

METHOD AND MODELS TO ENABLE OPTIMAL AUTOMATED SERVICE

COMPOSITION

by

John D. McDowall

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

 Dr. Larry Kerschberg, Dissertation Co-

Director

 Dr. Alexander Brodsky, Dissertation Co-

Director

 Dr. Sam Malek, Committee Member

 Dr. Stephen Nash, Senior Associate Dean

 Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date: Spring Semester 2015

George Mason University

Fairfax, VA

Method and Models to Enable Optimal Automated Service Composition

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

John D. McDowall

Master of Science

Boston University, 1999

Bachelor of Science

United States Naval Academy, 1989

Co-Directors: Larry Kerschberg, Professor, and Alexander Brodsky, Associate Professor

Department of Computer Science

Spring Semester 2015

George Mason University

Fairfax, VA

ii

This work is licensed under a creative commons

attribution-noderivs 3.0 unported license.

http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/

iii

DEDICATION

This is dedicated to the glory of God and to my parents, Adele and Jim, who encouraged

my curiosity. Also to my wife Michele and our children Lindsay and Brooke, who have

learned to endure the results of my parents’ encouragement.

iv

ACKNOWLEDGEMENTS

I would like to thank the members of my committee, especially co-directors Larry

Kerschberg and Alexander Brodsky, for countless hours reviewing and editing my

content. I would also like to thank Sam Malek for his valuable guidance and very flexible

schedule, and the late Anderw Sage, an original member of my committee whose work

on complex adaptive systems was a major influence on my thinking. Finally, I would like

to thank the core members of my dissertation writers’ group: Susan Farley, Mark Coletti,

and Jeff Bassett. Their encouragement, input, and unflagging optimism were invaluable.

v

TABLE OF CONTENTS

Page

List of Tables .. vii

List of Figures .. ix

List of Definitions ... x

List of Abbreviations or Symbols .. xi

Abstract .. xiii

1. Introduction ... 1

1.1. Motivation .. 2

1.2. Research Gap [Related Work and its Limitations]... 3

1.3. Thesis and Contributions .. 9

1.4. Dissertation Organization ... 15

2. Related Work ... 17

2.1. Service Descriptions ... 17

2.2. Process Modeling Languages ... 22

2.3. Optimization ... 27

3. Overview of the Druid Service Composition Methodology 33

3.1. Overview of the Service Composition Methodology ... 34

3.2. Service Composition by Example .. 38

3.3. Service Composition System Architecture .. 45

4. Formal Optimization Service Composition Framework ... 51

4.1. Terminology ... 51

4.2. Optimal Service Composition .. 52

4.3. Mathematical Programming Formulation .. 64

5. Sucellos: A Quality of Service Model ... 71

5.1. Description of the SUCELLOS QoS Model .. 72

5.2. QoS Calculation ... 81

6. Extensions to BPMN ... 84

vi

6.1. Language Selection .. 85

6.2. Language Extension ... 87

7. Ogma: A Service Description Language ... 90

7.1. Design Challenges .. 91

7.2. Model Definition .. 95

8. Proof of Concept Prototype ... 120

8.1. Design... 120

8.2. Implementation... 121

8.3. Execution Example .. 128

8.4. Scalability ... 137

9. Conclusions and Future Work ... 141

9.1. Key Contributions .. 141

9.2. Conclusions .. 143

9.3. Future Work ... 144

Appendix A: OWL Specification of OGMA description language 146

Appendix B: CPLEX OPL Output .. 167

References ... 169

Biography .. 176

vii

LIST OF TABLES

Table Page

Table 1: Example Services .. 39
Table 2: Convert Location Inputs ... 40

Table 3: Convert Location Outputs... 41
Table 4: QoS Term Definitions... 51

Table 5: Convert Location Inputs ... 61
Table 6: Convert Location Outputs... 61
Table 7: Get Weather Inputs ... 62
Table 8: Get Weather Outputs .. 62

Table 9: Virtual Service for Weather Reporting ... 63
Table 10: Service Summary .. 63

Table 11: A2S Mapping for Weather Process .. 64
Table 12: VSI for Weather Process .. 64
Table 13: OPL Data Initialization ... 65

Table 14: OPL Data Computation .. 66
Table 15: OPL Decision Expressions ... 67

Table 16: OPL Optimization Calculation and Constraints ... 69
Table 17: Service Definition ... 96

Table 18: Marriott Service Description .. 96
Table 19: Binding Definition .. 97

Table 20: Marriott's Binding ... 98
Table 21: Provider Definition ... 99

Table 22: Provider Information .. 99
Table 23: Resource Description .. 100
Table 24: PhysicalResource Definition .. 101
Table 25: Medical Resources .. 102
Table 26: State Definition ... 102

Table 27: State Example ... 102
Table 28: Operation Definition ... 103
Table 29: Operation Example ... 105

Table 30: StateChange Definition ... 105
Table 31: StateChange Example ... 106
Table 32: Service Object Properties ... 106
Table 33: Operation Properties ... 107

Table 34: Network Binding Properties ... 108
Table 35: Physical Binding Properties .. 109

viii

Table 36: Provider Object Properties .. 110
Table 37: Resource Object Properties... 111
Table 38: Animate Object Properties .. 112
Table 39: Inanimate Object Properties ... 112

Table 40: Virtual Resource Object Properties .. 113
Table 41: Element Resource Object Properties .. 113
Table 42: Message Resource Object Properties .. 114
Table 43: State Object Properties ... 114
Table 44: StateChange Object Properties ... 115

ix

LIST OF FIGURES

Figure Page

Figure 1: Druid Methodology Overview .. 36
Figure 2: Sample Process .. 40

Figure 3: Weather Process Decomposition ... 42
Figure 4: Candidate Service Compositions... 44

Figure 5: Service Composition Architecture .. 46
Figure 6: Service Composition Methodology Usage .. 49
Figure 7: Sample Weather Process ... 61
Figure 8: Composition optimization ... 70

Figure 9: Applying QoS metrics ... 72
Figure 10: Using BPMN extensions ... 85

Figure 11: Creating service descriptions... 90
Figure 12: Overview of the DRUID methodology ... 121
Figure 13: Creating a service description ... 129

Figure 14: Specification of a BPMN process model .. 130
Figure 15: Annotation of semantic information on an activity 131

Figure 16: Selecting a process model ... 132
Figure 17: The JADE agent framework during model processing 133

Figure 18: GUI showing services that match process activities 134
Figure 19: GUI with initial all possible service compositions .. 135

Figure 20: ECNE Implementation Results ... 167
Figure 21: Details of decision variables and expressions ... 168

x

LIST OF DEFINITIONS

Definition Page

Definition 1: Definition of a Service .. 53
Definition 2: Definition of a Virtual Service .. 54

Definition 3: Definition of Service-to-Activity Mapping ... 55
Definition 4: Definition of a Virtual Service Instance .. 56

Definition 5: Definition of Service Cost ... 57
Definition 6: Definition of Service Duration .. 58
Definition 7: Definition of Service Rating.. 59
Definition 8: Definition of an Optimal Service Composition ... 60

xi

LIST OF ABBREVIATIONS OR SYMBOLS

Application Programming Interface ... API

Business Process Execution Language .. BPEL

Business Process Execution Language for Web Services BPEL4WS

Business Process Modeling Ontology ... BPMN

Cluster-Optimizing-Diversity ... COD

Composite Alternative Recommendation Development ... CARD

DARPA Agent Markup Language ... DAML

DARPA Agent Markup Language for Services... DAML-S

Decision Guidance Structured Query Language... DG-SQL

Defense Advanced Research Projects Agency .. DARPA

Description Logics ... DL

Extensible Markup Language ... XML

Foundation for Independent Physical Agents ... FIPA

Graphical User Interface .. GUI

Managing End-To-End Operations—Semantic Web ServicesMETEOR-S

Model-Driven Architecture .. MDA

Optimization Programming Language ... OPL

OWL for Services ... OWL-S

Public Key Infrastructure .. PKI

Quality of Service .. QoS

Representational State Transfer ... REST

Resource Description Framework.. RDF

Self-Architecting Software Systems ... SASSY

Semantically Annotated WSDL .. SAWSDL

Service Oriented Architecture..SOA

Short Message Service ...SMS

Simple Object Access Protocol ... SOAP

Structured Query Language ... SQL

Support Vector Machine ... SVM

Universal Modeling Language .. UML

Universal Resource Identifier ... URI

Universal Transverse Mercator ... UTM

Virtual Service Instance .. VSI

Web Application Description Language ..WADL

Web Ontology Language ... OWL

Web Services BPEL ... WSBPEL

xii

Web Service Description Language ... WSDL

Web Service Description Language-Semantic ... WSDL-S

Web Services Modeling Framework ... WSMF

Web Services Modeling Ontology .. WSMO

World Wide Web Consortium .. W3C

XML Metadata Interchange ... XMI

XML Schema Definition..XSD

Zone Improvement Plan ...ZIP

xiii

ABSTRACT

METHOD AND MODELS TO ENABLE OPTIMAL AUTOMATED SERVICE

COMPOSITION

John D. McDowall, Ph.D.

George Mason University, 2015

Dissertation Co-Director: Dr. Larry Kerschberg

Dissertation Co-Director: Dr. Alexander Brodsky

Since the development of the Service Oriented Architecture concept, business analysts

and system developers have looked forward to the day when they could reconfigure

applications to adapt to new business by combining services in new ways to adapt to

changing business needs. Technologies such as the Web Services Description Language

and Business Process Modeling Notation (BPMN) provide key building blocks but are

not sufficient to enable run-time reconfiguration of services. To enable this functionality,

this research develops Druid, a framework for dynamically composing web services into

executable processes based on a business process model defined using the BPMN

modeling language. To support this framework, this research develops a service

description modeling language, extensions to the BPMN language, and a formal model

for composing services based on a business model. This research also develops a Quality

of Service (QoS) model used for calculating the optimal service composition.

1

1. INTRODUCTION

The development of the Service Oriented Architecture (SOA) concept in the late

20
th

 century promised a revolution in system development and integration. Despite a

great deal of research and commercial development, we have not realized the promise of

systems that can dynamically discover and invoke new services. The flexible, loosely-

coupled systems envisioned when the SOA concept was first proposed have not

materialized. In practice, SOA services are widely deployed, but as a means to allow

third-party developers to integrate services into new, value-added applications known as

“mashups.” With the exception of some research programs, systems that allow end users

to compose services from different systems into a new workflow do not exist. We want to

field systems that give end users and business analysts the power to define a process they

need to choreograph, find services that can contribute to that process, compose the

services together into potential executable workflows, and then select the best option

from among the candidate compositions, based on quality of service metrics. And we

want to do this without the long development-integration-test cycles that have

characterized software development for decades.

This research focuses on automating the dynamic composition of services into

optimal executable workflows. The approach taken in this dissertation involves an

extension to the Business Process Modeling Notation (BPMN) modeling language, the

2

creation of a semantic service description language, and the specification of an

optimization model that selects the optimal composition based on a number of quality-of-

service metrics.

1.1. Motivation
The SOA concept has an instinctive appeal, beyond the time and cost savings

inherent in reusing existing services, rather than developing new components from

scratch. Part of this appeal comes from the fact that the SOA concept in information

systems parallels the real world as we experience it: we live in a service-oriented world.

Consider the following scenarios:

 A man’s car is in need of a tune-up, and rather than go to the trouble of

doing the maintenance himself, he drops his car off with a mechanic who

changes the oil and sparkplugs, lubricates the chassis, and checks the

brakes.

 A woman wants to ensure she invests her retirement savings in a way that

will protect her principal while ensuring a reasonable rate of return. Rather

than devoting many hours to monitoring the financial markets and

updating her portfolio periodically, she contracts with a financial advisor

to manage her retirement savings.

 A family is planning a vacation, and rather than find a listing of all the

hotels near their destination and contacting each one individually to

determine the cost and availability of rooms, they contact a travel agent

3

with their destination, dates of travel, and budget and ask the travel agent

to make the arrangements.

Each of these scenarios is very different from the others, but they share a common

theme: instead of doing the work himself, a person contracts with a service provider to

perform the desired work. Each service provider has some interface with some required

inputs and some expected outputs (e.g., the mechanic requires in-person interaction, with

a car in need of maintenance as the input and a properly maintained car as the output).

Economists describe this outsourcing of tasks as specialization, where someone

with advanced training or experience in the matter at hand, can perform the task better

than a layman. In addition to having the advanced skills required to perform the task well,

the service provider frees up the consumer to spend time on other tasks. The development

of the SOA concept extends this idea from the physical world into the digital world of

information systems. Instead of a system developer creating each and every component

of a system, some functions are outsourced to external service providers.

We live in a service-oriented world; SOA merely extends this idea to the way we

design and implement information systems. However, current technologies have several

limitations that prevent us from realizing the full potential of SOA systems; these

limitations are discussed in the following section.

1.2. Research Gap [Related Work and its Limitations]
The initial development of the SOA concept (1) was based on web services

described using the Web Service Description Language (WSDL) (2,3) and exposed a

Simple Object Access Protocol (SOAP) interface to service requestors. The WSDL

4

specification includes only syntactic information—names and data types of individual

elements. However, the problem with purely syntactic descriptions is that they make

matchmaking difficult. Each WSDL document describes the operations of a given service

and each operation’s inputs and outputs. With a syntactic description, parameter names

(operation names, input and output names) must be identical or the matchmaking process

will be unsuccessful. For example, a parameter called “zipCode” will not match a

parameter with the same meaning named “zip_code.” Coordinating operation and

parameter names across a large number of service providers is impractical, but adding

semantic annotations to a service description offers a clean solution to this problem.

To address the limitations of syntax-based service description models, several

research efforts have developed semantic service specifications. The WSDL-Semantic

(WSDL-S) project (4) extended the WSDL specification with semantic markup of the

operations and parameters for services, as did the Semantically Annotated WSDL

(SAWSDL) project (5), which added semantic annotations to both WSDL and XML

schema to address the difficulties of syntactic matchmaking. This was accomplished by

adding a reference to an external ontology, as well as optional generalization or

specialization notations. Each of these enabled semantic matchmaking techniques, greatly

improving the ability to dynamically compose services. The Web Ontology Language

(OWL) for Services (OWL-S) project (6) took a different approach by creating a process

description using OWL and grounding it in WSDL. OWL-S also captured the intended

business process in the OWL-S description by annotating the individual operations to

indicate how they might be composed together. In addition to enabling semantic

5

matchmaking, the OWL-S approach brought to bear the power of the OWL

specification’s support for machine reasoning about the ontology specifications. All of

these projects built upon the WSDL specification, adding semantics to the basic WSDL

structure in order to enable service matchmaking. However, by basing their work on

WSDL, these projects limited themselves to SOAP-based web services.

Meanwhile a new style of web services, based on the Representational State

Transfer (REST) model (7) was gaining popularity; because the WSDL specification did

not initially support REST services, none of the previously-described approaches to web

service semantics could accommodate REST services. However, the original REST

service proposal did not include a specification for machine-readable service

descriptions. While the release of WSDL 2.0 included support for REST services, WSDL

has not been widely adopted as a means of describing REST service interfaces. The Web

Application Description Language (WADL) (8) was developed as a WSDL analog to

specifically support REST services, but like WSDL, it includes no support for semantic

description of the service operations or parameters. The WADL specification has not

been widely adopted, nor does it satisfy our need to semantically describe service

operations or parameters.

In addition to those limitations already mentioned, all of these service description

formats share an additional limitation: they describe only web services. That is, they lack

the ability to describe any service other than those offered via an interface to a digital

information system. In practice, there are many services that are either purely physical

(e.g., a doctor interpreting an X-ray) or may be offered in both physical and digital forms.

6

For example, a hotel may offer a web service for completing a reservation and also

maintain a staff that allows customers to make reservations over the telephone. Both are

equivalent services with different interfaces, but we have no standardized way to describe

the physical service. This is important because most practical business processes require

some level of interaction with the physical world, from something as simple as a final

approval of an expense report, to complex services such as imagery analysis. Any system

or framework to compose services into useable workflows must account for the

possibility of physical services as part of the composition.

However, none of the previous service description efforts developed a service

description that encompassed both SOAP- and REST-based services, and none of them

developed a general service description language suitable for describing both physical

and digital services. Moreover, none of these service description efforts included a means

for describing how those services could be incorporated into a larger process. A service

description language is of limited utility by itself. The necessary complement to service

descriptions is a means of specifying a process the user wishes to implement. Services are

rarely used individually; they are most often part of a larger business process. A business

process is a sequential series of discrete activities intended to accomplish some

meaningful unit of work. To make dynamic service composition useful, a system requires

some means for specifying the overall business process the services support. A

convenient way of doing this would be to leverage process modeling languages such as

Business Process Modeling Language (BPMN) (9,10) to define a process and then match

services to that process. This would allow business analysts to express their needs in a

7

familiar language, minimizing the ambiguity inherent in communicating their needs to

software developers.

One approach to defining a process model for composing web services was

explored by the Web Services Modeling Ontology (WSMO) (11) and the Web Services

Modeling Framework (12). Each approach developed a framework for describing web

services and business processes in a manner that enabled matchmaking between

individual steps in the process and available services as well as matchmaking among

service input and output parameters. While these systems both demonstrated good results,

they were limited to SOAP-based web services and did not use a standardized process

modeling language such as BPMN. Instead, they each implemented their own process

definition notation to express the desired process flow.

Another research effort that sought to define a process specification for service

composition was the METEOR-S (Managing End-to-End Operations – Semantic Web

Services) project (13,14). METEOR-S used Universal Modeling Language (UML)

activity diagrams to define business processes, together with a semantic web service

description, to enable the automated matchmaking of services to process steps and to

each other. The METEOR-S approach worked well for UML diagrams, but did have

some limitations. Like other approaches, it was limited to SOAP-based web services. In

addition, UML is a visual modeling language intended for human consumption and

interpretation; it has no representation designed to facilitate automated processing. While

the layout of a UML model can be described using XML Metadata Interchange (XMI)

specification (15), XMI is suited to exchanging UML models among modeling tools, not

8

for reasoning about the contents of the model. Also, UML diagrams are inherently more

ambiguous than specialized process modeling languages such as BPMN because they

lack some of the fine-grained flow-control notations that are part of BPMN.

Taking a different approach to the problem of mapping services into a process

model, the SAWSDL-MX (16,17) and the OWLS-MX (18–21) families of matchmakers

developed semantic matchmakers that used the SAWSDL and OWL-S specifications,

respectively, to perform matchmaking among service interfaces. Neither project

specifically tried to match services to steps in a process flow, but instead tried to

determine if two service interface definitions were semantically equivalent. This is, in

effect, matching a service description to a process step that describes the type of service

needed (i.e., the process defines a series of service templates required to complete the

process). While they both demonstrated success, each of these approaches was limited to

using SOA-based web services within their own service description language, and did not

explore specific process modeling languages.

What all these process-definition and service-composition methods lack is a

means for assessing alternative compositions based on Quality of Service (QoS) metrics.

Given some number of potential service compositions, currently there is no means of

determining which service composition is the best available. This assessment should be

based on an analysis of QoS metrics of each of the services and the QoS of the

composition as a whole. In addition, little work has been done on documenting the QoS

attributes of services beyond the network-focused criteria of response times and data

throughput as in M. Alasti et al(22,23). These criteria are appropriate to web services

9

delivering streaming video, but are not well suited to QoS aspects such as cost

minimization or user satisfaction.

One approach to assessing QoS aspects of compositions is the Self-Architecting

Software Systems (SASSY) project (24). However, SASSY has focused on assembling a

software architecture based on the QoS attributes of architecture components and the

desired QoS expressed in an architecture model, and not on assessing the QoS of

individual services. While SASSY demonstrated a successful architecture composition on

this basis, it was designed for selecting software components based on the QoS of those

pre-defined components; SASSY was not designed to support the run-time discovery and

composition of general purpose services.

However, to assess the QoS of alternative service compositions we need to

provide users with a flexible means of defining and evaluating service QoS. Relatively

little work has been done on the optimization of service compositions. The work

described by Mabrouk et al (25–27) built a semantic QoS model that could be used to

assess service compositions based on the evaluation of QoS attributes, but their work

focused on documenting the QoS for services and did not extend to optimizing the

composition of a set of services assembled to complete a workflow. In fact, as described

by Yu and Lin in (28), such an optimization is an NP-hard problem that has received little

attention.

1.3. Thesis and Contributions
The focus of this dissertation is to address the limitations described above and

explain the development of tools and models that overcome those limitations.

10

Thesis
It is possible to develop a system that accepts as input a semantically-annotated

process model, parses that model and finds candidate services that perform each of the

activities described in the model, and calculates an optimal composition of the available

services based on QoS attributes of the services and the overall composed process.

Furthermore, it is possible to develop a service description language that enables the

activity-to-service and service-to-service matchmaking necessary to enable the service

composition. Finally, it is possible to optimize the selection of services based on QoS

factors defined for each service and for the service composition as a whole.

Contributions
Composing services into a complete workflow traditionally has been a manual

programming process that cannot be automated using current techniques. To enable this

automation, we need to match services to each activity in a process model; we need to be

able to match services to each other to create compositions, and, more importantly, we

need to select an optimal composition. To achieve these goals, this research develops a

system that allows, as an example, business users to automate the execution of a business

process such as booking travel reservations. To enable activity-to-service matchmaking,

this research defines 1) an extension to the BPMN language for the semantic annotation

of individual process activities and 2) a language for specifying services that enables both

automated activity-to-service matchmaking and service-to-service matchmaking. To

select the optimal service composition, this research develops several elements. The first

is a model that describes the QoS metrics of services and processes. The QoS model is

combined with a formal definition of processes and services to develop an optimization

11

model. This optimization model enables the selection of an optimal service composition

from among multiple candidate compositions. To demonstrate the feasibility of this work,

this research also develops a proof of concept prototype that implements all of these

developments.

More specifically, the key contributions of this research are summarized as

follows:

 Service Composition Methodology that provides a step-by-step

explanation of the process of composing services into an optimal

workflow. This process starts with a BPMN model and continues through

the selection of an optimal service composition.

 Semantic Extension to BPMN to support the semantic annotation of

process activities. This model defines the business process that the service

composition will perform.

 Service Description Language supporting the semantic description of

digital and physical services. This language enables the automated

matching of services to process activities.

 QoS Model that describes QoS characteristics of digital and physical

services. This model defines the metrics that will be used in the

optimization calculation.

 Optimal Service Composition Model that formally defines an optimal

service composition. This is a formal mathematical definition of the

service composition process and the optimization calculation.

12

 QoS Optimization Implementation in Optimization Programming

Language (OPL) using the IBM CPLEX suite. This is an implementation

of the optimization model using mathematical programming..

 Proof of Concept Prototype demonstrating the feasibility of this

approach. This is a collection of tools and components that implement the

processes and specifications defined in this research.

The design goals of a system that supports the type of dynamic service

composition described above include allowing a service provider to describe services

with the requisite semantic detail; this requires a service description language that

supports the semantic annotation of the operations and the inputs and outputs of both

digital and physical services. The system should also allow a business user to specify the

desired process using a standard process modeling language; this requires the extension

of a process modeling language to support the semantic annotation needed for activity-to-

service matchmaking. Finally, the system should be able to analyze the QoS

characteristics of the services and develop a recommendation for the optimal service

composition based on those QoS metrics; this requires a formal model of services,

processes, and QoS metrics that can be subjected to optimization analysis.

The key contributions of this research are described in the following paragraphs:

Semantic Extensions to BPMN
Activity-to-service matchmaking requires that activities in a process model

include a semantic specification of the task performed by each activity. In order to enable

the semantic specification of individual activities, this research extends the BPMN

13

language to support the annotation of individual process steps with semantic descriptions

that reference external ontologies describing the relevant business domain. These

references enable an analyst to specify the type of task performed at each step of the

process, and optionally the semantic types of the inputs and outputs to that step in the

process. For example, an activity named “Get Weather” may be assigned a task type

“getCurrentWeather” with a single input parameter with a semantic type “postal_code”

and two output parameters with semantic types “max_temp” and “current_temp.”

Service Description Language (Ogma1)
Activity-to-service matchmaking also requires that service descriptions include

semantic detail about the operations, inputs, and outputs of that service. This research

develops the service description language Ogma to represent the information required to

effect automated matching of process steps to services. The Ogma language enables the

semantic description of each type of task performed by the service as well as the service

inputs and outputs. The language also include information such as how to invoke the

service (i.e., binding information) and other information necessary to match services to

process activities and to compose services with each other. The Ogma description is

specified using OWL to enable automated reasoning about individual services, such as

class/subclass (i.e., “is a”) relationships and equivalence assessment based on common

parameters and effects.

QoS Model (Sucellos2)

1
 Ogma: a Celtic god of language

2
 Sucellos: a Celtic god of time

14

The selection of an optimal service composition based on QoS metrics requires a

QoS model capable of capturing QoS metrics for both web and physical services. To

enable the annotation of service descriptions with QoS parameters, this research develops

Sucellos, a QoS model that captures metrics such as cost, user rating, and the like that are

appropriate . The Sucellos model is specified using OWL to more easily integrate with

the Ogma service description model.

Optimal QoS Service Composition Model (Ecne3)
Selecting the optimal service composition from among multiple candidates

requires a means of specifying a business process, services, and the QoS parameters of

each composition so the alternative compositions may be analyzed. To ennable this

specification, this research develops Ecne, a formal description of processes, services,

and QoS parameters that can be subjected to an analysis that calculates the optimal

service composition based on the Ecne model.

QoS Optimization Implementation
To calcuatle the optimal service composition based on the Ecne model requires a

means of evaluating the alternatives and arriving at a recommendation. To execute the

analysis of the Ecne formalism, this research develops an implementation model

expressed in the Optimization Programming Language (OPL) and that is executed using

IBM’s CPLEX environment.

Proof of Concept

3
 Ecne: a Celtic god of wisdom

15

To demonstrate the feasibility of this approach, a proof of concept prototype

system that accepts as input a semantically-annotated process model defined using

BPMN and produces as output a QoS-optimized service composition that implements the

process model. First, the BPMN model is decomposed into individual activities and each

activity is matched to one or more semantic service descriptions. Next, each of the

matched services is compared to the other services to determine which services may be

composed into candidate workflows that can perform the process described by the model.

Then, each of the workflows is assessed by comparing the QoS metrics of each service

and the QoS characteristics of the complete workflow, and finally an optimal workflow

recommendation is developed based on the QoS information about each service and the

overall process. The QoS information about each service and the process conforms to a

formal QoS model.

1.4. Dissertation Organization
The remainder of this dissertation is organized as follows. In Chapter 2, I review

related work in the fields of service description models, business process modeling

languages, and (service) optimization. In Chapter 3, I describe the overall service

composition landscape that this research encompasses. In Chapter 4, I describe the Ecne

QoS model and the formal definition of the optimization problem. I explain design and

implementation of the Ogma service description language. In Chapter 5, I discuss the

extension of the BPMN modeling language to express the task type of each activity in a

process model and the semantic types of the inputs and outputs of each activity. In

Chapter 6, I describe the Ogma service description language used to capture the service

16

description information needed to enable activity-to-service and service-to-service

matchmaking. In Chapter 7, I describe the proof of concept prototype I developed to

demonstrate the feasibility of the key contributions of this research. Finally, Chapter 8

summarizes my conclusions and outlines areas for future research.

17

2. RELATED WORK

Since the development of the SOA concept, a variety of researchers have looked

into the problem of service composition. While few researchers have looked at the

complete service composition lifecycle from process definition to optimal composition

selection, many research projects have focused on different aspects of the problem such

as service descriptions or process models. These efforts are described in the sections that

follow.

2.1. Service Descriptions
Neither the WSDL nor WADL specifications include the semantic annotations

necessary for service matchmaking, nor did either specification include elements for

describing QoS aspects. To address these limitations, a variety of research projects have

developed extensions or alternatives to the standard service descriptions that capture the

desired information.

2.1.1. WSDL-S
The Web Service Description Language-Semantic (WSDL-S) model (4) builds on

the WSDL standard, using the extensibility mechanism included in the WSDL

specification to add semantic annotations to service descriptions.

The WSDL-S model was developed with five design goals. The first was to build

on existing web services standards. Because there is no widely accepted standard for

18

describing REST services, the WSDL-S model focused on describing SOAP-based

services.

The second and third design goals of the WSDL-S model are related. The second

goal was that the means of specifying the semantic attributes of a service should be

independent of the semantic representation language. The third goal was that the means

of semantically annotating the service description should support multiple representations

of the same item written in different semantic representation languages.

The fourth design goal was to support the semantic description of data types

represented by the XML Schema Definition (XSD) Language (this is in accordance with

the first goal of building on existing standards). This goal leverages the practice most

web service interfaces employ of describing data inputs and outputs using XML Schema.

The final design goal was related to the fourth goal; it aimed to provide support for rich

mappings of XSD data types into ontological representations without regard to the

language used to define the ontology.

The WSDL-S model extends the basic WSDL model with several attributes that

provide Universal Resource Identifiers (URIs) that link WSDL elements to semantic

descriptions of those elements. These semantic annotations describe the inputs, outputs,

and operations offered by a service, as well as describing the preconditions necessary to

invoke any of the operations. There are also semantic annotations that describe the

service category.

19

2.1.2. OWL-S
The Ontology Web Language for Services (OWL-S) project (6) began as the

Defense Advanced Research Projects Agency (DARPA) Agent Markup Language for

Services (DAML-S) (29–31). DAML-S was developed to describe the services offered by

intelligent agents to enable the discovery and composition of those services through the

autonomous interaction of those agents. The DARPA Agent Markup Language (DAML)

ultimately evolved into OWL, and so DAML-S evolved into OWL-S, retaining the same

goals as DAML-S.

The OWL-S project incorporated the semantics into the interface description by

creating a new service description format based on OWL. This format includes all the

information available in a WSDL document, but created a new description model

designed to take advantage of OWL’s support for reasoning.

The OWL-S service description model is composed of three main parts: a service

profile, a process model, and a grounding. The service profile includes the syntactic and

semantic descriptions of the service interface, its operations, and the data each operation

consumes and produces. The process model describes how the different operations

offered by the service can be invoked in combinations to perform more complex tasks

than any of the individual operations can perform. The OWL-S grounding contains the

information needed to bind to and invoke the service’s individual operations.

While the OWL-S project was focused on providing descriptions for SOAP-based

services, the model could theoretically be extended to describe REST services or web

services based on any other technology.

20

2.1.3. SAWSDL
In 2006, the World Wide Web Consortium (W3C) convened a working group to

address the semantic shortcomings of the WSDL specification that had been identified by

the developers of OWL-S, the Web Services Modeling Ontology (WSMO, described

below), and similar projects. This group’s final product was the Semantic Annotations for

WSDL (SAWSDL) specification (5,32).

While the SAWSDL specification uses different terminology than the WSDL-S

specification, both projects employ the same technique for adding semantic information

to a basic WSDL document. Each includes references to an externally defined ontology

independent of the ontological language employed. Also, each includes mappings

between the ontological concepts and XSD types used to define the data input and output

parameters.

2.1.4. WADL
In 2006, the Web Application Description Language (WADL) (8) was proposed

as a means for formalizing descriptions of REST-based services in a machine-readable

format. Since that time, it has not been widely used in practice. Like the WSDL

specification, the WADL specification describes the syntax of a service interface but does

not capture the semantics necessary to understand the meaning of elements in the

interface. The WADL specification does not include the information necessary to enable

service matchmaking, nor does it include elements for describing QoS aspects of

services.

21

2.1.5. WSMO
The Web Services Modeling Ontology (WSMO) (11) is a semantic service

description model based on the Web Services Modeling Framework (WSMF) (12). Like

OWL-S, WSMO was developed as a mechanism to enable intelligent agents to work

together to accomplish a set task. WSMO was developed in part to address perceived

shortcomings of the OWL-S approach, and like the OWL-S model WSMO created an

alternative description format independent of the WSDL standard. The WSMO model is

composed of four main elements: ontologies, web services, goals, and mediators.

WSMO ontologies provide domain-specific descriptions of the terms used to

describe the other elements of a WSML model. These ontologies provide both a formal

description of the service’s semantics and a link between the human-readable and

machine-readable terminologies.

WSMO web services are conceptually similar to web services described by other

service description models, in that they describe pieces of functionality that can be

combined in different ways to perform more complex tasks. Still, WSMO service

descriptions are different from those found in a WSDL. Within WSMO, a service is

described in terms of properties, functionality, and behavior; behavioral descriptions are

not part of the WSDL specification and are one of the unique contributions of WSMO.

WSMO goals are defined independently of services. This makes it possible for a

user to specify a goal independently of any conception of the services that are available.

This independence of descriptions ensures the intelligent agents can compose services to

achieve the goal using the most efficient combination of available services.

22

The WSMO project also defined mediators; mediators are mechanisms for

translating between heterogeneous descriptions of different services. Mediators may be

applied to ontologies, services, and goals. The purpose of a mediator is to enable

interoperability between different WSMO instances that may be based on different

assumptions and use different terminologies.

Like OWL-S, the WSMO model was designed to represent SOAP-based web

services. It should be possible to represent REST-based services or other web service

paradigms within the WSMO model, but it was not designed to represent other service

types and its suitability for that purpose has not been demonstrated. One key difference

between OWL-S and WSMO is that, while OWL-S is based on OWL-DL (where DL

denotes the OWL dialect supporting the computational completeness and decidability of

Description Logics), WSMO is based on F-Logic, an alternative language for

representing ontologies with Description Logics.

2.2. Process Modeling Languages
Process modeling languages vary widely, from the very simple information

flowchart to highly sophisticated modeling languages such as BPMN. To be suitable for

defining a business process with sufficient detail to enable automated service

matchmaking, composition, and optimization, a business process modeling language

must be precise enough specify the types of activities in the business process and the

relationships among those activities. Several research efforts that have investigated

different options for modeling business processes are discussed below.

23

2.2.1. BPMN
BPMN is a graphical language designed for use by business analysts in specifying

complex business processes. In (33), the conversion of BPMN models to Business

Process Execution Language (BPEL) is examined and several conceptual mismatches are

identified. These conceptual mismatches make the automated transformation from

graphical BPMN to executable BPEL problematic. It should be noted that this work was

based on the BPMN 1.2 specification (9). BPMN 1.2 was a purely graphical language,

with no XML representation defined in the specification and no means for executing a

BPMN 1.2 model.

The 2011 release of BPMN 2.0 incorporated a specification for representing

BPMN models in XML. The inclusion of a formal XML syntax makes it easier to

transform a BPMN model into other representations, and also makes BPMN natively

executable by a suitable execution engine. Vendors such as Oracle and BonitaSoft offer

engines that will execute BPMN 2.0 models, making it possible for a business analyst to

use BPMN to specify service interactions graphically and execute the resulting service

composition. However, model-to-service mappings are not part of the BPMN

specification, so each of these vendors implements its own mapping scheme and service

mappings are not portable across execution engines from different vendors.

2.2.2. BPEL
The most common composition language in use today is the Business Process

Execution Language (BPEL) (34), also known as BPEL for Web Services (BPEL4WS)

and Web Services BPEL (WSBPEL). BPEL is an XML-based language that remains

under active development and is supported by a number of commercial products.

24

The BPEL specification defines a complex, powerful language for describing the

interactions among web services. BPEL includes control structures that enable

conditional processing and sophisticated error-handling routines, and its wide adoption

makes it portable across a variety of platforms. Using BPEL, a developer can define

which services perform particular tasks and how messages are exchanged among those

services with as much control as if the workflow were hard-coded into the application.

The work by Kloppmann et al described in (35) and by Clement et al in (36)

describes an extension to the BPEL specification called BPEL for People, which extends

the BPEL language to include activities performed by people. BPEL for People was

developed in conjunction with the Web Service-Human Task (WS-HumanTask)

specification (37) enabling the composition of sophisticated workflows that include both

web services and human services that can be described by WSDL.

2.2.3. WSMO
A WSMO service description includes a process model for the service it describes

(which may include a complete business process), but like the other semantic service

description specifications discussed above, WSMO does not include any specific

mechanism for encoding an end-to-end process that incorporates different services, but its

ability to represent a complete business process within a service description merits

mention here.

2.2.4. METEOR-S
One project that was specifically designed to enable the type of workflow

composition described here is the Managing End-to-End Operations – Semantic Web

25

Services (METEOR-S) project (13,14), which was specifically designed to enable the

automated dynamic matching of services to complete a defined business process.

METEOR-S uses a UML Activity Diagram to model interactions among services,

although the types of semantic annotation of models tasks discussed here is not part of

that research.

The work discussed in (38), part of the METEOR-S project, describes a hybrid

approach where the developer begins with a defined process and a series of services that

can be composed to complete the workflow. The process of adding services to the

existing workflow is streamlined by applying the matchmaking and reasoning capabilities

provided by the METEOR-S framework. This eases the burden on the developer,

eliminating the need to manually comb through the available services to find those that

may fit the newly identified need. One item of note within the workflow composition

process as described is that specific human actions are called out as an essential part of

the workflow execution, though there is no discussion of a formal description format for

these human-based processes. While it is specifically mentioned, this important human

interaction is glossed over because it is not a significant part of the METEOR-S project’s

focus. As will be discussed later, the participation of human actors within a workflow

composition is a critical element that has not received sufficient attention.

2.2.5. OWLS-MX / SAWSDL-MX Families
OWLS-MX and SAWSDL-MX are two related research projects that have

developed a series of hybrid service matchmakers based on the OWL-S and SAWSDL

service specifications respectively. The OWLS-MX project (18) employs a hybrid

26

matchmaker that combines the semantic markup of OWL-S with a method for deducing

semantic information from the syntactic similarity of terms in a service description. The

OWLS-MX matchmaker takes five different measurements of semantic and syntactic

similarity of service interfaces and generates a composite score to determine whether two

service interfaces are matches for each other. During evaluation of the OWLS-MX

matchmaker, the developers discovered that it had a tendency toward false positives,

where services were incorrectly matched due to the syntactic similarity of terms that were

not actually semantically compatible. The problem of false positives in OWS-MX was

addressed in OWLS-MX2 (19) where a refinement of the techniques pioneered in the

original OWLS-MX matchmaker resulted in a more reliable service matchmaking

capability.

One limitation of the OWLS-MX matchmaker is that it was designed to perform

matchmaking among services described using the OWL-S model; semantically annotated

web services that employed a different model could not be used with the OWLS-MX

family of matchmakers. This limitation was partially addressed by the development of

SAWSDL-MX (16) and SAWSDL-MX2 (17), which applied the principles explored in

the OWLS-MX family of matchmakers to the SAWSDL description specification.

Results were comparable to those with the OWLS-MX series of matchmakers.

The concepts explored in OWLS-MX and OWLS-MX2 were enhanced and

expanded with OWLS-MX3 (20,21), an adaptive variant of the OWLS-MX family of

matchmakers. With OWLS-MX3, the developers added a machine learning element to

the hybrid semantic matchmaker previously employed. In addition to employing semantic

27

and syntactic matching, OWLS-MX3 employs a binary classifier based on a Support

Vector Machine (SVM). The SVM-based classifier is trained on an independent set of

OWL-S service descriptions before being asked to find service matches. The aggregated

results of the different OWLS-MX classifiers are averaged and the results of that are

applied to the problem of classifying new services. While the developers judged that

OWLS-MX3 did not perform significantly better than OWLS-MX2 in terms of either

precision or recall, they felt that the ability to train the OWS-MX3 on a set of service

descriptions entirely independent of the services it would later be called on to classify

gave OWLS-MX3 a significant advantage over its forebears.

2.3. Optimization
While optimization has been a robust area of research for many years, very little

work has been done specifically on the optimization of service compositions.

2.3.1. One-Dimensional
A simple, one-dimensional evaluation of alternatives is the easiest approach in

that it makes it easy to compute the relative rankings of each composition and evaluate

them against each other. If we consider a set of services that may be composed in

different combinations, then optimizing on one dimension of QoS is a simple matter of

calculating the QoS of each possible service combination and selecting the one that best

meets the user’s preferences.

The one-dimensional analysis problem may be complicated somewhat if the

service providers are willing to negotiate the terms of their service, perhaps to offer a

discounted cost for large-volume users. In this case, the service evaluation process is an

28

iterative one such as that described by McDowall and Kerschberg in (39). While such

iteration makes the actual selection process more involved, calculating the optimal

service composition remains a straightforward problem.

Cost

As an example, consider cost as the criteria for a one-dimensional analysis. The

cost to invoke each service can be used to calculate the total cost of each service

composition, resulting in a total cost for each candidate composition. If the user’s only

concern is minimizing cost, then the optimal selection is the composition with the lowest

total cost.

2.3.2. Multi-Dimensional
In practice, most users would weigh several criteria when deciding which service

composition best meets their needs. For example, selecting the composition with the best

balance of cost and responsiveness may be important to the user. Alternatively, cost may

not be a major concern but a combination of high security and fast response may be the

primary consideration. Regardless of the specific criteria being evaluated, the evaluation

is a multi-dimensional analysis problem and so is a significantly more complex problem

than one-dimensional analysis.

Multi-dimensional analysis has been the subject of a great deal of research over

the years, and the advent of digital computer systems makes it relatively easy to perform

the sophisticated calculations necessary for multi-dimensional problems such as the

service composition problem; a thorough overview can be found in Alodhaibi (40). The

relative ease in applying multi-dimensional analysis to a broad array of problems has led

29

to a growth in the development of decision guidance systems that are designed to help

users weigh the many factors that go into a complex decision, and quickly discover the

best options available. The degree to which such a system calculates the optimal decision

as opposed to approximating the optimal selection is generally a function of how long the

calculations are allowed to continue. For complex problems, the computing time required

to find the single best solution may outweigh the value to the user of narrowing the set of

potential selections to some limited number of satisfactory solutions.

Narrowing the range of possible choices based on a set of evaluation criteria is

common selection problem known as “top-k” selection, where k is the number of

alternatives returned to the user. By choosing from among the k best solutions to the

problem, the user is assured that any selection is among the best available solutions, but

the user avoids the cost of an exhaustive evaluation. Because top-k selection is a

statistical analysis problem, the analysis includes an associated probability that expresses

how likely it is that all of the k selections are indeed within the overall top k. In general,

as the required confidence increases the computational cost of the analysis increases.

Minimizing this cost, while increasing the probability of correct selection, is the focus of

ongoing research in the field of decision guidance systems.

One example of a multi-dimensional decision guidance application is the

Composite Alternative Recommendation Development (CARD) framework described in

Brodsky et al (41). The CARD framework was designed to recommend packages of

services for a user, such as a combination of flight reservation, hotel, and rental car.

While this is not explicitly recommending a combination of services to complete some

30

defined workflow, the principles applied are the same: there are several potential

combinations of services that can be bundled to accomplish a task, and the user would

like a recommendation as to which combination best meets the user’s priorities. CARD

was developed to work with both atomic services and composite services, which is a use

comparable to a business process description.

The CARD system uses a knowledgebase to store information about service

offerings and user preferences, and employs an extension of the Structured Query

Language (SQL) called Decision Guidance SQL (DG-SQL) described in Brodsky and

Wang (42). The CARD system uses DG-SQL to query the knowledgebase for service

recommendations based on user preferences before the service selection process begins.

User preferences are captured in a profile, and the system employs machine-learning

techniques to refine its service selection process as users accept or reject different

recommendations presented by the CARD system. One limitation of the CARD system is

that service information is stored in the knowledgebase and must be periodically

refreshed, limiting the currency of the data and limiting the evaluation criteria to those

that are supported by the schema of the knowledgebase and the preferences the user

expressed before the analysis process began.

Building on the CARD work, the Cluster-Optimizing-Diversity (COD)

framework by Alodhaibi et al (43) extends the CARD recommender by using different

utility functions to analyze service packages based on differing immediate needs of a

user at any given moment. For example, a user may be examining two travel packages for

different purposes: one for a business trip and one for a personal vacation. The criteria

31

used to evaluate each package may differ because of the different priorities for each

purpose. When evaluating a business travel package, assuring the traveler arrives in time

for a critical meeting may be more important than the price of the trip. Conversely, when

evaluating a vacation package minimal price may be more important than arriving at the

destination before a particular time.

Another innovation of the COD framework over its predecessor is that rather than

soliciting user preferences before the analysis begins, COD learns the user’s preferences

based on feedback the user provides on each recommendation the COD system offers.

COD also performs a more complex analysis process, evaluating any number of aspects

of a service using an n-dimensional utility space, where different axes of value are used

to evaluate which combination of services best meets the user’s needs based in part on

feedback the user has provided to previous recommendations. The COD framework

recommends clusters of services based on utility functions that are solicited from the user

during the analysis, reducing or eliminating the need to solicit user preferences before

analysis begins, and adapting more quickly to changing user priorities. Like the CARD

framework, the COD framework is limited by the service evaluation criteria that are

stored within the knowledgebase before the analysis begins, so the analysis criteria are

necessarily limited to those factors. Like the CARD framework, COD was not designed

with process-based workflow compositions in mind but employs the same analysis

principles and can be readily applied to the workflow analysis problem.

A contrasting approach is described by McDowall and Kerschberg (44) and (45),

where social networks and service registries are used as the basis for developing a

32

recommendation. Instead of evaluating service offerings based on the representation of

the service provider, social networks are used as the basis for forming a recommendation

by querying the networks for other users’ evaluations of the services and/or the service

providers. This approach provides a near-real-time assessment of the public’s satisfaction

with a given service provider. This information can be analyzed on its own or

incorporated with factors such as cost to develop a broader multi-dimensional profile of a

given service that can be used as the basis for such an analysis.

As discussed in (44), depending on the source of the assessment information,

negative information about service providers may be available to factor into the analysis.

Negative information about their performance is not normally offered up by service

providers, and so may be difficult to include in systems that base their assessment criteria

on information available from service providers. One notable limitation of this work is

that a lack of unambiguous links from service providers to their profiles in social

networks or business registries often requires manual mapping between the service

descriptions and the location where the assessment information is being queried.

33

3. OVERVIEW OF THE DRUID SERVICE COMPOSITION METHODOLOGY

This research addresses the limitations of previous work by defining Druid, a

semantic service composition methodology that is suitable for composing both physical

and digital services into an executable workflow based on a business process model, and

recommending the optimal service composition based on QoS characteristics of each of

the services, as well as the QoS of the aggregate recommended workflow. The Druid

methodology includes a service description language suitable for describing both the

syntax and semantics of the interfaces to either physical or digital services, including both

SOAP and REST web services. The methodology also includes extensions to the BPMN

modeling language necessary to define the semantics of a business process to enable

automatically matching services to process activities. These BPMN extensions include a

means to specify the task type of each activity comprising the process and, the input and

output parameters from each activity. The methodology also includes a model for

specifying QoS parameters of services and processes. Finally, the methodology includes

a formal service composition optimization framework implemented using a mathematical

programming model. When a business process model, semantic services, and QoS

parameters are encoded in the Druid model, that information is passed to a process that

computes the optimal service composition based on the QoS aspects of each service in

each composition.

34

The subsections that follow provide an overview of the Druid methodology and

describe at a high level how its parts work together. Formal definitions of these concepts,

together with detailed explanations of the research contributions embodied in this

methodology, are provided in subsequent chapters.

3.1. Overview of the Service Composition Methodology
To better understand the discussion that follows, it is helpful to define some

foundational terms that will be used in the explanation. As this service composition

process begins with process models defined using BPMN, that specification’s

terminology is used where appropriate.

A service is a means of completing some unit of work. Within the context of

Service Oriented Architecture, “service” usually refers to an implementation-independent

interface to software, but this research takes a broader view of a service as any means for

completing work, whether the service is provided by software or by some physical means

such as a person (for example, a plumber provides services such as repairing a leak).

Services can be subdivided into two main categories: atomic services and virtual

services, defined below.

Atomic Services: There is no commonly accepted formal definition for an atomic

service; for the purposes of this discussion an atomic service is the lowest level to which

services are decomposed and is the level at which QoS metrics are assigned to services
4
.

Virtual Services: In some cases, multiple atomic services may be composed

together and offered through a single interface. This arrangement is known as a “virtual

4
 As a practical matter, the point at which a “service” can be defined has been moving lower in the 7-layer

ISO stack, to the point where we are now speaking of “Infrastructure as a Service.” This definition is

therefore necessarily arbitrary for the purposes of this discussion.

35

service.” The simplest virtual service is composed of individual atomic services, but it is

also possible to compose a virtual service from combinations of other virtual services and

atomic services. Given this definition, every business process also constitutes a virtual

service and could be offered as such.

A BPMN model is a specification of a business process. A process is composed of

individual steps, each of which is called an “activity.” Each activity includes a semantic

description, called a “task type,” that categorizes the function or purpose of the activity

(e.g., to reserve a hotel room). Task types are defined in an external ontology that is

referenced from the process model. In Chapter 4, it is demonstrated that a business

process model is a specification for a virtual service.

A summary of the Druid service composition methodology presented in this

research is depicted in Figure 1. Each stage of the process is numbered to indicate its

relative order, and each is described below.

36

Figure 1: Druid Methodology Overview

Step 1 is to tag available services with the semantic metadata necessary to enable

a matchmaker to match services to activities in a business process model. Matching

services to activities entails verifying that the service performs the same task type that the

activity represents, such as returning a weather forecast. Matching services to each other

entails determining whether the outputs of any given service comprise all the required

inputs of another given service, as this is necessary in order to compose the two services

as part of a workflow. This is enabled by creating OWL-based service descriptions that

conform to the Ogma service description language described in Chapter 7. These

descriptions include semantic annotations for each service and for each input and output

parameter of every service. In addition to the semantic information, each service

37

description includes other information necessary to use a service, such as binding

information, supported communications protocols, and information about the service

provider. Each service description is supplemented with QoS information encoded using

the Ecne QoS model described in detail in Chapter 5.

In Step 2 of the methodology, the service descriptions are uploaded to a service

registry to enable search and retrieval. This is the means to identify candidate services for

the service composition.

Step 3 depicts a business analyst creating a semantically-annotated BPMN model

that describes the business process to be automated. The semantic annotations appended

to this business process model are encoded using the BPMN extensions described in

Chapter 6, and includes semantic annotations indicating the task type of each activity in

the BPMN process model, as well as annotations describing the input and output

parameters of each activity in the model. It contains sufficient information to create a

virtual service instance as defined formally in Chapter 4. Optionally, the business analyst

may save the process specification as a virtual service for later use.

In Step 4, the annotated process model is submitted to a matchmaking engine that

parses the BPMN model and extracts the semantic information from each of the activities

in the model, as well as the ordering of the individual activities within the process model.

In Step 5, the matchmaking engine compares the semantic information about the

activities in the process model to the service descriptions in the registry to find those

services that can perform each of the activities specified in the process model. Once

candidate services are found in the registry, their input and output parameters are

38

compared to ensure that for each service matched to a given activity, there are one or

more corresponding services mapped to the immediately preceding and succeeding

activities whose inputs and outputs are compatible.

After this initial filtering step, the QoS parameters for the services in each

composition are retrieved, and the candidate service compositions are passed to the

optimization processor in Step 6. The QoS information for each service is encoded in the

Sucellos optimization model described in Chapter 5. The candidate service compositions

are compared and a recommended optimal service composition is selected based on the

QoS parameters.

Step 7 is the final step in the process, in which the selected optimal composition is

passed to an execution engine. In the case of a composition consisting solely of web

services, this execution step can be accomplished by encoding the composition using

BPEL and passing it to a BPEL execution engine. In the case of a composition that

includes both physical and web services, execution would require a more complex

process where the web services are executed by a computer and the appropriate

interactions with physical systems, including humans, are executed using more

specialized computer-to-physical interfaces.

3.2. Service Composition by Example
The Druid methodology described above has several elements that must work

together; the functionality of each of those elements must be understood in relation to the

other elements that it supports. A brief description of each of these elements is provided

39

in the following sections, with formal definitions provided in Chapter 4 and detailed

technical explanations in succeeding chapters.

All services, whether atomic or virtual, are semantically described by task types in

the same manner that activities are described. These task types may be from the same

ontology as the activity task types or from a separate ontology. Service descriptions also

include semantic descriptions of each input and output parameter.

Service composition begins with a set of available services, both atomic and

virtual. A developer or ontologist creates interface descriptions for each service,

providing the semantic markup that is necessary for the matchmaking process. This

corresponds to Step 1 of the Druid methodology (see Figure 1). These service

compositions are uploaded to the service registry depicted in Step 2. For this weather

example, assume that among these services are those shown in Table 1, which lists the

service name, task type, and the semantic types of the input and output parameters.

Table 1: Example Services

Service Task Type Inputs Outputs

convertLocation locConvert latitude, longitude postalCode

transformLocation locConvert latitude, longitude postalCode

getWeather wxForecast postalCode forecast

getForecast wxForecast postalCode forecast

returnWx returnWx postalCode weatherData

changeFormat changeFormat weatherData forecast

In Step 3, a business analyst specifies a process using BPMN. This example will

use the process depicted in Figure 2, which shows a simple weather forecast process. This

40

process is composed of two activities: Convert Location and Get Weather. The order of

these activities is specified by the arrows in the process model, which BPMN refers to as

“sequence flows.”

Figure 2: Sample Process

For each of the activities in this process, the business analyst assigns a task type

that provides a reference to the type of work that activity represents. For this example, the

Convert Location activity has a task type of “locConvert.” Each activity also has a set of

input parameters and a set of output parameters; each of these parameters is identified by

the semantic type of the parameter. The set of inputs for the Convert Location activity is

shown in Table 2 and the set of outputs for the Convert Location activity is shown in

Table 3. The other activities have similar definitions.

Table 2: Convert Location Inputs

Parameter Name Data Type Semantic Type

lat xs:String latitude

lon xs:String longitude

41

Table 3: Convert Location Outputs

Parameter Name Data Type Semantic Type

zipCode xs:String myOntology#postalCode

At this point, the analyst could optionally upload a description of the business

process specification to the registry as a virtual service. Storing the virtual service

definition in the registry makes it available for use as a template (for others who may

wish to implement the same process or something similar). It also makes the virtual

service available for use in other service compositions.

In order to transform the BPMN process model into an optimized and executable

workflow, each BPMN activity must be associated with one or more services. To

accomplish this transformation, the BPMN specification is submitted to a service

matchmaking engine in Step 4 of Figure 1; this engine performs the activity-to-service

mapping. As formally defined in Chapter 4, an activity-to-service mapping is only valid

if each of the services has the same task type as the activity and all of the inputs and

outputs specified for the activity. Candidate services are selected based on an analysis of

the service descriptions published to the service registry. This analysis is based on a

comparison of the task type of each activity compared to the task type assigned to each

service, as well as a comparison of each service’s inputs to the parameters available from

services matched to activities that occur earlier in the process specification.

Some of the selected services may be virtual services. In addition to the inputs,

outputs, and task type that the virtual service performs, a virtual service encapsulates the

set of activities that comprise the virtual service. Given that a virtual service is a process

42

model composed of activities, each of its activities can be mapped to services that are

themselves virtual services. This mapping can be recursive, with any given service

potentially mapped to a combination of atomic and virtual services. Eventually, each of

the virtual services’ activities is eventually decomposed down to individual atomic

services. This decomposition results in a tree structure where each leaf of the tree is an

atomic service and all other nodes in the tree are virtual services. An illustration of such a

decomposition, using the weather example process and services, is depicted in Figure 3.

Figure 3: Weather Process Decomposition

Once all available services have been assessed and mapped to activities in the

process model, and all virtual services are decomposed into their atomic services, we can

determine whether any combination of atomic services can be composed into an

43

executable process that comprises all of the activities in the original business process

model.

In order to compose services into an executable process, it is necessary that the

inputs for each service in the composition be provided by a preceding service in the

composition. This is determined by matching the semantic types of each input of each

service to the semantic types of the outputs of preceding services. These outputs and

inputs need not have the same name, but they must have the same semantic type. For

example, if a location service has an output called “zip code” and a weather service has a

single input called “postal code,” we can see intuitively that these two parameters have

the same meaning. But in order for the matchmaker to match them, the parameters must

have the same semantic type. An individual service input or output parameter, together

with associated semantic and type metadata, is called a “semantic parameter.” For

example, a data element called “zipCode” would include a semantic annotation that

references an ontology and a type annotation indicating it is stored as a string.

Once each activity is associated with one or more services, and the services’

inputs and outputs have been compared semantically, we can compute a set of candidate

service compositions. A candidate service composition consists of a set of atomic

services that can be composed to materialize the process originally specified in the

BPMN process model. Calculating the set of candidate service compositions is a

straightforward matter if the services are represented as a directed graph. First, consider

each service that has been mapped to an activity as a node in the graph. For each case in

which one service’s outputs provide the inputs required by another service, assert an edge

44

from the former service to the latter service. The result is a directed graph of the services,

where each path from the first activity to the final activity constitutes a candidate service

composition.

An example of such a graph is shown in Figure 4 (for simplicity, this example

shows only atomic services).

Figure 4: Candidate Service Compositions

The candidate compositions that can be assembled to complete the process are

discovered by finding all the paths from services matching the first activity to those

matching the final activity. In the example depicted in Figure 4, there are four candidate

service compositions:

 convertLocation-getWeather

45

 convertLocation-returnWx-changeFormat

 transformLocation-getWeather

 transformLocation-returnWx-changeFormat

Finding these paths through the directed graph of services can be accomplished

using common graph analysis algorithms such as Floyd-Warshall (46). This

matchmaking and path analysis corresponds to Step 5 of the DRUID methodology.

Once all of the candidate service compositions have been enumerated, it is

possible to calculate the QoS of each composition. The QoS parameters, of each service

in each of these candidate compositions, are retrieved from the service description, and

the QoS parameters for each candidate composition are passed to the QoS optimization

processor. The QoS optimization processor compares each of the candidate service

compositions and recommends the optimal composition of each service and the overall

workflow, as determined by the user’s preferences (e.g., minimize cost). The QoS

analysis corresponds to Step 6 of the DRUID methodology.

Upon completion of the QoS analysis, the optimization processor returns a

recommended optimal service composition based on the QoS parameters. This

recommended composition may then be passed to an execution engine. This is Step 7 in

the DRUID methodology.

3.3. Service Composition System Architecture
In order for the Druid Methodology to be effective, a number of system

components must work together.

46

A notional architecture of such a system is depicted in Figure 5 as a UML model.

The following subsections describe each of the components shown, and how they work

together.

Figure 5: Service Composition Architecture

3.3.1. User Layer
The User Layer provides user-facing components. In Figure 5, we note that this

layer includes two major components, an interface for creating the service interface

markup and a BPMN modeling tool.

The Service Interface Markup Component allows the user to semantically

describe a service interface using the service description language – OGMA – described

47

in detail in Chapter 7. The user employs this tool to create an OWL-based service

interface description and then submits it to the Service Description Registry.

The BPMN Modeling Tool allows a business analyst to specify a business

process. This process specification includes annotations to the BPMN model that

conform to the BPMN extensions described in Chapter 6. This process specification will

be passed to the Matchmaking Engine in the Knowledge Layer.

3.3.2. Knowledge Processing Layer
The Knowledge Layer in Figure 5 encompasses the functions necessary to

transform a BPMN-based activity workflow specification into a collection of services to

support the execution of an optimal workflow. The Service Description Language

component – specified and developed as part of this research – defines the metamodel

underlying the service description language of Chapter 7.

Another component within the Knowledge Layer is the Service QoS Model. This

model is an OWL-based specification and is described in detail in Chapter 5. This model

is distinct from, but readily integrated with, the Service Description Model in order to

describe the QoS metrics of a service as part of the service interface description.

The BPMN Extensions Model within the Knowledge Layer defines the extensions

to BPMN that were developed as part of this research. These model extensions are

necessary to allow the addition of semantic information necessary to match service

descriptions to process activities and are described in Chapter 6.

The Service Matching Engine and Optimization Engine are the main processing

components of the Knowledge Layer. The Matchmaking Engine parses both the BPMN

48

process specification and the service interface descriptions, and processes them to

complete the activity-to-service mapping which is the first step in developing an optimal

service composition. The Matchmaking Engine then computes the possible service

compositions by comparing the inputs and outputs of adjacent services as described

above. After the possible service compositions have been computed, they are passed to

the Optimization Engine where the optimal service composition is selected by computing

the aggregate QoS metrics of each candidate composition and comparing them to

determine which composition is optimal based on the user’s preference (e.g., to minimize

cost). A detailed explanation of how QoS metrics are aggregated is provided in Chapter

4.

The final component of the Knowledge Layer is the Execution Engine. Once the

Optimization Engine has selected an optimal service composition, this composition can

be mapped to an execution language such as BPEL, and passed to the Execution Engine.

3.3.3. Knowledge Repository Layer
The Data Layer includes the Service Description Registry and the Service

Description and QoS OWL Ontologies. The Service Description Registry is a data store

that holds descriptions of every atomic and virtual service that can be used to develop a

service composition. Because the service descriptions are OWL-based, the Service

Description Registry may be instantiated using any appropriate database, for example in

the MarkLogic XML database or the Sesame RDF database.

The OWL Ontologies are the service description language definition and the QoS

model definition, together with any supplemental ontologies used to define task types or

49

semantic parameters. These ontologies provide the semantic foundations that enable the

processing performed by the Matchmaking Engine and the Optimization Engine.

3.3.4. User View
The users’ view of the Druid service composition methodology is shown in Figure

6, which depicts a developer and business analyst each using different elements of the

methodology.

Figure 6: Service Composition Methodology Usage

Figure 6 depicts a Developer creating service interface descriptions and a

Business Analyst independently developing a BPMN process specification. The service

50

descriptions and process specification are passed to the Matchmaking Engine, then the

Optimization Engine, and ultimately to the Execution Engine.

51

4. FORMAL OPTIMIZATION SERVICE COMPOSITION FRAMEWORK

To compare multiple candidate service compositions and determine the optimal

composition requires two things: a formal model of services and processes that allows a

precise comparison, and a QoS model that describes the parameters to be used in the

comparison and how they will be aggregated. The description that follows mirrors the

description provided by McDowall, Brodsky, and Kerschberg in (47).

4.1. Terminology
Chapter 3 presented an intuitive description of process models and service

composition; this chapter presents the formal definitions that are the foundation for the

methodology. The important intuitive definitions are summarized in Table 4 below. The

formal definitions are provided in this chapter.

Table 4: QoS Term Definitions

Term Definition

Process A specification of some business function a user desires to

complete

Activity A discrete element of a process that may be reused across

multiple processes

Task Type The semantic description of an activity or service that provides a

reference to the type of work performed by an activity or a service

Virtual Service A service offering that provides a single interface to what may be

a more complex service composition or orchestration

Atomic Service The lowest level of service decomposition

52

In order to assess the QoS of a service composition, it is first necessary to

formally define how individual services are composed into a business process that

conforms to some business process specification expressed as a BPMN model. This

specification must be sufficiently detailed to allow each activity in the BPMN model to

be mapped to one or more atomic services.

4.2. Optimal Service Composition
Intuitively, the service composition optimization problem is as follows: given a

desired process, a set of services, constraints, and an objective such as minimizing cost,

select the set of services that comprise the process and best meets the objective within the

constraints.

The formal definition of service composition based on a process model is as

follows (this discussion mirrors the intuitive discussion in Chapter 3).

Let 𝕋 = {𝑡1, … , 𝑡𝑛} denote a set of task types. For example, 𝑡𝑖(1 ≤ 𝑖 ≤ 𝑛) can be

the task type “reserve a hotel room.” If a service performs the same function as an

activity in the process model, then we say they have the same task type.

Let 𝑆𝑃 denote the set of all semantic parameters.

53

Definition 1: Definition of a Service

Definition: Given 𝕋 and 𝑆𝑃, a service 𝓈 is a tuple < 𝑖𝑑, 𝐼, 𝑂, 𝑇 >

Where

𝑖𝑑 is a unique identifier

𝐼 ⊆ 𝑆𝑃 is the set of input semantic parameters

𝑂 ⊆ 𝑆𝑃 is the set of output semantic parameters

𝑇 ∈ 𝕋 is the task type that describes this service

The above definition includes a unique identifier so that similar services offered

by different providers can be distinguished from each other. Such a tuple defines

sufficiently an atomic service.

A virtual service, defined below, is needed to enable the recursive composition of

services.

54

Definition 2: Definition of a Virtual Service

Definition: A virtual service 𝓈 (also called a process) is a tuple

𝓈 =< 𝑖𝑑, 𝐼, 𝑂, 𝑇, 𝐴, 𝐷𝐺, 𝑎𝑇𝑎𝑠𝑘: 𝐴 → 𝕋, 𝑆 >

Where

𝑖𝑑 is a unique identifier

𝐼 ⊆ 𝑆𝑃 a set of input semantic parameters

𝑂 ⊆ 𝑆𝑃 a set of output semantic parameters

𝑇 ∈ 𝕋 is a Process Task Type associated with the virtual service 𝓈

𝐴 = {𝑎1, … , 𝑎𝑛} is a set of activities used in 𝓈

𝐷𝐺 ⊆ 𝐴 × 𝐴 is an activity precedence graph that must be acyclic. (𝑎1, 𝑎2) ∈

𝐷𝐺 (also denoted 𝑎1 ≺ 𝑎2) means that activity 𝑎1 must precede activity

𝑎2

aTask: A → 𝕋 is a mapping that associates every activity 𝑎 ∈ 𝐴 to its task type

𝑡 = aTask(𝑎) in 𝕋

𝑆 = {𝑠1, … , 𝑠𝑛} is a set of services that can be used by activities in A

Note that a virtual service is a service, and any service in 𝑆 may itself be a virtual

service. Therefore, multiple services can be used for each activity in a virtual service. A

particular instantiation is formalized in the following definition.

55

Definition 3: Definition of Service-to-Activity Mapping

Definition: Given a virtual service 𝓈 =< 𝑖𝑑, 𝐼, 𝑂, 𝑇, 𝐴, 𝐷𝐺, 𝑎𝑇𝑎𝑠𝑘: 𝐴 → 𝕋, 𝑆 >, an

activity-to-service mapping A2S: A → 𝑆 is a mapping that associates each activity in 𝐴

with a service in 𝑆, that must satisfy the following properties:

Let sTask(s) denote the task T associated with service s in 𝑆;

let SI(s) denote the input set I associated with s;

let SO(s) denote the output set O associated with s;

The A2S mapping must satisfy:

(∀a ∈ A)aTask(a) = sTask(A2S(a))

(∀a ∈ A)SI(A2S(a)) ⊆ PrecOut(a)

Where

PrecOut(a) denotes the outputs of the services preceding service a

PrecOut(a) = ⋃ SO(A2S(b))

b≺a

(i.e., b is the set of all outputs produced by activities / services that precede a)

The notion of a virtual service instance, defined below, describes a recursive

mapping of activities to available services for a given virtual service 𝑣𝓈.

56

Definition 4: Definition of a Virtual Service Instance

Definition: Let AS be the set of atomic services and VS be the set of virtual services. A

virtual service instance (VSI) over (AS,VS) is a tuple V =< 𝕊, 𝑣𝓈, {A2S𝓈}𝓈∈𝕊∩VS >

Where:

𝕊 ⊆ AS ∪ VS

𝑣𝓈 ∈ 𝕊 ∩ VS

{A2S𝓈}𝓈∈𝕊∩VS is a set of activity-to-service mappings A2S𝓈: 𝓈. A → 𝓈. S where

𝓈. A and 𝓈. S are the set of activities and services of 𝓈, respectively

Such that the following conditions are satisfied:

1. 𝓈. S ∈ 𝕊

2. (∀𝓈. S)SI(𝓈) ⊆ PrecOut(𝓈)

Where

PrecOut(𝓈) denotes the outputs of the services preceding service 𝓈

PrecOut(a) = ⋃ SO(b)

b≺a

(i.e., b is the set of all outputs produced by services that precede a)

3. ¬(∃𝓈1, 𝓈2 ∈ 𝕊)(∃a1 ∈ 𝓈1. A)(∃a2 ∈ 𝓈2. A)(A2S𝓈1
(𝑎1) = A2S𝓈2

(𝑎2))

(i.e., no two activities with services of 𝕊 ∩ VS can be mapped via A2S

to the same virtual service

57

We would like to find the “optimal” virtual service instance from among those

available. To do this, we establish several quality of service (QoS) factors that can be

used to express the utility to be optimized. Formal definitions for each of these metrics

are provided below. These QoS metrics are described further in the Sucellos QoS model

discussed in Section 5.

Given an atomic service 𝓈, the QoS metrics being considered are cost, duration,

rating, and unity; these are denoted C(𝓈), D(𝓈), R(𝓈), and unity(𝓈) respectively. We

consider the QoS metrics for atomic services are given, and we define QoS metrics for a

virtual service. The definition of the cost of a virtual service instance is provided below.

Definition 5: Definition of Service Cost

Definition: Given a virtual service instance 𝑉 =< 𝕊, 𝑣𝓈, {A2S𝓈}𝓈∈𝕊∩VS > over (AS,VS),

the cost of 𝓈, ∀𝓈 ∈ 𝕊, denoted cost(𝓈), is defined recursively as follows:

(∀𝓈 ∈ 𝕊 ∩ AS) cost(𝓈) = C(𝓈) where C(𝓈) is the cost of atomic service 𝓈

(∀𝓈 ∈ 𝕊 ∩ VS) cost(𝓈) = ∑ cost(A2S(a))a∈𝓈.A

The cost of 𝑉, denoted cost(𝑉), is defined as cost(𝑉) ≝ cost(𝑣𝓈)

The duration of a virtual service instance, which intuitively is the expected time

for the entire composition to run from initiation until completion of all services within the

virtual service instance, is defined next.

58

Definition 6: Definition of Service Duration

Definition: Given a virtual service instance 𝑉 =< 𝕊, 𝑣𝓈, {A2S𝓈}𝓈∈𝕊∩VS > over (AS,VS)

the duration of 𝓈, ∀𝓈 ∈ 𝕊, denoted duration(𝓈), is defined recursively as follows:

(∀𝓈 ∈ 𝕊 ∩ AS) duration(𝓈) = D(𝓈) where D(𝓈) is the duration of atomic

service 𝓈

(∀𝓈 ∈ 𝕊 ∩ VS) duration(𝓈) = max {𝑒𝑛𝑑𝑡𝑖𝑚𝑒(𝑎)|𝑎 ∈ 𝐴}

where endtime(a) is defined as follows:

If 𝑎 ∈ 𝐴 does not have a preceding activity (𝑖. 𝑒. , 𝑃𝑟𝑒𝑐(𝑎) = ∅):

endtime(a) ≝ duration(𝐴2𝑆𝓈(𝑎))

Otherwise:

endtime(a) ≝ max{endtime(b) + duration(A2S𝓈(a)) |b ∈ Prec(a)}

The duration of 𝑉, denoted as duration(𝑉), is defined as duration(𝑉) ≝

duration(𝑣𝓈)

The rating of a service is a measure of users’ ratings of a service, such as rating a

service on a scale of 1 to 10. We assume that each service’s individual rating has been

normalized to the range {0..1}. The notion of rating for a virtual service instance is

defined below.

59

Definition 7: Definition of Service Rating

Definition: Given a virtual service instance 𝑉 =< 𝕊, 𝑣𝓈, {A2S𝓈}𝓈∈𝕊∩VS > over (AS,VS)

and the rating of each atomic service, the rating of 𝓈 is denoted 𝑟(𝓈) and is defined as

follows:

(∀𝓈 ∈ 𝕊 ∩ AS) r(𝓈) = R(𝓈) where R(𝓈) is the rating of atomic service 𝓈

(∀𝓈 ∈ 𝕊 ∩ VS) R(𝓈) =
∑ 𝑠𝑎𝑡(A2S(a))a∈𝓈.A

|𝓈.𝐴|

Where

|𝓈. 𝐴| is the number of activities

The rating of 𝑉, denoted r(𝑉), is defined as 𝑠𝑟(𝑉) ≝ 𝑟(𝑣𝓈).

The rating of any service or collection of services is therefore a value in the range

of {0..1}.Knowing how to calculate each of the QoS parameters across a service

composition, we can define the optimal service selection.

60

Definition 8: Definition of an Optimal Service Composition

Definition: Given the following input:

 Sets 𝐴𝑆 and 𝑉𝑆 of atomic and virtual services respectively

 A root service 𝑟𝑠 ∈ 𝑉𝑆

 An objective expressed as a function

𝑂: 𝐷(𝑐𝑜𝑠𝑡) × 𝐷(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) × 𝐷(𝑟𝑎𝑡𝑖𝑛𝑔) → ℝ that gives a value 𝑂(𝐶, 𝐷, 𝑅) for

cost 𝐶, duration 𝐷, and rating 𝑅

 Minimum or maximum

 Constraint ℂ is a Boolean expression in terms of 𝐶, 𝐷, and 𝑅 that defines

ℂ: 𝐷(𝑐𝑜𝑠𝑡) × 𝐷(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) × 𝐷(𝑟𝑎𝑡𝑖𝑛𝑔) → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

An optimal virtual service instance 𝑣𝑠𝑖 is defined as

𝑣𝑠𝑖 ≝ 𝑎𝑔𝑔𝑚𝑖𝑛𝑖∈𝑉𝑆𝐼 𝑂(𝐶(𝑖), 𝐷(𝑖), 𝑅(𝑖)) where 𝑉𝑆𝐼 is the set of all virtual service

instances over (𝐴𝑆, 𝑉𝑆) with root service 𝑟𝑠 subject to ℂ(𝐶(𝑖), 𝐷(𝑖), 𝑅(𝑖)) where

minimum is required. The definition is similar for the case where a maximum is required.

Example

To illustrate, consider the simple weather process presented in Section 3. In this

example, it is necessary to complete two actions: convert the current location designation

into a format accepted by the weather service, and retrieve the current weather for that

location. This process is expressed in BPMN as depicted in Figure 7:

61

Figure 7: Sample Weather Process

In this example, the set of task types 𝕋 is {locConvert, getWeatherReport } and

the set of semantic parameters SP is {lat, lon, zipCode, currTemp, and currHumidity}.

The set of input parameters I is {lat, lon, zipCode} and the set of output parameters O is {

zipCode, currTemp, and currHumidity}.

Detailed information about the semantic parameters is summarized in the tables

below. Table 5 defines the inputs I to the activity Convert Location:

Table 5: Convert Location Inputs

Parameter Name Data Type Semantic Type

lat xs:String myOntology#latitude

lon xs:String myOntology#longitude

Table 6 defines the outputs O of the activity Convert Location:

Table 6: Convert Location Outputs

Parameter Name Data Type Semantic Type

zipCode xs:String myOntology#postalCode

62

Table 7 defines the inputs I of the activity Get Weather:

Table 7: Get Weather Inputs

Parameter Name Data Type Semantic Type

zipCode xs:String myOntology#postalCode

Table 8 defines the outputs O of the activity Get Weather:

Table 8: Get Weather Outputs

Parameter Name Data Type Semantic Type

currTemp xs:float myOntology#temperature

currHumidity xs:integer myOntology#humidity

The set of activities A is {Convert Location, Get Weather}. The directed graph

DG is 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≺ 𝐺𝑒𝑡 𝑊𝑒𝑎𝑡ℎ𝑒𝑟.

Each Activity in the model is mapped to a Task Type by the relation aTask. For

example, the “Convert Location” activity has a Task Type of “locConvert”:

𝑎𝑇𝑎𝑠𝑘(𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) = 𝑙𝑜𝑐𝐶𝑜𝑛𝑣𝑒𝑟𝑡

The set of services S is {locationConverter, wxReporting}.

When combined, these elements fulfill the definition of a virtual service 𝓈; this is

summarized in Table 9.

63

Table 9: Virtual Service for Weather Reporting

Parameter Value

id 2323452345

I {lat, lon}

O {currTemp, currHumidity}

T getCurrentWeather

A {Convert Location, Get Weather}

DG 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≺ 𝐺𝑒𝑡 𝑊𝑒𝑎𝑡ℎ𝑒𝑟

aTask Convert Location  locConvert; Get Weather  getWeatherReport

S {locationConverter, wxReporting}

For the set of services S to be composed into a virtual service instance it must

satisfy the conditions specified above (i.e., (∀a ∈ A)aTask(a) = sTask(S2A(a)) and

(∀a ∈ A)SI(S2A(a)) ⊆ PrecOut(a)). To demonstrate this, the services

locationConverter and wxReporting are summarized in Table 10.

Table 10: Service Summary

Service sTask SI SO

locationConverter locConvert lat, lon zipCode

wxReporting getWeatherReport zipCode currTemp,

currHumidity

As a comparison of Table 9 and Table 10 shows, the conditions for S2A mapping

are satisfied and yield the mappings shown in Table 11.

64

Table 11: A2S Mapping for Weather Process

Service Activity

locationConverter Convert Location

wxReporting Get Weather

The result is the VSI shown in Table 12:

Table 12: VSI for Weather Process

Parameter Value

𝕊 locationConverter, wxReporting

𝑣𝓈 Weather Process

{S2A𝓈}𝓈∈𝕊∩VS locationConverter  Convert Location,

wxReporting  Get Weather

The following sections describe the QoS model developed as part of this research

and how that model is applied to determine the optimal service composition. These

intuitive definitions are based on the formal definitions provided in Section 4.2.

4.3. Mathematical Programming Formulation
Using the above definitions, assessing the optimal service composition is a matter

of calculating the aggregate QoS measures of each VSI and applying the definition of an

optimal VSI described. To perform this, the definitions described above are instantiated

using IBM’s Optimization Programming Language (OPL) as described below.

65

The implementation begins by initializing the data required to perform the

optimization calculations. The initialization code is shown in Table 13. The data

initialization closely parallels the formal definitions in Section 4.2.

Table 13: OPL Data Initialization
{string} SP = ...;

{string} Aservices = ... ; /* ids, a subset of services */

{string} Vservices = ...; /* ids, a subset of services */

float activationCost[Aservices] = ...;

{string} Services = Aservices union Vservices;

{string} Tasks = ...;

{string} Inputs[Services] = ...;

{string} Outputs[Services] = ...;

string task[Services] = ...;

{string} Activities[Vservices] = ...;

The data initialization first defines the set of semantic parameters as SP, the set of

atomic services as Aservices, and the set of virtual services Vservices; each of

these is defined as a set of strings. Next, the cost of each atomic service is defined as

activationCost, an array of floats over Aservices.

The set Services is defined as the untion of the sets Aservices and

Vservices. This is followed by defining the task types as the set Tasks. In the

following two lines, the set of arrays Inputs defines the semantic parameters that are

inputs to each service as an array of semantic parameters over the set of services with a

similar definition for the set of arrays Outputs. Next, the array task associates task

types with each service followed by the set of arrays Activities that defines the

activities within each virtual service in Vservices.

66

After the initial data values are defined, the OPL model calculates additional data

values that are necessary to perform the optimization computations. These code that

performs these calculations is shown in Table 14.

Table 14: OPL Data Computation
tuple serviceActivityPair {

 string service;

 string activity;

};

{serviceActivityPair} VserviceActivityPairs =

 {<s,a> | s in Vservices, a in Activities[s] };

{string} PrecActivities[VserviceActivityPairs] = ...;

string aTask[VserviceActivityPairs] = ...;

string rootVservice = ...;

tuple serviceActivityService {

 string service;

 string activity;

 string mappedService;

}

{serviceActivityService} VserviceActivityServiceTuples =

 {<s,a,ms> | s in Vservices, a in Activities[s], ms in Services

 : task[ms] == aTask[<s,a>] && s != ms };

This code section first defines a data structure serviceActivityPair, which

is a set of tuples composed of one service and one activity. These tuples are used to

define VserviceActivityPairs, which associate activities with virtual services in

order to specify the activities within each virtual service.

Next, PrecActivities is defined as set of arrays over

VserviceActivityPairs, this encodes the precedence graph DG defined in Section

4.2 by listing the activity preceding each activity within each virtual service.

67

After this, aTask defines an array of strings over VserviceActivityPairs

that associates a task type with each activity in each virtual service. The string

rootVservice specifies which of the Vservices is designated the root service.

The final two data structures defined are the tuple

serviceActivityService, which captures a service, an associated activity, and a

mappedService. This tuple is used to build the array

serviceActivityServiceTuples, which maps a service to each activity in each

virtual service, fulfilling the function of the A2S mapping defined above.

Having defined all of the data structures required in the optimality computation, it

is appropriate to define the decision variables and decision expressions that will be used

to compute the optimal service composition. These structures are defined in the code

listing in Table 15.

Table 15: OPL Decision Expressions
dvar boolean s2a[VserviceActivityServiceTuples];

dexpr int noInvocations[s in Vservices] =

 sum (sas in VserviceActivityServiceTuples: sas.mappedService

== s) s2a[sas];

dexpr int noInvPerVservice[v in Vservices][s in Aservices] =

 sum (sas in VserviceActivityServiceTuples: sas.mappedService

== s && sas.service == v) s2a[sas];

dexpr float vServiceCost[v in Vservices] = sum (s in Aservices)

activationCost[s] * noInvPerVservice[v][s];

dexpr float rootVserviceCost = vServiceCost[rootVservice] +

 sum(sas in

VserviceActivityServiceTuples)vServiceCost[sas.mappedService];

dexpr float totalCost = vServiceCost[rootVservice];

68

The decision variable s2a is an array of Booleans over the set of

VserviceActivityServiceTuples. The s2a variable is 1 if the tuple contains a

virtual service, and activity, and a service mapped to that activity within that virtual

service; it is 0 otherwise.

The decision expression (dexpr) noInvocations is an array of integers over

the range of virtual services; it counts the number services that have been mapped to

activities in a particular virtual service. The decision expression noInvPerVservice

is a two-dimensional array over virtual services and atomic services; its purpose is to

count the number of times any given atomic service is invoked within a given virtual

service instance.

The decision expression vServiceCost is an array of floats over the set of

virtual services that captures the cost of each virtual service instance for each virtual

service in accordance with the definition detailed in Definition 5. By the same token, the

decision expression rootVserviceCost is a float that captures the cost of the virtual

service that has been designated the root virtual service. Finally, the decision expression

totalCost is a float that captures the cost of the root virtual service.

The code listing in Table 16 shows the application of the decision expressions and

constraints to calculate the optimal service composition.

69

Table 16: OPL Optimization Calculation and Constraints
minimize rootVserviceCost;

constraints {

forall (v in Vservices, a in Activities[v])

 sum (ms in Services : task[ms] == aTask[<v,a>] && v != ms)

s2a[<v,a,ms>] <= 1;

forall (v in Vservices, a in Activities[v]) (noInvocations[v] ==

1) =>

 sum (ms in Services : task[ms] == aTask[<v,a>] && v != ms)

s2a[<v,a,ms>] == 1;

forall (v in Vservices) 0 <= noInvocations[v] <= 1;

forall (a in Activities[rootVservice])

 sum (ms in Services : task[ms] == aTask[<rootVservice,a>] &&

rootVservice != ms) s2a[<rootVservice,a,ms>] == 1;

forall (v in Vservices, a in Activities[v], ms in Services, i in

(Inputs[ms] diff Inputs[v]) : task[ms] == aTask[<v,a>] && v !=

ms) {

 s2a[<v,a,ms>] <=

 sum (precA in PrecActivities[<v,a>], precMs in Services, o in

Outputs[precMs] : aTask[<v,precA>] == task[precMs] && o == i)

 s2a[<v,precA,precMs>];

}

rootVserviceCost >= 0;

}

In this example, the utility function described in Definition 8 is expressed as

minimize rootVserviceCost based on the computation of that cost in the code listed

in Table 15. This optimization is subject to the constraints shown above. The first

constraint requires that every activity in each virtual service have at least one service

mapped to that activity and that the service and activity have the same task type. The next

constraint ensures that for each activity in a given virtual service, a service mapped to

that activity have the same task type as the activity and that the activity is not mapped to

70

the virtual service that contains the activity (i.e., it ensures the mapping of activities to

services is acyclic).

The third constraint ensures that any given virtual service is mapped to an activity

only once. This is followed by a constraint that ensures all activities in the rootVservice

have been mapped to services. The final constraint ensures that for each service mapped

to an activity, the inputs of that service are provided by the outputs of a service mapped

to a preceding activity, as required by the definitions shown in Definition 3 and

Definition 4. Experimental results of this implementation are described in Section 8.2.4.

The OPL implementation and optimization takes place in Step 6 of the process, as

highlighted in Figure 8.

Figure 8: Composition optimization

71

5. SUCELLOS: A QUALITY OF SERVICE MODEL

This research employs a formal QoS model, called SUCELLOS, to optimize

service compositions based on the QoS attributes of the individual services in a VSI. The

QoS model is based on work done at France’s INRIA research institute (26,48,49). The

INRIA model is composed of four layers:

 A QoS Core ontology that describes the foundational concepts used within

the remainder of the QoS model.

 An Infrastructure QoS ontology that describes infrastructure-specific QoS

aspects such as processing power in the service hosting environment.

 A Service QoS ontology that describes QoS aspects of a particular service

implementation.

 A User QoS ontology that describes the environment the user will be using

to invoke services (e.g., using a smartphone vs. a desktop).

The original INRIA work was focused on measuring QoS as delivered to the user

and then offering options to optimize QoS based (in part) on the user’s environment. That

is, the INRIA model assumes that all services are implemented as web services. In

contrast, this research employs a model that operates at a more abstract level, where the

implementation details of the service are much less important than a measure of the

service’s desirability based on factors such as price, responsiveness, community rating,

72

and similar measures. In short, SUCELLOS is a model that describes QoS for an abstract

service. The SUCELLOS model is equally suitable for both IT and physical non-web

services. In short, a QoS model describes not only the QoS for an abstract service that

may be implemented in several ways, but also the QoS of non-Web services, such as

physical services.

5.1. Description of the SUCELLOS QoS Model
The QoS metrics are associated with service descriptions that are defined during

the process of service tagging. This step of the methodology is highlighted in Figure 9.

Figure 9: Applying QoS metrics

This research assumes that all web services are implemented as intelligent agents,

or that an intelligent agent acts as a proxy for every web service. In this scenario, web

73

services are not invoked directly, but the input data is passed to an agent that invokes the

service and returns the results. This places all services, both web services and physical

services, on an equal footing: Any service that is implemented by a person is a service

whose proxy is an intelligent agent. For example, a plumber is not the act of fixing a leak;

the plumber is the agent who performs that act. The important decision from the user’s

point of view is to select the best plumber to do the job.

If the agents representing services are empowered to negotiate terms of service (as

a human agent is likewise capable of doing), then the playing field among different types

of services is leveled still further, and it is possible to implement a more robust

negotiation of the QoS for a specific service invocation than is possible with the INRIA

model. For example, the FIPA Contract Net Interaction Protocol (50) can be used to

negotiate terms of service between a service agent and a broker, or the FIPA English

Auction or FIPA Dutch Auction Interaction Protocol can be used to manage bidding

among multiple service agents.

The INRIA model also did not include any notion of measuring the quality of

service across a service composition or business process. When evaluated across a

composition of multiple services, QoS can be measured in terms of whether the

composition completes the entire business process or only some fraction of it. For

example, let us assume the original process specification includes five distinct activities

but it is only possible to find services that complete the first four activities in the process.

Despite being incomplete, this partial materialization of the original process specification

may still be of some utility to the user. The INRIA model assumes every service

74

composition completes the process and does not consider a partial process as a potential

solution.

Another aspect of assessing the QoS across a service composition is to aggregate

each of the QoS attributes of all of the services in a composition and compare those

across different composition. There may be many different ways of aggregating different

QoS metrics: aggregating cost is a simple summation of the cost of each service in the

composition, but aggregating the time required to complets a composition will be more

complex if there are services executing in parallel (see Definition 6 for an example of

such aggregation).

To meet the needs of evaluating the QoS of a complete service composition, and

also to describe QoS of non-web services, this research builds on the INRIA model to

define two quality groups that measure service and process QoS: Task and Process.

The Task QoS expresses the quality of service of a single service offering, While

analogous to the Service QoS in the INRIA model, this expression is more generic to

better describe non-web services. This measure serves two different but related functions.

It can be applied to an individual service offering to describe the QoS promised by the

vendor, and it can also be applied to a task within a process model to express the desired

QoS attributes that the modeler thinks are important to the successful completion of the

task as a part of the overall business process.

The Process QoS expresses the quality of service of the process as a whole (i.e.,

the combination of services that fulfills the business requirement of the process). This is

75

not simply an aggregation of the QoS measurements of the constituent tasks or services,

but is a separate measure that relates to the process as a whole.

The structure and scope of these quality groups is described in more detail below.

Task Quality Group

The Task Quality Group describes QoS measures that apply to a single task or

activity within a process model (these are the individual blocks within a BPMN model),

or to the services that can fulfill a given task. When applied to a task, the modeler will

specify the QoS desired for a particular task as part of the modeling process. When

applied to a service, the QoS metrics are part of the service description and measure the

expected performance of a given service offering.

The Task Quality Group is composed of several quality factors, each with one or

more properties as described below.

Quality Factor: Cost

The Cost Quality Factor represents the monetary value of completing a task or

invoking a service. The Cost Quality Factor is composed of two properties, Price and

Unit.

Property: Price

Price is the amount a modeler is willing to pay to complete an individual

occurrence of a task (when applied as part of a process model) or the amount a service

provider charges for an individual invocation of a service (when applied to a service

offering).

76

If each service has an agent as its proxy, then the Price property may represent a

starting point for negotiations where the agent is empowered to negotiate a final price

though processes such as bidding or auctions.

Property: Unit

Unit is the denomination of the Price property, for example dollars or yen.

Quality Factor: Speed

The Speed Quality Factor conveys the maximum time to complete a particular

task when applied to the process model, or the time a service is projected to take to

complete.

Property: Time

The Time property is the numerical measure of the maximum execution period of

the task or of the expected completion schedule of the service.

Property: Measure

The Measure property expresses the units of measure that the Time property

captures. For example, Measure may be milliseconds for a web service or days a

plumbing service.

Quality Factor: Semantic Similarity

The Semantic Similarity Quality Factor is a calculated metric that embodies the

degree to which a candidate service (i.e., a service that may fulfill a given task) matches

the semantics of the task. The semantics of a service or a task may be measured along

four main facets: inputs, outputs, preconditions, and effects (IOPE). The semantic

similarity factor is a measure of the similarity of a service to a task as measured along

77

each of those four facets. (This is the same way the OWL-S (6) service description

captures the elements needed for matching services.)

Property: Effect

The Effect property is a measure of the extent to which the activity’s task type as

expressed in the process model match a candidate service’s task type (i.e,. the service’s

effect semantics). This measure is a value of the range {0..1}, where 0 indicates no

documented match between the semantics of the activity task type and the service task

type, and 1 indicates that the activity and the service task types are described using the

same ontology. Intermediate values indicate the semantic distance between the activity

task type and service task type as measured by the number of ontologies that must be

linked to span from one to the other. For example, assume that Activity A is described

using Ontology A and Service 1 is described using Ontology 1. If the task type of

Activity A explicitly defines the task type of Service 1 as equivalent, then that is a

higher-ranking match than the case where the equivalence is established by Ontology A

and Ontology 1 both referencing some third ontology.

To better illustrate this idea, assume an Activity and a Service where the task type

is described by Attribute X in Ontology A and the service description also describes its

task type by referring to Attribute X in Ontology A. In this case, the match is perfect and

the Effect property has a value of 1. If the Service description is changed such that its

task type refers to Attribute Y in Ontology A, and Attribute Y includes an assertion that it

is equivalent to Attribute X, then the match is very close but not quite perfect, and so the

Effect property will be something close to, but less than, 1 (perhaps 0.9). If the Service

78

description is further changed such that its task type refers to Attribute Z in Ontology B,

and Attribute Z is asserted to be equivalent to Attribute X, then the value of the Effect

property will be still lower, perhaps 0.5. (The assertion of equivalence among attributes

within different ontologies may be explicitly defined by the ontologist.) This sort of

indirect equivalence could be several ontologies deep, with each link between ontologies

resulting in a lower value for the Effect property. For example, assume an activity is

described by a task type in a Alice's Weather Ontology. If a service is also described by a

task type in Alice’s Weather Ontology, there is an exact match. But consider the case

where the service is described by a task type in Bob’s Meteorology Ontology. If

equivalence has been asserted between the task types in each ontology we can still match

the service and activity task types, but that match is not as direct as if the service and

activity had been described using the same ontology. This sort of indirect matchin coule

stretch across several ontologies, with each ontology in the chain decreasing the

exactness of the match. For this reason, in practice the number of inter-ontology links

should be limited to a relatively small number.

Property: Input

The Input property is an aggregation of the measures of semantic similarity of the

inputs of an activity and a service (where the inputs are explicitly captured in the process

model). The individual input similarity measures are averaged into a single value within

the range {0..1}.

Property: Output

79

The Output property is an aggregation of the measures of semantic similarity of

the outputs of an activity and a service (where the outputs are explicitly captured in the

process model). The individual output similarity measures are aggregated into a single

value of the range {0..1} that averages the semantic similarity of all output parameters.

Quality Factor: Rating

The Rating Quality Factor measures the reputation of the service offering as

measured by users rating their satisfaction with the service.

Property: Ranking

The Ranking property is a value that expresses users’ rating of the service

offering on whatever scale the individual rating organization employs.

Property: Scale

The Scale property is an integer value that expresses the maximum value a service

can achieve on the rating organization’s system (e.g., if a system allows users to rank

services from 1-5 the Scale would be 5). This value makes it easier to normalize service

rankings across different scales (e.g., ratings of 1-4 vs. 1-5).

Quality Factor: Service Type

The Service Type Quality Factor is a measure of whether a candidate service is of

the same type as that requested by the process modeler. For example, a process modeler

may prefer that all services in a composition be SOAP web services, but some service

offerings that otherwise fulfill the task are REST web services.

Property: Interface Type

80

The Interface Type property is an expression of the way a user invokes the service

or a modeler’s preferred interface type. For example, one hotel reservation service may

offer a REST interface where another only offers a telephone interface (i.e., the user must

call the hotel to reserve a room).

Property: Delivery Type

The Delivery Type property expresses the means by which the service is

delivered, or the way in which its effects become visible. For example, one hotel

reservation service may deliver a confirmation via e-mail where another hotel reservation

service delivers confirmation by letter.

Process Quality Group

The Process Quality Group encompasses those attributes of QoS that apply to the

process as a whole (when applied to a process model), or to a service composition. When

applied to a service composition, the Process QoS measure reflects the characteristics of

the aggregation of services and not a summation of the QoS measures of the constituent

services.

Quality Factor: Unity

The Unity quality factor is a measure of the number of different service providers

involved in a given process or composition. When applied to a process model, the Unity

factor expresses the user’s preference for minimizing the number of service providers,

and when applied to a service composition the Unity factor is a measure of the ratio of

service providers involved in the composition relative to the number of services. As an

example, some compositions may be assembled from a number of services where each

81

service is offered by different provider while other compositions may be assembled from

a suite of services offered by the same provider. An intermediate situation could be where

a group of services are offered by two or more vendors working cooperatively to offer a

package of services (as a sort of consortium).

Property: Provider Quantity

The Provider Quantity property is the number of individual service offerors

involved in a given service composition. For example, a composition composed of three

services all offered by the same company would have a Provider Quantity of 1.

Property: Service Quantity

The Service Quantity property is the number of service invocations required to

complete a given service composition.

5.2. QoS Calculation
The QoS of a Virtual Service Instance (VSI) is the basis of the optimization

assessment defined in Chapter 4. This section provides a brief intuitive explanation of

how each of the QoS metrics described in the formalism is aggregated for a VSI.

Optimization based on the QoS metrics that are not discussed in the formalism in Chapter

4 remains an area for future research.

The QoS of a VSI is calculated by evaluating the QoS of each atomic service and

aggregating those measures accordin to a defined formula. In many cases, this

aggregation may be a simple averaging of a given QoS metric across all atomic services,

but in other cases the aggregation may be more complex such as that shown in Definition

7. (As specified above, the atomic service is the level at which QoS is defined.) However,

82

aggregating the QoS measures is not a simple matter of summing the QoS measures of

each atomic service in a VSI. The specific calculations for aggregating QoS across a VSI

are described below.

Cost

For a given VSI, the cost of the VSI is calculated by summing the costs of each

atomic service that is used in that VSI. While this definition may seem intuitive, its

development is helpful in understanding how other QoS measures are calculated. The

formal definition of the cost of a VSI is provided in Definition 5.

Duration

The duration of service execution, when aggregated across all atomic services

within a VSI, yields the expected duration of the VSI. Calculating the duration of a VSI is

somewhat more complex than calculating cost because it is not a simple summation of

the durations of each atomic service invocation. Some services may be executed in

parallel. If one service takes longer to complete than the other, the shorter service’s

duration is not a factor in calculating the overall duration of the service composition

because the longer service will still be executing after the shorter service has completed.

Given this potential parallel execution of services, it is necessary to calculate the

longest duration path through the service composition, based on the duration of each

atomic service. The shortest time in which the composition can be executed is thus the

sum of all the longest durations of each set of parallel services.

The formal definition of this calculation is provided in Definition 6, and is

explained intuitively as follows. The VSI is divided into “phases,” where the first atomic

83

service is in Phase 1, all atomic services that are called using the outputs of the atomic

service in Phase 1 are in Phase 2, and so forth. Those services in Phase n are those that

require the outputs of services in Phase n-1. Using this construct, we calculate the longest

duration of a service composition by adding the duration of the service in Phase n (i.e.,

the final atomic service) to the duration of the longest service in Phase n-1, adding this

total to the duration of the longest service in Phase n-2, etc. This is required to account

for the cases where multiple services are executing in parallel (i.e., during the same

phase) and some of those services take longer than others to complete; the overall process

cannot proceed to the next phase until all services in the current phase have completed.

The resulting total is the minimum amount of time it will take the full composition to

complete.

Rating

The rating of a VSI is formally defined in Definition 7 and it intuitively explained

here. Each atomic service has a rating that measures users’ reported satisfaction with that

service, together with the scale the user rating is measured on. For example, a user may

have rated a service as a four on a scale of one to five.

All service ratings are normalized by dividing the user rating by the maximum

possible rating, resulting in a value in the range [0..1]. After all of the services’ ratings

are normalized, the ratings for all services in that VSI are averaged to compute the rating

for that VSI.

84

6. EXTENSIONS TO BPMN

As discussed in Section 2.2, existing process specification modeling languages do

not contain the semantic information necessary to support service-to-activity

matchmaking. Previous efforts were directed towards service descriptions based on

SOAP-described web services.

In contrast, this research develops a more generic approach that supports

matchmaking of activities to services described using semantic markup. This motivated

the development of an extension to BPMN, called BPMN-S, for the semantic markup of

process models.

The extensions to BPMN are used in the portion of the methodology highlighted

in Figure 10.

85

Figure 10: Using BPMN extensions

6.1. Language Selection
One option for enabling the semantic markup of process models would have been

to create a new modeling language or notation; this is essentially the approach taken by

the WSMO project as described in Section 2.2.3. However, the development of a full-

featured process modeling language from scratch is beyond the scope of this research.

Therefore, our approach has been to build on an existing language, BPMN, and extend it

to meet the needs of this research.

Existing process description models fall into two broad categories:

 Graphical languages intended for use by business analysts or system

designers such as BPMN and Unified Modeling Language UML (52),

 Procedural languages intended for use by developers such as BPEL.

86

Because a goal of this research is to enable business analysts to specify process

models that can be matched to services, procedural languages are not suitable for

specifying a process. Of the graphical languages, BPMN was selected as the modeling

language for this research.

BPMN is a graphical language that is readily understandable by business analysts

and can be learned by end users in a relatively short time. In addition, UML activity

diagrams are specifically designed to model the process that a software module executes.

However, as discussed in Section 2.2.4, UML’s lack of a standardized machine-readable

representation such as XML, combined with inherent ambiguities in the language, make

it unsuitable as the basis for an automated service composition language. The XML

Metadata Interchange (XMI) format published by the Object Management Group (OMG)

is machine-readable, but its purpose is to describe the appearance of a UML model and

not the significance of the model elements (e.g., the differences between a process

activity and a data artifact).

BPMN is a graphical modeling language intended for use in describing business

processes from the end user’s point of view. Additionally, since the release of BPMN 2.0,

BPMN has a formal XML notation that makes BPMN models machine-readable. While

BPMN models can be ambiguous if the modeler is not careful, applying the principles

described by zur Mehlan in (53,54) reduces ambiguity in BPMN models..

87

6.2. Language Extension
After selecting BPMN as the foundation for an enhanced process modeling

language, this research investigates how BPMN can be extended to support automated

service composition.

Extending the XML notation of BPMN would necessitate modifying a modeling

tool to export the new XML elements and attributes as part of converting the BPMN

model to XML. Rather than extend the BPMN XML specification, this research captures

the semantic information in the documentation field of each of the activities in the model.

This ensures the information is exported as part of the normal XML generation process.

This eliminates the need to modify the modeling tool and ensures compatibility with the

BPMN 2.0 XML schema. The specific documentation annotations are explained in detail

below.

6.2.1. Activity Semantics
The first task is to establish the information elements necessary to allow

automated service-to-activity matchmaking. For the matchmaking to be effective, each

activity in the process model must be annotated with a semantic description that can be

matched to the semantic descriptions of service operations. This can be accomplished

through the use of a simple list of allowable values, but that is essentially a syntactic

matching scheme that is only as flexible as the list of values.

A better solution than a list of values is the use of references to one or more

external ontologies to define the semantics of the activities in the process. This has

several advantages. First, it allows a business process modeler to refer to an ontology

separate from the process model, ensuring each can evolve independently, thereby

88

promoting reuse of existing ontologies. Second, ontological references at the activity

level allow the use of multiple ontologies within a single process model, increasing

flexibility.

To accommodate references to external ontologies, it is necessary to add an

ontology annotation to each of the activities within the process model, along with a

notation denoting the specific task type in the ontology that this activity refers to. Within

the documentation field, the ontology reference is documented in the following format:

ontology:<ontology_URI>

This notation specifies the ontology that is used to define the semantics used for

this activity and its inputs and outputs. The task type is denoted as follows:

type:<task_type_reference>

The task type is an entry in the ontology specified by the ontology reference. If

this ontology is the same as the ontology used to generate the service descriptions, then

service-to-activity matchmaking is a simple matter of matching the effect of an operation

in the service description to the task type. In the event different ontologies are used for

the process model specification and the service description, there are several possible

means of establishing equivalence between the different terms. This could be done

through an assertion on a term in one ontology, to which a particular term in the other

ontology is equivalent, or it could be through the sort of automated ontology matching

described by Muthaiyah et al (51).

89

6.2.2. Input and Output Parameters
In addition to specifying activity semantics, it may be desirable to specify the

semantics of the input and output parameters of each activity in the model. These

parameters must refer to the same ontology as the activity type reference, with the same

benefits that such a reference provides for activity semantics.

Input semantic types for each activity in the model are captured in the

documentation field using the following notation:

input:<input_type>

There is an individual entry for each of the inputs to an activity. Each input is

captured on a separate line to simplify the task of parsing the inputs out of the

documentation field.

Output semantic types for each activity are captured the same way the input types

are:

output:<output_type>

As is the case for inputs, there can be many output parameters and each one is

captured on a separate line within the documentation field for the activity.

Adding input and output data elements to each activity in the model enables

refinement of the selection of services, by ensuring the resulting service selections can be

composed into a complete workflow; every service selected for a given activity will have

the same inputs and outputs.

90

7. OGMA: A SERVICE DESCRIPTION LANGUAGE

The purpose of a service description is to capture the information necessary to

understand how to bind to and invoke the service. As discussed in detail in Section 2.1,

none of the existing service description models includes sufficient semantic detail to

enable automated activity-to-service or service-to-service matchmaking. The remainder

of this section describes the OGMA service description language developed by this

research to address the limitations of current service description models.

The service description language is applied during the service tagging and

registration part of the DRUID methodology, as highlighted in Figure 11.

Figure 11: Creating service descriptions

91

7.1. Design Challenges
To overcome the limitations of existing service interface description models, this

research defines a service description language that fulfills the following key criteria:

 Support for descriptions of many service types: SOAP services, REST

services, physical services, and services that do not fit into one of these

categories,

 Provides the necessary semantic markup to enable the matchmaker to

perform service-to-activity matchmaking,

 Facilitate service-to-service matchmaking based on semantic descriptions

of service inputs and outputs.

Additionally, the service description format should include all the elements of

both WSDL and WADL service descriptions, so as to simplify converting existing

service descriptions to this new format. Given the large number of existing WSDL

service descriptions, and to a much lesser extent WADL descriptions, this type of

compatibility is an important practical consideration.

Before discussing the design of the OGMA language in detail, it is helpful to

define semantics within the context of a service description and its importance to

automated matchmaking.

7.1.1. Semantics Defined
In general, semantics is the study of the meanings of words. For purposes of this

discussion, “semantics” refers to the explicit encoding of the meaning of terms within a

service interface description. This includes the meaning of individual data elements that

92

are the inputs or outputs of the service, the function of the service (i.e., the task it

performs), and the meaning of additional useful information.

Semantics may be formally encoded using any of several ontology definition

languages. One of the most common is the Web Ontology Language (OWL) (55). OWL

is actually a family of languages that can be used to formally describe a body of

knowledge, including the entities within that body, their characteristics, and the

relationships among those entities and characteristics. OWL is based on Description

Logics (56) and the Resource Description Framework (RDF) (57). RDF assertions are

constructed as triples that take the form subject-predicate-object (e.g., Person hasName

Bob). RDF triples, and by extension OWL, can be combined to explicitly define any

concept.

When semantics are encoded in RDF or any of its derivatives, the formal structure

of the encoding enables rule processing and basic machine processing of the contents of

the ontology. Given a sufficiently detailed ontology, this processing can determine if two

different terms refer to the same concept. For example, let us say the term “position” is

defined as having attributes “latitude” and “longitude.” We can then infer that the term

“location” with attributes “latitude” and “longitude,” refers to the same concept as

“position.” Some reasoners, such as HermiT, can infer this equivalence without

additional information. Other reasonsers require the addition of specific equivalence rules

using the Semantic Web Rule Language (SWRL) (58). To some extent, this processing is

possible even when different ontologies are used by different parties, as described by

Muthaiyah et al in (51,59,60).

93

Semantics can also be encoded in a less formal manner through the use of

controlled vocabularies. A controlled vocabulary is a limited set of terms used by a

community of interest to encode data within that community. A controlled vocabulary

need not be formally encoded in any way; all that is necessary is that the terms be limited

and agreed upon. However, the use of controlled vocabularies is very limiting because it

does not support the automated reasoning or inference enabled by OWL.

7.1.2. Data Semantics
Regardless of the type of service or the complexity of the data it consumes or

produces, the inputs and outputs of a service can be broken down into several atomic

elements. Each of these elements has its own semantics that must be understood by the

consumer before the service can be correctly invoked. Consider a service that returns the

current temperature for a given location. This service takes one input parameter named

“location” of type “string” and returns one output parameter named “temperature” of type

“integer.” If this is all the information available it will be difficult to successfully invoke

the service. The input parameter “location” may be any of several location designators. It

may be a city name, a postal code, a Universal Transverse Mercator (UTM) coordinate,

or some other location designator.

Changing the name of the input parameter name to “postal_code” does not

eliminate this ambiguity. We still do not have enough semantic information to invoke this

service because postal codes are not standardized across the world. In the UK, postal

codes are called “postcodes” and are an alphanumeric designator composed of between

six and eight characters including a single space. In the US, postal codes are referred to as

94

Zone Improvement Plan (ZIP) codes and are a numeric designator of five digits. Thus, we

can see that “postal_code” by itself does not convey enough semantics to successfully

invoke the service.

In order to understand the semantics of the data accurately enough to invoke the

service, the semantics must be explicitly described and linked to the service description.

To automatically process the inputs and outputs of a service, the semantics of the data

elements must be in a machine-readable format linked to a machine-readable service

description.

7.1.3. Operation Semantics
In addition to data semantics, it is also necessary to understand the functions a

service performs on that data. The weather service described earlier accepts

“postal_code” as input and returns “temperature” as output. Let us assume that an

operation offered by that service is called “getTemperature.” The name alone is

insufficient to understand the operation. The operation may return the current temperature

for the given location, it may return the maximum forecast temperature, or it may return

any of several other temperature readings for that location.

Using more explicit operation names does not remedy the ambiguity. Just as data

elements must include explicit semantic references, operations within a service

description must also include explicit semantic references. As is the case for data

semantics, the semantic references for service operations should be machine-readable and

explicitly linked to the operation name.

95

7.1.4. Service Semantics
The semantic description of a service is defined as the task type performed by the

primary operation the service provides. Because a service is a collection of operations,

the semantics of the service are relatively unimportant if the operations are semantically

tagged. However, semantically tagging the service is helpful because it can simplify

searching for operations by providing a ready means for categorizing services.

7.2. Model Definition
Because of the need for clear semantics as described in Section 7.1.1, this

research uses OWL to define the OGMA service description language. OWL has the

added advantage of enabling machine reasoning across the service descriptions.

The OGMA service description language is described in detail in the paragraphs

that follow. The OWL specification of the language can be found in Appendix A. The

service description language is illustrated by the use of an example service. The example

service is one that reserves a hotel room. This example is loosely based on the hotel

reservation services offered by Marriott.

The foundation of the service description language is the SERVICE class, which

is defined as an aggregate of several constituent classes that define the details of the

operations offered by the service. The service class includes a name for the service and an

industry classification code for categorizing the business domain the service is intended

to serve. A description of the SERVICE class is shown in Table 17.

96

Table 17: Service Definition

Service Definition

SERVICE

 has attributes

 [name string]

 [naicsCode string]

 is aggregate of

 [class BINDING]

 [class OPERATION]

 [class PROVIDER]

 [class RESOURCE]

 [class STATE]

Applying this template to Marriott yields the description shown in Table 18,

where the NAICS code 561599 designates “All Other Travel Arrangement and

Reservation Services.”

Table 18: Marriott Service Description

Attribute Value

Name All Other Travel Arrangement and

Reservation Services

naicsCode 561599

The BINDING class is an abstract class that is further subdivided into subclasses

NEWORKBINDING and PHYSICALBINDING. These classes encapsulate the

information needed to invoke an individual OPERATION and are described in Table 19.

97

Table 19: Binding Definition

Binding Definition

BINDING is abstract

 [name string]

NETWORKBINDING extends BINDING

 [communicationProtocol {http|https|sms|smtp}]

 [soapProtocol {document|rpc}]

 [url URL]

 [soapTransport URI]

PHYSICALBINDING extends BINDING

 [city string]

 [state string]

 [country string]

 [communicationProtocol {person|postal|telephone}]

 [phoneNumber string]

 [pointOfContact string]

 [postalCode string]

 [address string]

The NETWORKBINDING class has the attributes necessary to bind to services

that are accessible via the Internet. The communicationProtocol attribute takes one of

several attributes as listed to define whether the service is bound using HTTP or HTTPS

in the case of SOAP or REST services, or Short Message Service (SMS) for services that

may be accessible by a cell phone text message. It also includes Simple Mail Transfer

Protocol for services that may be invoked using e-mail.

The PHYSICALBINDING class has those attributes that are needed to invoke a

physical service, whether in person or by contacting a person. The

communicationProtocol attribute defines the means by which the service provider is

contacted, either in person, by mail, or by telephone. The remainder of the attributes are

98

standard elements used to define the physical location of a place of business, such as a

street address, city, etc.

Continuing to describe Marriott with the service description language, we include

both network and physical bindings for operations the Marriott service offers. The

network binding, shown in Table 20, defines the information needed to connect to

Marriott’s web site. The physical binding, also shown in Table 20, includes the

information needed to contact the Marriott reservation service person-to-person.

Table 20: Marriott's Binding

Network Binding

Attribute Value

communicationProtocol http, https

soapProtocol null

url http://www.marriott.com

soapTransport null

Physical Binding

Name Marriott Hotels Binding

City Bethesda

State MD

Country USA

communicationProtocol telephone

phoneNumber 1-888-236-2427

pointOfContact Reservations

postalCode 20817

Address 10400 Fernwood Rd

99

The PROVIDER class defines the person or organization that offers the service

being described. The PROVIDER class is depicted in Table 21. Each of the attributes of

the PROVIDER class is a common attribute of any business or personal contact

information and is not described in any additional detail here.

Table 21: Provider Definition

Provider Definition

PROVIDER

 [city string]

 [state string]

 [country string]

 [identifier string]

 [name string]

 [phoneNumber string]

 [postalCode string]

 [address string]

 [url URL]

In the case of Marriott, the PROVIDER information is shown in Table 22, which

depicts the information for the business entity that has overall responsibility for

provisioning the services on offer.

Table 22: Provider Information

Attribute Value

City Bethesda

State MD

Country USA

Identifier

Name Marriott Hotels, Inc.

100

phoneNumber 1-301-380-7770

postalCode 20817

Address 10400 Fernwood Rd

url http://www.marriott.com

The RESOURCE class, defined in Table 23, describes the input or output of any

service. The RESOURCE class itself is abstract and contains three attributes. The first is

currentState, which is a reference to a STATE object that describes the current state of

the resource (the STATE class is described below). Each RESOURCE is identified by a

name attribute and includes an ontology attribute that references a URI that formally

describes the semantics of the RESOURCE.

Table 23: Resource Description

Resource Definition

RESOURCE is abstract

 [currentState STATE]

 [name string]

 [ontology URI]

PHYSICALRESOURCE is abstract, extends RESOURCE

VIRTUALRESOURCE is abstract, extends RESOURCE

The RESOURCE class has two abstract subclasses, PHYSICALRESOURCE and

VIRTUALRESOURCE, that describe resources that are either physical objects or data

types respectively.

101

The abstract class PHYSICALRESOURCE has two subclasses,

ANIMATERESOURCE and INANIMATERESOURCE, as shown in Table 24. These

classes are used to describe physical objects that are inputs or outputs to a service. The

ANIMATERESOURCE class describes living things that a service operates on. The

ANIMATERESOURCE class has two attributes, genus and species, corresponding to the

elements of the same name used in the Linnaean taxonomy (61).

Table 24: PhysicalResource Definition

PhysicalResource Definition

PHYSICALRESOURCE is abstract, extends RESOURCE

ANIMATERESOURCE extends PHYSICALRESOURCE

 [genus string]

 [species string]

INANIMATERESOURCE extends PHYSICALRESOURCE

 [description string]

The class INANIMATERESOURCE, also shown in Table 24, includes one

attribute, description, for designating the type of item the service acts upon. To illustrate

the application of the RESOURCE classes, Table 25 shows a subset of potential inputs

and outputs for a Marriott service.

102

Table 25: Medical Resources

Inanimate Resource

Attribute Value

Description luggage

In Table 23 it can be seen that the currentState attribute has a type STATE. The

STATE class defines the current condition of a RESOURCE. The STATE class is

described in Table 26.

Table 26: State Definition

State Definition

STATE

 [status string]

 [description string]

 [ontology URI]

The STATE class denotes the status a RESOURCE may assume. The status is

stored as a string, with an accompanying description attribute that can provide amplifying

information as needed. There is also an ontology attribute that can reference an external

ontology that describes the semantics of the STATE being referenced. An example

STATE object is shown in Table 27.

Table 27: State Example

State

Attribute Value

Status unconfirmed

103

State

Attribute Value

description A reservation has been requested but has not

yet been verified

ontology http://myontology.org/hospitality#unconfirmed

This example STATE is for a customer reservation that has been scheduled but

has not yet been confirmed (for example, by submitting a credit card as a surety). This

would typically be the STATE of a customer reservation that is being processed by the

Marriott reservation service.

The OPERATION class describes an individual function offered by a service

PROVIDER. OPERATION itself is an abstract class with four concrete subclasses as

shown in Table 28.

Table 28: Operation Definition

Operation Definition

OPERATION is abstract

 [name string]

 [effect STATECHANGE]

 [input RESOURCE]

 [output RESOURCE]

 [binding BINDING]

 [semanticType URI]

 [precondition STATE]

NOTIFICATION extends OEPRATION

ONEWAY extends OPERATION

REQUESTRESPONSE extends OPERATION

 [httpMethod {GET|POST|PUT|DELETE}]

104

Operation Definition

SOLICITRESPONSE extends OPERATION

The subclasses of the OPERATION class mirror those defined in the WSDL

standard in order to ensure compatibility with SOAP-based web services but are also

compatible with REST services and physical services. As the definition shows, an

OPERATION contains many references to other classes. Each OPERATION is identified

by a name attribute that is a string. The action performed by the OPERATION is

identified by a reference to a STATECHANGE object (defined below); that action takes

some RESOURCE object as an input and returns some RESOURCE object as an output.

A given OPERATION may change the STATE of an input RESOURCE and return the

altered RESOURCE, while another OPERATION may take one type or RESOURCE as

an input and return a different type of RESOURCE as an output.

The information needed to bind to and invoke an OPERATION is encapsulated

within a BINDING object. Each OPERATION may be characterized by a semanticType

as defined by an external ontology, and it may also define a necessary precondition

denoted by some STATE.

The subclass REQUESTRESPONSE includes an additional attribute, httpMethod,

denoting one of the four HTTP methods (GET, POST, PUT, or DELETE) that describes

the method used to invoke an OPERATION using the HTTP protocol. A notional

example OPERATION offered by Marriott is shown in Table 29 (Marriott does not

currently offer a publicly available web service for reserving hotel rooms).

105

Table 29: Operation Example

Operation

Attribute Value

name reserveRoom

effect confirmedReservation

input arrivalDate

input departureDate

output confirmationNumber

binding Marriott Hotels Binding

semanticType http://myontology.org/hospitality#reserve

precondition Null

The STATECHANGE class referenced in Table 28 is defined in Table 30. The

STATECHANGE class is a convenience class that defines an initialState and finalState,

encapsulating an effect that could be produced by many different operations.

Table 30: StateChange Definition

StateChange Definition

STATECHANGE

 [name string]

 [initialState STATE]

 [finalState STATE]

An example STATECHANGE is shown in Table 31. The example describes a

change in state that may be applied to many resources affected by different operations; in

106

the example service it would apply to the blood that is an input to the bloodAnalysis

operation.

Table 31: StateChange Example

StateChange

Attribute Value

name unconfirmedToConfirmed

initialState Unconfirmed

finalState Confirmed

The framework employs a main ontology that embodies the service description

language explained above and encodes the semantics of the service description. This

ontology is encoded in OWL, making it easier to query the service descriptions when

they are stored in an OWL-compliant repository.

The SERVICE class is a grouping of operations, and so is related to the

OPERATION class as depicted in Table 32.

Table 32: Service Object Properties

SERVICE Object Properties

Property Cardinality Object

hasNAICSCode some Integer

hasName exactly 1 String

hasOperation some OPERATION

107

The SERVICE property hasNAICSCode is a means for describing the business

domain of a service using the North American Industrial Classification System code, and

has as its object zero or more integers. The property hasName takes exactly one string as

its object and provides a means for identifying the SERVICE. The SERVICE property

hasOperation takes as its object zero or more objects of the OPERATION class. A

service with zero operations has no practical value, but could be used to describe an

abstract service.

The object properties of the OPERATION class are shown in Table 33.

Table 33: Operation Properties

OPERATION Object Properties

Property Cardinality Object

hasBinding some BINDING

hasEffect some STATECHANGE

hasInput some RESOURCE

hasOutput some RESOURCE

hasPrecondition some STATE

hasSemanticType some String

The OPERATION property hasBinding has an object of type BINDING. Each

OPERATION may have multiple bindings; for example, a web service may offer both

REST and SOAP interfaces, and so would require two different bindings. The property

hasEffect takes as its object some number of STATECHANGE objects. An individual

OPERATION will generally have a single effect, but a composite OPERATION (e.g.,

one that represents an orchestration of other operations) may have multiple effects.

108

The hasInput and hasOutput properties both have an object of type RESOURCE.

Each OPERATION will accept zero or more inputs and will produce zero or more

outputs. A given OPERATION may require some external condition to prevail before it

can be invoked, so the hasPrecondition property specifies any STATE that must be true

before the service can be executed. The property hasSemanticType is a means for

specifying a correspondence between an OPERATION and some defined semantic

representation. Ideally this representation would be some element within an externally

defined ontology, but it is defined as a simple string to support use of a simple controlled

vocabulary that is captured directly in the service descriptions. The hasSemanticType

property is the means by which an OPERATION is matched to a BPMN activity during

the service-to-activity matchmaking process.

The OPERATION class itself is abstract. Each of its subclasses

(NOTIFICATION, ONEWAY, REQUESTRESPONSE, and SOLICITRESPONSE)

inherits all these properties and none has additional object properties.

The BINDING class is abstract and has no properties of its own. Its descendants

are described in Table 34 and Table 35.

Table 34: Network Binding Properties

NETWORKBINDING Object Properties

Property Cardinality Object

hasCommunicationProtocol some {“http”, “https”,

“sms”, “smtp”}

hasSoapStyle max 1 {“document”, “rpc”}

hasSoapTransport max 1 String

hasURL Some String

109

The NETWORKBINDING class describes how to bind to a web service, whether

a SOAP service or a REST-style service. The hasCommunicationProtocol element has

allowable values that describe the protocol that can be used to connect to the service. For

SOAP services, the binding may include at most one hasSoapStyle property with

allowable values of “document” or “rpc” depending on how the SOAP service is offered.

The hasSoapTransport protocol is defined by at most one string and is also confined to

SOAP services. Finally, the hasURL property contains the service endpoint for a web

service.

Table 35: Physical Binding Properties

PHYSICALBINDING Object Properties

Property Cardinality Object

hasCity some String

hasCommunicationProtocol some {“person”, “postal”,

“telephone”}

hasCountry some String

hasPhoneNumber some String

hasPointOfContact some String

hasPostalCode some String

hasStateOrProvince some String

hasStreetAddress some String

The properties of the PHYSICALBINDING class describe how to interact with a

physical service and provide contact information including the street address and phone

110

number for invoking a given operation. Most of the property names are self-explanatory,

but two are worth explaining in more detail. The hasCommunicationProtocol has a set of

allowable values that describe how a user would interact with a physical operation. The

hasPointOfContact property defines the person to coordinate invocation of the operation

of that is needed (for example, a plumber may include a receptionist’s name as the point

of contact for scheduling service).

The properties of a PROVIDER object are described in Table 36. Many of these

properties are identical to those found in the PHYSICALBINDING class and are equally

self-explanatory.

Table 36: Provider Object Properties

PROVIDER Object Properties

Property Cardinality Object

hasCity some String

hasCountry some String

hasIdentifier some String

hasName some Literal

hasPhoneNumber some String

hasPostalCode some String

hasStateOrProvince some String

hasStreetAddress some String

hasURL some String

Several properties of the PROVIDER class require a more explicit definition. The

hasIdentifier property is used to specify the unique identifier of this provider in, for

example, a social media system or other registry where information about that provider

111

can be retrieved and used as part of the process of developing service recommendations

(as described later). The hasName property specifies the common name by which the

provider is identified (e.g., a business name). The hasURL property offers an opportunity

for a service provider to include a web site or other network identifier (e.g., a public

Facebook page).

The properties of the RESOURCE object are described in Table 37. While the

RESOURCE class itself is abstract, these properties are common to its subclasses.

Table 37: Resource Object Properties

RESOURCE Object Properties

Property Cardinality Object

hasCurrentState some STATE

hasName some String

isDescribedByOntology some anyURI

The hasCurrentState property takes an object of type STATE and defines the state

of a given resource at any given time. The hasName property offers the option of defining

a convenient identifier for a RESOURCE, and the isDescribedByOntology offers the

opportunity to specify an external ontology that describes the RESOURCE in more

detail.

The PHYSICALRESOURCE class is an abstract subclass of the RESOURCE

class with no distinct properties of its own. The subclasses of the

PHYSICALRESOURCE class are ANIMATE and INANIMATE and their properties are

described in Table 38 and Table 39.

112

Table 38: Animate Object Properties

ANIMATE Object Properties

Property Cardinality Object

hasGenus some String

hasSpecies some String

The ANIMATE class describes a RESOURCE that is a living thing that may be

the input or output to an operation. Its two properties, hasGenus and hasSpecies, define

the genus and species of any living thing as used in biology.

Table 39: Inanimate Object Properties

INANIMATE Object Properties

Property Cardinality Object

hasDescription some String

The INANIMATE class describes non-living physical objects and has a single

property, hasDescription, that provides some means of identifying the object (this

identifier should be related to the isDescribedByOntology property inherited from the

RESOURCE class).

The VIRTUAL resource class is used to describe operation inputs and outputs that

are information that can be transported across the network, and borrows heavily from the

data definitions of both SOAP and REST-style services. Its properties are described in

Table 40.

113

Table 40: Virtual Resource Object Properties

VIRTUAL Object Properties

Property Cardinality Object

hasContentType max 1 String

hasContentSubType max 1 String

The hasContentType and hasContentSubType of the VIRTUAL resource class

allow a service provider to describe an input or output data type that does not lend itself

to the more precise descriptions offered by the ELEMENT and MESSAGE classes

described below.

The ELEMENT class is derived directly from the element definition within the

WSDL specification and is described in Table 41.

Table 41: Element Resource Object Properties

ELEMENT Object Properties

Property Cardinality Object

hasDataType exactly 1 String

hasMaxCardinality exactly 1 Integer

hasMinCardinality exactly 1 Integer

hasName some Literal

hasSemanticType some String

The hasDataType property refers to the XML data type of the element. The

hasMaxCardinality and hasMinCardinality properties define, respectively, how many or

114

how few of the elements may be present. The hasName property provides a means of

identifying the element in a human-readable form, and the hasSemanticType property

provides a means for associating the ELEMENT with an externally defined ontology.

Table 42 describes the properties of the MESSAGE virtual resource. Like the

ELEMENT resource, the MESSAGE resource is derived directly from the message

definition in the WSDL specification.

Table 42: Message Resource Object Properties

MESSAGE Object Properties

Property Cardinality Object

hasElement only ELEMENT

hasElement some ELEMENT

The MESSAGE resource has only one property, hasElement, with two separate

restrictions: the hasElement property can only be populated by objects of the type

ELEMENT, and it can have any number of ELEMENT objects.

The STATE object describes the state of any RESOURCE and its properties are

shown in Table 43.

Table 43: State Object Properties

STATE Object Properties

Property Cardinality Object

hasDescription some String

hasStatus exactly 1 String

isDescribedByOntology some anyURI

115

The hasDescription property provides a place to include an informal description

of the STATE of the RESOURCE, and is a companion to the hasStatus property, which is

a more formal definition of the STATE. The isDescribedByOntology property provides

an option for linking this STATE to an ontology that describes it more thoroughly.

The STATECHANGE class describes the effect an OPERATION has. Its

properties are described in Table 44.

Table 44: StateChange Object Properties

STATECHANGE Object Properties

Property Cardinality Object

hasFinalState some STATE

hasInitialState some STATE

The hasFinalState and hasInitialState properties each take an object of type

STATE, and taken together define the transition from one STATE to another STATE that

an OPERATION effects.

While storing service descriptions in an ontology makes it possible to reason over

them, the OGMA language enables additional reasoning through the use of auxiliary

ontologies used to describe the operations offered by the services and the resources those

operations use as inputs and outputs. Each attribute that may require a semantic reference

(in a case where the set of services being described does not use a controlled vocabulary)

116

is defined by a URI that references the corresponding entity within one or more

ontologies.

The use of externally-defined ontological descriptions for operations and

resources eliminates the need for different service providers to standardize on a common

ontology, thereby simplifying the task of combining operations from different providers

to compose a workflow from operations offered by different service providers.

7.3. General Service Descriptions

The key challenge in developing the OGMA service description language is

describing all types of services within a single description format. WSDL and WADL

each do a reasonably job of describing SOAP and REST services respectively, and

WSDL 2.0 attempts to combine both SOAP- and REST-based descriptions into a single

format. But no service description model has attempted to describe services as diverse as

a SOAP-based weather service, a REST-based hotel reservation service, and a physical

package delivery service within the same language.

All of the elements of both the WSDL and WADL models are retained to simplify

the conversion of existing service descriptions to the OGMA format,. In addition, the

information needed when invoking a physical service had to be included, as well as

information suitable for invoking services that may not fall into one of those categories or

that may span categories. For example, a hotel may offer a reservation service in any or

all of the following ways:

 As a SOAP web service that can be invoked from an application,

 As an e-mail based service where a user can e-mail a reservation request,

117

 As a telephone-based service where a user speaks to a reservation agent.

In all of these cases, the reservation is ultimately entered into and managed via the

hotel’s reservation management system. The service is the same, only the interface is

different.

To accommodate this variety of possible interfaces, the OGMA language expands

on earlier concepts of service interface to accommodate person-to-person and person-to-

machine interactions. The OGMA language extends the concept of a “binding” from the

WSDL description to include more detailed means of specifying how a user invokes a

service endpoint.

A general service description should include the ability to specify the physical

inputs and outputs of a service for those services that interact with the physical world. For

example, an auto mechanic offers a service that repairs cars; one of the outputs of this

service is a repaired car. To accommodate this, the OGMA language extends the concept

of a “resource” as defined by the WADL format, expanding “resource” to include both

physical and virtual resources so that the inputs and outputs of a service can be

thoroughly defined.

The details of the definition of “binding,” “resource,” and other aspects of the

OGMA language are explain in Section 7.2.

7.4. Activity-to-Service Matchmaking

A good service description must support matching individual service operations to

each activity in a process model. This matchmaking requires that both the service

description and the activities in the process model contain sufficient semantic information

118

to determine the service and activity refer to the same type of work. Matchmaking may

also require that the service and activity have compatible input and output parameters.

When the semantic annotations of service operations and activities are taken from

the same ontology, the matchmaking process is a simple matter of matching identical

semantic tags. Where the semantic annotations are based on different ontologies, there

must be some means for asserting the equivalence of terms in different ontologies. This

equivalence may be asserted by a business analyst or it may be the result of an automated

process such as the use of the Semantic Web Rule Language (SWRL) as described in

(51).

Regardless of whether the process model and services use a single ontology or

multiple ontologies, matching services to activities in the process model is the first step in

specifying an executable service composition. This initial screening of candidate services

selects those services, that correspond to an activity in the process model, for subsequent

analysis to see if they can be composed to materialize the process.

7.5. Service-to-Service Matchmaking

Service-to-service matchmaking is the second phase of the matchmaking process.

Once the available services have been filtered to those corresponding to activities in the

process model, it is necessary to determine which services are composable. This step

entails comparing the semantics of input and output parameters of each of the matched

services. For two services to be composable all of the required inputs of one service must

be among the inputs to, or outputs from, preceding services in the composition. For

example, if we with to compose services A and B together, then all the required inputs to

119

Service B must be available among the inputs and outputs of Service A. This constraint if

formally defined in Definition 3.

Just as for activity-to-service matchmaking, the semantic annotations for input

and output parameters may be captured in a single ontology or in multiple ontologies. If

the semantics are captured in multiple ontologies, there must be some means of asserting

the equivalence of semantic annotations in different ontologies.

120

8. PROOF OF CONCEPT PROTOTYPE

In order to demonstrate the feasibility and utility of the contributions of this

research, a proof-of-concept prototype was developed to exercise the components of the

framework and to ensure they performed as expected. Some of the original objectives of

this research were modified as a result of lessons learned during the implementation of

this prototype. For example, the initial objective of this research was to automate the

composition of web services. However, after analyzing a wide variety of business process

models, it became clear that nearly all practical business processes involve some level of

human involvement, whether to perform a sophisticated analysis step, or to approve final

payment of an invoice. This realization resulted in an expansion of this research to

include physical services as well as web services.

8.1. Design
One of the primary design objectives, when developing the proof-of-concept

prototype, was to reuse existing tools whenever possible. A key benefit of the SOA

concept is the reuse of existing services, so it seems fitting to reuse existing tools when

building a prototype intended to demonstrate the benefits of service reuse.

Another design consideration was to use as many established standards as

possible when constructing the prototype. Some standards, such as BPMN, are extended

as a key part of this research, but by leveraging other standards it is hoped that the

121

success of this prototype will be seen as a validation of the key contributions of this

research, and not as a demonstration of particular programming techniques.

By the same token, this prototype is not intended to be a fully operational system

that could be deployed in a production environment. Accordingly, existing tools and

libraries were used to the maximum extent practicable. The following sections explain

how the prototype was implemented; a step-by-step example of how the prototype

functions is presented in Section 8.3.

8.2. Implementation
The diagram in Chapter 3 depicting the DRUID methodology, repeated in Figure

12 for convenience, shows a notional architecture. The implementation deviates from this

notional depiction, but the same steps are implemented.

Figure 12: Overview of the DRUID methodology

122

The prototype implementation consists of four main layers: a service description

layer, a model creation layer, a service composition layer, and an optimization layer.

Each of these is described in the following subsections:

8.2.1. Service Description Layer
The service description layer consists of a tool for creating service descriptions

that conform to the OGMA service description model, together with a registry that stores

the service descriptions and makes them searchable.

Because the service descriptions are defined using OWL, a tool that can create

OWL-compliant models was preferable to a generic XML editing tool. In order to take

advantage of the power of machine reasoning, it is desirable to use a language to which

reasoners could be applied. Because there are a number of reasoners that support the

OWL language (e.g., HermiT and Pellet), it was also desirable for the selected tool to

support a full-featured OWL programming interface. After analysis of the available tools,

the Protégé tool developed by Stanford University (62) was selected as it is a mature,

well-maintained OWL tool, and it supports the Manchester OWL syntax (63). The

Manchester OWL syntax has a mature Application Programming Interface (API).

The Protégé tool has an additional feature, in that it can store OWL instance data

as well as OWL models. This makes it possible to use Protégé as both the service

description creation tool and the service registry, with service descriptions stored in an

OWL file that can be read using the Manchester OWL API.

123

8.2.2. Model Creation Layer
The model creation layer consists of the tool used to create the process model that

will be automated, in addition to a custom BPMN parsing library to read the BPMN

model extensions from the process model. In order to maximize standards compliance of

the XML representations of the BPMN models, and ensure they could be easily parsed, a

modeling tool that is BPMN 2.0 compliant is ideal. (As discussed in Section 2.2.1,

BPMN did not have a standard XML representation prior to version 2.0.)

After reviewing the available commercial- and open-source modeling tools, the

Sparx Enterprise Architect tool was selected. The SparxEA tool is a full-featured Model-

Driven Architecture (MDA) tool that includes support for BPMN modeling and is fully

BPMN 2.0 compliant. The ease with which a BPMN model can be exported as XML was

another strong factor in its favor. Finally, the cost of the Sparx tool was a significant

consideration, as its license cost is an order of magnitude lower than that of any other

commercial BPMN tool.

Once the SparxEA BPMN modeling tool was selected, it was necessary to

determine how best to insert the BPMN extensions into the BPMN models created by the

tool. After assessing the XML generation capabilities of the Sparx tool, it was determined

that adding new XML elements would require major modifications to the base tool.

These modifications are impractical without access to the tool’s source code, and

modifying a modeling tool is beyond the scope of this research. After careful analysis, it

was determined that the BPMN extensions could be captured in the documentation fields

for each model element and readily parsed out of the XML specification generated by the

tool.

124

To parse the model extensions out of the XML specification so they could be used

for service composition, a BPMN parsing library was written in Java that takes as input a

BPMN model annotated with extensions, reads out those extensions from the

documentation fields, and returns as output a series of data objects representing each of

the activities in the process model. These data objects have methods for reading out the

activity name, the activity’s semantic type, and the semantic type of each input and

output parameter.

8.2.3. Service Composition Layer
The service composition layer consists of a set of intelligent software agents that

receive the process model from the user, invoke the BPMN parser, and find candidate

services for each of the activities in the model, based on the semantic descriptions as

expressed in the BPMN extensions.

The service composition layer was implemented using an agent-based approach

for several reasons. First, the adoption of the JADE Agent Framework, which embodies

the the communications protocols published by the Foundation for Independent Physical

Agents (FIPA) (64), provides a convenient communications framework with a defined

semantics and simplifies communication among multiple parallel processes without the

overhead of manually managing a multi-threaded application. Second, an agent-based

system makes it possible to use intelligent agents that are empowered to negotiate with

each other over selected aspects of the process composition problem, such as the cost to

invoke a given service. Third, the semantics of the FIPA communications protocols

125

makes it easier or agents to reason about the status of the service composition and the

process model contents.

There are three main classes of agents used in the prototype: 1) support agents

that process the BPMN model and coordinate the search for services; 2) task agents that

search the registry for services that match a specific activity in the process model, and 3)

service agents, that represent the services to be composed, and serve as their proxies.

Support Agents

The support agents are those agents that perform utility duties such as handing

interactions with the user interface, reading the ontology, and doing graph analysis. These

agents form the core of the prototype and do most of the computation required to analyze

the user’s process model and to assess candidate services.

GuiAgent

The GuiAgent’s function is to communicate with the graphical user interface

(GUI), receiving input from the user and passing that input to the appropriate agent for

further processing. The GuiAgent also updates the GUI display based on the progress of

the analysis.

ModelReaderAgent

The ModelReaderAgent’s purpose is to read the XML output of the BPMN model

and extract the semantic information captured in the BPMN modeling extensions

described in Chapter 6. The ModelReaderAgent parses the model using the custom

BPMN parser described in Section 8.2.1.

GraphAgent

126

The GraphAgent is responsible for receiving information about candidate services

and making an initial assessment about their suitability. The GraphAgent creates and

analyzes a directed graph where nodes represent each of the candidate services and edges

are asserted wherever two services can be composed together (i.e., the outputs of one

service include the required inputs of the other service).

OntologyReaderAgent

The function of the OntologyReaderAgent is to use the Manchester OWL API to

read the ontology and search for services meeting specific criteria, such as performing the

type of task specified by an activity in the BPMN model. The OntologyReaderAgent

passes information about discovered services back to the requesting agent.

Because the OntologyReaderAgent reads information from the service description

ontology, it already has all the information necessary to invoke the optimization process

described in Section 8.2.4. For this reason, the OntologyReaderAgent is used to invoke

the optimization process.

BrokerAgent

The BrokerAgent is a specialized agent whose purpose is to broker negotiations

among service agents whenever such negotiation is indicated. The BrokerAgent may

request initial bids and updated bids from service agents if the service agents are

empowered to alter their QoS metrics, or if the user requests an updated offer.

Selection Agents

The selection agents search for specific service offerings to match an individual

activity in the BPMN model. All selection agents are based on a single TaskAgent

127

template, but each one of them is specialized to search for a specific type of service. Once

the BPMN model is parsed to retrieve the semantic information for each activity, the

ModelReaderAgent creates a specialized TaskAgent for each semantic description of an

activity. As a result, the set of TaskAgents that is initiated is specific to the BPMN model

that was submitted.

Service Agents

Service agents are specialized agents that are not necessary to the functioning of

the prototype, but can provide enhanced functionality when they are available. A service

agent is a FIPA-compliant intelligent agent that is a proxy for one of the services

available in the registry. The primary purpose of a service agent is to represent the service

to the user and negotiate QoS terms if the user is interested.

8.2.4. Optimization Layer
The optimization layer implements the optimization model described in detail in

Section 4. The optimization layer is implemented using OPL and IBM’s CPLEX

modeling library.

The optimization layer accepts as input a data file created by the

OntologyReaderAgent, and a model definition file, and passes those to the CPLEX

library. The optimization model verifies that the candidate services can be composed

together to materialize the process described in the original BPMN model, and applies

other constraints based on user preferences (e.g., minimize cost) that are used to

determine which composition of services is optimal. After processing, the CPLEX library

returns the optimal service composition based on the QoS parameters supplied in the data

128

file. An example of the CPLEX output can be found in Appendix B: CPLEX OPL

Output.

8.3. Execution Example
What follows is a simple execution of the proof-of-concept prototype, beginning

with the creation of service descriptions, proceeding through the creation and annotation

of a BPMN model, and culminating in the identification of an optimal service

composition based on QoS parameters.

The process begins with creating service descriptions using the Protégé tool, as

depicted in Figure 13. The information needed to fully describe the semantics of the

service, including its inputs, outputs, and QoS parameters, is entered into the service

description model.

129

Figure 13: Creating a service description

After each of the available services is fully described using the Protégé tool, there

is sufficient information to enable the matching of services to activities and services to

services.

The next step in the process is for a business user or analyst to create a BPMN-

semantically-extended model using the SparxEA tool. The creation of the model is shown

in Figure 14, which shows a standard graphical BPMN model.

130

Figure 14: Specification of a BPMN process model

Once the BPMN model has been created, it is necessary to add the semantic

annotations defined by the BPMN extensions specified as part of this research. As

described earlier, these annotations are captured in the BPMN documentation field as

depicted in Figure 15.

131

Figure 15: Annotation of semantic information on an activity

Once the semantic annotation of the model is completed, it is exported to XML-

format that conforms to the BPMN 2.0 XML specification. The annotated model is now

ready for parsing and subsequent analysis by the agents described earlier. Selection of the

process model’s XML instantiation is depicted in Figure 16.

132

Figure 16: Selecting a process model

Once the process model is selected in the GUI, the model is passed to the

ModelReaderAgent. Using the custom BPMN parsing library, the ModelReaderAgent

reads the model and parses the semantic information about activity types, inputs, and

outputs from the documentation fields in the model.

Figure 17 shows the JADE console with a variety of agents active, including two

specialized TaskAgents, named end::GetWeatherForLatLon and start::GetLatLonForZip.

Each of these agents is dynamically created by the ModelReaderAgent based on the

semantic types of the two activities in the sample model.

133

Figure 17: The JADE agent framework during model processing

Each of the TaskAgents independently contacts the OntologyReaderAgent and

requests a list of services that perform the type of function that TaskAgent is specialized

for. For each request message it receives from a service selection agent, the

OntologyReaderAgent queries the service registry to discover which services are

available that match the semantic type contained in the request.

The service descriptions for each matching service are read from the registry and

information about the task type, inputs, and outputs are passed back to the requesting

TaskAgent. Each of these service discovery agents passes this information along to the

GraphAgent for further processing.

134

The GraphAgent’s first action is to add each service as a node to a directed graph

and pass the resulting graph back to the GuiAgent for display to the user. This initial

graph is displayed as shown in Figure 18. This graph display includes two special nodes,

named “start” and “end” that are used to denote the beginning and the end of the process.

Figure 18: GUI showing services that match process activities

Once the initial graph (with no edges) has been displayed, the user can click the

“Add Edges” button to analyze the services in the graph to determine what compositions

are possible. The GraphAgent analyzes the inputs and outputs of each node in the graph

to determine which services may be composed together and in what order. After

135

completing this analysis, the GraphAgent adds directed edges to the graph for each

potential composition and passes the updated graph to the GuiAgent. The GuiAgent

updates the GUI with the completed graph as shown in Figure 19.

Figure 19: GUI with initial all possible service compositions

An examination of the graph in Figure 19 shows that some edges are bi-

directional, as the inputs and outputs of the services represented by those nodes support

combining them in two different orders. For example, the zip_to_latlon service and the

latlon_to_zip service both have the semantic type “location_conversion.” One converts a

zip code to a latitude / longitude coordinate, and the other converts a latitude / longitude

136

coordinate to a zip code. This behavior can result in cycles in the graph, which would

mean cyclic service invocations that never complete the process defined by the model.

In order to eliminate these cycles and find candidate service compositions that do

not include extraneous services, the GraphAgent analyzes the graph using the Floyd-

Warshall algorithm to find acyclic paths through the graph from the start node to the end

node. Each of these paths represents a composition of services that will materialize the

process from start to end.

Each of the candidate compositions discovered through graph analysis is then

passed to the OntologyReaderAgent to begin the optimization process. The

OntologyReaderAgent examines each of the services in each candidate composition and

queries the service registry for the QoS attributes of that service. As the QoS attributes

for each service are read from the registry, the relevant information about that service as

described in Section 4 (task type, input and output semantic parameters, QoS attributes)

is written to a data file that will be used by the optimization process.

Once the optimization data file is written, the OntologyReaderAgent invokes the

CPLEX engine, passing the data file and a reference to the optimization model and

starting the optimization analysis. Upon completion of the analysis, the optimization

model returns the recommended service composition based on the user’s QoS preference

(e.g., minimize cost). (An example of the output from the CPLEX engine can be seen in

Appendix B: CPLEX OPL Output.) Continuing with the above example, the two possible

compositions are the following:

 Option A: location_conversion  getWeather

137

 Option B: zip_to_latlon  getWeather

The CPLEX analysis of the QoS parameters of each service, together with the

user preference to minimize cost, results in an optimal service composition of

location_conversion  getWeather. Given the simple case of this example, it is easy to

manually verify the correctness of this assessment. First, the outputs of the

location_conversion service are compared to the inputs of the getWeather service, and it

is verified that they may be composed together. The same comparison is performed to the

outputs of the zip_to_latlon service and the inputs of the getWeather service, also these

two may be composed together.

Finally, it can be verified that the QoS assessment is correct by computing the

total cost of each composition and verifying that the cost of Option A is less than the cost

of Option B. Note that the same verification process is applicable to a more complex

comparison, but this verification process becomes more difficult with more services and

more QoS parameters.

8.4. Scalability
To assess the scalability of the optimization implementation, it was executed with

an array of increasingly complex inputs to compare the time required to complete the

optimization calculation. The results of this testing are shown in Figure 20.

138

Figure 20: Optimization Scalability

To generate this graph, each test case was executed ten times and the results were

plotted using a box-and-whisker diagram that begins with the simplest cases on the left

and progresses to the most complex cases on the right. The maximum and minimum run

time for each test is shown by the lines, with the boxes representing the 25
th

 through 75
th

percentiles. The blue line shows the median value for each test run. As shown in the

graph, the execution time is relatively stable across most of the test cases but begins to

increase with the most complex test cases.

The column labels in the chart represent the complexity of the test case using a

dot notation. The first number represents the number of atomic services, the second

number represents the number of virtual services including the root service, and the third

139

number represents the total number of activities in all of the virtual services. A more

detailed explanation of the test cases is provided in Table 45.

Table 45: Scalability Test Cases

Column Label Explanation

1.1.1 One atomic service, one virtual service

containing a single activity

1.1.1(A) One atomic service, one virtual service

containing a single activity

2.1.2 Two atomic services, one virtual service

containing two activities

4.1.2 Four atomic services, one virtual service

containing two activities

4.2.4 Four atomic services, two virtual services

containing two activities each

8.3.7 Four atomic services, three virtual services

containing a total of seven activities

8.4.10 Eight atomic services, four virtual services

containing ten total activities and nested

three deep

10.1.10 Ten atomic services, one virtual service

containing ten activities

30.1.10 Thirty atomic services, one virtual service

containing ten activities

30.1.10 (P) Thirty atomic services, one virtual service

containing ten activities and multiple

concurrent activities (i.e., parallel paths)

Given the definitions in Chapter 4, it can be expected that the total nnumber of

activities that must be mapped to services (including all virtual services) will be the

driving factor in the time required to complete the optimization assessment. As the data

140

in Figure 20 show, the total number of activities alone is not the determining factor in

driving the time required to complete the optimization. Instead, the driver is the number

of activities combined with the number of concurrent activities. Greater concurrency

intuitively makes the optimization computation more complex and this data validates that

intuition.

Even given the increased processing time required to optimize a virtual service

composition with multiple concurrent activities, it can be seen that the optimization

implementation is scalable.

141

9. CONCLUSIONS AND FUTURE WORK

This research demonstrates the feasibility of automated service composition and

selection based on a workflow model specified using a standards-based Process Modeling

Laguage, BPMN. This chapter describes the key contributions of this research,

conclusions, and areas for future research.

9.1. Key Contributions
The feasibility of automated service composition has been demonstrated through

the key contributions of this research as explained in the following sections.

9.1.1. DRUID Methodology
This research developed the DRUID service composition methodology, a multi-

step process for semantically tagging services, developing a semantically-tagged process

specification, and automating the composition of the tagged services, then computing an

optimal service composition that materializes the process model.

9.1.2. BPMN-S Extension
Another contribution of this research is the BPMN-S extension to the BPMN

modeling language, thereby providing a means for tagging activities in a BPMN model

with the semantic information necessary to enable the automated matching of services to

each process activity.

142

9.1.3. OGMA Service Description Language
To enable both the activity-to-service matchmaking and the service-to-service

matchmaking necessary to compose services, this research develops the OGMA service

description language, specified in OWL. This language further enables the comparison of

service semantics and the application of basic machine reasoning using tools such as the

HermiT reasoner. When applied to the service descriptions,the HermiT reasoner proved

useful in three respects. First, it ensured that the OGMA ontology itself was internally

consistent. Second, it ensured that every service description was valid. Finally, on several

occaisions the reasoner interpreted descriptions of different services as the same service

where that equivalence was not intended, thereby highlighting errors in specific service

descrpitions.

9.1.4. SUCELLOS Quality of Service Model
To compare service compositions based on QoS metrics, this research develops

the SUCELLOS QoS model, an OWL-based ontology based on the QoS model

developed by INRIA and described in detail in Chapter 5. The SUCELLOS model

captures the QoS metrics of services and enables comparison of QoS metrics among

services and across service compositions.

9.1.5. ECNE Optimization Model
This research also develops the ECNE service composition optimization model.

The ECNE model includes a formal definition of a virtual service (also known as a

business process) as well as formal definitions of an optimal service composition and the

QoS metric aggregation used to assess service composition optimality.

143

9.1.6. Proof-of-Concept Prototype
Finally, this research develops a proof-of-concept prototype that applies the

DRUID methodology and other contributions of this research to demonstrate the

feasibility of the DRUID methodology as well as the usability of the OGMA,

SUCELLOS, and ECNE models.

9.2. Conclusions
This research develops a proof of concept prototype that ties together all of the

main components of the DRUID methodology into an operable system that accepts a

process model as input and returns an optimal service composition based on the QoS

metrics of available services.

The OGMA service description language provides a mechanism for describing

services of all types, including web services and physical services, with the semantic

detail necessary to enable automated activity-to-service matchmaking and service-to-

service matchmaking. As a superset of both the WSDL and WADL service description

formats the OGMA language is backward-compatible with existing service description

formats, allowing developers to leverage existing service descriptions when creating

OGMA -compliant service descriptions. As an OWL-based model, OGMA supports

machine reasoning and inference across service descriptions.

The extensions to the BPMN modeling specification, developed in this research,

provide a means for appending semantic metadata to activities in a BPMN model. This

additional semantic information enables automated activity-to-service matchmaking

based on a process modeling language that is in wide use among business analysts and

users.

144

The SUCELLOS QoS model developed in this research provides a robust and

flexible QoS model that is suitable for describing services of all types and can be readily

extended to include additional QoS parameters, if needed. Because the Sucellos model

was developed in OWL, it readily integrates with service descriptions conforming to the

OGMA language.

To enable the selection of optimal service compositions, this research develops

the ECNE optimization formalism, a formal model that describes processes, services, and

QoS parameters in a way that supports the mathematical analysis service compositions to

select the optimal composition based on QoS parameters. This optimization model was

implemented in OPL using the IBM CPLEX suite to demonstrate the efficacy of the

formalism and the optimization process.

9.3. Future Work
The dynamic composition of services within a Service-Oriented Architecture

remains a rich field for additional research. Some areas of potential interest for future

research are described below.

9.3.1. Service Security
One of the main areas for additional research is to develop interoperable security

models that can be used for web services. The range of security models currently in use,

from username / password through Public Key Infrastructure (PKI) certificates, makes it

difficult to integrate web services that use different security models; this research

assumes that security was not a consideration at this time. Within a single enterprise, it is

possible to standardize on a single security approach. However, standardizing multiple

145

enterprises on a single security model is difficult and costly. To be operationally useful, a

service composition framework must provide some means of composing services that use

different security models. This remains an area of active research and is ripe for further

investigation.

9.3.2. Quality of Service
This research explored the application of QoS metrics to optimal service

composition selection, but this research only explored a limited number of QoS metrics.

The application of additional metrics, such as data throughput or the ability of a service to

adapt to intermittent network connectivity issues, provides a fertile area for additional

research.

9.3.3. Composition Execution
This research stopped short of attempting to execute the selected service

composition. However, converting the optimal service composition into an executable

format such as BPEL (reference) offers additional challenges for future researchers. One

such challenge is to automate the development of a BPEL process specification that

includes error handling robust enough for operational use. Another challenge would to

apply the “BPEL for People” (reference) specification to the methodology developed by

this research in order to enable the execution of service compositions that include both

physical and web services.

146

APPENDIX A: OWL SPECIFICATION OF OGMA DESCRIPTION LANGUAGE

<?xml version="1.0"?>

<!DOCTYPE Ontology [

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY xml "http://www.w3.org/XML/1998/namespace" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://www.semanticweb.org/ontologies/2012/0/Ontology13256856

96038.owl"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xml="http://www.w3.org/XML/1998/namespace"

ontologyIRI="http://www.semanticweb.org/ontologies/2012/0/Ontology13256

85696038.owl">

 <Prefix name="" IRI="http://www.w3.org/2002/07/owl#"/>

 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>

 <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-

ns#"/>

 <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>

 <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>

<Import>http://www.jmcdowall.org/ontologies/QoSOntology.owl</Import>

 <Declaration>

 <Class IRI="#Animate"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Binding"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Delete"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Element"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Get"/>

 </Declaration>

 <Declaration>

147

 <Class IRI="#Inanimate"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Message"/>

 </Declaration>

 <Declaration>

 <Class IRI="#NetworkBinding"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Notification"/>

 </Declaration>

 <Declaration>

 <Class IRI="#OneWay"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Operation"/>

 </Declaration>

 <Declaration>

 <Class IRI="#PhysicalBinding"/>

 </Declaration>

 <Declaration>

 <Class IRI="#PhysicalResource"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Post"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Provider"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Put"/>

 </Declaration>

 <Declaration>

 <Class IRI="#RequestResponse"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Resource"/>

 </Declaration>

 <Declaration>

 <Class IRI="#Service"/>

 </Declaration>

 <Declaration>

 <Class IRI="#SolicitResponse"/>

 </Declaration>

 <Declaration>

 <Class IRI="#State"/>

 </Declaration>

 <Declaration>

 <Class IRI="#StateChange"/>

 </Declaration>

 <Declaration>

 <Class IRI="#VirtualResource"/>

 </Declaration>

 <Declaration>

148

 <ObjectProperty IRI="#hasBinding"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasCause"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasCurrentState"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasEffect"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasElement"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasFinalState"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasInitialState"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasInput"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasOperation"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasOutput"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasPrecondition"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasRecommendedPrecondition"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasRequiredPrecondition"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasState"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#isElementOf"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#isInputOf"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#isOfferedBy"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#offers"/>

 </Declaration>

 <Declaration>

149

 <DataProperty IRI="#hasCity"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasCommunicationProtocol"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasContentSubType"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasContentType"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasCountry"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasDataType"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasDescription"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasFacebookIdentifier"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasGenus"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasIdentifier"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasMaxCardinality"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasMinCardinality"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasNAICSCode"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasName"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasPhoneNumber"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasPointOfContact"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasPostalCode"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasSemanticType"/>

 </Declaration>

 <Declaration>

150

 <DataProperty IRI="#hasSoapStyle"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasSoapTransport"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasSpecies"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasStateOrProvince"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasStatus"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasStreetAddress"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasURI"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasURL"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#hasYelpIdentifier"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#isDescribedByOntology"/>

 </Declaration>

 <Declaration>

 <NamedIndividual IRI="#x_ray"/>

 </Declaration>

 <SubClassOf>

 <Class IRI="#Animate"/>

 <Class IRI="#PhysicalResource"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Animate"/>

 <DataExactCardinality cardinality="1">

 <DataProperty IRI="#hasGenus"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataExactCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Animate"/>

 <DataExactCardinality cardinality="1">

 <DataProperty IRI="#hasSpecies"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataExactCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Delete"/>

 <Class IRI="#RequestResponse"/>

 </SubClassOf>

151

 <SubClassOf>

 <Class IRI="#Element"/>

 <Class IRI="#VirtualResource"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Element"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasSemanticType"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Element"/>

 <DataExactCardinality cardinality="1">

 <DataProperty IRI="#hasDataType"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataExactCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Element"/>

 <DataExactCardinality cardinality="1">

 <DataProperty IRI="#hasMaxCardinality"/>

 <Datatype abbreviatedIRI="xsd:integer"/>

 </DataExactCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Element"/>

 <DataExactCardinality cardinality="1">

 <DataProperty IRI="#hasMinCardinality"/>

 <Datatype abbreviatedIRI="xsd:integer"/>

 </DataExactCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Element"/>

 <DataExactCardinality cardinality="1">

 <DataProperty IRI="#hasName"/>

 </DataExactCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Get"/>

 <Class IRI="#RequestResponse"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Inanimate"/>

 <Class IRI="#PhysicalResource"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Inanimate"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasDescription"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

152

 <Class IRI="#Message"/>

 <Class IRI="#VirtualResource"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Message"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasElement"/>

 <Class IRI="#Element"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Message"/>

 <ObjectAllValuesFrom>

 <ObjectProperty IRI="#hasElement"/>

 <Class IRI="#Element"/>

 </ObjectAllValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#NetworkBinding"/>

 <Class IRI="#Binding"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#NetworkBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasCommunicationProtocol"/>

 <DataOneOf>

 <Literal datatypeIRI="&rdf;PlainLiteral">http</Literal>

 <Literal

datatypeIRI="&rdf;PlainLiteral">https</Literal>

 <Literal datatypeIRI="&rdf;PlainLiteral">sms</Literal>

 <Literal datatypeIRI="&rdf;PlainLiteral">smtp</Literal>

 </DataOneOf>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#NetworkBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasURL"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#NetworkBinding"/>

 <DataMaxCardinality cardinality="1">

 <DataProperty IRI="#hasSoapStyle"/>

 <DataOneOf>

 <Literal

datatypeIRI="&rdf;PlainLiteral">document</Literal>

 <Literal datatypeIRI="&rdf;PlainLiteral">rpc</Literal>

 </DataOneOf>

 </DataMaxCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#NetworkBinding"/>

153

 <DataMaxCardinality cardinality="1">

 <DataProperty IRI="#hasSoapTransport"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataMaxCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Notification"/>

 <Class IRI="#Operation"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#OneWay"/>

 <Class IRI="#Operation"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Operation"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasBinding"/>

 <Class IRI="#Binding"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Operation"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasEffect"/>

 <Class IRI="#StateChange"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Operation"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasInput"/>

 <Class IRI="#Resource"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Operation"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasOutput"/>

 <Class IRI="#Resource"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Operation"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasPrecondition"/>

 <Class IRI="#State"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Operation"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasSemanticType"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

154

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#PhysicalBinding"/>

 <Class IRI="#Binding"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#PhysicalBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasCity"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#PhysicalBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasCommunicationProtocol"/>

 <DataOneOf>

 <Literal

datatypeIRI="&rdf;PlainLiteral">person</Literal>

 <Literal

datatypeIRI="&rdf;PlainLiteral">postal</Literal>

 <Literal

datatypeIRI="&rdf;PlainLiteral">telephone</Literal>

 </DataOneOf>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#PhysicalBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasCountry"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#PhysicalBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasPhoneNumber"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#PhysicalBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasPointOfContact"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#PhysicalBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasPostalCode"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

155

 <SubClassOf>

 <Class IRI="#PhysicalBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasStateOrProvince"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#PhysicalBinding"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasStreetAddress"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#PhysicalResource"/>

 <Class IRI="#Resource"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Post"/>

 <Class IRI="#RequestResponse"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Provider"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasCity"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Provider"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasCountry"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Provider"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasIdentifier"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Provider"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasName"/>

 <Datatype abbreviatedIRI="rdfs:Literal"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Provider"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasPhoneNumber"/>

156

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Provider"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasPostalCode"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Provider"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasStateOrProvince"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Provider"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasStreetAddress"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Provider"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasURL"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Put"/>

 <Class IRI="#RequestResponse"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#RequestResponse"/>

 <Class IRI="#Operation"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Resource"/>

 <Class abbreviatedIRI="owl:Thing"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Resource"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasCurrentState"/>

 <Class IRI="#State"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Resource"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasName"/>

157

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Resource"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#isDescribedByOntology"/>

 <Datatype abbreviatedIRI="xsd:anyURI"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Service"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasOperation"/>

 <Class IRI="#Operation"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Service"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasNAICSCode"/>

 <Datatype abbreviatedIRI="xsd:integer"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#Service"/>

 <DataExactCardinality cardinality="1">

 <DataProperty IRI="#hasName"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataExactCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#SolicitResponse"/>

 <Class IRI="#Operation"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#State"/>

 <DataSomeValuesFrom>

 <DataProperty IRI="#hasDescription"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#State"/>

 <DataExactCardinality cardinality="1">

 <DataProperty IRI="#hasStatus"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataExactCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#State"/>

 <DataExactCardinality cardinality="1">

 <DataProperty IRI="#isDescribedByOntology"/>

 <Datatype abbreviatedIRI="xsd:anyURI"/>

158

 </DataExactCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#StateChange"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasFinalState"/>

 <Class IRI="#State"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#StateChange"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#hasInitialState"/>

 <Class IRI="#State"/>

 </ObjectSomeValuesFrom>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#VirtualResource"/>

 <Class IRI="#Resource"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#VirtualResource"/>

 <DataMaxCardinality cardinality="1">

 <DataProperty IRI="#hasContentSubType"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataMaxCardinality>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#VirtualResource"/>

 <DataMaxCardinality cardinality="1">

 <DataProperty IRI="#hasContentType"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataMaxCardinality>

 </SubClassOf>

 <DisjointClasses>

 <Class IRI="#Animate"/>

 <Class IRI="#Inanimate"/>

 </DisjointClasses>

 <DisjointClasses>

 <Class IRI="#Binding"/>

 <Class IRI="#Operation"/>

 <Class IRI="#Resource"/>

 </DisjointClasses>

 <DisjointClasses>

 <Class IRI="#Delete"/>

 <Class IRI="#Get"/>

 <Class IRI="#Post"/>

 <Class IRI="#Put"/>

 </DisjointClasses>

 <DisjointClasses>

 <Class IRI="#Element"/>

 <Class IRI="#Message"/>

 </DisjointClasses>

 <DisjointClasses>

159

 <Class IRI="#Notification"/>

 <Class IRI="#OneWay"/>

 <Class IRI="#RequestResponse"/>

 <Class IRI="#SolicitResponse"/>

 </DisjointClasses>

 <DisjointClasses>

 <Class IRI="#PhysicalResource"/>

 <Class IRI="#VirtualResource"/>

 </DisjointClasses>

 <ClassAssertion>

 <Class IRI="#Inanimate"/>

 <NamedIndividual IRI="#x_ray"/>

 </ClassAssertion>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="#hasCurrentState"/>

 <ObjectProperty IRI="#hasState"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="#hasFinalState"/>

 <ObjectProperty IRI="#hasState"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="#hasInitialState"/>

 <ObjectProperty IRI="#hasState"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="#hasRecommendedPrecondition"/>

 <ObjectProperty IRI="#hasPrecondition"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="#hasRequiredPrecondition"/>

 <ObjectProperty IRI="#hasPrecondition"/>

 </SubObjectPropertyOf>

 <SubObjectPropertyOf>

 <ObjectProperty IRI="#offers"/>

 <ObjectProperty abbreviatedIRI="owl:topObjectProperty"/>

 </SubObjectPropertyOf>

 <InverseObjectProperties>

 <ObjectProperty IRI="#hasCause"/>

 <ObjectProperty IRI="#hasEffect"/>

 </InverseObjectProperties>

 <InverseObjectProperties>

 <ObjectProperty IRI="#isElementOf"/>

 <ObjectProperty IRI="#hasElement"/>

 </InverseObjectProperties>

 <InverseObjectProperties>

 <ObjectProperty IRI="#hasInput"/>

 <ObjectProperty IRI="#isInputOf"/>

 </InverseObjectProperties>

 <InverseObjectProperties>

 <ObjectProperty IRI="#offers"/>

 <ObjectProperty IRI="#isOfferedBy"/>

 </InverseObjectProperties>

 <ObjectPropertyRange>

160

 <ObjectProperty IRI="#hasBinding"/>

 <Class IRI="#Binding"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#hasCause"/>

 <Class IRI="#Operation"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#hasCurrentState"/>

 <Class IRI="#State"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#hasEffect"/>

 <Class IRI="#StateChange"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#hasElement"/>

 <Class IRI="#Element"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#hasFinalState"/>

 <Class IRI="#State"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#hasInitialState"/>

 <Class IRI="#State"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#hasOperation"/>

 <Class IRI="#Operation"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#hasPrecondition"/>

 <Class IRI="#State"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#isOfferedBy"/>

 <Class IRI="#Provider"/>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#offers"/>

 <Class IRI="#Service"/>

 </ObjectPropertyRange>

 <SubDataPropertyOf>

 <DataProperty IRI="#hasFacebookIdentifier"/>

 <DataProperty IRI="#hasIdentifier"/>

 </SubDataPropertyOf>

 <SubDataPropertyOf>

 <DataProperty IRI="#hasStatus"/>

 <DataProperty abbreviatedIRI="owl:topDataProperty"/>

 </SubDataPropertyOf>

 <SubDataPropertyOf>

 <DataProperty IRI="#hasYelpIdentifier"/>

 <DataProperty IRI="#hasIdentifier"/>

161

 </SubDataPropertyOf>

 <DataPropertyDomain>

 <DataProperty IRI="#hasSpecies"/>

 <Class IRI="#Animate"/>

 </DataPropertyDomain>

 <DataPropertyRange>

 <DataProperty IRI="#hasCity"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasCommunicationProtocol"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasContentSubType"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasContentType"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasCountry"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasDataType"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasDescription"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasFacebookIdentifier"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasGenus"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasMaxCardinality"/>

 <Datatype abbreviatedIRI="xsd:integer"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasMinCardinality"/>

 <Datatype abbreviatedIRI="xsd:integer"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasNAICSCode"/>

 <Datatype abbreviatedIRI="xsd:integer"/>

 </DataPropertyRange>

 <DataPropertyRange>

162

 <DataProperty IRI="#hasName"/>

 <Datatype abbreviatedIRI="rdfs:Literal"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasPointOfContact"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasPostalCode"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasSemanticType"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasSoapStyle"/>

 <DataOneOf>

 <Literal datatypeIRI="&rdf;PlainLiteral">document</Literal>

 <Literal datatypeIRI="&rdf;PlainLiteral">rpc</Literal>

 </DataOneOf>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasSoapTransport"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasSpecies"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasStateOrProvince"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasStatus"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasStreetAddress"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasURI"/>

 <Datatype abbreviatedIRI="xsd:anyURI"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasURL"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

 <DataPropertyRange>

 <DataProperty IRI="#hasYelpIdentifier"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataPropertyRange>

163

 <DataPropertyRange>

 <DataProperty IRI="#isDescribedByOntology"/>

 <Datatype abbreviatedIRI="xsd:anyURI"/>

 </DataPropertyRange>

 <DisjointDataProperties>

 <DataProperty IRI="#hasGenus"/>

 <DataProperty IRI="#hasSpecies"/>

 </DisjointDataProperties>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Animate</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">An Animate

PhysicalResource is a biological entity that an Operation acts upon.

these can be unambiguously described by the genus and species of the

organism. Animate Resrouces may requrie specicail consideration during

service invocation (e.g., transporting a living animal may require

environmental controls not needed when transporting blocks of

wood).</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Binding</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">Binding is derived

from the Binding as specified in the WSDL standard. It is the means by

which a service consumer connects to the endpoint providing a given

service. It is extended here to accmodate connections to non-web

services.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Delete</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">Delete corresponds

directly to the DELETE method as defined by the HTTP

standard.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Element</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">An Element is an

atomic portion of a VirtualResource; it is an atomic data element. it

may stand alone or it may be combined with other Elements to form a

Message. It corresponds to the Element defined in the WSDL

standard.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Get</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">Get corresponds

directly to the GET method as defined by the HTTP standard.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Inanimate</IRI>

164

 <Literal datatypeIRI="&rdf;PlainLiteral">An Inanimate

PhysicalResource is a tangible Resource that an Operation has some

effect on. It is distinct from an Animate PhysicalResource in that it

will generally not require the special considerations afforded to a

living being during service invocation.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Message</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">A Message is a complex

VirtualResource composed of one or more Elements. It corresponds to the

Message defined in the WSDL standard.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#NetworkBinding</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">NetworkBinding builds

upon Binding as defined in teh WSDL specification with the intention of

expanding it beyond the SOAP-based definition to account for binding to

the endpoint for any service that can be offered across a

network.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Notification</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">Notification

corresponds directly to the Notification operation as defined by the

WSDL standard.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#OneWay</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">OneWay corresponds

directly to the OneWay operation as defined by the WSDL

standard.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Operation</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">An Operation is the

basic functional unit of a service description. Operations are defined

by the StateChagne they effect on a Resource. The actual effect may be

nothing more than accepting some data elements as input and returning

corresponding data elements as output (e.g., returning a weather

forecast for a given location).

Operations are subdivided into the same categories as SOAP-based web

services; all interactions of any service provider and any service

consumer can be categorized in one of those ways.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#PhysicalBinding</IRI>

165

 <Literal datatypeIRI="&rdf;PlainLiteral">PhysicalBinding

extends the concept of a Binding as defined by WSDL to encompass

connections to the offeror of a service reqruies physical interaction

among the participants. For example, making use of the services of a

plumber to fix a leaky pipe requires the plumber to be physically

present at the location of the leak.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#PhysicalResource</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">PhysicalResource is a

subtype of Resource that describes tangible objects an Operation may

act upon. Both web services and physical services may act upon a

PhysicalResource.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Post</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">Post corresponds

directly to the POST method as defined by the HTTP standard.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Provider</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">Provider is the

business entity that is offering a service for use, whether a network

service or a physical service.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Put</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">Put corresponds

directly to the PUT method as defined by the HTTP standard.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#RequestResponse</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">RequestResponse is

based on the RequestResponse operation as defined by the WSDL standard.

It is extended with the HTTP methods GET, POST, PUT, and DELETE. This

is primarily to account for the needs of REST services; however, many

SOAP services use these methods also. Additionally, services that are

web based but are not normally considered REST services can be expected

to use one of these methods as their basis.

Beyond its use for web-based services, the RequestResponse operation is

the method in which physical services are invoked: the prospective

consumer communicates with the prospective provider to negotitate the

provision of the desired service; this is by definition a request-

response interaction.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Resource</IRI>

166

 <Literal datatypeIRI="&rdf;PlainLiteral">Resource is based on

the idea of a resource as understood in the context of REST services.

It is extended here and subclassed to accomodate the description of

resources beyond that anticiapted in the REST paradigm.

Resources are anything an Operation acts upon, whenther a physical

object the Operation may affect or an element of information that is an

input or output of an Operation in a web service. </Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#Service</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">A Service is an

arbitrary collection of one or more Operations. Ideally, a Service is

composed of Operations that have some logical connection, but that is

not requried.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#SolicitResponse</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">SolicitResponse

corresponds directly to the SolicitResponse operation as defined by the

WSDL standard.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#State</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">State is the condition

of some Resource that an Operation acts upon. An Operation may change

the State of the Resource.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#StateChange</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">StateChange is the

fundamental action performed by an Operation. There may be a null

StateChange for an Operation that only returns information and has no

effects on the State of a Resource (such as returning a weather report

for a given location). A StateChange is defined as teh transition

between some initial State and some final State. The exact means of the

StateChange is considered an implementation detail.</Literal>

 </AnnotationAssertion>

 <AnnotationAssertion>

 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>

 <IRI>#VirtualResource</IRI>

 <Literal datatypeIRI="&rdf;PlainLiteral">A VirtualResource is

an intangible Resource that an Operation may act upon. VirtualResources

generally take the form of electronic information, often in the form of

complex Messages composed of individual Elements.</Literal>

 </AnnotationAssertion>

</Ontology>

<!-- Generated by the OWL API (version 3.4.2)

http://owlapi.sourceforge.net -->

167

APPENDIX B: CPLEX OPL OUTPUT

The ECNE optimization formalism is implemented using the IBM CPLEX

Integrated Development Environment (IDE) implementation of OPL. The results of that

implementation are shown in the figures below.

Figure 21: ECNE Implementation Results

The code listing of the ECNE model is shown in the upper right quadrant of

Figure 21. Results of the optimization ncomputation are showin in the bottom right, and

168

details of the decision variables and the results of the decision expressions are shown in

the lower-left corner. An enlarged view of this data is shown in Figure 22.

Figure 22: Details of decision variables and expressions

169

REFERENCES

1. Erl T. Service-Oriented Architecture (SOA) Concepts, Technology and Design.

Prentice Hall; 2005.

2. Christensen E, Curbera F, Meredith G, Weerawarana S, editors. Web Services

Description Language (WSDL) 1.1 [Internet]. W3C; 2001. Available from:

http://www.w3.org/TR/wsdl

3. Chinnici R, Moreau J-J, Ryman A, Weerawarana S, editors. Web Services

Description Language (WSDL) Version 2.0 [Internet]. W3C; 2007. Available from:

http://www.w3.org/TR/wsdl20/

4. Akkiraju R, Farrell J, Miller JA, Nagarajan M, Sheth A, Verma K. Web Service

Semantics - WSDL-S [Internet]. Yorktown Heights, NY: Thomas J. Watson

Research Center; 2006 Jan. Report No.: RC23854 (W0601-132). Available from:

http://domino.research.ibm.com/library/cyberdig.nsf/papers/EF9FE52551FB21DC8

525710D005A8480/$File/rc23854.pdf

5. Kopecky J, Vitvar T, Bournez C, Farrell J. SAWSDL: Semantic Annotations for

WSDL and XML Schema. IEEE Internet Comput. 2007 Dec;11(6):60 –67.

6. Martin D, Paolucci M, McIlraith S, Burstein M, McDermott D, McGuinness D, et

al. Bringing Semantics to Web Services: The OWL-S Approach. Semantic Web

Services and Web Process Composition [Internet]. 2005 [cited 2009 Aug 9]. p. 26–

42. Available from: http://www.springerlink.com/content/rl5r1c8v64xvf0r8

7. Fielding R. Architectural Styles and the Design of Network-based Software

Architectures [Internet] [Doctoral Dissertation]. [Irvine, CA]: University of

California, Irvine; 2000. Available from:

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

8. Hadley MJ. Web application description language (WADL). Mountain View, CA,

USA: Sun Microsystems, Inc.; 2006.

9. Business Process Model and Notation, Version 1.2 [Internet]. Object Management

Group; 2009. Available from: http://www.omg.org/spec/BPMN/1.2/

170

10. Business Process Model and Notation (BPMN) Version 2.0 [Internet]. Object

Management Group; 2011. Available from: http://www.omg.org/spec/BPMN/2.0/

11. Feier C, Polleres A, Dumitru R, Domingue J, Stollberg M, Fensel D. Towards

intelligent web services: the web service modeling ontology (WSMO) [Internet].

2005 [cited 2012 Sep 16]. Available from: http://oro.open.ac.uk/23147/

12. Fensel D, Bussler C. The Web Service Modeling Framework WSMF. Electron

Commer Res Appl. 2002;1(2):113–37.

13. Patil AA, Oundhakar SA, Sheth AP, Verma K. Meteor-s web service annotation

framework. Proceedings of the 13th international conference on World Wide Web

[Internet]. New York, NY, USA: ACM; 2004 [cited 2009 Aug 11]. p. 553–62.

Available from:

http://portal.acm.org/citation.cfm?id=988672.988747&coll=portal&dl=ACM&type

=series&idx=SERIES968&part=series&WantType=Proceedings&title=WWW

14. Verma K, Gomadam K, Sheth AP, Miller JA, Wu Z. The METEOR-S approach for

configuring and executing dynamic web processes. 2005.

15. OMG MOF 2 XMI Mapping Specification v2.4.1 [Internet]. Object Mana; 2013.

Available from: http://www.omg.org/spec/XMI/2.4.1/

16. Klusch M, Kapahnke P. Semantic Web Service Selection with SAWSDL-MX.

Service Matchmaking and Resource Retrieval in the Semantic Web (SMR2 2008).

Karlsruhe, Germany; 2008. p. 3–17.

17. Klusch M, Kapahnke P, Zinnikus I. SAWSDL-MX2: A Machine-Learning

Approach for Integrating Semantic Web Service Matchmaking Variants. IEEE

International Conference on Web Services, 2009 ICWS 2009. 2009. p. 335 –342.

18. Klusch M, Fries B, Sycara K. Automated semantic web service discovery with

OWLS-MX. Proceedings of the fifth international joint conference on Autonomous

agents and multiagent systems [Internet]. Hakodate, Japan: ACM; 2006 [cited 2009

Aug 11]. p. 915–22. Available from: http://portal.acm.org/citation.cfm?id=1160796

19. Klusch M, Fries B, Sycara K. OWLS-MX: A hybrid Semantic Web service

matchmaker for OWL-S services. Web Semant Sci Serv Agents World Wide Web.

2009 Apr;7(2):121–33.

20. Klusch M, Kapahnke P. Adaptive signature-based semantic selection of services

with OWLS-MX3. Multiagent Grid Syst. 2012 Jan 1;8(1):69–82.

21. Klusch M, Kapahnke P. OWLS-MX3: An Adaptive Hybrid Semantic Service

Matchmaker for OWL-S. Proceedings of the 3rd International SMR2 2009

171

Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

[Internet]. Washington, DC, USA: CEUR Workshop Proceedings; 2009. Available

from: http://ceur-ws.org/Vol-525/paper3.pdf

22. Alasti M, Neekzad B, Hui J, Vannithamby R. Quality of service in WiMAX and

LTE networks [Topics in Wireless Communications]. Commun Mag IEEE.

2010;48(5):104–11.

23. Luo H, Shyu M-L. Quality of service provision in mobile multimedia-a survey.

Hum-Centric Comput Inf Sci. 2011;1(1):1–15.

24. Menascé DA, Ewing JM, Gomaa H, Malex S, Sousa JP. A framework for utility-

based service oriented design in SASSY. Proceedings of the first joint

WOSP/SIPEW international conference on Performance engineering [Internet]. San

Jose, California, USA: ACM; 2010 [cited 2010 May 25]. p. 27–36. Available from:

http://portal.acm.org/citation.cfm?id=1712605.1712612

25. Mabrouk NB, Beauche S, Kuznetsova E, Georgantas N, Issarny V. QoS-Aware

Service Composition in Dynamic Service Oriented Environments. In: Bacon JM,

Cooper BF, editors. Middleware 2009 [Internet]. Springer Berlin Heidelberg; 2009

[cited 2014 Jan 2]. p. 123–42. Available from:

http://link.springer.com/chapter/10.1007/978-3-642-10445-9_7

26. Mabrouk NB, Georgantas N, Issarny V. A Semantic End-to-end QoS Model for

Dynamic Service Oriented Environments. Proceedings of the 2009 ICSE Workshop

on Principles of Engineering Service Oriented Systems [Internet]. Washington, DC,

USA: IEEE Computer Society; 2009 [cited 2014 Jan 2]. p. 34–41. Available from:

http://dx.doi.org/10.1109/PESOS.2009.5068817

27. Mabrouk NB, Georgantas N, Issarny V. QoS-aware Service-oriented Middleware

for Pervasive Environments. Proceedings of the 10th ACM/IFIP/USENIX

International Conference on Middleware [Internet]. New York, NY, USA: Springer-

Verlag New York, Inc.; 2009 [cited 2014 Jan 2]. p. 27:1–27:2. Available from:

http://dl.acm.org/citation.cfm?id=1656980.1657017

28. Yu T, Lin K-J. Service Selection Algorithms for Composing Complex Services with

Multiple QoS Constraints. In: Benatallah B, Casati F, Traverso P, editors. Service-

Oriented Computing - ICSOC 2005 [Internet]. Springer Berlin Heidelberg; 2005

[cited 2013 Sep 21]. p. 130–43. Available from:

http://link.springer.com/chapter/10.1007/11596141_11

29. McIlraith SA, Son TC, Honglei Zeng. Semantic Web Services. Intell Syst IEEE.

2001;16(2):46–53.

172

30. Paolucci M, Srinivasan N, Sycara K, Nishimura T. Towards a Semantic

Choreography of Web Services: From WSDL to DAML-S. Proceedings of the

International Conference on Web Services (ICWS 2003). 2003. p. 22–6.

31. Sycara K, Paolucci M, Ankolekar A, Srinivasan N. Automated Discovery,

Interaction and Composition of Semantic Web Services. Web Semant Sci Serv

Agents World Wide Web [Internet]. 2011 Mar 8;1(1). Available from:

http://imap.websemanticsjournal.org/index.php/ps/article/view/25

32. Larvet P, Christophe B, Pastor A. Semantization of Legacy Web Services: From

WSDL to SAWSDL. Internet and Web Applications and Services, 2008 ICIW ’08

Third International Conference on. 2008. p. 130–5.

33. Recker JC, Mendling J. On the Translation between BPMN and BPEL: Conceptual

Mismatch between Process Modeling Languages. 18th Int Conf Adv Inf Syst Eng

Proc Workshop Dr Consort. 2006;521–32.

34. Juric MB. Business Process Execution Language for Web Services BPEL and

BPEL4WS 2nd Edition [Internet]. Packt Publishing; 2006 [cited 2010 Mar 26].

Available from:

http://portal.acm.org/citation.cfm?id=1199048&CFID=83594666&CFTOKEN=796

03150

35. Kloppmann M, Koenig D, Laymann F, Pfau G, Rickayzen A, von Riegen C, et al.

WS-BPEL Extension for People – BPEL4People: A Joint White Paper by IBM and

SAP [Internet]. 2007. Available from:

http://democritique.org/IT/Documents/BPEL/BPEL4People_white_paper.pdf

36. Clement L, Koenig D, Mehta V, Mueller R, Rangaswamy R, Rowley M, et al.,

editors. WS-BPEL Extension for People (BPEL4People) Specification [Internet].

OASIS; 2010. Available from: http://docs.oasis-open.org/bpel4people/bpel4people-

1.1.html

37. Clement L, Koenig D, Mehta V, Mueller R, Rangaswamy R, Rowley M, et al.,

editors. Web Services – Human Task (WS-HumanTask) Specification [Internet].

2010. Available from: http://docs.oasis-open.org/bpel4people/ws-humantask-

1.1.html

38. Cardoso J, Sheth A. Semantic E-Workflow Composition. J Intell Inf Syst. 2003

Nov;21:191–225.

39. McDowall J, Kerschberg L. Agent Negotiation Strategies for Composing Service

Workflows. Washington, DC, USA; 2012.

173

40. Alodhaibi K. Decision-Guided Recommenders With Composite Alternatives

[Internet]. [Fairfax, VA]: George Mason University; 2011. Available from:

http://hdl.handle.net/1920/6591

41. Brodsky A, Morgan Henshaw S, Whittle J. CARD: a decision-guidance framework

and application for recommending composite alternatives. Proceedings of the 2008

ACM conference on Recommender systems [Internet]. New York, NY, USA:

ACM; 2008 [cited 2012 Sep 23]. p. 171–8. Available from:

http://doi.acm.org/10.1145/1454008.1454037

42. Brodsky A, Wang XS. Decision-Guidance Management Systems (DGMS):

Seamless Integration of Data Acquisition, Learning, Prediction and Optimization.

Hawaii International Conference on System Sciences, Proceedings of the 41st

Annual. 2008. p. 71.

43. Alodhaibi K, Brodsky A, Mihaila GA. COD: Iterative Utility Elicitation for

Diversified Composite Recommendations. 2010 43rd Hawaii International

Conference on System Sciences (HICSS). 2010. p. 1 –10.

44. McDowall J, Kerschberg L. Optimizing Service Selection in Dynamic Workflow

Composition: Using Social Media to Develop Recommendations. San Jose,

California, USA; 2012.

45. McDowall J, Kerschberg L. Leveraging Social Networks to Improve Service

Selection in Workflow Composition. Istanbul, Turkey; 2012.

46. Floyd RW. Algorithm 97: shortest path. Commun ACM. 1962;5(6):345.

47. McDowall J, Brodsky A, Kerschberg L. A Formal Model for Optimizing Dynamic

Service Composition. Richmond, VA; 2015.

48. Mabrouk NB, Beauche S, Kuznetsova E, Georgantas N, Issarny V. QoS-Aware

Service Composition in Dynamic Service Oriented Environments. In: Bacon JM,

Cooper BF, editors. Middleware 2009 [Internet]. Springer Berlin Heidelberg; 2009

[cited 2013 Mar 9]. p. 123–42. Available from:

http://link.springer.com/chapter/10.1007/978-3-642-10445-9_7

49. Mabrouk NB, Georgantas N, Issarny V. QoS-aware service-oriented middleware for

pervasive environments. Proceedings of the 10th ACM/IFIP/USENIX International

Conference on Middleware [Internet]. New York, NY, USA: Springer-Verlag New

York, Inc.; 2009 [cited 2013 Mar 9]. p. 27:1–27:2. Available from:

http://dl.acm.org/citation.cfm?id=1656980.1657017

174

50. FIPA Contract Net Interaction Protocol Specification [Internet]. Foundation for

Intelligent Physical Agents; 2002. Available from:

http://www.fipa.org/specs/fipa00029/SC00029H.pdf

51. Muthaiyah S, Barbulescu M, Kerschberg L. An Improved Matching Algorithm for

Developing a Consistent Knowledge Model across Enterprises Using SRS and

SWRL. Hawaii International Conference on System Sciences. Los Alamitos, CA,

USA: IEEE Computer Society; 2009. p. 1–9.

52. Rumbaugh J, Jacobson I, Booch G. Unified Modeling Language Reference Manual,

The (2nd Edition). Pearson Higher Education; 2004.

53. Zur Mehlan M. Enterprise Architecture based on Design Primitives and Patterns:

Guidelines for the Design and Development of Event-Trace Descriptions (DoDAF

OV-6c) using BPMN [Internet]. Business Transformation Agency; 2009. Available

from: http://dodcio.defense.gov/Portals/0/Documents/DODAF/Primitives_OV-

6c_Guidelines.pdf

54. Zur Mehlan M, Recker J. How Much Language Is Enough? Theoretical and

Practical Use of the Business Process Modeling Notation. Advanced Information

Systems Engineering. 2008.

55. McGuinness D, van Harmelen F, editors. OWL Web Ontology Language Overview

[Internet]. W3C; 2004. Available from: http://www.w3.org/TR/owl-features/

56. Baader F, McGuinness D, Nardi D, Patel-Schneider PF, editors. The Description

Logic Handbook: Theory, Implementation, and Applications. Cambridge University

Press; 2003. 568 p.

57. Lassila O, Swick RR, Wide W, Consortium W. Resource Description Framework

(RDF) Model and Syntax Specification. 1998.

58. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M. SWRL: A

Semantic Web Rule Language Combining OWL and RuleML. W3C Member

Submission; 2004.

59. Muthaiyah S, Kerschberg L. A Hybrid Ontology Mediation Approach for the

Semantic Web. Int J E-Bus Res. 2008;4(4):79–91.

60. Muthaiyah S, Barbulescu M, Kerschberg L. A Hybrid Similarity Matching

Algorithm for Mapping and Upgrading Ontologies via a Multi-Agent System.

Heraklion, Crete Island, Greece; 2008.

175

61. Linné C von, Gmelin JF. Systema Naturae: Per Regna Tria Naturae, Secundum

Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonomis,

Locis. 13th ed. Leipzig: G.E. Beer; 1788.

62. Noy NF, Crubézy M, Fergerson RW, Knublauch H, Tu SW, Vendetti J, et al.

Protege-2000: an open-source ontology-development and knowledge-acquisition

environment. AMIA Annu Symp Proc. 2003;953:953.

63. Horridge M, Drummond N, Goodwin J, Rector AL, Stevens R, Wang H. The

Manchester OWL Syntax. OWLed [Internet]. 2006 [cited 2014 Mar 22];216.

Available from: http://owl1-1.googlecode.com/svn-

history/r670/trunk/www.webont.org/owled/2006/acceptedLong/submission_9.pdf

64. Suguri H. A standardization effort for agent technologies: The Foundation for

Intelligent Physical Agents and its activities. Proceedings of the 32nd Annual

Hawaii International Conference on Systems Sciences, 1999 HICSS-32. 1999. p. 10

pp.–.

176

BIOGRAPHY

John D. McDowall graduated from Monticello High School, Monticello, New York, in

1985. He received his Bachelor of Science from the United States Naval Academy in

1989. He served as a CH-53E pilot in the United States Marine Corps and received his

Master of Science in Computer Information Systems from Boston University in 1999.

