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PROGRESS ON VISION THROUGH LEARNING
AT GEORGE MASON UNIVERSITY

J. W. Bala, R. S. Michalski and P. W. Pachowicz

Center for Machine Learning and Inference
George Mason University
Fairfax, VA 22030

Abstract

This report briefly reviews the progress of
research on learning in vision conducted at the
GMU Center for Machine Learning and
Inference, in collaboration with the Computer
Vision Laboratory at the University of
Maryland. The report describes research goals,
methodologies, developed systems, and results of
applications to selected vision problems.
Significant progress has been made in several
areas:

(i) Application of symbolic learning and
highly nonlinear operators to constructing
image descriptions (MLT project)

(i) Development of a methodology for
multistrategy learning which integrates
symbolic and neural network learning (AQ-
ANN project)

(iii) Learning new concepts by relating them to
previously learned concepts (PRAX system)

(iv) Coping with noise in images by an iterative
model-driven “detect and purge” method
(AQ-NT system)

(v) Adapting to changes in object appearance
by incrementally evolving object
descriptions (CHAMELEON project).

The developed systems have been
experimentally applied to problems of scene
segmentation, blasting caps recognition,
classification of a large number of textures, and
natural object recognition.

This research was supported in part by the Advanced
Research Projects Agency under grants F49620-92-1-
0549, administered by the Air Force Office of Scientific
Research, and N0O0014-91-J-1854, administrated by the
Office of Naval Research. It was also supported in part
by the Office of Naval Research under grant NO0014-91-
J-1351, and by the National Science Foundation under
grant IRI-9020266.

1 Introduction

This research is concerned with the development
of methodologies and experimental vision
systems capable of learning descriptions of
visual objects, and applying the learned
descriptions to efficiently recognize objects in a
scene.

The underlying motivation is that vision systems
need learning capabilities in order to be more
easily adaptable to different vision problems,
and more flexible and robust in handling the
variability of perceptual conditions. The project
represents an interdisciplinary effort to advance
the state of the art in computer vision by
applying advanced machine learning methods
and to provide solutions to problems unsolved
by previous vision research.

One of the significant results of our research was
a demonstration that learning methods can be
successfully applied to problems of low-level
vision. Specifically, the results obtained
demonstrate that a multistrategy learning
approach that combines rule learning and neural
net-based learning can be very successful in fast
scene segmentation and object detection. Strong
impacts of this research are expected in such
domains as industrial object recognition, medical
image analysis, sonar-based material inspection,
and satellite image inferpretation.

2 General Methodology

A  “multilevel logical template” (MLT)
methodology has been developed for training a
vision system to perform a given set of vision
tasks. The methodology, developed by
Michalski and implemented by Bala, consists of
three phases: 1) image marking, 2) automated
model development, and 3) model testing
(Figure 1).

In Phase 1, an operator selects and classifies
samples from a training image that represent
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visual concepts to be learned (e.g., specific
objects, parts of a scene, etc.)

In Phase 2, the system iteratively executes the
following sequence of modules: Training Input
Formulation, Model Learning and Refinement
and Model Testing.

Figure 1: General Methodology.

The Training Input Formulation module
performs two basic steps: 1) optimizing the
image volume (by adjusting the resolution and
the number of gray levels accordingly to the
given vision task), 2) computing high-level
features from the training image samples, and 3)
creating “training events,” which constitute
input to the learning process. The Model
Learning and Refinement module executes a
learning system to determine general
descriptions of indicated visval concepts from
the given samples (and background knowledge).

At each iteration, the generated descriptions are
applied to the whole training area of the image
and a “symbolic” image is created, in which the
“pixels” denote numerical labels of the visual

concepts being learned. The descriptions are
called “logical templates,” because in the
original implementation of the methodology
they were logic-style decision rules that will be
applied to the image in parallel.

The Model Evaluation module evaluates the
quality of the descriptions obtained at a given
iteration by relating the symbolic images they
produce to the target image. If the descriptions
need further improvement, the process 1is
repeated as the current symbolic image is input.
The process ends when the obtained symbolic
image is sufficiently close to the target image
labeling (indicating the “correct” labeling of
the image). Complete object descriptions are
sequences of image transformation operators
(rule sets) that produce the output image, and
serve as symbolic object models.

Phase 3 involves an application of the learned
models to new images, to compute confidence
scores for recognition.

To recognize an unknown surface sample, the
system matches it with candidate surface
descriptions. This is done by applying decision
rules to the events in the sample. For each event,
the class membership is determined. To increase
the confidence of recognition, the majority class
of the events in a window is taken as the
decision.

Advantages of this approach are that the
recognition process can be very fast, as it is
amenable to parallel execution, and that the
recognition accuracy for new images is very
high.

The MLT methodology has been initially
applied to learning multilevel rules
characterizing given surface classes from
surface samples [Michalski et. al., 1993]. The
rules were determined using the inductive
learning program AQ-15 [Michalski et al,
1986] and represented in the VLi logic-style
language (Variable-Valued Logic System 1)
[Michalski, 1972]. These rules serve as “logical
templates” that can be matched in parallel or
sequentially against window-size samples of
surface to classify the image.

The methodology has been subsequently
implemented using different learning systems,
which are suitable for different vision problems.

The following learning methods have been
included:

(i) Learning symbolic image transformations
using the AQ inductive rule learning
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program AQ13c, [Michalski et al., 1986;
Wnek, 1994].

(i) Multistrategy learning that combines
decision rule learning with neural net
learning.

(iii) Multistrategy learning that combines
decision rule learning with a genetic
algorithm

(iv) Class similarity-based learning for building
descriptions of large numbers of classes.

The methodology has been applied to several

. vision tasks: A) Detection of objects belonging

to specific classes. Initial experiments have been
performed on detecting blasting caps in X-ray
images B) Quickly learning to identify texiures
from a large ciass of possibilities C)
Identification of problem areas in medical
images D) Learning to segment natural scenes
into concept areas E) Learning to identify
objects in indoor scenes (Figure 2).

The next section describes in greater detail
individual projects and the results obtained.

Data Set

Vision Task

A. X-ray images ol blasting caps

etection of objects of a specilic class

B. Textures Classification of surfaces
C. MRI images Analysis of medical Images

D. Alpine 1mages

“Natural object recognition

E. Indoor scene 1mages

Recognition of indoor objects

Figure 2: Application areas.
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3. Research Projects

3.1 Learning Vision Tasks by
Combining Symbolic and Neural
Network Learning: AQ-ANN

This project, conducted jointly by Bala and
Michalski, concerns the development of a new
multistrategy learning methodology that is
specifically oriented toward vision learning. The
methodology combines symbolic rule learning
and neural-based learning strategies in order {o
achieve high efficiency and accuracy in Jearning
object descriptions, and in applying them to
object recognition. The core idea is to leamn
symbolically approximate decision rules for the
task at hand, and then use the rules to structure &
neural net.

The initially developed vision system has several
advantages: it can be easily modified and
applied to new problems (due to learning), its
learning speed can be at least an order of
magnitude faster than neural net learning (due
to “symbolic pre-structuring” of the net), it has
short recognition times (due to its parallel
architecture), and its underlying recognition
rules are easy to understand by a human
operator (due to the symbolic knowledge
representation of the basic decision rules). The
developed system was experimentally applied to
natural scene recognition.

The method works in two stages. In the first
stage, a set of decision rules in the VLj
(Variable-valued Logic System 1) which
approximately characterize objects of interest
are induced from examples. In the second stage,
the rules are transformed into an equivalent
neural net, and the resulting neural net is further
trained to improve its recognition performance.

The primary motivation in applying this
approach is to increase the execution speed of
the recognition system. Another motivation is to
represent visual knowledge embodied in the
network in an explicit form of understandable
rules in order to enable the network's decisions
to be understood by humans. The main area of
applicability of the developed system is learning
high level visual concepts of surfaces in 2-D
images (e.g., trees, bushes, bookshelves, cancer
cells, etc.).

The AQ-ANN approach showed that a symbolic
learning method augmented by parallelism can
be successfully applied within time constraints to
complex domains like outdoor scene
recognition.

The approach combines the well-known AQ
algorithm for rule learning with standard neural
net learning (hence the AQ-ANN name for the
project). The AQ algorithm generates decision
rules in a “greedy” fashion, at each step
determining one rule that covers a maximal
portion of the “uncovered” training data, and
so on until all positive training examples are
covered, and all negative examples are excluded.
To create rules from examples, it employs
“inductive generalization operators™ that make
the decision rules as general as possible without
becoming inconsistent [Michalski, 1972;
Michalski et al., 1986]. When noise is present in
the training data, the rules are allowed to be
partially inconsistent and/or incomplete with
regard to the input data.

The learning process is executed in two phases:

1.R ' i ]

This phase generates rules that describe the
training examples (those that cover only a few
examples are truncated from class description).

2. I ti k learning.

Each node in a one-layer network corresponds
to a single rule. The degree of match of an
example to the node rule represents node
activation. This activation value is input to the
sigmoid transfer function associated with each
node. Weight values for the connections between
nodes and outputs are obtained using the
backpropagation learning mechanism.

The node rules in the network are a form of

receptive field transfer function. The network
architecture is similar to the Radial Basis
Function network (RBF network). The RBF
network models data by a Gaussian distribution
function associated with each node. The network
generated by the AQ algorithm is constructed
based on rules that represent generalization of
the initial examples. Our approach overcomes
two important drawbacks of RBF learning
algorithms, namely, choosing the right number
of nodes {(clusters to be modeled by the
Gaussian distribution) and the measure of the
spread of the data associated with each cluster.

Figure 3 illustrates an application of the AQ-
ANN method to the problem of learning three
concept classes (“Tree area”, “Grass area” and
“Rock area™ in “Alpine images.” There were
five attributes computed for each pixel of image
section. First two attributes represented detection
of horizontal and vertical lines in a 5 by window.
The remaining three attributes represented color
intensity of Red, Green and Blue composites.
The top of Figure 3 shows the training scene,

194



and training samples selected from it. The
bottom left image shows a new scene to be
segmented into the above three concept classes
(the image has been quantized into 98304
pixels). The “Target” shows the “ideal”
segmentation of the image done by a human
operator. The “Result” presents the image
segmented by the neural network structured by
the AQ-15 learning program. It shows the final
segmentation that was obtained by substituting
class membership for each pixel based on a class
majority in a 15 by 15 window. The “Result”
image shows 100% correct recognition for most
areas of the new scene. Since the target image
labelling performed by a human operator is
imperfect (small areas of class “Rock” are not
shown) the recognition rates approximate the
correct rates.

It can been seen that the “Result” image and
the “Target” image are very similar. Table ]
presents a comparison of learning and
recognition times, and performance accuracy in
this experiment for three learning approaches:

‘‘‘‘‘‘‘
.

Training Scene

AQ, AQ-ANN (neural network structured by the
AQ program), and a direct application of the
neural network (with binary coding of attribute
values and backpropagation network learning).
The architecture was simulated on the MATLAB
neural network toolbox, and was able to process
the whole scene in about 20 seconds of CPU
time on a SunSparc 2 workstation. As indicated
in Table 1, by applying the multistrategy AQ-
ANN approach, the image recognition time was
reduced from 500s to 20s. The network
architecture structured by the AQ-ANN system
is shown in Figure 4.

Compared to symbolic learning the learning
time for the neural network was three orders of
magnitude slower, but it was faster, by one order
of magnitude, in recognition time. As shown in
Table 1 the highest recognition accuracy has
been achieved by a multistrategy learning, AQ-
ANN method. At the same time the learning
time for AQ-ANN was 50 times faster than for
the 2 layer neural net.

.. “Tree” sample
o " GrASS” SOMPple
"Rock” sample

r
gttt nis

1. Multilevel rule generation from samples
2. Rule-based neural net structuring
3. Backpropagation learning

| 4. Network application to new scene

e

“ Scene

.' Target

Figure 3: An illustration of the application of the AQ-ANN method to learning three
visual concepts, “Tree area”, “Grass area” and “Rock area,” from training samples.
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Learning Approach Learning Recognition | Recognition | Recognition
; time time accuracy accuracy
(CPU time (CPU time pixel-based lindow based
in sec.) in sec.)
Symbolic learning: 6 300 88% ~100%
AQ-15 program
Neural network backpropagation | no convergence | NfA N/A N/A
learning:
1 layer network
Neural network backpropagation | 5690 25 85% not computed
learning
2 layers
Multistrategy learning: AQ-ANN | 120 20 92% ~100%
1 layer structured by
the AQ-15 program

Table 1: Comparison of learning/recognition times, and recognition rates for symbolic

learning only, neural nets learning only,
learning.
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and integrated symbolic and artificial neural net

Figure 4: A neural network structured by rules learned by the symbolic AQ-15 program.

3.2 Learning to Recognize Large
Numbers of Classes (PRAX-2)

Most research on concept learning from
examples concentrates on algorithms for
generating concept descriptions of a relatively
small number of classes. In conventional

methods, when the number of classes grows,
their descriptions become increasingly complex,
in order to discriminate each class from the
previous classes.

In some applications, the number of classes may
be very large, and they may not be known
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entirely in advance. In such situations, the
learning method must be able to incrementally
learn new classes. Such a class-incremental
mode is different from the conventional event-
incremental mode, in which examples of classes
are supplied incrementally, but the set of classes
remains unchanged.

The PRAX approach was developed for learning
descriptions of a large number of classes in a
class-incremental mode [Bala et al., 1992]. The
learning process consists of two phases. In Phase
1, symbolic descriptions of a selected subset of
classes, called principal axes (briefly, praxes) are
learned from concept examples (here, samples
of textures). The descriptions are expressed as
sets of rules. In Phase 2, the system
incrementally learns descriptions of other
classes (non-prax classes). These descriptions are
expressed in terms of their similarities to praxes,
and thus the second phase represents a form of
analogical learning. To utilize a uniform
representation, the prax descriptions are also
transformed into sets of similarities to the
original symbolic descriptions.

PRAX-2 (Figure 5) extends the initial PRAX
method by making it more efficient [Bala, et. al,
1993]. This is accomplished by reducing the
number of PXs in the changed representation,
The selection or deletion of a given PX is based
on its discriminatory power, measured as the
standard deviation of its values through all
classes. In experiments with 24 texture classes
(100 training examples per class and 100 testing
examples per class) the number of PXs
generated from the initial 8 classes was reduced
from 170 to 17. Thus, all 24 classes were
recognized using only 17 PXs (rules). Figure 6
shows examples of a PX expressed as a
conjunction of attribute conditions and a class
description (SV) expressed as a vector of 17
similarity measures.

The ability of the method to describe many
classes while using only a small set of rules has
been shown to be very promising in initial
experiments. The main strength of the method
lies in a problem-relevant transformation of the
description space. The new descriptors form
generalized sub-spaces of the initial training
space.

Given:

M - number of principal axes
K - number of training classes

Do:
For each PXje P
For each class k

For each PXj € P

For each PXj € P
If 6 <O then remove PX; from P

P - set of principal axes found by PRAX {PX1, PX2, ..., PXM}

& - maximum discriminant standard deviation

Calculate average match to examples of class k. (Sik)

Calculate a standard deviation G; = 6{Sik, k=1,.., K}

Figure 5: Algorithm for determining principal axes.

PX == mule =>[x1=8..21] & [x3=15..22] & [x4=24..42] & [x5=19..37] & [x6=28..360] & [x7=28..36] & [x8=12..25]
SV(class C16) => {5.1, 57, 21, 51, 41.2, 6.2, 0.4, 6.3, 04, 96, 95, 94, 89, 93, 87, 28, 0.3]

Values in the SV vector represent a normalized (range 0 to 100) average maich of examples of the C16 class to 17 PXs

Figure 6: Examples of a PX and a class description.

197



3.3 Noise-Tolerant Learning of Object
Modeis from Complex Sensory
Data

This project is directed by Pachowicz and aims
at the development of new techniques for
learning from very complex and mnoisy
attributional data. The guiding premise of this
research is that erroneous data can be detected
more effectively on the model level — where
relationships between data clusters and between
classes to be learned is expressed better than in
raw training data. These techniques are
dedicated for symbolic learning programs,
however, we are also adapting them to the other
classifiers.

Model acquisition from noisy data sets is a
difficult problem for symbolic learning
programs. Inductive learning systems perform
a generalization of the input data in order to
anticipate unseen examples. In a standard mode,
when all the input examples can be assumed to
be correct, a concept description generated by
an inductive learning system should be complete
(cover all training examples) and consistent
(cover no examples of other concepts). In the
case of noisy data, the system does not seek
such complete and consistent descriptions.

There are two basic approaches to symbolic
learning from noisy data. The first approach,
tree pruning (elimination of some subtrees from
the learned decision tree), taken by the ID
family of algorithms, allows a certain degree of
inconsistent classification of training examples
so that the descriptions will be general enough to
describe the basic characteristics of a concept.
The second approach, taken by the AQ family
of programs, is to remove some of the
unimportant rules (or conditions) from a set of

Training

rules, and retain only those covering the largest
number of examples. Traditional learning
methods based on pruning/truncation try to
handle noise in one step. Therefore, they share
a common problem: the final concept
descriptions are based on the initial noisy
training data.

A new approach has been proposed which
extends the traditional one-step method of noise
handling to a closed-loop two- or multiple-step
process. The learning loop is presented in
Figure 7. It includes: (1) concept acquisition by
a concept learning system such as AQ or ID; (2)
evaluation of learned class descriptions,
detection of less significant disjuncts/subtrees,
which are not likely to represent patterns in the
training data, and removal of detected
rules/subtrees; and (3) filtration of training data
through optimized rulesftrees (i.e., removal of all
examples not covered by truncated or pruned
concept descriptions). This learning loop can be
run once or multiple times with changing
learning and/or truncation/pruning criteria.

In this approach, pruned/truncated concept
descriptions are used as a filter to improve the
training data set. Then, the concept acquisition
phase is repeated from the improved training
data. Consequently, those training examples
which caused the generation of pruned/truncated
concept components are no longer taken into
account when concept learning is repeated.
Since the detection of erroneous examples is
executed on the concept description level rather
than on the input data level, data filtration
reflects attribute combination in the construction
of concept descriptions and inter-class
distribution over the attribute space.

Criteria

Concept
Acquisition

Final Concept
Deseriptions

Intermediate
Concept
Descriptions

Concept
Optimization

Criteria

Figure 7: Learning loop.
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Previously, we prototyped an introductory
version of a rule learning program and showed
basic results for a simple texture recognition
problem involving six texture classes. We
reported that the recognition rate increased and
the complexity of object models decreased
substantially. Recently, we implemented the
above approach to rule learning and decision
tree learning programs and tested them on
several vision problems [Bala and Pachowicz,
1993: Pachowicz and Bala, 1994b]. The new
version of the learning program AQ-NT uses the
AQ14 [Michalski, 1985] learning program. The
decision tree version, the ID-NT program, uses
the C4.5 [Quinlan, 1993] learning program.
Both programs were tested on the acquisition of
attributional descriptions of twelve similar
texture classes from texture energy measures.
Different image sections were used for training
and for testing.
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Figure 8: Example attribute value
distributions for the texture data.

Figure 8 presents selected examples of attribute
value distributions (the most complex
distributions) for individual classes, where the
solid line corresponds to a smoothed attribute
distribution, and the dotted line corresponds to
the approximated normal distribution. In some
cases, the distribution was multi-modal.
Sometimes an attribute had a uniform
distribution for a single class, but was very
distinctive for the remaining classes.

The recognition results for the AQ-NT program
are presented in Figure 9 [Pachowicz and Bala,
1994b]. The average error rate over twelve
classes decreased from 29.3% to 28% in the
range of truncation levels from 0% to 10%.
The truncation level corresponds to the number
of training data covered by truncated
components of concept description. At the same
time, the standard deviation from the average
error rate decreased from above 25.5 to 24,
Most importantly, the maximum error rate
computed over individual classes (this rate
corresponds to the worst recognizable class)
decreased from above 65% to below 59%. For
higher truncation levels the maximum error rate
stabilized. This result has been found very
encouraging because it improves the recognition
of the worst recognizable class.

The experimental results obtained with the ID-
NT program are presented in Figure 10 (white
marks) along with the results for the original
C4.5 learning program {(black marks). The
average error rate decreased from 34% to below
33.5% along with a decrease in the standard
deviation. Most importantly, the maximum error
rate for individual texture classes decreased very
significantly, from 70% to 60%; this indicates
better selection of the first attribute in tree
generation, which in effect improves the
recognition of the worst recognizable class,
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Figure 9: Recognition results obtained by the AQ14-NT noise-tolerant learning program.
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Figure 10: Recognition results for the C4.5-NT noise-tolerant
learning program (white marks) and for the C4.5 learning program
(black marks).

Figure 11: Classification resuits for
surface class descriptions learned by:
{a) the AQ14-TRUNC program, and
(b) the AQ14-NT learning program.

The developed noise-tolerant learning method
was tested on the real images of natural outdoor
scenes shown in Figure 3. All the images were
taken in different places but in the same
mountain area. There were difficulties with the
precise segmentation of the test image because
of (i) the lack of a clear border area between the
“Cirass” area and the “Tree” area, (1i) many
isolated large rocks, (iii) overlap of the
“Grass” atea and the “Rocks” area, and (iv)
difficulty in the interpretation of some small
image region.

The results of model based scene segmentation
are presented in Figure 11. There is a significant
improvement in the classification results when
the class descriptions were acquired by the AQ-
NT program. There are two major
improvements. First, the distinction between the
“Tree” area and the “Grass™ area is improved.
Second, the faise classification of large grass
sections is eliminated. Moreover, the picture
better highlights surface details corresponding
to large rocks and small bushes.

3.4 Learning Descriptions of 2D Shape

For many visual concepts, the shape of an object
is its primary distinguishing property. Often,
shape information alone is sufficient for object
recognition (e.g., to recognize a generic face).
In other situations, shape has little value, but
surface information is important (e.g., 1o
recognize a type of material). Thus, depending
on the task at hand, a vision system can usc
shape information alone, surface information
(texture/color) alone, or a combination of both
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to recognize objects or discriminate among
classes of objects.

This project, conducted by Maloof In
cooperation with Michalski, is concerned with
the application of a machine learning system to
shape recognition. We have applied the AQ-15c¢
symbolic learning system [Bloedorn et al.,
1993: Wnek, 1994] to learn shape descriptions
of x-rays of blasting caps, and have compared
the prediction accuracy (the ability to
recognize unseen examples) of our results to the
K-nearest neighbor method [Weiss and
Kulikowski, 1992], a statistical pattern
recognition technique, and to backpropagation
neural networks [Zurada, 1992], a non-
symbolic machine learning method. Our
approach consisted of a five-step learning and
recognition methodology:

1.  Image Data Reduction
2. Blob Isolation

3 Event Extraction

4. Leaming

3 Recognition

Image data reduction is designed to eliminate
extraneous image data while preserving
pertinent information crucial for object
recognition. Essentially, this is an abstraction
procedure. The image volume was reduced by
scaling along the X and Y dimensions and by
quantizing the image gray levels. This process
was guided by information-theoretic measures
of the information content of the extracted
events. The original image set was taken from
an image database and consisted of 25 x-ray
images of blasting caps

Blob isolation involves localizing characteristic
image regions, or blobs, using traditional
threshold operations, following an approach
similar to Sydow and Cooper [1992]. The
threshold level was determined by histogram
statistics and was used to isolate three
characteristic blobs that served as classes for the
learning algorithm. These blobs corresponded
to high-density structural features present in the
blasting caps. Not all structural features were
present in all blasting caps.

Once isolated, fourteen statistics were calculated
from each blob in each image. The statistics
included area of the region, perimeter around
the region, average gray scale value within the
region, and the like. Each set of blob statistics
served as an event, or concept example. Event
extraction produced 66 events which were
partitioned into three classes corresponding to
the characteristic image blobs. Typically,
symbolic learning algorithms require discrete

attributes. Consequently, the ChiMerge
algorithm [Kerber 1992] was used to scale the
real-valued statistics into discrete linear
attributes, each having between 10 and 135 value
levels. The ChiMerge algorithm groups real-
valued attributes into discrete intervals based on
statistical measures of similarity. Lastly, the
extracted events were partitioned into training
and testing data sets as prescribed by a 3-fold
cross-validation  methodology [Weiss and
Kulikowski 1992].

Symbolic learning was performed using the
AQ-15¢ attributional learning system which
induced characteristic descriptions of each blob
for a given training set. On average, AQ
generated one description, or rule, for each
class. The rules consisted of fourteen
conditions which corresponded to the fourteen
extracted statistics.

The final stage was to use the learned
descriptions for recognition. Events separated
for testing are classified using the learned
descriptions and the classification accuracy is
calculated. For  comparison, recognition
accuracy was also computed using a K-nn
classifier and a backpropagation neural
network. Average classification accuracies over
three trials are presented in Table 2.

Learning Classification
Method (Blasting cups) Accuracy
AQ-15¢ T 57 22%
K-nn 95.71%
"Backpropagation NN 95.71%

Table 2: Performance summary for
classification technigue.

Although the classification accuracies of these
classifiers are similar, AQ-15c has advantages
over the other two methods. First, AQ produces
symbolic, declarative descriptions. Unlike neural
net learning, these AQ-generated descriptions
can be easily interpreted by human operators,
as they represent concepts both intuitively and
literally. Unlike the K-nn method, the AQ rules
can be executed in parallel, which 1s important
for fast recognition. With backpropagation,
concept descriptions are distributed throughout
the network structure as connection weights.
For sufficiently complex networks, it is
impossible to directly understand what was
learned. With K-nn, the classification of an

unknown example is made by measuring the
distance between the unknown and K of its

nearest neighbors. Consequently, our only
feedback is a real-valued distance. In fact, with
both K-nn and backpropagation, we cannot
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know which attributes are most releva_nt for
classification without additional statistical
analysis.

In addition, because AQ descriptions are literal
and symbolic, we can  optimize these
descriptions, either manually or automatically,
to yield higher classification accuracy. For the
reasons discussed previously, K-nn and
backpropagation concept descriptions cannot be
inspected, much less optimized.

Since this is early work, much work remains.
We are currently investigating methods of
optimizing the representation space using
information-theoretic measures; that is, using
information-theoretic measures on the extracted
statistics to determine which image reduction
parameters produce the most discriminatory
features. Future work involves learning
invariant shape characteristics, in particular to
scaling, rotation, and other class-preserving
transformations. Further, we want to investigate
whether the ChiMerge algorithm, a necessary
pre- processing step for AQ, affected the
recognition rates of K.nn and
backpropagation.

3.5 Dynamic Determination of Key
Features for Object Recognition

This project, conducted jointly by Hadjarian
and Michalski, aims at developing new methods
for recognizing objects from a large set of
possible objects. This is to be done without
matching rules/models, but by dynamically
determined “key” <characteristics. The
underlying assumption for this method is that to
recognize objects in a given context only partial
information is usually sufficient. For example,
to differentiate just between cucumbers and
bananas, it might enough to know only the
color of the objects. Thus, just by determining
the value of one attribute, color, the system may
be able to recognize the object as one of a
cucumber or a banana.

As the number of classes of objects that the
system is supposed to recognize increases, SO
does the number of features necessary to
achieve the correct recognition. For example, let
us assume that the recognition system
mentioned above should also be capable of
recognizing lemons in addition to cucumbers
and bananas. It is easy to see that color by itself
is no longer sufficient for distinguishing
between these fruits since bananas and lemons
can both be yellow. Thus such a system needs to
extract other features such as shape or texture
information in order to achieve its classification
task. The feature selection problem addresses

the issue of finding features which are sufficient
for the given classification task. However, a
large number of classes usually means a large
number of features.

In order for an object recognition system to
recognize an instance of an object, it needs to
store a model of that object in its database. This
model contains all the important features of the
object. An image is recognized as an instance of
the object if there is a match between the
features extracted from the image and the
features stored in the model. In most object
recognition systems, feature extraction and
classification are two isolated processes. The
feature extraction module first extracts all the
relevant features of the image which are
necessary for achieving correct classifications of
all objects which the system is trying to
recognize. The classifier will then classify the
image by comparing theses extracted features to
those from the models stored in the database.

The disadvantage of such a system is that in
order to recognize an object, it needs to always
measure the same properties of it, namely all its
relevant features. This is, however, not desirable
since extracting all the relevant features can be
computationally very expensive and is not
always possible. This is especially true for a
system which recognizes a large number of
objects, since as mentioned earlier this usnally
requires extraction of a large number of
features.

We are proposing an alternative approach to
recognition. The idea is based on Michalski’s
Theory of Dynamic Recognition which was
originally introduced in 1986. The main idea
behind dynamic recognition is that the system
determines “key” attributes from characteristic
descriptions of objects. These attributes are
determined by conducting inductive inference
on candidate object descriptions.

The proposed Dynamic Recognition approach
involves three steps:

1- REDUCE
2- INDUCE
3- INQUIRE

In the REDUCE step, some “striking features”
of objects in the image are used to reduce
existing characteristic descriptions and
determine candidates. In other words, all the
rules which are not satisfied by the values of
these features are removed from the set of
candidate descriptions. In the INDUCE step the
AQ program is applied to the reduced set of
characteristic descriptions to determine the
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sitnplest discriminant recognition rules. These
discriminant rules will usually contain only the
discriminant features, i.e. fewer features than the
original characteristic descriptions. In the
INQUIRE step, an evaluation function is apphied
to each remaining feature and the value of the
feature with the highest score is extracted from
the image of the object to be recognized. An
important parameter of this evaluation function
is the cost of the feature, which measures the
difficulty of extracting it from the image. Rules
not satisfied by the value of the extracted
feature are removed from the set of candidate
descriptions. The INQUIRE step is repeated
until we are left with one candidate description,
namely the description of the object in the
image.

Thus, recognition is considered as an inductive
inference process that determines the
discriminant features of the objects in a given
context, and not as a matching process.

3.6 Model Evolution Paradigm to
Object Recognition in Dynamic
Environments

This project is directed by Pachowicz and aims
at object recognition under the gradual change
in perceptual conditions and/or under varying
object appearances.

Most research on object recognition has been
focused on learning to recognize objects under
a given subset of stationary perceptual
conditions (such as lighting, tesolution and
positioning) and for known object appearances
(e.g., subsets of IR or SAR object signatures;
subsets of object silhouettes). Object recognition
in dynamic environments, however, has to deal
with changes in perceptual conditions and
object appearances not known to the system
beforehand. Frequently, models learned under
given perceptual conditions are not effective in
recognizing objects under other conditions.
This problem is particularly severe for object
recognition in outdoor environments where the
variability of perceptual conditions and object
appearances can be extremely high.

Most approaches to object recognition do not
adapt an object recognition system directly to
changing perceptual conditions and object
appearances. These methods use stationary
models acquired during the off-line training
phase. Such an approach requires that each
condition "influencing the change of object
characteristics is represented in the model, a
conclusion which is hard to satisfy for realistic
environments.

We have developed a model evolution paradigm
for object recognition under variable perceptual
conditions and changing object appearances.
The paradigm relies on the on-line dynamic
modification of object models according to
perceived changes in object characteristics. This
paradigm was tested for a scene segmentation
problem based on texture characteristics of
surfaces. It assumes that a change in, for
example, texture characteristics is gradual and is
reflected in the images of a sequence. Given
texture descriptions (models) learned from the
first image of a sequence, the system applies
these descriptions to the next image to
recognize the objects. Then, the system
computes a recognition confidence for each
object and compares the results with those
obtained when working with the previous
images. Dynamic characteristics of the
confidence change are modeled. If the
recognition confidence deteriorates, so that the
system will have more problems in recognizing
the object in the next image, the system
indicates which descriptions must be modified
and activates data selection and learning
processes. New training examples, which
represent the change in object characteristics,
are selected and provided to an incremental
learning program. The modified models are
verified to insure the soundness of the evolution
process.

Using the model evolution paradigm, a vision
system adapts to the changes in the environment
by adapting the object models on-line and
autonomously. This allows for capturing any
variability in object characteristics without
knowledge about object properties and without
building complex, dedicated medules to deal
with changes in a given perceptual condition.
Thus, an object model can be adapted to any
combination of perceptual conditions.
Moreover, the system can adapt to a change in
the internal state of an object (e.g., to a change
in a target’s IR signature). Model evolution 1s
an active agent process actively working on its
internal knowledge and models of the
environment and the objects. Model evolution
includes (but is not limited to) and integrates:
vision processes, model evaluation, reasoning
about the models, guidance for model
modification, data selection, and control
processes. A kernel of the model evolution
system is an incremental learning program.

We have developed the CHAMELEON-1 (semi-
antonomous evolution) and CHAMELEON-2
(fully autonomous evolution) systems for the
recognition of textures and for texture-based
scene segmentation under gradual changes in
resolution and lighting conditions [Pachowicz,
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1993a, Pachowicz, 1994a]. Recently, the
CHAMELEON-1 and -2 systems were
intensively tested. We used different image
sequences and different control strategies for
the selection of new training data for model
evolution. We investigated the soundness of the
model evolution in critical situations --- 1.e.,
sitiations where the system mistakenly selects
incorrect data or the dynamics of model
evolution is too slow when compared to the
dynamics of the change in object characteristics.
We worked with two incremental learning
programs, AQ-14 and AQ-15, as the kemel of
the model evolution system.

Conclusions from the development and testing
of the CHAMELEON-1 and -2 systems have
been used in the design of a new framework for
the application of a Bayes classifier and a radial
basis function classifier (RBF) to serve as the
incremental learning kernel of a model
evolution system. The new kernels will be
capable of modifying the models more
effectively using: (i) statistical information
and/or selected new training data, (ii) gradient
information about the direction and the
dynamics of model change within the attribute
space, and (iii)} prediction of model change
beyond the image sequences already seen. We
also investigated (1) architectures for the
integration of vision and learning processes of
model evolution particularly for automatic
model evolution guidance, (2) problems with
instability in model evolution, and (3) different
strategies for the selection of new training
examples for model modification in the
incremental mode.

New application domains we are experimenting
with include Automatic Target Recognition and
segmentation of medical image sequences
(brain cross-sections). These applications are
characterized by variable target/tissue
appearances perceived over time and/or space.
The model evolution paradigm for object
recognition and image segmentation Is
particularly useful in those situations because (1}
complete models are hard to obtain, (i1) changes
in the environment and perceptual conditions
significantly influence the object signature, (iii)
the system works with image sequences, and (iv)
a given image sequence represents a gradual
change (rather than a step change) in object
characteristics. We investigated the change in
ATR data using Lincoln Lab turntable ISAR
data of four targets (Camaro, Dodge van, Pickup
truck, Bulldozer). Initial results justify the
application of model evolution to the ATR
problems, for example, to adaptive sensory
guidance of a torpedo.

3.7 Autonomous Vision Agents:
Learning, Evolving and Self-
governing

This new research project is directed by P.
Pachowicz. It aims at the design and
development of adaptability mechanisms for a
vision module which is already prestructured for
application-specific data gathering and/or image
analysisfunderstanding. These mechanisms will
allow a vision module to undergo on-line
modification of its internal knowledge/models,
structure and/or processes in an active marnner.

This research focuses on how an autonomous
vision agent can manage itself while working in
dynamic environments, under varying task
parameters, and employing dynamic links with
associated subsystems. We identify the
following basic issues that the agent has to deal
with on-line:

(i) change in scene complexity influencing
the time, quality and complexity of

processes needed for image
analysis/understanding,

(ii) change in object appearances,
influencing the change of object/scene

models,

(iii) occurrence of unexpected situations the
system has barely been trained to deal
with,

(iv) on-line change in task parameters, and

(v) interruptions/requests coming from
processes that the agent communicates
with (sensor hardware, host task
processes, and application processes).

Sensory systems working in realistic dynamic
environments may have to deal with one or
more of these issues in order to become
antonomous and no longer rely on an engineer
to reconfigure the system. An autonomous
vision agent must be able to minimize the
impact of these issues on its perceptual skills.

The way we have chosen to realize this goal is to
develop an active vision agent (AVA) which will
be capable of modifying its internal resources
over a sequence of images affected by situations
which differ from those the system was
prestructured for. We have designed a
framework for an AVA. This framework
includes the following three elements which will
insure the system's adaptability to changes in
environments, parameters of perceptual tasks,
and interactions with the other processes of the
application system:
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learning
data

I) introduction of different
functions into the agent's
processingfanalysis algorithms,

2) introduction of model evolution processcs
into the agent's model/knowledge base,
and

3) introduction of self-governing processes
into the agent.

The first element of an AVA, learning functions
for data analysis algorithms, allows the agent to
optimize itself to operate better and faster for
repetitive tasks/conditions. Using these
functions, the system constantly looks for better
data analysis solutions through a network of
prestructured/available image analysis
procedures, This recently initiated research has
shown how the introduction of learning
functions within the traditional train-recognize
paradigm can transform this paradigm into an
active agent paradigm [Pachowicz, 1993b].

The second element of an AVA, model
evolution, insures system adaptability to
changing object appearances and perceptual
conditions not reflected in the initial models. We
have developed and tested model evolution
systems operating in semi-autonomous and
fully autonomous modes for scene
segmentation and recognition tasks [Pachowicz,
1993a, 1994a]).

The third element of an AVA, the self-
governing aspect, supports automatic
reconfiguration of agent processes due to
changes in scene complexity, time restrictions,
task parameters, external requests, and dynamics
of the environment. This research has roots in
our previous work [Pachowicz, 1992] where we
showed how a vision system can restructure
itself on-line using simple image measures and a
feedback control loop. Qur recently developed
framework for an AVA includes self-governing
functions for the agent through the use of the
following tools:

(i) Focus-of-Attention: allowing for selective
analysis of local image data and/or time
events,

(i) Resolution-on-Demand: allowing for
accessing data at appropriate levels of
detail,

(iii) Abstraction-on-Demand: allowing for
accessing models/knowledge on
appropriate levels of competence, and

(iv) Event-on-Pipeline: allowing for
incremental analysis of scene objects and
gvents over image Sequences.

We believe that by introducing this paradigm
into machine perception, autonomous vision
agents will gain enough degrees of freedom to
adapt to changing external influences.

3.8 Learning about the Environment

This project is directed by the team at the UMD
Computer Vision Laboratory. The research has
been concerned with:

(1) Development of specifications for agents
that are capable of performing given tasks
in a given environment. This will be done
in the context of a general framework for
agent and task specification.

(ii) Development of exploratory and
computational strategies that can be used
by an active agent to discover and organize
information about the structure of its
environment. This too will be done within a
task-dependent framework.

(iii) Definition of methods of sensor-based
manipulator control based on perceptual-
kinematic maps, which relate properties of
the sensory data (e.g., positions of features
in an image) to properties of the kinematic
chain that drives the manipulator (e.g., joint
angles). In this framework, manipulator
control can be regarded as a problem of
planning paths on a perceptual-kinematic
surface.

Research at UMD during the past year has
concentrated in areas (ii) and (iii). Some of the
results are described in two papers in these
Proceedings [Rivlin and Rosenfeld, 1994; Herve,
1994].

5 Summary

The GMU research on machine learning in
vision has developed several mnovel
ideas and systems for applying advanced
methods of machine learning to vision,
Particularly significant progress has been made
in such areas as the development of the
multistrategy learning methodology that
combines symbolic learning with neural net
learning. Experiments have shown that this
methodology may increase learning speed by
an order of magnitude, significantly increase
the prediction accuracy of learning, and at the
same time facilitate rapid object recognition due
to the parallel architecture of neural nets.

We have developed the PRAX system which uses
ideas based on analogical learning acquire
descriptions of large numbers of classes. To
cope with noisy data, we have developed a
methodology for noise detection and purging
of data, which have shown very promising
results.
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Further progress has been made on the
development of a methodology for learning to
recognize objects belonging to large numbers
of classes, and learning descriptions of
dynamically changing scenes. We have also
initiated several new projects, such as dealing
with learning shape descriptions, automated
determination of “key” attributes, and
developing autonomous vision agents.

Among the major topics to be investigated in
the future is the development of a learning
methodology capable of self-improving its
knowledge representation space and
automatically generating higher-level problem-
relevant attributes (constructive induction).
Other topics involve representing and learning
imprecisely defined visual concepts, and
demonstrating the usefulness of the proposed
methods for a variety of problems of practical
utility.
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