
 

METHOD AND MODELS TO ENABLE OPTIMAL AUTOMATED SERVICE 

COMPOSITION 

by 

 

John D. McDowall 

A Dissertation 

Submitted to the 

Graduate Faculty 

of 

George Mason University 

in Partial Fulfillment of 

The Requirements for the Degree 

of 

Doctor of Philosophy 

Information Technology 

 

Committee: 

 

  Dr. Larry Kerschberg, Dissertation Co-

Director 

  Dr. Alexander Brodsky, Dissertation Co-

Director 

  Dr. Sam Malek, Committee Member 

  Dr. Stephen Nash, Senior Associate Dean 

  Dr. Kenneth S. Ball, Dean, Volgenau School 

of Engineering 

Date:   Spring Semester 2015  

George Mason University 

Fairfax, VA  



 

Method and Models to Enable Optimal Automated Service Composition 

A Dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at George Mason University 

by 

John D. McDowall 

Master of Science 

Boston University, 1999 

Bachelor of Science 

United States Naval Academy, 1989 

Co-Directors: Larry Kerschberg, Professor, and Alexander Brodsky, Associate Professor 

Department of Computer Science 

Spring Semester 2015 

George Mason University 

Fairfax, VA 



ii 

 

 
This work is licensed under a creative commons  

attribution-noderivs 3.0 unported license. 

 

http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/


iii 

 

DEDICATION 

This is dedicated to the glory of God and to my parents, Adele and Jim, who encouraged 

my curiosity. Also to my wife Michele and our children Lindsay and Brooke, who have 

learned to endure the results of my parents’ encouragement. 



iv 

 

ACKNOWLEDGEMENTS 

I would like to thank the members of my committee, especially co-directors Larry 

Kerschberg and Alexander Brodsky, for countless hours reviewing and editing my 

content. I would also like to thank Sam Malek for his valuable guidance and very flexible 

schedule, and the late Anderw Sage, an original member of my committee whose work 

on complex adaptive systems was a major influence on my thinking. Finally, I would like 

to thank the core members of my dissertation writers’ group: Susan Farley, Mark Coletti, 

and Jeff Bassett. Their encouragement, input, and unflagging optimism were invaluable. 

 



v 

 

TABLE OF CONTENTS 

Page 

List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................... ix 

List of Definitions ............................................................................................................... x 

List of Abbreviations or Symbols ...................................................................................... xi 

Abstract ............................................................................................................................ xiii 

1. Introduction ................................................................................................................. 1 

1.1. Motivation ............................................................................................................ 2 

1.2. Research Gap [Related Work and its Limitations]............................................... 3 

1.3. Thesis and Contributions ...................................................................................... 9 

1.4. Dissertation Organization ................................................................................... 15 

2. Related Work ............................................................................................................. 17 

2.1. Service Descriptions ........................................................................................... 17 

2.2. Process Modeling Languages ............................................................................. 22 

2.3. Optimization ....................................................................................................... 27 

3. Overview of the Druid Service Composition Methodology ...................................... 33 

3.1. Overview of the Service Composition Methodology ......................................... 34 

3.2. Service Composition by Example ...................................................................... 38 

3.3. Service Composition System Architecture ........................................................ 45 

4. Formal Optimization Service Composition Framework ........................................... 51 

4.1. Terminology ....................................................................................................... 51 

4.2. Optimal Service Composition ............................................................................ 52 

4.3. Mathematical Programming Formulation .......................................................... 64 

5. Sucellos: A Quality of Service Model ....................................................................... 71 

5.1. Description of the SUCELLOS QoS Model ...................................................... 72 

5.2. QoS Calculation ................................................................................................. 81 

6. Extensions to BPMN ................................................................................................. 84 



vi 

 

6.1. Language Selection ............................................................................................ 85 

6.2. Language Extension ........................................................................................... 87 

7. Ogma: A Service Description Language ................................................................... 90 

7.1. Design Challenges .............................................................................................. 91 

7.2. Model Definition ................................................................................................ 95 

8. Proof of Concept Prototype ..................................................................................... 120 

8.1. Design............................................................................................................... 120 

8.2. Implementation................................................................................................. 121 

8.3. Execution Example .......................................................................................... 128 

8.4. Scalability ......................................................................................................... 137 

9. Conclusions and Future Work ................................................................................. 141 

9.1. Key Contributions ............................................................................................ 141 

9.2. Conclusions ...................................................................................................... 143 

9.3. Future Work ..................................................................................................... 144 

Appendix A: OWL Specification of OGMA description language ................................ 146 

Appendix B: CPLEX OPL Output .................................................................................. 167 

References ....................................................................................................................... 169 

Biography ........................................................................................................................ 176 

 



vii 

 

LIST OF TABLES 

Table Page 

Table 1: Example Services ................................................................................................ 39 
Table 2: Convert Location Inputs ..................................................................................... 40 

Table 3: Convert Location Outputs................................................................................... 41 
Table 4: QoS Term Definitions......................................................................................... 51 

Table 5: Convert Location Inputs ..................................................................................... 61 
Table 6: Convert Location Outputs................................................................................... 61 
Table 7: Get Weather Inputs ............................................................................................. 62 
Table 8: Get Weather Outputs .......................................................................................... 62 

Table 9: Virtual Service for Weather Reporting ............................................................... 63 
Table 10: Service Summary .............................................................................................. 63 

Table 11: A2S Mapping for Weather Process .................................................................. 64 
Table 12: VSI for Weather Process .................................................................................. 64 
Table 13: OPL Data Initialization ..................................................................................... 65 

Table 14: OPL Data Computation .................................................................................... 66 
Table 15: OPL Decision Expressions ............................................................................... 67 

Table 16: OPL Optimization Calculation and Constraints ............................................... 69 
Table 17: Service Definition ............................................................................................. 96 

Table 18: Marriott Service Description ............................................................................ 96 
Table 19: Binding Definition ............................................................................................ 97 

Table 20: Marriott's Binding ............................................................................................. 98 
Table 21: Provider Definition ........................................................................................... 99 

Table 22: Provider Information ........................................................................................ 99 
Table 23: Resource Description ...................................................................................... 100 
Table 24: PhysicalResource Definition .......................................................................... 101 
Table 25: Medical Resources .......................................................................................... 102 
Table 26: State Definition ............................................................................................... 102 

Table 27: State Example ................................................................................................. 102 
Table 28: Operation Definition ....................................................................................... 103 
Table 29: Operation Example ......................................................................................... 105 

Table 30: StateChange Definition ................................................................................... 105 
Table 31: StateChange Example ..................................................................................... 106 
Table 32: Service Object Properties ............................................................................... 106 
Table 33: Operation Properties ....................................................................................... 107 

Table 34: Network Binding Properties ........................................................................... 108 
Table 35: Physical Binding Properties ............................................................................ 109 



viii 

 

Table 36: Provider Object Properties .............................................................................. 110 
Table 37: Resource Object Properties............................................................................. 111 
Table 38: Animate Object Properties .............................................................................. 112 
Table 39: Inanimate Object Properties ........................................................................... 112 

Table 40: Virtual Resource Object Properties ................................................................ 113 
Table 41: Element Resource Object Properties .............................................................. 113 
Table 42: Message Resource Object Properties .............................................................. 114 
Table 43: State Object Properties ................................................................................... 114 
Table 44: StateChange Object Properties ....................................................................... 115 

 



ix 

 

LIST OF FIGURES 

Figure Page 

Figure 1: Druid Methodology Overview .......................................................................... 36 
Figure 2: Sample Process .................................................................................................. 40 

Figure 3: Weather Process Decomposition ....................................................................... 42 
Figure 4: Candidate Service Compositions....................................................................... 44 

Figure 5: Service Composition Architecture .................................................................... 46 
Figure 6: Service Composition Methodology Usage ........................................................ 49 
Figure 7: Sample Weather Process ................................................................................... 61 
Figure 8: Composition optimization ................................................................................. 70 

Figure 9: Applying QoS metrics ....................................................................................... 72 
Figure 10: Using BPMN extensions ................................................................................. 85 

Figure 11: Creating service descriptions........................................................................... 90 
Figure 12: Overview of the DRUID methodology ......................................................... 121 
Figure 13: Creating a service description ....................................................................... 129 

Figure 14: Specification of a BPMN process model ...................................................... 130 
Figure 15: Annotation of semantic information on an activity ....................................... 131 

Figure 16: Selecting a process model ............................................................................. 132 
Figure 17: The JADE agent framework during model processing ................................. 133 

Figure 18: GUI showing services that match process activities ..................................... 134 
Figure 19: GUI with initial all possible service compositions ........................................ 135 

Figure 20: ECNE Implementation Results ..................................................................... 167 
Figure 21: Details of decision variables and expressions ............................................... 168 

 



x 

 

LIST OF DEFINITIONS 

Definition Page 

Definition 1: Definition of a Service ................................................................................ 53 
Definition 2: Definition of a Virtual Service .................................................................... 54 

Definition 3: Definition of Service-to-Activity Mapping ................................................. 55 
Definition 4: Definition of a Virtual Service Instance ...................................................... 56 

Definition 5: Definition of Service Cost ........................................................................... 57 
Definition 6: Definition of Service Duration .................................................................... 58 
Definition 7: Definition of Service Rating........................................................................ 59 
Definition 8: Definition of an Optimal Service Composition ........................................... 60 

 



xi 

 

LIST OF ABBREVIATIONS OR SYMBOLS 

Application Programming Interface ............................................................................... API 

Business Process Execution Language ........................................................................ BPEL 

Business Process Execution Language for Web Services ................................... BPEL4WS 

Business Process Modeling Ontology ....................................................................... BPMN 

Cluster-Optimizing-Diversity ....................................................................................... COD 

Composite Alternative Recommendation Development ........................................... CARD 

DARPA Agent Markup Language ............................................................................. DAML 

DARPA Agent Markup Language for Services..................................................... DAML-S 

Decision Guidance Structured Query Language..................................................... DG-SQL 

Defense Advanced Research Projects Agency ........................................................ DARPA 

Description Logics ........................................................................................................... DL 

Extensible Markup Language ....................................................................................... XML 

Foundation for Independent Physical Agents ............................................................... FIPA 

Graphical User Interface ................................................................................................ GUI 

Managing End-To-End Operations—Semantic Web Services ..........................METEOR-S 

Model-Driven Architecture .......................................................................................... MDA 

Optimization Programming Language ........................................................................... OPL 

OWL for Services ..................................................................................................... OWL-S 

Public Key Infrastructure ................................................................................................ PKI 

Quality of Service .......................................................................................................... QoS 

Representational State Transfer ................................................................................... REST 

Resource Description Framework.................................................................................. RDF 

Self-Architecting Software Systems ......................................................................... SASSY 

Semantically Annotated WSDL ............................................................................ SAWSDL 

Service Oriented Architecture........................................................................................SOA 

Short Message Service ...................................................................................................SMS 

Simple Object Access Protocol ................................................................................... SOAP 

Structured Query Language ........................................................................................... SQL 

Support Vector Machine ............................................................................................... SVM 

Universal Modeling Language ...................................................................................... UML 

Universal Resource Identifier ......................................................................................... URI 

Universal Transverse Mercator ..................................................................................... UTM 

Virtual Service Instance .................................................................................................. VSI 

Web Application Description Language ....................................................................WADL 

Web Ontology Language ............................................................................................. OWL 

Web Services BPEL ............................................................................................... WSBPEL 



xii 

 

Web Service Description Language ........................................................................... WSDL 

Web Service Description Language-Semantic ....................................................... WSDL-S 

Web Services Modeling Framework ......................................................................... WSMF 

Web Services Modeling Ontology ............................................................................ WSMO 

World Wide Web Consortium ...................................................................................... W3C 

XML Metadata Interchange ........................................................................................... XMI 

XML Schema Definition................................................................................................XSD 

Zone Improvement Plan ...................................................................................................ZIP 

 



xiii 

 

ABSTRACT 

METHOD AND MODELS TO ENABLE OPTIMAL AUTOMATED SERVICE 

COMPOSITION 

John D. McDowall, Ph.D. 

George Mason University, 2015 

Dissertation Co-Director: Dr. Larry Kerschberg 

Dissertation Co-Director: Dr. Alexander Brodsky 

 

Since the development of the Service Oriented Architecture concept, business analysts 

and system developers have looked forward to the day when they could reconfigure 

applications to adapt to new business by combining services in new ways to adapt to 

changing business needs. Technologies such as the Web Services Description Language 

and Business Process Modeling Notation (BPMN) provide key building blocks but are 

not sufficient to enable run-time reconfiguration of services. To enable this functionality, 

this research develops Druid, a framework for dynamically composing web services into 

executable processes based on a business process model defined using the BPMN 

modeling language. To support this framework, this research develops a service 

description modeling language, extensions to the BPMN language, and a formal model 

for composing services based on a business model. This research also develops a Quality 

of Service (QoS) model used for calculating the optimal service composition. 
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1. INTRODUCTION 

The development of the Service Oriented Architecture (SOA) concept in the late 

20
th

 century promised a revolution in system development and integration. Despite a 

great deal of research and commercial development, we have not realized the promise of 

systems that can dynamically discover and invoke new services. The flexible, loosely-

coupled systems envisioned when the SOA concept was first proposed have not 

materialized. In practice, SOA services are widely deployed, but as a means to allow 

third-party developers to integrate services into new, value-added applications known as 

“mashups.” With the exception of some research programs, systems that allow end users 

to compose services from different systems into a new workflow do not exist. We want to 

field systems that give end users and business analysts the power to define a process they 

need to choreograph, find services that can contribute to that process, compose the 

services together into potential executable workflows, and then select the best option 

from among the candidate compositions, based on quality of service metrics. And we 

want to do this without the long development-integration-test cycles that have 

characterized software development for decades. 

This research focuses on automating the dynamic composition of services into 

optimal executable workflows. The approach taken in this dissertation involves an 

extension to the Business Process Modeling Notation (BPMN) modeling language, the 
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creation of a semantic service description language, and the specification of an 

optimization model that selects the optimal composition based on a number of quality-of-

service metrics.  

1.1. Motivation 
The SOA concept has an instinctive appeal, beyond the time and cost savings 

inherent in reusing existing services, rather than developing new components from 

scratch. Part of this appeal comes from the fact that the SOA concept in information 

systems parallels the real world as we experience it: we live in a service-oriented world. 

Consider the following scenarios: 

 A man’s car is in need of a tune-up, and rather than go to the trouble of 

doing the maintenance himself, he drops his car off with a mechanic who 

changes the oil and sparkplugs, lubricates the chassis, and checks the 

brakes. 

 A woman wants to ensure she invests her retirement savings in a way that 

will protect her principal while ensuring a reasonable rate of return. Rather 

than devoting many hours to monitoring the financial markets and 

updating her portfolio periodically, she contracts with a financial advisor 

to manage her retirement savings. 

 A family is planning a vacation, and rather than find a listing of all the 

hotels near their destination and contacting each one individually to 

determine the cost and availability of rooms, they contact a travel agent 



3 

 

with their destination, dates of travel, and budget and ask the travel agent 

to make the arrangements. 

Each of these scenarios is very different from the others, but they share a common 

theme: instead of doing the work himself, a person contracts with a service provider to 

perform the desired work. Each service provider has some interface with some required 

inputs and some expected outputs (e.g., the mechanic requires in-person interaction, with 

a car in need of maintenance as the input and a properly maintained car as the output). 

Economists describe this outsourcing of tasks as specialization, where someone 

with advanced training or experience in the matter at hand, can perform the task better 

than a layman. In addition to having the advanced skills required to perform the task well, 

the service provider frees up the consumer to spend time on other tasks. The development 

of the SOA concept extends this idea from the physical world into the digital world of 

information systems. Instead of a system developer creating each and every component 

of a system, some functions are outsourced to external service providers. 

We live in a service-oriented world; SOA merely extends this idea to the way we 

design and implement information systems. However, current technologies have several 

limitations that prevent us from realizing the full potential of SOA systems; these 

limitations are discussed in the following section. 

1.2. Research Gap [Related Work and its Limitations] 
The initial development of the SOA concept (1) was based on web services 

described using the Web Service Description Language (WSDL) (2,3) and exposed a 

Simple Object Access Protocol (SOAP) interface to service requestors. The WSDL 
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specification includes only syntactic information—names and data types of individual 

elements. However, the problem with purely syntactic descriptions is that they make 

matchmaking difficult. Each WSDL document describes the operations of a given service 

and each operation’s inputs and outputs. With a syntactic description, parameter names 

(operation names, input and output names) must be identical or the matchmaking process 

will be unsuccessful. For example, a parameter called “zipCode” will not match a 

parameter with the same meaning named “zip_code.” Coordinating operation and 

parameter names across a large number of service providers is impractical, but adding 

semantic annotations to a service description offers a clean solution to this problem. 

To address the limitations of syntax-based service description models, several 

research efforts have developed semantic service specifications. The WSDL-Semantic 

(WSDL-S) project (4)  extended the WSDL specification with semantic markup of the 

operations and parameters for services, as did the Semantically Annotated WSDL 

(SAWSDL) project (5), which added semantic annotations to both WSDL and XML 

schema to address the difficulties of syntactic matchmaking. This was accomplished by 

adding a reference to an external ontology, as well as optional generalization or 

specialization notations. Each of these enabled semantic matchmaking techniques, greatly 

improving the ability to dynamically compose services. The Web Ontology Language 

(OWL) for Services (OWL-S) project (6) took a different approach by creating a process 

description using OWL and grounding it in WSDL. OWL-S also captured the intended 

business process in the OWL-S description by annotating the individual operations to 

indicate how they might be composed together. In addition to enabling semantic 
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matchmaking, the OWL-S approach brought to bear the power of the OWL 

specification’s support for machine reasoning about the ontology specifications. All of 

these projects built upon the WSDL specification, adding semantics to the basic WSDL 

structure in order to enable service matchmaking. However, by basing their work on 

WSDL, these projects limited themselves to SOAP-based web services. 

Meanwhile a new style of web services, based on the Representational State 

Transfer (REST) model (7) was gaining popularity; because the WSDL specification did 

not initially support REST services, none of the previously-described approaches to web 

service semantics could accommodate REST services. However, the original REST 

service proposal did not include a specification for machine-readable service 

descriptions. While the release of WSDL 2.0 included support for REST services, WSDL 

has not been widely adopted as a means of describing REST service interfaces. The Web 

Application Description Language (WADL) (8) was developed as a WSDL analog to 

specifically support REST services, but like WSDL, it includes no support for semantic 

description of the service operations or parameters. The WADL specification has not 

been widely adopted, nor does it satisfy our need to semantically describe service 

operations or parameters. 

In addition to those limitations already mentioned, all of these service description 

formats share an additional limitation: they describe only web services. That is, they lack 

the ability to describe any service other than those offered via an interface to a digital 

information system. In practice, there are many services that are either purely physical 

(e.g., a doctor interpreting an X-ray) or may be offered in both physical and digital forms. 
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For example, a hotel may offer a web service for completing a reservation and also 

maintain a staff that allows customers to make reservations over the telephone. Both are 

equivalent services with different interfaces, but we have no standardized way to describe 

the physical service. This is important because most practical business processes require 

some level of interaction with the physical world, from something as simple as a final 

approval of an expense report, to complex services such as imagery analysis. Any system 

or framework  to compose services into useable workflows must account for the 

possibility of physical services as part of the composition. 

However, none of the previous service description efforts developed a service 

description that encompassed both SOAP- and REST-based services, and none of them 

developed a general service description language suitable for describing both physical 

and digital services. Moreover, none of these service description efforts included a means 

for describing how those services could be incorporated into a larger process. A service 

description language is of limited utility by itself. The necessary complement to service 

descriptions is a means of specifying a process the user wishes to implement. Services are 

rarely used individually; they are most often part of a larger business process. A business 

process is a sequential series of discrete activities intended to accomplish some 

meaningful unit of work. To make dynamic service composition useful, a system requires 

some means for specifying the overall business process the services support. A 

convenient way of doing this would be to leverage process modeling languages such as 

Business Process Modeling Language (BPMN) (9,10) to define a process and then match 

services to that process. This would allow business analysts to express their needs in a 
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familiar language, minimizing the ambiguity inherent in communicating their needs to 

software developers. 

One approach to defining a process model for composing web services was 

explored by the Web Services Modeling Ontology (WSMO) (11) and the Web Services 

Modeling Framework (12). Each approach developed a framework for describing web 

services and business processes in a manner that enabled matchmaking between 

individual steps in the process and available services as well as matchmaking among 

service input and output parameters. While these systems both demonstrated good results, 

they were limited to SOAP-based web services and did not use a standardized process 

modeling language such as BPMN. Instead, they each implemented their own process 

definition notation to express the desired process flow. 

Another research effort that sought to define a process specification for service 

composition was the METEOR-S (Managing End-to-End Operations – Semantic Web 

Services) project (13,14). METEOR-S used Universal Modeling Language (UML) 

activity diagrams to define business processes, together with a semantic web service 

description, to enable the automated matchmaking of services to process steps and to 

each other. The METEOR-S approach worked well for UML diagrams, but did have 

some limitations. Like other approaches, it was limited to SOAP-based web services. In 

addition, UML is a visual modeling language intended for human consumption and 

interpretation; it has no representation designed to facilitate automated processing. While 

the layout of a UML model can be described using XML Metadata Interchange (XMI) 

specification (15), XMI is suited to exchanging UML models among modeling tools, not 
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for reasoning about the contents of the model. Also, UML diagrams are inherently more 

ambiguous than specialized process modeling languages such as BPMN because they 

lack some of the fine-grained flow-control notations that are part of BPMN. 

Taking a different approach to the problem of mapping services into a process 

model, the SAWSDL-MX (16,17) and the OWLS-MX (18–21) families of matchmakers 

developed semantic matchmakers that used the SAWSDL and OWL-S specifications, 

respectively, to perform matchmaking among service interfaces. Neither project 

specifically tried to match services to steps in a process flow, but instead tried to 

determine if two service interface definitions were semantically equivalent. This is, in 

effect, matching a service description to a process step that describes the type of service 

needed (i.e., the process defines a series of service templates required to complete the 

process). While they both demonstrated success, each of these approaches was limited to 

using SOA-based web services within their own service description language, and did not 

explore specific process modeling languages. 

What all these process-definition and service-composition methods lack is a 

means for assessing alternative compositions based on Quality of Service (QoS) metrics. 

Given some number of potential service compositions, currently there is no means of 

determining which service composition is the best available. This assessment should be 

based on an analysis of QoS metrics of each of the services and the QoS of the 

composition as a whole. In addition, little work has been done on documenting the QoS 

attributes of services beyond the network-focused criteria of response times and data 

throughput as in M. Alasti et al(22,23). These criteria are appropriate to web services 
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delivering streaming video, but are not well suited to QoS aspects such as cost 

minimization or user satisfaction. 

One approach to assessing QoS aspects of compositions is the Self-Architecting 

Software Systems (SASSY) project (24). However, SASSY has focused on assembling a 

software architecture based on the QoS attributes of architecture components and the 

desired QoS expressed in an architecture model, and not on assessing the QoS of 

individual services. While SASSY demonstrated a successful architecture composition on 

this basis, it was designed for selecting software components based on the QoS of those 

pre-defined components; SASSY was not designed to support the run-time discovery and 

composition of general purpose services.  

However, to assess the QoS of alternative service compositions we need to 

provide users with a flexible means of defining and evaluating service QoS. Relatively 

little work has been done on the optimization of service compositions. The work 

described by Mabrouk et al (25–27) built a semantic QoS model that could be used to 

assess service compositions based on the evaluation of QoS attributes, but their work 

focused on documenting the QoS for services and did not extend to optimizing the 

composition of a set of services assembled to complete a workflow. In fact, as described 

by Yu and Lin in (28), such an optimization is an NP-hard problem that has received little 

attention.  

1.3. Thesis and Contributions 
The focus of this dissertation is to address the limitations described above and 

explain the development of tools and models that overcome those limitations. 
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Thesis 
It is possible to develop a system that accepts as input a semantically-annotated 

process model, parses that model and finds candidate services that perform each of the 

activities described in the model, and calculates an optimal composition of the available 

services based on QoS attributes of the services and the overall composed process. 

Furthermore, it is possible to develop a service description language that enables the 

activity-to-service and service-to-service matchmaking necessary to enable the service 

composition. Finally, it is possible to optimize the selection of services based on QoS 

factors defined for each service and for the service composition as a whole. 

Contributions 
Composing services into a complete workflow traditionally has been a manual 

programming process that cannot be automated using current techniques. To enable this 

automation, we need to match services to each activity in a process model; we need to be 

able to match services to each other to create compositions, and, more importantly, we 

need to select an optimal composition. To achieve these goals, this research develops a 

system that allows, as an example, business users to automate the execution of a business 

process such as booking travel reservations. To enable activity-to-service matchmaking, 

this research defines 1) an extension to the BPMN language for the semantic annotation 

of individual process activities and 2) a language for specifying services that enables both 

automated activity-to-service matchmaking and service-to-service matchmaking. To 

select the optimal service composition, this research develops several elements. The first 

is a model that describes the QoS metrics of services and processes. The QoS model is 

combined with a formal definition of processes and services to develop an optimization 
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model. This optimization model enables the selection of an optimal service composition 

from among multiple candidate compositions. To demonstrate the feasibility of this work, 

this research also develops a proof of concept prototype that implements all of these 

developments. 

More specifically, the key contributions of this research are summarized as 

follows: 

 Service Composition Methodology that provides a step-by-step 

explanation of the process of composing services into an optimal 

workflow. This process starts with a BPMN model and continues through 

the selection of an optimal service composition. 

 Semantic Extension to BPMN to support the semantic annotation of 

process activities. This model defines the business process that the service 

composition will perform. 

 Service Description Language supporting the semantic description of 

digital and physical services. This language enables the automated 

matching of services to process activities. 

 QoS Model that describes QoS characteristics of digital and physical 

services. This model defines the metrics that will be used in the 

optimization calculation. 

 Optimal Service Composition Model that formally defines an optimal 

service composition. This is a formal mathematical definition of the 

service composition process and the optimization calculation. 
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 QoS Optimization Implementation in Optimization Programming 

Language (OPL) using the IBM CPLEX suite. This is an implementation 

of the optimization model using mathematical programming.. 

 Proof of Concept Prototype demonstrating the feasibility of this 

approach. This is a collection of tools and components that implement the 

processes and specifications defined in this research. 

The design goals of a system that supports the type of dynamic service 

composition described above include allowing a service provider to describe services 

with the requisite semantic detail; this requires a service description language that 

supports the semantic annotation of the operations and the inputs and outputs of both 

digital and physical services. The system should also allow a business user to specify the 

desired process using a standard process modeling language; this requires the extension 

of a process modeling language to support the semantic annotation needed for activity-to-

service matchmaking. Finally, the system should be able to analyze the QoS 

characteristics of the services and develop a recommendation for the optimal service 

composition based on those QoS metrics; this requires a formal model of services, 

processes, and QoS metrics that can be subjected to optimization analysis. 

The key contributions of this research are described in the following paragraphs: 

Semantic Extensions to BPMN 
Activity-to-service matchmaking requires that activities in a process model 

include a semantic specification of the task performed by each activity. In order to enable 

the semantic specification of individual activities, this research extends the BPMN 
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language to support the annotation of individual process steps with semantic descriptions 

that reference external ontologies describing the relevant business domain. These 

references enable an analyst to specify the type of task performed at each step of the 

process, and optionally the semantic types of the inputs and outputs to that step in the 

process. For example, an activity named “Get Weather” may be assigned a task type 

“getCurrentWeather” with a single input parameter with a semantic type “postal_code” 

and two output parameters with semantic types “max_temp” and “current_temp.” 

Service Description Language (Ogma1) 
Activity-to-service matchmaking also requires that service descriptions include 

semantic detail about the operations, inputs, and outputs of that service. This research 

develops the service description language Ogma to represent the information required to 

effect automated matching of process steps to services. The Ogma language enables the 

semantic description of each type of task performed by the service as well as the service 

inputs and outputs. The language also include information such as how to invoke the 

service (i.e., binding information) and other information necessary to match services to 

process activities and to compose services with each other. The Ogma description is 

specified using OWL to enable automated reasoning about individual services, such as 

class/subclass (i.e., “is a”) relationships and equivalence assessment based on common 

parameters and effects. 

QoS Model (Sucellos2) 

                                                 
1
 Ogma: a Celtic god of language 

2
 Sucellos: a Celtic god of time 
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The selection of an optimal service composition based on QoS metrics requires a 

QoS model capable of capturing QoS metrics for both web and physical services. To 

enable the annotation of service descriptions with QoS parameters, this research develops 

Sucellos, a QoS model that captures metrics such as cost, user rating, and the like that are 

appropriate . The Sucellos model is specified using OWL to more easily integrate with 

the Ogma service description model. 

Optimal QoS Service Composition Model (Ecne3) 
Selecting the optimal service composition from among multiple candidates 

requires a means of specifying a business process, services, and the QoS parameters of 

each composition so the alternative compositions may be analyzed. To ennable this 

specification, this research develops Ecne, a formal description of processes, services, 

and QoS parameters that can be subjected to an analysis that calculates the optimal 

service composition based on the Ecne model. 

QoS Optimization Implementation 
To calcuatle the optimal service composition based on the Ecne model requires a 

means of evaluating the alternatives and arriving at a recommendation. To execute the 

analysis of the Ecne formalism, this research develops an implementation model 

expressed in the Optimization Programming Language (OPL) and that is executed using 

IBM’s CPLEX environment. 

Proof of Concept 

                                                 
3
 Ecne: a Celtic god of wisdom 
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To demonstrate the feasibility of this approach, a proof of concept prototype 

system that accepts as input a semantically-annotated process model defined using 

BPMN and produces as output a QoS-optimized service composition that implements the 

process model. First, the BPMN model is decomposed into individual activities and each 

activity is matched to one or more semantic service descriptions. Next, each of the 

matched services is compared to the other services to determine which services may be 

composed into candidate workflows that can perform the process described by the model. 

Then, each of the workflows is assessed by comparing the QoS metrics of each service 

and the QoS characteristics of the complete workflow, and finally an optimal workflow 

recommendation is developed based on the QoS information about each service and the 

overall process. The QoS information about each service and the process conforms to a 

formal QoS model. 

1.4. Dissertation Organization 
The remainder of this dissertation is organized as follows. In Chapter 2, I review 

related work in the fields of service description models, business process modeling 

languages, and (service) optimization. In Chapter 3, I describe the overall service 

composition landscape that this research encompasses. In Chapter 4, I describe the Ecne 

QoS model and the formal definition of the optimization problem. I explain design and 

implementation of the Ogma service description language. In Chapter 5, I discuss the 

extension of the BPMN modeling language to express the task type of each activity in a 

process model and the semantic types of the inputs and outputs of each activity. In 

Chapter 6, I describe the Ogma service description language used to capture the service 
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description information needed to enable activity-to-service and service-to-service 

matchmaking. In Chapter 7, I describe the proof of concept prototype I developed to 

demonstrate the feasibility of the key contributions of this research. Finally, Chapter 8 

summarizes my conclusions and outlines areas for future research. 
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2. RELATED WORK 

Since the development of the SOA concept, a variety of researchers have looked 

into the problem of service composition. While few researchers have looked at the 

complete service composition lifecycle from process definition to optimal composition 

selection, many research projects have focused on different aspects of the problem such 

as service descriptions or process models. These efforts are described in the sections that 

follow. 

2.1. Service Descriptions 
Neither the WSDL nor WADL specifications include the semantic annotations 

necessary for service matchmaking, nor did either specification include elements for 

describing QoS aspects. To address these limitations, a variety of research projects have 

developed extensions or alternatives to the standard service descriptions that capture the 

desired information. 

2.1.1. WSDL-S 
The Web Service Description Language-Semantic (WSDL-S) model (4) builds on 

the WSDL standard, using the extensibility mechanism included in the WSDL 

specification to add semantic annotations to service descriptions. 

The WSDL-S model was developed with five design goals. The first was to build 

on existing web services standards. Because there is no widely accepted standard for 



18 

 

describing REST services, the WSDL-S model focused on describing SOAP-based 

services. 

The second and third design goals of the WSDL-S model are related. The second 

goal was that the means of specifying the semantic attributes of a service should be 

independent of the semantic representation language. The third goal was that the means 

of semantically annotating the service description should support multiple representations 

of the same item written in different semantic representation languages. 

The fourth design goal was to support the semantic description of data types 

represented by the XML Schema Definition (XSD) Language (this is in accordance with 

the first goal of building on existing standards). This goal leverages the practice most 

web service interfaces employ of describing data inputs and outputs using XML Schema. 

The final design goal was related to the fourth goal; it aimed to provide support for rich 

mappings of XSD data types into ontological representations without regard to the 

language used to define the ontology. 

The WSDL-S model extends the basic WSDL model with several attributes that 

provide Universal Resource Identifiers (URIs) that link WSDL elements to semantic 

descriptions of those elements. These semantic annotations describe the inputs, outputs, 

and operations offered by a service, as well as describing the preconditions necessary to 

invoke any of the operations. There are also semantic annotations that describe the 

service category. 
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2.1.2. OWL-S 
The Ontology Web Language for Services (OWL-S) project (6) began as the 

Defense Advanced Research Projects Agency (DARPA) Agent Markup Language for 

Services (DAML-S) (29–31). DAML-S was developed to describe the services offered by 

intelligent agents to enable the discovery and composition of those services through the 

autonomous interaction of those agents. The DARPA Agent Markup Language (DAML) 

ultimately evolved into OWL, and so DAML-S evolved into OWL-S, retaining the same 

goals as DAML-S. 

The OWL-S project incorporated the semantics into the interface description by 

creating a new service description format based on OWL. This format includes all the 

information available in a WSDL document, but created a new description model 

designed to take advantage of OWL’s support for reasoning. 

The OWL-S service description model is composed of three main parts: a service 

profile, a process model, and a grounding. The service profile includes the syntactic and 

semantic descriptions of the service interface, its operations, and the data each operation 

consumes and produces. The process model describes how the different operations 

offered by the service can be invoked in combinations to perform more complex tasks 

than any of the individual operations can perform. The OWL-S grounding contains the 

information needed to bind to and invoke the service’s individual operations. 

While the OWL-S project was focused on providing descriptions for SOAP-based 

services, the model could theoretically be extended to describe REST services or web 

services based on any other technology. 
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2.1.3. SAWSDL 
In 2006, the World Wide Web Consortium (W3C) convened a working group to 

address the semantic shortcomings of the WSDL specification that had been identified by 

the developers of OWL-S, the Web Services Modeling Ontology (WSMO, described 

below), and similar projects. This group’s final product was the Semantic Annotations for 

WSDL (SAWSDL) specification (5,32). 

While the SAWSDL specification uses different terminology than the WSDL-S 

specification, both projects employ the same technique for adding semantic information 

to a basic WSDL document. Each includes references to an externally defined ontology 

independent of the ontological language employed. Also, each includes mappings 

between the ontological concepts and XSD types used to define the data input and output 

parameters. 

2.1.4. WADL 
In 2006, the Web Application Description Language (WADL) (8) was proposed 

as a means for formalizing descriptions of REST-based services in a machine-readable 

format. Since that time, it has not been widely used in practice. Like the WSDL 

specification, the WADL specification describes the syntax of a service interface but does 

not capture the semantics necessary to understand the meaning of elements in the 

interface. The WADL specification does not include the information necessary to enable 

service matchmaking, nor does it include elements for describing QoS aspects of 

services. 
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2.1.5. WSMO 
The Web Services Modeling Ontology (WSMO) (11) is a semantic service 

description model based on the Web Services Modeling Framework (WSMF) (12). Like 

OWL-S, WSMO was developed as a mechanism to enable intelligent agents to work 

together to accomplish a set task. WSMO was developed in part to address perceived 

shortcomings of the OWL-S approach, and like the OWL-S model WSMO created an 

alternative description format independent of the WSDL standard. The WSMO model is 

composed of four main elements: ontologies, web services, goals, and mediators. 

WSMO ontologies provide domain-specific descriptions of the terms used to 

describe the other elements of a WSML model. These ontologies provide both a formal 

description of the service’s semantics and a link between the human-readable and 

machine-readable terminologies. 

WSMO web services are conceptually similar to web services described by other 

service description models, in that they describe pieces of functionality that can be 

combined in different ways to perform more complex tasks. Still, WSMO service 

descriptions are different from those found in a WSDL. Within WSMO, a service is 

described in terms of properties, functionality, and behavior; behavioral descriptions are 

not part of the WSDL specification and are one of the unique contributions of WSMO. 

WSMO goals are defined independently of services. This makes it possible for a 

user to specify a goal independently of any conception of the services that are available. 

This independence of descriptions ensures the intelligent agents can compose services to 

achieve the goal using the most efficient combination of available services. 
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The WSMO project also defined mediators; mediators are mechanisms for 

translating between heterogeneous descriptions of different services. Mediators may be 

applied to ontologies, services, and goals. The purpose of a mediator is to enable 

interoperability between different WSMO instances that may be based on different 

assumptions and use different terminologies. 

Like OWL-S, the WSMO model was designed to represent SOAP-based web 

services. It should be possible to represent REST-based services or other web service 

paradigms within the WSMO model, but it was not designed to represent other service 

types and its suitability for that purpose has not been demonstrated. One key difference 

between OWL-S and WSMO is that, while OWL-S is based on OWL-DL (where DL 

denotes the OWL dialect supporting the computational completeness and decidability of 

Description Logics), WSMO is based on F-Logic, an alternative language for 

representing ontologies with Description Logics. 

2.2. Process Modeling Languages 
Process modeling languages vary widely, from the very simple information 

flowchart to highly sophisticated modeling languages such as BPMN. To be suitable for 

defining a business process with sufficient detail to enable automated service 

matchmaking, composition, and optimization, a business process modeling language 

must be precise enough specify the types of activities in the business process and the 

relationships among those activities. Several research efforts that have investigated 

different options for modeling business processes are discussed below. 
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2.2.1. BPMN 
BPMN is a graphical language designed for use by business analysts in specifying 

complex business processes. In (33), the conversion of BPMN models to Business 

Process Execution Language (BPEL) is examined and several conceptual mismatches are 

identified. These conceptual mismatches make the automated transformation from 

graphical BPMN to executable BPEL problematic. It should be noted that this work was 

based on the BPMN 1.2 specification (9). BPMN 1.2 was a purely graphical language, 

with no XML representation defined in the specification and no means for executing a 

BPMN 1.2 model. 

The 2011 release of BPMN 2.0 incorporated a specification for representing 

BPMN models in XML. The inclusion of a formal XML syntax makes it easier to 

transform a BPMN model into other representations, and also makes BPMN natively 

executable by a suitable execution engine. Vendors such as Oracle and BonitaSoft offer 

engines that will execute BPMN 2.0 models, making it possible for a business analyst to 

use BPMN to specify service interactions graphically and execute the resulting service 

composition. However, model-to-service mappings are not part of the BPMN 

specification, so each of these vendors implements its own mapping scheme and service 

mappings are not portable across execution engines from different vendors. 

2.2.2. BPEL 
The most common composition language in use today is the Business Process 

Execution Language (BPEL) (34), also known as BPEL for Web Services (BPEL4WS) 

and Web Services BPEL (WSBPEL). BPEL is an XML-based language that remains 

under active development and is supported by a number of commercial products. 
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The BPEL specification defines a complex, powerful language for describing the 

interactions among web services. BPEL includes control structures that enable 

conditional processing and sophisticated error-handling routines, and its wide adoption 

makes it portable across a variety of platforms. Using BPEL, a developer can define 

which services perform particular tasks and how messages are exchanged among those 

services with as much control as if the workflow were hard-coded into the application. 

The work by Kloppmann et al described in (35)  and by Clement et al in (36) 

describes an extension to the BPEL specification called BPEL for People, which extends 

the BPEL language to include activities performed by people. BPEL for People was 

developed in conjunction with the Web Service-Human Task (WS-HumanTask) 

specification (37) enabling the composition of sophisticated workflows that include both 

web services and human services that can be described by WSDL.  

2.2.3. WSMO 
A WSMO service description includes a process model for the service it describes 

(which may include a complete business process), but like the other semantic service 

description specifications discussed above, WSMO does not include any specific 

mechanism for encoding an end-to-end process that incorporates different services, but its 

ability to represent a complete business process within a service description merits 

mention here. 

2.2.4. METEOR-S 
One project that was specifically designed to enable the type of workflow 

composition described here is the Managing End-to-End Operations – Semantic Web 
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Services (METEOR-S) project (13,14), which was specifically designed to enable the 

automated dynamic matching of services to complete a defined business process. 

METEOR-S uses a UML Activity Diagram to model interactions among services, 

although the types of semantic annotation of models tasks discussed here is not part of 

that research. 

The work discussed in (38), part of the METEOR-S project, describes a hybrid 

approach where the developer begins with a defined process and a series of services that 

can be composed to complete the workflow. The process of adding services to the 

existing workflow is streamlined by applying the matchmaking and reasoning capabilities 

provided by the METEOR-S framework. This eases the burden on the developer, 

eliminating the need to manually comb through the available services to find those that 

may fit the newly identified need. One item of note within the workflow composition 

process as described is that specific human actions are called out as an essential part of 

the workflow execution, though there is no discussion of a formal description format for 

these human-based processes. While it is specifically mentioned, this important human 

interaction is glossed over because it is not a significant part of the METEOR-S project’s 

focus. As will be discussed later, the participation of human actors within a workflow 

composition is a critical element that has not received sufficient attention. 

2.2.5. OWLS-MX / SAWSDL-MX Families 
OWLS-MX and SAWSDL-MX are two related research projects that have 

developed a series of hybrid service matchmakers based on the OWL-S and SAWSDL 

service specifications respectively. The OWLS-MX project (18) employs a hybrid 
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matchmaker that combines the semantic markup of OWL-S with a method for deducing 

semantic information from the syntactic similarity of terms in a service description. The 

OWLS-MX matchmaker takes five different measurements of semantic and syntactic 

similarity of service interfaces and generates a composite score to determine whether two 

service interfaces are matches for each other. During evaluation of the OWLS-MX 

matchmaker, the developers discovered that it had a tendency toward false positives, 

where services were incorrectly matched due to the syntactic similarity of terms that were 

not actually semantically compatible. The problem of false positives in OWS-MX was 

addressed in OWLS-MX2 (19) where a refinement of the techniques pioneered in the 

original OWLS-MX matchmaker resulted in a more reliable service matchmaking 

capability. 

One limitation of the OWLS-MX matchmaker is that it was designed to perform 

matchmaking among services described using the OWL-S model; semantically annotated 

web services that employed a different model could not be used with the OWLS-MX 

family of matchmakers. This limitation was partially addressed by the development of 

SAWSDL-MX (16) and SAWSDL-MX2 (17), which applied the principles explored in 

the OWLS-MX family of matchmakers to the SAWSDL description specification. 

Results were comparable to those with the OWLS-MX series of matchmakers. 

The concepts explored in OWLS-MX and OWLS-MX2 were enhanced and 

expanded with OWLS-MX3 (20,21), an adaptive variant of the OWLS-MX family of 

matchmakers. With OWLS-MX3, the developers added a machine learning element to 

the hybrid semantic matchmaker previously employed. In addition to employing semantic 
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and syntactic matching, OWLS-MX3 employs a binary classifier based on a Support 

Vector Machine (SVM). The SVM-based classifier is trained on an independent set of 

OWL-S service descriptions before being asked to find service matches. The aggregated 

results of the different OWLS-MX classifiers are averaged and the results of that are 

applied to the problem of classifying new services. While the developers judged that 

OWLS-MX3 did not perform significantly better than OWLS-MX2 in terms of either 

precision or recall, they felt that the ability to train the OWS-MX3 on a set of service 

descriptions entirely independent of the services it would later be called on to classify 

gave OWLS-MX3 a significant advantage over its forebears. 

2.3. Optimization 
While optimization has been a robust area of research for many years, very little 

work has been done specifically on the optimization of service compositions. 

2.3.1. One-Dimensional 
A simple, one-dimensional evaluation of alternatives is the easiest approach in 

that it makes it easy to compute the relative rankings of each composition and evaluate 

them against each other. If we consider a set of services that may be composed in 

different combinations, then optimizing on one dimension of QoS is a simple matter of 

calculating the QoS of each possible service combination and selecting the one that best 

meets the user’s preferences. 

The one-dimensional analysis problem may be complicated somewhat if the 

service providers are willing to negotiate the terms of their service, perhaps to offer a 

discounted cost for large-volume users. In this case, the service evaluation process is an 
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iterative one such as that described by McDowall and Kerschberg in (39). While such 

iteration makes the actual selection process more involved, calculating the optimal 

service composition remains a straightforward problem. 

Cost 

As an example, consider cost as the criteria for a one-dimensional analysis. The 

cost to invoke each service can be used to calculate the total cost of each service 

composition, resulting in a total cost for each candidate composition. If the user’s only 

concern is minimizing cost, then the optimal selection is the composition with the lowest 

total cost. 

2.3.2. Multi-Dimensional 
In practice, most users would weigh several criteria when deciding which service 

composition best meets their needs. For example, selecting the composition with the best 

balance of cost and responsiveness may be important to the user. Alternatively, cost may 

not be a major concern but a combination of high security and fast response may be the 

primary consideration. Regardless of the specific criteria being evaluated, the evaluation 

is a multi-dimensional analysis problem and so is a significantly more complex problem 

than one-dimensional analysis. 

Multi-dimensional analysis has been the subject of a great deal of research over 

the years, and the advent of digital computer systems makes it relatively easy to perform 

the sophisticated calculations necessary for multi-dimensional problems such as the 

service composition problem; a thorough overview can be found in Alodhaibi (40). The 

relative ease in applying multi-dimensional analysis to a broad array of problems has led 
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to a growth in the development of decision guidance systems that are designed to help 

users weigh the many factors that go into a complex decision, and quickly discover the 

best options available. The degree to which such a system calculates the optimal decision 

as opposed to approximating the optimal selection is generally a function of how long the 

calculations are allowed to continue. For complex problems, the computing time required 

to find the single best solution may outweigh the value to the user of narrowing the set of 

potential selections to some limited number of satisfactory solutions. 

Narrowing the range of possible choices based on a set of evaluation criteria is 

common selection problem known as “top-k” selection, where k is the number of 

alternatives returned to the user. By choosing from among the k best solutions to the 

problem, the user is assured that any selection is among the best available solutions, but 

the user avoids the cost of an exhaustive evaluation. Because top-k selection is a 

statistical analysis problem, the analysis includes an associated probability that expresses 

how likely it is that all of the k selections are indeed within the overall top k. In general, 

as the required confidence increases the computational cost of the analysis increases. 

Minimizing this cost, while increasing the probability of correct selection, is the focus of 

ongoing research in the field of decision guidance systems. 

One example of a multi-dimensional decision guidance application is the 

Composite Alternative Recommendation Development (CARD) framework described in 

Brodsky et al (41). The CARD framework was designed to recommend packages of 

services for a user, such as a combination of flight reservation, hotel, and rental car. 

While this is not explicitly recommending a combination of services to complete some 
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defined workflow, the principles applied are the same: there are several potential 

combinations of services that can be bundled to accomplish a task, and the user would 

like a recommendation as to which combination best meets the user’s priorities. CARD 

was developed to work with both atomic services and composite services, which is a use 

comparable to a business process description. 

The CARD system uses a knowledgebase to store information about service 

offerings and user preferences, and employs an extension of the Structured Query 

Language (SQL) called Decision Guidance SQL (DG-SQL) described in Brodsky and 

Wang (42). The CARD system uses DG-SQL to query the knowledgebase for service 

recommendations based on user preferences before the service selection process begins. 

User preferences are captured in a profile, and the system employs machine-learning 

techniques to refine its service selection process as users accept or reject different 

recommendations presented by the CARD system. One limitation of the CARD system is 

that service information is stored in the knowledgebase and must be periodically 

refreshed, limiting the currency of the data and limiting the evaluation criteria to those 

that are supported by the schema of the knowledgebase and the preferences the user 

expressed before the analysis process began. 

Building on the CARD work, the Cluster-Optimizing-Diversity (COD) 

framework by Alodhaibi et al (43) extends the CARD recommender by using different 

utility functions  to analyze service packages based on differing immediate needs of a 

user at any given moment. For example, a user may be examining two travel packages for 

different purposes: one for a business trip and one for a personal vacation. The criteria 
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used to evaluate each package may differ because of the different priorities for each 

purpose. When evaluating a business travel package, assuring the traveler arrives in time 

for a critical meeting may be more important than the price of the trip. Conversely, when 

evaluating a vacation package minimal price may be more important than arriving at the 

destination before a particular time. 

Another innovation of the COD framework over its predecessor is that rather than 

soliciting user preferences before the analysis begins, COD learns the user’s preferences 

based on feedback the user provides on each recommendation the COD system offers. 

COD also performs a more complex analysis process, evaluating any number of aspects 

of a service using an n-dimensional utility space, where different axes of value are used 

to evaluate which combination of services best meets the user’s needs based in part on 

feedback the user has provided to previous recommendations. The COD framework 

recommends clusters of services based on utility functions that are solicited from the user 

during the analysis, reducing or eliminating the need to solicit user preferences before 

analysis begins, and adapting more quickly to changing user priorities. Like the CARD 

framework, the COD framework is limited by the service evaluation criteria that are 

stored within the knowledgebase before the analysis begins, so the analysis criteria are 

necessarily limited to those factors. Like the CARD framework, COD was not designed 

with process-based workflow compositions in mind but employs the same analysis 

principles and can be readily applied to the workflow analysis problem. 

A contrasting approach is described by McDowall and Kerschberg (44) and (45), 

where social networks and service registries are used as the basis for developing a 
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recommendation. Instead of evaluating service offerings based on the representation of 

the service provider, social networks are used as the basis for forming a recommendation 

by querying the networks for other users’ evaluations of the services and/or the service 

providers. This approach provides a near-real-time assessment of the public’s satisfaction 

with a given service provider. This information can be analyzed on its own or 

incorporated with factors such as cost to develop a broader multi-dimensional profile of a 

given service that can be used as the basis for such an analysis. 

As discussed in (44), depending on the source of the assessment information, 

negative information about service providers may be available to factor into the analysis. 

Negative information about their performance is not normally offered up by service 

providers, and so may be difficult to include in systems that base their assessment criteria 

on information available from service providers. One notable limitation of this work is 

that a lack of unambiguous links from service providers to their profiles in social 

networks or business registries often requires manual mapping between the service 

descriptions and the location where the assessment information is being queried. 
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3. OVERVIEW OF THE DRUID SERVICE COMPOSITION METHODOLOGY 

This research addresses the limitations of previous work by defining Druid, a 

semantic service composition methodology that is suitable for composing both physical 

and digital services into an executable workflow based on a business process model, and 

recommending the optimal service composition based on QoS characteristics of each of 

the services, as well as the QoS of the aggregate recommended workflow. The Druid 

methodology includes a service description language suitable for describing both the 

syntax and semantics of the interfaces to either physical or digital services, including both 

SOAP and REST web services. The methodology also includes extensions to the BPMN 

modeling language necessary to define the semantics of a business process to enable 

automatically matching services to process activities. These BPMN extensions include a 

means to specify the task type of each activity comprising the process and, the input and 

output parameters from each activity. The methodology also includes a model for 

specifying QoS parameters of services and processes. Finally, the methodology includes 

a formal service composition optimization framework implemented using a mathematical 

programming model. When a business process model, semantic services, and QoS 

parameters are encoded in the Druid model, that information is passed to a process that 

computes the optimal service composition based on the QoS aspects of each service in 

each composition. 
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The subsections that follow provide an overview of the Druid methodology and 

describe at a high level how its parts work together. Formal definitions of these concepts, 

together with detailed explanations of the research contributions embodied in this 

methodology, are provided in subsequent chapters. 

3.1. Overview of the Service Composition Methodology 
To better understand the discussion that follows, it is helpful to define some 

foundational terms that will be used in the explanation. As this service composition 

process begins with process models defined using BPMN, that specification’s 

terminology is used where appropriate. 

A service is a means of completing some unit of work. Within the context of 

Service Oriented Architecture, “service” usually refers to an implementation-independent 

interface to software, but this research takes a broader view of a service as any means for 

completing work, whether the service is provided by software or by some physical means 

such as a person (for example, a plumber provides services such as repairing a leak). 

Services can be subdivided into two main categories: atomic services and virtual 

services, defined below. 

Atomic Services: There is no commonly accepted formal definition for an atomic 

service; for the purposes of this discussion an atomic service is the lowest level to which 

services are decomposed and is the level at which QoS metrics are assigned to services
4
. 

Virtual Services: In some cases, multiple atomic services may be composed 

together and offered through a single interface. This arrangement is known as a “virtual 

                                                 
4
 As a practical matter, the point at which a “service” can be defined has been moving lower in the 7-layer 

ISO stack, to the point where we are now speaking of “Infrastructure as a Service.” This definition is 

therefore necessarily arbitrary for the purposes of this discussion. 
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service.” The simplest virtual service is composed of individual atomic services, but it is 

also possible to compose a virtual service from combinations of other virtual services and 

atomic services. Given this definition, every business process also constitutes a virtual 

service and could be offered as such. 

A BPMN model is a specification of a business process. A process is composed of 

individual steps, each of which is called an “activity.” Each activity includes a semantic 

description, called a “task type,” that categorizes the function or purpose of the activity 

(e.g., to reserve a hotel room). Task types are defined in an external ontology that is 

referenced from the process model. In Chapter 4, it is demonstrated that a business 

process model is a specification for a virtual service. 

A summary of the Druid service composition methodology presented in this 

research is depicted in Figure 1. Each stage of the process is numbered to indicate its 

relative order, and each is described below. 
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Figure 1: Druid Methodology Overview 

 

Step 1 is to tag available services with the semantic metadata necessary to enable 

a matchmaker to match services to activities in a business process model. Matching 

services to activities entails verifying that the service performs the same task type that the 

activity represents, such as returning a weather forecast. Matching services to each other 

entails determining whether the outputs of any given service comprise all the required 

inputs of another given service, as this is necessary in order to compose the two services 

as part of a workflow. This is enabled by creating OWL-based service descriptions that 

conform to the Ogma service description language described in Chapter 7. These 

descriptions include semantic annotations for each service and for each input and output 

parameter of every service. In addition to the semantic information, each service 
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description includes other information necessary to use a service, such as binding 

information, supported communications protocols, and information about the service 

provider. Each service description is supplemented with QoS information encoded using 

the Ecne QoS model described in detail in Chapter 5. 

In Step 2 of the methodology, the service descriptions are uploaded to a service 

registry to enable search and retrieval. This is the means to identify candidate services for 

the service composition. 

Step 3 depicts a business analyst creating a semantically-annotated BPMN model 

that describes the business process to be automated. The semantic annotations appended 

to this business process model are encoded using the BPMN extensions described in 

Chapter 6, and includes semantic annotations indicating the task type of each activity in 

the BPMN process model, as well as annotations describing the input and output 

parameters of each activity in the model. It contains sufficient information to create a 

virtual service instance as defined formally in Chapter 4. Optionally, the business analyst 

may save the process specification as a virtual service for later use. 

In Step 4, the annotated process model is submitted to a matchmaking engine that 

parses the BPMN model and extracts the semantic information from each of the activities 

in the model, as well as the ordering of the individual activities within the process model. 

In Step 5, the matchmaking engine compares the semantic information about the 

activities in the process model to the service descriptions in the registry to find those 

services that can perform each of the activities specified in the process model. Once 

candidate services are found in the registry, their input and output parameters are 
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compared to ensure that for each service matched to a given activity, there are one or 

more corresponding services mapped to the immediately preceding and succeeding 

activities whose inputs and outputs are compatible. 

After this initial filtering step, the QoS parameters for the services in each 

composition are retrieved, and the candidate service compositions are passed to the 

optimization processor in Step 6. The QoS information for each service is encoded in the 

Sucellos optimization model described in Chapter 5. The candidate service compositions 

are compared and a recommended optimal service composition is selected based on the 

QoS parameters. 

Step 7 is the final step in the process, in which the selected optimal composition is 

passed to an execution engine. In the case of a composition consisting solely of web 

services, this execution step can be accomplished by encoding the composition using 

BPEL and passing it to a BPEL execution engine. In the case of a composition that 

includes both physical and web services, execution would require a more complex 

process where the web services are executed by a computer and the appropriate 

interactions with physical systems, including humans, are executed using more 

specialized computer-to-physical interfaces. 

3.2.  Service Composition by Example 
The Druid methodology described above has several elements that must work 

together; the functionality of each of those elements must be understood in relation to the 

other elements that it supports. A brief description of each of these elements is provided 
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in the following sections, with formal definitions provided in Chapter 4 and detailed 

technical explanations in succeeding chapters. 

All services, whether atomic or virtual, are semantically described by task types in 

the same manner that activities are described. These task types may be from the same 

ontology as the activity task types or from a separate ontology. Service descriptions also 

include semantic descriptions of each input and output parameter. 

Service composition begins with a set of available services, both atomic and 

virtual. A developer or ontologist creates interface descriptions for each service, 

providing the semantic markup that is necessary for the matchmaking process. This 

corresponds to Step 1 of the Druid methodology (see Figure 1). These service 

compositions are uploaded to the service registry depicted in Step 2. For this weather 

example, assume that among these services are those shown in Table 1, which lists the 

service name, task type, and the semantic types of the input and output parameters. 

 

Table 1: Example Services 

Service Task Type Inputs Outputs 

convertLocation locConvert latitude, longitude postalCode 

transformLocation locConvert latitude, longitude postalCode 

getWeather wxForecast postalCode forecast 

getForecast wxForecast postalCode forecast 

returnWx returnWx postalCode weatherData 

changeFormat changeFormat weatherData forecast 

 

In Step 3, a business analyst specifies a process using BPMN. This example will 

use the process depicted in Figure 2, which shows a simple weather forecast process. This 
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process is composed of two activities: Convert Location and Get Weather. The order of 

these activities is specified by the arrows in the process model, which BPMN refers to as 

“sequence flows.” 

 

 

Figure 2: Sample Process 

 

For each of the activities in this process, the business analyst assigns a task type 

that provides a reference to the type of work that activity represents. For this example, the 

Convert Location activity has a task type of “locConvert.” Each activity also has a set of 

input parameters and a set of output parameters; each of these parameters is identified by 

the semantic type of the parameter. The set of inputs for the Convert Location activity is 

shown in Table 2 and the set of outputs for the Convert Location activity is shown in 

Table 3. The other activities have similar definitions. 

 

Table 2: Convert Location Inputs 

Parameter Name Data Type Semantic Type 

lat xs:String latitude 

lon xs:String longitude 
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Table 3: Convert Location Outputs 

Parameter Name Data Type Semantic Type 

zipCode xs:String myOntology#postalCode 

 

At this point, the analyst could optionally upload a description of the business 

process specification to the registry as a virtual service. Storing the virtual service 

definition in the registry makes it available for use as a template (for others who may 

wish to implement the same process or something similar). It also makes the virtual 

service available for use in other service compositions. 

In order to transform the BPMN process model into an optimized and executable 

workflow, each BPMN activity must be associated with one or more services. To 

accomplish this transformation, the BPMN specification is submitted to a service 

matchmaking engine in Step 4 of Figure 1; this engine performs the activity-to-service 

mapping. As formally defined in Chapter 4, an activity-to-service mapping is only valid 

if each of the services has the same task type as the activity and all of the inputs and 

outputs specified for the activity. Candidate services are selected based on an analysis of 

the service descriptions published to the service registry. This analysis is based on a 

comparison of the task type of each activity compared to the task type assigned to each 

service, as well as a comparison of each service’s inputs to the parameters available from 

services matched to activities that occur earlier in the process specification. 

Some of the selected services may be virtual services. In addition to the inputs, 

outputs, and task type that the virtual service performs, a virtual service encapsulates the 

set of activities that comprise the virtual service. Given that a virtual service is a process 
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model composed of activities, each of its activities can be mapped to services that are 

themselves virtual services. This mapping can be recursive, with any given service 

potentially mapped to a combination of atomic and virtual services. Eventually, each of 

the virtual services’ activities is eventually decomposed down to individual atomic 

services. This decomposition results in a tree structure where each leaf of the tree is an 

atomic service and all other nodes in the tree are virtual services. An illustration of such a 

decomposition, using the weather example process and services, is depicted in Figure 3. 

 

 

Figure 3: Weather Process Decomposition 

 

Once all available services have been assessed and mapped to activities in the 

process model, and all virtual services are decomposed into their atomic services, we can 

determine whether any combination of atomic services can be composed into an 
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executable process that comprises all of the activities in the original business process 

model. 

In order to compose services into an executable process, it is necessary that the 

inputs for each service in the composition be provided by a preceding service in the 

composition. This is determined by matching the semantic types of each input of each 

service to the semantic types of the outputs of preceding services. These outputs and 

inputs need not have the same name, but they must have the same semantic type. For 

example, if a location service has an output called “zip code” and a weather service has a 

single input called “postal code,” we can see intuitively that these two parameters have 

the same meaning. But in order for the matchmaker to match them, the parameters must 

have the same semantic type. An individual service input or output parameter, together 

with associated semantic and type metadata, is called a “semantic parameter.” For 

example, a data element called “zipCode” would include a semantic annotation that 

references an ontology and a type annotation indicating it is stored as a string. 

Once each activity is associated with one or more services, and the services’ 

inputs and outputs have been compared semantically, we can compute a set of candidate 

service compositions. A candidate service composition consists of a set of atomic 

services that can be composed to materialize the process originally specified in the 

BPMN process model. Calculating the set of candidate service compositions is a 

straightforward matter if the services are represented as a directed graph. First, consider 

each service that has been mapped to an activity as a node in the graph. For each case in 

which one service’s outputs provide the inputs required by another service, assert an edge 
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from the former service to the latter service. The result is a directed graph of the services, 

where each path from the first activity to the final activity constitutes a candidate service 

composition. 

An example of such a graph is shown in Figure 4 (for simplicity, this example 

shows only atomic services). 

 

 

Figure 4: Candidate Service Compositions 

 

The candidate compositions that can be assembled to complete the process are 

discovered by finding all the paths from services matching the first activity to those 

matching the final activity. In the example depicted in Figure 4, there are four candidate 

service compositions: 

 convertLocation-getWeather 
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 convertLocation-returnWx-changeFormat 

 transformLocation-getWeather 

 transformLocation-returnWx-changeFormat  

Finding these paths through the directed graph of services can be accomplished 

using common graph analysis algorithms such as Floyd-Warshall (46). This 

matchmaking and path analysis corresponds to Step 5 of the DRUID methodology. 

Once all of the candidate service compositions have been enumerated, it is 

possible to calculate the QoS of each composition. The QoS parameters, of each service 

in each of these candidate compositions, are retrieved from the service description, and 

the QoS parameters for each candidate composition are passed to the QoS optimization 

processor. The QoS optimization processor compares each of the candidate service 

compositions and recommends the optimal composition of each service and the overall 

workflow, as determined by the user’s preferences (e.g., minimize cost). The QoS 

analysis corresponds to Step 6 of the DRUID methodology. 

Upon completion of the QoS analysis, the optimization processor returns a 

recommended optimal service composition based on the QoS parameters. This 

recommended composition may then be passed to an execution engine. This is Step 7 in 

the DRUID methodology. 

3.3. Service Composition System Architecture 
In order for the Druid Methodology to be effective, a number of system 

components must work together. 
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A notional architecture of such a system is depicted in Figure 5 as a UML model. 

The following subsections describe each of the components shown, and how they work 

together. 

 

 

Figure 5: Service Composition Architecture 

 

3.3.1. User Layer 
The User Layer provides user-facing components. In Figure 5, we note that this 

layer includes two major components, an interface for creating the service interface 

markup and a BPMN modeling tool. 

The Service Interface Markup Component allows the user to semantically 

describe a service interface using the service description language – OGMA – described 
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in detail in Chapter 7. The user employs this tool to create an OWL-based service 

interface description and then submits it to the Service Description Registry. 

The BPMN Modeling Tool allows a business analyst to specify a business 

process. This process specification includes annotations to the BPMN model that 

conform to the BPMN extensions described in Chapter 6. This process specification will 

be passed to the Matchmaking Engine in the Knowledge Layer. 

3.3.2. Knowledge Processing Layer 
The Knowledge Layer in Figure 5 encompasses the functions necessary to 

transform a BPMN-based activity workflow specification into a collection of services to 

support the execution of an optimal workflow. The Service Description Language 

component – specified and developed as part of this research – defines the metamodel 

underlying the service description language of Chapter 7. 

Another component within the Knowledge Layer is the Service QoS Model. This 

model is an OWL-based specification and is described in detail in Chapter 5. This model 

is distinct from, but readily integrated with, the Service Description Model in order to 

describe the QoS metrics of a service as part of the service interface description. 

The BPMN Extensions Model within the Knowledge Layer defines the extensions 

to BPMN that were developed as part of this research. These model extensions are 

necessary to allow the addition of semantic information necessary to match service 

descriptions to process activities and are described in Chapter 6. 

The Service Matching Engine and Optimization Engine are the main processing 

components of the Knowledge Layer. The Matchmaking Engine parses both the BPMN 
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process specification and the service interface descriptions, and processes them to 

complete the activity-to-service mapping which is the first step in developing an optimal 

service composition. The Matchmaking Engine then computes the possible service 

compositions by comparing the inputs and outputs of adjacent services as described 

above. After the possible service compositions have been computed, they are passed to 

the Optimization Engine where the optimal service composition is selected by computing 

the aggregate QoS metrics of each candidate composition and comparing them to 

determine which composition is optimal based on the user’s preference (e.g., to minimize 

cost). A detailed explanation of how QoS metrics are aggregated is provided in Chapter 

4. 

The final component of the Knowledge Layer is the Execution Engine. Once the 

Optimization Engine has selected an optimal service composition, this composition can 

be mapped to an execution language such as BPEL, and passed to the Execution Engine.  

3.3.3. Knowledge Repository Layer 
The Data Layer includes the Service Description Registry and the Service 

Description and QoS OWL Ontologies. The Service Description Registry is a data store 

that holds descriptions of every atomic and virtual service that can be used to develop a 

service composition. Because the service descriptions are OWL-based, the Service 

Description Registry may be instantiated using any appropriate database, for example in 

the MarkLogic XML database or the Sesame RDF database. 

The OWL Ontologies are the service description language definition and the QoS 

model definition, together with any supplemental ontologies used to define task types or 
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semantic parameters. These ontologies provide the semantic foundations that enable the 

processing performed by the Matchmaking Engine and the Optimization Engine. 

3.3.4. User View 
The users’ view of the Druid service composition methodology is shown in Figure 

6, which depicts a developer and business analyst each using different elements of the 

methodology. 

 

 

Figure 6: Service Composition Methodology Usage 

 

Figure 6 depicts a Developer creating service interface descriptions and a 

Business Analyst independently developing a BPMN process specification. The service 
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descriptions and process specification are passed to the Matchmaking Engine, then the 

Optimization Engine, and ultimately to the Execution Engine. 
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4. FORMAL OPTIMIZATION SERVICE COMPOSITION FRAMEWORK 

To compare multiple candidate service compositions and determine the optimal 

composition requires two things: a formal model of services and processes that allows a 

precise comparison, and a QoS model that describes the parameters to be used in the 

comparison and how they will be aggregated. The description that follows mirrors the 

description provided by McDowall, Brodsky, and Kerschberg in (47). 

4.1. Terminology 
Chapter 3 presented an intuitive description of process models and service 

composition; this chapter presents the formal definitions that are the foundation for the 

methodology. The important intuitive definitions are summarized in Table 4 below. The 

formal definitions are provided in this chapter. 

 

Table 4: QoS Term Definitions 

Term Definition 

Process A specification of some business function a user desires to 

complete 

Activity A discrete element of a process that may be reused across 

multiple processes 

Task Type The semantic description of an activity or service that provides a 

reference to the type of work performed by an activity or a service 

Virtual Service A service offering that provides a single interface to what may be 

a more complex service composition or orchestration 

Atomic Service The lowest level of service decomposition 
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In order to assess the QoS of a service composition, it is first necessary to 

formally define how individual services are composed into a business process that 

conforms to some business process specification expressed as a BPMN model. This 

specification must be sufficiently detailed to allow each activity in the BPMN model to 

be mapped to one or more atomic services. 

4.2. Optimal Service Composition 
Intuitively, the service composition optimization problem is as follows: given a 

desired process, a set of services, constraints, and an objective such as minimizing cost, 

select the set of services that comprise the process and best meets the objective within the 

constraints. 

The formal definition of service composition based on a process model is as 

follows (this discussion mirrors the intuitive discussion in Chapter 3). 

Let 𝕋 = {𝑡1, … , 𝑡𝑛} denote a set of task types. For example, 𝑡𝑖(1 ≤ 𝑖 ≤ 𝑛) can be 

the task type “reserve a hotel room.” If a service performs the same function as an 

activity in the process model, then we say they have the same task type. 

Let 𝑆𝑃 denote the set of all semantic parameters. 
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Definition 1: Definition of a Service 

Definition: Given 𝕋 and 𝑆𝑃, a service 𝓈 is a tuple < 𝑖𝑑, 𝐼, 𝑂, 𝑇 > 

Where 

𝑖𝑑 is a unique identifier 

𝐼 ⊆ 𝑆𝑃 is the set of input semantic parameters 

𝑂 ⊆ 𝑆𝑃 is the set of output semantic parameters 

𝑇 ∈ 𝕋 is the task type that describes this service 

 

The above definition includes a unique identifier so that similar services offered 

by different providers can be distinguished from each other. Such a tuple defines 

sufficiently an atomic service. 

A virtual service, defined below, is needed to enable the recursive composition of 

services. 
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Definition 2: Definition of a Virtual Service 

Definition: A virtual service 𝓈 (also called a process) is a tuple  

𝓈 =< 𝑖𝑑, 𝐼, 𝑂, 𝑇, 𝐴, 𝐷𝐺, 𝑎𝑇𝑎𝑠𝑘: 𝐴 → 𝕋, 𝑆 > 

Where  

𝑖𝑑 is a unique identifier 

𝐼 ⊆ 𝑆𝑃 a set of input semantic parameters 

𝑂 ⊆ 𝑆𝑃 a set of output semantic parameters 

𝑇 ∈ 𝕋 is a Process Task Type associated with the virtual service 𝓈 

𝐴 = {𝑎1, … , 𝑎𝑛} is a set of activities used in 𝓈 

𝐷𝐺 ⊆ 𝐴 × 𝐴 is an activity precedence graph that must be acyclic. (𝑎1, 𝑎2) ∈

𝐷𝐺 (also denoted 𝑎1 ≺ 𝑎2) means that activity 𝑎1 must precede  activity 

𝑎2 

aTask: A → 𝕋 is a mapping that associates every activity 𝑎 ∈ 𝐴 to its task type 

𝑡 = aTask(𝑎) in 𝕋 

𝑆 = {𝑠1, … , 𝑠𝑛} is a set of services that can be used by activities in A 

 

Note that a virtual service is a service, and any service in 𝑆 may itself be a virtual 

service. Therefore, multiple services can be used for each activity in a virtual service. A 

particular instantiation is formalized in the following definition. 
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Definition 3: Definition of Service-to-Activity Mapping 

Definition: Given a virtual service 𝓈 =< 𝑖𝑑, 𝐼, 𝑂, 𝑇, 𝐴, 𝐷𝐺, 𝑎𝑇𝑎𝑠𝑘: 𝐴 → 𝕋, 𝑆 >, an 

activity-to-service mapping A2S: A → 𝑆 is a mapping that associates each activity in 𝐴 

with a service in 𝑆, that must satisfy the following properties: 

Let sTask(s) denote the task T associated with service s in 𝑆; 

let SI(s) denote the input set I associated with s; 

let SO(s) denote the output set O associated with s; 

The A2S mapping must satisfy: 

(∀a ∈ A)aTask(a) = sTask(A2S(a)) 

(∀a ∈ A)SI(A2S(a)) ⊆ PrecOut(a) 

Where 

PrecOut(a) denotes the outputs of the services preceding service a 

PrecOut(a) =  ⋃ SO(A2S(b))

b≺a

 

(i.e., b is the set of all outputs produced by activities / services that precede a) 

 

The notion of a virtual service instance, defined below, describes a recursive 

mapping of activities to available services for a given virtual service 𝑣𝓈. 
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Definition 4: Definition of a Virtual Service Instance 

Definition: Let AS be the set of atomic services and VS be the set of virtual services. A 

virtual service instance (VSI) over (AS,VS) is a tuple V =< 𝕊, 𝑣𝓈, {A2S𝓈}𝓈∈𝕊∩VS > 

Where: 

𝕊 ⊆ AS ∪ VS 

𝑣𝓈 ∈ 𝕊 ∩ VS  

{A2S𝓈}𝓈∈𝕊∩VS is a set of activity-to-service mappings A2S𝓈: 𝓈. A → 𝓈. S where 

𝓈. A and 𝓈. S are the set of activities and services of 𝓈, respectively 

Such that the following conditions are satisfied: 

1. 𝓈. S ∈ 𝕊  

2. (∀𝓈. S)SI(𝓈) ⊆ PrecOut(𝓈) 

Where 

PrecOut(𝓈) denotes the outputs of the services preceding service  𝓈 

PrecOut(a) =  ⋃ SO(b)

b≺a

 

(i.e., b is the set of all outputs produced by services that precede a) 

3. ¬(∃𝓈1, 𝓈2 ∈ 𝕊)(∃a1 ∈ 𝓈1. A)(∃a2 ∈ 𝓈2. A)(A2S𝓈1
(𝑎1) = A2S𝓈2

(𝑎2)) 

(i.e., no two activities with services of 𝕊 ∩ VS can be mapped via A2S 

to the same virtual service 
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We would like to find the “optimal” virtual service instance from among those 

available. To do this, we establish several quality of service (QoS) factors that can be 

used to express the utility to be optimized. Formal definitions for each of these metrics 

are provided below. These QoS metrics are described further in the Sucellos QoS model 

discussed in Section 5. 

Given an atomic service 𝓈, the QoS metrics being considered are cost, duration, 

rating, and unity; these are denoted C(𝓈), D(𝓈), R(𝓈), and unity(𝓈) respectively. We 

consider the QoS metrics for atomic services are given, and we define QoS metrics for a 

virtual service. The definition of the cost of a virtual service instance is provided below. 

 

Definition 5: Definition of Service Cost 

Definition: Given a virtual service instance 𝑉 =< 𝕊, 𝑣𝓈, {A2S𝓈}𝓈∈𝕊∩VS > over (AS,VS), 

the cost of  𝓈, ∀𝓈 ∈ 𝕊, denoted cost(𝓈), is defined recursively as follows: 

(∀𝓈 ∈ 𝕊 ∩ AS) cost(𝓈) = C(𝓈) where C(𝓈) is the cost of atomic service 𝓈 

(∀𝓈 ∈ 𝕊 ∩ VS) cost(𝓈) = ∑ cost(A2S(a))a∈𝓈.A  

The cost of 𝑉, denoted cost(𝑉), is defined as cost(𝑉) ≝ cost(𝑣𝓈) 

 

The duration of a virtual service instance, which intuitively is the expected time 

for the entire composition to run from initiation until completion of all services within the 

virtual service instance, is defined next.  
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Definition 6: Definition of Service Duration 

Definition: Given a virtual service instance 𝑉 =< 𝕊, 𝑣𝓈, {A2S𝓈}𝓈∈𝕊∩VS > over (AS,VS) 

the duration of 𝓈, ∀𝓈 ∈ 𝕊, denoted duration(𝓈), is defined recursively as follows: 

(∀𝓈 ∈ 𝕊 ∩ AS) duration(𝓈) = D(𝓈) where D(𝓈) is the duration of atomic 

service 𝓈 

(∀𝓈 ∈ 𝕊 ∩ VS) duration(𝓈) = max {𝑒𝑛𝑑𝑡𝑖𝑚𝑒(𝑎)|𝑎 ∈ 𝐴} 

where endtime(a) is defined as follows: 

If 𝑎 ∈ 𝐴 does not have a preceding activity (𝑖. 𝑒. , 𝑃𝑟𝑒𝑐(𝑎) =  ∅): 

endtime(a) ≝ duration(𝐴2𝑆𝓈(𝑎))  

Otherwise: 

endtime(a) ≝ max{endtime(b) + duration(A2S𝓈(a)) |b ∈  Prec(a)} 

The duration of 𝑉, denoted as duration(𝑉), is defined as duration(𝑉) ≝ 

duration(𝑣𝓈) 

 

The rating of a service is a measure of users’ ratings of a service, such as rating a 

service on a scale of 1 to 10. We assume that each service’s individual rating has been 

normalized to the range {0..1}. The notion of rating for a virtual service instance is 

defined below. 
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Definition 7: Definition of Service Rating 

Definition: Given a virtual service instance 𝑉 =< 𝕊, 𝑣𝓈, {A2S𝓈}𝓈∈𝕊∩VS > over (AS,VS)  

and the rating of each atomic service, the rating of 𝓈 is denoted 𝑟(𝓈) and is defined as 

follows: 

(∀𝓈 ∈ 𝕊 ∩ AS) r(𝓈) = R(𝓈) where R(𝓈) is the rating of atomic service 𝓈 

(∀𝓈 ∈ 𝕊 ∩ VS) R(𝓈) = 
∑ 𝑠𝑎𝑡(A2S(a))a∈𝓈.A

|𝓈.𝐴|
 

Where 

|𝓈. 𝐴| is the number of activities 

The rating of 𝑉, denoted r(𝑉), is defined as 𝑠𝑟(𝑉) ≝ 𝑟(𝑣𝓈).  

 

The rating of any service or collection of services is therefore a value in the range 

of {0..1}.Knowing how to calculate each of the QoS parameters across a service 

composition, we can define the optimal service selection. 
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Definition 8: Definition of an Optimal Service Composition 

Definition: Given the following input: 

 Sets 𝐴𝑆 and 𝑉𝑆 of atomic and virtual services respectively 

 A root service 𝑟𝑠 ∈ 𝑉𝑆 

 An objective expressed as a function 

𝑂: 𝐷(𝑐𝑜𝑠𝑡) × 𝐷(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) × 𝐷(𝑟𝑎𝑡𝑖𝑛𝑔) → ℝ that gives a value 𝑂(𝐶, 𝐷, 𝑅) for 

cost 𝐶, duration 𝐷, and rating 𝑅 

 Minimum or maximum 

 Constraint ℂ is a Boolean expression in terms of 𝐶, 𝐷, and 𝑅 that defines 

ℂ: 𝐷(𝑐𝑜𝑠𝑡) × 𝐷(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) × 𝐷(𝑟𝑎𝑡𝑖𝑛𝑔) → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 

An optimal virtual service instance 𝑣𝑠𝑖 is defined as 

𝑣𝑠𝑖 ≝ 𝑎𝑔𝑔𝑚𝑖𝑛𝑖∈𝑉𝑆𝐼  𝑂(𝐶(𝑖), 𝐷(𝑖), 𝑅(𝑖)) where 𝑉𝑆𝐼 is the set of all virtual service 

instances over (𝐴𝑆, 𝑉𝑆) with root service 𝑟𝑠 subject to ℂ(𝐶(𝑖), 𝐷(𝑖), 𝑅(𝑖)) where 

minimum is required. The definition is similar for the case where a maximum is required. 

 

Example 

To illustrate, consider the simple weather process presented in Section 3. In this 

example, it is necessary to complete two actions: convert the current location designation 

into a format accepted by the weather service, and retrieve the current weather for that 

location. This process is expressed in BPMN as depicted in Figure 7: 
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Figure 7: Sample Weather Process 

 

In this example, the set of task types 𝕋 is {locConvert, getWeatherReport } and 

the set of semantic parameters SP is {lat, lon, zipCode, currTemp, and currHumidity}. 

The set of input parameters I is {lat, lon, zipCode} and the set of output parameters O is { 

zipCode, currTemp, and currHumidity}. 

Detailed information about the semantic parameters is summarized in the tables 

below. Table 5 defines the inputs I to the activity Convert Location: 

 

Table 5: Convert Location Inputs 

Parameter Name Data Type Semantic Type 

lat xs:String myOntology#latitude 

lon xs:String myOntology#longitude 

 

Table 6 defines the outputs O of the activity Convert Location: 

 

Table 6: Convert Location Outputs 

Parameter Name Data Type Semantic Type 

zipCode xs:String myOntology#postalCode 
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Table 7 defines the inputs I of the activity Get Weather: 

 

Table 7: Get Weather Inputs 

Parameter Name Data Type Semantic Type 

zipCode xs:String myOntology#postalCode 

 

Table 8 defines the outputs O of the activity Get Weather: 

 

Table 8: Get Weather Outputs 

Parameter Name Data Type Semantic Type 

currTemp xs:float myOntology#temperature 

currHumidity xs:integer myOntology#humidity 

 

The set of activities A is {Convert Location, Get Weather}. The directed graph 

DG is 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≺ 𝐺𝑒𝑡 𝑊𝑒𝑎𝑡ℎ𝑒𝑟. 

Each Activity in the model is mapped to a Task Type by the relation aTask. For 

example, the “Convert Location” activity has a Task Type of “locConvert”: 

𝑎𝑇𝑎𝑠𝑘(𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) = 𝑙𝑜𝑐𝐶𝑜𝑛𝑣𝑒𝑟𝑡 

The set of services S is {locationConverter, wxReporting}. 

When combined, these elements fulfill the definition of a virtual service 𝓈; this is 

summarized in Table 9. 
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Table 9: Virtual Service for Weather Reporting 

Parameter Value 

id 2323452345 

I {lat, lon} 

O {currTemp, currHumidity} 

T getCurrentWeather 

A {Convert Location, Get Weather} 

DG 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≺ 𝐺𝑒𝑡 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 

aTask Convert Location  locConvert; Get Weather  getWeatherReport 

S {locationConverter, wxReporting} 

 

For the set of services S to be composed into a virtual service instance it must 

satisfy the conditions specified above (i.e., (∀a ∈ A)aTask(a) = sTask(S2A(a)) and 

(∀a ∈ A)SI(S2A(a)) ⊆ PrecOut(a)). To demonstrate this, the services 

locationConverter and wxReporting are summarized in Table 10. 

 

Table 10: Service Summary 

Service sTask SI SO 

locationConverter locConvert lat, lon zipCode 

wxReporting getWeatherReport zipCode currTemp, 

currHumidity 

 

As a comparison of Table 9 and Table 10 shows, the conditions for S2A mapping 

are satisfied and yield the mappings shown in Table 11. 
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Table 11: A2S Mapping for Weather Process 

Service Activity 

locationConverter Convert Location 

wxReporting Get Weather 

 

The result is the VSI shown in Table 12: 

 

Table 12: VSI for Weather Process 

Parameter Value 

𝕊 locationConverter, wxReporting 

𝑣𝓈 Weather Process 

{S2A𝓈}𝓈∈𝕊∩VS locationConverter  Convert Location, 

wxReporting  Get Weather 

 

The following sections describe the QoS model developed as part of this research 

and how that model is applied to determine the optimal service composition. These 

intuitive definitions are based on the formal definitions provided in Section 4.2. 

4.3. Mathematical Programming Formulation 
Using the above definitions, assessing the optimal service composition is a matter 

of calculating the aggregate QoS measures of each VSI and applying the definition of an 

optimal VSI described. To perform this, the definitions described above are instantiated 

using IBM’s Optimization Programming Language (OPL) as described below. 
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The implementation begins by initializing the data required to perform the 

optimization calculations. The initialization code is shown in Table 13. The data 

initialization closely parallels the formal definitions in Section 4.2. 

 

Table 13: OPL Data Initialization 
{string} SP = ...; 

{string} Aservices = ... ; /* ids, a subset of services */ 

{string} Vservices = ...;  /* ids, a subset of services */ 

float activationCost[Aservices] = ...; 

{string} Services = Aservices union Vservices; 

{string} Tasks = ...; 

{string} Inputs[Services] = ...; 

{string} Outputs[Services] = ...; 

string task[Services] = ...; 

{string} Activities[Vservices] = ...; 

 

The data initialization first defines the set of semantic parameters as SP, the set of 

atomic services as Aservices, and the set of virtual services Vservices; each of 

these is defined as a set of strings. Next, the cost of each atomic service is defined as 

activationCost, an array of floats over Aservices. 

The set Services is defined as the untion of the sets Aservices and 

Vservices. This is followed by defining the task types as the set Tasks. In the 

following two lines, the set of arrays Inputs defines the semantic parameters that are 

inputs to each service as an array of semantic parameters over the set of services with a 

similar definition for the set of arrays Outputs. Next, the array task associates task 

types with each service followed by the set of arrays Activities that defines the 

activities within each virtual service in Vservices. 
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After the initial data values are defined, the OPL model calculates additional data 

values that are necessary to perform the optimization computations. These code that 

performs these calculations is shown in Table 14. 

  

Table 14: OPL Data Computation 
tuple serviceActivityPair { 

   string service; 

   string activity; 

}; 

{serviceActivityPair} VserviceActivityPairs =  

  {<s,a> | s in Vservices, a in Activities[s] }; 

   

{string} PrecActivities[VserviceActivityPairs] = ...; 

string aTask[VserviceActivityPairs] = ...; 

string rootVservice = ...; 

 

tuple serviceActivityService { 

  string service; 

  string activity; 

  string mappedService; 

} 

 

{serviceActivityService} VserviceActivityServiceTuples =   

 {<s,a,ms> | s in Vservices, a in Activities[s], ms in Services  

    : task[ms] == aTask[<s,a>] && s != ms }; 

 

This code section first defines a data structure serviceActivityPair, which 

is a set of tuples composed of one service and one activity. These tuples are used to 

define VserviceActivityPairs, which associate activities with virtual services in 

order to specify the activities within each virtual service. 

Next, PrecActivities is defined as set of arrays over 

VserviceActivityPairs, this encodes the precedence graph DG defined in Section 

4.2 by listing the activity preceding each activity within each virtual service. 
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After this, aTask defines an array of strings over VserviceActivityPairs 

that associates a task type with each activity in each virtual service. The string 

rootVservice specifies which of the Vservices is designated the root service. 

The final two data structures defined are the tuple 

serviceActivityService, which captures a service, an associated activity, and a 

mappedService. This tuple is used to build the array 

serviceActivityServiceTuples, which maps a service to each activity in each 

virtual service, fulfilling the function of the A2S mapping defined above. 

Having defined all of the data structures required in the optimality computation, it 

is appropriate to define the decision variables and decision expressions that will be used 

to compute the optimal service composition. These structures are defined in the code 

listing in Table 15. 

 

Table 15: OPL Decision Expressions 
dvar boolean s2a[VserviceActivityServiceTuples];  

 

dexpr int noInvocations[s in Vservices] =  

 sum (sas in VserviceActivityServiceTuples: sas.mappedService 

== s) s2a[sas];  

  

dexpr int noInvPerVservice[v in Vservices][s in Aservices] =  

 sum (sas in VserviceActivityServiceTuples: sas.mappedService 

== s && sas.service == v) s2a[sas]; 

 

dexpr float vServiceCost[v in Vservices] = sum (s in Aservices) 

activationCost[s] * noInvPerVservice[v][s]; 

 

dexpr float rootVserviceCost = vServiceCost[rootVservice] + 

 sum(sas in 

VserviceActivityServiceTuples)vServiceCost[sas.mappedService]; 

 

dexpr float totalCost = vServiceCost[rootVservice]; 
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The decision variable s2a is an array of Booleans over the set of 

VserviceActivityServiceTuples. The s2a variable is 1 if the tuple contains a 

virtual service, and activity, and a service mapped to that activity within that virtual 

service; it is 0 otherwise. 

The decision expression (dexpr) noInvocations is an array of integers over 

the range of virtual services; it counts the number services that have been mapped to 

activities in a particular virtual service. The decision expression noInvPerVservice 

is a two-dimensional array over virtual services and atomic services; its purpose is to 

count the number of times any given atomic service is invoked within a given virtual 

service instance. 

The decision expression vServiceCost is an array of floats over the set of 

virtual services that captures the cost of each virtual service instance for each virtual 

service in accordance with the definition detailed in Definition 5. By the same token, the 

decision expression rootVserviceCost is a float that captures the cost of the virtual 

service that has been designated the root virtual service. Finally, the decision expression 

totalCost is a float that captures the cost of the root virtual service. 

The code listing in Table 16 shows the application of the decision expressions and 

constraints to calculate the optimal service composition. 
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Table 16: OPL Optimization Calculation and Constraints 
minimize rootVserviceCost; 

 

constraints { 

 

forall (v in Vservices, a in Activities[v])  

 sum ( ms in Services : task[ms] == aTask[<v,a>] && v != ms) 

s2a[<v,a,ms>] <= 1; 

 

forall (v in Vservices, a in Activities[v]) (noInvocations[v] == 

1) =>  

  sum ( ms in Services : task[ms] == aTask[<v,a>] && v != ms) 

s2a[<v,a,ms>] == 1; 

 

forall (v in Vservices) 0 <= noInvocations[v] <= 1; 

 

forall (a in Activities[rootVservice])  

 sum ( ms in Services : task[ms] == aTask[<rootVservice,a>] && 

rootVservice != ms) s2a[<rootVservice,a,ms>] == 1; 

 

forall (v in Vservices, a in Activities[v], ms in Services, i in 

(Inputs[ms] diff Inputs[v]) : task[ms] == aTask[<v,a>] && v != 

ms) { 

  s2a[<v,a,ms>] <=  

   sum (precA in PrecActivities[<v,a>], precMs in Services, o in 

Outputs[precMs] : aTask[<v,precA>] == task[precMs] && o == i) 

      s2a[<v,precA,precMs>]; 

} 

 

rootVserviceCost >= 0; 

} 

 

In this example, the utility function described in Definition 8 is expressed as 

minimize rootVserviceCost based on the computation of that cost in the code listed 

in Table 15. This optimization is subject to the constraints shown above. The first 

constraint requires that every activity in each virtual service have at least one service 

mapped to that activity and that the service and activity have the same task type. The next 

constraint ensures that for each activity in a given virtual service, a service mapped to 

that activity have the same task type as the activity and that the activity is not mapped to 
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the virtual service that contains the activity (i.e., it ensures the mapping of activities to 

services is acyclic). 

The third constraint ensures that any given virtual service is mapped to an activity 

only once. This is followed by a constraint that ensures all activities in the rootVservice 

have been mapped to services. The final constraint ensures that for each service mapped 

to an activity, the inputs of that service are provided by the outputs of a service mapped 

to a preceding activity, as required by the definitions shown in Definition 3 and 

Definition 4. Experimental results of this implementation are described in Section 8.2.4. 

The OPL implementation and optimization takes place in Step 6 of the process, as 

highlighted in Figure 8. 

 

 

Figure 8: Composition optimization 
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5. SUCELLOS: A QUALITY OF SERVICE MODEL 

This research employs a formal QoS model, called SUCELLOS, to optimize 

service compositions based on the QoS attributes of the individual services in a VSI. The 

QoS model is based on work done at France’s INRIA research institute (26,48,49). The 

INRIA model is composed of four layers: 

 A QoS Core ontology that describes the foundational concepts used within 

the remainder of the QoS model. 

 An Infrastructure QoS ontology that describes infrastructure-specific QoS 

aspects such as processing power in the service hosting environment. 

 A Service QoS ontology that describes QoS aspects of a particular service 

implementation. 

 A User QoS ontology that describes the environment the user will be using 

to invoke services (e.g., using a smartphone vs. a desktop). 

The original INRIA work was focused on measuring QoS as delivered to the user 

and then offering options to optimize QoS based (in part) on the user’s environment. That 

is, the INRIA model assumes that all services are implemented as web services. In 

contrast, this research employs a model that operates at a more abstract level, where the 

implementation details of the service are much less important than a measure of the 

service’s desirability based on factors such as price, responsiveness, community rating, 
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and similar measures. In short, SUCELLOS is a model that describes QoS for an abstract 

service. The SUCELLOS model is equally suitable for both IT and physical non-web 

services.  In short, a QoS model describes not only the QoS for an abstract service that 

may be implemented in several ways, but also the QoS of non-Web services, such as 

physical services. 

5.1. Description of the SUCELLOS QoS Model 
The QoS metrics are associated with service descriptions that are defined during 

the process of service tagging. This step of the methodology is highlighted in Figure 9. 

 

 

Figure 9: Applying QoS metrics 

 

This research assumes that all web services are implemented as intelligent agents, 

or that an intelligent agent acts as a proxy for every web service. In this scenario, web 
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services are not invoked directly, but the input data is passed to an agent that invokes the 

service and returns the results. This places all services, both web services and physical 

services, on an equal footing: Any service that is implemented by a person is a service 

whose proxy is an intelligent agent. For example, a plumber is not the act of fixing a leak; 

the plumber is the agent who performs that act.  The important decision from the user’s 

point of view is to select the best plumber to do the job. 

If the agents representing services are empowered to negotiate terms of service (as 

a human agent is likewise capable of doing), then the playing field among different types 

of services is leveled still further, and it is possible to implement a more robust 

negotiation of the QoS for a specific service invocation than is possible with the INRIA 

model. For example, the FIPA Contract Net Interaction Protocol (50) can be used to 

negotiate terms of service between a service agent and a broker, or the FIPA English 

Auction or FIPA Dutch Auction Interaction Protocol can be used to manage bidding 

among multiple service agents. 

The INRIA model also did not include any notion of measuring the quality of 

service across a service composition or business process. When evaluated across a 

composition of multiple services, QoS can be measured in terms of whether the 

composition completes the entire business process or only some fraction of it. For 

example, let us assume the original process specification includes five distinct activities 

but it is only possible to find services that complete the first four activities in the process. 

Despite being incomplete, this partial materialization of the original process specification 

may still be of some utility to the user. The INRIA model assumes every service 
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composition completes the process and does not consider a partial process as a potential 

solution. 

Another aspect of assessing the QoS across a service composition is to aggregate 

each of the QoS attributes of all of the services in a composition and compare those 

across different composition. There may be many different ways of aggregating different 

QoS metrics: aggregating cost is a simple summation of the cost of each service in the 

composition, but aggregating the time required to complets a composition will be more 

complex if there are services executing in parallel (see Definition 6 for an example of 

such aggregation). 

To meet the needs of evaluating the QoS of a complete service composition, and 

also to describe QoS of non-web services, this research builds on the INRIA model to 

define two quality groups that measure service and process QoS: Task and Process. 

The Task QoS expresses the quality of service of a single service offering, While 

analogous to the Service QoS in the INRIA model, this expression is more generic to 

better describe non-web services. This measure serves two different but related functions. 

It can be applied to an individual service offering to describe the QoS promised by the 

vendor, and it can also be applied to a task within a process model to express the desired 

QoS attributes that the modeler thinks are important to the successful completion of the 

task as a part of the overall business process. 

The Process QoS expresses the quality of service of the process as a whole (i.e., 

the combination of services that fulfills the business requirement of the process). This is 
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not simply an aggregation of the QoS measurements of the constituent tasks or services, 

but is a separate measure that relates to the process as a whole. 

The structure and scope of these quality groups is described in more detail below. 

Task Quality Group 

The Task Quality Group describes QoS measures that apply to a single task or 

activity within a process model (these are the individual blocks within a BPMN model), 

or to the services that can fulfill a given task. When applied to a task, the modeler will 

specify the QoS desired for a particular task as part of the modeling process. When 

applied to a service, the QoS metrics are part of the service description and measure the 

expected performance of a given service offering. 

The Task Quality Group is composed of several quality factors, each with one or 

more properties as described below. 

Quality Factor: Cost 

The Cost Quality Factor represents the monetary value of completing a task or 

invoking a service. The Cost Quality Factor is composed of two properties, Price and 

Unit. 

Property: Price 

Price is the amount a modeler is willing to pay to complete an individual 

occurrence of a task (when applied as part of a process model) or the amount a service 

provider charges for an individual invocation of a service (when applied to a service 

offering). 
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If each service has an agent as its proxy, then the Price property may represent a 

starting point for negotiations where the agent is empowered to negotiate a final price 

though processes such as bidding or auctions. 

Property: Unit 

Unit is the denomination of the Price property, for example dollars or yen. 

Quality Factor: Speed 

The Speed Quality Factor conveys the maximum time to complete a particular 

task when applied to the process model, or the time a service is projected to take to 

complete. 

Property: Time 

The Time property is the numerical measure of the maximum execution period of 

the task or of the expected completion schedule of the service. 

Property: Measure 

The Measure property expresses the units of measure that the Time property 

captures. For example, Measure may be milliseconds for a web service or days a 

plumbing service. 

Quality Factor: Semantic Similarity 

The Semantic Similarity Quality Factor is a calculated metric that embodies the 

degree to which a candidate service (i.e., a service that may fulfill a given task) matches 

the semantics of the task. The semantics of a service or a task may be measured along 

four main facets: inputs, outputs, preconditions, and effects (IOPE). The semantic 

similarity factor is a measure of the similarity of a service to a task as measured along 
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each of those four facets. (This is the same way the OWL-S (6) service description 

captures the elements needed for matching services.) 

Property: Effect 

The Effect property is a measure of the extent to which the activity’s task type as 

expressed in the process model match a candidate service’s task type (i.e,. the service’s 

effect semantics). This measure is a value of the range {0..1}, where 0 indicates no 

documented match between the semantics of the activity task type and the service task 

type, and 1 indicates that the activity and the service task types are described using the 

same ontology. Intermediate values indicate the semantic distance between the activity 

task type and service task type as measured by the number of ontologies that must be 

linked to span from one to the other. For example, assume that Activity A is described 

using Ontology A and Service 1 is described using Ontology 1. If the task type of 

Activity A explicitly defines the task type of Service 1 as equivalent, then that is a 

higher-ranking match than the case where the equivalence is established by Ontology A 

and Ontology 1 both referencing some third ontology. 

To better illustrate this idea, assume an Activity and a Service where the task type 

is described by Attribute X in Ontology A and the service description also describes its 

task type by referring to Attribute X in Ontology A. In this case, the match is perfect and 

the Effect property has a value of 1. If the Service description is changed such that its 

task type refers to Attribute Y in Ontology A, and Attribute Y includes an assertion that it 

is equivalent to Attribute X, then the match is very close but not quite perfect, and so the 

Effect property will be something close to, but less than, 1 (perhaps 0.9). If the Service 



78 

 

description is further changed such that its task type refers to Attribute Z in Ontology B, 

and Attribute Z is asserted to be equivalent to Attribute X, then the value of the Effect 

property will be still lower, perhaps 0.5. (The assertion of equivalence among attributes 

within different ontologies may be explicitly defined by the ontologist.) This sort of 

indirect equivalence could be several ontologies deep, with each link between ontologies 

resulting in a lower value for the Effect property. For example, assume an activity is 

described by a task type in a Alice's Weather Ontology. If a service is also described by a 

task type in Alice’s Weather Ontology, there is an exact match. But consider the case 

where the service is described by a task type in Bob’s Meteorology Ontology. If 

equivalence has been asserted between the task types in each ontology we can still match 

the service and activity task types, but that match is not as direct as if the service and 

activity had been described using the same ontology. This sort of indirect matchin coule 

stretch across several ontologies, with each ontology in the chain decreasing the 

exactness of the match. For this reason, in practice the number of inter-ontology links 

should be limited to a relatively small number. 

Property: Input 

The Input property is an aggregation of the measures of semantic similarity of the 

inputs of an activity and a service (where the inputs are explicitly captured in the process 

model). The individual input similarity measures are averaged into a single value within 

the range {0..1}. 

Property: Output 
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The Output property is an aggregation of the measures of semantic similarity of 

the outputs of an activity and a service (where the outputs are explicitly captured in the 

process model). The individual output similarity measures are aggregated into a single 

value of the range {0..1} that averages the semantic similarity of all output parameters. 

Quality Factor: Rating 

The Rating Quality Factor measures the reputation of the service offering as 

measured by users rating their satisfaction with the service. 

Property: Ranking 

The Ranking property is a value that expresses users’ rating of the service 

offering on whatever scale the individual rating organization employs. 

Property: Scale 

The Scale property is an integer value that expresses the maximum value a service 

can achieve on the rating organization’s system (e.g., if a system allows users to rank 

services from 1-5 the Scale would be 5). This value makes it easier to normalize service 

rankings across different scales (e.g., ratings of 1-4 vs. 1-5). 

Quality Factor: Service Type 

The Service Type Quality Factor is a measure of whether a candidate service is of 

the same type as that requested by the process modeler. For example, a process modeler 

may prefer that all services in a composition be SOAP web services, but some service 

offerings that otherwise fulfill the task are REST web services. 

Property: Interface Type 



80 

 

The Interface Type property is an expression of the way a user invokes the service 

or a modeler’s preferred interface type. For example, one hotel reservation service may 

offer a REST interface where another only offers a telephone interface (i.e., the user must 

call the hotel to reserve a room). 

Property: Delivery Type 

The Delivery Type property expresses the means by which the service is 

delivered, or the way in which its effects become visible. For example, one hotel 

reservation service may deliver a confirmation via e-mail where another hotel reservation 

service delivers confirmation by letter. 

Process Quality Group 

The Process Quality Group encompasses those attributes of QoS that apply to the 

process as a whole (when applied to a process model), or to a service composition. When 

applied to a service composition, the Process QoS measure reflects the characteristics of 

the aggregation of services and not a summation of the QoS measures of the constituent 

services. 

Quality Factor: Unity 

The Unity quality factor is a measure of the number of different service providers 

involved in a given process or composition. When applied to a process model, the Unity 

factor expresses the user’s preference for minimizing the number of service providers, 

and when applied to a service composition the Unity factor is a measure of the ratio of 

service providers involved in the composition relative to the number of services. As an 

example, some compositions may be assembled from a number of services where each 
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service is offered by different provider while other compositions may be assembled from 

a suite of services offered by the same provider. An intermediate situation could be where 

a group of services are offered by two or more vendors working cooperatively to offer a 

package of services (as a sort of consortium). 

Property: Provider Quantity 

The Provider Quantity property is the number of individual service offerors 

involved in a given service composition. For example, a composition composed of three 

services all offered by the same company would have a Provider Quantity of 1. 

Property: Service Quantity 

The Service Quantity property is the number of service invocations required to 

complete a given service composition. 

5.2. QoS Calculation 
The QoS of a Virtual Service Instance (VSI) is the basis of the optimization 

assessment defined in Chapter 4.  This section provides a brief intuitive explanation of 

how each of the QoS metrics described in the formalism is aggregated for a VSI. 

Optimization based on the QoS metrics that are not discussed in the formalism in Chapter 

4 remains an area for future research. 

The QoS of a VSI is calculated by evaluating the QoS of each atomic service and 

aggregating those measures accordin to a defined formula. In many cases, this 

aggregation may be a simple averaging of a given QoS metric across all atomic services, 

but in other cases the aggregation may be more complex such as that shown in Definition 

7. (As specified above, the atomic service is the level at which QoS is defined.) However, 
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aggregating the QoS measures is not a simple matter of summing the QoS measures of 

each atomic service in a VSI. The specific calculations for aggregating QoS across a VSI 

are described below. 

Cost 

For a given VSI, the cost of the VSI is calculated by summing the costs of each 

atomic service that is used in that VSI. While this definition may seem intuitive, its 

development is helpful in understanding how other QoS measures are calculated. The 

formal definition of the cost of a VSI is provided in Definition 5. 

Duration 

The duration of service execution, when aggregated across all atomic services 

within a VSI, yields the expected duration of the VSI. Calculating the duration of a VSI is 

somewhat more complex than calculating cost because it is not a simple summation of 

the durations of each atomic service invocation. Some services may be executed in 

parallel. If one service takes longer to complete than the other, the shorter service’s 

duration is not a factor in calculating the overall duration of the service composition 

because the longer service will still be executing after the shorter service has completed. 

Given this potential parallel execution of services, it is necessary to calculate the 

longest duration path through the service composition, based on the duration of each 

atomic service. The shortest time in which the composition can be executed is thus the 

sum of all the longest durations of each set of parallel services. 

The formal definition of this calculation is provided in Definition 6, and is 

explained intuitively as follows. The VSI is divided into “phases,” where the first atomic 
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service is in Phase 1, all atomic services that are called using the outputs of the atomic 

service in Phase 1 are in Phase 2, and so forth. Those services in Phase n are those that 

require the outputs of services in Phase n-1. Using this construct, we calculate the longest 

duration of a service composition by adding the duration of the service in Phase n (i.e., 

the final atomic service) to the duration of the longest service in Phase n-1, adding this 

total to the duration of the longest service in Phase n-2, etc. This is required to account 

for the cases where multiple services are executing in parallel (i.e., during the same 

phase) and some of those services take longer than others to complete; the overall process 

cannot proceed to the next phase until all services in the current phase have completed. 

The resulting total is the minimum amount of time it will take the full composition to 

complete. 

Rating 

The rating of a VSI is formally defined in Definition 7 and it intuitively explained 

here. Each atomic service has a rating that measures users’ reported satisfaction with that 

service, together with the scale the user rating is measured on. For example, a user may 

have rated a service as a four on a scale of one to five. 

All service ratings are normalized by dividing the user rating by the maximum 

possible rating, resulting in a value in the range [0..1].  After all of the services’ ratings 

are normalized, the ratings for all services in that VSI are averaged to compute the rating 

for that VSI. 
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6. EXTENSIONS TO BPMN 

As discussed in Section 2.2, existing process specification modeling languages do 

not contain the semantic information necessary to support service-to-activity 

matchmaking.  Previous efforts were directed towards service descriptions based on 

SOAP-described web services.  

In contrast, this research develops a more generic approach that supports 

matchmaking of activities to services described using semantic markup. This motivated 

the development of an extension to BPMN, called BPMN-S, for the semantic markup of 

process models. 

The extensions to BPMN are used in the portion of the methodology highlighted 

in Figure 10. 

 



85 

 

 

Figure 10: Using BPMN extensions 

 

6.1. Language Selection 
One option for enabling the semantic markup of process models would have been 

to create a new modeling language or notation; this is essentially the approach taken by 

the WSMO project as described in Section 2.2.3. However, the development of a full-

featured process modeling language from scratch is beyond the scope of this research. 

Therefore, our approach has been to build on an existing language, BPMN, and extend it 

to meet the needs of this research. 

Existing process description models fall into two broad categories: 

 Graphical languages intended for use by business analysts or system 

designers such as BPMN and Unified Modeling Language UML (52), 

 Procedural languages intended for use by developers such as BPEL. 
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Because a goal of this research is to enable business analysts to specify process 

models that can be matched to services, procedural languages are not suitable for 

specifying a process. Of the graphical languages, BPMN was selected as the modeling 

language for this research. 

BPMN is a graphical language that is readily understandable by business analysts 

and can be learned by end users in a relatively short time. In addition, UML activity 

diagrams are specifically designed to model the process that a software module executes. 

However, as discussed in Section 2.2.4, UML’s lack of a standardized machine-readable 

representation such as XML, combined with inherent ambiguities in the language, make 

it unsuitable as the basis for an automated service composition language. The XML 

Metadata Interchange (XMI) format published by the Object Management Group (OMG) 

is machine-readable, but its purpose is to describe the appearance of a UML model and 

not the significance of the model elements (e.g., the differences between a process 

activity and a data artifact). 

BPMN is a graphical modeling language intended for use in describing business 

processes from the end user’s point of view. Additionally, since the release of BPMN 2.0, 

BPMN has a formal XML notation that makes BPMN models machine-readable. While 

BPMN models can be ambiguous if the modeler is not careful, applying the principles 

described by zur Mehlan in (53,54) reduces ambiguity in BPMN models.. 
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6.2. Language Extension 
After selecting BPMN as the foundation for an enhanced process modeling 

language, this research investigates how BPMN can be extended to support automated 

service composition. 

Extending the XML notation of BPMN would necessitate modifying a modeling 

tool to export the new XML elements and attributes as part of converting the BPMN 

model to XML. Rather than extend the BPMN XML specification, this research captures 

the semantic information in the documentation field of each of the activities in the model. 

This ensures the information is exported as part of the normal XML generation process. 

This eliminates the need to modify the modeling tool and ensures compatibility with the 

BPMN 2.0 XML schema. The specific documentation annotations are explained in detail 

below. 

6.2.1. Activity Semantics 
The first task is to establish the information elements necessary to allow 

automated service-to-activity matchmaking. For the matchmaking to be effective, each 

activity in the process model must be annotated with a semantic description that can be 

matched to the semantic descriptions of service operations. This can be accomplished 

through the use of a simple list of allowable values, but that is essentially a syntactic 

matching scheme that is only as flexible as the list of values. 

A better solution than a list of values is the use of references to one or more 

external ontologies to define the semantics of the activities in the process. This has 

several advantages. First, it allows a business process modeler to refer to an ontology 

separate from the process model, ensuring each can evolve independently, thereby 
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promoting reuse of existing ontologies. Second, ontological references at the activity 

level allow the use of multiple ontologies within a single process model, increasing 

flexibility. 

To accommodate references to external ontologies, it is necessary to add an 

ontology annotation to each of the activities within the process model, along with a 

notation denoting the specific task type in the ontology that this activity refers to. Within 

the documentation field, the ontology reference is documented in the following format: 

ontology:<ontology_URI> 

This notation specifies the ontology that is used to define the semantics used for 

this activity and its inputs and outputs. The task type is denoted as follows: 

type:<task_type_reference> 

The task type is an entry in the ontology specified by the ontology reference. If 

this ontology is the same as the ontology used to generate the service descriptions, then 

service-to-activity matchmaking is a simple matter of matching the effect of an operation 

in the service description to the task type. In the event different ontologies are used for 

the process model specification and the service description, there are several possible 

means of establishing equivalence between the different terms. This could be done 

through an assertion on a term in one ontology, to which a particular term in the other 

ontology is equivalent, or it could be through the sort of automated ontology matching 

described by Muthaiyah et al (51). 
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6.2.2. Input and Output Parameters 
In addition to specifying activity semantics, it may be desirable to specify the 

semantics of the input and output parameters of each activity in the model. These 

parameters must refer to the same ontology as the activity type reference, with the same 

benefits that such a reference provides for activity semantics. 

Input semantic types for each activity in the model are captured in the 

documentation field using the following notation: 

input:<input_type> 

There is an individual entry for each of the inputs to an activity. Each input is 

captured on a separate line to simplify the task of parsing the inputs out of the 

documentation field. 

Output semantic types for each activity are captured the same way the input types 

are: 

output:<output_type> 

As is the case for inputs, there can be many output parameters and each one is 

captured on a separate line within the documentation field for the activity. 

Adding input and output data elements to each activity in the model enables 

refinement of the selection of services, by ensuring the resulting service selections can be 

composed into a complete workflow; every service selected for a given activity will have 

the same inputs and outputs. 
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7. OGMA: A SERVICE DESCRIPTION LANGUAGE 

The purpose of a service description is to capture the information necessary to 

understand how to bind to and invoke the service. As discussed in detail in Section 2.1, 

none of the existing service description models includes sufficient semantic detail to 

enable automated activity-to-service or service-to-service matchmaking. The remainder 

of this section describes the OGMA service description language developed by this 

research to address the limitations of current service description models. 

The service description language is applied during the service tagging and 

registration part of the DRUID methodology, as highlighted in Figure 11. 

 

 

Figure 11: Creating service descriptions 
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7.1. Design Challenges 
To overcome the limitations of existing service interface description models, this 

research defines a service description language that fulfills the following key criteria: 

 Support for descriptions of many service types: SOAP services, REST 

services, physical services, and services that do not fit into one of these 

categories, 

 Provides the necessary semantic markup to enable the matchmaker to 

perform service-to-activity matchmaking, 

 Facilitate service-to-service matchmaking based on semantic descriptions 

of service inputs and outputs. 

Additionally, the service description format should include all the elements of 

both WSDL and WADL service descriptions, so as to simplify converting existing 

service descriptions to this new format. Given the large number of existing WSDL 

service descriptions, and to a much lesser extent WADL descriptions, this type of 

compatibility is an important practical consideration. 

Before discussing the design of the OGMA language in detail, it is helpful to 

define semantics within the context of a service description and its importance to 

automated matchmaking. 

7.1.1. Semantics Defined 
In general, semantics is the study of the meanings of words. For purposes of this 

discussion, “semantics” refers to the explicit encoding of the meaning of terms within a 

service interface description. This includes the meaning of individual data elements that 
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are the inputs or outputs of the service, the function of the service (i.e., the task it 

performs), and the meaning of additional useful information. 

Semantics may be formally encoded using any of several ontology definition 

languages. One of the most common is the Web Ontology Language (OWL) (55). OWL 

is actually a family of languages that can be used to formally describe a body of 

knowledge, including the entities within that body, their characteristics, and the 

relationships among those entities and characteristics. OWL is based on Description 

Logics (56) and the Resource Description Framework (RDF) (57). RDF assertions are 

constructed as triples that take the form subject-predicate-object (e.g., Person hasName 

Bob). RDF triples, and by extension OWL, can be combined to explicitly define any 

concept.  

When semantics are encoded in RDF or any of its derivatives, the formal structure 

of the encoding enables rule processing and basic machine processing of the contents of 

the ontology. Given a sufficiently detailed ontology, this processing can determine if two 

different terms refer to the same concept. For example, let us say the term “position” is 

defined as having attributes “latitude” and “longitude.” We can then infer that the term 

“location” with attributes “latitude” and “longitude,” refers to the same concept as 

“position.” Some reasoners, such as HermiT, can infer this equivalence without 

additional information. Other reasonsers require the addition of specific equivalence rules 

using the Semantic Web Rule Language (SWRL) (58). To some extent, this processing is 

possible even when different ontologies are used by different parties, as described by 

Muthaiyah et al in (51,59,60). 
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Semantics can also be encoded in a less formal manner through the use of 

controlled vocabularies. A controlled vocabulary is a limited set of terms used by a 

community of interest to encode data within that community. A controlled vocabulary 

need not be formally encoded in any way; all that is necessary is that the terms be limited 

and agreed upon. However, the use of controlled vocabularies is very limiting because it 

does not support the automated reasoning or inference enabled by OWL. 

7.1.2. Data Semantics 
Regardless of the type of service or the complexity of the data it consumes or 

produces, the inputs and outputs of a service can be broken down into several atomic 

elements. Each of these elements has its own semantics that must be understood by the 

consumer before the service can be correctly invoked. Consider a service that returns the 

current temperature for a given location. This service takes one input parameter named 

“location” of type “string” and returns one output parameter named “temperature” of type 

“integer.” If this is all the information available it will be difficult to successfully invoke 

the service. The input parameter “location” may be any of several location designators. It 

may be a city name, a postal code, a Universal Transverse Mercator (UTM) coordinate, 

or some other location designator. 

Changing the name of the input parameter name to “postal_code” does not 

eliminate this ambiguity. We still do not have enough semantic information to invoke this 

service because postal codes are not standardized across the world. In the UK, postal 

codes are called “postcodes” and are an alphanumeric designator composed of between 

six and eight characters including a single space. In the US, postal codes are referred to as 
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Zone Improvement Plan (ZIP) codes and are a numeric designator of five digits. Thus, we 

can see that “postal_code” by itself does not convey enough semantics to successfully 

invoke the service. 

In order to understand the semantics of the data accurately enough to invoke the 

service, the semantics must be explicitly described and linked to the service description. 

To automatically process the inputs and outputs of a service, the semantics of the data 

elements must be in a machine-readable format linked to a machine-readable service 

description. 

7.1.3. Operation Semantics 
In addition to data semantics, it is also necessary to understand the functions a 

service performs on that data. The weather service described earlier accepts 

“postal_code” as input and returns “temperature” as output. Let us assume that an 

operation offered by that service is called “getTemperature.” The name alone is 

insufficient to understand the operation. The operation may return the current temperature 

for the given location, it may return the maximum forecast temperature, or it may return 

any of several other temperature readings for that location. 

Using more explicit operation names does not remedy the ambiguity. Just as data 

elements must include explicit semantic references, operations within a service 

description must also include explicit semantic references. As is the case for data 

semantics, the semantic references for service operations should be machine-readable and 

explicitly linked to the operation name. 
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7.1.4. Service Semantics 
The semantic description of a service is defined as the task type performed by the 

primary operation the service provides. Because a service is a collection of operations, 

the semantics of the service are relatively unimportant if the operations are semantically 

tagged. However, semantically tagging the service is helpful because it can simplify 

searching for operations by providing a ready means for categorizing services. 

7.2. Model Definition 
Because of the need for clear semantics as described in Section 7.1.1, this 

research uses OWL to define the OGMA service description language. OWL has the 

added advantage of enabling machine reasoning across the service descriptions. 

The OGMA service description language is described in detail in the paragraphs 

that follow. The OWL specification of the language can be found in Appendix A. The 

service description language is illustrated by the use of an example service. The example 

service is one that reserves a hotel room. This example is loosely based on the hotel 

reservation services offered by Marriott. 

The foundation of the service description language is the SERVICE class, which 

is defined as an aggregate of several constituent classes that define the details of the 

operations offered by the service. The service class includes a name for the service and an 

industry classification code for categorizing the business domain the service is intended 

to serve. A description of the SERVICE class is shown in Table 17. 
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Table 17: Service Definition 

Service Definition 

SERVICE 

  has attributes 

    [name            string] 

    [naicsCode       string] 

  is aggregate of 

    [class           BINDING] 

    [class           OPERATION] 

    [class           PROVIDER] 

    [class           RESOURCE] 

    [class           STATE] 

 

Applying this template to Marriott yields the description shown in Table 18, 

where the NAICS code 561599 designates “All Other Travel Arrangement and 

Reservation Services.” 

 

Table 18: Marriott Service Description 

Attribute Value 

Name All Other Travel Arrangement and 

Reservation Services  

naicsCode 561599 

 

The BINDING class is an abstract class that is further subdivided into subclasses 

NEWORKBINDING and PHYSICALBINDING. These classes encapsulate the 

information needed to invoke an individual OPERATION and are described in Table 19. 
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Table 19: Binding Definition 

Binding Definition 

BINDING is abstract 

    [name                        string] 

 

NETWORKBINDING extends BINDING 

    [communicationProtocol       {http|https|sms|smtp}] 

    [soapProtocol                {document|rpc}] 

    [url                         URL] 

    [soapTransport               URI] 

 

PHYSICALBINDING extends BINDING 

    [city                        string] 

    [state                       string] 

    [country                     string] 

    [communicationProtocol       {person|postal|telephone}] 

    [phoneNumber                 string] 

    [pointOfContact              string] 

    [postalCode                  string] 

    [address                     string] 

 

The NETWORKBINDING class has the attributes necessary to bind to services 

that are accessible via the Internet. The communicationProtocol attribute takes one of 

several attributes as listed to define whether the service is bound using HTTP or HTTPS 

in the case of SOAP or REST services, or Short Message Service (SMS) for services that 

may be accessible by a cell phone text message. It also includes Simple Mail Transfer 

Protocol for services that may be invoked using e-mail. 

The PHYSICALBINDING class has those attributes that are needed to invoke a 

physical service, whether in person or by contacting a person. The 

communicationProtocol attribute defines the means by which the service provider is 

contacted, either in person, by mail, or by telephone. The remainder of the attributes are 
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standard elements used to define the physical location of a place of business, such as a 

street address, city, etc. 

Continuing to describe Marriott with the service description language, we include 

both network and physical bindings for operations the Marriott service offers. The 

network binding, shown in Table 20, defines the information needed to connect to 

Marriott’s web site. The physical binding, also shown in Table 20, includes the 

information needed to contact the Marriott reservation service person-to-person. 

 

Table 20: Marriott's Binding 

Network Binding 

Attribute Value 

communicationProtocol http, https 

soapProtocol null 

url http://www.marriott.com 

soapTransport null 

 

Physical Binding 

Name Marriott Hotels Binding 

City Bethesda 

State MD 

Country USA 

communicationProtocol telephone 

phoneNumber 1-888-236-2427 

pointOfContact Reservations 

postalCode 20817 

Address 10400 Fernwood Rd 
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The PROVIDER class defines the person or organization that offers the service 

being described. The PROVIDER class is depicted in Table 21. Each of the attributes of 

the PROVIDER class is a common attribute of any business or personal contact 

information and is not described in any additional detail here. 

 

Table 21: Provider Definition 

Provider Definition 

PROVIDER 

    [city                        string] 

    [state                       string] 

    [country                     string] 

    [identifier                  string] 

    [name                        string] 

    [phoneNumber                 string] 

    [postalCode                  string] 

    [address                     string] 

    [url                         URL] 

 

In the case of Marriott, the PROVIDER information is shown in Table 22, which 

depicts the information for the business entity that has overall responsibility for 

provisioning the services on offer. 

 

Table 22: Provider Information 

Attribute Value 

City Bethesda 

State MD 

Country USA 

Identifier  

Name Marriott Hotels, Inc. 
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phoneNumber 1-301-380-7770 

postalCode 20817 

Address 10400 Fernwood Rd 

url http://www.marriott.com 

 

The RESOURCE class, defined in Table 23, describes the input or output of any 

service. The RESOURCE class itself is abstract and contains three attributes. The first is 

currentState, which is a reference to a STATE object that describes the current state of 

the resource (the STATE class is described below). Each RESOURCE is identified by a 

name attribute and includes an ontology attribute that references a URI that formally 

describes the semantics of the RESOURCE. 

 

Table 23: Resource Description 

Resource Definition 

RESOURCE is abstract 

    [currentState                STATE] 

    [name                        string] 

    [ontology                    URI] 

 

PHYSICALRESOURCE is abstract, extends RESOURCE 

 

VIRTUALRESOURCE is abstract, extends RESOURCE 

 

The RESOURCE class has two abstract subclasses, PHYSICALRESOURCE and 

VIRTUALRESOURCE, that describe resources that are either physical objects or data 

types respectively. 
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The abstract class PHYSICALRESOURCE has two subclasses, 

ANIMATERESOURCE and INANIMATERESOURCE, as shown in Table 24. These 

classes are used to describe physical objects that are inputs or outputs to a service. The 

ANIMATERESOURCE class describes living things that a service operates on. The 

ANIMATERESOURCE class has two attributes, genus and species, corresponding to the 

elements of the same name used in the Linnaean taxonomy (61). 

 

Table 24: PhysicalResource Definition 

PhysicalResource Definition 

PHYSICALRESOURCE is abstract, extends RESOURCE 

 

ANIMATERESOURCE extends PHYSICALRESOURCE 

    [genus                       string] 

    [species                     string] 

 

INANIMATERESOURCE extends PHYSICALRESOURCE 

    [description                 string] 

 

 

The class INANIMATERESOURCE, also shown in Table 24, includes one 

attribute, description, for designating the type of item the service acts upon. To illustrate 

the application of the RESOURCE classes, Table 25 shows a subset of potential inputs 

and outputs for a Marriott service. 
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Table 25: Medical Resources 

Inanimate Resource 

Attribute Value 

Description luggage 

 

In Table 23 it can be seen that the currentState attribute has a type STATE. The 

STATE class defines the current condition of a RESOURCE. The STATE class is 

described in Table 26. 

 

Table 26: State Definition 

State Definition 

STATE 

    [status                      string] 

    [description                 string] 

    [ontology                    URI] 

 

The STATE class denotes the status a RESOURCE may assume. The status is 

stored as a string, with an accompanying description attribute that can provide amplifying 

information as needed. There is also an ontology attribute that can reference an external 

ontology that describes the semantics of the STATE being referenced. An example 

STATE object is shown in Table 27. 

 

Table 27: State Example 

State 

Attribute Value 

Status unconfirmed 
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State 

Attribute Value 

description A reservation has been requested but has not 

yet been verified 

ontology http://myontology.org/hospitality#unconfirmed 

 

This example STATE is for a customer reservation that has been scheduled but 

has not yet been confirmed (for example, by submitting a credit card as a surety). This 

would typically be the STATE of a customer reservation that is being processed by the 

Marriott reservation service. 

The OPERATION class describes an individual function offered by a service 

PROVIDER. OPERATION itself is an abstract class with four concrete subclasses as 

shown in Table 28. 

 

Table 28: Operation Definition 

Operation Definition 

OPERATION is abstract 

    [name                         string] 

    [effect                       STATECHANGE] 

    [input                        RESOURCE] 

    [output                       RESOURCE] 

    [binding                      BINDING] 

    [semanticType                 URI] 

    [precondition                 STATE] 

 

NOTIFICATION extends OEPRATION 

 

ONEWAY extends OPERATION 

 

REQUESTRESPONSE extends OPERATION 

    [httpMethod                  {GET|POST|PUT|DELETE}] 
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Operation Definition 

SOLICITRESPONSE extends OPERATION 

 

 

The subclasses of the OPERATION class mirror those defined in the WSDL 

standard in order to ensure compatibility with SOAP-based web services but are also 

compatible with REST services and physical services. As the definition shows, an 

OPERATION contains many references to other classes. Each OPERATION is identified 

by a name attribute that is a string. The action performed by the OPERATION is 

identified by a reference to a STATECHANGE object (defined below); that action takes 

some RESOURCE object as an input and returns some RESOURCE object as an output. 

A given OPERATION may change the STATE of an input RESOURCE and return the 

altered RESOURCE, while another OPERATION may take one type or RESOURCE as 

an input and return a different type of RESOURCE as an output. 

The information needed to bind to and invoke an OPERATION is encapsulated 

within a BINDING object. Each OPERATION may be characterized by a semanticType 

as defined by an external ontology, and it may also define a necessary precondition 

denoted by some STATE. 

The subclass REQUESTRESPONSE includes an additional attribute, httpMethod, 

denoting one of the four HTTP methods (GET, POST, PUT, or DELETE) that describes 

the method used to invoke an OPERATION using the HTTP protocol. A notional 

example OPERATION offered by Marriott is shown in Table 29 (Marriott does not 

currently offer a publicly available web service for reserving hotel rooms). 
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Table 29: Operation Example 

Operation 

Attribute Value 

name reserveRoom 

effect confirmedReservation 

input arrivalDate 

input departureDate 

output confirmationNumber 

binding Marriott Hotels Binding 

semanticType http://myontology.org/hospitality#reserve 

precondition Null 

 

The STATECHANGE class referenced in Table 28 is defined in Table 30. The 

STATECHANGE class is a convenience class that defines an initialState and finalState, 

encapsulating an effect that could be produced by many different operations. 

 

Table 30: StateChange Definition 

StateChange Definition 

STATECHANGE 

    [name                              string] 

    [initialState                      STATE] 

    [finalState                        STATE] 

 

An example STATECHANGE is shown in Table 31. The example describes a 

change in state that may be applied to many resources affected by different operations; in 
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the example service it would apply to the blood that is an input to the bloodAnalysis 

operation. 

 

Table 31: StateChange Example 

StateChange 

Attribute Value 

name unconfirmedToConfirmed 

initialState Unconfirmed 

finalState Confirmed 

 

The framework employs a main ontology that embodies the service description 

language explained above and encodes the semantics of the service description. This 

ontology is encoded in OWL, making it easier to query the service descriptions when 

they are stored in an OWL-compliant repository. 

The SERVICE class is a grouping of operations, and so is related to the 

OPERATION class as depicted in Table 32. 

 

Table 32: Service Object Properties 

SERVICE Object Properties 

Property Cardinality Object 

hasNAICSCode some Integer 

hasName exactly 1 String 

hasOperation some OPERATION 
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The SERVICE property hasNAICSCode is a means for describing the business 

domain of a service using the North American Industrial Classification System code, and 

has as its object zero or more integers. The property hasName takes exactly one string as 

its object and provides a means for identifying the SERVICE. The SERVICE property 

hasOperation takes as its object zero or more objects of the OPERATION class. A 

service with zero operations has no practical value, but could be used to describe an 

abstract service. 

The object properties of the OPERATION class are shown in Table 33. 

 

Table 33: Operation Properties 

OPERATION Object Properties 

Property Cardinality Object 

hasBinding some BINDING 

hasEffect some STATECHANGE 

hasInput some RESOURCE 

hasOutput some RESOURCE 

hasPrecondition some STATE 

hasSemanticType some String 

 

The OPERATION property hasBinding has an object of type BINDING. Each 

OPERATION may have multiple bindings; for example, a web service may offer both 

REST and SOAP interfaces, and so would require two different bindings. The property 

hasEffect takes as its object some number of STATECHANGE objects. An individual 

OPERATION will generally have a single effect, but a composite OPERATION (e.g., 

one that represents an orchestration of other operations) may have multiple effects. 
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The hasInput and hasOutput properties both have an object of type RESOURCE. 

Each OPERATION will accept zero or more inputs and will produce zero or more 

outputs. A given OPERATION may require some external condition to prevail before it 

can be invoked, so the hasPrecondition property specifies any STATE that must be true 

before the service can be executed. The property hasSemanticType is a means for 

specifying a correspondence between an OPERATION and some defined semantic 

representation. Ideally this representation would be some element within an externally 

defined ontology, but it is defined as a simple string to support use of a simple controlled 

vocabulary that is captured directly in the service descriptions. The hasSemanticType 

property is the means by which an OPERATION is matched to a BPMN activity during 

the service-to-activity matchmaking process. 

The OPERATION class itself is abstract. Each of its subclasses 

(NOTIFICATION, ONEWAY, REQUESTRESPONSE, and SOLICITRESPONSE) 

inherits all these properties and none has additional object properties. 

The BINDING class is abstract and has no properties of its own. Its descendants 

are described in Table 34 and Table 35. 

 

Table 34: Network Binding Properties 

NETWORKBINDING Object Properties 

Property Cardinality Object 

hasCommunicationProtocol some {“http”, “https”, 

“sms”, “smtp”} 

hasSoapStyle max 1 {“document”, “rpc”} 

hasSoapTransport max 1 String 

hasURL Some String 
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The NETWORKBINDING class describes how to bind to a web service, whether 

a SOAP service or a REST-style service. The hasCommunicationProtocol element has 

allowable values that describe the protocol that can be used to connect to the service. For 

SOAP services, the binding may include at most one hasSoapStyle property with 

allowable values of “document” or “rpc” depending on how the SOAP service is offered. 

The hasSoapTransport protocol is defined by at most one string and is also confined to 

SOAP services. Finally, the hasURL property contains the service endpoint for a web 

service. 

 

Table 35: Physical Binding Properties 

PHYSICALBINDING Object Properties 

Property Cardinality Object 

hasCity some String 

hasCommunicationProtocol some {“person”, “postal”, 

“telephone”} 

hasCountry some String 

hasPhoneNumber some String 

hasPointOfContact some String 

hasPostalCode some String 

hasStateOrProvince some String 

hasStreetAddress some String 

 

The properties of the PHYSICALBINDING class describe how to interact with a 

physical service and provide contact information including the street address and phone 
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number for invoking a given operation. Most of the property names are self-explanatory, 

but two are worth explaining in more detail. The hasCommunicationProtocol has a set of 

allowable values that describe how a user would interact with a physical operation. The 

hasPointOfContact property defines the person to coordinate invocation of the operation 

of that is needed (for example, a plumber may include a receptionist’s name as the point 

of contact for scheduling service). 

The properties of a PROVIDER object are described in Table 36. Many of these 

properties are identical to those found in the PHYSICALBINDING class and are equally 

self-explanatory. 

 

Table 36: Provider Object Properties 

PROVIDER Object Properties 

Property Cardinality Object 

hasCity some String 

hasCountry some String 

hasIdentifier some String 

hasName some Literal 

hasPhoneNumber some String 

hasPostalCode some String 

hasStateOrProvince some String 

hasStreetAddress some String 

hasURL some String 

 

Several properties of the PROVIDER class require a more explicit definition. The 

hasIdentifier property is used to specify the unique identifier of this provider in, for 

example, a social media system or other registry where information about that provider 
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can be retrieved and used as part of the process of developing service recommendations 

(as described later). The hasName property specifies the common name by which the 

provider is identified (e.g., a business name). The hasURL property offers an opportunity 

for a service provider to include a web site or other network identifier (e.g., a public 

Facebook page). 

The properties of the RESOURCE object are described in Table 37. While the 

RESOURCE class itself is abstract, these properties are common to its subclasses. 

 

Table 37: Resource Object Properties 

RESOURCE Object Properties 

Property Cardinality Object 

hasCurrentState some STATE 

hasName some String 

isDescribedByOntology some anyURI 

 

The hasCurrentState property takes an object of type STATE and defines the state 

of a given resource at any given time. The hasName property offers the option of defining 

a convenient identifier for a RESOURCE, and the isDescribedByOntology offers the 

opportunity to specify an external ontology that describes the RESOURCE in more 

detail. 

The PHYSICALRESOURCE class is an abstract subclass of the RESOURCE 

class with no distinct properties of its own. The subclasses of the 

PHYSICALRESOURCE class are ANIMATE and INANIMATE and their properties are 

described in Table 38 and Table 39. 
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Table 38: Animate Object Properties 

ANIMATE Object Properties 

Property Cardinality Object 

hasGenus some String 

hasSpecies some String 

 

The ANIMATE class describes a RESOURCE that is a living thing that may be 

the input or output to an operation. Its two properties, hasGenus and hasSpecies, define 

the genus and species of any living thing as used in biology. 

 

Table 39: Inanimate Object Properties 

INANIMATE Object Properties 

Property Cardinality Object 

hasDescription some String 

 

The INANIMATE class describes non-living physical objects and has a single 

property, hasDescription, that provides some means of identifying the object (this 

identifier should be related to the isDescribedByOntology property inherited from the 

RESOURCE class). 

The VIRTUAL resource class is used to describe operation inputs and outputs that 

are information that can be transported across the network, and borrows heavily from the 

data definitions of both SOAP and REST-style services. Its properties are described in 

Table 40. 
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Table 40: Virtual Resource Object Properties 

VIRTUAL Object Properties 

Property Cardinality Object 

hasContentType max 1 String 

hasContentSubType max 1 String 

 

The hasContentType and hasContentSubType of the VIRTUAL resource class 

allow a service provider to describe an input or output data type that does not lend itself 

to the more precise descriptions offered by the ELEMENT and MESSAGE classes 

described below. 

The ELEMENT class is derived directly from the element definition within the 

WSDL specification and is described in Table 41. 

 

Table 41: Element Resource Object Properties 

ELEMENT Object Properties 

Property Cardinality Object 

hasDataType exactly 1 String 

hasMaxCardinality exactly 1 Integer 

hasMinCardinality exactly 1 Integer 

hasName some Literal 

hasSemanticType some String 

 

The hasDataType property refers to the XML data type of the element. The 

hasMaxCardinality and hasMinCardinality properties define, respectively, how many or 
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how few of the elements may be present. The hasName property provides a means of 

identifying the element in a human-readable form, and the hasSemanticType  property 

provides a means for associating the ELEMENT with an externally defined ontology. 

Table 42 describes the properties of the MESSAGE virtual resource. Like the 

ELEMENT resource, the MESSAGE resource is derived directly from the message 

definition in the WSDL specification. 

 

Table 42: Message Resource Object Properties 

MESSAGE Object Properties 

Property Cardinality Object 

hasElement only ELEMENT 

hasElement some ELEMENT 

 

The MESSAGE resource has only one property, hasElement, with two separate 

restrictions: the hasElement property can only be populated by objects of the type 

ELEMENT, and it can have any number of ELEMENT objects. 

The STATE object describes the state of any RESOURCE and its properties are 

shown in Table 43. 

 

Table 43: State Object Properties 

STATE Object Properties 

Property Cardinality Object 

hasDescription some String 

hasStatus exactly 1 String 

isDescribedByOntology some anyURI 
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The hasDescription property provides a place to include an informal description 

of the STATE of the RESOURCE, and is a companion to the hasStatus property, which is 

a more formal definition of the STATE. The isDescribedByOntology property provides 

an option for linking this STATE to an ontology that describes it more thoroughly. 

The STATECHANGE class describes the effect an OPERATION has. Its 

properties are described in Table 44. 

 

Table 44: StateChange Object Properties 

STATECHANGE Object Properties 

Property Cardinality Object 

hasFinalState some STATE 

hasInitialState some STATE 

 

The hasFinalState and hasInitialState properties each take an object of type 

STATE, and taken together define the transition from one STATE to another STATE that 

an OPERATION effects. 

While storing service descriptions in an ontology makes it possible to reason over 

them, the OGMA language enables additional reasoning through the use of auxiliary 

ontologies used to describe the operations offered by the services and the resources those 

operations use as inputs and outputs. Each attribute that may require a semantic reference 

(in a case where the set of services being described does not use a controlled vocabulary) 
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is defined by a URI that references the corresponding entity within one or more 

ontologies. 

The use of externally-defined ontological descriptions for operations and 

resources eliminates the need for different service providers to standardize on a common 

ontology, thereby simplifying the task of combining operations from different providers 

to compose a workflow from operations offered by different service providers. 

7.3. General Service Descriptions 

The key challenge in developing the OGMA service description language is 

describing all types of services within a single description format. WSDL and WADL 

each do a reasonably job of describing SOAP and REST services respectively, and 

WSDL 2.0 attempts to combine both SOAP- and REST-based descriptions into a single 

format. But no service description model has attempted to describe services as diverse as 

a SOAP-based weather service, a REST-based hotel reservation service, and a physical 

package delivery service within the same language. 

All of the elements of both the WSDL and WADL models are retained to simplify 

the conversion of existing service descriptions to the OGMA format,. In addition, the 

information needed when invoking a physical service had to be included, as well as 

information suitable for invoking services that may not fall into one of those categories or 

that may span categories. For example, a hotel may offer a reservation service in any or 

all of the following ways: 

 As a SOAP web service that can be invoked from an application, 

 As an e-mail based service where a user can e-mail a reservation request, 
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 As a telephone-based service where a user speaks to a reservation agent. 

In all of these cases, the reservation is ultimately entered into and managed via the 

hotel’s reservation management system. The service is the same, only the interface is 

different. 

To accommodate this variety of possible interfaces, the OGMA language expands 

on earlier concepts of service interface to accommodate person-to-person and person-to-

machine interactions. The OGMA language extends the concept of a “binding” from the 

WSDL description to include more detailed means of specifying how a user invokes a 

service endpoint. 

A general service description should include the ability to specify the physical 

inputs and outputs of a service for those services that interact with the physical world. For 

example, an auto mechanic offers a service that repairs cars; one of the outputs of this 

service is a repaired car. To accommodate this, the OGMA language extends the concept 

of a “resource” as defined by the WADL format, expanding “resource” to include both 

physical and virtual resources so that the inputs and outputs of a service can be 

thoroughly defined. 

The details of the definition of “binding,” “resource,” and other aspects of the 

OGMA language are explain in Section 7.2. 

7.4. Activity-to-Service Matchmaking 

A good service description must support matching individual service operations to 

each activity in a process model. This matchmaking requires that both the service 

description and the activities in the process model contain sufficient semantic information 
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to determine the service and activity refer to the same type of work. Matchmaking may 

also require that the service and activity have compatible input and output parameters. 

When the semantic annotations of service operations and activities are taken from 

the same ontology, the matchmaking process is a simple matter of matching identical 

semantic tags. Where the semantic annotations are based on different ontologies, there 

must be some means for asserting the equivalence of terms in different ontologies. This 

equivalence may be asserted by a business analyst or it may be the result of an automated 

process such as the use of the Semantic Web Rule Language (SWRL) as described in 

(51). 

Regardless of whether the process model and services use a single ontology or 

multiple ontologies, matching services to activities in the process model is the first step in 

specifying an executable service composition. This initial screening of candidate services 

selects those services, that correspond to an activity in the process model, for subsequent 

analysis to see if they can be composed to materialize the process. 

7.5. Service-to-Service Matchmaking 

Service-to-service matchmaking is the second phase of the matchmaking process. 

Once the available services have been filtered to those corresponding to activities in the 

process model, it is necessary to determine which services are composable. This step 

entails comparing the semantics of input and output parameters of each of the matched 

services. For two services to be composable all of the required inputs of one service must 

be among the inputs to, or outputs from, preceding services in the composition. For 

example, if we with to compose services A and B together, then all the required inputs to 
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Service B must be available among the inputs and outputs of Service A. This constraint if 

formally defined in Definition 3. 

Just as for activity-to-service matchmaking, the semantic annotations for input 

and output parameters may be captured in a single ontology or in multiple ontologies. If 

the semantics are captured in multiple ontologies, there must be some means of asserting 

the equivalence of semantic annotations in different ontologies. 
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8. PROOF OF CONCEPT PROTOTYPE 

In order to demonstrate the feasibility and utility of the contributions of this 

research, a proof-of-concept prototype was developed to exercise the components of the 

framework and to ensure they performed as expected. Some of the original objectives of 

this research were modified as a result of lessons learned during the implementation of 

this prototype. For example, the initial objective of this research was to automate the 

composition of web services. However, after analyzing a wide variety of business process 

models, it became clear that nearly all practical business processes involve some level of 

human involvement, whether to perform a sophisticated analysis step, or to approve final 

payment of an invoice. This realization resulted in an expansion of this research to 

include physical services as well as web services. 

8.1. Design 
One of the primary design objectives, when developing the proof-of-concept 

prototype, was to reuse existing tools whenever possible. A key benefit of the SOA 

concept is the reuse of existing services, so it seems fitting to reuse existing tools when 

building a prototype intended to demonstrate the benefits of service reuse. 

Another design consideration was to use as many established standards as 

possible when constructing the prototype. Some standards, such as BPMN, are extended 

as a key part of this research, but by leveraging other standards it is hoped that the 
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success of this prototype will be seen as a validation of the key contributions of this 

research, and not as a demonstration of particular programming techniques. 

By the same token, this prototype is not intended to be a fully operational system 

that could be deployed in a production environment. Accordingly, existing tools and 

libraries were used to the maximum extent practicable. The following sections explain 

how the prototype was implemented; a step-by-step example of how the prototype 

functions is presented in Section 8.3. 

8.2.  Implementation 
The diagram in Chapter 3 depicting the DRUID methodology, repeated in Figure 

12 for convenience, shows a notional architecture. The implementation deviates from this 

notional depiction, but the same steps are implemented. 

 

 

Figure 12: Overview of the DRUID methodology 
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The prototype implementation consists of four main layers: a service description 

layer, a model creation layer, a service composition layer, and an optimization layer. 

Each of these is described in the following subsections: 

8.2.1. Service Description Layer 
The service description layer consists of a tool for creating service descriptions 

that conform to the OGMA service description model, together with a registry that stores 

the service descriptions and makes them searchable. 

Because the service descriptions are defined using OWL, a tool that can create 

OWL-compliant models was preferable to a generic XML editing tool. In order to take 

advantage of the power of machine reasoning, it is desirable to use a language to which 

reasoners could be applied. Because there are a number of reasoners that support the 

OWL language (e.g., HermiT and Pellet), it was also desirable for the selected tool to 

support a full-featured OWL programming interface. After analysis of the available tools, 

the Protégé tool developed by Stanford University (62) was selected as it is a mature, 

well-maintained OWL tool, and it supports the Manchester OWL syntax (63). The 

Manchester OWL syntax has a mature Application Programming Interface (API). 

The Protégé tool has an additional feature, in that it can store OWL instance data 

as well as OWL models. This makes it possible to use Protégé as both the service 

description creation tool and the service registry, with service descriptions stored in an 

OWL file that can be read using the Manchester OWL API. 
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8.2.2. Model Creation Layer 
The model creation layer consists of the tool used to create the process model that 

will be automated, in addition to a custom BPMN parsing library to read the BPMN 

model extensions from the process model. In order to maximize standards compliance of 

the XML representations of the BPMN models, and ensure they could be easily parsed, a 

modeling tool that is BPMN 2.0 compliant is ideal. (As discussed in Section 2.2.1, 

BPMN did not have a standard XML representation prior to version 2.0.) 

After reviewing the available commercial- and open-source modeling tools, the 

Sparx Enterprise Architect tool was selected. The SparxEA tool is a full-featured Model-

Driven Architecture (MDA) tool that includes support for BPMN modeling and is fully 

BPMN 2.0 compliant. The ease with which a BPMN model can be exported as XML was 

another strong factor in its favor. Finally, the cost of the Sparx tool was a significant 

consideration, as its license cost is an order of magnitude lower than that of any other 

commercial BPMN tool.  

Once the SparxEA BPMN modeling tool was selected, it was necessary to 

determine how best to insert the BPMN extensions into the BPMN models created by the 

tool. After assessing the XML generation capabilities of the Sparx tool, it was determined 

that adding new XML elements would require major modifications to the base tool. 

These modifications are impractical without access to the tool’s source code, and 

modifying a modeling tool is beyond the scope of this research. After careful analysis, it 

was determined that the BPMN extensions could be captured in the documentation fields 

for each model element and readily parsed out of the XML specification generated by the 

tool. 
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To parse the model extensions out of the XML specification so they could be used 

for service composition, a BPMN parsing library was written in Java that takes as input a 

BPMN model annotated with extensions, reads out those extensions from the 

documentation fields, and returns as output a series of data objects representing each of 

the activities in the process model. These data objects have methods for reading out the 

activity name, the activity’s semantic type, and the semantic type of each input and 

output parameter. 

8.2.3. Service Composition Layer 
The service composition layer consists of a set of intelligent software agents that 

receive the process model from the user, invoke the BPMN parser, and find candidate 

services for each of the activities in the model, based on the semantic descriptions as 

expressed in the BPMN extensions. 

The service composition layer was implemented using an agent-based approach 

for several reasons. First, the adoption of the JADE Agent Framework, which embodies 

the the communications protocols published by the Foundation for Independent Physical 

Agents (FIPA) (64), provides a convenient communications framework with a defined 

semantics and simplifies communication among multiple parallel processes without the 

overhead of manually managing a multi-threaded application. Second, an agent-based 

system makes it possible to use intelligent agents that are empowered to negotiate with 

each other over selected aspects of the process composition problem, such as the cost to 

invoke a given service. Third, the semantics of the FIPA communications protocols 
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makes it easier or agents to reason about the status of the service composition and the 

process model contents. 

There are three main classes of agents used in the prototype: 1) support agents 

that process the BPMN model and coordinate the search for services; 2) task agents that 

search the registry for services that match a specific activity in the process model, and 3) 

service agents, that represent the services to be composed, and serve as their proxies. 

Support Agents 

The support agents are those agents that perform utility duties such as handing 

interactions with the user interface, reading the ontology, and doing graph analysis. These 

agents form the core of the prototype and do most of the computation required to analyze 

the user’s process model and to assess candidate services. 

GuiAgent 

The GuiAgent’s function is to communicate with the graphical user interface 

(GUI), receiving input from the user and passing that input to the appropriate agent for 

further processing. The GuiAgent also updates the GUI display based on the progress of 

the analysis. 

ModelReaderAgent 

The ModelReaderAgent’s purpose is to read the XML output of the BPMN model 

and extract the semantic information captured in the BPMN modeling extensions 

described in Chapter 6. The ModelReaderAgent parses the model using the custom 

BPMN parser described in Section 8.2.1. 

GraphAgent 
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The GraphAgent is responsible for receiving information about candidate services 

and making an initial assessment about their suitability. The GraphAgent creates and 

analyzes a directed graph where nodes represent each of the candidate services and edges 

are asserted wherever two services can be composed together (i.e., the outputs of one 

service include the required inputs of the other service). 

OntologyReaderAgent 

The function of the OntologyReaderAgent is to use the Manchester OWL API to 

read the ontology and search for services meeting specific criteria, such as performing the 

type of task specified by an activity in the BPMN model. The OntologyReaderAgent 

passes information about discovered services back to the requesting agent. 

Because the OntologyReaderAgent reads information from the service description 

ontology, it already has all the information necessary to invoke the optimization process 

described in Section 8.2.4. For this reason, the OntologyReaderAgent is used to invoke 

the optimization process. 

BrokerAgent 

The BrokerAgent is a specialized agent whose purpose is to broker negotiations 

among service agents whenever such negotiation is indicated. The BrokerAgent may 

request initial bids and updated bids from service agents if the service agents are 

empowered to alter their QoS metrics, or if the user requests an updated offer. 

Selection Agents 

The selection agents search for specific service offerings to match an individual 

activity in the BPMN model. All selection agents are based on a single TaskAgent 
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template, but each one of them is specialized to search for a specific type of service. Once 

the BPMN model is parsed to retrieve the semantic information for each activity, the 

ModelReaderAgent creates a specialized TaskAgent for each semantic description of an 

activity. As a result, the set of TaskAgents that is initiated is specific to the BPMN model 

that was submitted. 

Service Agents 

Service agents are specialized agents that are not necessary to the functioning of 

the prototype, but can provide enhanced functionality when they are available. A service 

agent is a FIPA-compliant intelligent agent that is a proxy for one of the services 

available in the registry. The primary purpose of a service agent is to represent the service 

to the user and negotiate QoS terms if the user is interested.  

8.2.4. Optimization Layer 
The optimization layer implements the optimization model described in detail in 

Section 4. The optimization layer is implemented using OPL and IBM’s CPLEX 

modeling library. 

The optimization layer accepts as input a data file created by the 

OntologyReaderAgent, and a model definition file, and passes those to the CPLEX 

library. The optimization model verifies that the candidate services can be composed 

together to materialize the process described in the original BPMN model, and applies 

other constraints based on user preferences (e.g., minimize cost) that are used to 

determine which composition of services is optimal. After processing, the CPLEX library 

returns the optimal service composition based on the QoS parameters supplied in the data 
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file. An example of the CPLEX output can be found in Appendix B: CPLEX OPL 

Output. 

8.3. Execution Example 
What follows is a simple execution of the proof-of-concept prototype, beginning 

with the creation of service descriptions, proceeding through the creation and annotation 

of a BPMN model, and culminating in the identification of an optimal service 

composition based on QoS parameters. 

The process begins with creating service descriptions using the Protégé tool, as 

depicted in Figure 13. The information needed to fully describe the semantics of the 

service, including its inputs, outputs, and QoS parameters, is entered into the service 

description model. 
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Figure 13: Creating a service description 

 

After each of the available services is fully described using the Protégé tool, there 

is sufficient information to enable the matching of services to activities and services to 

services. 

The next step in the process is for a business user or analyst to create a BPMN-

semantically-extended model using the SparxEA tool. The creation of the model is shown 

in Figure 14, which shows a standard graphical BPMN model. 
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Figure 14: Specification of a BPMN process model 

 

Once the BPMN model has been created, it is necessary to add the semantic 

annotations defined by the BPMN extensions specified as part of this research. As 

described earlier, these annotations are captured in the BPMN documentation field as 

depicted in Figure 15. 
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Figure 15: Annotation of semantic information on an activity 

 

Once the semantic annotation of the model is completed, it is exported to XML-

format that conforms to the BPMN 2.0 XML specification. The annotated model is now 

ready for parsing and subsequent analysis by the agents described earlier. Selection of the 

process model’s XML instantiation is depicted in Figure 16. 
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Figure 16: Selecting a process model 

 

Once the process model is selected in the GUI, the model is passed to the 

ModelReaderAgent. Using the custom BPMN parsing library, the ModelReaderAgent 

reads the model and parses the semantic information about activity types, inputs, and 

outputs from the documentation fields in the model. 

Figure 17 shows the JADE console with a variety of agents active, including two 

specialized TaskAgents, named end::GetWeatherForLatLon and start::GetLatLonForZip. 

Each of these agents is dynamically created by the ModelReaderAgent based on the 

semantic types of the two activities in the sample model. 
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Figure 17: The JADE agent framework during model processing 

 

Each of the TaskAgents independently contacts the OntologyReaderAgent and 

requests a list of services that perform the type of function that TaskAgent is specialized 

for. For each request message it receives from a service selection agent, the 

OntologyReaderAgent queries the service registry to discover which services are 

available that match the semantic type contained in the request. 

The service descriptions for each matching service are read from the registry and 

information about the task type, inputs, and outputs are passed back to the requesting 

TaskAgent. Each of these service discovery agents passes this information along to the 

GraphAgent for further processing. 
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The GraphAgent’s first action is to add each service as a node to a directed graph 

and pass the resulting graph back to the GuiAgent for display to the user. This initial 

graph is displayed as shown in Figure 18. This graph display includes two special nodes, 

named “start” and “end” that are used to denote the beginning and the end of the process. 

 

 

Figure 18: GUI showing services that match process activities 

 

Once the initial graph (with no edges) has been displayed, the user can click the 

“Add Edges” button to analyze the services in the graph to determine what compositions 

are possible. The GraphAgent analyzes the inputs and outputs of each node in the graph 

to determine which services may be composed together and in what order. After 
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completing this analysis, the GraphAgent adds directed edges to the graph for each 

potential composition and passes the updated graph to the GuiAgent. The GuiAgent 

updates the GUI with the completed graph as shown in Figure 19. 

 

 

Figure 19: GUI with initial all possible service compositions 

 

An examination of the graph in Figure 19 shows that some edges are bi-

directional, as the inputs and outputs of the services represented by those nodes support 

combining them in two different orders. For example, the zip_to_latlon service and the 

latlon_to_zip service both have the semantic type “location_conversion.” One converts a 

zip code to a latitude / longitude coordinate, and the other converts a latitude / longitude 
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coordinate to a zip code. This behavior can result in cycles in the graph, which would 

mean cyclic service invocations that never complete the process defined by the model. 

In order to eliminate these cycles and find candidate service compositions that do 

not include extraneous services, the GraphAgent analyzes the graph using the Floyd-

Warshall algorithm to find acyclic paths through the graph from the start node to the end 

node. Each of these paths represents a composition of services that will materialize the 

process from start to end. 

Each of the candidate compositions discovered through graph analysis is then 

passed to the OntologyReaderAgent to begin the optimization process. The 

OntologyReaderAgent examines each of the services in each candidate composition and 

queries the service registry for the QoS attributes of that service. As the QoS attributes 

for each service are read from the registry, the relevant information about that service as 

described in Section 4 (task type, input and output semantic parameters, QoS attributes) 

is written to a data file that will be used by the optimization process. 

Once the optimization data file is written, the OntologyReaderAgent invokes the 

CPLEX engine, passing the data file and a reference to the optimization model and 

starting the optimization analysis. Upon completion of the analysis, the optimization 

model returns the recommended service composition based on the user’s QoS preference 

(e.g., minimize cost). (An example of the output from the CPLEX engine can be seen in 

Appendix B: CPLEX OPL Output.) Continuing with the above example, the two possible 

compositions are the following: 

 Option A: location_conversion  getWeather 
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 Option B: zip_to_latlon  getWeather 

The CPLEX analysis of the QoS parameters of each service, together with the 

user preference to minimize cost, results in an optimal service composition of 

location_conversion  getWeather. Given the simple case of this example, it is easy to 

manually verify the correctness of this assessment. First, the outputs of the 

location_conversion service are compared to the inputs of the getWeather service, and it 

is verified that they may be composed together. The same comparison is performed to the 

outputs of the zip_to_latlon service and the inputs of the getWeather service, also these 

two may be composed together. 

Finally, it can be verified that the QoS assessment is correct by computing the 

total cost of each composition and verifying that the cost of Option A is less than the cost 

of Option B. Note that the same verification process is applicable to a more complex 

comparison, but this verification process becomes more difficult with more services and 

more QoS parameters. 

8.4. Scalability 
To assess the scalability of the optimization implementation, it was executed with 

an array of increasingly complex inputs to compare the time required to complete the 

optimization calculation. The results of this testing are shown in Figure 20. 
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Figure 20: Optimization Scalability 

 

To generate this graph, each test case was executed ten times and the results were 

plotted using a box-and-whisker diagram that begins with the simplest cases on the left 

and progresses to the most complex cases on the right. The maximum and minimum run 

time for each test is shown by the lines, with the boxes representing the 25
th

 through 75
th

 

percentiles. The blue line shows the median value for each test run. As shown in the 

graph, the execution time is relatively stable across most of the test cases but begins to 

increase with the most complex test cases. 

The column labels in the chart represent the complexity of the test case using a 

dot notation. The first number represents the number of atomic services, the second 

number represents the number of virtual services including the root service, and the third 
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number represents the total number of activities in all of the virtual services. A more 

detailed explanation of the test cases is provided in Table 45. 

 

Table 45: Scalability Test Cases 

Column Label Explanation 

1.1.1 One atomic service, one virtual service 

containing a single activity 

1.1.1(A) One atomic service, one virtual service 

containing a single activity 

2.1.2 Two atomic services, one virtual service 

containing two activities 

4.1.2 Four atomic services, one virtual service 

containing two activities 

4.2.4 Four atomic services, two virtual services 

containing two activities each 

8.3.7 Four atomic services, three virtual services 

containing a total of seven activities 

8.4.10 Eight atomic services, four virtual services 

containing ten total activities and nested 

three deep 

10.1.10 Ten atomic services, one virtual service 

containing ten activities 

30.1.10 Thirty atomic services, one virtual service 

containing ten activities 

30.1.10 (P) Thirty atomic services, one virtual service 

containing ten activities and multiple 

concurrent activities (i.e., parallel paths) 

 

Given the definitions in Chapter 4, it can be expected that the total nnumber of 

activities that must be mapped to services (including all virtual services) will be the 

driving factor in the time required to complete the optimization assessment. As the data 
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in Figure 20 show, the total number of activities alone is not the determining factor in 

driving the time required to complete the optimization. Instead, the driver is the number 

of activities combined with the number of concurrent activities. Greater concurrency 

intuitively makes the optimization computation more complex and this data validates that 

intuition. 

Even given the increased processing time required to optimize a virtual service 

composition with multiple concurrent activities, it can be seen that the optimization 

implementation is scalable. 
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9. CONCLUSIONS AND FUTURE WORK 

This research demonstrates the feasibility of automated service composition and 

selection based on a workflow model specified using a standards-based Process Modeling 

Laguage, BPMN. This chapter describes the key contributions of this research, 

conclusions, and areas for future research. 

9.1. Key Contributions 
The feasibility of automated service composition has been demonstrated through 

the key contributions of this research as explained in the following sections.  

9.1.1. DRUID Methodology 
This research developed the DRUID service composition methodology, a multi-

step process for semantically tagging services, developing a semantically-tagged process 

specification, and automating the composition of the tagged services, then computing an 

optimal service composition that materializes the process model. 

9.1.2. BPMN-S Extension 
Another contribution of this research is the BPMN-S extension to the BPMN 

modeling language, thereby providing a means for tagging activities in a BPMN model 

with the semantic information necessary to enable the automated matching of services to 

each process activity. 
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9.1.3. OGMA Service Description Language 
To enable both the activity-to-service matchmaking and the service-to-service 

matchmaking necessary to compose services, this research develops the OGMA service 

description language, specified in OWL. This language further enables the comparison of 

service semantics and the application of basic machine reasoning using tools such as the 

HermiT reasoner. When applied to the service descriptions,the HermiT reasoner proved 

useful in three respects. First, it ensured that the OGMA ontology itself was internally 

consistent. Second, it ensured that every service description was valid. Finally, on several 

occaisions the reasoner interpreted descriptions of different services as the same service 

where that equivalence was not intended, thereby highlighting errors in specific service 

descrpitions. 

9.1.4. SUCELLOS Quality of Service Model 
To compare service compositions based on QoS metrics, this research develops 

the SUCELLOS QoS model, an OWL-based ontology based on the QoS model 

developed by INRIA and described in detail in Chapter 5. The SUCELLOS model 

captures the QoS metrics of services and enables comparison of QoS metrics among 

services and across service compositions. 

9.1.5. ECNE Optimization Model 
This research also develops the ECNE service composition optimization model. 

The ECNE model includes a formal definition of a virtual service (also known as a 

business process) as well as formal definitions of an optimal service composition and the 

QoS metric aggregation used to assess service composition optimality. 
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9.1.6. Proof-of-Concept Prototype 
Finally, this research develops a proof-of-concept prototype that applies the 

DRUID methodology and other contributions of this research to demonstrate the 

feasibility of the DRUID methodology as well as the usability of the OGMA, 

SUCELLOS, and ECNE models. 

9.2. Conclusions 
This research develops a proof of concept prototype that ties together all of the 

main components of the DRUID methodology into an operable system that accepts a 

process model as input and returns an optimal service composition based on the QoS 

metrics of available services. 

The OGMA service description language provides a mechanism for describing 

services of all types, including web services and physical services, with the semantic 

detail necessary to enable automated activity-to-service matchmaking and service-to-

service matchmaking. As a superset of both the WSDL and WADL service description 

formats the OGMA language is backward-compatible with existing service description 

formats, allowing developers to leverage existing service descriptions when creating 

OGMA -compliant service descriptions. As an OWL-based model, OGMA supports 

machine reasoning and inference across service descriptions. 

The extensions to the BPMN modeling specification, developed in this research, 

provide a means for appending semantic metadata to activities in a BPMN model. This 

additional semantic information enables automated activity-to-service matchmaking 

based on a process modeling language that is in wide use among business analysts and 

users. 
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The SUCELLOS QoS model developed in this research provides a robust and 

flexible QoS model that is suitable for describing services of all types and can be readily 

extended to include additional QoS parameters, if needed. Because the Sucellos model 

was developed in OWL, it readily integrates with service descriptions conforming to the 

OGMA language. 

To enable the selection of optimal service compositions, this research develops 

the ECNE optimization formalism, a formal model that describes processes, services, and 

QoS parameters in a way that supports the mathematical analysis service compositions to 

select the optimal composition based on QoS parameters. This optimization model was 

implemented in OPL using the IBM CPLEX suite to demonstrate the efficacy of the 

formalism and the optimization process. 

9.3. Future Work 
The dynamic composition of services within a Service-Oriented Architecture 

remains a rich field for additional research. Some areas of potential interest for future 

research are described below. 

9.3.1. Service Security 
One of the main areas for additional research is to develop interoperable security 

models that can be used for web services. The range of security models currently in use, 

from username / password through Public Key Infrastructure (PKI) certificates, makes it 

difficult to integrate web services that use different security models; this research 

assumes that security was not a consideration at this time. Within a single enterprise, it is 

possible to standardize on a single security approach. However, standardizing multiple 
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enterprises on a single security model is difficult and costly. To be operationally useful, a 

service composition framework must provide some means of composing services that use 

different security models. This remains an area of active research and is ripe for further 

investigation. 

9.3.2. Quality of Service 
This research explored the application of QoS metrics to optimal service 

composition selection, but this research only explored a limited number of QoS metrics. 

The application of additional metrics, such as data throughput or the ability of a service to 

adapt to intermittent network connectivity issues, provides a fertile area for additional 

research. 

9.3.3. Composition Execution 
This research stopped short of attempting to execute the selected service 

composition. However, converting the optimal service composition into an executable 

format such as BPEL (reference) offers additional challenges for future researchers. One 

such challenge is to automate the development of a BPEL process specification that 

includes error handling robust enough for operational use. Another challenge would to 

apply the “BPEL for People” (reference) specification to the methodology developed by 

this research in order to enable the execution of service compositions that include both 

physical and web services. 
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APPENDIX A: OWL SPECIFICATION OF OGMA DESCRIPTION LANGUAGE 

<?xml version="1.0"?> 

 

<!DOCTYPE Ontology [ 

    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 

    <!ENTITY xml "http://www.w3.org/XML/1998/namespace" > 

    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 

    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 

]> 

 

<Ontology xmlns="http://www.w3.org/2002/07/owl#" 

     

xml:base="http://www.semanticweb.org/ontologies/2012/0/Ontology13256856

96038.owl" 

     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

     xmlns:xml="http://www.w3.org/XML/1998/namespace" 

     

ontologyIRI="http://www.semanticweb.org/ontologies/2012/0/Ontology13256

85696038.owl"> 

    <Prefix name="" IRI="http://www.w3.org/2002/07/owl#"/> 

    <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/> 

    <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-

ns#"/> 

    <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/> 

    <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/> 

    

<Import>http://www.jmcdowall.org/ontologies/QoSOntology.owl</Import> 

    <Declaration> 

        <Class IRI="#Animate"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Binding"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Delete"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Element"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Get"/> 

    </Declaration> 

    <Declaration> 
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        <Class IRI="#Inanimate"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Message"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#NetworkBinding"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Notification"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#OneWay"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Operation"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#PhysicalBinding"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#PhysicalResource"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Post"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Provider"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Put"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#RequestResponse"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Resource"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#Service"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#SolicitResponse"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#State"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#StateChange"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#VirtualResource"/> 

    </Declaration> 

    <Declaration> 
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        <ObjectProperty IRI="#hasBinding"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasCause"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasCurrentState"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasEffect"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasElement"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasFinalState"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasInitialState"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasInput"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasOperation"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasOutput"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasPrecondition"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasRecommendedPrecondition"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasRequiredPrecondition"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#hasState"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#isElementOf"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#isInputOf"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#isOfferedBy"/> 

    </Declaration> 

    <Declaration> 

        <ObjectProperty IRI="#offers"/> 

    </Declaration> 

    <Declaration> 
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        <DataProperty IRI="#hasCity"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasCommunicationProtocol"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasContentSubType"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasContentType"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasCountry"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasDataType"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasDescription"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasFacebookIdentifier"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasGenus"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasIdentifier"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasMaxCardinality"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasMinCardinality"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasNAICSCode"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasName"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasPhoneNumber"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasPointOfContact"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasPostalCode"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasSemanticType"/> 

    </Declaration> 

    <Declaration> 
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        <DataProperty IRI="#hasSoapStyle"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasSoapTransport"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasSpecies"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasStateOrProvince"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasStatus"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasStreetAddress"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasURI"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasURL"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#hasYelpIdentifier"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#isDescribedByOntology"/> 

    </Declaration> 

    <Declaration> 

        <NamedIndividual IRI="#x_ray"/> 

    </Declaration> 

    <SubClassOf> 

        <Class IRI="#Animate"/> 

        <Class IRI="#PhysicalResource"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Animate"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#hasGenus"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Animate"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#hasSpecies"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Delete"/> 

        <Class IRI="#RequestResponse"/> 

    </SubClassOf> 
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    <SubClassOf> 

        <Class IRI="#Element"/> 

        <Class IRI="#VirtualResource"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Element"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasSemanticType"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Element"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#hasDataType"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Element"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#hasMaxCardinality"/> 

            <Datatype abbreviatedIRI="xsd:integer"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Element"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#hasMinCardinality"/> 

            <Datatype abbreviatedIRI="xsd:integer"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Element"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#hasName"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Get"/> 

        <Class IRI="#RequestResponse"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Inanimate"/> 

        <Class IRI="#PhysicalResource"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Inanimate"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasDescription"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 
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        <Class IRI="#Message"/> 

        <Class IRI="#VirtualResource"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Message"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasElement"/> 

            <Class IRI="#Element"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Message"/> 

        <ObjectAllValuesFrom> 

            <ObjectProperty IRI="#hasElement"/> 

            <Class IRI="#Element"/> 

        </ObjectAllValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#NetworkBinding"/> 

        <Class IRI="#Binding"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#NetworkBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasCommunicationProtocol"/> 

            <DataOneOf> 

                <Literal datatypeIRI="&rdf;PlainLiteral">http</Literal> 

                <Literal 

datatypeIRI="&rdf;PlainLiteral">https</Literal> 

                <Literal datatypeIRI="&rdf;PlainLiteral">sms</Literal> 

                <Literal datatypeIRI="&rdf;PlainLiteral">smtp</Literal> 

            </DataOneOf> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#NetworkBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasURL"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#NetworkBinding"/> 

        <DataMaxCardinality cardinality="1"> 

            <DataProperty IRI="#hasSoapStyle"/> 

            <DataOneOf> 

                <Literal 

datatypeIRI="&rdf;PlainLiteral">document</Literal> 

                <Literal datatypeIRI="&rdf;PlainLiteral">rpc</Literal> 

            </DataOneOf> 

        </DataMaxCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#NetworkBinding"/> 
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        <DataMaxCardinality cardinality="1"> 

            <DataProperty IRI="#hasSoapTransport"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataMaxCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Notification"/> 

        <Class IRI="#Operation"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#OneWay"/> 

        <Class IRI="#Operation"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Operation"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasBinding"/> 

            <Class IRI="#Binding"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Operation"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasEffect"/> 

            <Class IRI="#StateChange"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Operation"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasInput"/> 

            <Class IRI="#Resource"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Operation"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasOutput"/> 

            <Class IRI="#Resource"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Operation"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasPrecondition"/> 

            <Class IRI="#State"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Operation"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasSemanticType"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 
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    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#PhysicalBinding"/> 

        <Class IRI="#Binding"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#PhysicalBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasCity"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#PhysicalBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasCommunicationProtocol"/> 

            <DataOneOf> 

                <Literal 

datatypeIRI="&rdf;PlainLiteral">person</Literal> 

                <Literal 

datatypeIRI="&rdf;PlainLiteral">postal</Literal> 

                <Literal 

datatypeIRI="&rdf;PlainLiteral">telephone</Literal> 

            </DataOneOf> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#PhysicalBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasCountry"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#PhysicalBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasPhoneNumber"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#PhysicalBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasPointOfContact"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#PhysicalBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasPostalCode"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 
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    <SubClassOf> 

        <Class IRI="#PhysicalBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasStateOrProvince"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#PhysicalBinding"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasStreetAddress"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#PhysicalResource"/> 

        <Class IRI="#Resource"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Post"/> 

        <Class IRI="#RequestResponse"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Provider"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasCity"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Provider"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasCountry"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Provider"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasIdentifier"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Provider"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasName"/> 

            <Datatype abbreviatedIRI="rdfs:Literal"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Provider"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasPhoneNumber"/> 
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            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Provider"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasPostalCode"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Provider"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasStateOrProvince"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Provider"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasStreetAddress"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Provider"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasURL"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Put"/> 

        <Class IRI="#RequestResponse"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#RequestResponse"/> 

        <Class IRI="#Operation"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Resource"/> 

        <Class abbreviatedIRI="owl:Thing"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Resource"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasCurrentState"/> 

            <Class IRI="#State"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Resource"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasName"/> 
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            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Resource"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#isDescribedByOntology"/> 

            <Datatype abbreviatedIRI="xsd:anyURI"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Service"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasOperation"/> 

            <Class IRI="#Operation"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Service"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasNAICSCode"/> 

            <Datatype abbreviatedIRI="xsd:integer"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Service"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#hasName"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#SolicitResponse"/> 

        <Class IRI="#Operation"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#State"/> 

        <DataSomeValuesFrom> 

            <DataProperty IRI="#hasDescription"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#State"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#hasStatus"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#State"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#isDescribedByOntology"/> 

            <Datatype abbreviatedIRI="xsd:anyURI"/> 
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        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#StateChange"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasFinalState"/> 

            <Class IRI="#State"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#StateChange"/> 

        <ObjectSomeValuesFrom> 

            <ObjectProperty IRI="#hasInitialState"/> 

            <Class IRI="#State"/> 

        </ObjectSomeValuesFrom> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#VirtualResource"/> 

        <Class IRI="#Resource"/> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#VirtualResource"/> 

        <DataMaxCardinality cardinality="1"> 

            <DataProperty IRI="#hasContentSubType"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataMaxCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#VirtualResource"/> 

        <DataMaxCardinality cardinality="1"> 

            <DataProperty IRI="#hasContentType"/> 

            <Datatype abbreviatedIRI="xsd:string"/> 

        </DataMaxCardinality> 

    </SubClassOf> 

    <DisjointClasses> 

        <Class IRI="#Animate"/> 

        <Class IRI="#Inanimate"/> 

    </DisjointClasses> 

    <DisjointClasses> 

        <Class IRI="#Binding"/> 

        <Class IRI="#Operation"/> 

        <Class IRI="#Resource"/> 

    </DisjointClasses> 

    <DisjointClasses> 

        <Class IRI="#Delete"/> 

        <Class IRI="#Get"/> 

        <Class IRI="#Post"/> 

        <Class IRI="#Put"/> 

    </DisjointClasses> 

    <DisjointClasses> 

        <Class IRI="#Element"/> 

        <Class IRI="#Message"/> 

    </DisjointClasses> 

    <DisjointClasses> 
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        <Class IRI="#Notification"/> 

        <Class IRI="#OneWay"/> 

        <Class IRI="#RequestResponse"/> 

        <Class IRI="#SolicitResponse"/> 

    </DisjointClasses> 

    <DisjointClasses> 

        <Class IRI="#PhysicalResource"/> 

        <Class IRI="#VirtualResource"/> 

    </DisjointClasses> 

    <ClassAssertion> 

        <Class IRI="#Inanimate"/> 

        <NamedIndividual IRI="#x_ray"/> 

    </ClassAssertion> 

    <SubObjectPropertyOf> 

        <ObjectProperty IRI="#hasCurrentState"/> 

        <ObjectProperty IRI="#hasState"/> 

    </SubObjectPropertyOf> 

    <SubObjectPropertyOf> 

        <ObjectProperty IRI="#hasFinalState"/> 

        <ObjectProperty IRI="#hasState"/> 

    </SubObjectPropertyOf> 

    <SubObjectPropertyOf> 

        <ObjectProperty IRI="#hasInitialState"/> 

        <ObjectProperty IRI="#hasState"/> 

    </SubObjectPropertyOf> 

    <SubObjectPropertyOf> 

        <ObjectProperty IRI="#hasRecommendedPrecondition"/> 

        <ObjectProperty IRI="#hasPrecondition"/> 

    </SubObjectPropertyOf> 

    <SubObjectPropertyOf> 

        <ObjectProperty IRI="#hasRequiredPrecondition"/> 

        <ObjectProperty IRI="#hasPrecondition"/> 

    </SubObjectPropertyOf> 

    <SubObjectPropertyOf> 

        <ObjectProperty IRI="#offers"/> 

        <ObjectProperty abbreviatedIRI="owl:topObjectProperty"/> 

    </SubObjectPropertyOf> 

    <InverseObjectProperties> 

        <ObjectProperty IRI="#hasCause"/> 

        <ObjectProperty IRI="#hasEffect"/> 

    </InverseObjectProperties> 

    <InverseObjectProperties> 

        <ObjectProperty IRI="#isElementOf"/> 

        <ObjectProperty IRI="#hasElement"/> 

    </InverseObjectProperties> 

    <InverseObjectProperties> 

        <ObjectProperty IRI="#hasInput"/> 

        <ObjectProperty IRI="#isInputOf"/> 

    </InverseObjectProperties> 

    <InverseObjectProperties> 

        <ObjectProperty IRI="#offers"/> 

        <ObjectProperty IRI="#isOfferedBy"/> 

    </InverseObjectProperties> 

    <ObjectPropertyRange> 
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        <ObjectProperty IRI="#hasBinding"/> 

        <Class IRI="#Binding"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#hasCause"/> 

        <Class IRI="#Operation"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#hasCurrentState"/> 

        <Class IRI="#State"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#hasEffect"/> 

        <Class IRI="#StateChange"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#hasElement"/> 

        <Class IRI="#Element"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#hasFinalState"/> 

        <Class IRI="#State"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#hasInitialState"/> 

        <Class IRI="#State"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#hasOperation"/> 

        <Class IRI="#Operation"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#hasPrecondition"/> 

        <Class IRI="#State"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#isOfferedBy"/> 

        <Class IRI="#Provider"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#offers"/> 

        <Class IRI="#Service"/> 

    </ObjectPropertyRange> 

    <SubDataPropertyOf> 

        <DataProperty IRI="#hasFacebookIdentifier"/> 

        <DataProperty IRI="#hasIdentifier"/> 

    </SubDataPropertyOf> 

    <SubDataPropertyOf> 

        <DataProperty IRI="#hasStatus"/> 

        <DataProperty abbreviatedIRI="owl:topDataProperty"/> 

    </SubDataPropertyOf> 

    <SubDataPropertyOf> 

        <DataProperty IRI="#hasYelpIdentifier"/> 

        <DataProperty IRI="#hasIdentifier"/> 



161 

 

    </SubDataPropertyOf> 

    <DataPropertyDomain> 

        <DataProperty IRI="#hasSpecies"/> 

        <Class IRI="#Animate"/> 

    </DataPropertyDomain> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasCity"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasCommunicationProtocol"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasContentSubType"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasContentType"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasCountry"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasDataType"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasDescription"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasFacebookIdentifier"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasGenus"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasMaxCardinality"/> 

        <Datatype abbreviatedIRI="xsd:integer"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasMinCardinality"/> 

        <Datatype abbreviatedIRI="xsd:integer"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasNAICSCode"/> 

        <Datatype abbreviatedIRI="xsd:integer"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 
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        <DataProperty IRI="#hasName"/> 

        <Datatype abbreviatedIRI="rdfs:Literal"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasPointOfContact"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasPostalCode"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasSemanticType"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasSoapStyle"/> 

        <DataOneOf> 

            <Literal datatypeIRI="&rdf;PlainLiteral">document</Literal> 

            <Literal datatypeIRI="&rdf;PlainLiteral">rpc</Literal> 

        </DataOneOf> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasSoapTransport"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasSpecies"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasStateOrProvince"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasStatus"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasStreetAddress"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasURI"/> 

        <Datatype abbreviatedIRI="xsd:anyURI"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasURL"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#hasYelpIdentifier"/> 

        <Datatype abbreviatedIRI="xsd:string"/> 

    </DataPropertyRange> 
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    <DataPropertyRange> 

        <DataProperty IRI="#isDescribedByOntology"/> 

        <Datatype abbreviatedIRI="xsd:anyURI"/> 

    </DataPropertyRange> 

    <DisjointDataProperties> 

        <DataProperty IRI="#hasGenus"/> 

        <DataProperty IRI="#hasSpecies"/> 

    </DisjointDataProperties> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Animate</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">An Animate 

PhysicalResource is a biological entity that an Operation acts upon. 

these can be unambiguously described by the genus and species of the 

organism. Animate Resrouces may requrie specicail consideration during 

service invocation (e.g., transporting a living animal may require 

environmental controls not needed when transporting blocks of 

wood).</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Binding</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">Binding is derived 

from the Binding as specified in the WSDL standard. It is the means by 

which a service consumer connects to the endpoint providing a given 

service. It is extended here to accmodate connections to non-web 

services.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Delete</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">Delete corresponds 

directly to the DELETE method as defined by the HTTP 

standard.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Element</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">An Element is an 

atomic portion of a VirtualResource; it is an atomic data element. it 

may stand alone or it may be combined with other Elements to form a 

Message. It corresponds to the Element defined in the WSDL 

standard.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Get</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">Get corresponds 

directly to the GET method as defined by the HTTP standard.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Inanimate</IRI> 
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        <Literal datatypeIRI="&rdf;PlainLiteral">An Inanimate 

PhysicalResource is a tangible Resource that an Operation has some 

effect on. It is distinct from an Animate PhysicalResource in that it 

will generally not require the special considerations afforded to a 

living being during service invocation.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Message</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">A Message is a complex 

VirtualResource composed of one or more Elements. It corresponds to the 

Message defined in the WSDL standard.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#NetworkBinding</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">NetworkBinding builds 

upon Binding as defined in teh WSDL specification with the intention of 

expanding it beyond the SOAP-based definition to account for binding to 

the endpoint for any service that can be offered across a 

network.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Notification</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">Notification 

corresponds directly to the Notification operation as defined by the 

WSDL standard.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#OneWay</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">OneWay corresponds 

directly to the OneWay operation as defined by the WSDL 

standard.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Operation</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">An Operation is the 

basic functional unit of a service description. Operations are defined 

by the StateChagne they effect on a Resource. The actual effect may be 

nothing more than accepting some data elements as input and returning 

corresponding data elements as output (e.g., returning a weather 

forecast for a given location). 

 

Operations are subdivided into the same categories as SOAP-based web 

services; all interactions of any service provider and any service 

consumer can be categorized in one of those ways.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#PhysicalBinding</IRI> 
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        <Literal datatypeIRI="&rdf;PlainLiteral">PhysicalBinding 

extends the concept of a Binding as defined by WSDL to encompass 

connections to the offeror of a service reqruies physical interaction 

among the participants. For example, making use of the services of a 

plumber to fix a leaky pipe requires the plumber to be physically 

present at the location of the leak.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#PhysicalResource</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">PhysicalResource is a 

subtype of Resource that describes tangible objects an Operation may 

act upon. Both web services and physical services may act upon a 

PhysicalResource.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Post</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">Post corresponds 

directly to the POST method as defined by the HTTP standard.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Provider</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">Provider is the 

business entity that is offering a service for use, whether a network 

service or a physical service.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Put</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">Put corresponds 

directly to the PUT method as defined by the HTTP standard.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#RequestResponse</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">RequestResponse is 

based on the RequestResponse operation as defined by the WSDL standard. 

It is extended with the HTTP methods GET, POST, PUT, and DELETE. This 

is primarily to account for the needs of REST services; however, many 

SOAP services use these methods also. Additionally, services that are 

web based but are not normally considered REST services can be expected 

to use one of these methods as their basis. 

 

Beyond its use for web-based services, the RequestResponse operation is 

the method in which physical services are invoked: the prospective 

consumer communicates with the prospective provider to negotitate the 

provision of the desired service; this is by definition a request-

response interaction.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Resource</IRI> 
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        <Literal datatypeIRI="&rdf;PlainLiteral">Resource is based on 

the idea of a resource as understood in the context of REST services. 

It is extended here and subclassed to accomodate the description of 

resources beyond that anticiapted in the REST paradigm. 

 

Resources are anything an Operation acts upon, whenther a physical 

object the Operation may affect or an element of information that is an 

input or output of an Operation in a web service. </Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#Service</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">A Service is an 

arbitrary collection of one or more Operations. Ideally, a Service is 

composed of Operations that have some logical connection, but that is 

not requried.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#SolicitResponse</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">SolicitResponse 

corresponds directly to the SolicitResponse operation as defined by the 

WSDL standard.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#State</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">State is the condition 

of some Resource that an Operation acts upon. An Operation may change 

the State of the Resource.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#StateChange</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">StateChange is the 

fundamental action performed by an Operation. There may be a null 

StateChange for an Operation that only returns information and has no 

effects on the State of a Resource (such as returning a weather report 

for a given location). A StateChange is defined as teh transition 

between some initial State and some final State. The exact means of the 

StateChange is considered an implementation detail.</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

        <IRI>#VirtualResource</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">A VirtualResource is 

an intangible Resource that an Operation may act upon. VirtualResources 

generally take the form of electronic information, often in the form of 

complex Messages composed of individual Elements.</Literal> 

    </AnnotationAssertion> 

</Ontology> 

 

<!-- Generated by the OWL API (version 3.4.2) 

http://owlapi.sourceforge.net --> 
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APPENDIX B: CPLEX OPL OUTPUT 

The ECNE optimization formalism is implemented using the IBM CPLEX 

Integrated Development Environment (IDE) implementation of OPL. The results of that 

implementation are shown in the figures below. 

 

 

Figure 21: ECNE Implementation Results 

 

The code listing of the ECNE model is shown in the upper right quadrant of 

Figure 21. Results of the optimization ncomputation are showin in the bottom right, and 
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details of the decision variables and the results of the decision expressions are shown in 

the lower-left corner. An enlarged view of this data is shown in Figure 22. 

 

 

Figure 22: Details of decision variables and expressions 
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