
ACADEMIC PERFORMANCE PREDICTION WITH
MACHINE LEARNING TECHNIQUES

by

Zhiyun Ren
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University

In Partial fulfillment of
The Requirements for the Degree

of
Doctor of Philosophy

Computer Science

Committee:

Dr. Huzefa Rangwala, Dissertation Director

Dr. Carlotta Domeniconi, Committee Member

Dr. Jessica Lin, Committee Member

Dr. Aditya Johri, Committee Member

Dr. Xia Ning, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School of
Engineering

Date: Spring 2019
George Mason University
Fairfax, VA

Academic Performance Prediction with Machine Learning Techniques

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Zhiyun Ren
Master of Science

Beihang Uiversity, 2013
Bachelor of Science

Dalian University of Technology, 2010

Director: Dr. Huzefa Rangwala, Professor
Department of Computer Science

Spring 2019
George Mason University

Fairfax, VA

Copyright © 2019 by Zhiyun Ren
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my parents who have always supported me in all my efforts.

iii

Acknowledgments

I would like to thank my dissertation director, Dr. Huzefa Rangwala for the great help throughout
the project. During my PhD program, Dr. Rangwala always guided me with inspiring ideas that
help me power through many tough problems. I am very grateful for his countless hours of reading,
encouraging and patience throughout the entire process.

I would also like to extend my thanks to the committee member, Dr. Xia Ning, Dr. Carlotta
Domeniconi, Dr. Jessica Lin and Dr. Aditya Johri for their valuable guidance and precious time in
reviewing. I am also thankful to lab members for the fruitful discussion and suggestion during the
course of my dissertation work.

Finally, I would like to thank my parents, relatives, friends and supporters who made this hap-
pen.

This research was supported by the National Science Foundation (NSF) Grant #1447489.

iv

Table of Contents

Page

List of Tables . ix
List of Figures . x

Abstract . xii
1 Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contribution . 3

2 Background . 6

2.1 Preliminaries and Notations . 6
2.2 Related Work on Grade Prediction . 7
2.3 Related Work on Sequential Data Mining . 9

2.4 Related Work on Online Learning System . 11

2.5 Related Work on Deep Learning . 12

2.5.1 Deep Learning in Educational Data Mining 12

2.5.2 Deep Learning in Recommender Systems 12

2.6 Performance Evaluation . 14
2.6.1 Experimental Protocol . 14

2.6.2 Dataset Description . 15

2.6.3 Evaluation Metrics . 15
3 Grade Prediction with Temporal Course-wise Influence 17

3.1 Methods . 17
3.1.1 MF with Temporal Course-wise Influence 17

Optimization Algorithm of MFTCI . 19

3.1.2 Computational Complexity Analysis . 21

3.2 Experiments . 22

3.2.1 Dataset Description . 22

3.2.2 Data Preprocessing . 23

3.2.3 Baseline Methods . 23

v

Non-negative Matrix Factorization (NMF) [1] 23

3.3 Results and Discussion . 24
3.3.1 Overall Performance . 24
3.3.2 Analysis on Individual Majors . 25

3.3.3 Effects from Previous Terms on MFTCI 26
3.3.4 Visualization of Course Influence . 27

3.4 Summary . 30

4 ALE: Additive Latent Effect Models for Grade Prediction 31
4.1 Preliminaries . 32
4.2 Additive Latent Effect Models (ALE) . 33

4.2.1 Student Academic Level Effect . 33
4.2.2 Course Instructor Effect . 34
4.2.3 Student Global Latent Factor . 35
4.2.4 Student and Course Bias Effect . 35
4.2.5 Optimization for ALE . 36

4.2.6 Computational Complexity Analysis . 38

4.3 Experiments . 38

4.3.1 Dataset Description . 38

4.3.2 Data Preprocessing . 38

4.3.3 Parameter Learning . 39

4.4 Results and Discussion . 39
4.4.1 Overall Performance . 39
4.4.2 Effects of Bias Terms . 41
4.4.3 Importance of Additive Latent Effects . 41

4.4.4 Importance of Accumulated Knowledge and Student Global Latent Factor . 42

4.5 Summary . 44

5 Grade Prediction Based on Cumulative Knowledge and Co-taken Courses 45

5.1 Methods . 46
5.1.1 Model Overview . 46
5.1.2 Co-taken Course Interaction Function . 47
5.1.3 Optimization of CKCC . 48

5.2 Experiments . 50

5.2.1 Dataset Description . 50

5.2.2 Data Preprocessing . 50

5.2.3 Compared Methods . 51

5.2.4 Parameter Learning . 51

vi

5.3 Results and Discussion . 52
5.3.1 Overall Performance . 52
5.3.2 Analysis on Individual Majors . 54

5.3.3 Linear versus Nonlinear Mapping Function 54

5.3.4 Performance on Different Numbers of Co-taken Courses 55
5.3.5 Performance on Different Numbers of Co-taken Course Subjects 55

5.4 Significance and Impact . 57

5.5 Summary . 59

6 Grade Prediction with Neural Collaborative Filtering 60

6.1 Background and Prior Methods . 61

6.1.1 Neural Network-based Collaborative Filtering 61

6.2 Methods . 62
6.2.1 NCF for Grade Prediction . 62

Rectified Linear Unit . 63
NCF with Non-Negativity Constraints . 63

Parameter Learning . 63

6.3 Experiments . 64

6.3.1 Dataset Description . 64

6.3.2 Data Preprocessing . 65

6.3.3 Baseline Methods . 65
Tensor Factorization . 65
Non-negative Tensor Factorization . 66

Additive Latent Effect Models . 66
6.4 Results and Discussion . 69

6.4.1 Overall Performance . 70
6.4.2 Effect of Embedding Dimensions . 71

6.4.3 Effect of Non-Negativity Constraint . 72

6.5 Summary . 72

7 Predicting Performance on MOOC Assessments using Multi-Regression Models 74

7.1 Methods . 75
7.1.1 Personal Linear Multi-Regression Models 75

7.1.2 Feature Description . 75

7.2 Experiments . 80

7.2.1 Datasets . 80
7.2.2 Experimental Protocol . 81

7.2.3 Data Partition . 82

vii

7.2.4 Evaluation Metrics . 82
7.2.5 Comparative Approaches. 83

7.3 Results and Discussion . 84
7.3.1 Assessment Prediction Results . 84

Comparative Performance . 85

Feature Importance . 85

7.4 Summary . 86

8 Conclusion and Future Work . 88
8.1 Conclusion . 88
8.2 Future Work . 90

8.2.1 Personalized degree planner . 90

8.2.2 Early warning system for instructor . 91

8.2.3 Course/material recommendation/generation for MOOCs 91

Bibliography . 92

viii

List of Tables

Table Page

2.1 Notations . 7
3.1 Dataset Descriptions . 23

3.2 Comparison Performance with PTA (%) . 24

3.3 Comparison Performance with RMSE and MAE. 25

3.4 Comparison Performance for Different Majors 25

4.1 Notations . 33
4.2 Method Summarization . 36
4.3 Dataset Statistics . 39
4.4 Performance Comparison for All Methods . 40

4.5 Comparison Method Summarization . 42

5.1 Dataset Statistics . 50
5.2 Performance Comparison for All Methods on FTF students 52

5.3 Performance Comparison for All Methods on TR students 52

5.4 Performance Comparison for All Methods on FTF students on Different Majors . . 53

5.5 Performance Comparison for All Methods on TR students on Different Majors . . 53

6.1 Dataset Statistics . 64
6.2 #S-C for Different Terms . 64
6.3 Performance Comparison for All Methods . 67

6.4 Performance Comparison on MAE for All Methods 68

6.5 Performance Comparison for Different Embeddings Dimensions 69

7.1 PreviousHW-based RMSE Performance (RMSE) comparison for AllStMed. 82

7.2 PreviousHW-based prediction performance comparison for AllStLearn group. . . . 83

8.1 Performance Comparison for All Models . 89

ix

List of Figures

Figure Page

2.1 Different Experimental Protocols . 15

3.1 Comparison performance for MFTCIp1 and MFTCI 26

3.2 Identified course influences for CS major . 27

3.3 Identified course influences for AIT major . 27

3.4 Identified course influences for BIOL major . 28

3.5 Identified course influences for CEIE major . 29

3.6 Identified course influences for CPE major . 29

3.7 Identified course influences for PSYC major . 30

4.1 Course-Student Data Distributions . 32
4.2 Comparison of PTA0 with Each Effect Removed on Various Student Groups in ALE 41

4.3 The Importance of Student’s Accumulated Knowledge and Student Global Latent

Factor on Various Student Groups . 43

5.1 Students’ Performance with Different Co-taken Course Pairs. Note: BIOL311 is course

“General Genetics”. CHEM313 is course “Organic Chemistry”. CS321 is course “Software Engi-

neering”. ECE301 is course “Digital Electronics”. MATH114 is course “Analytic Geometry and

Calculus”. CS211 is course “Object Oriented Programming”. MATH203 is course “Linear Algebra”.

CS262 is course “Low-level Programming”. 46

5.2 CKCC Model Structure . 48
5.3 PTA Results for Different Number of Co-taken Courses on FTF students 56
5.4 PTA Results for Different Number of Co-taken Course Subjects on FTF students . 56

5.5 Comparison Results on the Co-taken Course Influence 57

6.1 Model Structure of NCF on RS problem . 61

6.2 Model Structure of NCF on Grade Prediction . 62
6.3 Analysis on the Effect of Non-Negativity Constraint 70

7.1 Different activities within a MOOC. 76
7.2 Distribution of Students Attempting Each Assessment. 79

7.3 AllStMed Prediction Results. RMSE (↓ is better). 80

7.4 AllStLearn Prediction Results. Accuracy (↑ is better). 81

x

7.5 Predictive Performance with Removal of Feature Types. 84

7.6 Feature importance for AllStMed. 87

8.1 The Diagram for Grade Prediction Tool . 90

xi

Abstract

ACADEMIC PERFORMANCE PREDICTION WITH MACHINE LEARNING TECHNIQUES

Zhiyun Ren, PhD

George Mason University, 2019

Dissertation Director: Dr. Huzefa Rangwala

Nationally, the six year graduation rate for four year degree programs at universities and col-

leges in the United States has remained approximately 60% over the past decade. One of the main

reasons for poor retention (and ultimately training) of students has been lack of proper advising

and planning. Recently, there has been the prevalence of educational technologies driven by data

analytics in educational environments for assisting students in selecting courses, acquiring feedback

and improving learning outcomes based on past academic performance and behaviors.

Grade prediction methods seek to estimate a grade that a student may achieve in a course/task

that she may take in the future (e.g., next term, next assessment). Existing grade prediction methods

are mainly based on matrix factorization (MF) approaches, and overlook important factors that

could greatly influence student’s performance. In this thesis, I present developed several methods

for performance estimation for students within a traditional brick-and-mortar university and online

courses.

Specifically, I model the evolution of a student’s knowledge while studying a sequence of

courses within a matrix factorization framework. I provide a flexible framework that allows for

incorporation of course-related and student-related factors like instructor, academic level and effort

within a latent factor model. I also incorporate the influence of multiple co-taken courses within a

semester along with student’s cumulative knowledge.

I also present a deep learning based recommender system approach for predicting the grade a

student will earn in a course that he/she plans to take in the next-term. The deep learning inspired

approach provides added flexibility in learning the latent spaces in comparison to MF approaches.

The proposed approach also incorporates instructor information besides student and course infor-

mation. In addition, I also engineer student learning and engagement features from the server logs

of students enrolled in a Massive Open Online Course (MOOCs). These features are incorporated

within a Personalized Linear Multi-Regression model to predict within-class student’s performance

in an online education environment.

This thesis demonstrates the strengths of academic performance prediction on multiple bench-

marks. Incorporating these within Early Warning Systems to identify students who are at risk of

dropping out can lead to timely help from human advisors in helping students succeed within their

academic programs. Accurate and timely prediction of students’ academic grades holds the promise

for better student degree planning, personalized advising and providing timely feedback/interventions

to ensure that students stay on track in their chosen degree program and graduate on time.

Chapter 1: Introduction

1.1 Motivation

Data mining technologies have been in high demand in educational environment as they provide

technicality analysis on students’ past academic performance and behaviors for assisting them in

selecting courses, acquiring feedback and improving performance in the future. Grade prediction

methods seek to estimate a grade that a student may achieve in a course/task that he/she may take in

the future (e.g., next term, next assessment). Accurate and timely prediction of students’ academic

grades holds the promise for better student degree planning, personalized advising and automated

interventions to ensure that students stay on track in their chosen degree program and graduate on

time.

In the past decades, low graduation and retention rate has been one of the most severe problems

in higher education institutions in America [2]. A report from The National Center for Education

Statistics shows that in recent years, around 59 percent of students who start a four-year college

to pursue a bachelor’s degree are able to complete the degree in six years 1. It turns out that gov-

ernment, education institutions and students all spend a great amount of money and energy on the

education which a considerable part of has no valuable outcomes [3]. Undoubtedly, there is a criti-

cal need to develop new Educational Technologies (EdTech) [4] which are able to provide students

successful degree pathways and ensure they graduate in a timely fashion (4 to 6 years) and are well

prepared for jobs in their respective fields of study. Among many popular EdTech applications, data

analytics always play a dominant rule. To increase student graduation rates, several Educational

Data Mining (EDM) techniques have been developed and deployed at many institutions to help stu-

dents pass towards successful graduation [5]. For example, degree planners 2 assist students in

1https://nces.ed.gov/programs/coe/indicator ctr.asp
2http://www.blackboard.com/mobile-learning/planner.aspx

1

deciding their majors or fields of study, choosing the sequence of courses within their chosen major

and providing advice for achieving career and learning objectives. Early warning systems [5] in-

form advisors/students of progress, and additionally provide cues for intervention when students are

at the risk of failing one or more courses and dropping out of their program of study. An effective

way to assist and improve degree planning and advising is via modeling the student’s knowledge

and foreseeing their future academic performance [2].

Among several EDM tasks, accurate and timely grade prediction is very important since it holds

the promise for developing effective degree planners and early warning systems, and ultimately

improving educational outcomes.

1.2 Problem Statement

In this thesis, I have worked on two different problems. The first problem is future performance

prediction for students within a traditional brick-and-mortar university. Specifically, given a stu-

dent’s history academic activities (e.g., chosen courses) and performance (e.g., obtained grade on

a course), I will predict the student’s performance on a course in the future (e.g., next term). The

student’s history academic activities will be modeled as a sequence. Each term will be considered

as a time step where students’ performance will be stored in a student-course interaction matrix.

Each row in the interaction matrix represents a student, and each column in the interaction matrix

represents a course. The entry value is the corresponding student’s grade on a course. To predict

any student’s performance in the next term, all the previous terms will be considered as training

set. And the target term (i.e., the next term) is the test set. The goal is to provide accurate future

performance prediction for students in order to build solid foundation to detect at-risk courses, build

course recommendation system, plan academic pathway, etc. The second problem is in-class per-

formance prediction in MOOCs. Usually each MOOC has several assignments, videos, quizzes,

midterm and final exams. Given a student’s activities in MOOCs, such as the number of videos

she watches, the performance on assignments, the login frequency to the MOOC, etc., I will predict

her performance for final exam, or her performance for assignments based on the different course

settings.

2

1.3 Contribution

In the past few years, several algorithms have been developed to analyze educational data. Matrix

factorization (MF) based approaches which are inspired from recommender system research [6]

have been widely used for solving the grade prediction problems [7,8]. MF methods decompose the

student-course (or student-task) grade matrix into two low-rank matrices, indicating student latent

factors and course latent factors, respectively. Then the prediction of the grade for a student on an

untaken course is calculated as the product of the corresponding vectors in the two decomposed

matrices [9, 10]. Traditional MF methods have limited strength to deal with data sparsity which

is common in educational data, due to the fact that students always choose a small set of courses

comparing to the number of courses provided by the university. Previous work has been focusing

on different modifications of MF methods to improve grade prediction performance [11–13].

In this thesis, I have developed several grade prediction models based on MF framework that

take different factors into account, and finally achieve remarkable prediction results. Specifically,

I consider that a student’s knowledge is continuously being enriched while taking a sequence of

courses and propose a model named Matrix Factorization with Temporal Course-wise Influence

(MFTCI). In this model, students and courses are represented in a latent “knowledge” space. The

grade of a student on a course is modeled as the similarity of their latent representation in the

“knowledge” space. Course-wise influence is considered as an additional factor in the grade pre-

diction. The experimental results show that the proposed method outperforms several baseline ap-

proaches and infer meaningful patterns between pairs of courses within academic programs. Fur-

thermore, student’s latent factors are substituted with accumulated knowledge of a sequence of

courses taken by the student, jointly with the grade for each course. And I incorporate course in-

structor and student academic level effects along with student global latent factor to complete grade

prediction. This model is named Additive Latent Effect (ALE). Moreover, I present next-term grade

prediction models based on students’ cumulative knowledge and co-taken courses. The proposed

models are based on a matrix factorization framework and incorporate a co-taken course interaction

function to learn the influence from the co-taken courses on the target course. The co-taken course

interaction function is formed by a neural network, which takes the knowledge difference between

3

the co-taken courses and the target course as input, and outputs an influence value that will be used

to predict students’ grades on the target course. I compared the new models with several state-of-

the-art methods on students of various characteristics (e.g., whether a student transferred in or not).

The experimental results demonstrate that the proposed methods significantly outperform the base-

lines on grade prediction problem. Moreover, I perform a thorough analysis on the importance of

different factors and how these factors can practically assist students in course selection, and finally

improve their academic performance. Other than MF methods, deep learning (DL) has been in its

blossom as it is widely used across many data mining fields, including computer vision (CV), natu-

ral language processing (NLP), recommender system (RS) and etc. [14–16]. In this thesis, I present

a deep learning based recommender system approach called Neural Collaborative Filtering (NCF)

for predicting the grade a student will earn in a course that he/she plans to take in the next-term.

The deep learning inspired approach provides added flexibility in learning the latent spaces in com-

parison to MF approaches. The proposed approach also incorporates instructor information besides

student and course information. In addition, I also apply a Personalized Linear Multi-Regression

(PLMR) model to predict student’s performance on online education environment, i.e., Massive

Open Online Courses (MOOCs), and gain great results.

The main contributions of my work are as follows:

1. I model and incorporate temporal course-wise influence in addition to matrix factorization

for grade prediction. The proposed approach learns pairwise relationships between courses

that can help in understanding pre-requisite structures within programs and tuning academic

program chains [17].

2. I propose additive latent effect models that incorporate the information of course instructors,

student’s academic level and student global latent factor for the next-term grade prediction

problem. The strengths of the proposed framework include the ability to enhance the standard

MF methods with additional student and course-specific content information that may not be

contained within the student-course grade matrix [18].

3. To model the influence of the co-taken courses on students’ performance I introduce a deep

4

learning based co-taken course interaction function. This takes the knowledge difference be-

tween the co-taken courses and the target course as input, and outputs an influence value from

the co-taken courses on the target course. Integrated with cumulative knowledge acquired by

a student, this is the first work that learns and explicitly incorporates influences from co-taken

courses for grade prediction.

4. I extend deep learning based Neural Collaborative Filtering (NCF) on next-term grade pre-

diction problem. Beyond student-course interaction pairs, the proposed model effectively

incorporates instructor level information.

5. I also develop a personalized multiple learning regression model for estimating within class

performance. This models engineers features from back end server logs to capture student

learning habits within a Massive Open Online Course (MOOC) to predict student’s perfor-

mance [8, 19].

5

Chapter 2: Background

2.1 Preliminaries and Notations

Formally, student-course grades will be represented by a series of matrices {G1, G2, ..., GT} for

T terms. Each row of Gt represents a student, each column of Gt represents a course, and each

value in Gt , denoted as gt
s,c, represents a grade that student s got on course c in term t (gt

s,c ∈ (0,4],

gt
s,c = 0 indicates that student s did not take the course c in term t. I add a small value to failing

grade to distinguish 0 score from such situation.). Student-course grades up to the tth term will

be represented by Gt=∑
t
i=1Gi with size of n×m, where n is the number of students and m is the

number of courses. Given the database of (student, course, grade) up to term (T − 1) (i.e., GT−1),

the next-term grade prediction problem is to predict grades for each student on courses they might

enroll in the next term T . To simplify the notations, if not specifically stated in this thesis, I will use

gs,c to denote gt
s,c. The testing set is then (student, course, grade) triples in the Tth term, represented

by matrix GT . Rows from the grade matrices representing a student s will simply be represented as

G(s, :) and the specific courses that student has a grade for in this row can be given by c′ ∈ G(s, :).

In this thesis, all vectors (e.g., pT
s and qc) are represented by bold lower-case letters and all

matrices (e.g., A) are represented by upper-case letters. Column vectors are represented by having

the transpose supscriptT, otherwise by default they are row vectors. A predicted/approximated value

is denoted by having a ˜ head.

Given student-course grades up to term (T −1), the objective of the next-term grade prediction

problem is to predict grades for each student on courses that the student may consider for enrollment

in the next term T .

Table 2.1 summarizes the key notations used in this thesis.

6

Table 2.1: Notations

Notation Explanation
m number of courses
n number of students
k the dimension of latent factors
Gt student-course grades at term t
Gt all the student-course grades up to term t
gt

s,c the grade of student s on course c at term t
Cs,t the set of courses student s chooses at term t
Ct

s the set of courses student s chooses up to term t
Gs,t all the grades student s obtains at term t
Gt

s all the grades student s obtains up to term t
ts,c the academic term when student s takes course c

2.2 Related Work on Grade Prediction

Over the past few years, several methods have been developed to model student behavior and aca-

demic performance [20,21], and they gain improvement of learning outcomes [22]. Methods influ-

enced by Recommender System (RS) research [23], including Collaborative Filtering (CF) [24] and

Matrix Factorization [25], have attracted increasing attention in educational mining applications

which relate to student grade prediction [26] and in-class assessment prediction [27].

Matrix factorization from RS [28] can be applied for the next-term grade prediction problem,

when the student-course grade matrix is considered as the user-item rating matrix. Two low-rank

matrices containing latent factors of courses and students in a common knowledge space can be

learned from such a student-course grade matrix [7]. Thus, the grade of a student s on a course c

can be predicted as

g̃s,c = pT
s qc, (2.1)

where ps (ps ∈ Rk) and qc (qc ∈ Rk) are the two vectors containing latent factors of k dimensions

for student s and course c, respectively. This method is denoted as MF. Including the bias terms

within the MF formulation has shown to be effective in modeling systematical biases [25]. For the

7

grade prediction problem using MF, student and course biases can be included as follows:

g̃s,c = pT
s qc +bs +bc, (2.2)

where bs and bc are bias terms for student s and course c, respectively. This method is referred to as

MF with bias terms and denoted as MF-b.

Many other models have been developed based on MF framework. For example, Sahebi et al.

[29] modeled student learning progress and predicted student performance using tensor decompo-

sition based on the sequence of student attempts within course quizzes. Lan et al. [30] predicted

student performance on different questions within the context of intelligent tutoring systems. Meier

et al. [31] developed an online learning method that learns the best time to intervene based on past

student performance in a course. Sweeney et al. [7, 32] performed an extensive study of several

recommender system approaches including SVD, SVD-kNN and Factorization Machine (FM) to

predict next-term grade performance.

Additionally, incorporation of biases has shown to be important for several educational data

mining problems, following its success in RS [25]. Elbadrawy et al. [11] developed a domain-

aware grade prediction method with student/course-group based biases. To predict student s’ grade

on course c, this method groups students and courses in different ways based on student majors,

academic levels and course subjects, and introduces group-based biases. In this method, the grade

for student s on course c is predicted as:

g̃s,c = pT
s qc +bϕ(c)

s +bϕ(s)
c , (2.3)

where ps (ps ∈Rk) and qc (qc ∈Rk) are the latent factors for student s and course c, respectively. ϕ()

denotes the grouping information. bϕ(s)
c is the bias term for course c. This method models course

bias based on the performance of students who are in the same group of student s (i.e., ϕ(s)) and

have taken course c before. Similarly, bϕ(c)
s is the student bias term modeled based on the grades stu-

dent s has got on the courses which are in the same group as course c (i.e., ϕ(c)). The key intuition

8

of this method is that students who take the same course and can be grouped by domain information

(e.g., student’s major) may share a similar bias. This method is referred to as MF with domain-

aware biases and denote it as MF-d in my future experiments. Moreover, inspired by content-based

recommendation [33] approaches, Polyzou et al. [12] addressed the future course grade prediction

problem with three approaches: course-specific regression, student-specific regression and course-

specific matrix factorization. Moreover, neighborhood-based CF approaches [34–36] predict grades

based on the student similarities, i.e., they first identify similar students and use their grades to

estimate the grades of the students with similar profiles.

2.3 Related Work on Sequential Data Mining

In educational data mining problems, sequential information of students/courses over time is very

common and thus methods that deal with sequential data can be beneficial. As a matter of fact,

such methods have been extensively developed in RS research. For example, integrated methods of

Markov Chains (MC) and MF have been popular in dealing with sequential data in RS. Rendle et

al. [37] proposed the factorized personalized MC (FPMC) models. These models have personalized

Markov chains that rely on transition matrices, and these methods use a factorization model to deal

with the sparsity in the input data. Based on FPMC, He et al. [38] developed factorized sequential

models with item similarities for sparse sequential recommendation. Their models consider both

long-term and short-term dynamics among user-item data. Moreover, in their other work, He et

al. [39] adopted a similar idea and developed large-scale recommender systems to model the pref-

erences and short-term dynamics between both users and items. Morsy et al. [13], the proposed

methods model each student’s latent factors with accumulated knowledge of a sequence of courses

taken by the student, jointly with the grade for each course. Morsy et. al. [13] consider the series

of courses a student takes as a sequence and propose Cumulative-Knowledge Regression Models

(CKRM). Specifically, to predict student s’s performance on course c, CKRM represents student s

with the series of courses she has taken in the past, and each course is represented by a vector which

is expected to capture the latent knowledge components provided by the course. Moreover, CKRM

represents course c with a vector which is expected to capture the latent knowledge components

9

required by the course. Consequently, given a student s in term t, pt
ck(s) is the cumulative knowledge

acquired until term t, and is given by:

pt
ck(s) = ∑

gs,c′∈Gt−1
s

(e−λ (t−ts,c′)kc′ ·gs,c′), (2.4)

where ts,c′ is the term in which student s took course c′, e−λ (t−ts,c′) is an exponential time decay

function, kc′ contains the latent knowledge factors of course c′, and gs,c′ is the grade of student s on

course c′. The grade of student s on course c is then predicted as follows:

g̃t
s,c = pt

ck(s)
Tqc. (2.5)

In this study, I average the results in Eq 2.5 with the sum of exponential time decay weight, that is:

g̃t
s,c =

1
|Gt−1

s |
pt

ck(s)
Tqc (2.6)

This method is referred to as averaged CKRM and denoted as CK. The preliminary experiments

demonstrate that CK outperforms CKRM.

Other than FPMC models, in order to capture the changing of user dynamics over time in RS,

various dynamic models have been developed. Many of such models are based on Matrix Factor-

ization and state space models. Sun et al. [40,41] model user preference change using a state space

model on latent user factors, and estimate user factors over time using noncausal Kalman filters.

Similarly, Chua et.al. [42] apply Linear Dynamical Systems (LDS) on Non-negative Matrix Factor-

ization (NMF) to model user dynamics. Ju et al. [43] encapsulate the temporal relationships within a

Non-negative matrix formulation. Zhang et al. [44] learn an explicit transition matrix over the latent

factors for each user, and estimate the user and item latent factors and the transition matrices within

a Bayesian framework. Other popular methods for dynamic modeling include time-weighting sim-

ilarity decaying [45], tensor factorization [46] and point processes [47].

10

Another work related to sequential data mining is identifying course trajectories for college stu-

dents [48,49]. Generally, students are partitioned into two groups by their grades: high-performance

students and low-performance students. Then, sequential pattern mining algorithms, such as Apri-

ori, are used to identify the course trajectories for the two groups of student, respectively. Such

course trajectories can help detect course choices and degree planning that will affect student’s

academic performance. Moreover, given a student’s course trajectory captured by effective algo-

rithms, previous work has shown it can improve the classification accuracy when detecting high- or

low-performance student. This groups of methods are different from my work. In my thesis, I’m

working on a regression problem which predicts student’s grade, instead of a classification problem

which partitions students into two groups, high-performance student group and low-performance

student group. Therefore, I’m working on numeral data instead of binary data.

2.4 Related Work on Online Learning System

As for MOOCs, several researchers have focused on the analysis of education data in this field, in

an effort to understand the characteristics of student learning behaviors and motivation within this

education model [50]. Brinton et. al. [51] developed an approach to predict if a student answers

a question correct on the first attempt via click-stream information and social learning networks.

Kennedy et. al. [52] analyzed the relationship between a student’s prior knowledge on end-of-

MOOC performance. Sunar et. al. [53] developed an approach to predict the possible interactions

between peers participating in a MOOC. Elbadrawy et. al. [27] proposed the use of personalized

linear multi-regression models to predict student performance in a traditional university by extract-

ing data from course management systems (Moodle). My study focuses on MOOCs, which presents

different assumptions, challenges and features in comparison to a traditional university environment.

Most similar to the proposed work, Pardos et. al. proposed a model “Item Difficulty Effect

Model” (IDEM) that incorporates the difficulty levels of different questions and modifies Bayesian

Knowledge Tracing (BKT) model [54] by adding an “Item” node to every question node. By iden-

tifying the challenges associated with modeling MOOC data, the IDEM approach and extensions

11

that involve splitting questions into several sub-parts and incorporating resource (knowledge) infor-

mation [55] are considered state-of-the-art MOOC assessment prediction approaches and referred

as KT-IDEM. However, this approach can only predict a binary value grade. In contrast, the model

proposed in my thesis is able to predict both, a continuous and a binary grade.

2.5 Related Work on Deep Learning

2.5.1 Deep Learning in Educational Data Mining

Deep Learning (DL) techniques have been applied to solve many educational data mining problems.

For example, Sharma et al. [56] proposed a composite deep neural network to predict human move-

ment (e.g., walking, sitting) in educational videos. The proposed method first used a convolutional

neural network to extract the video features, followed by a deep recurrent neural network to predict

the human movement label. Klingler et al. [57] employed deep variational auto-encoders (VAE)

on classification tasks in EDM. Specifically, the presented model makes effective use of unlabeled

data to learn efficient feature embeddings for students, and significantly improved detection results

of developmental dyscalculia (DD), compared to completely supervised training. Xiong et al. [58]

introduced a recently developed model, Deep Knowledge Tracing (DKT), a pioneering algorithm

that uses recurrent neural network to model student learning. The method is evaluated on various

datasets compared with Factors Analysis Model and Knowledge Tracing models models, and the

results show the proposed method outperforms the baselines on various datasets. Piech et al. [59]

introduced Deep Knowledge Tracing (DKT) to model student learning with Recurrent Neural Net-

works. The authors provided experiments on how to use DKT to detect latent structure between the

assessments in the dataset.

2.5.2 Deep Learning in Recommender Systems

Furthermore, DL has also been widely used in RS problems. Kim et al. [60] proposed a convo-

lutional matrix factorization (ConvMF) model that integrates convolutional neural network (CNN)

into probabilistic matrix factorization (PMF) for context-aware recommendation. Wang et al. [61]

12

first studied the editor article selection behavior, and then proposed a Dynamic Attention Deep

Model (DADM) to automatically select a subset of articles from the large pool. DADM uses

character-level text modeling and convolutional neural networks (CNNs) to learn the representation

of each article, followed by an attention-based network architecture that aims to assign influence

factors on recent models dynamically in order to improve the performance of the current recom-

mender system. Salakhutdinov et al. [62] successfully applied Restricted Boltzmann Machines

(RBMs) on the basic recommendation tasks. The paper also showed an efficient learning algorithm

for RBM, named Contrastive Divergence (CD).

Feedforward Neural Network in Recommender Systems

He et al. [63] presented a general framework named Neural network-based Collaborative Filtering

(NCF) in order to tackle the collaborative filtering problem in recommendation based on implicit

feedback. NCF replaces the inner product with a neural architecture that could learn an arbitrary

function from data, and has shown significant improvements over the state-of-the-art methods. Cov-

ington et al. [64] proposed a deep learning model for YouTube recommendation. The model com-

prises two parts: 1) the candidate generation network and the ranking network which are both fully

connected neural network with concatenated embedded features and embedded categorical features

as input, respectively. Yang et al. [65] developed a deep neural architecture called PACE (Pref-

erence And Context Embedding) for POI recommendation. PACE jointly learns the embeddings

of users and POIs to predict both user preference over POIs and various context associated with

users and POIs. Wang et al. [66] developed a hierarchical Bayesian model called collaborative deep

learning (CDL) as a novel method for RS problem. Elkahky et al. [67] proposed a DL approach to

map users and items to a latent space and learned the parameters by maximizing the similarity be-

tween users and their preferred items. Then the paper introduced a multi-view DL model to jointly

learn features of items from different domains and user features. Cheng et al. [68] presented a

DL model that combined wide and deep learning, i.e., combined the benefits of memorization and

generalization for recommender system.

Autoencoder in Recommender Systems

13

Wu et al. [69] presented a Collaborative Denoising Autoencoder (CDAE) for top-N recommenda-

tion which adopts the idea of Denoising Auto-Encoders. Dong et al. [70] presented a hybrid model

which combined deep learning techniques and collaborative filtering method in learning users and

items’ latent factors with side information and on the rating matrix, respectively. Wang et al. [71]

developed a collaborative recurrent autoencoder (CRAE) that models the generation of content se-

quences. CRAE is based on the development of a hierarchical Bayesian model for the denoising

recurrent autoencoder (DRAE) and is generalizated in collaborative filtering setting. Li et al. [72]

proposed a general deep architecture for CF by combining probabilistic matrix factorization with

marginalized denoising stacked auto-encoders. Li et al. [73] proposed a Bayesian generative model

called collaborative variational autoencoder (CVAE) that considers both rating and content for var-

ious recommendation problems.

Recurrent Neural Network in Recommender Systems

Smirnova et al. [74] proposed a new class of Contextual Recurrent Neural Networks for Recom-

mendation (CRNNs) that considered the contextual information both in the input and output layers.

Wu et al. [75] built a deep RNN for personal recommendation. The proposed model tracked user

browsing history with multiple hidden layers, and it only recorded a number of states, while the old

states are represented by a single history state, in order to reduce the processing cost. Hidasi et al.

[76] introduced a number of parallel RNN (p-RNN) architectures to model sessions based on the

clicks and the features (images and text) of the clicked items for session-based recommendation.

2.6 Performance Evaluation

2.6.1 Experimental Protocol

To assess the performance of the next-term grade prediction models, I trained my models on data

up to term T − 1 and make predictions for term T . I evaluate my method for three test terms, i.e.,

Spring 2016, Fall 2015 and Spring 2015. As an example, for evaluating predictions for term Fall

2015, data from Fall 2009 to Spring 2015 is considered as training data and data from Fall 2015 is

testing data. datasets. Figure 2.1 shows the three different train-test splits.

14

Fall 2009 to Fall 2014 Spring 2015

Fall 2009 to Spring 2015 Fall 2015

Fall 2009 to Fall 2015 Spring 2016

Training set:

Test set:

Figure 2.1: Different Experimental Protocols

2.6.2 Dataset Description

The data used in this thesis is obtained from George Mason University (GMU). The dataset contains

two student groups: first-time freshmen (FTF; i.e., students who begin their study initially at this

University), and transfer students (TR; i.e., students who transfer to this University from a different

one). The dataset was extracted in the period of Fall 2009 to Spring 2018. It includes information

of 23,435 FTF students and 28,470 TR students across 153 majors, who have enrolled in 5,431

courses.

2.6.3 Evaluation Metrics

I use Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Percentage of Tick

Accuracy (PTA) as evaluation metrics. RMSE and MAE and are defined as follows:

RMSE =

√
∑s,c∈GT (gs,c− g̃s,c)2

|GT |
,

MAE =
∑s,c∈GT

|gs,c− g̃s,c|
|GT |

where gs,c and g̃s,c are the ground truth and predicted grade for student s on course c, and GT

is the testing set of (student, course, grade) triples in the Tth term. Normally, in next-term grade

15

prediction problem, MAE is more intuitive than RMSE since MAE is a straightforward method

which calculates the deviation of errors directly while RMSE has implications such as penalizing

large errors more.

PTA metrics is defined as follows. For the dataset, a student’s grade can be a letter grade (i.e.

A, A-, . . . , F). As done previously by Polyzou et. al. [77], I define a tick to denote the difference

between two consecutive letter grades (e.g., C+ vs C or C vs C-). To assess the performance of

the proposed grade prediction method, I convert the predicted grades into their closest letter grades

and compute the percentage of predicted grades with no error (or 0-ticks), within 1-tick and within

2-ticks denoted by Pct0, Pct1 and Pct2, respectively. For the problem of course selection and degree

planning, courses predicted within 2 ticks can be considered sufficiently correct.

16

Chapter 3: Grade Prediction with Temporal Course-wise Influence

In this chapter, I present a novel approach referred as Matrix Factorization with Temporal Course-

wise Influence (MFTCI) model to predict next term student grades. MFTCI considers that a stu-

dent’s grade on a certain course is determined by two components: (i) the student’s competence

with respect to each course’s topics, content and requirement, etc., and (ii) student’s previous perfor-

mance over other courses. I performed a comprehensive set of experiments on various datasets. The

experimental results show that the proposed method outperforms several state-of-the-art methods.

The work presented in this chapter has been published in International Conference on Educational

Data Mining (EDM 2017).

3.1 Methods

3.1.1 MF with Temporal Course-wise Influence

I consider the student s’ grade on a certain course c, denoted as gs,c, as determined by two factors.

The first factor is the student s’ competence with respect to the course c’s topics, content and re-

quirement. This is modeled through a latent factor model, in which s’ competence is captured using

a size-k latent factor ps, c’s topics and contents are captured using a size-k latent factor qc in the

same latent space as ps. Then the competence of s over c is modeled by the “similarity” between ps

and qc via their dot product (i.e., pT
s qc).

The second factor is the previous performance of student s over other courses. I hypothesize

that if course c′ has a positive influence on course c, and student s achieved a high grade on c′, then

s tends to have a high grade on c. Under this hypothesis, I model this second factor as a product

between the performance of student on a previous “related” course where the pairwise course rela-

tionships are learned in the formulation. Note that I consider this pairwise course influence as time

17

independent, i.e., the influence of one course over another does not change over time. However, the

impact from previous performance/grades can be modeled using a decay function over time. Taking

these two factors, the estimated grade is given as follows:

g̃s,c = pT
s qc

+ e−α
∑c′∈GT−1(s,:) A(c′,c)gs,c′

|GT−1(s, :)|︸ ︷︷ ︸
∆(T−1)

+ e−2α
∑c′′∈GT−2(s,:) A(c′′,c)gs,c′′

|GT−2(s, :)|︸ ︷︷ ︸
∆(T−2)

,

(3.1)

in which A(c′,c) is the influence of c′ on c, GT−1(s, :)/GT−2(s, :) is the subset of courses out of all

courses that s has taken in the first/second previous terms, |GT−1(s, :)|/|GT−2(s, :)| is the number of

such taken courses. e−α /e−2α denote the time-decay factors. In Equation 3.1, I consider previous

two terms. More previous terms can be included with even stronger time-decay factors. Given the

grade estimation as in Equation 3.1, I formulate the grade prediction problem for term T as the

following optimization problem,

min
U,V,A

1
2 ∑

s,c
(gs,c− g̃s,c)

2 +
γ

2
(‖P‖2

F +‖Q‖2
F)

+ τ‖A‖∗+λ‖A‖`1

s.t., A≥ 0

where P and Q are the latent non-negative student factors and course factors, respectively; ‖A‖∗ is

the nuclear norm of A, which will induce an A of low rank; and ‖A‖`1 is the `1 norm of A, which will

introduce sparsity in A. In addition, the non-negativity constraint on A is to enforce only positive

influence across courses.

18

Optimization Algorithm of MFTCI

I apply the ADMM [78] technique for Equation 3.2 by reformulating the optimization problem as

follows,

min
U,V,A,U1,U2,Z1,Z2

1
2 ∑

s,c
(gs,c− g̃s,c)

2 +
γ

2
(‖P‖2

F +‖Q‖2
F)

+τ‖Z1‖∗+λ‖Z2‖`1

+
ρ

2
(‖A−Z1‖2

F +‖A−Z2‖2
F)

+ρ(tr(UT
1 (A−Z1)))

+ρ(tr(UT
2 (A−Z2)))

s.t., A≥ 0

where Z1 and Z2 are two auxiliary variables, and U1 and U2 are two dual variables. All the variables

are solved via an alternating approach as follows.

Step 1: Update P and Q Fixing all the other variables and solving for P and Q, the problem be-

comes a classical matrix factorization problem:

min
U,V

1
2 ∑

s,c
(fs,c−pT

s qc)
2 +

γ

2
(∑

s
‖ps‖2

2 +∑
c
‖qc‖2

2) (3.2)

where fs,c = gs,c−∆(T − 1)−∆(T − 2) (See Eq 3.1). The matrix factorization problem can be

solved using alternating minimization.

19

Step 2: Update A Fixing all the other variables and solving for A, the problem becomes

min
A

1
2 ∑

s,c
(gs,c− g̃s,c)

2 +
ρ

2
(‖A−Z1‖2

F +‖A−Z2‖2
F)

+ρ(tr(UT
1 (A−Z1)))+ρ(tr(UT

2 (A−Z2)))

s.t., A≥ 0

Using the gradient descent, the elements in A can be updated as follows.

A(ci,c j) = A(ci,c j)− lr× [ρ(A(ci,c j)−Z1(ci,c j))

+ρ(A(ci,c j)−Z2(ci,c j))+ρU1(ci,c j)+ρU2(ci,c j)

−∑
s,c j

(gs,c j − g̃s,c j)

×

e−α

|GT−1(s,:)|gs,ci (if ci is taken in term T −1)

e−2α

|GT−2(s,:)|gs,ci (if ci is taken in term T −2)]

(3.3)

with projection into [0,+∞), where lr is a learning rate.

Step 3: Update Z1 and Z2 For Z1, the problem becomes

min
Z1

τ‖Z1‖∗+
ρ

2
‖A−Z1‖2

F +ρ(tr(UT
1 (A−Z1))) (3.4)

The closed-form solution of this problem is

Z1 = S τ

ρ
(A+U1) (3.5)

20

where Sα(X) is a soft-thresholding function that shrinks the singular values of X with a threshold

α , that is,

Sα(X) =Udiag((Σ−α)+)VT (3.6)

where X =UΣVT is the singular value decomposition of X , and

(x)+ = max(x,0). (3.7)

For Z2, the problem becomes

min
Z2

λ‖Z2‖`1 +
ρ

2
‖A−Z2‖2

F +ρ(tr(UT
2)(A−Z2)) (3.8)

The closed-form solution is

Z2 = E λ

ρ

(A+U2) (3.9)

where Eα(X) is a soft-thresholding function that shrinks the values in X with a threshold α , that is,

Eα(X) = (X−α,0)+ (3.10)

where ()+ is defined as in Equation 3.7.

Step 4: Update U1 and U2 U1 and U2 are updated based on standard ADMM updates:

U1 =U1 +(A−Z1); U2 =U2 +(A−Z2) (3.11)

In addition, I conduct computational complexity analysis of MFTCI and put it in Appendix.

3.1.2 Computational Complexity Analysis

The computational complexity of MFTCI is determined by the four steps in the alternating approach

as described above. To update U and V as in Equation 3.2 using gradient descent method via

21

alternating minimization, the computational complexity is O(niteruv(k× ns,c + k×m+ k× n)) =

O(niteruv(k× ns,c)) (typically ns,c ≥ max(m,n)), where ns,c is the total number of student-course

dyads, n is the number of students, m is the number of courses, k is the latent dimensions of U and V ,

and niteruv is the number of iterations. To update A as in Equation 3.3 using gradient descent method,

the computational complexity is upper-bounded by O(nitera(ncc× ns,c
m)), where ncc is the number of

course pairs that have been taken by at least one student, ns,c
m is the average number of students for

a course, which upper bounds the average number of students who co-take two courses, and nitera

is the number of iteractions. Essentially, to update A, I only need to update A(ci,c j) where ci and c j

have been co-taken by some students. For A(ci,c j) where ci and c j have never been taken together,

they will remain 0. To update Z1 as in Equation 3.4, a singular value decomposition is involved and

thus its computational complexity is upper bounded by O(m3). To update Z2 as in Equation 3.8, the

computational complexity is O(m2). To update U1 and U2 as in Equation 3.11, the computational

complexity is O(m2). Thus, the computational complexity for MTFCI is O(niter(niteruv(k×ns,c)+

nitera(ncc× ns,c
m)+m3 +m2)) = O(niter(niteruv(k× ns,c)+ nitera(ncc× ns,c

m)+m3)), where niter is

the number of iterations for the four steps. Although the complexity is dominated by m3 due to the

SVD on A+U1, since n (i.e., the number of courses) is typically not large, the run time will be more

dominated by ns,c (i.e., the number of student-course dyads).

3.2 Experiments

3.2.1 Dataset Description

In this chapter, I use the data of six large and diverse majors for both non-transfer and transfer

students from GMU. These majors include: (i) Applied Information Technology (AIT), (ii) Biol-

ogy (BIOL), (iii) Civil, Environmental and Infrastructure Engineering (CEIE), (iv) Computer Engi-

neering (CPE) (v) Computer Science (CS) and (vi) Psychology (PSYC). Table 3.1 provides more

information about these datasets.

22

Table 3.1: Dataset Descriptions

Major
Non-Transfer Students Transfer Students
#S #C #(S,C) #S #C #(S,C)

AIT 239 453 5,739 982 465 14,396
BIOL 1,448 990 33,527 1,330 833 22,691
CEIE 393 642 9,812 227 305 4,538
CPE 340 649 7,710 91 219 1,614
CS 908 818 18,376 480 464 7,967

PSYC 911 874 22,598 1504 788 24,661
Total 4,239 1,115 97,762 4,614 1,019 75,867

#S, #C and #S-C are number of students, courses and student-course pairs in educa-
tional records across the 6 majors from Fall 2009 to Spring 2016, respectively.

3.2.2 Data Preprocessing

MFTCI predicts student s’s grade on course c in next term based on the courses taken by student s

in previous two terms. In effect, this will naturally raise the cold start problems [25] for next-term

grade prediction. Accordingly, I conduct a data preprocessing step to exclude such problems. In

detail, I exclude the students who enroll in the program for less than three terms. Moreover, if

student s has taken the course pair c,c′ or c,c′′ which have not appeared before, I exclude such

scenarios as well, i.e., I will not predict course c’s grade for student s.

3.2.3 Baseline Methods

I compare the performance of the proposed method to several baseline approaches, including MF

and MF-b which are described in Section 2.

Non-negative Matrix Factorization (NMF) [1]

I add non-negative constraints on matrix P and matrix Q in Equation 2.1. The non-negativity con-

straints allows MF approaches to have better interpretability and accuracy for non-negative data

[79].

23

Table 3.2: Comparison Performance with PTA (%)

Methods
Spring 2016 Fall 2015 Spring 2015

PTA0 (↑) PTA1 (↑) PTA2 (↑) PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

MF-b 13.25 27.71 58.02 12.05 26.63 58.89 13.03 26.09 54.83
MF 16.52 31.65 57.46 15.51 30.03 55.64 15.53 29.53 54.94

NMF 13.21 27.04 57.18 15.33 30.12 56.15 15.56 29.23 54.93
MFTCI 19.78 35.52 61.44 19.71 35.16 60.12 18.56 32.78 58.80

i) “↑” indicates the higher the better. ii) Reported values of PTA0, PTA1 and PTA2 are percentages. iii) Best per-
forming methods are highlighted with bold.

3.3 Results and Discussion

3.3.1 Overall Performance

Table 3.2 presents the comparison of PTA0, PTA1 and PTA2 for non-transfer students for the three

terms considered as test: Spring 2016, Fall 2015 and Spring 2015. I observe that the MFTCI model

outperforms the baselines across the different test sets. On average, MFTCI outperforms the MF-b,

MF and NMF methods by 34.18%, 11.59% and 4.08% in terms of PTA0, 16.64%, 7.96% and 4.03%

in terms of PTA1, and 2.10%, 3.00% and 1.98% in terms of PTA2, respectively. I observe similar

results for transfer students as well (not included here for brevity).

Table 3.3 presents the performance of the baselines and MFTCI model for the three different

terms of both non-transfer and transfer students using RMSE and MAE as evaluation metrics. The

MFTCI model consistently outperforms the baselines across the different datasets in terms of MAE.

In addition, the results shows that MF, NMF and MFTCI tend to have better performance for Spring

2016 term than Fall 2015 term. Similar trend is observed between Fall 2015 term and Spring 2015

term. This suggests that MFTCI is likely to have better performance with more information in the

training set.

24

Table 3.3: Comparison Performance with RMSE and MAE.

Methods
Non-Transfer Students

Spring 2016 Fall 2015 Spring 2015
RMSE MAE RMSE MAE RMSE MAE

MF-b 0.999 0.754 1.037 0.786 1.023 0.784
MF 0.929 0.714 0.977 0.752 1.014 0.778

NMF 1.020 0.769 0.967 0.746 1.000 0.771
MFTCI 0.928 0.685 0.982 0.717 1.012 0.750

Methods
Transfer Students

Spring 2016 Fall 2015 Spring 2015
RMSE MAE RMSE MAE RMSE MAE

MF-b 0.925 0.688 0.921 0.686 0.985 0.732
MF 0.893 0.668 0.944 0.705 1.011 0.765

NMF 0.906 0.683 0.932 0.701 0.979 0.746
MFTCI 0.887 0.636 0.927 0.662 1.000 0.721

Table 3.4: Comparison Performance for Different Majors

Methods AIT BIOL CEIE CPE CS PSYC

PTA0

MF-b 18.71 18.00 15.99 12.99 15.98 20.18
MF 19.45 22.10 16.70 14.21 16.47 22.12

NMF 19.77 22.16 17.01 14.32 16.61 22.17
MFTCI 22.30 24.24 16.80 14.32 17.32 25.83

PTA1

MF-b 37.95 35.43 31.47 27.86 31.53 39.41
MF 37.21 39.68 31.87 27.97 30.51 39.63

NMF 36.79 39.74 31.67 27.19 30.43 39.36
MFTCI 39.64 40.87 32.38 27.53 31.78 42.29

PTA2

MF-b 67.02 67.78 58.66 52.28 56.91 71.01
MF 66.17 67.54 58.35 50.72 56.24 67.74

NMF 66.70 67.54 58.55 51.17 56.17 67.79
MFTCI 66.70 68.25 58.76 52.94 58.18 68.29

3.3.2 Analysis on Individual Majors

I divide non-transfer students based on their majors and test the baselines and MFTCI model on each

major, separately. Table 3.4 shows the comparison of PTA0, PTA1 and PTA2 on different majors.

The results show that MFTCI has the best performance for almost all the majors. Among all the

25

results, MFTCI has the highest accuracy when predicting grades for PSYC and BIOL students for

which I have more student-course pairs in the training set.

3.3.3 Effects from Previous Terms on MFTCI

In order to see the influence of number of previous terms considered in MFTCI, I run the proposed

model with only ∆(T − 1) in Equation 3.1. This method is represented as MFTCIp1. Figure 3.1

shows the comparison results of MAE for six subsets of data which are reported in Table 3.3, where

“NTR” stands for non-transfer students and “TR” stands for transfer students. The results show

that MFTCI consistently outperforms MFTCIp1 on all datasets. This suggests that considering two

previous terms is necessary for achieving good prediciton results. Moreover, since I consider that the

student’s knowledge is modeled using an exponential decaying function over time, I do not include

the influence from the third previous term in the model as its influence for the grade prediction is

negligible in comparison to the previous two terms.

NTR Spring
 2016

NTR Fall
 2015

NTR Spring
 2015

TR Spring
 2016

TR Fall
 2015

TR Spring
 2015

0.60

0.62

0.64

0.66

0.68

0.70

M
A

E

MFTCIp1
MFTCI

Figure 3.1: Comparison performance for MFTCIp1 and MFTCI

26

Object Oriented Programming

Low-Level Programming

0.691

Discrete Mathematics

0.3512

Data Structures

0.3661

Linear Algebra

0.37970.4392

Public Speaking

Advanced Composition

0.6033

Research Methods

Computer Ethics

0.563

0.4953 0.3852

Western History

0.3646

0.536

Reading & Writng

0.3526

0.4314

0.49290.4122

Digital Electronics

0.4313

Formal Methods & Models

0.3691

Introductory Programming

0.4264

Analytic Geometry & Calculus

0.4199

Analysis of Algorithms

0.3512

Figure 3.2: Identified course influences for CS major

Introductory Computing

Public Speaking

0.3392

Introductory Statistics

0.2675

IT Problem & Programming

0.2248

Discrete Mathematics for IT

0.2393

Western History

0.2317

Applied IT

0.2453

Computer Hardware

Multimedia & Web Design

0.31

Applied IT Programming

0.2602

IT in the Global Economy

0.2456

Introductory IT

0.30330.3012

IT Problem & Object Oriented Techniques

0.226

Database Fundamentals

Information Security

0.276

Advanced Composition

0.2217

Composition

0.25230.2753

0.2624 0.2461

Calculus & Applications

0.2262

Figure 3.3: Identified course influences for AIT major

3.3.4 Visualization of Course Influence

To interpret what is captured in the course influence matrix A (See Eq 3.1), I extract the top 20

values with the corresponding course names (and topics) for analysis. Figure 3.2 and 3.3 show the

captured pairwise course influences for CS and AIT majors, respectively. Each node corresponds

to one course which is represented by the shortened course’s name. I can notice from the figures

that most influences reflect content dependency between courses. For example, in the CS major,

“Object Oriented Programming” course has significant influence on performance of “Low-Level

Programming” course (the former one is also the latter one’s prerequisite course); “Linear Algebra”

and “Discrete Mathematics” have influence on each other; “Formal Methods & Models” course

27

General Chemistry I

General Chemistry II

1.5541

Organic Chemistry I

0.6581

Organic Chemistry Lab I

0.5888

0.6835

Cell Structure & Function

1.12240.7832

Organic Chemistry Lab II

0.6707

Biology of Microorganisms

0.5907

Physics I

Physics II

0.6068

Biostatistics

0.6046

Figure 3.4: Identified course influences for BIOL major

has influence on “Analysis of Algorithms” course. In case of the AIT major, both “Introductory

IT” course and “Introductory Computing” course have influence on “IT Problem & Programming”

course; “Multimedia & Web Design” course has influence on both “Applied IT Programming”

course and “IT in the Global Economy” course. GMU has a sample schedule of eight-term courses

for each major in order to guide undergraduate students to finish their study step by step based on the

level, content and difficulty of courses 1. Among the identified relationships shown in Figures 3.2

and 3.3 I found 17 and 13 of the CS and AIT courses influences in the guide map, respectively. The

rest of the identified influences are among other general electives but required courses (e.g., “Public

Speaking” course), or specific electives pertaining to the major (e.g., “Research Methods” course).

This shows that the proposed model learns meaningful course-wise influences and successfully uses

it to improve MF model.

Figure 3.4 to 3.7 show the identified course influences for the BIOL, CEIE, CPE and PSYC

majors. These identified course-wise influences seem to capture similarity of course content.

1http://catalog.gmu.edu

28

Introductory Engineering

Microeconomic

1.1074

Physics I

0.9025

Computer Graphics

0.6901

Physics Lab I

0.5658

0.7125

Chemistry for Engineers

0.8467Calculus II

0.86730.6277 0.7009

Calculus I

0.5345

Figure 3.5: Identified course influences for CEIE major

Introductory Engineering

Physics Lab I

0.0682 Introductory Programming

0.0675

Calculus III

0.0556

Calculus II

0.0509

University Physics I

0.0478

Calculus I

0.0611

0.0436

Linear Algebra

0.0548

University Physics II

0.0495

Physics Lab II

0.0397

Figure 3.6: Identified course influences for CPE major

29

Statistics in Psychology

Research in Psychology

0.6269

Physiological Psychology

0.4069

Abnormal Psychology

0.3382

0.4898

Social Psychology

0.4545

Composition II

0.389

0.385

0.4304

Composition I

Cognitive Psychology

0.4064

0.4037

Figure 3.7: Identified course influences for PSYC major

3.4 Summary

I presented a Matrix Factorization with Temporal Course-wise Influence (MFTCI) model that in-

tegrates factorization models and the influence of courses taken in the preceding terms to predict

student grades for the next term.

I evaluate the proposed model on the student educational records from Fall 2009 to Spring

2016 collected from George Mason University. The dataset in this study contains both non-transfer

and transfer students from six different majors. The experimental evaluation shows that MFTCI

consistently outperforms the different state-of-the-art methods. Moreover, I analyze the effects from

previous terms on MFTCI, and I make the conclusion that it is necessary to consider two previous

terms. In addition, I visualize the patterns learned between pairs of courses. The results strongly

demonstrate that the learned course influences correlate with the course content within academic

programs.

30

Chapter 4: ALE: Additive Latent Effect Models for Grade Prediction

Existing grade prediction methods often have a narrow focus on the potential influential factors.

For example, course instructors, course difficulty, student’s interest, capability and effort are rarely

considered.

Data distribution: Fig. 4.1a shows the distribution of the number of instructors who teach the

same course at George Mason University. More than 60% of the courses at this university have been

taught by multiple instructors in a period of 18 terms. For a given course, different instructors differ

in their course offerings with respect to coverage of course topics, pedagogy and grading criterion.

All these factors impact a student’s grade in a course. As such, I propose to model latent factors

associated with each instructor in addition to the latent factors of the course she teaches. Fig. 4.1b

shows the distribution of academic course levels at George Mason University (i.e., 100-,200-,300-

and 400-level) offered to the students in different starting years. I assume that students in the same

college terms (e.g., freshmen, sophomore, etc) tend to have similar learning behaviors, capabilities

and expertise given the sequential aspects of most degree programs. For example, freshmen students

may be undecided on their majors and mostly take courses with level 100, as shown in Fig.4.1b.

Likewise, seniors tend to have an in-depth knowledge of study in a specific field, and mostly take

higher level courses.

In this thesis, I propose Additive Latent Effect (ALE) models within the framework of MF to

predict the grade that a student is expected to obtain in a course that she may enroll in the next

term. Inspired by Morsy et al. [13], the proposed methods model each student’s latent factors with

accumulated knowledge of a sequence of courses taken by the student, jointly with the grade for

each course. Furthermore, I incorporate course instructor and student academic level effects along

with student global latent factor to enable accurate grade prediction.

Prior work in the RS literature that shares similarities with one of the proposed methods is from

Koenigstein et al. [80]. In this work, the authors proposed a music rating recommendation system

31

N=1

N=2

N=3

N=4

N∈[5,10]

N > 10

(a) Distribution of #instructors over courses
(b) % of Students Enrolled in Different Course Levels based
on their Current College Year

Figure 4.1: Course-Student Data Distributions

that models a user’s music preferences based on her interest in a given music track, and the artist and

album information associated with the specific track. Shared factor components were introduced to

reflect the similar preference for music tracks of same artists (or genre, album). I have discussed

the domain-aware grade prediction method [11] and cumulative knowledge-based regression model

[13] in Section 2 in detail. These two models serve as foundations for the proposed formulation.

Finally, I conducted a comprehensive set of experiments on various datasets and provided a

thorough analysis on the importance of different factors. The experimental results show that the

proposed methods achieve superior prediction performance on various test datasets for next-term

grade prediction. The work presented in this chapter has been published in SIAM International

Conference on Data Mining (SDM18).

4.1 Preliminaries

Formally, student-course grades will be represented by {G1, G2, ..., GN} for N terms. Gt contains

the set of tuples storing grade information for all students enrolled in courses within term t. Each

tuple stores: (i) student identifier, (ii) course identifier, (iii) student academic level, (iv) course

32

Table 4.1: Notations

Notation Explanation
pt

ck(s) latent factors of accumulated knowledge of student s

up to term t
pal(s) latent factor of student s’s academic level,

al(s) ∈ [1,12]
pt

en(s) integrated student latent factor
qc latent factor of the knowledge components required

by course c
qin(c) latent factor of the instructor who teaches course c
qen(c) integrated course latent factor
pg(s) student s’s global latent factor
kc latent factor of the knowledge components provided

by course c

instructor, and (v) grade obtained. Table 4.1 summarizes the key notations used in this chapter.

4.2 Additive Latent Effect Models (ALE)

I propose Additive Latent Effect (ALE) models to predict student s’s performance on course c in

term t. I will give a thorough presentation on how I model each effect in the following sections.

4.2.1 Student Academic Level Effect

Based on the assumption that students on a same academic level (i.e., freshmen, sophomore, junior

and senior) have a similar level of academic maturity, experience, habits and knowledge, I model

student s by integrating a factor associated to the college term she is attending, denoted as pal(s)t ,

into the student accumulated knowledge factors. The integrated student latent factor is denoted as

pt
en(s), and is given as follows:

pt
en(s) = pt

ck(s)+pal(s)t , (4.1)

33

where pt
ck(s) is calculated by Eq 2.6, and al(s)t represents the academic level of student s in term

t, defined as al(s)t = t − (s’s start term). Since most students finish college in 4-6 years (8-12

terms), al(s)t is in [0,12). I include `1-norm regularization on pal(s)t to enforce sparsity on this

representation. This is because pal(s)t aims to capture the academic factors (e.g., academic maturity),

and student s is only able to hold a part of them on a particular academic level (e.g., student s cannot

be both mature and immature at the same time).

4.2.2 Course Instructor Effect

Consider that a single course is often taught by multiple instructors who usually vary in their cover-

age of materials (topics), pedagogy, use of teaching technology, choice of assignments and grading

criterion. I hypothesize that a student’s performance on a specific course is greatly influenced by the

instructor who teaches her the course. Specifically, for a course c, I add a factor associated with the

specific instructor who teaches course c, denoted as qin(c), to the original knowledge latent factors

of course c. The integrated course latent factor is denoted by qen(c), and is given as follows:

qen(c) = qc +qin(c), (4.2)

where in(c) denotes the instructor who teaches course c. For qin(c), I include `1-norm regularization

to control its sparsity. I assume that an instructor is generally proficient only in certain topics (and

knowledge components), but not all.

With the course instructor information and student academic level information as proposed

above, the grade prediction for student s on course c is given as follows:

g̃t
s,c = pen(s)

Tqen(c). (4.3)

34

4.2.3 Student Global Latent Factor

Eq. 4.3 captures student knowledge factors per term and captures the sequential dynamics in stu-

dent’s knowledge state over terms. This can be considered as a latent factor model localized by term.

I propose to incorporate a term-agnostic global latent factor that captures the student-course perfor-

mance interaction. I introduce an additional latent factor pg(s) that captures the student’s implicit

information (e.g., student interest and subject matter mastery toward each knowledge component)

in a common latent space as course knowledge components. The estimated grade of student s on

course c at term t with this global latent factor is given as:

g̃t
s,c = pt

en(s)
Tqen(c)+pT

g(s)qc (4.4)

Here, I compute the dot product of pg(s) and qc instead of pg(s) and qen(c) in this step. The

exclusive l1 norm for pg(s) controls its sparsity since I assume most students have a tendency to

perform well in a fraction of the represented knowledge states. I refer to this model as Additive

Latent Effect (ALE).

4.2.4 Student and Course Bias Effect

Inspired by the success of MF methods with bias terms [25], I add student-specific and course-

specific bias terms denoted by bs and bc within the CK and ALE formulation in Eq 2.6 and 4.4,

respectively, as follows:

g̃t
s,c =

1
|Gt−1

s |
pt

ck(s)
Tqc +bs +bc (4.5)

and

g̃t
s,c = pt

en(s)
Tqen(c)+pT

g(s)qc +bs +bc. (4.6)

35

Table 4.2: Method Summarization

Method Prediction Formulation
Property

ck bs bc al, in,g

Baselines

MF pT
s qc (Eq. 2.1) 7 7 7 7

MF-b pT
s qc +bs +bc (Eq. 2.2) 7 X X 7

MF-d pT
s qc +bϕ(c)

s +bϕ(s)
c (Eq. 2.3) 7 X X 7

CK 1
|Gt−1

s |
pt

ck(s)
T ·qc (Eq. 2.6) X 7 7 7

CK-b 1
|Gt−1

s |
pt

ck(s)
T ·qc X X X 7

+bs +bc (Eq. 4.5)
Proposed ALE (pt

ck(s)+pal(s))
T(qc +qin(c)) X 7 7 X

Methods +pT
g(s)qc (Eq. 4.4)

ALE-b ALE +bs +bc (Eq. 4.6) X X X X

“X” indicates the method contains the corresponding property, and
“7” indicates the opposite. al, in,g indicate student academic level,
course instructor and student global latent factor, respectively. bs and
bc denote student and course bias terms.

I denote the CK with bias terms as CK-b, and ALE with bias terms as ALE-b.

Table 4.2 summarizes the proposed methods and comparative baselines in terms of their key

features and effect-components considered in this study.

4.2.5 Optimization for ALE

The optimization problem for ALE can be formulated as follows:

min
Θ

L(Θ)+R(Θ), (4.7)

where Θ represents model parameters (i.e., the latent factors), L(Θ) is the loss function and R(Θ) is

the regularization function. I use a squared error loss function in ALE:

L(Θ) = ∑
gt

s,c∈Gt−1
s

(gt
s,c− g̃t

s,c(Θ))2
(4.8)

36

Algorithm 1 ALE: Learn
1: procedure ALE LEARN
2: Initialize kc, qc for each c, pg for each student, pal for each academic level and qin for each instructor

with random values in (0, 1)
3: η ← learning rate
4: γ ,α1, α2← regularization weight
5: iter← 0
6: while iter<maxIter and MAE decreases do
7: for all gt

s,c ∈ Gt−1
s do

8: pck(s)← 0
9: for all c′ ∈Cs do

10: pck(s)← pck(s)+ e−λ (ts,c−ts,c′)kc′ ·g
ts,c′
s,c′

11: g̃t
s,c← (pck(s)+pal(s))

T(qc +qin(c))+pT
g(s)qc

12: et
s,c = gt

s,c− g̃t
s,c

13: for all c′ ∈Cs do
14: kc′ ← kc′+

η((qc +qin(c)) · e−λ (ts,c−ts,c′) ·g
ts,c′
s,c′ · e

t
s,c− γ ·kc′)

15: pal(s)← pal(s)+η((qc +qin(c)) · et
s,c− γ ·pal(s)−α1)

16: qc← qc +η(((pck(s)+pal(s))+pg(s)) · et
s,c− γ ·qc)

17: qin(c)← qin(c)+

η((pck(s)+pal(s)) · et
s,c− γ ·qin(c)−α1)

18: pg(s)← pg(s)+η(qc · et
s,c− γ ·pg(s)−α2)

19: iter← iter+1
20: return kc, qc, pg, pal and qin

The R(Θ) is defined as follows:

R(Θ) = ∑
gt

s,c∈GT−1

[
γ

2
(||kc||2 + ||qc||2

+ ||pal(s)||2 + ||qin(c)||2 + ||pg(s)||2)

+α1(||pal(s)||1 + ||qin(c)||1)+α2||pg(s)||1
]

(4.9)

I use stochastic gradient descend (SGD) to solve the optimization problem. The optimization

algorithm is presented in Algorithm 1.

37

4.2.6 Computational Complexity Analysis

The computational complexity of ALE is determined by the steps from line 6 to line 19 in Algorithm

1. In detail, the computational complexity for line 9 and line 10 is upper-bounded by O(mc× k),

where mc is the maximum number of courses that a student can take in college. For line 11 and line

12, the computational complexity is O(k2). Line 13 and line 14 have complexity O(mc×k) as well.

From line 15 to line 18, the total computational complexity is O(4× k). Thus, the computational

complexity for ALE is O(niter×ng× (2mc×k+k2+4×k)), where niter is the number of iterations,

ng is the total number of student-course grades, mc is the maximum number of courses that a student

can take, and k is the dimension of latent factors. Typically, mc > k and thus the complexity is

O(niter×ng×mc× k).

4.3 Experiments

4.3.1 Dataset Description

In this chapter, I evaluated the proposed models on eight large and diverse majors from GMU in-

cluding: (i) Mathematical Sciences (MATH), (ii) Physics (PHYS), (iii) Chemistry (CHEM) (iv)

Computer Science (CS), (v) Civil, Environmental and Infrastructure Engineering (CEIE), (vi) Biol-

ogy (BIOL), (vii) Psychology (PSYC), and (viii) Applied Information Technology (AIT). Table 4.3

presents the details about these majors.

4.3.2 Data Preprocessing

ALE predicts student s’s grade on course c in next term based on the courses taken by student s

in previous terms, student’s academic levels, and course instructors. In order to prevent cold start

problems [25], I conduct a data preprocessing step. In detail, I exclude the students who enroll in

the program for less than two terms. Moreover, if student s has taken course c′ before course c

which have not appeared before, I exclude such scenarios as well, i.e., I will not predict course c’s

grade for student s. Furthermore, if the instructor for course c has not taught other courses before, I

will not predict course c’s grade for student s.

38

Table 4.3: Dataset Statistics

Major FTF Students TR Students
#S #C #S-C #S #C #S-C

MATH 209 84 2,846 258 91 2,580
PHYS 127 53 1,830 74 48 854

CHEM 342 55 4,649 278 66 3,105
CS 988 76 13,809 554 68 7,028

CEIE 428 80 6,925 248 92 4,036
BIOL 1,629 109 21,519 1,525 115 16,615
PSYC 1,114 95 14,377 1,749 114 18,939

AIT 334 82 6088 1,170 90 15,060
Total 5,171 634 72,043 5,856 684 68,216

#S, #C and #S-C are number of students, courses and student-course
grades from Fall 2009 to Spring 2016, respectively.

4.3.3 Parameter Learning

The parameters in the optimization problem (Eq 4.7) contain the number of latent dimensions (i.e.,

k), regularization weights (i.e., γ , α1, α2), and time decay parameter (i.e., λ). I use a validation set

to select parameters. Specifically, for test term T , I have student-course grades up to term T −1 as

the training set, i.e., GT−1. Then I split the training set into two parts: GT−2 and GT−1, the latter

of which I consider as the validation set. I did a grid search over the parameters and selected the

parameters that perform best on the validation set.

4.4 Results and Discussion

4.4.1 Overall Performance

Table 4.4 shows the comparison of MAE and PTA results for FTF and TR students across Spring

2016, Fall 2015 and Spring 2015 test terms. In Table 4.4, Columns under “parameters” indicate

different model parameters for the corresponding methods. Specifically, for MF, MF-b and MF-d,

the parameter is the dimension of latent factors, (k). For CK and CK-b, the parameters are the di-

mension of latent factors, (k), and time-decay coefficient, (λ). For ALE and ALE-b, the parameters

are time-decay coefficient, (λ), regularization weight for pal(s) and qt
in(c), (α1), and regularization

39

Table 4.4: Performance Comparison for All Methods

Method
FTF - Spring 2016 TR - Spring 2016

parameters MAE PTA0 PTA1 PTA2 parameters MAE PTA0 PTA1 PTA2

MF 10 – – 0.723 0.188 0.338 0.580 10 – – 0.706 0.188 0.341 0.601
MF-b 10 – – 0.670 0.206 0.360 0.609 10 – – 0.658 0.226 0.387 0.628
MF-d 5 – – 0.661 0.221 0.381 0.621 10 – – 0.683 0.216 0.366 0.614

CK 5 0.01 – 0.674 0.216 0.362 0.604 5 0.01 – 0.680 0.225 0.369 0.597
CK-b 5 0.01 – 0.647 0.218 0.379 0.625 5 0.01 – 0.658 0.227 0.387 0.627
ALE 0.01 0.01 0.1 0.625 0.255 0.416 0.651 0.01 0.001 0.1 0.645 0.247 0.395 0.651

ALE-b 0.1 0.01 0.1 0.625 0.225 0.389 0.648 0.01 0.1 0.01 0.642 0.231 0.389 0.637

Method
FTF - Fall 2015 TR - Fall 2015

parameters MAE PTA0 PTA1 PTA2 parameters MAE PTA0 PTA1 PTA2

MF 10 – – 0.730 0.177 0.317 0.574 10 – – 0.692 0.183 0.347 0.599
MF-b 10 – – 0.691 0.205 0.360 0.605 10 – – 0.653 0.213 0.378 0.631
MF-d 10 – – 0.693 0.216 0.370 0.610 10 – – 0.670 0.205 0.362 0.630

CK 5 0.01 – 0.706 0.193 0.347 0.585 5 0.01 – 0.665 0.210 0.372 0.616
CK-b 5 0.01 – 0.690 0.195 0.351 0.603 5 0.01 – 0.642 0.227 0.394 0.641
ALE 0.1 0.001 0.05 0.654 0.251 0.400 0.638 0.01 0.001 0.05 0.615 0.243 0.418 0.670

ALE-b 0.01 0.01 0.1 0.660 0.223 0.379 0.634 0.01 0.01 0.1 0.627 0.216 0.392 0.655

Method
FTF - Spring 2015 TR - Spring 2015

parameters MAE PTA0 PTA1 PTA2 parameters MAE PTA0 PTA1 PTA2

MF 10 – – 0.760 0.168 0.306 0.547 10 – – 0.743 0.169 0.316 0.559
MF-b 10 – – 0.718 0.186 0.335 0.582 10 – – 0.688 0.218 0.368 0.607
MF-d 10 – – 0.716 0.215 0.358 0.595 10 – – 0.693 0.229 0.383 0.618

CK 5 0.01 0.01 0.712 0.192 0.332 0.579 5 0.01 0.01 0.705 0.214 0.357 0.589
CK-b 5 0.01 0.01 0.690 0.203 0.354 0.599 5 0.01 0.01 0.688 0.207 0.354 0.606
ALE 0.01 0.001 0.1 0.649 0.244 0.403 0.639 0.01 0.001 0.1 0.644 0.254 0.417 0.647

ALE-b 0.01 0.01 0.1 0.657 0.214 0.372 0.618 0.1 0.01 0.01 0.653 0.226 0.383 0.631

weight for pg(s), (α2). Bold numbers are the best performing results. In the experiments, I select

the best performance for all baseline methods. In the reported results, MF-d [11] has nine different

combinations for student- and course-level groupings and has bias. I tried all the proposed com-

binations and report the best performance among all the results. The results show that ALE has

the best performance on all the evaluation metrics (the only exception is in Spring 2016 on MAE).

Specifically, ALE outperforms the baseline methods on PTA0, PTA1 and PTA2 by 10.61%, 7.17%

and 4.50%, respectively. I also observe that the improvement in performance of ALE over the base-

line approaches is greater for Spring 2015 in comparison to Spring 2016, even though the training

set for Spring 2015 is smaller than Spring 2016. This shows that ALE can overcome the scarcity

issues in a dataset and yield good prediction performance.

40

Figure 4.2: Comparison of PTA0 with Each Effect Removed on Various Student Groups in ALE

4.4.2 Effects of Bias Terms

For all the datasets in Table 4.4, MF-b (i.e., MF with student/course-specific bias terms) and MF-

d (i.e., MF with domain-aware biases) always outperform MF (i.e., MF without bias terms). In

addition, MF-b achieves better PTA0 on TR students, but worse PTA0 on FTF students than MF-

d. This is probably because the FTF students show consistent characteristics in comparison to TR

students, who typically have more diverse backgrounds.

In Table 4.4, I also observe that CK-b consistently outperforms CK, similar to the comparison

between MF-b and MF, but ALE always outperforms ALE-b. This may indicate that the additive

latent effects in ALE have also captured the student and course bias information in ALE-b. The

results in Table 4.4 demonstrate that ALE is able to achieve better prediction performance without

explicitly modeling student and course biases.

4.4.3 Importance of Additive Latent Effects

In order to learn the importance of each additive latent effect, I perform a study to assess the predic-

tion performance of different ALE models with a particular latent effect removed. Table 4.5 shows

the details of the compared models in this experiment. Fig. 4.2 represents the PTA0 performance of

each ALE model variant. I test the results on various student groups partitioned by student starting

years and student majors, as shown in Fig. 4.2a and Fig. 4.2b, respectively. I also implement the

experiment for the whole test set, i.e. GT , and present the results with label “ALL” in Fig. 4.2b.

Fig. 4.2 shows that for most student groups, ALE outperforms the other models, indicating that

41

Table 4.5: Comparison Method Summarization

Method Prediction Formulation
Property

al in g
ALE¬al pt

ck(s)
T(qc +qin(c))+pT

g(s)qc 7 X X

ALE¬in (pt
ck(s)+pal(s))

Tqc +pT
g(s)qc X 7 X

ALE¬g (pt
ck(s)+pal(s))

T(qc +qin(c)) X X 7

ALE (pt
ck(s)+pal(s))

T(qc +qin(c)) X X X

+pT
g(s)qc (Eq. 4.4)

al, in and g indicate the property of student academic level,
course instructor and student global latent factor, respectively.
X indicates the model contains the corresponding property, 7
indicates the opposite.

each additive latent effect plays an important role in ALE. Specifically, Fig. 4.2a shows that for

students who start school in Fall 2011, the PTA0 of ALE¬al (without the academic level) drops the

most compared to other models. This shows that the student academic level is the most important

effect for this student group. Moreover, for students who start school in Fall 2013 and Fall 2014,

ALE does not outperform all the other models. This indicates that for these two student groups, it

is not necessary to consider all the latent effects when predicting their grades.

From Fig. 4.2b, I notice that for students in MATH, CS and AIT major, ALE¬in has the worst

PTA0 results, indicating the course instructor associated latent factor is the most important for grade

prediction. While, for students in PHYS, CHEM and BIOL majors, student academic level is the

most important effect. Moreover, Fig. 4.2b also shows that for all the students (“ALL”), course

instructor and student global latent factor are more important than student academic level effect.

The ALE outperforms the other three variants. For students with different majors and academic

levels, all three effects are important in providing an accurate grade prediction.

4.4.4 Importance of Accumulated Knowledge and Student Global Latent Factor

Students need help in course selections both in order to gain course credits and learn the knowledge

and skills contained in the course. In ALE, accumulated knowledge and student global latent factor

42

Fall2010 Fall2011 Fall2012 Fall2013 Fall2014
0.0

0.1

0.2

0.3

0.4

0.5

Im
p

o
rt

a
n

c
e
 (

%
)

AccumulatedKnowledge StudentGlobalFactor

(a) Student Groups Partitioned by Student Starting
Years

MATH PHYS CHEM CS CEIE BIOL PSYC AIT
0.0

0.1

0.2

0.3

0.4

0.5

Im
p

o
rt

a
n

c
e
 (

%
)

AccumulatedKnowledge StudentGlobalFactor

(b) Student Groups Partitioned by Student Majors

Figure 4.3: The Importance of Student’s Accumulated Knowledge and Student Global Latent Factor
on Various Student Groups

are the two effects that are directly related to the students. Learning the importance of these two

factors can assist students when they choose a course.

Specifically, I calculate the importance of each factor by averaging the proportion of its contri-

bution in all the predicted grades within the test set as follows:

Ick =
1
|GT | ∑

gT
s,c∈GT

pT
ck(s)

g̃T
s,c

(4.10)

and

Ig =
1
|GT | ∑

gT
s,c∈GT

pT
g(s)qc

g̃T
s,c

(4.11)

43

where Ick and Ig represent the importance of accumulated knowledge and student global latent factor,

respectively.

I present this experiment on students partitioned by starting years and student majors in Fig. 4.3.

For all student groups, accumulated knowledge is always more important than student global latent

factor. Specifically, Fig. 4.3a shows that for students who start school in Fall 2013, the proportion

of accumulated knowledge is the highest among all student groups and it is the lowest for students

who start school in Fall 2014. Moreover, for students who start school in Fall 2010, the proportion

of student global latent factor is the lowest among all student groups. I also notice that the difference

between the two factors is the smallest for students who start school in Fall 2014. Fig. 4.3b shows

the results for student groups partitioned by student majors. It shows that accumulated knowledge is

more important than student global latent factor for MATH and PHYS majors. AIT has the smallest

difference between accumulated knowledge and student global latent factor.

Based on the results of this experiment, students can balance the course knowledge and their own

capabilities when selecting courses. For example, CS students who start school in Fall 2013 have

the reference information that about 40% and 20% of their grades are influenced by the accumulated

knowledge and student global latent factor, respectively.

4.5 Summary

This chapter presented additive latent effect models, which incorporate additive latent effects as-

sociated with students and courses to solve the next-term grade prediction problem. Specifically, I

were able to highlight the improved performance of ALE with use of latent factors of course instruc-

tors, student academic levels and student global latent effect. The experimental results demonstrate

that ALE outperforms all the state-of-the-art baselines in various experiments. Specifically, ALE

model outperforms the best results among baselines for PTA0, PTA1 and PTA2 by 10.61%, 7.17%

and 4.50%, respectively. Moreover, I implemented different sets of experiments to analyze the

importance of different effects contained in ALE.

44

Chapter 5: Grade Prediction Based on Cumulative Knowledge and

Co-taken Courses

In this chapter, I propose grade prediction models that incorporate both Cumulative Knowledge and

Co-taken Courses (CKCC) to predict students’ performance in the next term. Inspired by Morsy

et al. [13], the proposed methods model each student’s latent factors by cumulating the knowl-

edge provided by the sequence of courses the student has taken in the past terms. Furthermore,

I introduce a co-taken course interaction function to model the influence of the co-taken courses

on students’ performance. The co-taken course interaction function is formed by a neural network

which takes the knowledge difference between the co-taken courses and the target course as input,

and outputs an influence value from the co-taken courses on the target course. I conduct compre-

hensive experiments on various datasets collected from a U.S. University and thorough analysis on

the effect of co-taken courses. The experimental results show that CKCC significantly outperforms

other competitive baselines methods for the task of grade prediction. I also provide detailed case

study on how the model can help student in course selection for the next term.

To further present the motivation of the proposed model, I conduct a statistical analysis on a

dataset collected from a U.S. University in order to demonstrate the effects of co-taken courses

on students’ performance. Figure 5.1 shows the true grade distribution of students’ on a specific

course with and without enrolling in another course in the same term. The course pairs I choose

in this analysis are frequently co-occuring in the dataset. For each target course pair, I choose the

students who take more than four courses in a term, including the corresponding course pairs. I keep

the students if the other co-taken courses only share few topics/material as the target course pairs.

Figure 5.1 shows that students who take BIOL311 (Genetics) with CHEM313 (Organic Chemistry)

have fewer “F”, “D” and “C” grades, and several more “B” grades than those students who only take

BIOL311 in a term. Similar trend has been found for course pairs CS321 (Software Engineering)

and ECE301 (Digital Electronics). Moreover, students who take MATH114 (Calculus) with CS211

45

Figure 5.1: Students’ Performance with Different Co-taken Course Pairs. Note: BIOL311 is course
“General Genetics”. CHEM313 is course “Organic Chemistry”. CS321 is course “Software Engineering”. ECE301 is
course “Digital Electronics”. MATH114 is course “Analytic Geometry and Calculus”. CS211 is course “Object Oriented
Programming”. MATH203 is course “Linear Algebra”. CS262 is course “Low-level Programming”.

(Object Oriented Programmming) will have more “F” grades than those students who only take

MATH114 in a term. Students who co-take MATH203 (Linear Algebra) and CS262 (Low-level

programming) have more “C” grades than those students who only take MATH203 in a term. This

shows that it can be challenging for students to take some courses together in a term (e.g., MATH114

and CS211, MATH203 and CS262), while it might not cause grade drop if taking other course pairs

together (e.g., BIOL311 and CHEM313, CS321 and ECE301). Thus, I assume that co-taken courses

can have substantial effect on student grades in different ways. In this chapter, I will discuss in

detail how the proposed model incorporates the co-taken course influence, and improve the grade

prediction performance. This work has been accepted by International Conference on Educational

Data Mining (EDM 2019).

5.1 Methods

5.1.1 Model Overview

This chapter proposed grade prediction models that incorporate Cumulative Knowledge and Co-

taken Courses (CKCC). To predict student s’s grade on course c in term t, CKCC takes into account

two factors: i) cumulative knowledge of student s up to term t − 1, and ii) the other courses that

will be taken together with course c in term t. To model the first factor, I adopt the CK model as

46

in Eq. 2.6, that is, I cumulate the provided knowledge of the courses which student s has taken

in the past, denoted as c′, to represent his/her cumulative knowledge, and use a latent factor to

represent knowledge required by course c. To model the second factor, I introduce an co-taken

course interaction function f (·) to learn the influence from co-taken courses, denoted as c′′, on

student s’s grade on course c in term t.

Specifically, I use a latent vector qc to represent the knowledge components that course c re-

quires. I hypothesize that the difference of the required knowledge between two courses will cause

the influence from one course on the other, as shown in Figure 5.1. Based on this hypothesis, the

difference between qc of course c and qc′′ of a co-taken course c′′ can be used in f (·) to learn the

influence from c′′ to c. I sum up the differences between each co-taken course c′′ and c in order to

aggregate the influence. Thus, the sum of the absolute values of the differences between each qc′′

and qc, that is, ∑c′′∈Cs,t\{c} |qc′′−qc|, is used in f (·) to learn the influence from all co-taken courses.

Note that the use of absolute values here is to avoid the scenarios in which the influences from

different co-taken courses are canceled out. Thus, CKCC predicts student s’s grade on course c in

term t as follows:

g̃t
s,c =

1
|Gt−1

s |
∑

gs,c′∈Gt−1
s

(e−λ (t−ts,c′)kc′ ·gs,c′)
Tqc+

f (∑
c′′∈Cs,t\{c}

(|qc′′−qc|)),

(5.1)

where |qc′′ −qc| is the vector of absolute values of entry-wise difference between latent vector qc′′

and latent vector qc, c′′ ∈Cs,t \{c} indicates that course c′′ is one of courses taken together with c

in term t. Note that in Eq. 5.1, the two terms share a common latent vector qc.

5.1.2 Co-taken Course Interaction Function

In CKCC, the co-taken course interaction function f (·) learns the influence on student s’s grade

on course c from all the other co-taken courses in term t. I hypothesize that such influence can be

47

……

term t-1term 1

……

𝒈"𝒕𝒔,𝒄 = ∑ 𝒆)𝝀 𝒕)𝒕𝒔,𝒄+ 𝐤𝒄+ - 𝒈𝒔,𝒄+
�
𝒈𝒔,𝒄+∈𝑮𝒔𝒕1𝟏

𝐓
𝐪𝒄									+ 𝒇(∑ |𝐪𝒄99 − 𝐪𝒄|�

𝒄99∈𝑪𝒔,𝒕\𝒄)

Sum of the
Difference

Input

Target course

Inner Product

Hidden Layers

Student Cumulative Knowledge Co-taken Courses Influence

Figure 5.2: CKCC Model Structure

nonlinear in general. Therefore, I use a feedforward neural network (FNN) [81] as f (·) to model the

influence. The FNN takes the input as described in last section, and outputs a scalar influence value

on course c. I use hyperbolic tangent (Tanh) as the activation function in each layer of the FNN.

Note that when there are no hidden layers and no nonlinearity, the FNN model learns the weights

directly from the input layer (i.e., difference of courses) to the output layer (i.e., the influence),

and the function f (·) becomes a simple inner product operation (parameterized by a vector). This

simplified model is referred to as CKCC-l. Figure 5.2 shows the structure of the CKCC model.

5.1.3 Optimization of CKCC

Given the grade estimation as in Equation 5.1, I formulate the grade prediction problem for term T

as the following optimization problem:

minimize
Θ,Θ f

∑
s

T−1

∑
t=1

∑
gt

s,c∈Gt
s

(gt
s,c− g̃t

s,c)
2

+α1(|kc|+ |qc|)+α2(‖kc‖2
2 +‖qc‖2

2)

+α3‖vec(Θ f)‖2
2,

(5.2)

48

Algorithm 2 CKCC: Learn
1: procedure CKCC LEARN
2: Initialize kc, qc for each c
3: η ← learning rate
4: T ← number of terms in training set
5: λ ← time decay parameter
6: α1,α2, α3← regularization weight
7: t← 2
8: iter← 0
9: while iter<maxIter do

10: for t ≤ T do
11: for all gt

s,c ∈ Gt
s do . step 1

12: ĝt
s,c← gt

s,c− f (∑c′∈Cs,t\{c}(|qc′′ −qc|))
13: pck(s)← 0
14: for all c′ ∈Ct−1

s do
15: pck(s)← pck(s)+ e−λ (ts,c−ts,c′)kc′ ·g

ts,c′
s,c′

16: g̃t
s,c← pT

ck(s)qc

17: et
s,c = ĝt

s,c− g̃t
s,c

18: for all c′ ∈Ct−1
s do

19: kc′ ← kc′+

η(qc · e−λ (ts,c−ts,c′) ·gs,c′ · et
s,c−α1 ·kc′)

20: qc← qc +η(pck(s) · et
s,c−α2 ·qc)

21: for all gt
s,c ∈ Gt

s do . step 2
22: ĝt

s,c← gt
s,c−pck(s)qc

23: g̃t
s,c← f (∑c′∈Cs,t\{c}(|qc′′ −qc|))

24: et
s,c = ĝt

s,c− g̃t
s,c

25: Update Θ f with Adam
26: iter← iter+1

return Θ = {{kc},{qc}}, Θ f

where Θ = {{kc},{qc}} represents the set of latent vectors, and Θ f represents the parameters of

f (·). α1, α2, and α3 denote the nonnegative weights on the regularization terms to prevent overfit-

ting.

The optimization process for CKCC is presented in Algorithm 2. It consists of two steps: The

first step is to update the course parameters, i.e., Θ, using stochastic gradient descent. The second

step is to update f (·) parameters, i.e., Θ f , with the adaptive moment estimation (Adam) algorithm

[82].

49

Table 5.1: Dataset Statistics

Major
FTF student group TR student group
#S #C #S-C #S #C #S-C

MATH 271 693 3,325 243 597 2,031
PHYS 144 488 2,044 73 286 905

CHEM 427 673 4,942 257 473 1,937
IT 430 473 5,984 1,163 487 10,302

CS 819 714 16,955 526 435 7,840
BIOL 1,951 1,197 22,065 1,481 980 10,851

#S, #C and #S-C are the number of students, courses and student-
course pairs from Fall 2009 to Spring 2018, respectively.

5.2 Experiments

5.2.1 Dataset Description

For simplicity, I use students from six different majors in GMU to evaluate the proposed models.

These majors have different numbers of enrolled students, courses, and different major syllabi. I will

evaluate these majors on both FTF and TR student groups. The majors in my experiment include:

(i) Mathematical Sciences (MATH), (ii) Physics (PHYS), (iii) Chemistry (CHEM), (iv) Information

Technology (IT) , (v) Computer Science (CS) and (vi) Biology (BIOL). Table 5.1 shows the statistics

across these majors.

5.2.2 Data Preprocessing

CKCC predicts student s’s grade on course c in next term based on the courses taken by student s

in previous terms and the co-taken courses in the same term. In order to prevent cold start problems

[25], I conduct a data preprocessing step. In detail, I exclude the students who enroll in the program

for less than two terms. Moreover, if student s has taken course c′ before course c which have not

appeared before, I exclude such scenarios as well, i.e., I will not predict course c’s grade for student

s. Furthermore, if student s only takes one course at a term, I exclude these terms as they do not

match the situations I consider in CKCC.

50

5.2.3 Compared Methods

Since there is no prior research on the influence of co-taken courses within a same term, I use the

two following methods and three other variants of CKCC as baselines in my experiments:

• MF The MF model is described as Eq. 2.1.

• CK The CK model is described as Eq. 2.6.

• MFCC I add the co-taken course influence to the MF model, and obtain the Matrix Factor-

ization with Co-taken Courses (MFCC) model. Specifically, the predicted grade of student s

on course c at term t is defined as

g̃t
s,c = pT

s qc + f (∑
c′′∈Ct

s\c
(|qc′′−qc|)), (5.3)

where ps denotes the latent factors of for student s. Similar to the CKCC model, I optimize

the MFCC model with two steps by alternately updating the latent factors and the model

parameters in the mapping function f (·).

• MFCC-l The MFCC-l model is a special case of the MFCC model where f (·) is simply an

inner product (parameterized by a vector) instead of an FNN.

• CKCC-l The CKCC-l model is described in Section 5.1.2.

5.2.4 Parameter Learning

The set of parameters in the optimization problem (Eq 5.2) includes the number of latent dimensions

(i.e., k), regularization parameters (i.e., α1, α2, and α3) and the decay rate (i.e., λ). I performed a

grid search over all the parameters with k ∈ {5,10, . . . ,25}, and α1,α2,α3,λ ∈ {1e−3,1e−2,0.1}.

Note that for the CKCC and MFCC models, the optimal neural network structure (e.g., number

of layers, the size of each layer) depends on on the value of k. Thus, I swept different neural

network structure parameters for every k value in my grid search. The neural network structures

that consistently achieve good performance contain one hidden layer with 2 or 3 hidden units.

51

Table 5.2: Performance Comparison for All Methods on FTF students

Method
Spring 2018 Fall 2017 Spring 2017

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.762 0.172 0.303 0.549 0.759 0.168 0.303 0.556 0.772 0.162 0.306 0.540
MFCC-l 0.756 0.180 0.320 0.565 0.745 0.186 0.331 0.574 0.757 0.181 0.331 0.564

MFCC 0.763 0.175 0.317 0.573 0.753 0.188 0.322 0.573 0.760 0.173 0.317 0.565
CK 0.726 0.190 0.330 0.575 0.724 0.184 0.336 0.575 0.727 0.186 0.333 0.575

CKCC-l 0.711 0.189 0.338 0.589 0.712 0.191 0.343 0.589 0.717 0.182 0.332 0.587
CKCC 0.716 0.187 0.332 0.593 0.709 0.195 0.334 0.588 0.710 0.196 0.339 0.594

Table 5.3: Performance Comparison for All Methods on TR students

Method
Spring 2018 Fall 2017 Spring 2017

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.775 0.184 0.316 0.537 0.760 0.157 0.300 0.565 0.773 0.168 0.299 0.550
MFCC-l 0.763 0.178 0.315 0.543 0.748 0.187 0.326 0.571 0.755 0.185 0.328 0.563

MFCC 0.761 0.174 0.321 0.544 0.754 0.177 0.330 0.580 0.761 0.177 0.316 0.569
CK 0.753 0.268 0.400 0.586 0.770 0.259 0.389 0.570 0.750 0.273 0.397 0.583

CKCC-l 0.733 0.182 0.324 0.560 0.743 0.180 0.313 0.558 0.739 0.172 0.310 0.563
CKCC 0.735 0.181 0.323 0.562 0.728 0.175 0.335 0.571 0.740 0.169 0.318 0.553

5.3 Results and Discussion

5.3.1 Overall Performance

Table 5.2 and 5.3 shows the overall performance for all methods for both FTF and TR student

groups, respectively.

Table 5.2 shows that for FTF students, CKCC and CKCC-l outperform the baseline methods

over most datasets. Specifically, CKCC outperforms the other compared methods across different

experimental protocols by 4.39%, 7.01%, 3.50%, 3.87% in terms of MAE, PTA0, PTA1, and PTA2,

respectively. Furthermore, CK based methods outperform MF based methods on all experimental

protocols. This table also shows that co-taken course based methods (MFCC, MFCC-l and CKCC,

CKCC-l) outperform their baseline methods (MF and CK) on all experimental protocols, respec-

tively. This illustrates that for FTF students, both cumulative knowledge and co-taken courses have

great influence on student’s performance, and the proposed methods can capture such influence

52

Table 5.4: Performance Comparison for All Methods on FTF students on Different Majors

Method
MATH PHYS CHEM

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.762 0.234 0.336 0.523 1.099 0.106 0.206 0.383 0.684 0.262 0.399 0.601
MFCC-l 0.758 0.195 0.333 0.568 0.960 0.113 0.213 0.447 0.678 0.221 0.374 0.589

MFCC 0.758 0.206 0.322 0.559 0.998 0.163 0.248 0.433 0.663 0.249 0.380 0.592
CK 0.782 0.267 0.378 0.569 0.910 0.135 0.270 0.468 0.680 0.249 0.393 0.595

CKCC-l 0.784 0.184 0.316 0.535 0.978 0.238 0.294 0.437 0.734 0.312 0.449 0.611
CKCC 0.842 0.309 0.413 0.562 0.842 0.254 0.373 0.508 0.697 0.290 0.411 0.620

Method
IT CS BIOL

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.655 0.201 0.36 0.623 0.723 0.190 0.346 0.595 0.687 0.253 0.411 0.626
MFCC-l 0.664 0.181 0.365 0.630 0.715 0.177 0.326 0.603 0.777 0.317 0.439 0.599

MFCC 0.627 0.231 0.381 0.659 0.704 0.209 0.362 0.605 0.676 0.274 0.429 0.638
CK 0.606 0.299 0.466 0.681 0.722 0.244 0.395 0.597 0.643 0.316 0.464 0.653

CKCC-l 0.693 0.288 0.460 0.632 0.784 0.242 0.376 0.578 0.771 0.341 0.461 0.605
CKCC 0.600 0.310 0.465 0.692 0.696 0.256 0.395 0.612 0.660 0.329 0.467 0.649

Table 5.5: Performance Comparison for All Methods on TR students on Different Majors

Method
MATH PHYS CHEM

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.608 0.270 0.433 0.617 0.675 0.235 0.431 0.569 0.749 0.219 0.325 0.553
MFCC-l 0.637 0.270 0.418 0.610 0.669 0.216 0.353 0.588 0.634 0.281 0.412 0.649

MFCC 0.621 0.241 0.397 0.645 0.577 0.353 0.471 0.667 0.675 0.228 0.404 0.649
CK 0.573 0.394 0.545 0.677 0.741 0.200 0.275 0.550 0.679 0.368 0.491 0.623

CKCC-l 0.641 0.384 0.515 0.677 0.694 0.325 0.450 0.625 0.651 0.377 0.500 0.667
CKCC 0.613 0.404 0.576 0.707 0.805 0.200 0.350 0.600 0.642 0.404 0.518 0.675

Method
IT CS BIOL

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.614 0.217 0.405 0.662 0.836 0.175 0.302 0.538 0.711 0.200 0.341 0.559
MFCC-l 0.610 0.227 0.419 0.665 0.818 0.189 0.325 0.541 0.670 0.213 0.366 0.617

MFCC 0.608 0.243 0.415 0.658 0.796 0.193 0.333 0.578 0.674 0.206 0.367 0.604
CK 0.608 0.223 0.406 0.659 0.737 0.212 0.369 0.577 0.695 0.226 0.370 0.600

CKCC-l 0.598 0.235 0.426 0.659 0.756 0.184 0.343 0.599 0.679 0.228 0.384 0.600
CKCC 0.602 0.231 0.412 0.672 0.773 0.234 0.371 0.563 0.643 0.260 0.393 0.629

accurately.

Table 5.3 shows that CK has competitive results over TR students. Moreover, for MF based

methods, MFCC and MFCC-l outperform MF for all the experimental protocols. This illustrates

that co-taken courses are likely to have influence on student’s performance, but the influence may

53

not be as strong as it is of cumulative knowledge for TR students.

5.3.2 Analysis on Individual Majors

In order to understand the proposed methods’ performance on each major, I have tested all the

aforementioned methods on different majors separately. I conducted this group of experiments for

both FTF and TR students. And I use Spring 2018 as test set. I provide detailed experimental results

in Table 5.4 and 5.5.

Table 5.4 shows that the CKCC model outperforms other compared methods for some majors

(e.g., PHYS, CS) on all metrics, but has weak performance on some metrics for other majors (e.g.,

MATH, CHEM). Especially for MATH major, CKCC has the highest MAE result while MFCC

and MFCC-l have the best MAE result. The reason might be that the performance of CKCC relies

on the student historical information, and it tends to have good performance on the students with

rich historical information. However, in the test set, some students in certain majors do not have

much historical information and thus drag down the model performance. Table 5.5 shows that,

for TR students, there is no method that consistently outperforms others across different metrics.

The reason might be that the diversity in student characteristics (many TR students have different

backgrounds) leads to diverse course selection plans among them. Such diversity greatly influences

the performance of the different models.

5.3.3 Linear versus Nonlinear Mapping Function

As aforementioned, I have two forms of co-taken course interaction function: FNN model and linear

model (parameterized by a vector). Specifically, I compare the results for MFCC versus MFCC-l,

and CKCC versus CKCC-l, respectively, in order to understand how different mapping functions

f (·) influence grade prediction performance. Table 5.2 shows that for FTF students, MFCC-l has

slightly better performance than MFCC, and CKCC-l has competitive performance as CKCC across

different experimental protocols. Same trend has shown in table 5.3 for TR students. Furthermore,

table 5.4 shows that MFCC and CKCC consistently outperform MFCC-l and CKCC-l across differ-

ent majors for FTF students. This illustrates that the influence of co-taken courses for FTF student

54

group can be better captured by a nonlinear model (i.e., FNN) than a simple linear model. Table

5.5 shows that for TR students, MFCC and CKCC don’t always outperform MFCC-l and CKCC-l

for different majors. The reason might be that some TR students will have fewer co-taken courses

than those of FTF students, and the influence from co-taken courses can be well captured by a linear

model.

5.3.4 Performance on Different Numbers of Co-taken Courses

In this section, I test the CKCC model on different data subgroups with different number of co-taken

courses in a term. Specifically, I take the students in the test set and divide them into five groups:

students who take {2,3,4,5,6+} courses (6+ refers to six and more). I perform this experiment

on each major for both FTF and TR students, respectively. For the sake of page limit, I only show

the results for FTF students. Figure 5.3 shows the experimental results in terms of PTA0, PTA1 and

PTA2. The results show that different majors exhibit different trends when the number of co-taken

courses varies. For example, for CHEM and BIOL majors, the performance of the CKCC model

on PTA improves with more co-taken courses. This observation suggests that CKCC is able to

leverage stronger influence of co-taken courses to improve its performance. However, for PHYS

and CS majors, CKCC achieves better performance with 2, 3 or 6+ co-taken courses than with 4

or 5 co-taken courses. I postulate that this is due to the characteristics of courses chosen within a

term and their content. These results also indicate that CKCC is able to model co-taken courses’

influence despite of the number of the co-taken courses.

5.3.5 Performance on Different Numbers of Co-taken Course Subjects

In this section, I extract each course’s subject and test the CKCC model on different data subgroups

with different number of co-taken course subjects in a term. The reason I conduct this experiment is

because I assume that courses with the same subject tend to have relative knowledge components.

Students who have co-taken courses from many different subjects may have wide knowledge diver-

sity. This experiment aims to test the performance of CKCC in terms of co-taken course subjects.

Specifically, I take the students in the test set and divide them into five groups: students who

55

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 MATH Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 PHYS Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 CHEM Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 IT Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 CS Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 BIOL Students

Co-taken Courses: 2

Co-taken Courses: 3

Co-taken Courses: 4

Co-taken Courses: 5

Co-taken Courses: 6+

Figure 5.3: PTA Results for Different Number of Co-taken Courses on FTF students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 MATH Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 PHYS Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 CHEM Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 IT Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 CS Students

PTA0 PTA1 PTA2

0.0

0.2

0.4

0.6

0.8

1.0 BIOL Students

Co-taken Course Subject: 1

Co-taken Course Subjects: 2

Co-taken Course Subjects: 3

Co-taken Course Subjects: 4

Co-taken Course Subjects: 5

Figure 5.4: PTA Results for Different Number of Co-taken Course Subjects on FTF students

take courses from {1,2,3,4,5} subjects in a term. Since there are few students co-taking courses

from 6+ subjects, I exclude these students in the experiment. I perform this group of experiment

on each major for both FTF and TR students, respectively. For the sake of page limit, I only show

the results for FTF students. Figure 5.4 shows the experimental results in terms of PTA0, PTA1

and PTA2. The results show that CKCC have different prediction results regarding the number of

co-taken course subjects for different majors. For example, for CHEM, CS and BIOL majors, the

performance of the CKCC model on PTA has the best performance with 1 co-taken course subject

than other subgroups. This observation suggests that CKCC is able to model co-taken courses’

influence better with less knowledge diversity in a term. However, for IT major, CKCC achieves

better performance with more co-taken course subjects. And for MATH and PHYS majors, CKCC

56

Figure 5.5: Comparison Results on the Co-taken Course Influence

has better performance on 2 or 5 co-taken course subjects than other subgroups. I assume that

this is affected by the characteristics of different majors. Moreover, for MATH and IT major, the

PTA results don’t vary much comparing to CHEM and BIOL majors. This illustrates that for some

majors, students may take courses from several subjects at a term, and the CKCC model can still

well capture the co-taken courses’ influence.

5.4 Significance and Impact

To highlight the use-case scenario of the developed next term grade prediction approach using co-

taken courses, I ran a simulated case study. Having demonstrated the prediction accuracy of these

57

proposed models, the objective of this case study is to highlight the strengths of the proposed mod-

els in helping students to select courses in the future term. Implicitly I want to provide students

information about their workload (or change in their overall grades) by addition of one or more

courses within the next term.

Specifically, I extract two pairs of popular co-taken courses: BIOL311 (“General Genetics”)

and CHEM313 (“Organic Chemistry”), MATH213 (“Analytic Geometry and Calculus II”) and

PHYS260 (“University Physics”), and conduct a study to illustrate how the model can help plan

students’ course selections or allocate the necessary study time. Take the course pair BIOL311 and

CHEM313 as an example. I extract the students who take course BIOL311 and CHEM313 together

in a term. I predict students’ performance on course BIOL311 using the CKCC model. I then elim-

inate course CHEM313 from the data set and predict the grade on course BIOL311 again using the

CKCC model. Comparing the predicted grades helps determine if the two courses should be taken

together within the same term or not. The sampled students have a total of five courses that they

are enrolled in for the particular term. The comparison results are shown in Figure 5.5 (a). It is

a scatter plot of predicted grades for a student where the x-axis shows the performance on course

BIOL311 co-taken with the CHEM313 and the y-axis is the performance on course BIOL311 with

course CHEM313 removed. I have conducted the same experiments for other course pairs using the

same protocol and shown these results in Figure 5.5 (b), (c) and (d).

In general, students’ performance will get better with the other course eliminated due to the

reduction in workload. However, different students get affected differently by the additional course.

For students who take BIOL311 and CHEM313, some of them will have improvement in BIOL311

grades if they do not enroll for CHEM313 in the same semester. On the other hand, some students

will not have any change in their grades for BIOL311 based on course CHEM313 (the plotted results

along the diagonal). Similar trends can be observed in Figure 5.5 (b), (c) and (d) as well. In the

Figure 5.5, I also highlight different cases where students grade changes with the removal of the

particular course. Using this information, students can plan the set of courses that they might enroll

for in the next term, and allocate study time accordingly.

58

5.5 Summary

In this chapter, I propose grade prediction models that incorporate both cumulative knowledge and

co-taken courses (CKCC) to predict students’ performance in the next term. The proposed models

consider both cumulative knowledge a student has acquired after taking a series of courses in the

passing terms, and the co-taken courses the student plans to take in the next term. My experimental

results on a dataset from a U.S. University shows that the proposed models significantly outperform

other competitive baselines over most the datasets for the task of next-term grade prediction. More-

over, the experimental results show that the proposed model is able to capture strong influence of

co-taken courses to improve its grade prediction performance. Furthermore, I ran a simulated case

study to illustrate how the proposed model can help students in course selection for the future term.

In the future, I plan to take into account additive factors, such as instructor, student’s academic

level and course’s difficulty level along with co-taken course information, in order to achieve more

accurate grade prediction results. I hope such a grade prediction system can not only help students

select courses, finish their study at college but also guide them in career planning in the future.

59

Chapter 6: Grade Prediction with Neural Collaborative Filtering

Over the past few years, several approaches inspired from the recommender systems literature have

been adapted for predicting next-term student performance [7, 8]. MF approaches have been suit-

able for dealing with sparse datasets [6] and their extensions have incorporated temporal and dy-

namic information [43] that have shown an improvement in terms of model performance. However,

when calculating inner product with MF, there are certain limitations [63]. For example, such inner

products (linear combination of multiplication of latent factors) may not capture complex/nonlinear

relations among data. To tackle this problem, He et al. [63] proposed a Neural Collaborative Fil-

tering (NCF) model, which generalizes matrix factorization and learns non-linear relationships and

aims to predict the rating a user would give to an item. Specifically, NCF uses two one-hot encoded

vectors of users and items as input and learns embedding features for these two elements, followed

by a fully connected feed-forward neural network to predict the user’s rating on the item. Empirical

results on several recommender system benchmarks demonstrates that the NCF approach greatly

outperforms other methods [63].

I also extend NCF with non-negativity constraints and develop a non-negative neural collabo-

rative filtering method, denoted as NCFnn. I apply NCF and NCFnn on next-term grade prediction

problem. Similarly as in NCF model, I consider three elements as input: (i) students, (ii) courses

and (iii) instructors. Adding of course instructor information has shown to improve the performance

of prior grade prediction models [18]. Non-negative constraints on learned parameters provides for

interpretability [27]. I propose NCFnn by adding Rectified Linear Units (ReLU) [83] on the em-

bedding layer. A ReLU is a unit that exploits the rectifier [84], which is an activation function that

preserves the non-negative part of the argument and returns zero for the negative part.

The experimental results on a dataset from George Mason University (a large and diverse public

university in Virginia, US) demonstrates that the proposed methods significantly outperform other

60

Layer 1

Input Layer one-hot encoded vector
for user

0 0 1 0 0 0 … 0 0 0 0 0 1 0 … 0

one-hot encoded vector
for item

concatenate

Layer 2

Layer 3

…

𝒚"𝒖,𝒊

Neural CF Layers

Output Layer

user latent vector item latent vectorEmbedding Layer

𝒖 𝒊

Figure 6.1: Model Structure of NCF on RS problem

competitive baselines for the task of grade prediction. In addition, I analyzed the model perfor-

mance with respect to different embedding dimensions for students, courses and course instructors,

respectively.

6.1 Background and Prior Methods

6.1.1 Neural Network-based Collaborative Filtering

Fig. 6.1 shows the structure of NCF for rating prediction problem. To predict user u’s rating on item

i, that is, yu,i, NCF model takes two one-hot encoded vectors for user u and item i as input. Above the

input layer is the embedding layer. It is a fully connected layer that projects the sparse representation

to a dense vector. The embeddings of user and item are then concatenated and sent to a multi-layer

fully connected neural network, which contains neural collaborative filtering (NCF) layers. Finally,

the output of NCF layers is fed into the output layer and returns the predicted rating yu,i. At each

layer, different activation functions can be added, such as sigmoid function, hyperbolic tangent

(tanh), and Rectifier (ReLU). The training of the model is performed by minimizing the point-

wise loss between predicted ratings and the corresponding ground-truth ratings. NCF has shown to

produce better recommendation results in comparison to MF methods. Unlike the traditional MF

61

ReLU

Input Layer one-hot encoded vector
for student

0 0 1 0 0 0 … 0 0 0 0 0 1 0 … 0 1 0 0 0 0 0 … 0

one-hot encoded vector
for course

one-hot encoded vector
for instructor

concatenate

ReLU

ReLU

…

𝒈"𝒔,𝒄,𝒍

Neural CF Layers

Output Layer

student latent vector course latent vector instructor latent vectorEmbedding Layer

Figure 6.2: Model Structure of NCF on Grade Prediction

method, the NCF structure provides several advantages in terms of flexibility of input representation.

The user/item latent factors can have varying number of dimensions and additional inputs beyond

user/items can be easily incorporated within the NCF model.

6.2 Methods

6.2.1 NCF for Grade Prediction

In this thesis, I formulate the grade prediction problem within the NCF framework. Based on prior

work [18] that course instructors can greatly influence student’s grades, I consider three elements

in grade prediction problem with NCF model, i.e., students, courses and the course instructors.

Specifically, to predict student s’s grade on course c taught by instructor l, I input three separate

one-hot encoded vectors for the corresponding elements into the NCF model’s input layer. Similar

to the original NCF model, I have an embedding layer above the input layer, representing the latent

factors for the three elements. Then the concatenated vector of the embeddings is fed into neural

collaborative filtering layers to predict the final grade gl
s,c. Different from original NCF, I specifically

choose ReLU as activation function at each layer. As aforementioned, a ReLU exploits the activation

62

function rectifier which preserves the non-negative part of the argument and returns zero for the

negative part. Therefore, I use ReLU to achieve non-negative constraint. The structure of this

model is shown in Fig. 6.2.

Rectified Linear Unit

Rectifier is an activation function that is defined as follow:

f (x) = max(0,x). (6.1)

where x is the input to a neuron. A ReLU is a unit that exploits the rectifier [84].

NCF with Non-Negativity Constraints

Since the embeddings can be interpreted in latent knowledge spaces, in order to get proper analysis

of the model, I add non-negativity constraint on the embeddings by adding ReLU on the embedding

layer. Since each one of NCF layers in the proposed model has ReLU as activation function, by

adding ReLU on the embedding layer, the modified model has non-negativity values on all layers. I

denote this NCF with non-negativity constraint as NCFnn.

Parameter Learning

To predict grades in term t, the loss function for NCF and NCFnn can be formulated as follows:

L = ∑
gl

s,c∈Gt−1

(gl
s,c− g̃l

s,c)
2

(6.2)

I use Adaptive Moment Estimation (Adam) [82] method to learn model parameters.

63

Table 6.1: Dataset Statistics

Major #S #C #S-C
MATH 209 84 2,846
PSYC 1,114 95 14,377

CHEM 342 55 4,649
CS 988 76 13,809
IT 334 82 6088

BIOL 1,629 109 21,519

#S, #C and #S-C are the number of students,
courses and student-course grades from Fall 2009
to Spring 2016, respectively.

Table 6.2: #S-C for Different Terms

Major
Fall 2009

Spring 2015 Fall 2015 Spring 2016
to Fall 2014

MATH 942 100 78 168
PSYC 6,060 595 453 749

CHEM 1,139 86 106 103
CS 3,041 413 396 683
IT 1,492 474 439 599

BIOL 5,676 577 461 749

6.3 Experiments

6.3.1 Dataset Description

In this chapter, I evaluated the proposed models on the following six majors from GMU: (i) Mathe-

matical Sciences (MATH), (ii) Psychology (PSYC), (iii) Chemistry (CHEM) (iv) Computer Science

(CS), (v) Information Technology (IT), and (vi) Biology (BIOL). Table 6.1 presents the details of

these majors. In the experiments, I only apply the models on FTF students as these students have

more and complete data throughout college study than TR students. Table 6.2 shows the number of

student-course grades of FTF students from different majors in different terms.

64

6.3.2 Data Preprocessing

I conduct a data preprocessing step to exclude the cold start problems [25] for next-term grade

prediction. In detail, during testing, I exclude the students, courses and instructors that do not

appeared in the training process.

6.3.3 Baseline Methods

I compare the proposed NCF methods with the following baseline methods.

Tensor Factorization

Tensor Factorization (TF) [85] has been successfully used in factorizing multi-way arrays and mod-

eling relations among multiple types of elements. In my problem, since there are three elements, i.e.,

students, courses and course instructors, I use tensor factorization as one of the baseline methods to

model their relations and make grade prediction.

I use G to represent a mode-3 student-course-instructor tensor, and each value in the ten-

sor is the corresponding grade of a student in a course offered by an instructor; I use CANDE-

COMP/PARAFAC (CP) algorithm [86, 87], a very popular tensor decomposition algorithm, to de-

compose G into three matrices P, Q and R, where P ∈ Rn×k, Q ∈ Rm×k, R ∈ Rl×k are the matrices

containing length-k latent factors for students, courses and course instructors in the same latent

space, respectively. Here k is the number of latent factors. Thus, student s’s grade on course c

taught by instructor l is the combination of the Hadamard product [88] of the corresponding vectors

in P, Q and R, that is,

g̃l
s,c =

k

∑
i=1

ps,iqc,irl,i. (6.3)

65

To predict student’s grade at tth term, the loss function of TF is as follows:

L = ∑
gl

s,c∈Gt−1

(gl
s,c− g̃l

s,c)
2

+α(‖P‖2 +‖Q‖2 +‖R‖2)+β (|P|1 + |Q|1 + |R|1)

(6.4)

I add both l2 and l1 norms on matrices P, Q and R to prevent overfitting. I use stochastic gradient

descent algorithm (SGD) to solve the optimization problem.

Non-negative Tensor Factorization

I further extend the above TF method and introduce non-negativity constraint on matrix P, Q and R

[89]. This TF method with non-negativity constraint is referred to as non-negative tensor factoriza-

tion and denoted as TFnn.

Additive Latent Effect Models

I have developed Additive Latent Effect Models (ALE) for next-term grade prediction in my earlier

work [18], and here I use ALE as one of the baseline methods with compare with. ALE considers

student’s academic levels, student’s global effect and course instructors in addition to student and

course knowledge to tackle grade prediction problem. The experimental results showed that ALE

achieved significant improvement over several state-of-the-art baseline methods. The predicted

grade from ALE is calculated as follows:

g̃l
s,c = ps

T(qc + rl), (6.5)

where ps (ps ∈ Rk), qc (qc ∈ Rk) and rl (rl ∈ Rk) are the size-k latent factors for student s, course c

and course instructor l, respectively.

I also include non-negativity constraint on latent factor matrix P, Q and R on ALE model.

This non-negative ALE model is denoted as ALEnn. To predict student’s grade at tth term, the loss

66

Table 6.3: Performance Comparison for All Methods

Test set: Spring 2016

Method
MATH PSYC CHEM

PTA0 (↑) PTA1 (↑) PTA2 (↑) PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

TF 0.149 0.315 0.589 0.148 0.307 0.602 0.117 0.223 0.534
TFnn 0.173 0.321 0.559 0.154 0.300 0.619 0.136 0.214 0.544
ALE 0.256 0.387 0.625 0.279 0.425 0.585 0.214 0.359 0.573

ALEnn 0.268 0.399 0.631 0.279 0.433 0.589 0.282 0.369 0.583
NCF 0.262 0.435 0.673 0.314 0.506 0.737 0.194 0.408 0.612

NCFnn 0.238 0.429 0.685 0.316 0.487 0.726 0.184 0.408 0.631

Method
CS IT BIOL

PTA0 (↑) PTA1 (↑) PTA2 (↑) PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

TF 0.126 0.249 0.483 0.172 0.349 0.588 0.236 0.395 0.636
TFnn 0.133 0.253 0.502 0.207 0.344 0.586 0.171 0.299 0.591
ALE 0.186 0.348 0.584 0.230 0.389 0.649 0.236 0.397 0.626

ALEnn 0.184 0.337 0.616 0.252 0.406 0.613 0.234 0.394 0.644
NCF 0.220 0.378 0.616 0.235 0.397 0.691 0.279 0.441 0.689

NCFnn 0.201 0.370 0.619 0.235 0.396 0.698 0.252 0.399 0.625

Test set: Fall 2015

Method
MATH PSYC CHEM

PTA0 (↑) PTA1 (↑) PTA2 (↑) PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

TF 0.128 0.231 0.449 0.161 0.287 0.607 0.226 0.358 0.585
TFnn 0.090 0.218 0.423 0.166 0.313 0.598 0.226 0.358 0.594
ALE 0.244 0.321 0.436 0.331 0.455 0.583 0.274 0.462 0.660

ALEnn 0.167 0.295 0.474 0.351 0.446 0.603 0.255 0.406 0.689
NCF 0.192 0.333 0.449 0.366 0.550 0.728 0.264 0.368 0.642

NCFnn 0.218 0.346 0.487 0.322 0.497 0.706 0.245 0.368 0.642

Method
CS IT BIOL

PTA0 (↑) PTA1 (↑) PTA2 (↑) PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

TF 0.116 0.237 0.533 0.185 0.328 0.604 0.174 0.302 0.553
TFnn 0.139 0.290 0.533 0.180 0.355 0.663 0.134 0.249 0.529
ALE 0.220 0.369 0.631 0.257 0.412 0.645 0.269 0.408 0.696

ALEnn 0.237 0.402 0.649 0.241 0.412 0.667 0.262 0.430 0.681
NCF 0.139 0.283 0.604 0.257 0.444 0.745 0.254 0.412 0.664

NCFnn 0.152 0.303 0.593 0.225 0.397 0.698 0.239 0.390 0.657

Test set: Spring 2015

Method
MATH PSYC CHEM

PTA0 (↑) PTA1 (↑) PTA2 (↑) PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

TF 0.150 0.310 0.560 0.180 0.333 0.634 0.116 0.279 0.651
TFnn 0.180 0.340 0.550 0.210 0.336 0.610 0.163 0.314 0.581
ALE 0.370 0.520 0.670 0.310 0.513 0.745 0.186 0.372 0.558

ALEnn 0.320 0.450 0.640 0.301 0.434 0.568 0.233 0.314 0.593
NCF 0.280 0.430 0.640 0.267 0.455 0.711 0.198 0.302 0.628

NCFnn 0.270 0.440 0.660 0.259 0.461 0.713 0.198 0.291 0.616

Method
CS IT BIOL

PTA0 (↑) PTA1 (↑) PTA2 (↑) PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

TF 0.140 0.278 0.538 0.215 0.342 0.624 0.184 0.321 0.591
TFnn 0.153 0.300 0.552 0.217 0.357 0.618 0.182 0.324 0.581
ALE 0.218 0.378 0.613 0.259 0.428 0.660 0.255 0.395 0.669

ALEnn 0.211 0.366 0.608 0.262 0.454 0.656 0.267 0.411 0.659
NCF 0.211 0.363 0.620 0.276 0.456 0.703 0.210 0.371 0.645

NCFnn 0.194 0.344 0.622 0.268 0.456 0.719 0.220 0.373 0.648

67

Table 6.4: Performance Comparison on MAE for All Methods

Test set: Spring 2016

MATH PSYC CHEM CS IT BIOL
TF 0.714 0.646 0.742 0.790 0.685 0.631

TFnn 0.717 0.641 0.714 0.783 0.687 0.685
ALE 0.701 0.766 0.699 0.719 0.652 0.651

ALEnn 0.689 0.742 0.652 0.716 0.669 0.650
NCF 0.617 0.508 0.617 0.691 0.604 0.580

NCFnn 0.618 0.515 0.616 0.690 0.602 0.641

Test set: Fall 2015

MATH PSYC CHEM CS IT BIOL
TF 0.963 0.724 0.639 0.749 0.656 0.698

TFnn 1.019 0.730 0.609 0.716 0.617 0.729
ALE 0.976 0.789 0.585 0.632 0.645 0.570

ALEnn 0.953 0.754 0.573 0.615 0.595 0.574
NCF 0.895 0.561 0.586 0.672 0.545 0.570

NCFnn 0.883 0.601 0.583 0.679 0.604 0.585

Test set: Spring 2015

MATH PSYC CHEM CS IT BIOL
TF 0.706 0.640 0.697 0.733 0.639 0.663

TFnn 0.717 0.629 0.700 0.711 0.634 0.658
ALE 0.626 0.518 0.802 0.701 0.643 0.600

ALEnn 0.596 0.770 0.742 0.701 0.609 0.584
NCF 0.596 0.543 0.672 0.657 0.574 0.600

NCFnn 0.595 0.538 0.660 0.658 0.570 0.599

function of ALE is as follows

L = ∑
gl

s,c∈Gt−1
s

(gl
s,c− g̃l

s,c)
2

+α(‖P‖2 +‖Q‖2 +‖R‖2)+β (|P|1 + |Q|1 + |R|1)

(6.6)

Similarly, I add both l2 and l1 norms on matrices P, Q and R to prevent overfitting, and I use

stochastic gradient descent algorithm (SGD) to solve the optimization problem.

68

Table 6.5: Performance Comparison for Different Embeddings Dimensions

Model # StdEm # CrsEm # InstrEm
MATH PSYC

PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

NCF0 30 30 30 0.262 0.435 0.673 0.314 0.506 0.737
NCF1 15 30 30 0.239 0.387 0.598 0.306 0.487 0.724
NCF2 30 15 30 0.299 0.461 0.705 0.300 0.483 0.733
NCF3 30 30 15 0.294 0.453 0.694 0.319 0.498 0.733
NCF4 15 15 30 0.272 0.418 0.677 0.306 0.478 0.729
NCF5 30 15 15 0.246 0.390 0.603 0.319 0.501 0.740
NCF6 15 30 15 0.275 0.421 0.676 0.311 0.485 0.729
NCF7 15 15 15 0.250 0.452 0.696 0.307 0.477 0.732

Model # StdEm # CrsEm # InstrEm
CHEM CS

PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

NCF0 30 30 30 0.194 0.408 0.612 0.220 0.378 0.616
NCF1 15 30 30 0.184 0.398 0.602 0.227 0.391 0.635
NCF2 30 15 30 0.243 0.379 0.612 0.227 0.382 0.619
NCF3 30 30 15 0.194 0.417 0.621 0.214 0.379 0.625
NCF4 15 15 30 0.184 0.408 0.592 0.211 0.366 0.628
NCF5 30 15 15 0.184 0.437 0.612 0.223 0.394 0.618
NCF6 15 30 15 0.175 0.408 0.612 0.224 0.359 0.634
NCF7 15 15 15 0.243 0.398 0.621 0.209 0.381 0.615

Model # StdEm # CrsEm # InstrEm
IT BIOL

PTA0 PTA1 PTA2 PTA0 PTA1 PTA2

NCF0 30 30 30 0.235 0.397 0.691 0.279 0.441 0.689
NCF1 15 30 30 0.237 0.397 0.691 0.215 0.372 0.602
NCF2 30 15 30 0.229 0.397 0.686 0.299 0.461 0.705
NCF3 30 30 15 0.220 0.407 0.701 0.294 0.453 0.694
NCF4 15 15 30 0.227 0.392 0.683 0.272 0.418 0.677
NCF5 30 15 15 0.239 0.409 0.694 0.210 0.378 0.614
NCF6 15 30 15 0.244 0.409 0.693 0.275 0.421 0.676
NCF7 15 15 15 0.230 0.394 0.699 0.264 0.427 0.677

StdEm, # CrsEm and # InstrEm indicate the dimensions of student embeddings, course embeddings and
course instructor embeddings, respectively.

6.4 Results and Discussion

I now detail the experimental results and discuss the implications of these results.

69

MATH PSYC CHEM CS IT BIOL
Experiment 1: Spring 2016 as Test Set

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

P
T
A

2

MATH PSYC CHEM CS IT BIOL
Experiment 2: Fall 2015 as Test Set

0.3

0.4

0.5

0.6

0.7

0.8

P
T
A

2

MATH PSYC CHEM CS IT BIOL
Experiment 3: Spring 2015 as Test Set

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

P
T
A

2

TF TFnn ALE ALEnn NCF NCFnn

Figure 6.3: Analysis on the Effect of Non-Negativity Constraint

6.4.1 Overall Performance

Table 6.3 shows the results in terms of the PTA0, PTA1, and PTA2 metrics. I use three terms: Spring

2016, Fall 2015, and Spring 2015 as test sets, and I implement comprehensive experiments on every

major. In Tabel 6.3, “↓” indicates the lower the better, and ↑” indicates the higher the better. The

best performing methods are highlighted with bold. I use a grid search method to sweep over the

embedding dimensions, and choose value 30 for student, course and course instructor embeddings

dimensions. (parameter study on embedding dimensions will be presented later in Section 6.4.2)

I observe that both NCF and NCFnn generally outperform the baselines across the different test

70

sets. Specifically, for the Spring 2016 term, NCF outperforms the TF, TFnn, ALE and ALEnn base-

lines by 63.88%, 56.68%, 7.37% and 1.86% in terms of PTA0, 43.85%, 51.19%, 11.15% and 9.72%

in terms of PTA1, and 17.45%, 18.19%, 10.41%, 9.41% in terms of PTA2, respectively. However, I

also notice that, for the Fall 2015 and Spring 2015 terms, the ALE baseline outperforms NCF and

NCFnn on several majors. This result is likely due to the fact that neural network-based methods can

often overfit and perform poorly with insufficient training data; in the experiments, when I use the

Fall 2015 and Spring 2015 terms as test sets, the amount of training data is significantly less than

using the Spring 2016 term as test set (see Table 6.2).

Table 6.4 shows the comparison on MAE for all methods. I note that when I use the Spring

2016 term as the test set, both NCF and NCFnn significantly outperform every baseline. When I use

the Fall 2015 and Spring 2015 terms as test sets, ALE and ALEnn occasionally outperform NCF

and NCFnn. This observation agrees with that on the PTA metric. I also observe that when using

the Spring 2016 term as test set, ALEnn outperforms on the PTA0 metric but underperforms NCFnn

on the PTA2 metric, for the MATH, CHEM and IT majors. Meanwhile, NCFnn always outperforms

ALEnn for all majors on the MAE metric. This observation shows that NCFnn outperforms ALEnn

overall.

6.4.2 Effect of Embedding Dimensions

In order to get a deeper understanding on the impact of the embedding dimensions on model per-

formance, I perform an experiment with different embedding dimensions for students, courses and

course instructors. In total, I have eight different models, and I number each model NCFm(m =

0,1, ...,7); each model corresponds to a different set of embedding dimensions. NCF0 corresponds

to the NCF model in the previous experiments. Table 6.5 shows the experimental results on using

the Spring 2016 term as test set. I observe that, on different test sets, the best-performing model

differs. For example, for the MATH major, NCF2 performs best in terms of PTA while NCF1 per-

forms worst. However, for the CS major, NCF1 performs best in terms of PTA while NCF4 performs

worst. This observation shows that the flexibility to choose different dimensions for student, course,

and instructor embeddings is crucial, since the best performing models often have different values

71

for the dimension of these embeddings. Therefore, this flexibility enables neural networks-based

models to outperform matrix factorization-based models, which use the same dimension for every

embedding.

6.4.3 Effect of Non-Negativity Constraint

For simplicity of exposition, I only show results on the PTA2 metric for all methods and under all

experimental protocols in Fig. 6.3, since the results on the other metrics are similar. I observe that for

three head-to-head comparisons, i.e., TF versus TFnn, ALE versus ALEnn and NCF versus NCFnn,

in most circumstances, each pair of methods show similar results on different majors, such as the CS

major. However, in some cases, adding the non-negativity constraint can lead to significant changes

in model performance, e.g., ALE and ALEnn on PSYC major in the experiments with Spring 2015

as test set. Further observing Fig 6.3, I notice that for the experiment with Spring 2015 as test

set, NCFnn is more likely to outperform NCF on different majors than the experiments with Spring

2016 and Fall 2015 as test sets, respectively. This shows that with insufficient training samples,

non-negativity constraint can help NCFnn model student, course and course instructors better than

NCF, and finally gain better grade prediction results.

6.5 Summary

In this chapter, I develop a new deep learning inspired neural collaborative filtering approach for

solving the next-term grade prediction problem. I consider three elements as input to the NCF model

i.e., student, course and course instructor. Furthermore, the learned embeddings of these three input

elements can be considered as the “hidden” factors within the classic latent factor model in collab-

orative filtering techniques. For proper analysis of the model, I also add non-negativity constraints

on the embeddings by adding Rectified Linear Units (ReLU) on the embedding layer. The exper-

imental results demonstrate that both NCF and NCFnn significantly outperform the baselines on

grade prediction problem over various test sets. In addition, I analyze the model performance with

different embeddings dimensions for student, course and course instructor, respectively. The results

72

show that NCF provides flexibility in that, different from classic latent factor models in collabora-

tive filtering techniques, different elements can have various dimensions and achieves better results

than the one with the same embedding dimensions for all the elements. Finally, I provide in-depth

analysis on the effect of non-negativity constraint. I have found that with insufficient training sam-

ples, non-negativity constraint can help NCFnn model student, course and course instructors better

than NCF, and finally gain better grade prediction results.

73

Chapter 7: Predicting Performance on MOOC Assessments using

Multi-Regression Models

In this chapter, I will present models to predict a student’s future performance for a certain assess-

ment activity within a MOOC. Specifically, I develop an approach based on Personalized Linear

Multi-Regression (PLMR) to predict the performance of a student as they attempt various graded

activities (assessments) within the MOOC. This approach was previously studied within the con-

text of predicting a student’s performance based on graded activities within a traditional university

course with data extracted from a learning management system (Moodle) [27]. The developed

model is real-time and tracks the participation of a student within a MOOC (via click-stream server

logs) and predicts the performance of a student on the next assessment within the course offer-

ing. The proposed approach also allows us to capture the varying studying patterns associated with

different students, and responsible for their performance. I evaluate the predictive model on two

MOOCs offered using the OpenEdX platform and made available for learning analytics research

via the Center for Advanced Research through Online Learning at Stanford University 1.

I extract features that seek to identify the learning behavior and study habits for different stu-

dents. These features capture the various interactions that show engagement, effort, learning and

behavior for a given student participating in studying; by viewing the various video and text-based

materials available within the MOOC offering coupled with student attempts on graded and non-

graded activities like quizzes and homeworks. The experimental evaluation shows accurate grade

prediction for different types of homework assessments in comparison to baseline models. The

approach also identifies the features found to be useful for predicting an accurate homework grade.

The work presented in this chapter has been published in International Conference on Educa-

tional Data Mining (EDM 2016).

1datastage.stanford.edu

74

7.1 Methods

7.1.1 Personal Linear Multi-Regression Models

I train a personalized linear multi-regression (PLMR) model [27] to predict student performance

within a MOOC. Specifically, the grade ĝs,a for a student s in an assessment activity a is predicted

as follows:

gg

ĝs,a = bs + pt
sW fsa

= bs +
l

∑
d=1

(ps,d

nF

∑
k=1

fsa,kwd,k),

(7.1)

where bs is bias term for student s, fsa is the feature vector of an interaction between student s and

activity a. The features extracted from the MOOC server logs are described in the next Section. nF

is the length of fsa, indicating the dimension of the feature space. l is the number of linear regression

models, W is the coefficient matrix of dimensions l× nF that holds the coefficients of the l linear

regression models, and ps is a vector of length l that holds the memberships of student s within the

l different regression models [27]. Using lasso [90], I solve the following optimization problem:

minimize
(W,P,B)

L(W,P,B)+ γ(‖P‖F +‖W‖F), (7.2)

where W , P and B denote the feature weights, student memberships and bias terms, respectively.

The loss function L(·) is the least square loss for regression problems. γ(‖P‖F +‖W‖F) is a regu-

larizer that controls the model complexity by controling the values of feature weights and student

memberships. Tuning the scalar γ prevents model from over-fitting.

7.1.2 Feature Description

I extract features from MOOC server logs and formulate the PLMR model to predict real-time

assessment grade for a given student. Figure 7.1 shows the various activities, generally available

within a MOOC. Fig 7.1 (a) shows that each homework has corresponding quizzes, each of which

75

has its corresponding video as resources for learning. Fig 7.1 (b) shows that while watching a video,

a student can have a series of actions. Fig 7.1 (c) shows that while studying using a MOOC, a student

can have several login sessions. In order to capture the latent information behind the click-stream for

each student, I extract six types of features: (i) session features, (ii) quiz related features, (iii) video

related features, (iv) homework related features, (v) time related features and (vi) interval-based

features. These features constitute the feature vector fsa for a student and a homework assessment.

The description of these features are as follows:

Figure 7.1: Different activities within a MOOC.

(i) Session features:

A single study session is defined by a student login combined with the various available study

interactions that a student may partake in. Since, students do not always log out of a session, I

assume that a “no activity” period of more than one hour constitutes a student logging out of a

session. I then show a “no activity” period for a student between two consecutive sessions in Fig

7.1 (c).

76

• NumSession is the the average number of daily study sessions a student engages in, before a

homework attempt.

• AvgSessionLen is the average length of each session in minutes. I calculate the average study

time of a study session by

AvgSessionLen =
Total study time

NumSession
. (7.3)

• AvgNumLogin. Students are free to choose when to login and study in a MOOC environ-

ment. I consider a day as a “work day” if a student logs into the study system; and a day as

“rest day” if a student does not. The rate of “work” and “rest” can capture a student’s learning

habits and engagement characteristics.

AvgNumLogin =

o f “work day”
o f “work day” +# o f “rest day”

.

(7.4)

(ii) Quiz Related features:

• NumQuiz is the number of quizzes a student takes before a homework attempt. This feature

reflects the student’s dedication towards the course material and a factor towards performance

in a homework.

• AvgQuiz is the average number of attempts for each quiz. The MOOCs studied in this chapter

allow unlimited attempts on a quiz.

(iii) Video Related features:

• VideoNum denotes the number of distinct video sessions for a student before a homework

attempt.

77

• VideoNumPause is the average number of pause actions per video. There are several actions

associated with viewing videos, including “pause video”, “play video”, “seek video” and

“load video”. Tracking these actions allows for capturing a student’s focus level and learning

habits.

• VideoViewTime is the total video viewing time.

• VideoPctWatch. In a large amount of cases, students do not finish watching a full video. As

such, I calculate the average percentage of the watched part of a video.

(iv) Homework Related features:

• HWProblemSave is the average number of “save answer” actions for each homework assess-

ment. Before submitting answers for a homework, students are allowed to save their answer

sheet and check as many times as they need. This feature is more valuable when the MOOC

provides only one chance for a homework answer submission.

(v) Time Related features:

• TimeHwQuiz is the time between a homework answer submission and the last quiz attempt.

• TimeHwVideo is the time between a homework answer submission and the last video watch-

ing activity.

• TimePlayVideo is the percentage of study sessions with video watching activity over all the

study sessions.

• HwSessions is the number of sessions that have homework related activities (save and sub-

mit).

(vi) Interval-Based features:

It is expected that there will be some changes in study activities once the students know the former

homework’s grade. They may study harder if they don’t get a satisfactory score. The interval-based

features are aiming to represent different activities between two consecutive homeworks.

78

Figure 7.2: Distribution of Students Attempting Each Assessment.

• IntervalNumQuiz: denotes the number of quizzes the student takes between two homeworks.

• IntervalQuizAttempt: is the average number of quiz attempts between two homeworks.

• IntervalVideo: is the number of videos a student watches between two homeworks.

• IntervalDailySession: is the average number of sessions per day between two homeworks.

• IntervalLogin: is the percentage of login days between two homeworks.

I also use the cumulative grade (so-far) on quizzes and homeworks for a student as a feature and

denote it by

Meanscore. For the baseline approach I only consider the averages computed on the previous

homework.

79

Figure 7.3: AllStMed Prediction Results. RMSE (↓ is better).

7.2 Experiments

7.2.1 Datasets

I evaluated the proposed methods on two MOOCs: “Statistics in Medicine” (represented as StMed

in this chapter) taught in Summer 2014 and “Statistical Learning” (represented as StLearn in this

chapter) taught in Winter 2015.

StMed: This dataset includes server logs tracking information about a student viewing video

lectures, checking text/web articles, attempting quizzes and homework (which are graded). Specifi-

cally, this MOOC contains 9 learning units with 111 assessments, including 79 quizzes, 6 homework

and 26 single questions. The course had 13,130 students enrolled, among which 4337 students sub-

mitted at least one assignment (quiz or homework) and had corresponding scores, 1262 students

have completed part of the six homework and 1099 students have attempted all the homework. 193

students attempted all the 79 quizzes and six homework. This course had 131 videos and 6481

students had video related activity.

StLearn: This course had ten units. Except the first one, all units have quizzes and end of

unit homework, which add up to 103 assessments in total. 52,821 students enrolled in this course,

and 4987 students had assessment activities, 3509 students attempted a subsets of the available

80

Figure 7.4: AllStLearn Prediction Results. Accuracy (↑ is better).

homework while 346 students attempted all the 9 homework, and 118 students attempted all the 103

assessments. The key difference between the homework in the StLearn in comparison to the StMed

is that homework have only one question which a student can either get correct or incorrect. As

such, scoring in this MOOC is binary instead of continuous. To predict whether a student answers a

question correctly, I reformulate the regression problem as a classification problem using a logistic

loss function. Figure 7.2 shows the distribution of students attempting the different assessments

available across the two MOOCs studied here.

7.2.2 Experimental Protocol

In order to gain a deep insight of students’ performance in a MOOC, I perform two types of ex-

periments. Given n, homework assessments represented as {H1, . . . ,Hn} the objective is to predict

the score a student achieves in each of the n homework. Depicting the most realistic setting, for

the i-th homework, Hi I define the training set as all homework and student pairs who attempt and

have a score for all homework up to the Hi−1. For predicting the score for Hi for a given student,

I use all the features extracted just before attempting the target homework Hi. I refer to this as

PreviousHW-based Prediction. Secondly, for the predicting i-th homework Hi’s score, I use train-

ing data of student-homework pairs restricted from only the previous one homework i.e., Hi−1. This

experiment is referred by PreviousOneHW-based Prediction. Note, in these cases I cannot make

81

Table 7.1: PreviousHW-based RMSE Performance (RMSE) comparison for AllStMed.

HW# PLMR Meanscore
2 0.230 0.248
3 0.162 0.176
4 0.176 0.196
5 0.144 0.156
6 0.143 0.150

Avg 0.171 0.185

any prediction for the first homework (H1) since, I do not have any training information for a given

student.

7.2.3 Data Partition

I partition the students for StLearn and StMed into two groups: the group of students who attempt

all the requested homework, and the group of students who finish few of the homework. This

allows us to consider the different motivations and expectations of students enrolling in a MOOC.

For example, the students who aim to learn in a MOOC may choose watching videos over taking

all homework. While, the students who want to achieve a degree certificate may focus on the

homework completeness. I refer to the first group by “Partial homework accomplished group”,

and the second group by “All homework accomplished group”. I evaluate the proposed models on

the two groups for the AllStMed and AllStLearn datasets. Specifically, I name the four group of

students as AllStMed, AllStLearn, PartialStMed and PartialStLearn based on their group and

MOOC class.

7.2.4 Evaluation Metrics

StMed course has continuous scores for a homework, which are scaled between 0 and 1. However,

the homework score is binary in the StLearn course, indicating whether the student answers a ques-

tion correctly or incorrectly. For StLearn, I use a logistic loss and formulate a classification problem

instead of the regression problem as done for the StMed course. To evaluate the performance of the

82

Table 7.2: PreviousHW-based prediction performance comparison for AllStLearn group.

HW#
Accuracy (↑) F1 (↑)

PLMR
Baseline

PLMR
Baseline

Meanscore KT-IDEM Meanscore KT-IDEM
2 0.641 0.646 0.623 0.775 0.777 0.768
3 0.760 0.580 0.681 0.821 0.805 0.810
4 0.754 0.710 0.739 0.838 0.706 0.850
5 0.867 0.809 0.829 0.920 0.880 0.906
6 0.730 0.678 0.667 0.808 0.776 0.800
7 0.716 0.675 0.730 0.887 0.878 0.844
8 0.817 0.762 0.817 0.903 0.849 0.886
9 0.823 0.794 0.777 0.864 0.856 0.853

Avg 0.764 0.707 0.759 0.852 0.816 0.848

proposed approach, I use the root mean squared error (RMSE) as the metric of choice for regression

problem. For classification problem, I use accuracy and the F1-score (harmonic mean of precision

and recall), known to be a suitable metric for imbalanced datasets.

7.2.5 Comparative Approaches.

In this work, I compare the performance of the proposed proposed methods with two different

competitive baseline approaches.

(i) Average grade of the previous homework I calculate the mean score of a given student’s

previous homework to predict their future performance and is denoted as Meanscore. I use this

method to compare the prediction results on StMed.

(ii) KT-IDEM [91] KT-IDEM is a modified version of original BKT model. By adding an “item”

node to every question node, the model is able to identify different difficulty levels of each question.

Since this model can only predict a binary value grade, I use this model to compare the prediction

results on StLearn.

83

Figure 7.5: Predictive Performance with Removal of Feature Types.

7.3 Results and Discussion

7.3.1 Assessment Prediction Results

Figures 7.3 and 7.4 show the prediction results with varying number of regression models for the

AllStMed and AllStLearn MOOCs, respectively. Figure 7.3 shows that as the number of regression

models increases the RMSE metric goes lower and use of five models seems to be good choice for

all the different homeworks. Comparing the PreviousHW- and PreviousOneHW-based results, it

84

shows that predictions for all the homeworks (HW3, HW4, HW5, and HW6) benefits from using

all the available training data prior to those homeworks i.e., to predict grade for Hi it is better

to use training information extracted from H1 . . .Hi−1 rather than just Hi−1. Similar observations

can be made while analyzing the prediction results for the AllStLearn cohort which includes nine

homework correct/incorrect binary assessments. Figure 7.4 shows the accuracy scores (higher is

better) for the three experiments. For the PreviousOneHW- and PreviousHW-based experiments

HW5 shows the best prediction results. This suggests that in the middle of a MOOC, students tend

to have stable study activities and the performance is more predictable than other phases. Also, some

homeworks thrive well with just using training data from the previous homework (PreviousOneHW-

based, e.g. HW3).

Comparative Performance

Table 7.1 shows the comparison between baseline approach (Meanscore) and the predictive model

for the PreviousHW-based experiments for the AllStMed group. I cannot report results for the KT-

IDEM model since, it solves the binary classification problem only. Table 7.2 shows the comparison

of the accuracy and F1 scores of the AllStLearn groups with baseline approaches. I notice that for

predicting the second homework, which only uses the information from HW1, the predictive model

is not as good as the mean baseline, which reflects that under the situation of lack of necessary

amount of information, linear regression models cannot always outperform the baseline. But as the

dataset gets larger, the proposed approach outperforms the baseline due to the availability of more

training data. From Table 7.2, I also notice for some homework, KT-IDEM has better performance

than PLMR (HW7 and HW4). This could be due to unstable academic activities during these two

study periods, which can effect the performance of PLMR.

Feature Importance

I test the effect of each feature set in predicting the assessment scores by training the models under

the absence of each feature group. For the StLearn course, since there is no limit on homework

attempts, I do not add Interval-Based feature groups to the predictive model. Figure 7.5 shows the

85

comparison of each prediction result for AllStMed, PartialStMed, AllStLearn and PartialStLearn

cohorts. Analyzing these results I observe that for the StLearn MOOC, meanscore is a significant

feature and removing it leads to a substantial decrease in accuracy for both All and Partial- cohorts.

For the AllStMed, the removal of video related features leads to the most decrease in performance

(i.e., increased RMSE). This suggests that features related to the video watching are crucial for

predicting the final homework scores. For the PartialStMed, the use of all feature types or a subset

does not show a clear winner. This could be due to the varying characteristics of students within

these group.

Another way to analyze feature importance is to exclude the influence of the dominant fea-

ture, which is meanscore in my study. The evaluation formula of the importance of the ith feature

(excluding meanscore feature) is as follows:

Ii =
1
N

N

∑
n=1

∑
l
d=1 |pnS,d fnS,iwd,i|

∑
l
d=1 |pnS,d ∑

nF
k=1 fnS,kwd,k|

, (7.5)

where N is number of test samples, nS is the student number corresponding to the nth test sample.

fnS,i is the feature value of an interaction between student nS and activity i. nF is the number of

features. l is the number of linear regression models. wd,i is the coefficient of dth linear regression

model with ith feature, and pnS,d is the membership of student nS with the dth regression model. I

calculate each feature’s importance by calculating the percentage contribution of each feature to the

overall grade prediction. Figure 7.6 shows the feature importance on the AllStMed group, excluding

Meanscore feature. I can see NumQuiz and VideoPctWatch are the most important for AllStMed

group besides Meanscore feature.

7.4 Summary

In this chapter, I formulated a personalized multiple linear regression model to predict the homework

grades for a student enrolled and participating within a MOOC. My contributions include engineer-

ing features that capture a student’s studying behavior and learning habits, derived solely from the

86

Figure 7.6: Feature importance for AllStMed.

server logs of MOOCs. I evaluated the proposed framework on two OpenEdX MOOC courses

provided by an initiative at Stanford University. The experimental evaluation shows improved per-

formance in terms of prediction of real time homework scores compared to baseline methods. I also

studied on different groups of student participants due to their motivation. Features associated with

engagement (logging multiple times), studying materials (viewing videos and attempting quizzes)

were found to be important along with prior homework scores for this prediction problem.

87

Chapter 8: Conclusion and Future Work

8.1 Conclusion

To conclude, this thesis provides several algorithms for next-term grade prediction problem. First of

all, I consider that a student’s knowledge is continuously being enriched while taking a sequence of

courses and substitute student’s latent factors with accumulated knowledge of a sequence of courses

taken by the student, jointly with the grade for each course. I propose a model named Matrix Fac-

torization with Temporal Course-wise Influence. Following this method, I incorporate course in-

structor and student academic level effects along with student global latent factor to complete grade

prediction. And I propose a model Additive Latent Effect. Moreover, I present next-term grade

prediction models based on students’ cumulative knowledge and co-taken courses. The proposed

models are based on a matrix factorization framework and incorporate a co-taken course interac-

tion function to learn the influence from the co-taken courses on the target course. The co-taken

course interaction function is formed by a neural network, which takes the knowledge difference

between the co-taken courses and the target course as input, and outputs an influence value that will

be used to predict students’ grades on the target course. Finally, I present a deep learning based

recommender system approach called Neural Collaborative Filtering (NCF) for the next-term grade

prediction problem. The deep learning inspired approach provides added flexibility in learning the

latent spaces in comparison to MF approaches. The proposed approach also incorporates instructor

information besides student and course information. Note that the baseline methods across different

work may show different experimental results. The reasons for this include: (1) I have different

datasets for the previous work, i.e., different training and testing sets as well as different majors;

(2) I use different data preprocessing methods. In order to have a better understanding on all the

proposed models, I have implemented all my methods on Spring 2016 for FTF students. Table 8.1

shows the comparison results. CKCC outperforms the other methods in terms of MAE and most

88

Table 8.1: Performance Comparison for All Models

MAE PTA0 PTA1 PTA2

MF-b 0.687 0.159 0.324 0.632
MF 0.651 0.198 0.360 0.635

NMF 0.646 0.209 0.373 0.639
MFTCI 0.640 0.213 0.379 0.644

CK 0.621 0.236 0.395 0.638
ALE 0.623 0.255 0.394 0.635

CKCC 0.607 0.241 0.402 0.654
NCF 0.632 0.227 0.396 0.650

PTA metrics. ALE has the best PTA0 result among all the methods. The results further show that

in order to get accurate grade prediction for students, only considering course and student latent

factors are far from enough. Many important factors have shown their immense influence on grade

prediction results. Such important factors include student’s previous enrollment information, course

instructor information, student’s global interests and co-taken courses. I have also presented how to

use such information to better guide students in selecting courses in the future.

Figure 8.1 shows the diagram for my grade prediction tool. With the strength of the academic

performance prediction, the grade prediction tool can be incorporated into course recommendation

system, early warning system, degree planner and etc. For example, CKCC can help decide good

course pairs to take in a new term. ALE can predict the grade for courses with different advisors, and

help students to choose course sessions. Given the promising predicted grades, students can select

courses, detect at-risk courses and finally form a practical pathway of the college study. However,

there are some limitations in the current work. For example, even though I have achieved a better

grade prediction results than the state-of-the-art methods, I haven’t built a comprehensive system in

assisting students to select courses, and guide students in their degree pathways. As such, I present

some possible and thrilling future work in the next section.

Finally, I also apply a Personalized Linear Multi-Regression model to predict student’s perfor-

mance on online education environment, i.e., Massive Open Online Courses (MOOCs), and gain

89

Term 1 Term T…… Term t ……

Grade Prediction Tool

Available Courses

Predicted Grades

Course Recommendation

Early Warning System

Degree Planner

Previous Data

Figure 8.1: The Diagram for Grade Prediction Tool

great results.

8.2 Future Work

8.2.1 Personalized degree planner

In previous studies, prerequisite courses and co-taken courses are shown to have great influences on

students’ performance. However, students’ personal interests and diligence which are likely to have

high impact on students’ performance are often neglected in grade prediction. It could be beneficial

if I provide personalized degree planner for each student based on their own academic background

as well as their personal interests. In the future, one of the interesting research directions would

be studying students’ personal learning behaviors. This will help researchers understand students’

academic performance across different terms, and finally build a personalized degree planner to

guide students individually in selecting courses, and eventually obtain a college degree.

90

8.2.2 Early warning system for instructor

While being in charge of a course that have a large number of students attended, instructors are often

in need of students’ feedback to discover how well the students learn the knowledge, and when to

interrupt to assist. While explicit feedback is always hard and energy consuming to get, implicit

feedback is believed to be feasible to help instructors to learn students’ study status. In such case,

it would be beneficial to build a system that can monitor students’ in-class performance, and set up

alarm if students have an obvious decrease in performance. The system is expected to understand

the cause of the decrease in performance, such as the difficulty level of the assessment, and help

instructors generate personalized assessments for students.

8.2.3 Course/material recommendation/generation for MOOCs

In MOOCs, there are large number of courses from different sources. Students on MOOCs always

have uneven background and different demands. Course recommendation can be profitable for

students to keep engaged in the course. However, there exists situations that the current courses or

course materials are hardly suitable for students’ demand. Therefore, generating new courses/materials

based on the knowledge components which match students’ needs can be beneficial. While this

is a research direction which has rarely been worked on before, a few specific objectives would

be interesting for further study: developing new methods for course representation by knowledge

components, studying students’ knowledge level and academic interests, and generating related

courses/materials.

91

Bibliography

92

Bibliography

[1] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances
in neural information processing systems, 2001, pp. 556–562.

[2] M. Parker, “Advising for retention and graduation,” 2015.

[3] N. Johnson, “The institutional costs of student attrition. research paper.” Delta Cost Project at
American Institutes for Research, 2012.

[4] R. Naqvi, “Data mining in educational settings,” Pakistan Journal of Engineering, Technology
& Science, vol. 4, no. 2, 2015.

[5] J. M. Simons, A National Study of Student Early Alert Models at Four-Year Institutions of
Higher Education. ERIC, 2011.

[6] Y. Koren, R. Bell, C. Volinsky et al., “Matrix factorization techniques for recommender sys-
tems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[7] M. Sweeney, J. Lester, and H. Rangwala, “Next-term student grade prediction,” in Big Data
(Big Data), 2015 IEEE International Conference on. IEEE, 2015, pp. 970–975.

[8] A. Elbadrawy, A. Polyzou, Z. Ren, M. Sweeney, G. Karypis, and H. Rangwala, “Predicting
student performance using personalized analytics,” Computer, vol. 49, no. 4, pp. 61–69, 2016.

[9] Š. Pero and T. Horváth, “Comparison of collaborative-filtering techniques for small-scale stu-
dent performance prediction task,” in Innovations and Advances in Computing, Informatics,
Systems Sciences, Networking and Engineering. Springer, 2015, pp. 111–116.

[10] C.-S. Hwang and Y.-C. Su, “Unified clustering locality preserving matrix factorization for
student performance prediction,” IAENG Int. J. Comput. Sci, vol. 42, no. 3, pp. 245–253,
2015.

[11] A. Elbadrawy and G. Karypis, “Domain-aware grade prediction and top-n course recommen-
dation,” Boston, MA, Sep, 2016.

[12] A. Polyzou and G. Karypis, “Grade prediction with models specific to students and courses,”
International Journal of Data Science and Analytics, pp. 1–13, 2016.

[13] S. Morsy and G. Karypis, “Cumulative knowledge-based regression models for next-term
grade prediction,” in Proceedings of the 2017 SIAM International Conference on Data Mining.
SIAM, 2017, pp. 552–560.

93

[14] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61,
pp. 85–117, 2015.

[15] L. Deng, D. Yu et al., “Deep learning: methods and applications,” Foundations and Trends®
in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.

[16] S. Zhang, L. Yao, and A. Sun, “Deep learning based recommender system: A survey and new
perspectives,” arXiv preprint arXiv:1707.07435, 2017.

[17] Z. Ren, X. Ning, and H. Rangwala, “Grade prediction with temporal course-wise influence,”
arXiv preprint arXiv:1709.05433, 2017.

[18] ——, “Ale: Additive latent effect models for grade prediction,” arXiv preprint
arXiv:1801.05535, 2018.

[19] Z. Ren, H. Rangwala, and A. Johri, “Predicting performance on mooc assessments using multi-
regression models,” arXiv preprint arXiv:1605.02269, 2016.

[20] R. Baker et al., “Data mining for education,” International encyclopedia of education, vol. 7,
pp. 112–118, 2010.

[21] W. He, “Examining students’ online interaction in a live video streaming environment using
data mining and text mining,” Computers in Human Behavior, vol. 29, no. 1, pp. 90–102,
2013.

[22] A. Peña-Ayala, “Educational data mining: A survey and a data mining-based analysis of recent
works,” Expert systems with applications, vol. 41, no. 4, pp. 1432–1462, 2014.

[23] C. C. Aggarwal, Recommender Systems: The Textbook, 1st ed. Springer Publishing Company,
Incorporated, 2016.

[24] X. Ning, C. Desrosiers, and G. Karypis, “A comprehensive survey of neighborhood-based
recommendation methods,” in Recommender systems handbook. Springer, 2015, pp. 37–76.

[25] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender
systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1109/MC.2009.263

[26] N. Thai-Nghe, L. Drumond, A. Krohn-Grimberghe, and L. Schmidt-Thieme, “Recommender
system for predicting student performance,” Procedia Computer Science, vol. 1, no. 2, pp.
2811–2819, 2010.

[27] A. Elbadrawy, S. Studham, and G. Karypis, “Personalized multi-regression models for pre-
dicting students performance in course activities,” UMN CS 14-011, 2014.

[28] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, “Recommender systems handbook.” 2011.

[29] S. Sahebi, Y.-R. Lin, and P. Brusilovsky, “Tensor factorization for student modeling and perfor-
mance prediction in unstructured domain,” in Proceedings of the 9th International Conference
on Educational Data Mining. IEDMS, 2016, pp. 502–506.

94

http://dx.doi.org/10.1109/MC.2009.263

[30] A. Lan, T. Goldstein, R. Baraniuk, and C. Studer, “Dealbreaker: A nonlinear latent variable
model for educational data,” in Proceedings of The 33rd International Conference on Machine
Learning, 2016, pp. 266–275.

[31] Y. Meier, J. Xu, O. Atan, and M. van der Schaar, “Personalized grade prediction: A data
mining approach,” in Data Mining (ICDM), 2015 IEEE International Conference on. IEEE,
2015, pp. 907–912.

[32] M. Sweeney, H. Rangwala, J. Lester, and A. Johri, “Next-term student performance prediction:
A recommender systems approach,” arXiv preprint arXiv:1604.01840, 2016.

[33] M. J. Pazzani and D. Billsus, “The adaptive web,” P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds.
Berlin, Heidelberg: Springer-Verlag, 2007, ch. Content-based Recommendation Systems, pp.
325–341. [Online]. Available: http://dl.acm.org/citation.cfm?id=1768197.1768209

[34] S. Ray and A. Sharma, “A collaborative filtering based approach for recommending elective
courses,” in International Conference on Information Intelligence, Systems, Technology and
Management. Springer, 2011, pp. 330–339.

[35] H. Bydžovská, “Are collaborative filtering methods suitable for student performance predic-
tion?” in Portuguese Conference on Artificial Intelligence. Springer, 2015, pp. 425–430.

[36] T. Denley, “Course recommendation system and method,” Jan. 10 2013, uS Patent App.
13/441,063.

[37] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov chains
for next-basket recommendation,” in Proceedings of the 19th international conference on
World wide web. ACM, 2010, pp. 811–820.

[38] R. He and J. McAuley, “Fusing similarity models with markov chains for sparse sequential
recommendation,” arXiv preprint arXiv:1609.09152, 2016.

[39] R. He, C. Fang, Z. Wang, and J. McAuley, “Vista: A visually, socially, and temporally-aware
model for artistic recommendation,” arXiv preprint arXiv:1607.04373, 2016.

[40] J. Z. Sun, D. Parthasarathy, and K. R. Varshney, “Collaborative kalman filtering for dynamic
matrix factorization,” IEEE Transactions on Signal Processing, vol. 62, no. 14, pp. 3499–3509,
2014.

[41] J. Z. Sun, K. R. Varshney, and K. Subbian, “Dynamic matrix factorization: A state space ap-
proach,” in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012, pp. 1897–1900.

[42] F. C. T. Chua, R. J. Oentaryo, and E.-P. Lim, “Modeling temporal adoptions using dynamic
matrix factorization,” in 2013 IEEE 13th International Conference on Data Mining. IEEE,
2013, pp. 91–100.

[43] B. Ju, Y. Qian, M. Ye, R. Ni, and C. Zhu, “Using dynamic multi-task non-negative matrix
factorization to detect the evolution of user preferences in collaborative filtering,” PloS one,
vol. 10, no. 8, p. e0135090, 2015.

95

http://dl.acm.org/citation.cfm?id=1768197.1768209

[44] C. Zhang, K. Wang, H. Yu, J. Sun, and E.-P. Lim, “Latent factor transition for dynamic col-
laborative filtering.” in SDM. SIAM, 2014, pp. 452–460.

[45] Y. Ding and X. Li, “Time weight collaborative filtering,” in Proceedings of the 14th
ACM International Conference on Information and Knowledge Management, ser. CIKM
’05. New York, NY, USA: ACM, 2005, pp. 485–492. [Online]. Available: http:
//doi.acm.org/10.1145/1099554.1099689

[46] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, Temporal Collaborative
Filtering with Bayesian Probabilistic Tensor Factorization, 2010, pp. 211–222. [Online].
Available: http://epubs.siam.org/doi/abs/10.1137/1.9781611972801.19

[47] D. Luo, H. Xu, Y. Zhen, X. Ning, H. Zha, X. Yang, and W. Zhang, “Multi-task
multi-dimensional hawkes processes for modeling event sequences,” in Proceedings of the
24th International Conference on Artificial Intelligence, ser. IJCAI’15. AAAI Press, 2015,
pp. 3685–3691. [Online]. Available: http://dl.acm.org/citation.cfm?id=2832747.2832763

[48] H. R. Omaima Almatrafi, Aditya Johri and J. Lester, “Identifying course trajectories of high
achieving engineering students through data analytics,” in American Society for Engineering
Education, 2016.

[49] A. Elbadrawy, “Prediction, ranking and mining methods for higher educational data,” 2017.

[50] A. Peña-Ayala, “Educational data mining: A survey and a data mining-based analysis of recent
works,” Expert systems with applications, vol. 41, no. 4, pp. 1432–1462, 2014.

[51] C. G. Brinton and M. Chiang, “Mooc performance prediction via clickstream data and social
learning networks,” To appear, 34th IEEE INFOCOM. IEEE, 2015.

[52] G. Kennedy, C. Coffrin, P. de Barba, and L. Corrin, “Predicting success: how learners’ prior
knowledge, skills and activities predict mooc performance,” in Proceedings of the Fifth Inter-
national Conference on Learning Analytics And Knowledge. ACM, 2015, pp. 136–140.

[53] A. S. Sunar, N. A. Abdullah, S. White, and H. C. Davis, “Analysing and predicting recurrent
interactions among learners during online discussions in a mooc,” Proceedings of the 11th
International Conference on Knowledge Management, 2015.

[54] A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the acquisition of procedural
knowledge,” User modeling and user-adapted interaction, vol. 4, no. 4, pp. 253–278, 1994.

[55] Z. Pardos, Y. Bergner, D. Seaton, and D. Pritchard, “Adapting bayesian knowledge tracing to
a massive open online course in edx,” in Educational Data Mining 2013, 2013.

[56] A. Sharma, A. Biswas, A. Gandhi, S. Patil, and O. Deshmukh, “Livelinet: A multimodal
deep recurrent neural network to predict liveliness in educational videos.” in EDM, 2016, pp.
215–222.

[57] S. Klingler, R. Wampfler, T. Käser, B. Solenthaler, and M. Gross, “Efficient feature embed-
dings for student classification with variational auto-encoders.”

[58] X. Xiong, S. Zhao, E. Van Inwegen, and J. Beck, “Going deeper with deep knowledge tracing,”
in EDM, 2016, pp. 545–550.

96

http://doi.acm.org/10.1145/1099554.1099689
http://doi.acm.org/10.1145/1099554.1099689
http://epubs.siam.org/doi/abs/10.1137/1.9781611972801.19
http://dl.acm.org/citation.cfm?id=2832747.2832763

[59] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas, and J. Sohl-Dickstein,
“Deep knowledge tracing,” in Advances in neural information processing systems, 2015, pp.
505–513.

[60] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factorization for docu-
ment context-aware recommendation,” in Proceedings of the 10th ACM Conference on Rec-
ommender Systems. ACM, 2016, pp. 233–240.

[61] X. Wang, L. Yu, K. Ren, G. Tao, W. Zhang, Y. Yu, and J. Wang, “Dynamic attention deep
model for article recommendation by learning human editors’ demonstration,” in Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2017, pp. 2051–2059.

[62] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines for collaborative
filtering,” in Proceedings of the 24th international conference on Machine learning. ACM,
2007, pp. 791–798.

[63] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in
Proceedings of the 26th International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2017, pp. 173–182.

[64] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube recommendations,”
in Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016, pp. 191–
198.

[65] C. Yang, L. Bai, C. Zhang, Q. Yuan, and J. Han, “Bridging collaborative filtering and semi-
supervised learning: A neural approach for poi recommendation,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
2017, pp. 1245–1254.

[66] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for recommender systems,”
in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2015, pp. 1235–1244.

[67] A. M. Elkahky, Y. Song, and X. He, “A multi-view deep learning approach for cross domain
user modeling in recommendation systems,” in Proceedings of the 24th International Confer-
ence on World Wide Web. International World Wide Web Conferences Steering Committee,
2015, pp. 278–288.

[68] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Cor-
rado, W. Chai, M. Ispir et al., “Wide & deep learning for recommender systems,” in Proceed-
ings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016, pp.
7–10.

[69] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising auto-encoders for
top-n recommender systems,” in Proceedings of the Ninth ACM International Conference on
Web Search and Data Mining. ACM, 2016, pp. 153–162.

[70] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang, “A hybrid collaborative filtering model
with deep structure for recommender systems.” in AAAI, 2017, pp. 1309–1315.

97

[71] H. Wang, S. Xingjian, and D.-Y. Yeung, “Collaborative recurrent autoencoder: recommend
while learning to fill in the blanks,” in Advances in Neural Information Processing Systems,
2016, pp. 415–423.

[72] S. Li, J. Kawale, and Y. Fu, “Deep collaborative filtering via marginalized denoising auto-
encoder,” in Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management. ACM, 2015, pp. 811–820.

[73] X. Li and J. She, “Collaborative variational autoencoder for recommender systems,” in Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2017, pp. 305–314.

[74] E. Smirnova and F. Vasile, “Contextual sequence modeling for recommendation with recurrent
neural networks,” arXiv preprint arXiv:1706.07684, 2017.

[75] S. Wu, W. Ren, C. Yu, G. Chen, D. Zhang, and J. Zhu, “Personal recommendation using
deep recurrent neural networks in netease,” in Data Engineering (ICDE), 2016 IEEE 32nd
International Conference on. IEEE, 2016, pp. 1218–1229.

[76] B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk, “Parallel recurrent neural network ar-
chitectures for feature-rich session-based recommendations,” in Proceedings of the 10th ACM
Conference on Recommender Systems. ACM, 2016, pp. 241–248.

[77] A. Polyzou and G. Karypis, “Grade prediction with models specific to students and courses,”
International Journal of Data Science and Analytics, pp. 1–13, 2016.

[78] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers,” Foundations and Trends® in
Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[79] N.-D. Ho, “Nonnegative matrix factorization algorithms and applications,” Ph.D. dissertation,
ÉCOLE POLYTECHNIQUE, 2008.

[80] N. Koenigstein, G. Dror, and Y. Koren, “Yahoo! music recommendations: modeling music rat-
ings with temporal dynamics and item taxonomy,” in Proceedings of the fifth ACM conference
on Recommender systems. ACM, 2011, pp. 165–172.

[81] A. Zell, Simulation neuronaler netze. Addison-Wesley Bonn, 1994, vol. 1, no. 5.3.

[82] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[83] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011, pp.
315–323.

[84] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in
Proceedings of the 27th international conference on machine learning (ICML-10), 2010, pp.
807–814.

98

[85] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable tensor factorizations for in-
complete data,” Chemometrics and Intelligent Laboratory Systems, vol. 106, no. 1, pp. 41–56,
2011.

[86] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidimensional scaling
via an n-way generalization of “eckart-young” decomposition,” Psychometrika, vol. 35, no. 3,
pp. 283–319, 1970.

[87] R. A. Harshman, “Foundations of the parafac procedure: Models and conditions for an” ex-
planatory” multimodal factor analysis,” 1970.

[88] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 1990.

[89] A. Shashua and T. Hazan, “Non-negative tensor factorization with applications to statistics and
computer vision,” in Proceedings of the 22nd international conference on Machine learning.
ACM, 2005, pp. 792–799.

[90] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statis-
tical Society. Series B (Methodological), pp. 267–288, 1996.

[91] Z. A. Pardos and N. T. Heffernan, “Kt-idem: Introducing item difficulty to the knowledge
tracing model,” in User Modeling, Adaption and Personalization. Springer, 2011, pp. 243–
254.

99

Curriculum Vitae

Zhiyun Ren received her Bachelor’s degree in Automation from Dalian University of Technology
(DUT), Dalian, China in 2010. She received her Master’s degree in Control Science and Engineer-
ing from Beihang University (BU), Beijing, China in 2013. She joined George Mason University
(GMU) in Computer Science Department in 2014, and received a Doctor of Philosophy degree in
Computer Science from GMU in 2019. She has worked as a research intern in Adobe for 2018
summer. Before joining GMU, she has worked as a Software Engineer for six months at VMware,
Beijing, China in 2013.

100

	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation
	Problem Statement
	Contribution

	 Background
	Preliminaries and Notations
	Related Work on Grade Prediction
	Related Work on Sequential Data Mining
	Related Work on Online Learning System
	Related Work on Deep Learning
	Deep Learning in Educational Data Mining
	Deep Learning in Recommender Systems

	Performance Evaluation
	Experimental Protocol
	Dataset Description
	Evaluation Metrics

	 Grade Prediction with Temporal Course-wise Influence
	Methods
	MF with Temporal Course-wise Influence
	Optimization Algorithm of MFTCI

	Computational Complexity Analysis

	Experiments
	Dataset Description
	Data Preprocessing
	Baseline Methods
	Non-negative Matrix Factorization (NMF) lee2001algorithms

	Results and Discussion
	Overall Performance
	Analysis on Individual Majors
	Effects from Previous Terms on MFTCI
	Visualization of Course Influence

	Summary

	 ALE: Additive Latent Effect Models for Grade Prediction
	Preliminaries
	Additive Latent Effect Models (ALE)
	Student Academic Level Effect
	Course Instructor Effect
	Student Global Latent Factor
	Student and Course Bias Effect
	Optimization for ALE
	Computational Complexity Analysis

	Experiments
	Dataset Description
	Data Preprocessing
	Parameter Learning

	Results and Discussion
	Overall Performance
	Effects of Bias Terms
	Importance of Additive Latent Effects
	Importance of Accumulated Knowledge and Student Global Latent Factor

	Summary

	 Grade Prediction Based on Cumulative Knowledge and Co-taken Courses
	Methods
	Model Overview
	Co-taken Course Interaction Function
	Optimization of CKCC

	Experiments
	Dataset Description
	Data Preprocessing
	Compared Methods
	Parameter Learning

	Results and Discussion
	Overall Performance
	Analysis on Individual Majors
	Linear versus Nonlinear Mapping Function
	Performance on Different Numbers of Co-taken Courses
	Performance on Different Numbers of Co-taken Course Subjects

	Significance and Impact
	Summary

	 Grade Prediction with Neural Collaborative Filtering
	Background and Prior Methods
	Neural Network-based Collaborative Filtering

	Methods
	NCF for Grade Prediction
	Rectified Linear Unit
	NCF with Non-Negativity Constraints
	Parameter Learning

	Experiments
	Dataset Description
	Data Preprocessing
	Baseline Methods
	Tensor Factorization
	Non-negative Tensor Factorization
	Additive Latent Effect Models

	Results and Discussion
	Overall Performance
	Effect of Embedding Dimensions
	Effect of Non-Negativity Constraint

	Summary

	 Predicting Performance on MOOC Assessments using Multi-Regression Models
	Methods
	Personal Linear Multi-Regression Models
	Feature Description

	Experiments
	Datasets
	Experimental Protocol
	Data Partition
	Evaluation Metrics
	Comparative Approaches.

	Results and Discussion
	Assessment Prediction Results
	Comparative Performance
	Feature Importance

	Summary

	 Conclusion and Future Work
	Conclusion
	Future Work
	Personalized degree planner
	Early warning system for instructor
	Course/material recommendation/generation for MOOCs

	Bibliography

