach, can be seen as having been 

inevitable and straightforward when studied from the symmetry point of 

view (X).  

In fact, as it sometimes turns out in rational reconstructions, his book starts at what 

would actually be the end of a historical narrative:  

Before we even talk about classical mechanics or non-relativistic quantum 

mechanics, we will use … exact symmetries of nature to derive the 

fundamental equations of quantum field theory (IX). 

Physics (Unification) 

 Einstein’s relativity revolution was the result of a rational reconstruction of 

classical physics using symmetries implicit in the theories of electromagnetism and 

mechanics. That led Einstein to introduce, in 1905, subtle variations of the concepts of 

space and time to complete a long process of reconstruction that had been started by 
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others, effectively shifting the semantics while leaving the syntax (the broad framework) 

in place.13 

 It is unfortunate that ‘rational reconstruction’ has sometimes been offered 

(notoriously, in case of Lakatos) as a type of history. Whatever terms we use, the 

important processes I describe and illustrate above should not be conflated with any 

history of symmetry. 

Guarding against Property Dragging 

 If we view the conceptual trajectory of symmetry not as a random walk through 

history but as the natural record of adaptations to changing inferential needs, we should 

be able to identify when those adaptations first successfully emerged from earlier 

conceptions of symmetry. 

Aesthetic Symmetry 

 The inferential force of aesthetic symmetry is the hardest to defend because that 

symmetry is subjective. Even if one were to give ‘an accounting for taste,’ that account is 

likely to be contingent on our preferences as members of a particular species. 

Notwithstanding that, properties of aesthetic symmetry are sometimes dragged 

inadvertently into inferences that are supposedly based on other concepts of symmetry. 

This shocks us because our expectations of beauty are disabused. For example, earlier 

‘proofs’ of the Four-Color Theorem (the theorem that states, roughly, that one needs no 

more than four colors to fill in a map so that no two zones will have the same color) were 
                                                
13  One recent description of this process can be found in Renn’s “The Relativity 

Revolution from the Perspective of Historical Epistemology.” 
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extremely elegant. Unfortunately, they were demonstrably fallacious. Sadly, for those 

hoping for beauty, the currently accepted proof is hundreds of pages long, relies 

substantially on computer-assisted enumeration and checking of possible topological 

configurations, and is thus (for many people) decidedly ugly. Likewise, many physical 

theories have been regarded as too beautiful not to be true. In our day, some physicists 

believe that String Theory and Supersymmetry are in this category, even though the only 

appropriate criteria are those for empirical corroboration. 

 The most telling ugliness for our project is at the very heart of algebraic symmetry: 

the crowning intellectual achievement of Group Theory. This is known formally as the 

Classification of Finite Simple Groups; less formally as the Classification Theorem; and 

pejoratively as the Enormous Theorem. Perhaps envisioned initially to be the elegant 

counterpart to the list of prime numbers in number theory or to the periodic table of the 

elements in chemistry, the classification assigns each of the finite simple groups, as it 

were the  ‘building blocks’ of symmetry, to one of four classes.  But this theorem and the 

resulting classification are very ugly in several ways. First, the 800-page proof, a 

collaborative effort of hundreds of mathematicians over almost 50 years, cannot be 

absorbed by any single individual in a single sitting and does not have the elegance of a 

simple proof that generates an ‘aha’ moment. Second, the fourth class is a 27-member 

class of ‘sporadic groups,’ groups that do not fit the systematic pattern of any of the 

others. Third, the largest of those sporadic groups, the aptly-named Monster Group, has 

about 8 x 10 53 elements and involves the manipulation of a symmetrical mathematical 

object in a space of 196,883 dimensions — outstripping not only our powers of aesthetic 
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appreciation but also any human intuitions rooted in geometric symmetry. Finally, 

although one might take aesthetic consolation in the fact that the Monster Group at least 

contains (in the mathematically precise sense of ‘subquotients’) 20 of the other sporadic 

groups, we still have to lament that 6 will remain forever and provably at large. They are 

known tellingly as ‘pariah groups.’ 

Geometric Symmetry 

 In the Renaissance, strict bilateral symmetry (mirror-image symmetry) became the 

aesthetic norm in architecture. It was, we might say, a case of dragging the properties of a 

geometric conception of symmetry to the aesthetic one. That meant that when inferences 

were made according to a symmetry that was putatively aesthetic, they could actually be 

made quite straightforwardly according to a symmetry that was actually geometric. The 

problem came later. Those who restore ancient ruins often feel the urge to reconstruct a 

missing piece (a frieze, say) and to do so they need to infer its design from the aesthetic 

symmetry that would have motivated the original builders. How were the sizes of 

different elements related? But by assuming, as has all too often been the case, that the 

design would have been the mirror-image of the piece in a corresponding part of the 

building, they are guilty of anachronistically assuming that aesthetic judgments of ancient 

builders were strictly geometric. They were not. 

 In rational mechanics, to take another example, one makes inferences on the basis 

of the geometrical icons used to represent gravitational and other forces. The downward-

pointing arrows on the drawing of the right arm of a balance are the mirror images of 

those on the left for points equally distant from the pivot that are suspending equal 



88 
 

masses. It is ‘obvious’ to us, as it would have been obvious to Archimedes, on the basis 

of the geometrical symmetry of those arrows that the balance would remain in 

equilibrium — there being ‘no more’ reason for the right arm to move down than the left. 

But one of the properties of geometrical symmetry has been dragged to physical 

symmetry: apriority. Because empirical corroboration over many centuries has been so 

extensive, it is still tempting to think of the balance law (and other results of Archimedes’ 

rational mechanics) as a priori and necessarily true. Nevertheless, equilibrium of the 

balance is actually an empirical result from which we infer that gravitational force is 

(what is now known as) a polar vector, i.e., that it acts in many respects the way 

geometrical arrows do. But the same balance apparatus used to balance forces that 

transform according to different symmetries (for example, torsional forces that one can 

create by twisting cylinders of suitable material) yields different, non-equilibrium results.  

 That there is a distinction between physical and geometrical symmetry is obviously 

very important, the lesson being that we should not impute to physical systems the 

geometric symmetries of the particular diagrams we happen to use until we have 

empirical confirmation that the diagrammatic representation of the physical systems is 

appropriate. An important moment in the conceptual career of symmetry occurred around 

1820 when Ørsted performed his famous demonstrations that the deflection of a magnetic 

compass needle due to an electric current nearby ‘violated’ geometric intuitions based on 

the symmetry of the experimental setup. We no longer view this as a metaphysical 

catastrophe that contradicts some synthetic a priori proposition, but as a crucial 

experiment from which we can infer the physical symmetry of magnetic fields. 
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Persistence in this property dragging caused Ørsted to spend eight years fruitlessly trying 

to generate the experimental results he wrongly expected._ 

Algebraic Symmetry 

 Algebraic symmetries (those permutations of viewpoint that leave some system 

property invariant) are more abstract and less familiar. That may make them less prone to 

having their properties dragged unwittingly into other conceptual contexts. Nevertheless, 

and like geometric symmetries, they are mathematical and may for the same reason give 

rise to the illusion of apriority when their mathematically demonstrable properties are 

dragged to physical systems.  

 Ian Hacking draws attention to the way the algebraic symmetries need to be 

matched empirically to physical symmetries through a simple illustration from the early 

days of probability theory.  

In a brief memorandum, [Galileo] relates that someone has been puzzled 

by a seeming contradiction between two facts. With three dice “9 and 12 

can be made up in as many ways as 10 and 11.” Each, that is, can be 

decomposed into 6 partitions. However “it is known from long 

observation that dice players consider 10 and 11 to be more advantageous 

than 9 and 12.” Galileo’s solution is immediate. There is a “very simple 

explanation, namely that some numbers are more easily and frequently 

made than others, which depends on their being able to made up with 

more variety of numbers.” In particular the 6 partitions of 9 and 12 break 

down into 25 permutations, while the 6 partitions of 10 and 11 decompose 
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into 27 permutations. If permutations are equally probable, then 11 is 

more advantageous than 12 in the ratio 27:25 (Emergence 52).  

In Hacking’s example, the algebraic symmetries are the various outcomes that are 

invariant despite the rearrangement of the individual faces. But which is the relevant 

symmetry: that the outcome ’11’ (say) is invariant under  

 Either 6 partitions (the ways three dice throws can add to 11 whatever order 

the order in which they are thrown) , viz.  

641, 632, 551, 542, 533, 443 

 Or 27 permutations (the ways three dice can add to 11 when we regard the 

sequence of throws as distinct), viz.  

641, 614, 461, 416, 164, 146 

632, 623, 362, 326, 263, 236 

551, 515, 155 

542, 524, 452, 425, 254, 245 

542, 524, 452, 425, 254, 245 

533, 353, 335 

443, 344, 434 

Galileo correctly backed permutations, making ’11’ more probable than ’12’ in the ration 

27:25. Experienced gamblers, who after all have skin in the game, empirically 

corroborated it. Galileo’s method of determining the probabilities of compound outcomes 

with dice is now so thoroughly confirmed that, as in the case of Archimedes, we forget 

that it is not a priori.  
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 In fact it was by no means obvious that permutations rather than partitions was the 

right answer. Leibniz, for example, backed partitions for dice, presumably on some a 

priori grounds. And some elementary particles in microphysics, to wit bosons, actually 

do follow Leibniz’s preferred basis of partitions while others, known as fermions, follow 

a rule that is neither of those discussed above.  



92 
 

4. THE EMPIRICAL CONSTRUCTION OF SYMMETRY 

 In Chapter 3 I set out the key features for a historical epistemology capable of 

accounting for the (material) warrants of symmetry inferences. Best practices in 

comparable historical epistemologies suggest that we need to highlight the way 

inferential practices are linked to the concepts of symmetry they use; the aspects in which 

symmetry concepts, successively introduced into empirical studies, are similar to yet 

different from each other; and the mechanisms driving the changes in the concept of 

symmetry. To explore the inferential practices in sufficient detail, I identified a number 

of categories and distinctions (first introduced by Lakatos in the 1970s) that would be 

suitable for this purpose. These categories and distinctions help one to provide an account 

that is both historical and conceptual; to take the research program as the unit of analysis, 

rather than isolated theories and symmetry concepts; and to show how contemporaries 

judged the scientific successes and failures that drove change in the concept of symmetry 

and its inferential use.  

 In this fourth chapter I discuss my choice of nineteenth-century crystallography as a 

case study (§4.1). The overall argument in this thesis is that the warrants for symmetry 

arguments are to be found in the processes of inquiry, specifically the co-adaptation of 

the concept of symmetry and the sciences whose inferential needs it supports; the detailed 

support for this argument is in the accounts of the symmetry concepts that were 
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introduced in a succession of empirical research programs (§4.2 through §4.4). I then 

consider a plausible objection to that empirical hypothesis, namely the claim that the 

concept of symmetry actually arose in mathematics and was only subsequently applied to 

the empirical realm (§4.5). I conclude with some remarks on the subsequent scientific 

research programs that treated a variety of physical symmetries. These programs hold the 

key to understanding why it is that we repeatedly resort to using symmetry concepts in 

responding to empirical challenges (§4.6). 

4.1 Case Study Material 

 The framework of analysis I set out can be applied to any field and time period 

sufficiently rich in source material. The history of symmetry and the histories of science 

and mathematics do suggest though that there are three broad epochs that are sufficiently 

dissimilar to merit separate investigation. The first begins in ancient times, before the 

advent of science, when ideas on symmetry were driven largely by philosophy and logic.  

The second begins with the first systematic use of symmetry inference in crystallography 

in 1801, when the development of the concept of symmetry was driven largely by 

science. The third can be conventionally dated as starting in 1901, when dramatic 

discoveries transformed crystallography and physics and the status of symmetry concepts 

within those fields. 

 I have chosen to focus on the science of the nineteenth century. This is the 

formative period for the scientific concept of symmetry; studying it will help clarify what 

is distinctive about the concept of physical symmetry that subsequently emerged in the 

latter part of the nineteenth century and the various abstract symmetries that emerged in 
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the twentieth. It will also help focus and motivate any future study of symmetry and 

related concepts in earlier periods. I turn now to specify the case more precisely in terms 

of the time period and scientific fields covered. 

Time Period 

 The case study spans the nineteenth century, as this was when the concepts of 

symmetry used in the physical sciences were developed. Crystallography, the main 

formative influence, began only in 1780 when Haüy published the first truly scientific 

work in the field, a mathematical theory to explain the external form of crystals. In 1801 

Haüy published the first work making use of symmetry inference. The nineteenth century 

also saw the development of electricity and magnetism, a field that benefitted greatly 

from crystallographic symmetry arguments.  

 Around the turn of the century, discoveries in the sciences created a different 

environment for the use and further development of symmetry. In 1894 Pierre Curie 

helped spread the use of symmetry inferences from its native domain of crystallography 

to the broader domain of physics; in 1905 Albert Einstein made the special status of 

symmetries in physics apparent; and in 1912 crystallography itself was utterly 

transformed when the German physicist Max von Laue discovered the diffraction of X-

rays by crystals, a discovery that changed the main focus of that field from the external 

form of crystals to the internal structure of matter. Although mathematical systems to 

represent three-dimensional spaces and their symmetries had originated in the nineteenth 

century, it was not until the twentieth that Group Theory (the ‘language of symmetry’) 
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and allied branches of abstract algebra really flourished and when mathematics led the 

further development of the symmetry concept.  

Scientific Fields 

 The case study focuses mostly, but not exclusively, on crystallography, as this field 

was the crucible for ideas on symmetry for the physical sciences. Curie was right to 

imply that there had not been any systematic attempt before then to use symmetry 

arguments independently in other subfields of physics. They had, however, been used to 

account for various types of physical phenomena insofar as they occurred in crystals and 

were related to the symmetries of crystal structure. These phenomena included 

pyroelectricity — the production of electricity through heat; piezoelectricity — the 

production of electricity through pressure, which Curie himself studied along with his 

brother; electrical and thermal conductivity; and elasticity.  

 Sciences other than crystallography and associated fields of classical physics are 

also relevant to some extent. Mineralogy is sometimes referred to, mainly because 

crystallography emerged from mineralogy in that period and the boundary between the 

two was not as clear then as it is now. Chemistry is relevant to the extent that the 

chemical composition of crystals partly defines their symmetry and because the 

symmetries of the ‘molecules,’ as variously conceived at that time, depended on it. Some 

other fields were indirectly relevant because they influenced the development of 

concepts; the classification schemes of botany and geology, for example, were used as 

models for those of crystals. As Bensaude-Vincent and Stengers lament in their History 

of Chemistry, it is often assumed that we can just write a history of each science 
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separately. But we risk overlooking fundamental problems that way. “The historian of 

science, by accepting the contemporary framework of disciplinary boundaries, tends to 

take for granted a structure that was pieced together with considerable effort in the past” 

(3). Fortunately, many of the key players in crystallography combined interests and skills 

in mathematics and a wide range of sciences. Haüy, for example, had a background not 

only in mineralogy but also in botany and geology (hence his interest in classification) 

and Pasteur was a biologist, microbiologist, and chemist. Curie himself was a physicist 

with considerable mathematical interests. Through his brother Jacques, Curie had access 

to a laboratory and understanding of chemistry and mineralogy. 

- - -  

 The following three sections constitute the main argument showing that the 

scientific concept of symmetry has been constructed empirically through its co-adaptation 

with the sciences whose inferential needs it supports. I do this through a historical 

epistemology whose broad features were set out in Chapter 3. I begin with an aesthetic 

notion of symmetry in pre-scientific crystallography (§4.2 below) and then discuss the 

geometric (§4.3) and algebraic (§4.4) notions in scientific crystallography. 

4.2 Aesthetic Symmetry 

 Crystallography and the scientific concepts of symmetry and form developed 

together in the nineteenth century. They built on past discoveries and on certain 

prevailing ideas, some very ancient. The past discoveries included a wealth of descriptive 

data on crystals that had been studied for thousands of years up till then; it was only in 

the nineteenth century that crystallography became a science, as it was only then that the 
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reflecting goniometer permitted very precise measurements to be made of the interfacial 

angles on crystals and only then that mathematical tools were available to facilitate the 

analysis of quantitative hypotheses about crystal structure. The prevailing ideas were 

conceptual resources that could be used or adapted for use by the new science — but 

which could also mislead when applied too loosely. Those of special relevance were two: 

the concept of symmetry, which up till then had evolved to serve artistic, architectural, 

and mathematical ends; and the concept of form, which had developed over the centuries 

from Aristotle’s hylomorphism, often in response to pre-scientific inquiries into crystal 

structure. Both the concept of symmetry and the concept of form continued to develop in 

the nineteenth century. 

The Ancient Problem Situation of Crystallography 

 The problems posed to the inquiry we now know as crystallography determined its 

inferential needs and therefore the concepts best suited for those inferences. Although 

there was no scientific inquiry as we now know it in classical times, there was 

considerable fascination with crystals, whose symmetries were aesthetically appealing. 

Although no ‘progressive research program’ resulted from that fascination, we see the 

earliest setting of an agenda for crystallographic inquiry, one that persists.  

 The first type of problem concerns the external form of crystals: how we should 

describe, value, and explain the presence and variety of crystal forms. In the sixth century 

BCE, the Pythagorean School, during an “important upswing in mineralogy and all other 

sciences” (Schuh 14), viewed the cosmos in terms of the five maximally symmetric 

polyhedra (i.e., the ‘Platonic’ solids — the cube, tetrahedron, octahedron, icosahedron, 
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and pentagonal dodecahedron). But nothing lasting developed out of that claim; crystals 

themselves did not become the object of systematic inquiry, remaining merely as objects 

mentioned in literary and philosophical works. 

 The second concerns the classification of crystals. Theophrastus (381-287 BCE), 

Aristotle’s successor at the Lyceum, wrote the oldest treatise on minerals in the West, De 

Lapidibus.14 There he presents a classification of minerals. He divides minerals into the 

classes of ‘earths’ from ‘stones’ and identifies around 50 ‘species’ altogether, including 

many crystals.  What makes this work important for us is neither his specific taxonomy 

nor his theory relating aesthetic appearance to purification processes of mineral formation 

but the fact that he made classification itself a subject for serious inquiry. What makes 

his inquiry almost modern is that it is methodically done on the basis of geometric and 

physical properties, rather than magical ones. In fact, his work was so meticulous that “it 

is possible to apply modern names to the species [he] described … and to read the 

Classical theories about [those minerals]” (Schuh 17-18).  

 The third problem concerns the relationship between crystal properties and crystal 

structure. Expressed as a general question about the relationship between ‘outer 

appearances’ and ‘inner reality’ this is, in the western tradition, at least as old 

Parmenides, who flourished around the late sixth century BCE. As a more specific 

question about appearances and internal structure (the organization of otherwise 

unanalyzed units), it goes back to Democritus, who flourished shortly thereafter. 
                                                
14  Neither Plato (whose Academy was not, in any case, focused on the natural world) nor 

Aristotle made any significant remarks about crystals.  
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 Shape (external form) is one of the most easily recognized appearances of a crystal, 

and so its relationship to structure (internal form) would have seemed obvious — 

especially since both shape and structure are expressible in geometric terms. As Emerton 

notes, the belief that external form and internal form are related  

is shown by the use of the same word ‘form,’ like its equivalents eidos in 

Greek and forma in Latin, to signify both the outer shape of a thing and 

also its inner nature or essence. (19) 

In fact, even in current literature, it is not always apparent which ‘form’ is being referred 

to. 

 Although the problem of relating external appearance to internal structure is hardly 

unique to crystallography, there are, as Emerton notes, 

two classes of natural objects that are outstanding on account of their 

constant and specific outward form, which seems to presuppose as its 

source an equally constant and specific inward form. These are living 

creatures and crystals: a human being, an oak tree, or a rock crystal has an 

instantly recognizable characteristic appearance. (20) 

Furthermore, she notes, crystals do not have the myriad complexities of biological objects 

and so we may guess that they present a clearer way to test theories of that relationship. 

 This problem is presented most starkly in terms of the observed symmetry of shape. 

For Johannes Kepler (1571-1630), the author of the first modern work on crystal 

structure, The Six-Cornered Snowflake, the question is “why snowflakes, when they first 

fall, and before they are entangled into larger clumps, always come down with six corners 
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and with six radii tufted like feathers” (33). This external symmetry cannot be just some 

random occurrence, Kepler thinks, because that would not explain why “they always fall 

with six corners and not with five, or seven, as long as they are still scattered and distinct, 

and before they are driven into a confused mass” (35).  

 Because crystallographic inquiry was not scientific until the nineteenth century, 

there were no ‘conjectures’ that were advanced for methodical testing. We can, however, 

identify a baseline of conceptual resources available at the time of the birth of scientific 

crystallography that the earliest scientists used or modified for use. Two important ones 

were aesthetic symmetry and substantial form. 

The Classical Concept of Aesthetic Symmetry 

 Aesthetic symmetry, as I use the term, is a property of a whole object that results 

from having proportions that confer goodness, beauty, or elegance to it. As such it is not 

only a geometric concept but also a normative one at the same time, one that can be used 

to make inferences about what ought to be the case. The concept (although not the term) 

is an ancient one — traceable at least as far back as Plato, if not before. We should take 

note of Plato’s pattern of inference because it is representative of one that was sometimes 

employed in nineteenth-century crystal science — and in the physical sciences more 

generally, even today. 

 In his dialogue, the Timaeus, Plato uses a concept of aesthetic symmetry to draw 

certain inferences about the natural world. Although in English translations of Timaeus 

‘symmetry’ appears rather infrequently, when it does it is as the translation of συµµετρία, 

the word from which our word ultimately derives. However, translators commonly render 



101 
 

συµµετρία as ‘proportion,’ rather than as ‘symmetry,’ because it has both geometric and 

normative resonances. The geometric sense of συµµετρία is derived from the concept of 

measurement; the core meaning is found in µέτρον, a concern for measure, or that by 

which something is measured. But the normative sense is also intended, and so a concept 

like Plato’s συµµετρία would accomplish inferential work in crystallography in two 

ways. One way would be by privileging what is proportioned over what is not. Plato 

refers to regular polyhedra and the triangles out of which they can be constructed as 

beautiful (Tim. 53e ff) and suggest that the most beautiful structural theory is the true 

one; since then, crystallographers have shaped their structural theories with a similar 

concern for aesthetics. Another way to do inferential work is by yoking together different 

things on the basis of a supposed common measure. Plato does this for mind and body 

(Tim. 87c‑d); by parallel reasoning, a crystallographer could do so for internal structure 

and external form. 

 One variant of our first problem is: Why do crystals tend to display so much 

symmetry? We are tempted to answer this on aesthetic criteria like those used in the 

Timaeus by claiming that proportionality among the physically measurable properties of 

things is what manifests the order created by the ‘craftsperson’ of universe — or as 

crystallographers have since said, established or favored by Nature. As Timaeus recalls, 

the craftsperson does this by judicious use of proportionality, that is, by maximizing the 
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number of ways every object is related through proportionality, not only to itself but also 

to everything else (Tim. 69b).15 

 A form of inference that was purely geometric developed later. Hon and Goldstein, 

in their history, describe a ‘mathematical path’ that leads out of the work of Plato and 

through that of Euclid, Archimedes, and Kepler (among others) to the concept of 

geometric symmetry (69-72). They also distinguish an ‘aesthetic path’ that leads out of 

Plato through Aristotle and others to a purely artistic concept (93-110). Hon and 

Goldstein claim that the two concepts of symmetry, tightly bound in Plato, were not 

clearly distinguished until Roman times, when Vitruvius introduced the term symmetria, 

a transliteration of συµµετρία, for the artistic concept and commensuratio, a partial 

translation of the same word into Latin, reserved more for the geometrical concept (93). 

Although we claim to use the latter concept in symmetry inferences in the physical 

sciences today, we need to keep this conceptual ancestry in mind and be alert to the 

possibility of inadvertent or unsupported ‘property dragging’ of aesthetic considerations 

into otherwise warranted geometric inferences.  

 Kepler himself obviously felt the tension between the two concepts, but after 

proffering his tentative structural explanations for snowflake symmetry based on 

geometrical and physical explanations, added: 

                                                
15  In this passage and elsewhere, Plato uses cognates of both συµµετρία and ἀναλογία to 

refer to proportionality and its close synonyms. 
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I suspect that these explanations based on material necessity are sufficient, 

and thus I do not feel the need at this point to philosophize about the 

perfection, beauty, or nobility of the rhombic figure … (65). 

 Aesthetic symmetry is still used to make judgments about theories today. Simple 

theories, for example, are preferred over gratuitously complex ones. Such judgments are 

problematic only when they masquerade as inferences about the physical world itself, 

such as when an aesthetic concept of symmetry (balance, elegance, simplicity, etc.) is 

used to winnow hypotheses that are currently untestable (or, worse, when empirical 

evidence is contraindicative) on the grounds that it would be ‘fitting’ that Nature operate 

in a particular way. Such aesthetic inferences are generally used informally and without 

explicit acknowledgement of any warrant. 

Substantial Form 

 The substantial form of an object is, loosely speaking, the form that makes it the 

thing that it is. We understand intuitively the difference between this and its opposite, 

accidental form, which merely describes the way the object happens to be. Thus a lump 

of calcium carbonate may be described as large or small, shaped like a brick or broken — 

these are accidental qualities. But if (in terms of today’s understanding) its molecules 

were arranged in a very specific pattern (C) we have a crystal of calcite; arranged in 

another (A), aragonite. These two crystal substances consist of the very same material but 

have very different physical properties, properties that would not survive a switch in the 

molecular patterning between C and A. The C-pattern is the substantial form of the 

material calcium carbonate that makes it calcite. Symmetry may be an aspect of the 
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substantial form of an object (as in the case of calcite) or part of the accidental form of an 

object (as in the case of a ‘crystal’ made from cut glass).  

 The importance of substantial form is especially evident in the third of our 

crystallography problems. That problemshift was a move away from just describing and 

classifying crystals by their appearance to accounting for the relationship between 

appearances (crystal shapes) and ‘reality’ (crystal structure). If we can regard the 

substantial form as the internal form, describable as an invariant geometrical 

arrangement, this relationship will then be a mathematical one from which we can deduce 

the various external forms compatible with that internal form. With this understanding of 

the task of crystallography, its development prior to the nineteenth century could then be 

‘rationally reconstructed’ as the quest for the substantial form of crystals that has two 

aspects to it: “the forms of the molecules of crystals and the way they are arranged 

together in each crystal. It is this combination that is called structure” (Haüy Essai 9, qtd. 

in Emerton 259). 

 Emerton writes an inner history of the pre-scientific concept of form, starting with 

the notion of Aristotle’s that united matter and form and moving through the Scholastic 

elaboration of the notion of substantial form. Although, in the general reaction to 

Scholasticism, substantial form was heavily attacked, the concept of some sort of internal 

structure for minerals actually revived in the sixteenth century due to “increasing interest 

in crystals, coupled with an awareness of the shortcomings of mechanical explanations of 

crystallization” (36). Emerton argues that there were also other reasons for this revival 

stemming from the inferential demands of chemical and corpuscularian theories, whose 
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needs for a concept of form not only influenced crystallography but also drew inspiration 

from it (36). Like the concept of symmetry, the concept of form has developed in tandem 

with the inquiries it serves, rather than on a segregated philosophical track.  

The Modern Problem Situation of Crystallography 

 We are concerned with the scientific concept of form developing in the nineteenth 

century, immediately following the time period of Emerton’s study. A full description of 

and accounting for the form of a general object would theoretically be an infinite 

endeavor and unmanageable. But this is not so for an object with evident symmetry 

because the symmetry alone may characterize an enormous degree of redundancy in the 

description and in the account that reduces the problem to a finite and practically 

manageable one. To cite the most extreme case, a body that is stipulated to be spherically 

symmetric does not require each of the infinite number of points on its surface to be 

described and accounted for separately; given this symmetry, describing just one point is 

sufficient. 

 Crystals display an important subclass of symmetries, so one could have anticipated 

that crystallography would become an important field in which to study them. We can 

now identify those inferential practices in crystallography that used and then modified the 

prevailing concept of symmetry around 1800. Those inferential needs arose in the course 

of addressing essentially the same problems that had already exercised the minds of the 

ancients. 

 Recall the first problem: how to describe the external form of a crystal. Regardless 

of the way external form may or may not depend on some substantial inner structure, 
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there are definitely some accidental aspects of crystal appearance — such as size and 

whether it is imperfect or broken. More interestingly, crystallographers needed to explain 

the observations that crystals had natural cleavage planes and that their shapes could be 

altered in lawlike ways by beveling the edges and truncating the corners. Alterations in 

shape like this are accidental aspects as they do not alter the chemical composition or any 

of the chemical or physical properties of the crystal specimen. That fact calls for a way of 

specifying the accidental aspects of form -- such as size, shape, and number of crystal 

faces—from the essential aspects – those that are invariant in that they do not depend on 

such accidental aspects.  

 The second (but related) problem of crystallography concerns crystal classification. 

Taxonomies are most useful when they uniquely identify the substantial properties. One 

controversy was whether the invariant features of external form were enough to do this or 

whether any further properties of the material composition and internal structure (i.e., 

those involving chemical or geometrical categories) were required. 

 The third problem concerns the way external form and internal form are related, 

i.e., how material inferences can be made about one from a knowledge of the other. Many 

of these inference patterns brought into question the Aristotelian notion of a close bond 

between matter and form — which, in the context of crystallography, is the association 

between chemical composition and crystal structure. Some substances composed of the 

same material may constitute completely different crystals, the way calcium carbonate 

constitutes both calcite and aragonite, supposedly because they have different internal 

form — a property known as ‘polymorphism.’  Conversely, some substances composed 
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of different matter can behave in the same or similar ways, the way zeolites of different 

chemical composition do, because they have the same internal form — ‘isomorphism.’ 

Even more puzzling, some substances that not only comprise the same matter but also 

possess the same internal form of that matter, may also have different physical 

properties.16 And some permissions and restrictions on physical properties and processes 

can be discerned purely on the grounds of the symmetries in the form of the medium, as 

happens with pyroelectricity and piezoelectricity in crystals; such inferences being 

independent of the material composition and even of any particular theory of the 

phenomenon under study. The mathematization of crystallography in the second half of 

the nineteenth century made crystal classification and inference a matter of form alone. 

This is reminiscent of earlier alchemical theories that permitted the in-principle 

transmutation of elements through detaching form from one desirable element (gold, say) 

and re-attaching it to a base material (lead, say) — despite the origins of alchemy in 

Aristotelian thought. It was also not unlike the twentieth-century physics theories that 

were based on symmetries that were abstract, algebraic forms that are detached, as it 

were, not only from matter but also from the geometry of three-dimensional space.  

                                                
16  An example of this is amyl alcohol. Depending on whether it is prepared by living or 

non-living processes, solutions of this substance have different optical properties 

resulting from otherwise identical internal forms being mirror images of each other  — a 

property known as ‘chirality.’ This was a puzzle that Pasteur helped to solve. See §2.2. 
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4.3 Geometric Symmetry  

 The scientific uses of symmetry begin with various concepts of geometric 

symmetry that were introduced into the crystallography research programme,17 starting in 

the late eighteenth century. The general idea was that identical physical conditions of 

crystal growth would lead to identical outcomes, such as identical geometrical shapes of 

crystal faces, there being no reason to think otherwise; in uniform conditions, identically 

shaped faces similarly situated would develop in the same way.  This idea obviously had 

the potential to simplify explanations in crystallography greatly because crystal shapes 

typically comprise repeated geometric elements. 

The Problem Situation in the Mineralogy of the Eighteenth Century 

 Mineralogy was a branch of geology inquiring into the nature and the theory of 

minerals, regarded as solid inorganic substances of natural origin. Some minerals are 

crystals, which are solids bounded by plane faces, typically comprising repeated 

geometric elements. By the eighteenth century, crystals had become the subject of a 

subfield of mineralogy. 
                                                
17  Lakatos uses ‘programme’ to refer to a series of scientific activities extending over the 

long term, without implying that the principal actors see their activities as constitutive of 

a single endeavor. This is more or less what we mean by a ‘field of inquiry,’ such as 

crystallography as a whole. I follow the common practice of reserving ‘program’ for 

activities grouped according to a particular theoretical approach (such as Romé de l’Isle’s 

and Haüy’s distinctive approaches to crystallography) and reserving the British spelling 

to mark the broader, Lakatosian sense.  
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 Crystallography then began moving away from mineralogy in two ways: it was 

specializing in questions such as crystal structure and classification and it was expanding 

to cover not only natural crystals but also ones grown artificially in controlled 

conditions.18 Crystallography in the eighteenth century had been concerned with the 

classification of crystals by their external geometric form, specifically by their 

symmetries (understood as regularities). Crystals were regarded as solid bodies bounded 

by plane faces (i.e., they were polyhedra), and their geometric regularities were 

determined by measuring the angles between adjacent faces. (Quick identification of 

minerals by the symmetries they displayed by their crystals would be very useful to 

mineralogists in the field, where they might not be able to do a chemical assay.) One of 

the problems dealt with at that time was the first on the ancients’ list: that of describing 

and accounting for the vast variety of crystal forms, especially the variety of forms 

sometimes associated with what seem to be the very same mineral.  

Romé de l’Isle’s Research Program 

 Romé de l’Isle took up the task of classifying crystal forms according to the 

hypothesis that underlying a multitude of accidental forms (‘secondary forms’ or 

‘appearances’) there was a small number of substantial forms (‘primary forms,’ often 

called ‘primitive forms’) out of which they were assembled. He noted, for example, that 

if the crystal itself took the primitive form (a cube, say) it could be systematically 
                                                
18  Controlling the growth of crystal specimens, Dewey would say, is a way of preparing 

the data for material inference. Hacking would cite this as one of the self-vindicating 

actions of the laboratory science that crystallography had become.  
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truncated at its weak spots (on its corners or along its edges) to produce a plethora of new 

forms that, he supposed, were merely secondary to the primitive form the crystal had 

originally. He hoped to build a classification scheme on well-defined theoretical 

principles that was based on the invariant features and that ignored the accidental 

features. This could be used to predict the existence of new crystal forms, i.e., ones that 

were deemed theoretically possible on that basis even though they had not yet been 

observed in natural crystals (Burke 74-76).  

 Romé de l’Isle had a research program with a clear method of proceeding. In his 

program, the positive heuristic of crystallography was: Describe all the primitive forms 

and the secondary forms that are related to them. In this way, Romé de l’Isle clearly 

showed that crystallographic classification was a serious endeavor based on theoretical 

principles rather than superficial likenesses. He had come from a background in Natural 

History and was an admirer of the Linnaean system of classification; what may have 

struck him was the Linnaean use of characteristic features, i.e., the constant and 

invariable features that allow one to classify a species (Hon, From Summetria 56). He 

was also no doubt aware of the relevant differences between crystal species and 

biological species — in particular, the fact that the truly invariant features of a crystal are 

not visible in their external form (which can be highly variable, unlike the case with 

biological species). Crystal features are geometric, rather than functional as they are in 

biology, and Romé de l’Isle realized that as such they could be determined quantitatively 

with great precision using the recently invented contact goniometer. He demonstrated in 

great detail how a primitive form of a crystal shape could be transformed in a lawlike 
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way to a number of secondary forms through beveling and truncation and showed that the 

characteristic features of a crystalline substance did not include its appearance (a mere 

secondary form) but did include its primitive form and sometimes other physical 

properties as well. As a result of his extensive studies, Romé de l’Isle proposed a 

classification scheme comprising six primitive forms and showed that known crystalline 

substances could be included in one or other of these classes. 

Romé de l’Isle’s Use of Geometric Symmetry 

 Romé de l’Isle used a geometric concept of symmetry to help with this problem of 

classification. For him, the characteristic (i.e., constant and invariable) features of a given 

crystalline substance include its primitive form (which had to be identified from a table of 

possible forms) and its interfacial angles (which had to be measured accurately). 

Symmetry for him meant that   

every time that the same combination of the same elementary principles 

comes to operate in exactly similar circumstances and proportions, we see 

that there result from it bodies of the same form, the same density, the 

same hardness, the same flavor, etc. 

and that, conversely,  

lacking the conjunction of all these circumstances, crystallization often 

remains indistinct, imperfect. (Romé de l’Isle qtd. and trans. in Hon, From 

Summetria 189).  

That is to say, equivalent physical conditions will lead to, among other things, equivalent 

geometric features. 
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 The proviso, ‘equivalent physical conditions,’ requires that the growth and selection 

laboratory samples need to be controlled in order to minimize any ‘accidental’ features. 

That in turn meant Romé de l’Isle’s program had at least one defensive maneuver in the 

‘protective belt’: anomalous forms could develop if those physical conditions were not 

uniform or constant.   

Romé de l’Isle’s Degenerating Program 

 Ultimately, Romé de l’Isle’s program became a degenerating one.19 The postulated 

primitive forms were arbitrary, and so were the theoretical truncations and bevelings that 

were used to claim that an observed crystal shape was a secondary form relative to a 

primitive one. In 1803, one near-contemporary reviewer acknowledged that the program 

was only initially progressive but that it had become ad hoc: 

Though often successful in explaining the origin of the most complex 

secondary forms, by means of imaginary truncations and bevellings of a 

simple solid, the immense industry and great sagacity of this last inquirer 

[Romé de l’Isle] were frequently baffled, and he was reluctantly obliged to 

suppose that some minerals possessed more than one original form, from 
                                                
19  As the analyst, I use Lakatosian terms as common descriptors for a variety of research 

programs. Note, however, that I do not use those categories and distinctions as the basis 

for any historical claims, i.e., to rationally reconstruct the motivations or specific actions 

of the historical agents themselves. Because claims about symmetry and about program 

‘degeneration’ are particularly important for my argument, I cite the contemporary or 

near-contemporary historiographical records that provide direct support. 
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which their modifications were deduced. However necessary such a 

conclusion might appear, it was evidently inadmissible, without supposing 

a deviation from that uniformity which is invariably found in the works of 

nature; and even if the system of Romé de l’Isle had been rescued from 

this mortifying concession, it would still have been wholly unfit for the 

determination of minerals by their crystals, as few solids would have been 

esteemed the common origin of numerous substances most efficiently 

distinct. (“Review of M. Haüy’s Traité de Mineralogie” 45) 

 This program degeneration was clearly a factor in choosing between rival programs 

since, just a year later, when he was reviewing the relative merits of Romé de l’Isle’s 

program and another one, Abbé Buée expressed his misgivings about arbitrariness of the 

former this way: 

[B]y a series of arbitrary truncations we may pass insensibly from any 

given form to any other. Grounded on this principle, and seconded by Mr. 

de l’Isle’s ingenuity, any form may become primitive, and any other 

deduced from it. Now as the combinations are infinite … nothing is 

proved. (Buée 32) 

In other words, the approach was flexible enough to produce any given shape from any 

other (Burke 77). Furthermore, Romé de l’Isle had no explanatory model and regarded 

the mechanism of crystal formation as deeply mysterious. It is against that background of 

failure that we need to view the developments in crystallography that followed. 
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The Problem Situation in Crystallography circa 1800 

  The French molecular theory of crystal structure held that there were not just 

primitive forms that described crystals but there were also primitive particles that 

constituted crystals, imperceptibly small secondary particles that were usually taken to be 

polyhedra. These secondary particles were postulated to be identical in shape and 

composition to each other. They were believed to bind together to form the aggregates we 

recognize as crystals; layers of them would be superimposed on other layers in ways that 

determined crystal shape. The German ‘polar theory,’ by contrast, emphasized forces that 

radiated from various points in the crystal. Haüy subscribed to the French school and so 

his theory was built on a geometric conception of these secondary particles, unit cells that 

fill the space of the crystal. He used it to take up and transform all three of the traditional 

problems of crystallography.  

 The first problem, that of describing and accounting for crystal shapes, became for 

Haüy the task of reducing already known empirical laws about crystal appearances, such 

as the Law of Constancy of Interfacial Angles, to more basic ones and to account for 

otherwise brute facts, like the quantified relationships among the various aspects of a 

crystal. For this task he needed an explanatory model of crystal structure.  

 The second problem, that of classifying crystals, became the task of systematically 

reducing the plethora of observed forms to a few elemental ones in a theoretically 

principled (i.e., non-ad hoc) way. To do this he needed to overcome the issues that 

dogged Romé de l’Isle’s program, which (as we saw above) was generally regarded as 
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arbitrary and qualitative. Haüy’s program was explicitly contrasted with Romé de l’Isle’s 

in his own day: 

 Before we can determine, whether these [Haüy’s] extraordinary 

innovations are entitled to our unqualified approbation, it is necessary to 

inquire, whether they were actually called for by the errors of the 

preceding systems [Romé de l’Isle’s], and whether they furnish proper 

remedies for acknowledged defects. (“Review of M. Haüy’s Traité de 

Mineralogie” 43-44) 

It was quite clear that grounds for preferring one over the other were the degree of 

arbitrariness, and that Haüy’s is clearly favored: 

The same accuracy of research that has enlarged the number of 

components, has diminished the estimated number of compounded bodies, 

by proving the frivolity of many superficial distinctions which had been 

regarded as specific, and by establishing precise criteria of essential 

differences. (Ibid. 43) 

 The third problem, that of relating crystal properties to crystal structure, was bound 

up with the solution of the other problems: the task of relating crystal shape to molecular 

structure, using a model of Haüy’s devising. What makes Haüy’s work important for our 

study is that the solutions he proposed for these tasks eventually required him to use 

concepts of symmetry in the material context of crystals in a way that comported well 

with French molecular ideas. 
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Problemshifts: Internal Structure and Repeated Cleavage 

 Initially, Haüy shifted the problems of crystallography both theoretically and 

experimentally; subsequently, in his mature work, he then had to introduce and employ a 

modified concept of symmetry in an attempt to keep his research program progressive. 

 Theoretically, whereas Romé de l’Isle had focused only on the external form of the 

crystal and tried to account for the myriad guises in which the ‘substantially’ same crystal 

might appear when ‘accidentally’ bevelled or truncated, Haüy focused on the relationship 

between the external form and its (hypothetical) internal structure. Specifically, Haüy 

pondered permissible ways in which the primary forms of the constituent parts could be 

configured to yield the shapes of the whole. Specific hypotheses about internal structure 

would be testable: they would have to account for known external forms, predict other 

external forms that were possible even if not yet observed, and rule out yet others as 

impossible.  

 Experimentally, whereas Romé de l’Isle and others had noted that crystals could be 

cleaved along weak planes to change the external form, Haüy experimented with 

repeated cleavage, conjecturing that this would eventually reveal the truly primary form 

of the constituent parts (asymptotically, as it were). Haüy’s initial (but probably 

apocryphal) Eureka moment occurred when he is said 

to have dropped and broken a group of calcite that had crystallized in the 

shape of hexagonal prisms. As he stooped to pick up the debris, he noticed 

the fragments were rhombohedra corresponding in every detail to the 

shape of the Iceland crystal [known now as Iceland spar, a transparent 
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variety of calcite]. Immediately the idea came to him that such 

rhombohedra must be the nuclei of all calcite crystals. (Burke 83) 

This procedure could not explain why crystals had the primitive forms they did, but it 

was still a great improvement. A contemporary reviewer praised him for avoiding the 

arbitrary choices his predecessor would have to make:  

The Abbé Haüy does not undertake to prove generally, that among the 

different crystalline forms of the same substance, one of them is the 

primitive; but he produces that primitive form from each crystal, which is 

always similar in similar substances. (Buée 33) 

 Haüy shifted the problem of codifying the regularities observed in crystal form 

from empirical laws to scientific explanations based on an internal structure that had been 

hypothesized on the basis of experimental data pertaining to the substance in question. 

These explanations would  have, in the Lakatosian lexicon, an ‘excess empirical content,’ 

meaning that they unified existing laws and predicted observations not already used in 

the development or calibration of the model. Before describing Haüy’s novel use of 

symmetry concepts though, it will be necessary to first set out his proposed explanatory 

model and his proposed classification scheme, because it is problems in his initial 

proposals that led him to introduce symmetry and which explain the material context of 

inferences that he proposed to make on the basis of symmetry. 

Haüy’s Crystal Model 

 Haüy used his model to explain the particular variety of observed crystal shapes. 

Haüy modeled crystals as structures built from blocks deposited in successive layers on a 
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nucleus in a regular pattern. So Haüy needed to posit two things: a shape for each 

building block (including its plane and interfacial angles) and a pattern of layering. The 

mere existence of primitive forms and layering was sufficient for his inferences and he 

did not offer any explanation for either.20  

 The building blocks, Haüy initially thought, were just the primitive forms. Using 

the primitive form had worked well for calcite and its other crystal varieties. But Haüy 

was forced to make two further theoretical moves. First, although the primitive form was 

the last form standing after repeated mechanical division, Haüy could still impose a 

mathematical division that permitted the six forms characterizing his classification 

scheme to be reduced to just three. These he called integrant molecules (molécules 

intégrantes). Second, in order to work with only one shape (the parallelepiped) Haüy 

posited a yet more fundamental kind of unit, the subtractive molecules (molécules 

soustractives). For example, two triangular prisms make up a parallelepiped, six 

tetrahedra a rhombohedron, and so on. This move, Haüy believed, conferred greater 

generality on his theory. For a given crystal then, Haüy could determine the primitive and 

then the integrant molecule and then, working from the angles of inclination of the 

cleavage faces, calculate various ratios to generate the plane and interfacial angles of the 

integrant molecule.  
                                                
20  This is reminiscent of the situation that led Newton to say “hypotheses non fingo.” 

The absence of any theory of layering did not prevent Haüy from making symmetry 

inferences, just as the absence of any theory of action-at-a-distance did not prevent 

Newton from making inferences about planetary motion. 
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 But the layering pattern had to be postulated too. As Burke explains: 

Every crystal face could be considered as having been built up by 

progressive addition of lamellae to it. Each lamella was thought to be 

formed of contiguous integrant or subtractive molecules and to have the 

thickness of one molecule. (94) 

This can be seen in Figure 1 using Haüy’s drawing of the simple case of a cube nucleus 

where the integrant molecules are also cubes. In this case, the crystal form is constructed 

on a cube nucleus with a decrement of two rows in width between OI and EA, II’ and 

OO’, and EO and E’O’; two rows in height between EO and AI, OI and O’I’, OO’ and 

EE’. A is the obscured corner of the square EOIA (Traité tome 5, Plate II).  

 Haüy believed that his method was complete. His overall positive heuristic was 

this:  For a given substance, determine the primitive form of a crystal experimentally, 

then posit the laws of decrement, and compare the predicted crystal forms to those 

known. If there is not a good match, revise the primitive form or posited law of 

decrement. 

Haüy’s Classification Scheme 

 The classification scheme was also based on the primitive form of a crystal: 

[T]he primitive form of crystals of a certain species results as a nucleus 

from the cleavage of all the secondary forms. (“Haüy” 179) 
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After his lucky break, the accident with calcite, Haüy had his positive heuristic: he 

systematically shattered many other crystals to derive their primitive forms. In 1793 he  

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Dodecahedron with Pentagonal Faces 
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classified them according to six systems: parallelepiped, rhombic dodecahedron, 

hexagonal dipyramid, right hexagonal prism, octahedron, and tetrahedron.  

 Haüy’s approach overcame the difficulties in the existing approach, that of Romé 

de l’Isle, mentioned earlier.21 By seeing the respects in which Haüy did so and by seeing 

the difficulties his own approach developed, we will be able to appreciate why he needed 

to employ a specific concept of symmetry and the inferential work that it was required to 

do within his model. 

 At a minimum, Haüy’s task was to rid classification of its arbitrariness. His method 

of repeated cleavage reduced the arbitrariness of the primitive form experimentally, and 

his explanatory model imposed constraints on the truncations and bevelings on the 

supposition that the new faces had to align with diagonal rows of integrant molecules. 

The angle of inclination therefore depends on a Law of Decrement, the number of 

molecules we skip as we slice through each layer. We see in Figure 2 the cross section in 

the x-z plane of a crystal formed out of cubic molecules, with its corner truncated by one 

molecule row by the plane AA’ , two rows by BB’, and three rows by CC’. (The planes 

are seen in cross-section as the lines AA’, BB’, and CC’.) One can show geometrically 

that the intercepts of the possible faces with the z-axis will be ratios of whole numbers. 

For a general three-dimensional crystal there will be a series of such ratios possible for 

each axis. Haüy derived this law (the Law of Rational Indices) from his explanatory 
                                                
21  Short histories of Romé de l’Isle’s work can be found in Burke (62-77) and Hon and 

Goldstein (From Summetria 188-200). 
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model. Because part of the hard core of his model is the integrant molecule, fractional 

molecules are forbidden and therefore the intercepts must be ratios of integers. That of 

course has the advantage over Romé de l’Isle’s model in that not all truncations would be 

permitted, a prediction that can be empirically checked. 

 

 

 
 
 

 

 

Figure 2  Cross-section of a Cubic Crystal Truncated by Planes 
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Although Haüy’s model was empirically testable and could also reduce the 

arbitrariness of Romé de l’Isle’s, his own Laws of Decrement, part of the hard core of his 

model, were also ad hoc. As no mechanism for crystal construction is presented it is not 

clear how the number of rows subtracted in each of the layers in his model is to be 

determined other than by matching them ad hoc to each observation. It might be one or 

two but there is no clear limit. This is not merely arbitrary; it leads to an unmanageable 

combinatorial explosion. With one or two rows subtracted, a primitive form might 

generate thousands of secondary forms, but with four it would be millions. Haüy had also 

found it necessary to postulate differential decrements in some cases — meaning that the 

decrement would one number of rows of molecules in one direction and another in the 

transverse direction (as is illustrated in Figure 1). With this degree of flexibility, his 

research program was degenerating. In an attempt to rein in this lawless profusion of 

decrements, Haüy turned to geometric symmetry. 

Haüy’s Use of Geometric Symmetry 

 Haüy was not the first to introduce symmetry into crystallography, but he applied it 

differently than Romé de l’Isle did because, unlike the latter, he was using it to relate 

external form to a (hypothesized) internal structure. He used it to relate the nucleus of a 

crystal and the various crystal forms that result when successive layers of molecules are 

added. He described symmetry (as if from the perspective of Plato’s craftsperson) thus: 

… the manner in which Nature creates crystals is always obeying to the 

law of the greatest possible symmetry, in the sense that oppositely situated 
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but corresponding parts are always equal in number, arrangement, and the 

form of their faces. (Haüy 1795, qtd. in Kubbinga 9). 

This kind of symmetry inference seems to follow from the Principle of Sufficient Reason: 

if physical conditions at corresponding parts of the crystal are identical, there is no reason 

that the resulting geometrical shapes would not also be identical. 

 It is not before 1815 though that symmetry carries an important inferential load 

within Haüy’s model. By that time Haüy could appreciate that he then had a plethora of 

laws of decrement and that these seemed arbitrary in the sense that they had to be 

selected to fit empirical data. So Haüy then subordinated these laws of decrement to a 

new law that he had postulated, the Law of Symmetry. This law, he supposed, was 

“remarkable for its generality and uniformity in the midst of the numerous modifications 

to which [the laws of decrement] are subject” (Haüy Mémoire, trans. Hon 196). The law 

would at least reduce the arbitrariness of the choice of possible decrements by restricting 

them to a single choice wherever physical conditions were the same — in practice, this 

means when the physical conditions are deemed to be equivalent wherever the geometric 

features of the crystal look the same.  

 This symmetry concept is geometric not aesthetic. As we saw, the prevailing 

concept was aesthetic, a concept that is more often used to characterize life, art, and 

architecture than inorganic nature; it referred and still refers to the balanced or fitting 

relationship of all the parts to the whole object and to each other, with connotations of 

beauty and elegance. But for Haüy, symmetry had to function in the inferences he needed 

to link the internal arrangement of the building blocks of his model to the external form 
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of the crystal so modeled. These inferences included the identification and classification 

of the external forms that were possible as well as quantitative predictions about crystal 

faces and their planar and interfacial angles. Gabriel Delafosse (1796-1878), who was 

Haüy’s student, described this geometric sense of symmetry: 

A whole is symmetric when it manifests a particular regular building plan 

which ordains the arrangement of the composing parts, a condition that 

implies that among those parts there are some that repeat themselves 

various times, maintaining in the process the same form and the same 

value, while occupying also similar positions with respect to a center or 

system of axes. (Delafosse 1840, qtd. Kubbinga 11)   

This geometric symmetry was still metaphorically related to architecture, a planned 

building. But the parts of this building were then symmetric in the sense that they were 

congruent and occurred in repeated patterns (familiar in the decorative walls typical of 

Islamic architecture, say) rather than in the sense that they were fitting in shape and size 

or that they occurred in balanced relationships (familiar in the balanced room, door, and 

window layouts typical of Renaissance architecture, say).  

 Several features of Haüy’s concept of symmetry are worth noting. First, it is related 

to Legendre’s concept of symmetry (see §4.5) only in the sense that both crystallography 

and solid geometry treat three-dimensional space. But Legendre’s definition concerns the 

relation between two bodies that are equivalent whereas Haüy’s concerns a property of 

the whole object and is part of his classification scheme for crystal objects. Moreover, 

there is no evidence of any direct influence. Second, Haüy’s symmetry was implicitly 
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group-theoretic (see Scholz 111) in that it dealt with congruence relations that can be 

codified as such in Group Theory. But his work was driven by scientific concerns from 

the bottom up and in any case predated the insights of Galois by 15 years.  Last, Haüy 

applies his law of symmetry in a modern way as a constraint on other laws. Symmetry 

principles do not for him uniquely define the laws of decrement but they do constrain 

them. 

Haüy’s Initially Progressive Research Program 

 I evaluate the progressiveness of the problemshift from the predominantly aesthetic 

concept of symmetry (used in the pre-scientific crystallography of his predecessors, the 

most proximate of whom was Romé de l’Isle) to the geometric concept of symmetry 

(used in Haüy’s molecularist theory of crystals). As shown below, that problemshift was 

theoretically progressive at the time in the sense that Haüy’s approach had an ‘excess 

empirical content’ its predecessor lacked; but it was ultimately superseded by an even 

more progressive approach, the algebraic concept of symmetry embedded in the crystal 

model and classification scheme of the German Dynamist School.   

Theoretical Progressiveness 

 To show the theoretical progressiveness of this problemshift, I describe two 

features of Haüy’s research program. The first is his ‘hard core’ molecular theory, in 

which he employed a concept of geometric symmetry in an explanatory model and 

classification scheme; along with the ‘protective belt’ used to defend it. The second is the 

content and inferential capacity that was surplus to what was required to account for 

known crystal facts and laws. 
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 The hard core, a.k.a. ‘negative heuristic,’ of Haüy’s research program, is what 

defines it. In this program, crystals comprise integrant molecules of fixed chemical 

composition structured in one of several identifiable primitive forms that are determined 

experimentally through a process of repeated cleavage and by mathematical subdivision 

of that form. The external form of a crystal will thus be determined by its internal 

structure, i.e., by the shape of the integrant molecules and the way they are set down in 

layers on an initial nucleus. Crystals are regarded as aggregates of integrant molecules 

layered according to ‘laws of decrement’ that stipulate the whole number of rows by 

which each layer differs from the layer beneath it. Haüy subordinated those laws of 

decrement to a law of symmetry, a geometric symmetry that required all congruent and 

similarly positioned crystal faces to be treated the same way.   

 The research policy, a.k.a. the ‘positive heuristic,’ of Haüy’s research program 

includes the protective belt, that is, various suggestions about how elements of the theory 

other than those in the hard core may be modified or refuted in order to protect that hard 

core. For example: 

Since the values of the facial and interfacial angles which Haüy calculated 

for the varieties of calcite and other crystalline substance were in general 

agreement with the measurements of the contact goniometer on actual 

crystals, Haüy could … proceed confidently with the extension of his 

theory. (Burke 90) 

In other words, even though calculated and measured angles differed somewhat (as they 

did on the obtuse facial angle on Iceland spar), Haüy’s general theory of molecules and 
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decrements could survive — as long as that difference was more or less within 

experimental error. Here is another example: 

If the trial of many laws of decrement did not establish the required face of 

the secondary form with any degree of accuracy, then the integrant 

molecule required further investigation. The experimental part of Haüy’s 

theory, them, was the establishment of the shapes of the integrant 

molecule and the primitive form and the application of the correct laws of 

decrement in order to develop the secondary form. (Burke 102) 

In other words, if the observed external form of a crystal could not be matched to that 

predicted on the basis of the hypothesized primitive form of the integrant molecule, no 

matter what whole-number decrement laws we employ, we do not have to despair of our 

hard core. We can guess a new primitive form and start again.  

 The research program would remain a progressive one for as long as the 

adjustments under this positive heuristic are principled, but would become a degenerating 

one if the required adjustments were ad hoc. In terms of the examples cited above, Haüy 

could rely on the ‘experimental error’ defense in his day because of the limitations of the 

contact goniometer then in common use, but his theory came under increasing pressure 

once the more accurate measurements of the reflecting goniometer became available. 

And, although there is some flexibility in the choice of primitive form, that choice is 

constrained by Haüy’s hard core assumption that the integrant molecule takes the form 

either of the crystal itself after repeated cleavage or of a further mathematical subdivision 

of that form, and cannot be just any old shape. 
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 Initially, Haüy’s research program was theoretically progressive, as we can see 

from the inferences we can make in it. First, structure. Haüy had shifted the problem from 

one of external form to one that concerned the relation between external form and a 

hypothetical internal structure. This is general enough for one to contemplate crystal 

structures other than the ones he was initially concerned with; to make predictions about 

possible crystal forms, including (perhaps) ones not yet observed; and to account for 

existing empirical laws, such as the law of constancy of interfacial angles. Second, 

discontinuity. Different ways of layering the same integrant molecules will result in 

different inclinations of the crystal face. Those angles of inclination will only take on 

certain discrete values though because they depend on the fact that only whole numbers 

of rows of integrant molecules can be added to or left off a given layer; any observed 

inclinations that are only compatible with fractional numbers of rows would be 

refutations of the hard core. Third, predicted existence. Some crystal forms may not have 

been observed in nature yet because the conditions for their crystallization were not met. 

But if these forms can be deduced by applying the laws of decrement to primitive forms 

already known to exist they would constitute a testable prediction.  

Empirical Progressiveness 

 Haüy’s program was also empirically progressive, insofar as there was 

corroboration of these inferences. Corroboration on structure came early: 

The main argument, comprehensibly, was the correspondence between 

theory and practice: the outcomes of Haüy’s calculations of interfacial 
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angles of his specially made beech models indeed neatly lined up with 

those measured from the pyrite crystals in his collection. (Kubbinga 4) 

His work on another crystal, calcite, was particularly impressive: Postulating a nucleus in 

the shape of a parallelepiped (the primitive form he found empirically in calcite), Haüy 

had little difficulty to reconstruct the other crystal varieties; and by calculating various 

angles (using only plane trigonometry) he could show that the form of the integrant 

molecule for calcite was the same as that for Iceland spar, another form of calcium 

carbonate. His program could also show that beryl and emerald were actually the same 

species and that the various zeolites, which had previously been regarded as variants of 

one mineral species, were actually different minerals (Schuh 274). Corroboration on 

discontinuity was a little weaker though. On the one hand there was corroboration of 

Haüy’s own Law of Rational Intercepts, now deducible as a consequence of the 

decrements used in his model. That meant that even crystallographers who had rejected 

his molecularism (such as the German Dynamists) still had to accept it as an empirical 

finding. Helpfully, most of the intercept ratios were simply expressed as ratios, such as 

1:∞, 1:2, 2:3,  3:1, 1:3, etc.). But quite a few were not simple. That mattered; because 

large-number ratios could not always be measured accurately, even a century later, that 

made the matching seem very ad hoc.  

Finding that indices of crystal faces are often very large numbers a few 

authors … express the opinion that the law of rational indices has no 

meaning. For of course if we take the indices large enough any plane can 

be expressed by whole numbers. It is manifestly impossible to prove by 
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direct measurement that the indices of all crystal faces are rational, for 

measurements are subject to certain errors, the measured angle rarely ever 

coinciding with the theoretical angle. (Rogers 108) 

This issue is now moot since the intercepts, which are generally small whole-number 

ratios, are understood in terms of lattice theory and confirmed by techniques that were 

not available to Haüy.  

Haüy’s Degenerating Research Program 

 Although Haüy’s research program achieved some notable successes, it began to 

degenerate and was eventually abandoned. While it did account for some empirical laws, 

such as the Law of Rational Indices, after a while Haüy’s model was no longer 

theoretically progressive. For instance, it did not make any testable suggestions about the 

mechanisms behind hard core assumptions like layering and its Laws of Decrement. Nor 

did it in fact open the way to going beyond crystal shape to other physical properties or 

beyond crystallography to any other scientific field. Initially it seemed promising since, 

as Haüy’s student Delafosse claimed, symmetry principles seemed important in other 

disciplines too — like zoology and botany — where it was also necessary to treat the 

relationship between individuals and aggregates (Kubbinga 12). Nevertheless, Haüy’s 

research program was degenerating in the important sense that it required a profusion of 

new concepts and free parameters in order to keep on working.  

 We can see how Haüy’s program became ever more ad hoc (and see how he 

attempted to rescue it by using symmetry principles) by tracing his solution to one of the 

three main problems of crystallography: the classification problem. Crystals in Haüy’s 
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time were identified as polyhedra (solid bodies bounded by plane faces). While the 

number of shapes is vast, not every shape is possible. Some variants were ‘accidental,’ 

others ‘substantial.’ A crystallography research program has to produce a scientific 

taxonomy, one that would at least determine what, if anything, underlies that riot of 

shapes; it is a quest for the specific invariants that can undergird a taxonomy. Haüy 

shifted the problem of categorizing crystals from one based on their external 

characteristics (generally favored by mineralogists) to one of explaining why they have 

the forms they do on the basis of hypothesized internal structures. In short, he claimed 

that small, identical, unobservable building blocks of a given shape aggregate in 

alternate, lawlike ways to construct the variety of crystal forms we observe for each type 

of crystal substance. The hard core of his program, as it relates to classification, had three 

components:  

• The form of the building block, namely the integrant molecule. The form of the 

integrant molecule was postulated on the basis of the shape that the crystal took after 

repeated cleavage; that shape could be noted and the facial and interfacial angles 

measured. 

• The patterns of aggregation, namely the laws of decrement. The laws of decrement 

were postulated to fit the observed crystal form, subject to the restriction that 

fractional decrements are forbidden. 

• The fundamental unit of classification, the crystal species. The crystal species was the 

integrant molecule; while chemical composition determined broad mineral classes, it 
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was the form of the integrant molecule that had the specificity and invariance to 

define crystal species.  

All three components of the hard core ultimately became untenable.     

Form of the Integrant Molecule 

 Because the forms and patterns could be calibrated to fit each crystal observation, 

the research program was for this reason alone ad hoc. Haüy needed a principled way to 

restrict the shapes and patterns in order to have a testable hypothesis of crystal form. 

Lacking any empirical mechanism for the shape or aggregation behavior of his 

molecules, he resorted to a priori reasoning by reverting to the earlier (aesthetic) concept 

of symmetry.  

 Aesthetic symmetry, the principle that the parts of the whole be elegantly 

proportioned, was one way that Haüy had to limit the shape of the integrant molecules. 

“To Haüy,” Burke suggests,  

nature had formed crystalline matter in accordance with the principles of 

simple arithmetic and geometry; we should not attempt to complicate 

matters once these simple relationships had been established. (92)  

In particular, Haüy believed that the diagonals of the parallelogram on a crystal face 

should be in the ratio of square roots of integers and used this assumption “to derive the 

value of the interfacial angles, and consequently, the shape of the integrant molecules of 

those substances in which cleavage was absent or practically so” (Burke 92), That is to 

say, the principle, if true, would have a quite general capacity to limit the arbitrariness of 

the inputs to his model. We see this idea in action when, like Haüy, one measures the 
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facial and interfacial angles on the rhombic faces of Iceland spar crystals and thence 

calculates two ‘interesting’ numbers: the inclination of the faces to the vertical (45°) and 

the ratio of the diagonals (√3:√2).  

 Embarrassingly, Haüy seems to have elevated his principle of aesthetic symmetry 

to the hard core of his research program and thus had to use his protective belt, i.e., the 

error margins of observation and experiment, to defend it. As wryly noted by a 

contemporary British crystallographer in 1819, Haüy was “disposed to regard generally 

the disagreement of an observed measurement … rather as an error of observation than a 

correction of his theoretic determination” (Brooke 454). 

 That protective belt maneuver came under great pressure in the years after 1809, 

when the reflecting goniometer was perfected, because experimental techniques became 

so much more precise. At the time, those techniques “appear[ed] to have excited a degree 

of anxiety in the mind of the Abbé lest his theory, which had availed itself only of the 

common goniometer, should suffer from any disrepute attaching to that instrument” 

(Brooke 454). In fact, meticulous measurement of those ‘interesting’ parameters of 

Iceland spar then showed that the actual inclination angle was an ‘inelegant’ 45°23’ and 

the closest square-root of whole numbers ratio was a very ‘unsimple’ √111:√73 (Burke 

92).22  Other measurements reported around the same time delivered the same message: 

The well-known error to which an adherence to his principle of ideal 

simplicity [Haüy’s use of aesthetic symmetry to limit the arbitrariness of 

his laws of decrement] has led this philosopher [Haüy] in his 
                                                
22  These values are quite close to those accepted now.  
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determination of the primary form of carbonate of lime amounts to 37 

minutes of a degree; and as he has assigned to the magnesian and 

ferriferous carbonates the same angle as to the simple carbonate, the error 

with regard to the these is still greater … (Brooke 454) 

Laws of Decrement 

 Institut de France, in an otherwise glowing report to Napoleon on the state of 

French physical and mathematical sciences in 1810, lamented that in some ways Haüy’s 

research program was quite arbitrary. It noted in particular the arbitrary laws of 

decrement he had to assume: 

Quant à la cause qui détermine dans chaque variété telle loi de 

décroissement plutôt que telle autre, elle est encore couverte d'un voile 

épais. (Cuvier 17)  

(The cause that determines for each variety one law of decrement rather 

than another is still covered by a thick veil. My translation.) 

 Geometric symmetry, the principle that parts that are geometrically congruent 

develop in equivalent ways, would at least constrain the Laws of Decrement to apply 

equally to all congruent faces of a crystal, even if it could not account for them. In his 

later work, five years after the Intitut’s report, Haüy codified his geometric constraint as 

the Law of Symmetry, which would subordinate his Laws of Decrements. It is not clear 

whether Haüy ever systematically demonstrated the operation of this law in any particular 

case, but given the other difficulties of his program that became moot. 
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Crystal Species 

 Finally, Haüy’s research program was confronted by new discoveries that 

contradicted his relegation of chemical composition to a secondary status: 

There is a characteristic that is much more reliable and more suitable, 

because of its invariability, to serve as the focus for different bodies 

belonging to the same species. This is the exact form of the integrant 

molecule, because this form persists unaltered in spite of any cause that 

may make other characters vary …(Haüy, Vol. 1, p.156; trans. Emerton 

270) 

Haüy goes on to define a species as a collection of bodies that are composed of the same 

integrant molecules, composed of the same elements combined in the same proportions 

(162). It is in this context that we must read the discovery of isomorphism, 

polymorphism, and physical phenomena like pyroelectricity as serious rebuttals of his 

program. Eilhard Mitscherlich (1794-1863) showed in 1819 that different salts can 

crystallize in the same form (isomorphism). This undercuts the claim that the form of the 

integrant molecule is specific to the substance. In 1822 he went on to demonstrate 

comprehensively another phenomenon that had been understood only vaguely before, 

that the same substance can crystallize in more than one form (polymorphism). That 

undercuts the claim of invariability because this polymorphism does not refer to the 

different crystal shapes that might result from alternate laws of decrement using the 

invariable integrant molecule, but to those that result from building with integrant 

molecules that have another form. Then there were discoveries of physical effects in 
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crystals that defied easy explanation in terms of geometric form at all — such as the 

generation of electricity in some crystals when heated (pyroelectricity) and optical effects 

like double refraction. These suggested that there are other features that might function as 

the specific invariants we need for crystal classification. One could (and Haüy did) make 

use of protective belt defenses in these cases — such as that the crystals of different salts 

are very similar to but not exactly the same as the ones to which they are allegedly 

isomorphic; that polymorphism results from trace contamination that makes the crystal 

substances in question not technically identical; or that the physical effects could 

nevertheless be related to some aspect of the form of the integrant molecule. But with 

repeated experiments and continuing discoveries these defenses also became untenable. It 

is against that background of failure that we need to view the developments in 

crystallography that followed. 

4.4 Algebraic Symmetry  

 Algebraic symmetry, as I employ the expression here, refers to the property of 

objects (such as crystals) to appear completely unchanged when the conditions of 

observing have been transformed in certain specified ways. At the beginning of the 

nineteenth century, the symmetry of this kind that was most commonly understood was 

the reflection symmetry, often expressed in architecture and regarded as aesthetically 

positive. In this case, the right-hand side of a building is the image of the left-hand side as 

it would appear in a mirror whose plane bisects the building. Reflection in that particular 

plane is a ‘transformation’ that leaves the image of the whole object ‘invariant.’  Rotation 

was also understood as a transformation. For example, if observers walked around a 
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perfect snowflake placed horizontally on the laboratory bench, their perspective is rotated 

about a vertical axis through the center of the snowflake; returning to the start position of 

course leaves the appearance invariant but, more interestingly, so too does rotating our 

point of view by only 60°, a sixth of a full circle of rotation, because the snowflake 

displays sixfold symmetry. Inversion is the last of the symmetry transformations that is 

commonly understood. This is associated intuitively with the center of symmetry. An 

object has such a center if every point on its surface is the same distance from this point 

as the corresponding point on the surface on the line joining them all. A sphere is such an 

object, and in the world of crystals so too are many (but not all) polyhedra. The cube is 

one that is. If the image of the whole object is inverted through the center, its ‘inversion 

point,’ it remains unchanged. Symmetries like these are properties of the whole object, 

which can then be characterized in terms of its inversion point, rotation axes, and 

reflection planes (if it has any). Geometric symmetry, by contrast, refers to the 

congruence, or geometric equivalence, of parts of an object; aesthetic symmetry refers to 

the fitting, elegant, simple, or otherwise pleasing proportions of its various parts, many of 

which will not be equivalent to one another other at all, but will be shaped and sized in 

appropriate relationships. 

 Weiss, who was the most important early figure in the German school of 

crystallography, introduced the notion of algebraic symmetry into the field. He did so at 

the time Haüy’s research program was degenerating in the ways set out above — and 

despite Haüy’s own efforts to shore up his program by using both aesthetic and geometric 

concepts of symmetry to minimize the number of brute facts and arbitrary parameters. In 
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fact Weiss introduced this symmetry in the notes he appended to his translation of Haüy’s 

Treatise, the first German translation, one that he completed in 1810 after six years of 

labor. Weiss though employed an algebraic notion of symmetry and made it the central 

feature of his account right from the beginning. 

 For expository reasons, we may date the heyday of algebraic symmetry 

conventionally as starting around 1815, when Haüy published his Law of Symmetry, and 

ending around 1850, when Auguste Bravais (1811-1895) completed the mathematization 

that Weiss had begun. The end date does not indicate that the algebraic concept was 

superseded but only that considerations of another kind of symmetry, which I will term 

‘physical symmetry,’ became dominant.  

The Problem Situation in Crystallography circa 1815 

 To appreciate the tasks facing crystallography around 1815 we also need to 

understand what was happening in related disciplines. Crystallography was still emerging 

from mineralogy; it concerned many of the same objects that mineralogists studied and 

many of its practitioners were, like Haüy and Weiss, mineralogists themselves. It was 

also influenced by chemistry and natural philosophy, insofar as those disciplines also 

made claims about the constitution of matter. 

 Mineralogy continued as a separate discipline from crystallography, addressing 

somewhat different questions about crystals. The distinction was not always clear and 

mineralogy continued to exert a strong influence on crystallographical thought. In 

particular, there was still a preference for morphological approaches over structural ones, 

that is, for accounts rooted in directly observable external forms rather than on 
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unobservable hypothetical components and configurations. For Abraham Gottlob Werner 

(1750-1817), the external characteristics of a mineral were enough for mineralogy’s 

primary task of identification (Burke 59). Even a century later, crystallography was seen 

by mineralogists as being far too much of a ‘mathematical science,’ given that what was 

really needed was an 

observational study with the application of a few simple rules that will 

enable the prospector and laboratory student to determine the crystalline 

form with sufficient accuracy for practical purposes in the field or 

laboratory. (Wadsworth v) 

 Chemistry was a burgeoning science and was, it must be said, increasingly well 

disposed toward molecular theories. However, Haüy’s integrant molecule was not just the 

chemical molecule as we know it today nor just the unit cell of a crystal lattice as in 

modern crystallography, but somehow both. The claim was that it could identify the 

crystal substance it comprised because it was both specific and invariant— when in fact it 

was increasingly evident it was neither, especially after the discovery of isomorphism and 

polymorphism.  

 Natural philosophy, insofar as it affected Weiss and the German school of 

crystallography in general, took the form of Naturphilosophie, which was unsympathetic 

to molecular theories. Weiss subscribed instead to dynamism, holding that matter resulted 

from the balance of attractive and repulsive forces and that it was infinitely divisible. 

This philosophical outlook was important because it had a respectable pedigree, including 
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the views of Leibniz and Kant, and because it would have predisposed one to the kind of 

problemshift that Weiss proposed for the study of crystals.     

 The problem situation that Weiss faced thus required him to address the problems 

of crystallography, principally those of classification, in a way that neither presupposed 

molecularism nor degenerated into arbitrary parameters the way Haüy’s had. 

 One can discern two problemshifts in the algebraic phase of crystallography 

initiated by Weiss. The first problemshift was Weiss’s retraction of the problemshift that 

seemed to have landed Haüy into trouble: focusing on the relationship between external 

form and internal structure. Haüy had needed to posit so many hypothetical shapes and 

patterns to make his explanatory model work. Weiss instead moved back to a 

morphological approach: focusing only on external form. This time though crystal shapes 

were to be described and classified in terms of new elements, crystallographic axes of 

symmetry and algebraic symmetry. The second problemshift occurred around 1850 with 

a reversion to focusing on the relationship between external form and internal structure. 

The First Problemshift: Morphological Approach and Axes of Symmetry  

 The morphological approach was one that focused on what one actually saw -- 

namely, the form of the observable, macroscopic, crystal — rather than on what one had 

hitherto just hypothesized -- namely, the form of the unobservable, microscopic, 

structural units and the way they were arranged. It helped to avoid the arbitrary 

decrement patterns and molecular shapes of the molecular theory, and to eschew the use 

of integrant molecules, which the discovery of isomorphism and polymorphism had 

undermined. It was not really surprising that Weiss had chosen this approach, as he had 
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been a student of the German founder of mineralogical science, Abraham Gottlob Werner 

(1750-1817).  Mineralogists are professionally concerned with identifying minerals on 

the basis of external form and “[p]upils of Werner [had become] the guardians of 

mineralogy in the early 19th century” (Schuh 211).  

 One can conceive of the problemshift as a move from geometric to algebraic 

symmetry. Using geometric symmetry, what one deems to be equivalent are particular 

faces and edges that pertain to the crystal object; using algebraic symmetry, what one 

deems to be equivalent are particular perspectives on the crystal that pertain to the 

observing subject.  

 Crystallographic axes were to be the basis of the classification of external form  — 

rather than the primitive forms of any structural units. Axes are vectors (directed lines) 

with respect to which one can describe the symmetries of crystal properties. Weiss would 

use axes with a specified polarity (one end being conventionally ‘positive,’ the other 

‘negative’) to incorporate descriptions of physical phenomena about which Haüy’s model 

was silent. The phenomena that Haüy ignored were those that occur along lines in a 

preferred direction, such as pyroelectricity. (A pyroelectric crystal is one that, if 

uniformly heated or cooled, will develop an electric potential in a favored direction in the 

crystal, one side regarded conventionally as ‘positive’ and the opposite side as 

‘negative.’) Haüy had been aware of these effects, which contradicted his model, but just 

ignored them. In his 1815 memoir on the law of symmetry, he  

consciously excludes certain crystals, among others boracite and the 

tourmalines, a group of silicates which, when heated, charge themselves 
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electrically, a process showing the presence of an ‘axis’ linking the 

oppositely charged parts of the crystal. (Kubbinga 9) 

Physical effects like this are hardly exceptional though — Schuh catalogs many types, 

ranging through optical, thermal, mechanical, and electrical (120ff). One striking effect is 

the optical one known as ‘double refraction’ or ‘birefringence.’ This is the property of a 

crystal to split a light ray into two rays, with the angle between those rays depending on 

the viewing angle and diminishing to zero as one’s line of sight gets closer to a unique 

line, dubbed the ‘axis of double refraction.’ The effect was discovered way back in 1669 

in Iceland spar, the much-studied variety of calcite on which Haüy had worked as well 

(Schuh 200). Other examples include thermal expansion (since heated crystals typically 

expand at different rates along their axes), elasticity, hardness, thermal and electrical 

conductivity, and piezoelectricity (the generation of an electrical potential through a 

change of pressure). Weiss applied his ‘dynamist’ model of attractive and repulsive 

forces to these effects and suggested that it was the crystallographic axes and their 

polarities that were fundamental. 

Weiss’s Crystal Model 

  Weiss had a qualitative model of the constitution of matter, and therefore of 

crystals. This was based on polar theory, which had been incorporated into 

Naturphilosophie.  He set out his views in a lengthy appendix to his 1804 translation of 

the first volume of Haüy’s Treatise (Burke 151). There he proclaims his goal of 

developing a model that would show how crystallization results from the regular pattern 

of interior forces. This was not a molecularist account of forces between atoms that 
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comprise molecules but one of forces that generate matter itself. Forces are unobservable 

but, as in Haüy’s model, we may see their effects by the crystal faces they generate as 

secondary consequences and from cleavage along lines of weakness. “Weiss’s 

investigations led him to conclude that the whole system of crystal forces always contains 

three spatially extended main forces, from which all other internal forces can be derived 

by composition” (Scholz, “Influence” 38). This account did not give rise to any 

quantitative scientific model, although it was qualitatively consistent with the observed 

directional effects in crystals, such as cleavage. By 1811 though, in his dissertation, 

Weiss was no longer making any specific use of his qualitative model.  

 Nevertheless the symmetry concept that Weiss introduced into crystallography has 

proved unquestionably useful for inquiry ever since. At first glance this seems odd, 

because the theory of matter he held had never outgrown its metaphysical origins but had 

remained speculative; it was moreover curiously out of step with the ascendency of 

molecularist theories of matter in his time — not to mention ours. As it turns out, his 

theory of matter did not retard crystallography because the details about how those 

attractive and repulsive forces arose played no direct role in addressing the main 

crystallographic problem, that of classification. Only the symmetries played any role and 

because Weiss’s heuristic identified them directly, that was sufficient. This was unlike 

Haüy’s case, as it was his crystal model that explained the observed forms. What was 

really important was that the concept of symmetry Weiss introduced made certain 

material inferences possible without requiring a commitment to any specific theory of 
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matter, molecular or otherwise. That gave Weiss’s approach a generality that Haüy’s 

lacked due to its dependence on a particular model of crystal constitution.  

Weiss’s Classification Scheme 

 The defining problem of crystallography was that of classification, that of finding 

specific invariants that uniquely identify a crystal species despite the vast number of 

accidental and secondary forms. Weiss believed that the source of Haüy’s failure lay in 

molecularism: one could not assign a crystal of a given external form to a class on the 

basis of the form of its integrant molecule if that form was neither specific to the 

substance nor invariant. Rather than showing how, roughly speaking, big objects of 

particular observed shapes were built out of little objects possessing other particular 

shapes, Weiss aimed to show how observed forms could be generated from a set of their 

symmetries.  

  The basic units of Weiss’s scheme, axes, could be observed directly. In 1809 he 

wrote: 

An axis … is a line that dominates the whole crystal form and around 

which all parts are uniformly arranged. (Weiss 42; trans. Kubbinga 14) 

He argued that there were either three orthogonal axes or four (where three of those are 

orthogonal to the fourth), and that these could be determined by inspection. His system 

had an immediacy that Haüy’s lacked, and was also easier to use: 

Haüy’s followers admitted that the German method had one advantage: it 

was much easier and more effective in teaching to give a dogmatic 

exposition of principles of crystallography to students whose practical 



146 
 

experience was limited; the German method was easier to learn. (Burke 

166) 

 While crystallography occupied itself more and more with the mathematics of 

classification, mineralogy was where the empirical work of classification was done — by 

measuring interfacial angles as usual, but now also determining the dimensions of the 

crystal axes and judging which external forms were related. One experimental advantage 

was that one could also use physical symmetries other than external form when it was 

expedient to do so; axes of double refraction, for example, are generally easier to 

determine than axes of crystal shape.   

 Symmetry, specifically that associated with axes of rotation, was to be primary; the 

forms of crystal faces could be derived from them. The positive heuristic was: first 

determine the crystal axes, generally three and sometimes four in number, their 

dimensions; directionalities (if any); and their symmetries. Then, on the polar theory at 

least, one could rely on the fact that there would be counterbalancing forces, vectors, that 

would be acting along those axis directions. Crystal planes, Weiss thought, would form 

perpendicular to those forces. Lines where those planes happened to intersect other 

planes would determine the actual faces and their shapes. Weiss identified seven systems 

in which all crystal shapes could be classified in this manner.  

 Weiss must take the credit for the original idea of using algebraic symmetry and for 

establishing a crystallographic research program on that basis. Although Weiss himself 

did little to develop the program further, other members of the German school understood 

that it was theoretically very progressive — both ripe for mathematization and capable of 
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producing a complete classification scheme using just a few elementary symmetry 

operations. Two leading figures, Moritz Ludwig Frankenheim (1801-1869) and Johan 

Friedrich Christian Hessel (1796-1872), for example, 

realized that, notwithstanding the seemingly endless disparity, there are 

limits as to the geometry of crystals, and that a rigorously strict deduction 

of the distinct possibilities in terms of symmetry was a feasible enterprise. 

(Kubbinga 15) 

In other words, since the task of crystallography had been defined mathematically in 

terms of symmetry operations, the classification scheme could be completed deductively.  

 The hard core of Weiss’s research program can be ascertained from his actions and 

writings and from contemporary commentary.  

• First, it included a commitment to mathematization. Even the title of his 1807 

dissertation, Dissertatio de Indagando formarum crystallinarum charactere 

geometrico principali  (“Investigation into the Principal Geometrical Characteristics 

of Crystal Form”), suggests as much. The contrast he drew there between his system 

and Haüy’s was not lost on his French translator, who noted in 1811: 

Il pense que tous les cristaux ont un axe, et que l'axe étant dans toute 

forme géométrique une ligne unique, principale et dominante, le caractère 

géométrique d'un cristal doit être fondé sur des [éléments] ayant un 

rapport direct avec l'axe. (Brochant de Villiers 350) 

He thinks that all crystals have an axis, and that the axis in all geometrical 

forms is a single line, principal and dominant, the geometric character of a 
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crystal must be based on elements directly related to the axis.(My 

translation.) 

Once the problem had been specified in terms of finding crystallographic axes and 

relating other features to them, the way was open to mathematization.  

• Second, Weiss was committed to the hypothesis that symmetries were the 

fundamental elements in the classification and to the belief (inherited from 

Naturphilosophie) that crystal systems derived in this way reflected the balance of 

actual forces in the world, and were thus what we would now term ‘natural kinds.’ 

That belief would have legitimized the use of physical phenomena other than 

observable external form to experimentally determine the symmetries of crystal 

substances and the further application of those symmetries to physical phenomena 

other than the ones used to make those determinations. “It should be emphasized, “ 

Burke tells us 

that Weiss did not believe the systems or subdivisions he proposed were 

mere geometrical constructs. As the title of his memoir23 indicated, these 

were natural divisions. The variables that characterized each division and 

subdivision depended on the operation of natural processes. (Burke 159) 

                                                
23  This was the 1815 memoir in which Weiss presented his ideas to the Academy of 

Berlin. It was entitled “Uebersichtliche Darstellung des verschiedenen natürlichen 

Abteilungen der Kristallisations-systeme” (“Clear Presentation of the Different Natural 

Divisions of Crystal Systems”). 
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• Third, although it included forces in a general way, Weiss’s hard core did not actually 

include any specific metaphysical ideas about them. In his dissertation, for example, 

he merely noted that crystal forms were the necessary result of the generating forces.  

Weiss’s immediate successors in the classification task -- Frederick Mohs (1773-1839), 

Frankenheim, and Hessel – had remained open to ideas about inner structure and later re-

admitted it. We can therefore describe their choices by saying that the main hard core 

assumption by then was the mathematics of external appearances, crystal morphology, 

rather than any metaphysical commitment to polar theory, since polar theorists had 

previously been opposed to structural ideas. 

Weiss’s Progressive Research Program 

 Symmetry effectively became the subject of its own research program. Weiss and 

his successors had so thoroughly mathematized crystallography that it became possible to 

make many discoveries deductively, once the ‘correct’ mathematical representation of 

mathematical objects in a three-dimensional space had been discovered. Clearly, the 

discipline was theoretically progressive; wherever a heuristic counter-example was 

found, one just needed the ‘right’ way to generalize the original insight of Weiss or to 

remove a condition that was unduly restrictive.  

 In the initial phases of this research, the protective belt was very protective:  

The morphological study of crystals in the 19th century tended to be 

limited to descriptions of ideally formed crystalline forms. This was 

particularly true of the German school headed by Weiss and Mohs. 

However, attempts to translate from idealized, theoretical models to 
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natural crystals, with all their complications and imperfections, was not 

easy. In fact, for a long period such comparisons, which usually conflicted 

with the models developed by the morphologists were not attempted. It 

was only much later [that] the value of comparisons between theory and 

nature was recognized that the physical study of real crystals was 

intensified. (Schuh 210) 

In other words, apart from any defense along the lines of ‘experimental error,’ the initial 

symmetry research program did not concern itself with any real-world crystals other than 

those found perfectly formed or grown that way under controlled conditions. The 

research program was conceived, for all intents and purposes, as one in the applied 

mathematics of objects (of whatever physical type) in three-dimensional space and could 

be justifiably shielded in its infancy from the vicissitudes of empirical data. Although this 

was a very fruitful era of research, discomfiting empirical results could not be ignored 

forever. For example, how does one account for odd geometric phenomena, such as the 

appearance of crystals bound together as symmetrical twins? And, of course, if symmetry 

is a mathematical concept, what warrants symmetry inferences about physical 

phenomena? 

  The first phase of research was on extending the insights of Weiss; members of the 

German school mainly carried out this work. Weiss had originally considered 

crystallographic axes that were orthogonal. But by 1822 Mohs generalized this to the 

more useful case of axes at oblique angles, to derive the crystal systems (Burke 166; 

Schuh 207).  
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• Weiss had shown, by a semi-empirical method, that there were seven systems of 

crystal shapes. But by 1826, Frankenheim argued, after considering the possible 

symmetries, that it was sufficient to look for subsystems among Weiss’s systems, 

arriving at a complete list of the 32 classes still used.  

• Weiss had introduced the three-dimensional axis system. By 1829, Justus Günther 

Grassmann (1779-1852) introduced a type of three-dimensional vector analysis to 

best represent the system of forces within crystals within the dynamist tradition 

(Scholz, “Rise” 119-21; Scholz, “Influence” 40ff).   

• Weiss had considered only axes, which define only rotational symmetries, but by 

1830 Hessel had added planes of reflection and points of inversion as well. He could 

also show, through his own comprehensive geometric analysis of all the possible 

combinations of symmetry elements pertaining to external form, that every possible 

crystal shape can be matched to one of 32 unique sets of all those symmetry 

operations  — although the resulting 32 classes of crystal could still be grouped by 

their characteristic shapes into six or seven crystal systems.24 Hessel also made the 

interesting discovery that only 1-, 2-, 3-, 4-, and 6-fold symmetries would be found in 

a crystal.  

• Weiss had restricted himself to morphology and considered only the symmetry of 

external form. But by 1835, Frankenheim had also considered the symmetries of inner 

structure. The dynamists were opposed to molecularism but not to the idea of inner 

structure itself; after all, they conceived matter as being constituted by forces between 
                                                
24  The hexagonal system is sometimes divided into two. 
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non-extended points. In any case, Frankenheim came up with the idea of a space-

filling lattice of these points and showed mathematically that in three dimensions only 

14 configurations of lattice points are possible.25  

 Strikingly, publication of this early theoretical work was not at all historically 

influential. Its results are certainly impressive and have stood the test of time, and the 

work of these scientists is generally included in rational reconstructions of the 

development of crystallography and cited as examples of theorizing inspired by a 

particular philosophy (dynamism). But Frankenheim’s 1826 paper was “completely 

without influence” (Scholz, “Rise” 118); Grassmann’s work influenced that of his son, 

Hermann Grassmann, on vector analysis (Scholz, “Influence” 40ff), but that vector 

formulation “was very different from the structure of the modern system” (Crowe 249); 

and Hessel’s work “received no recognition among his contemporaries” (Schuh 230) and 

languished in obscurity until 1891(“Hessel” 359). For any influence on the science of 

crystallography, we need to turn to the second problemshift. 

The Second Problemshift: Return to Internal Structure 

 The research program became a degenerating one when dealing with physical 

properties other than shape. It had become increasingly evident that the symmetry of the 

external form could not alone account for the physical effects without arbitrary 

                                                
25  He actually claimed there were 15 but later analysis showed there was a mathematical 

error in his demonstration. The corrected version of his proof shows there are 14 (Schuh 

230). 
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adjustments. The second problemshift addressed this by connecting studies of external 

form with symmetries characterizing internal structure. 

 This problemshift was, in effect, a rapprochement between the German dynamist 

approach and the French molecularist approach. The German school had already begun 

thinking about internal structure, at least on their own terms, as Frankenheim did. The 

French school had never given up on it, although Delafosse, a student of Haüy, had by 

1840 given up on certain specific aspects of Haüy’s molecularism, such as the idea of the 

integrant molecule being the chemical molecule; he conceded that the integrant molecule 

might be just the space belonging to a lattice point, with a space-filling shape, a unit cell, 

outlined by the lattice points. As such this model was not very different from the German 

one. The hard core of this joint model in effect replaced both ‘molecules’ and ‘forces’ 

with the relatively theory-free zone comprising a lattice that had three dimensions of 

periodicity.  

 This was theoretically progressive. From this new starting point, another burst of 

mathematical symmetry research was unleashed. In 1848 Bravais studied all the 

geometric forms that could be built from a regular array of lattice points, coming up with 

accounts of external form and cleavage planes in terms of the density of lattice points 

when viewed in different directions, and an account of the crystal systems (Burke 171; 

Schuh 230-31). Like Hessel, but apparently independently, he derived the 32 crystal 

classes (as a type of group known as ‘point groups’). Like Frankenheim, he derived the 

14 lattice configurations possible (as those that preserved the symmetry of the unit cell in 

a periodic lattice under the additional symmetry operation: translation). This work was 
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highly mathematical, but the upshot was that symmetries of external form and other 

observed phenomena could be related to those of an internal (hypothesized) structure. 

That was a progressive move: it opened the door to making two-way inferences, i.e., 

inferring structure abductively from observations and then predicting new effects 

deductively from that structure.  

- - - 

 This concludes the last of three sections showing how the concept of symmetry has 

co-adapted with developments in crystallography. I now address a claim that challenges 

this empirical view. 

4.5 An Alternative View: Mathematical Symmetry 

 I consider an objection to the thesis that symmetry warrants are material and based 

on co-adaptation, one that is expressed as a rival claim that the scientific concept of 

symmetry developed in mathematical research and was then transferred to the physical 

sciences. I analyze the three most plausible variants of this claim. Each is centered on a 

particular field of mathematics that is currently used in the physical sciences to describe 

symmetry operations: Solid Geometry, where this rival claim has been made explicitly; 

Group Theory, which is now regarded as the mathematical language of symmetry; and 

Vector Analysis, which was founded by mathematicians but honed by physicists for use 

in, among other matters, certain symmetry operations.  

The Applicability of Mathematics 

  The applicability of mathematics to science itself has the attributes of a scientific 

research program. Hypotheses about which formalism is most applicable for a particular 
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inquiry can be ‘corroborated’ by the empirical success of that inquiry — whether it is 

useful in inferences, convenient to use, further expandable, etc. Such arguments are never 

decisive; there is no ‘fatal flaw,’ like an internal contradiction, to close the discussion. 

(That may be why these mathematical discussions can be so vehement.) 

 The issue of the applicability of mathematics is not a new one. Since antiquity, 

social organization and political control have been important drivers of mathematical 

development. That does not address the issue of the foundations of any mathematics so 

developed — the source of any a priori demonstrative capacity it may have, say — but 

merely asserts that the wisdom of choosing any particular line of mathematical research 

from an infinite menu has to be evaluated against other criteria, such as whether the 

formalisms thereby developed prove useful in making subsequently corroborated material 

inferences in other domains like physics. This is not always the case, and no mathematics 

is self-evidently applicable. 

 Two-dimensional geometry has been applied since antiquity. Plane geometry, 

which analyzes figures on flat surfaces, is known as Euclidean. Its development was 

probably driven by the needs for land surveying where it has obvious utility. Spherical 

geometry, which analyzes two-dimensional figures on the surface of a sphere, is not 

Euclidean. Its development was needed for astronomy and navigation. Spherical 

trigonometry is the branch of this geometry that analyzes the angles and sides of the 

polygons constituting those surfaces.  

 In 1679, Leibniz foresaw what crystallographers later came to appreciate for 

keeping track of the symmetries of crystal form and structure: the need to develop a 
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thorough-going three-dimensional geometry. Admittedly, the volumes of some three-

dimensional structures had already been calculated, but what Leibniz was calling for was 

an analysis of ‘situation,’ one that goes beyond the expression of mere magnitude (as is 

done in standard algebra) to include position, angles, and direction. This turned out to be 

a far more complex extension of plane geometry than one might expect from just adding 

one more dimension. But although Leibniz never worked out these details himself, “he 

advanced far enough to be ranked as a conceptual forerunner of the first vectorial 

analysis” (Crowe 3). The quest for a useful way to represent three-dimensional space and 

to express the problems we need to solve there became a major focus of nineteenth 

century mathematics, and is present in all the mathematical research programmes relating 

to symmetry that are treated below. 

Solid Geometry 

 Solid geometry is the geometry of three-dimensional space, which is clearly vital to 

crystallography and physics.  

 Solid geometry is important in the study of symmetry because it provides a way to 

represent forms in three-dimensional space. In particular, it can distinguish two classes of 

equivalence between paired objects: reflection symmetry, where the forms of the objects 

are mirror images of each other, and translation and rotation symmetries, where the 

objects can be moved and rotated to make them exactly superimposable. Stereochemistry, 

the study of the way atoms are arranged in the three-dimensional spatial structure of 

molecules, is an example of a scientific subfield that depends heavily on such 

distinctions. 
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 The mathematical research programme in solid geometry was a progressive one. 

This was in no small way due to the contributions of Legendre, a highly regarded French 

mathematician of the revolutionary era. The progressive problemshift of his that most 

affected the study of symmetry was one that he introduced in 1794, his radically new 

concept of symmetry, one that is very close to the modern one. Legendre had been 

considering three-dimensional analogues of the two-dimensional concepts of similarity 

and equality that Euclid had used. He had been hoping thereby to describe and analyze 

solids, just as we had always been able to analyze figures in the plane.  

This is no easy task. To take just one example, in 1758, as Lakatos notes, the great 

mathematician Leonhard Euler (1707-1783) identified a difficulty in the classification of 

polyhedra, the three-dimensional analogs of polygons. Polygons (plane figures bounded 

by straight lines) differ from polyhedra (solid bodies bounded by plane surfaces) in that 

plane figures are defined by their edges and the angles between them whereas solid 

figures are defined by their plane faces and the vertices (solid angles) between them, 

although they also have edges. It becomes clear that the number of faces alone is not 

enough to classify polyhedra (Proofs and Refutations 6). In response, Euler had 

developed an empirical formula that related the vertices, edges, and faces but it was 

Legendre who later offered the proof for the validity of Euler’s formula.  

Among other things, Legendre needed to come up with a definition of ‘solid 

angle’ (the angle formed between three intersecting planes, such as at the apex of a 

pyramid) and offered the following definition:  
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Two equal solid angles which are formed (by the same plane angles) but in the 

inverse order will be called angles equal by symmetry, or simply symmetrical 

angles (citation and translation by Hon and Goldstein, From Summetria to 

Symmetry 2). 

What was radical about this definition, according to Hon and Goldstein, is not so much 

what it says about solid angles but the implicit definition of symmetry, which was cast in 

terms of a mathematical operation of inversion. Informally, we can describe Legendre’s 

accomplishment as the identification of two solid angles that are mirror images. One way 

two solid angles may be regarded as equivalent is where we can imagine one 

superimposed on the other exactly. But another way is where the same three planes (A, B, 

C) intersect but in the inverse order (A, C, B).  There is no analogue for this in the plane, 

where just two lines intersect to form an angle. As a result, we could describe this 

conceptual change within mathematics quite well using a Lakatosian framework: the 

heuristic counter-example is the three-dimensional analog of an angle, about which 

Euclid was silent. Legendre could have defined solid angles in many different ways but 

the particular way he did helped the mathematical research programme to progress.  

 Hon and Goldstein make the empirical claim, in several places, that Legendre’s 

mathematical definition drove scientific research programmes. In 2005 they write:  

[W]e investigate Legendre's work on solid geometry where he introduced 

a new definition of symmetry that, we claim, has served as the basis for 

the modern scientific concept of symmetry. We consider this new 

definition a conceptual revolution …   
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 (“Legendre’s Revolution” 109).  

At first glance this claim seems attractive — Legendre’s definition incorporates a concept 

of symmetry that refers to a transformation (in this case, inversion) that leaves a property 

invariant (the solid angle). This mirrors the language used in current-day symmetry 

applications in the sciences.   

 There are, however, several reasons to doubt that Legendre’s definition was a 

primary driver of the scientific concept of symmetry. First, although Legendre uses the 

term ‘symmetry,’ his main focus really is on the definition of a solid angle. Second, no 

mere definition seems capable of bringing about a revolution in an empirical science 

unless it is explicitly applied to the subject material and tested empirically. Third, and 

most serious, the historical evidence of any actual influence is lacking. Hon and 

Goldstein make the post hoc argument that “[t]he impact of Legendre’s definition is … 

discerned in the quickening pace of usages of symmetry in the early years of the 19th 

century complete with new definitions” (From Summetria 49). But historiographical 

evidence is not presented. Legendre worked completely within a mathematical research 

programme and does not apply the symmetry concept to any physical object himself. If it 

had been applied by others at all we would certainly expect to see evidence of that in 

crystallography when, almost 20 years later, a concept of symmetry was applied. That 

occasion was Haüy’s theory of 1815, the first scientific theory in crystallography, which 

posited a ‘Law of Symmetry’ about crystal structure — but which makes no reference to 

Legendre. Hon and Goldstein lament this lack: “Curiously,” they say,  
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Haüy does not refer to previous usage of symmetry in mathematics by 

Legendre, Lacroix, and Cauchy. Since all these Parisian scholars were 

connected in many ways, and sometimes even served on the same 

committee, it seems implausible that they did not know of each other’s 

work. So one puzzle that will have to be solved in future investigations is 

the relationship of these early usages of symmetry in a scientific context 

(“Legendre’s Revolution” 151-52). 

Three years later, they offer this explanation: 

Although usages of symmetry by Legendre and Haüy suggest a connection 

— after all, both solid geometry and crystallography deal with three-

dimensional figures — there is a great difference between the applications 

of the concept by these scholars. Legendre’s concept is relational, namely, 

symmetrical bodies present a special kind of relation — equality by 

symmetry — which Legendre defined precisely and included thereafter in 

a deductive argument. By contrast, Haüy’s concept of symmetry which 

formed part of his taxonomic apparatus, concerned the shape of the entire 

body of a single specific crystal, that is, the concept of a property, not a 

relation (From Summetria 63). 

In other words, the concepts were different after all and so Legendre did not shape 

Haüy’s scientific theorizing in any obvious way. In any case, Hon and Goldstein’s 2008 

study covered only the period from 1788 to 1815, so it did not include scientific work 

after Haüy’s 1815 theory, such as the work of Pasteur or Curie. But they later noted that 
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no such influence on the sciences had ever been recognized and, curiously, took that lack 

of recognition as itself a sign of influence: 

The fact that Legendre’s contribution has not been recognized in books on 

symmetry in the sciences is a mark of success of the revolution he 

initiated. … What is amazing is Legendre’s success to the degree that his 

role in this matter has been almost entirely forgotten (Double-Face 71). 

 In conclusion: it’s unlikely that Legendre’s definition was in any way responsible 

for the development of the symmetry concept used in the physical sciences. 

Group Theory 

 Group theory is the study of groups, algebraic structures with particular abstract 

properties.26 It was because solutions to some problems posed by classical algebra could 

not be solved that Galois and others devised the more abstract methods of Group Theory.  

 Group Theory is important for the study of symmetry because it has become the 

very language in which symmetries are classified and described. The use of Group 

Theory has become pervasive in twentieth-century science, particularly physics and 

chemistry. 

 The mathematical research programme in Group Theory was a progressive one. 

This was despite the fact that the impact of Galois’ pioneering work, and that of others in 
                                                
26  Abstract algebra is the study of abstract, axiomatic systems. It includes the study of 

abstract systems known as groups, rings and fields, which have been important in both 

mathematics and the sciences; linear algebra is sometimes included in this broad category 

as well. 
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this field, was initially quite slight; Kleiner describes algebra in the nineteenth century as 

“concrete by our standards” and “connected one way or another with real or complex 

numbers” (91). But the problemshift that Galois introduced has opened up new areas of 

mathematics and methods of proof.27  

 To determine what if any influence Group Theory (or any other branch of abstract 

algebra) had on the scientific research programmes of the nineteenth century, we need to 

look at unreconstructed accounts and histories of the sciences in this period. This is 

because Group Theory is now used so widely in the sciences that it is tempting to think 

that Group Theory itself was somehow responsible for the initial development and 

systematic use of the concept of symmetry there. But just in the field of physics alone, so 

much rational reconstruction has taken place, in the interest of providing a unified 

presentation of basic concepts, that the historical process of concept development has 

been obscured. (There are even transformation groups associated with scientists working 

well before Galois’ time, such as Galileo!)  

 Group Theory had no influence on the formation of symmetry concepts in 

crystallography because those concepts had been developed, empirically, before Galois’ 
                                                
27 For example, Galois himself was able to solve a problem that had bedeviled 

mathematics for 350 years, namely, whether quintic equations (those in the fifth power of 

the unknown) could always be solved in terms of mathematical expressions known as 

radicals. He solved it by exploiting certain symmetries associated with the equation, 

which could be expressed in terms of the properties of an abstract group known as the 

group of that equation. 
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breakthrough of 1830. Scholz, who is careful not to reconstruct the past in the light of our 

current understanding, reveals this in his account of the development of symmetry 

concepts in the fifteen years after the period considered by Hon and Goldstein (i.e., from 

the work of Haüy in 1815 through that of the German dynamists around 1830). He 

observes, inter alia, the gradual use of group concepts by crystallographers in this period. 

For example, he notes that Haüy had developed a systemic concept of symmetry which 

was, “if looked upon from an operational point of view, an implicitly group theoretic 

characterization of symmetry” (111) and notes that the classification by Weiss of the 

axial symmetries of crystals would be regarded as one of finite orthogonal groups “in 

today’s language” (109). Scholz also notes that Frankenheim, following Weiss’s work, 

had derived geometrically the 32 possible subsystems of crystals (known as the Crystal 

Classes), so that “from a group theoretic point of view, [Frankenheim] gave a complete 

enumeration of those finite orthogonal groups which arise as point symmetries in 

crystallography.” But Scholz cautions: “Of course, it was impossible for Frankenheim to 

use an explicit group concept in the algebraic sense. That was, as is well known, not yet 

even formed in algebra itself” (117).  

 By the close of the nineteenth century, crystallographers gradually became aware of 

group-theoretic methods. It wasn’t until 1884 that the formal methods of Group Theory 

were introduced to science when Bernhard Minnigerode (1837-1896) did so in 

crystallography. Even then they were not taken very seriously; his  “novel mathematical 

methods” were regarded as complex and “disproportional to the simplicity of the 

problem” (Katzir, “Piezoelectricity” 87-88). A decade later, Curie refers to these methods 
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in his 1894 paper (Castellani 323). But even though Curie was also aware of the work of 

Galois,28 and may have known about Minnigerode’s work, he does not refer to them in 

his paper. 

 In conclusion, it wasn’t until the twentieth century that Group Theory (and abstract 

algebra more generally) had any major impact on the development of symmetry concepts 

used in the physical sciences. As Martin records:  

Although groups made their appearance in physics at the beginning of the 

nineteenth century, it was not until the detailed study of group 

representations in the 1920s which accompanied the developing quantum 

theory … that groups made their way into a large part of work-a-day 

physics. (30) 

Vector Analysis  

 Vector analysis is the branch of mathematics that is concerned with mathematical 

operations on vector fields. A vector field is the assignment of a vector (a quantity having 

both magnitude and direction, like a velocity) to each point in a three-dimensional space, 

such as a crystal. Vector analysis extends standard algebra by addressing the ‘heuristic 

counter-example’ that Leibniz had identified: in vector analysis, variables are specified 

not just by a quantity (as they are in standard algebra) but also by a direction.  
                                                
28  Madame Curie, for example, writes of her husband that he had asked the same 

questions that Galois had when the latter developed Group Theory, although without 

apparent knowledge until later about Galois’s work. “But he was happy to learn its results 

in the geometric applications to the case of equations of the fifth degree” (15).  
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 Vector analysis is important for the use of symmetry concepts in the physical 

sciences because it allows one to generalize from two dimensions to three the formalism 

for describing and manipulating rotations, which constitute an important class of 

symmetry operations. There had long been a way to add and subtract vectors (through the 

parallelogram of velocities) just as there had been ways to manipulate rotations in the 

plane. But handling rotations in three dimensions is vastly more complex than in two.  

 The mathematical research programme that underlay the initial development of 

vector analysis has been a progressive one. This programme concerned the theory of 

hypercomplex numbers, the type of number that generalizes the complex number system 

comprising both real and imaginary numbers.29 Although several mathematicians were 

working on this independently and at about the same time, it was the discovery of the 

quaternion number system by William Rowan Hamilton (1805-1865) that led to the 

development of modern vector analysis. Hamilton had already worked on algebraic 

couples — ordered pairs of numbers that represent complex numbers — and he was 

interested to see whether a formalism based on ordered triples could extend the complex 

number system. He failed in that task, but the failure was due not to a personal limitation 

but to an inherent mathematical difficulty. In the end “he had a flash of inspiration: His 

difficulty would vanish if he used quadruples instead of triples and if he abandoned the 

commutative law for multiplication” (Boyer 583). He had discovered quaternions: 
                                                
29  For our purposes, the important point about the history of this mathematical research 

programme lies not in the detail about these number systems but in the fact that the 

programme was driven by purely mathematical concerns. 
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ordered quadruplets of numbers for which a consistent set of mathematical operations 

could be defined.  

 This was a progressive problemshift: if we consider Hamilton’s programme on 

hypercomplex numbers in a Lakatosian framework (such as the one set out in Proofs and 

Refutations), we would see how the concept of number had been progressively expanded 

to embrace ideas of greater and greater generality — moving from real numbers, to 

complex numbers, to quaternions, and then beyond. Each challenge to the conceptual 

scheme (each heuristic counterexample) would have forced us to abandon some 

restrictive property — such as commutativity, to accommodate quaternions, or 

associativity, for higher algebras, and so on. Histories, such Kleiner’s A History of 

Abstract Algebra or Boyer’s A History of Mathematics, trace that sequence.  

 To see how much this mathematical research programme could have driven 

scientific research programmes, we need a physical interpretation of its mathematical 

expressions. Hamilton himself provided such an interpretation, one in terms of three-

dimensional space in which vectors representing physical quantities could be embedded. 

Although the practical utility of his particular interpretation can only be evaluated a 

posteriori, we can understand why Hamilton posited it. He would have been aware that 

complex numbers had been represented geometrically in the plane with the two axes 

corresponding to the real and imaginary components of those numbers.30 He had also 

already worked out an algebra for complex numbers considered as ordered real-number 
                                                
30  This two-dimensional framework for representing complex numbers is often referred 

to as an Argand Diagram. 
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pairs and devised a rule for multiplication of those couples that can be interpreted as a 

rotation in the plane; in other words, he provided an algebraic interpretation of the 

symmetry operation of rotation. So it was natural that he try to extend that two-

dimensional interpretation of complex numbers to a three-dimensional interpretation of 

quaternions, since quaternions were the next most general number system that could form 

a consistent algebra. Specifically, Hamilton posited that a quaternion q, which is an 

ordered quadruplet (w,x,y,z) of real numbers, corresponded to a vector in three 

dimensions  

 

 

q = w + x.i + y.j + z.k 

 

 

 

 

where i, j, and k are unit vectors in mutually perpendicular directions, subject to the 

following rules of his algebra: 

 

i2 = j2 = k2 = -1  

 

and 
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i.j = k ; j.k = i ; k.i = j  but  j.i = -k ; k.j = -j ; i.k = - j 

 

Multiplication of quaternions was to be interpreted as a rotation in three-dimensional 

space (Altmann 41-68).31 

 The mathematical research programme that underlay the initial development of 

vector analysis, which concerned hypercomplex numbers, did not however drive the 

further development of the vector analysis used in scientific research programmes. The 

first vector analysis emerging from that research, Hamilton’s, was not developed until 

1843, well after the formative stages of the symmetry concept within crystallography in 

the period 1815-1830.  Even after that, his vector analysis turned out to be impractical. 

There were two main reasons for that: it did not provide the correct answers for 

calculations of rotation in three dimensions32 and its vector multiplication33 did not have 

a natural interpretation.  

                                                
31  Hamilton, as a Kantian with a Pythagorean commitment to the significance of 

numbers, would have had no difficulty in claiming that number theory governs 

geometrical relationships in physical space. 

32  A useable vector analysis would permit one to calculate quite generally what axis and 

angle of rotation would be equivalent to an initial rotation about a given axis through a 

certain angle followed by a subsequent rotation about a different axis and through another 

angle. Hamilton’s analysis gives the wrong answer: “the angle of rotation is double the 

angle which appears in the quaternion” (Altmann 57).  



169 
 

 On the contrary though, scientific research programs did drive the further 

development of vector analysis. They did so by demanding a formalism that was 

responsive to their emerging inferential needs. The developments were driven not, as it 

were, by the producers of those vectorial systems (mathematicians) but by their 

consumers (principally physicists). By the 1870s, “physical science (above all electricity) 

[had] developed in such a way that the need for a vectorial system increased” (Crowe 

251) — but at the same time the deficiencies in the existing formalisms had become 

apparent. In particular, James Clerk Maxwell (1831-1879) had recognized the importance 

to electricity and magnetism of a vectorial system with appropriate forms of vector 

multiplication. Although Maxwell’s interest had naturally been aroused by the quaternion 

system, he was well aware of its limitations, made little use of it, and made his criticisms 
                                                                                                                                            
33  Multiplication has important applications: in crystallography — for calculating 

rotations and for relating planes, such as crystal faces, to lattice points; in electricity and 

magnetism, whose symmetries Curie explored with tools developed in crystallography; 

and in the physical sciences more generally. As Crowe sets out in his history, what we 

now regard as vector multiplication can be identified with part of Hamilton’s quaternion 

product and with the ‘inner’ and ‘outer’ products of Grassmann’s vector formalism, the 

other predominant one of that time (248). Although both Hamilton’s and Grassmann’s 

formalisms had elements that could have morphed into our modern concept of vector 

multiplication (actually comprising two forms: the dot product and the cross product) 

neither formalism was or is wholly satisfactory, as they contain mathematical elements 

that are either not equivalent to what we want or even to anything at all (248). 
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known. His Treatise on Electricity and Magnetism passed the conceptual challenge on to 

two other physicists — the American, Josiah Willard Gibbs (1839-1903) and the 

Englishman, Oliver Heaviside (1850-1925). Working independently, but coming to 

equivalent conclusions, they developed the modern system of vector analysis. Although 

many of the primary results of vector analysis were established by 1880, an ‘Algebra 

War’ broke out in 1890 and lasted about four years. This ‘war’ was a vehement yet 

important conceptual debate, mostly conducted between physicists, in which quaternion 

systems of vector analysis were pitted against the vector analyses that had been 

developed by Gibbs and Heaviside. Some participants argued that the quaternion systems 

were “uniquely adapted to Euclidean space” and “natural,” while others argued that the 

Gibbs-Heaviside system was more streamlined and that it harmonized better with 

Cartesian coordinates. The Gibbs-Heaviside system is the one currently used in the 

physical sciences. 

Conclusion on this Potential Objection 

 It is unlikely that any of the mathematical research programmes of the nineteenth 

century that were most obviously relevant to symmetry alone drove the development of 

that concept as used in science. In Solid Geometry we have a prefiguration of the modern 

concept of symmetry in the definition of a solid angle -- but no evidence of a mechanism 

by which that had any influence on developments in science. In Abstract Algebra we now 

have the tools to classify crystallography’s conceptual breakthroughs as ‘applications’ of 

Group Theory --  but this ascription can only be made retroactively since these 

applications preceded the theoretical framework. And in Vector Analysis we have an 
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extremely useful formalism for incorporating symmetry operations — but one that also 

arrived too late to shape concepts that emerged in science. 

 Group Theory and mathematical crystallography had developed quite separately for 

most of the century, the former unaware of potential application and the latter developing 

applications in a material context well in advance of any formalization. The two research 

programs, the applied mathematics of symmetry relevant to crystallography and the pure 

mathematics of Group Theory, did not interact in any significant way until 1870, when 

Leonhard Sohncke (1842-1897), a German mathematician, brought them together. He 

was familiar with Bravais’s work but then discovered the 1830 work of Hessel, who had 

independently discovered the 14 lattices, and the 1869 work of Jordan, who had 

independently worked on point groups. Hessel and Jordan had both published in obscure 

journals. Sohncke also added his own work, which included an analysis of two more 

transformations in three dimensions: the combinations of rotation with translation (the 

screw axis) and of reflection with rotation (the glide plane).34  Ever since the union of 

crystallographic symmetry research with Group Theory it has been possible to assess past 

contributions to crystallography by using common group theory nomenclature and 

concepts. Scholz, for example, undertakes a rational reconstruction of the German 

dynamist contributions in such terms in order to explore the influence of dynamist 

philosophy on Weiss’s research program and the classifications of axial symmetries he 
                                                
34  Combinations are only of interest when they concern two operations that are not 

separately symmetry-preserving but in combination are such. Since Sohncke’s time, the 

remaining combinations have been analyzed: rotation-reflection and rotation-inversion. 
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obtained. From a group-theoretic point of view, he sees that Haüy’s 18 ‘primitive forms’ 

are highly redundant because they can be characterized by only eight finite orthogonal 

groups; that Frankenheim worked out “a complete enumeration of those finite orthogonal 

groups which arise as point symmetries in crystallography,” and that “Hessel derived a 

complete list of finite point symmetry systems in space, i.e., an implicit but clear 

representation of all finite orthogonal groups in Euclidean space” (“Rise” 117, 119). As 

Scholz is at pains to stress, rational reconstruction of historical contributions in no way 

suggests that the language or concepts used in the era under study were the same as those 

used now; rational reconstruction is purely an aid to assessment and comparison. “Of 

course,” he says regarding his reconstruction of Frankenheim’s contribution, “it was 

impossible for Frankenheim to use an explicit group concept in the algebraic sense. That 

was, as is well known, not even formed in algebra itself” (“Rise” 117).  

4.6 Further Developments: Physical Symmetry 

 Physical symmetries, like algebraic ones, are properties that remain unchanged after 

a transformation, but unlike the algebraic ones considered earlier, need not be restricted 

to spatial properties like shape. Physical properties, including non-spatial ones, are 

characterized by magnitudes — single numbers for ‘scalar’ properties like temperature, 

triplets of numbers for vector properties like force, and larger groups of numbers for 

more complex properties like elasticity. Where the transformations are the usual spatial 

ones (translations, reflections, rotations, etc.), the physical symmetries of a system can 

help describe a field theory of the  physical phenomena in question; that is, they can help 
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describe, but not prescribe, any physical theory that purports to explain the phenomena in 

terms of physical quantities that have a magnitude at each point in the space. 

 The historical situation of crystallography and of disciplines related to it helps us 

understand how the concept of symmetry adapted to meet those new inferential needs. 

What had helped maintain the progressiveness of the crystallographic research 

programme was the fruitful synthesis of the French and German crystallographic 

traditions; the recognition of the need to relate external factors to internal structures was 

inherited from the French molecularists, while the mathematized algebraic conception of 

symmetry was inherited from the German dynamists. The particular feature of this 

synthesis that greatly aided its progressiveness was its representation of internal structure 

abstractly. This made it possible to avoid commitment to any particular conception of 

internal structure other than its symmetry. One could make certain symmetry inferences 

without having to accept an account of the physical constitution of a crystal that was 

based on the ‘molecules’ of the French school, the forces of the German school, the 

atoms of the chemists, or even the unit cells of modern crystallography. Since no 

empirically adequate theory of any of these effects was available until the twentieth 

century, it was a clear advantage that neither the lack of agreement on theory nor even the 

lack of any theory whatsoever would block progress. Nevertheless, research on crystal 

properties other than external form revealed that, like external form, they also exhibited 

symmetries. The refraction of light, the conduction of heat and electricity, elasticity, and 

the generation of electric potentials through heat and pressure were among the 

phenomena whose symmetries physicists and crystallographers sought to interrelate.  
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Problem Situation 

 The problem situation then was to discover how the various physical symmetries 

are related, even if it was premature to speculate about the mechanisms giving rise to the 

physical phenomena themselves. Knowing the symmetries of one set of properties may 

facilitate material inferences about another. This would be very useful for several 

reasons. First, some physical properties can be measured more easily and more precisely 

than the traditional ones like cleavage planes, interfacial angles, and crystallographic axes 

and it would be useful to use them as proxies. Even at the time of Haüy, the British 

scientist David Brewster had “believed it was much more difficult to gain knowledge of 

the primitive form by cleavage and calculation than it was to test a crystal for double 

refraction” (Burke 144). (In time he became confident enough in his optical techniques to 

challenge some of Haüy’s assignments of minerals to crystal classes.) Second, one could 

use specimens that were crystal only in the sense that they possessed crystalline structure 

(i.e., having some kind of organized Internal form) even if they were not crystal in the 

sense of being a shape defined by plane-face boundaries (i.e., having the right sort of 

external form). Good specimens of the latter are hard to obtain and often have to be 

grown in controlled conditions to achieve the right degree of perfection. As Walker 

pointed out in 1914: 

The physical properties in crystals vary with the direction in the crystal 

but any individual crystal will be found to present the same degree of 

symmetry from a physical point of view which it presents when 

geometrically considered. As a result of this remarkable correspondence 
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between the physical and geometrical symmetry it is frequently possible 

by a physical examination of a fragment of a crystal, which does not 

show any crystal surface, to indicate the system to which it belongs. (41) 

Third, it would help to unify the empirical models of the various physical phenomena by 

reducing the number of independent parameters needed to specify them. Further 

empirical work was done on this and by mid century Henri Hureau de Sénarmont found 

many coincidences in symmetric crystals of the crystallographic axes and those of 

thermal conductivity, electrical conductivity, and optical elasticity (Katzir, 

Piezoelectricity 84), although others found some anomalies. Several problemshifts 

occurred.  

Problemshifts 

 The basic problemshift was away from the primacy of crystalline form and towards 

a plurality of interrelated physical symmetries. Katzir attributes this to Franz Neumann, 

whose “important innovation was the replacement of the crystalline form by symmetry as 

the organizing principle of the physical study of crystals” (“Physics” 48).  This was 

clearly a progressive move: Katzir notes how various researchers used symmetry 

considerations phenomenologically (i.e., without recourse to any specific theory of 

matter) to reduce the number of free parameters in empirical models of physical 

phenomena and to account for previously anomalous effects. Those efforts include 

Neumann’s own study on elastic behavior in crystals (47) and Voigt’s deduction of the 

piezoelectric coefficients 52).  
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 Curie introduced another important problemshift, which was to use symmetry to 

make inferences concerning the relationship between physical magnitudes in any 

medium, crystal or otherwise, and even between theoretical entities like electric and 

magnetic fields. This was also a progressive move and Curie himself was thereby able to 

account for certain electric and magnetic phenomena on the basis of symmetry alone 

(Katzir, “Physics” 56).  

 A third problemshift, also formally introduced by Curie, concerns the focus on 

asymmetry rather than symmetry. This seems more like a heuristic principle than a matter 

of logic. Curie expressed it this way in the second rule of his principle: 

When certain effects show a certain asymmetry, this asymmetry must be 

found in the causes which gave rise to them. (Curie 20) 

Unlike the other relationships of physical symmetry, the comparison here is not so much 

between physical magnitudes as between ‘effects’ (phenomena, observed to be 

asymmetric) and their ‘causes’ (models, including their initial conditions, structures, and 

laws). Since models that are symmetric in all respects must predict (via deductive logic) 

outcomes that are symmetric, the presence of an asymmetric outcome is part of a creative 

process that disqualifies all symmetric models. 
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5. CONCLUSION 

  I now review what has been accomplished in this historical epistemology of 

symmetry and suggest follow-on research that will push the understanding of symmetry 

inference further. 

5.1 The Quest: Symmetry Warrants 

 I began with a quest. The concept of symmetry, as well as the inferences based on 

it, has been deeply puzzling. What was it about the concept of symmetry, I asked in 

Chapter 1, that led to the astonishingly successful use of symmetry inference in the 

physical sciences? Some thought experiments, like those of Archimedes, seemed capable 

of generating a whole corpus of scientific results a priori. Yet, it must be admitted, other 

symmetry inferences turned out to be utterly wrong, despite the initial ‘obviousness’ of 

their conclusions  — the disconfirming observations in these cases being described by 

contemporary scientists as ‘shocks’ or ‘violations.’ For example, in the early nineteenth 

century, the Danish physicist Ørsted reputedly wasted eight years of research effort 

because of a firm conviction about the direction in which a magnetic needle would 

deflect in the presence of an electric current, a conviction based on a symmetry inference. 

So, two warnings should jump out from just this last example: symmetry inferences may 

not all be a priori after all and the cost of getting them wrong might be high. 

 To be clear about the questions we might pose concerning symmetry inference, I 
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argued in Chapter 2 that we need to seek material warrants, not logical ones, and 

distinguished among three possible warrants for which we may be searching. The 

projectable warrant underwrites, as it were, the continued use of a symmetry concept for 

inferences within a given research program, i.e., what makes it projectable to instances 

other the ones originally used in positing that concept.  The evolvable warrant 

underwrites the continued success over time of resorting to some variant or other of the 

symmetry concept specifically, perhaps by modifying an existing symmetry concept 

inside the field or by importing one as a metaphor from outside. The transferable warrant 

underwrites the transfer of the patterns of symmetry inference from one field to another.  

 In the literature, the closest parallel for finding warrants is the analysis of  the 

‘unreasonable effectiveness’ of mathematics (to use an expression made famous by the 

physicist Eugene Wigner). This is because the standard view of symmetry inferences in 

the physical sciences, mostly implicit and rarely critiqued, is that symmetry is a 

fundamentally mathematical concept and, therefore, that inferences based on symmetry 

are warranted because they inherit the certainty of mathematics. The problem with this 

view is that it does not address applicability of any particular variant of the concept of 

symmetry to a given physical situation. Applicability is neither self-evident nor 

mathematically provable, and revering effectiveness as a mystery is certainly unhelpful. 

Since I have argued already that symmetry is a fundamentally material concept, I treated 

it as a concept that had emerged and developed over time within the sciences. In this 

view, inferences based on symmetry, which are always fallible, are warranted to the 

extent that the concept of symmetry has co-adapted with the sciences whose inferential 
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needs it supports. Ian Hacking, with his idea of self-vindication of the laboratory 

sciences, Bas van Fraassen, with his selectionist account of the success of science, and 

Steven French, with his adaptationist account of the introduction of group theory, follow 

the same line of thought, although none has addressed the specific issue I have identified. 

 In order to best exhibit what a material warrant for symmetry inference would look 

like, I followed the best-practice examples of closely related historical epistemologies. 

These generally identify the inferential practices facilitated by a given concept, the ways 

later forms of a concept derive from earlier ones, and the triggers of conceptual 

adaptation. In Chapter 3 I argued that certain features of the historical approach of 

Lakatos were also helpful, particularly in the way it distinguishes between successful and 

unsuccessful phases of a research program. I chose early nineteenth-century 

crystallography as the most propitious for exhibiting symmetry warrants because it is 

generally accepted that symmetry inferences emerged and developed there.   

5.2 Key Findings: Inferential Practices and Conceptual Adaptation 

 The key findings of the case study in Chapter 4 are that material warrants for 

symmetry inference can be expressed in terms of inferential practices and conceptual 

adaptation. I was able to track the role of symmetry in inferential practices throughout the 

study period, to identify the changes in the symmetry concept, and also to associate those 

changes specifically with selective pressures on research programs to mitigate 

arbitrariness (such as ad hoc assumptions, brute facts, and arbitrary procedures). Therein 

lies the projectable warrant: the effect of conceptual changes is to make the symmetry 

concept more projectable, more capable of leading to inferential success without having 
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to be retrofitted to observational data case-by-case. 

 To show what these projectable warrants look like, it was necessary to delve into 

the historical details of particular fields, because material inferences depend on content 

and context, not mere propositional form. I found that there had been a succession of 

symmetry concepts — each either derived as a modification of an earlier one in the field 

or introduced as a metaphor from the wider culture — and that the introduction of each 

variant of symmetry had reduced program arbitrariness and increased projectability. The 

details are in the text, but in summary I noted the following. Initially, a concept of 

aesthetic symmetry had been introduced to reduce the myriad brute facts about crystal 

shape; if crystal shapes could be derived in a non-arbitrary way from a small number of 

primitive forms having ‘fitting’ or ‘appropriate’ proportions, then one would have to 

accept, as the arbitrary givens, only a small number of aesthetic norms rather than a large 

number of shapes. But that had still left an unacceptably large degree of theoretical 

discretion in the choice of primitive forms needed to match observed shapes. A 

‘molecular’ model had then been introduced to minimize that, but it too required choices 

to be made about the way its molecules had to be stacked to generate the observed 

shapes. So those choices in turn had to be constrained by geometric symmetry, the 

assumption that crystal faces with the same geometric shape and similarly situated in the 

crystal must support identical crystal structures. But once crystal phenomena other than 

shape began to be studied intensively, especially those with directional properties like 

optical and electrical phenomena, it became necessary for the molecularists either to 

study them ad hoc or to arbitrarily exclude from study the crystals in which they occur. 
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That soon became moot when a rival program, using a concept of algebraic symmetry, 

was able to provide an account.  

 Another key finding is that the historiographical data does not support rival claims 

that the scientific concept of symmetry emerged and developed in mathematics and then 

moved to the physical sciences. (I had already argued on general grounds that symmetry 

inference was a material inference, so this finding is not unexpected; but it nevertheless 

further punctures the assumption that warrants are mathematical in nature.) In the case of 

solid geometry, there is no historiographical record to back up the claim that the 

definition of symmetry offered by Legendre had any influence on the development of 

crystallography. In the case of group theory, the development and dissemination of the 

theory postdated the developments in crystallography. In vector analysis, where the 

relationship is a little less direct, the formalism did arise in mathematics but failed in 

application until it was completely reworked by physicists. 

 The case study has a few shortcomings; these however can be mitigated.  

• First, the historical trajectory of the symmetry is contingent. We know that the 

concept of symmetry emerged in crystallography before 1830 and that it then 

developed through being successively adjusted to apply to a variety of physical 

properties. But would we have the same concept if it had first developed in (say) the 

early work on electromagnetism by Ørsted and others, also around 1830, only later 

being transferred to crystallography? Would it matter if the concept emerging from 

that process differed from the one we actually have? Further case investigations 

should be able to identify the conditions that favored development in one field rather 
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than another and address these questions.  

• Second, only half a dozen problemshifts were considered in the case study. Although 

it was quite clear in each case how the conceptual changes addressed arbitrariness, a 

more extensive study, covering developments in the latter part of the nineteenth 

century, would help to strengthen that particular observation.  

• Third, the concept of ‘mechanism,’ which I have used in my description of concept 

change, is undefined and philosophically problematic. In any subsequent work of this 

nature, one would need to be more precise about this. Suffice it to say that I am 

asserting not only that the concept of symmetry changed at certain times and that the 

change had the effect of reducing arbitrariness, but also that the change is explained 

by the fact that it was introduced for the sake of that effect. (Lest it be thought that 

this judgment is an anachronistic artifact of the Lakatosian categories I have used for 

descriptive and analytical purposes, I have also included historiographical evidence in 

the case study to the effect that contemporary reviewers themselves compared rival 

research programs on the basis of the distinction between principled and arbitrary 

postulates.) 

5.3 Further Reflections: Experimental Restraints on the Practice of Theorizing 

 Adventitious findings and broader reflections provide insights that go beyond the 

key findings, since the latter mainly focus on how well initial expectations were 

confirmed. I highlight below some of the more significant insights. 

Ontological Restraint 

 In the period covered by the case study, experimentalists found ways to make 
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significant material inferences with only minimal metaphysical commitment. The first 

truly scientific study of crystals, Haüy’s, the hard core of the research program included a 

commitment to a particular molecular view of matter. Symmetry concepts were ancillary; 

they were instruments to reduce the arbitrariness in the shapes of building blocks and in 

the ways they were stacked. The subsequent theory of Weiss was also inspired by a 

theory of matter, one comprising inner forces kept in balance. In this case I noted that it 

was the symmetry concept he used that was part of the hard core of his program, not his 

metaphysical theory. It had turned out that the theory had almost no influence on later 

developments and its specific tenets were neither empirically tested nor defended. The 

algebraic symmetry that Weiss introduced though had major, long-lasting ramifications. 

It unleashed a large program of mathematization as crystallographers found new ways to 

organize their laboratory findings on the physical properties of crystals. After the intense 

period of mathematization, the notion of ‘inner structure’ was re-introduced, not as 

requiring molecules or forces, but as the bare-bones postulate of the crystal lattice — in 

effect no more than internal symmetry. As a result, by mid-century certain inferences 

could be made with very little theory at all. This made it possible for a later generation of 

French molecularists and German polar theorists to collaborate fruitfully without being 

diverted by debates over the ‘deeper’ meaning of their work.    

 Beyond the period covered by the case study, crystallographers continued in the 

same vein, making progress in the absence of physical theories about light and electricity. 

For example, in 1848, Pasteur discovered that solutions of certain substances rotate the 

plane of light’s polarization in a way that depends on that asymmetry of the crystal form 
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of that substance; although he himself linked the asymmetry of the crystals he used to the 

asymmetry of their molecules, his belief in molecules played no essential role in that 

inference. Around 1880, Pierre Curie and his brother Jacques discovered piezoelectricity 

(the production of electricity in crystals by pressure) and that phenomenon was explored 

extensively over the following 15 years. As a result, researchers discovered the types of 

crystal symmetry necessary for the possibility of piezoelectricity, those necessary for 

pyroelectricity (the production of electricity in crystals by heat), and the relation between 

the two types — all without theories of matter or electromagnetism. 

 The upshot is that by using symmetry considerations experimental scientists can 

often avoid having to take sides in a theoretical debate. They can still make the 

conceptual adaptations needed to facilitate their work, make scientific progress in their 

field, and, moreover, find common ground with other scientific communities. 

The Dichotomy of Principled and Arbitrary Choice 

 In the period of the case study, what emerges as the separator between rival 

research programs is the distinction between principled and arbitrary choices of 

theoretical postulates. Arbitrary choices can threaten the integrity of research programs in 

at least two ways. The first is that if choices are left up to individual experimenters there 

will be no accounting for taste and little basis for dialogue or independent replication. 

The second is that researchers can vitiate experimental testing by making arbitrary 

choices of assumptions or parameters in order to retrofit their theories to the data. 

Symmetry concepts offer ways to minimize those dangers. 

 I discern, both within and beyond the case study, several ways in which symmetry 
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can respond to issues of arbitrariness. One response is to privilege one, or a few, among 

the many conceivable options, the way Haüy did using an aesthetic symmetry. Such a 

concept of symmetry is inferential only insofar as aesthetics is regarded as having 

normative force, that is, insofar as we agree that certain numerical proportions are fitting, 

appropriate, or natural. (Despite being clearly problematic, such criteria are major factors 

today in the choice between rival theories.) A second response is to equivalence the 

options, the way Weiss did by deeming certain points-of-view of a crystal to be 

equivalent. A third response is to idealize a physical situation -- the way theoretical 

scientists sometimes do, when using an approximate or abstract symmetry. In these cases, 

certain physical situations known to be different are regarded as equivalent in an abstract 

sense (the neutron and the proton are both nucleons, for example) or their known 

differences regarded as irrelevant for the purpose at hand. 

Material Warrants 

 The case study shows directly how the projectable warrant can be established; it 

also indicates how the other inferential warrants could be grounded in a similar way.  

 The evolvable warrant, for example, is likely to be revealed in a historical study of 

late nineteenth-century crystallography. In the early decades of the nineteenth century, 

symmetry concepts were part of the protective belt where they were used to defend hard 

core commitments. Hard core commitments, protective belt maneuvers, and anomalies 

were disparate kinds of things; for example, in the program of Haüy, they were 

molecular forms, symmetries, and angles respectively. By mid-century though, the 

positive heuristic that had developed in the then-dominant German crystallographic 
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tradition had changed. Hard core commitments, protective belt maneuvers, and anomalies 

were by then kindred; specifically, they were all symmetries. That set up a virtuous 

feedback loop in which ‘anomalies’ were likely to be regarded less as flaws fatal to the 

whole program and more as data that could trigger the further evolution of ‘higher’ 

symmetries. This, I speculate, is the reason that when experimentalists needed to make 

adjustments to their research programs they immediately reached out for another 

symmetry concept. Researchers in the second half of the century learned how to 

determine the symmetries of physical properties other than shape (such as optical, 

thermal, electrical, and mechanical properties) and, in a self-vindicating way, turned 

those new symmetries into the data of the program, properties that had never been 

observed before because nobody had defined them or thought to look for them.  

5.4 Further Research: Self-Vindication and its Limits 

 It behooves us to understand the nature of symmetry inference as well as we can, 

not only because the philosophical payoffs could be significant, but because the 

symmetry-based investments and research efforts in the sciences are very substantial. For 

philosophy, further research on symmetry inference would provide insights into theory 

choice, into the use of historical epistemology for understanding and grounding forms of 

inference, and into restraining the practice of theorizing. For the sciences to which 

symmetry inference has recently been introduced from another domain, further research 

would reveal whether we need to establish its symmetry warrants from, as it were, the 

ground up (the way it was done here for crystallography) or whether we need to show 

that existing symmetry warrants transfer from the source domain.  
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 It is in the field of physics where we have the most vivid image of what is at stake: 

not Ørsted’s experimental setup but the Large Hadron Collider, the most powerful 

particle collider in the world. It was built at a cost of about $10 billion and operates on an 

annual budget of around $1 billion. That alone makes it important to stand back from the 

specific theories it will test, all involving symmetry in one form or another, and to 

examine their warrants. 

 There are two areas where the work of this thesis specifically could be profitably 

extended: evolvable warrants and transferable warrants.  

Evolvable Warrants 

 The first would cover crystallography in the second half of the nineteenth century 

since, as I mentioned above, that era provides the best case material for a study of the 

evolvable warrant. 

 When Curie stated in 1894 that there was “interest in introducing into the study of 

physical phenomena the symmetry arguments familiar to crystallographers,” he must 

have been referring to physical phenomena occurring outside crystals. This is because he 

was by then already able to look back on many decades of research into physical 

phenomena inside crystals. 

 This research extension would aim to determine whether a coherent material 

account can be given for the evolvable warrant in terms of conceptual adaptation and the 

self-vindicating laboratory practices that become possible once symmetry itself becomes 

the prime focus of study. This suggests that we may be able to read the famous Curie 

Principle, 
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When certain causes produce certain effects, the symmetry elements of 

the causes must be found in their effects. When certain effects show a 

certain asymmetry, this asymmetry must be found in the causes which 

give rise to them  

as a codification of the developing heuristic rather than as either a tautology or a 

re‑statement of the principle of causation (as some have suggested, including Curie 

himself through his choice of terms ‘cause’ and ‘effect’). 

Transferable Warrants 

 The second research extension would cover several sciences in the twentieth 

century where different routes of transfer seem possible. This extension would aim to 

determine whether a coherent material account can be given for the transferable warrant. 

I hypothesize, for example, that symmetry reasoning was indeed transferred from 

crystallography to stereochemistry and that the warrant for that relied on a common 

laboratory culture, the common use of three-dimensional spatial representations, and the 

historical link between crystallography and chemistry (Pasteur, for example). By contrast, 

I hypothesize that while the same reasoning was transferred to particle physics, that 

transfer was accomplished only via the mathematics of group theory and not through any 

shared practices. If so, it follows that any warrant for the abstract symmetry inferences in 

particle physics would have to be grounded in other ways.  

 One of the tough philosophical challenges that Curie left us at the end of the 

nineteenth century is to understand the transferable warrant — and whether any such 
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warrant can apply to abstract symmetries that are neither spatial nor analogous to any 

properties studied in the laboratory sciences.  

… 

 Curie was right to think that symmetry arguments are special and warranted, that they 

arose in crystallography, and that they can be used in physical sciences. Showing the 

conditions under which they are warranted though requires detailed work — not just 

mathematical, but historical. 
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