

 COMPARATIVE ANALYSIS OF DATABASE SPATIAL TECHNOLOGIES
(CADST)

by

Jodi Deprizio
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

The Requirements for the Degree
of

Master of Science
Geoinformatics and Geospatial Intelligence

Committee:

___ Dr. Ruixin Yang, Thesis Director

___ Dr. Dieter Pfoser, Committee Member

___ Dr. Andreas Zufle, Committee Member

___ Dr. Dieter Pfoser, Department Chairperson

___ Dr. Donna M. Fox, Associate Dean, Office

of Student Affairs & Special Programs,
College of Science

___ Dr. Peggy Agouris, Dean, College of

Science

Date: __________________________________ Summer Semester 2018
 George Mason University
 Fairfax, VA

Instructions for PC
Users

Comparative Analysis of Database Spatial Technologies (CADST)

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at George Mason University

by

Jodi Deprizio
Bachelor of Science

George Mason University, 2012

Director: Ruixin Yang, Associate Professor
Department of Geography and Geoinformation Science

Summer Semester 2018
George Mason University

Fairfax, VA

ii

Copyright 2018 Jodi Deprizio

All Rights Reserved

iii

DEDICATION

This is dedicated to my loving husband Brad, mother Mary-Beth, and my two wonderful
dogs, Chelsea and Ava.

iv

ACKNOWLEDGEMENTS

I would like to thank the many friends, relatives, and supporters who have made this
happen. My loving husband, Brad, kept me motivated while my dogs helped me with
stress and anxiety. Drs. Yang, Pfoser, and Zufle, members of my committee, were of
invaluable help throughout this process. Finally, thanks go out to the Fenwick Library for
providing a clean, quiet, and well-equipped repository in which to work.

v

TABLE OF CONTENTS

Page
List of Tables .. vii
List of Figures .. viii
List of Abbreviations .. x

Abstract ... x

Chapter One: Introduction .. 1

Chapter Two: Literature Review .. 3

Chapter Three: Methodology .. 11

Installation, Configuration, and Ingestion ... 12

MarkLogic ... 12

MySQL .. 14

Neo4j ... 15

MongoDB .. 17

PostgreSQL .. 18

Key Metrics ... 20

About the Data ... 22

Querying the Data: ... 22

Results ... 29

Ingestion and Storage .. 29

Query Performance ... 31

Accuracy.. 37

Usability and Complexity.. 39

Conclusion and Future Research .. 41

Appendix ... 60

Potomac Buffer KML File .. 60

MySQL Queries .. 61

Neo4j Queries .. 62

vi

MarkLogic Queries ... 65

MongoDB Queries .. 67

PostgreSQL Queries .. 70

Query Runtime Results Table ... 72

References ... 88

vii

LIST OF TABLES

Table Page
Table 1: Quick reference guide to the analyzed database and its respective model. 11
Table 2: Listing of the version, architecture, and install size of each database into the
virtual machine.. 11
Table 3: Listing of parameters for Virtual Machine Configurations. 12
Table 4: Description of the evaluation metrics ... 21
Table 5: Discrete Query Performance Results (time in seconds) Query 2 and 3 are an
average of the average cold and warm run times for all 10 geometries queried. This is
done for simplicity, but Table 15 in the Appendix section provides an entire detailed list
of all query run times. ... 33
Table 6: Average runtime (seconds) for the overall (cold and warm) execution time for
each query per database. Query 2 and 3 are an average of the average cold and warm run
times for all 10 geometry queries.. 34
Table 7: Count of results returned per query for each database. 38
Table 8: Overall ranking analysis of each system based on predefined metrics 59
Table 9: Example of the contents within the KML file .. 60
Table 10: MySQL supplemental code and data structure ... 61
Table 11: Neo4j supplemental code and data structure .. 62
Table 12: MarkLogic supplemental code and data structure .. 65
Table 13: MongoDB supplemental code and data structure ... 67
Table 14: PostgreSQL supplemental code and data structure .. 70
Table 15: List of all cold and warm query completion times per database and their
calculated average ... 72

viii

LIST OF FIGURES

Figure Page
Figure 1: ArcMap image of the 10 manually defined geospatial boundaries used for
queries 2 and 3. ... 26
Figure 2: ArcMap image showing the 5-mile buffer area of interest used for query 4. ... 27
Figure 3: ArcMap image of the locations of Uranium deposits from the interim output of
query 5. ... 28
Figure 4: Data ingest time (seconds) for each database to load the same dataset. 30
Figure 5: Size (MB) of each database after the same dataset was loaded. 31
Figure 6: Query Time (cold) in blue and Query Time (warm) in yellow for Query 1.
Numbers shown are the time needed to process the query in seconds. 34
Figure 7: Query Time (cold) and Query Time (warm) for Query 2. Numbers shown are
the time needed to process the query in seconds. ... 35
Figure 8:Figure 8: Query Time (cold) and Query Time (warm) for Query 3. Numbers
shown are the time needed to process the query in seconds. .. 36
Figure 9: Query Time (cold) and Query Time (warm) for Query 4. Numbers shown are
the time needed to process the query in seconds. ... 36
Figure 10: Query Time (cold) and Query Time (warm) for Query 5. Numbers shown are
the time needed to process the query in seconds. ... 37
Figure 11. Data ingest time and storage footprint. .. 42
Figure 12: The JSON based data structure for MarkLogic and MongoDB. 44
Figure 13: View of a Neo4j node (a node contains keys and values). 45
Figure 14: MySQL (and PostrgeSQL data view (tabular). ... 45
Figure 15: Differences in the results returned from query 2a for MarkLogic, Mongo, and
PostgreSQL and Neo4j and MySQL databases. ... 48
Figure 16: Differences in the results returned from query 2f for MarkLogic, Mongo, and
PostgreSQL and Neo4j and MySQL databases. ... 49
Figure 17: Differences in the results returned from query 3a for MarkLogic, Mongo, and
PostgreSQL and Neo4j and MySQL databases. ... 50
Figure 18: Differences in the results returned from query 3f for MarkLogic, Mongo, and
PostgreSQL and Neo4j and MySQL databases. ... 51
Figure 19: Query 5 outputs for all 5 databases combined. ... 53
Figure 20: Query 5 results where points unique to only Neo4j are shown in orange while
all else are in yellow. .. 54
Figure 21: Query 5 results where points unique to only MySQL are shown in purple
while all else are in yellow. ... 55

ix

Figure 22: Query 5 results where points unique to only Mongo are shown in cyan while
all else are in yellow. .. 56

x

LIST OF ABBREVIATIONS

BinaryScript Object Notation ... BSON
Database Management System .. DBMS
Extensible Markup Language ... XML
Geographic Information System ... GIS
JavaScript Object Notation .. JSON
Mineral Resources Data System .. MRDS
My Structured Query Language... MySQL
No (or Not Only) Structured Query Language ... NoSQL
Relational Database Management System ...RDBMS
Spatial Database Management System .. SDBMS
Structured Query Language ... SQL
United States Geological Survey .. USGS

x

ABSTRACT

COMPARATIVE ANALYSIS OF DATABASE SPATIAL TECHNOLOGIES (CADST)

Jodi Deprizio, M.S.

George Mason University, 2018

Thesis Director: Dr. Ruixin Yang

Spatial databases are increasingly utilized in, and are a major component of, any

Geographic Information System (GIS). There are diverse types of SDBMS available,

each with its own advantages and disadvantages, making it difficult to know which one is

best suited for a given task. In addition, there is a lack of peer-reviewed literature on this

subject specific to using GIS vector datasets that would help guide users into making the

proper database choice. The following is a comprehensive comparison of spatial database

management systems (SDBMS) for filling the gaps mentioned above. In this thesis five

database technologies were analyzed and compared to determine which was more

effective for use when storing and querying spatial vector data. Metrics for comparison

were ingest performance, storage size, query performance, accuracy, system usability,

and complexity. The databases analyzed were MySQL, MongoDB, MarkLogic, Neo4j,

and PostgreSQL (with PostGIS). Each database had significant differences in data

ingestion time, storage size, system usability, and complexity as well as substantial

variations in query execution times.

1

CHAPTER ONE: INTRODUCTION

When database management systems (DBMS) were first developed, they focused

primarily on storing generic tabular data with support for simple data types like text,

numbers, and dates. The needs of a DBMS were typically limited to accounting and

business data warehousing where data was stored and could be efficiently retrieved using

simple queries. As data evolved over time, largely due to advancements in technology

and the growing GIS movement, many databases added enhanced support for storing and

querying more specific data types. These include objects, as well as semantic and spatial

data (Worboys & Duckham, 2004; Guting, 1994; Shekhar & Chawla, 2003). In addition

to these extensions, entirely new types of databases were being created to fill gaps left by

traditional relational databases where the size and schema rigidity were issues. These

limitations were mostly due to the onset of GIS and the copious amounts of geospatial

data being collected.

Geospatial data, or spatial data, has geographic positioning information included

within it that identifies features and boundaries in relation to their location on Earth. This

data is usually stored as coordinates (latitude, longitude) or other spatial objects like lines

and polygons, can be mapped, and are often found in large datasets. Non-spatial data is

also relationally stored within a spatial dataset and is used to characterize features of

objects not related to a spatial location, e.g. mineral name, deposit type, and lithologic

and stratigraphic information (Gandhi et al., 2007). GIS is a major technological

motivation for spatial databases (Shekhar & Chawla, 2003).

2

Spatial Database Management Systems, or SDBMS, can work with underlying

DBMS and fall under the general category of GIS. They are used to create, store,

visualize, process and manipulate geospatial data (Clarke, 2011; Worboys & Duckham,

2004; Guting, 1994; Shekhar & Chawla, 2003). A critical component of any GIS is the

database as it is the basis of all decision making. Spatial data requires additional

functionalities not readily available in a general-purpose DBMS that facilitates data

extraction, storage, and analysis (Worboys & Duckham, 2004; Longley et al., 2001;

Singleton & Longley, 2010). Some of these functionalities include spatial indexing, query

optimization, and algorithms for processing spatial operations (Guting, 1994; Dolton &

Lowe, 2001). There are many SDBMS that offer a wide range of features, many specific

to a problem or data type. As a result, this can make choosing the right system

challenging. This is especially true for data types specific to GIS because they can

influence the resulting analysis.

3

CHAPTER TWO: LITERATURE REVIEW

There are several types of SDBMS used in GIS but the relational and non-

relational models are the most prevalent (Healey, 1991). The relational database

management system, or RDBMS, was created by a researcher who worked for IBM in the

1970’s named Edgar Codd. His goal was to set up a relational schema that allowed users

to easily retrieve and store data without redundancy (Codd, 1970). The relational model

uses collections of tables that represent stored objects. Each table has rows and columns

where the rows store data for the object and each column represents an attribute. The

stored data in these tables are linked by using unique values such as an index or primary

key. All associated tables have the unique primary key (per row) but in the linked tables

(non-initial) the attribute is called a foreign key. A Relational join is achievable when a

primary key in one table matches a foreign key in another table (Healey, 1991). SQL, or

Structured Query Language, is used to query and maintain the data within a relational

database. SQL, the most widely used database language, was one of the first commercial

languages used with Codd’s relational model. A RDBMS requires a schema to be defined

before adding any records to the database and changes to it can be difficult, requiring

transformation and/or re-ingestion of the source data (Worboys & Duckham, 2004;

Abdalla & Niall, 2007; Dolton & Lowe, 2001; Longley et al., 2001). Popular examples of

RDBMS include MySQL and PostgreSQL.

Non-relational, or NoSQL databases, entered the market place in the late 1990’s

and have been slowly gaining popularity ever since (Penchikala, 2013; Madison et al.,

4

2015). NoSQL databases do not rely heavily on the use of tables, typically don’t use SQL

for data manipulations, and work well with enormous amounts of data (Padhy et al.,

2011; Moniruzzaman & Hossain, 2013; Bazar & Sebastian, 2014; Madison et al., 2015).

With that said, the most notable difference between a NoSQL database and a relational

database is that data is stored without the use of a traditional relational schema. Major

types of NoSQL databases include key-value stores, column oriented databases,

document based stores, and graph databases (Padhy et al., 2011; Moniruzzaman &

Hossain, 2013).

The key-value store model, based from a paper written by Amazon in 2007, puts

the data in key pairs that are indexed for retrieval, which can hold structured and

unstructured data (Perdue, 2016). This is achieved in part using Hash tables. Hash tables,

broadly speaking, are data structures used to create an associative array and use a hash

function to compute an index that is stored in a table where specified values can be found

(USA Patent No. US 7085911 B2, 2006). Searches using this model can only be

performed on the key pairs and are limited to exact matches (Madison et al., 2015). The

Oracle NoSQL database is an example of a key-value store (Oracle, 2016).

Column oriented databases were created to store and process very large amounts

of data over several machines. Data tables are stored in columns, rather than rows, but are

otherwise very similar to the common relational database. Predictive analytics and time

stamping are functions of these systems making them ideal for analysis and data

versioning (Moniruzzaman & Hossain, 2013; Madison et al., 2015). Cassandra is a type

of column oriented database (The Apache Software Foundation, 2016).

5

Document based stores organize data as a collection of documents encoded in a

standard data exchange format like XML (eXtensible Markup Language) or JSON

(JavaScript Object Notation). Searches can be conducted on both the keys and the values

and each document can contain hundreds of attributes of different data types (Perdue,

2016; Madison et al., 2015). MongoDB and MarkLogic are both document based

databases (MongoDB, Inc., 2016; MarkLogic Corporation, 2016).

Graph databases became popular in the 1980’s and 90’s and were an attempt to

overcome the limitations of traditional RDBMS, particularly where GIS is concerned. In

general graph databases are a collection of nodes and edges where each node represents a

conceptual object and each edge represents a relationship (Angles & Gutierrez, 2008;

Padhy et al., 2011; Madison et al., 2015). This relationship is fundamental to the graph

database model and is best when storing substantial amounts of interconnected data.

Neo4j is an example of a graph database (Neo4j, 2016).

Choosing the right spatial database for the task at hand is extremely important

(Shekhar & Chawla, 2003; Guting, 1994). Each system has its own advantages and

disadvantages that are dependent upon the type of ingested data and the expected

outcome of the analysis (Worboys & Duckham, 2004; Dolton & Lowe, 2001). Making

the right choice is becoming increasingly difficult as more and more DBMS are adding

spatial modules or extensions for use with geospatial data (Van Oosterom et al., 2002).

The following is a review of the available literature for MySQL, MongoDB, MarkLogic,

6

Neo4j, and PostgreSQL (with PostGIS) databases focusing on SDBMS comparative

analysis.

MySQL is purported to be the most popular open source RDBMS and uses SQL

to maintain and query data within the database. This system was originally developed to

manage substantial amounts of information faster than the traditional databases available

at the time. The most recent version of MySQL (5.7) offers GIS functions and spatial

indexes (R-Tree) out-of-the-box with additional extensions that allow users to perform

operations on spatial data, such as determining the distance between two objects.

Documentation for GIS features and extensions supported are available on the MySQL

website which facilitate the generation, storage, and analysis of geographic information

(Oracle Corporation, 2016; Karlsson, 2008).

Nair et al. (2015) did a side by side comparison of MySQL, PostgreSQL (with

PostGIS), and SpatialLite, all open source RDBMS, and concluded that MySQL

performed best when used with web applications but lacked in stability, raster support,

and spatial features (Nair et al., 2015). With that said, the spatial features that MySQL

does support have very fast query executing times as was pointed out in an analysis

conducted by Zhou et al. (2009). In this study, they compared the query speeds of

MySQL to PostgreSQL (with PostGIS), Oracle Spatial, and IBM DB2 Spatial Extender,

other popular open-source and commercial databases (Zhou, et al., 2009). When MySQL

was compared to SQL Server, a commercially supported RDBMS, to determine which

had better query processing times, the results were in favor of SQL Server (Amlanjyoti et

al., 2015). The query execution time was measured as a performance metric in both the

7

Zhou et al., and Amalanjyoti et al., analysis, however, only one of these studies used a

geospatial dataset. In addition, the ingestion time and storage and memory footprint were

only loosely captured in the future research section of the Amalanjyoti et al. analysis

(Amlanjyoti et al., 2015; Nair, Chauhan, & Vats, 2015).

PostgreSQL is another mature open-source RDBMS that utilizes a structured

query language. It has no limitations on the size of the database or the number of rows

and indexes per table (The PostgreSQL Global Development Group, 2017). It is also

highly customizable and can run stored procedures in a plethora of programming

languages which include Java, Python, and its own PL/pgSQL. PostGIS is one of the

features offered by PostgreSQL which provides support for geographic objects that are

used to create a spatial database for GIS like ESRI’s Spatial Database Engine (The

PostgreSQL Global Development Group, 2017).

Miler et al. (2013) compared the performance of Dijkstra’s shortest path

calculation using Neo4j and PostGIS to determine if there was any difference in

calculation time using road data from OpenStreetMap (Miler, Medak, & Odobasic,

2013). They hypothesized that the graph database (Neo4j) would be the better choice for

this type of calculation however that was not the case. They determined that Neo4j was

not suitable for the shortest path algorithm because it uses a full graph traversal which

takes up substantial amounts of memory (Miler, Medak, & Odobasic, 2013). In this study

PostgreSQL (with PostGIS) had both lower peak memory consumption and faster hot and

cold query times.

8

Another open-source option is MongoDB which differs from MySQL and

PostgreSQL because it is a NoSQL, document based, database. Rather than store data in

tables like relational databases, MongoDB uses collections of fields and values, in a

structured BinaryScript Object Notation (BSON) format. Standard SQL is not supported

by MongoDB; however, it does support a rich query text of its own as well as JavaScript.

Queries can consist of a mix of non-JavaScript and JavaScript code in the same instance.

Geospatial indexes and query tools are available to analyze spatial data. Further

documentation can be found on their website (MongoDB, Inc., 2016).

A study conducted by Bazar & Sebastian (2014) compared popular open-source,

NoSQL, databases to aid readers in transitioning from a traditional RDBMS to a NoSQL

solution. One of the databases in this study was MongoDB. The other two databases in

this study were Couchbase, similar to MongoDB as it is another document-based

database, and Cassandra, a column oriented database. The analysis concluded that

MongoDB processed requests faster than Cassandra but slower than Couchbase even

though they all showed approximately equal read speeds (Bazar & Sebastian, 2014). In a

similar analysis comparing MongoDB to MySQL, Kumar et al. (2015) found that

MongoDB had data processing speeds that were much faster than MySQL. In addition,

Aghi et al. (2015) found that MongoDB performed better than MySQL when there were

complex queries especially when they involved multiple joins. Query execution times,

data ingestion, and memory footprints were evaluated in these studies but weren’t

specific to geospatial data or spatial queries.

9

MarkLogic is a commercially supported, document based, NoSQL database that

provides storage for many data types including JSON, XML, and geospatial objects.

Structured and unstructured data, as well as any pertinent metadata, are stored in the same

database (MarkLogic Corporation, 2016). Although MarkLogic was released in 2001,

there are no apparent peer reviewed database comparative analysis available. With that

said, there are blog posts available that compare the MarkLogic product to other similar

databases, such as MongoDB, as well as highlight the overall benefits of using

MarkLogic but these are based on opinion and lack unbiased scientific discovery

(Fowler, 2013).

Neo4j is a NoSQL graph database that contains a spatial extension library. This

library provides spatial indexes that allow users to search their data for objects within a

certain distance (proximity) or within a specified area (Bass, 2012; Neo4j, 2016). The

database is queried using the Cypher Query Language, a recent addition to the Neo4j

platform (Jaiswal & Agrawal, 2013; Batra & Tyagi, 2012).

Batra & Tyagi (2012) conducted a comparative analysis of MySQL and Neo4j to

showcase graph databases as a replacement for traditional RDBMS when dealing with

large datasets that need a dynamic schema. They found that Neo4j could retrieve data at a

much faster rate than MySQL and the schema for Neo4j was more flexible as new

relationships could be added without the need for restructuring (Batra & Tyagi, 2012).

Jaiswal & Agrawal (2013) also compared Neo4j to MySQL and, similar to Batra & Tyagi

(2013), determined that the graph database outperformed the RDBMS in query retrieval

10

time. While these studies looked at query performance and retrieval times they were not

specific to geospatial data.

This thesis will assist the GIS community by evaluating the spatial competency of

MySQL, MongoDB, MarkLogic, Neo4j and PostgreSQL (with PostGIS) databases when

used with a vector dataset. Overall the literature review showed gaps in the lack of

comparative analysis available for these databases using geospatial data. Although some

literature is available on query performance there was little to none for storage and

memory footprint, ingest performance, and the complexity, usability, and accuracy of the

database. There was no peer reviewed literature for MarkLogic. In some cases, such as

Neo4j, the range or type of database used to conduct the comparative analysis was

limited, e.g. Neo4j vs MySQL. Almost all the studies reviewed emphasized the need for

future comparative research on other SDBMS largely because there are many to choose

from and each has its own pros and cons. The following will evaluate each selected

database and provide valuable information to assist users in making the right SDBMS

choice for their data.

11

CHAPTER THREE: METHODOLOGY

Research was performed by initializing the five selected databases and comparing

them to one another. The same geospatial (vector) dataset and spatial queries were used

for the analysis. Further information on the data used in this analysis is available in the

About the Data section. The five databases chosen to conduct this comparative analysis

were MySQL, MongoDB, MarkLogic, Neo4j, and PostgreSQL (with PostGIS). Table 1

provides a reference guide to each database and its respective model. Table 2 lists the

version, architecture, and install/download size.

Table 1: Quick reference guide to the analyzed database and its respective model.

Database Open
Source

Commercially
Supported RDBMS

NoSQL
(Non-
Relational)

Graph
Database

MySQL X X
MongoDB X X
MarkLogic X X
Neo4j X X
PostgreSQL X X

Table 2: Listing of the version, architecture, and install size of each database into the virtual machine.
Database Version Architecture Install Size
MySQL Community Server 5.7.17-1 64 bit 202 MB
MongoDB 3.4.2 for Redhat Enterprise Linux 7 64 bit 257 MB
MarkLogic For CentOS 7 8.0-6.1 64 bit 193 MB
Neo4j Community Edition 3.1.2 64 bit 99 MB
PostgreSQL 9.6.3 with PostGIS 2.3.2 r15302 64 bit 104 MB

12

To provide a controlled environment, a single virtual machine was created and

cloned for each database type. The VM hosting platform used was VirtualBox version

5.1.14. The parameters for the virtual machine image are described in Table 3.

Table 3: Listing of parameters for Virtual Machine Configurations.
Parameter Value
Processor Dual-Core with VT-x hardware support
RAM 8192MB
Storage 32GB
Network Interface Bridged to host adapter, 1GB

The Operating System installed on the VM image was CentOS Linux release

7.3.1611. For simplicity, both SELinux and the firewalld process were disabled on the

image before cloning. After cloning the image, the database systems were installed, and

the tests were performed.

Loading data into a database can typically be done in several ways. For the

purposes of this analysis data ingestion was performed using the most common method

for each system. These methods are explained in detail below per database.

Installation, Configuration, and Ingestion

MarkLogic
MarkLogic was installed using yum via the RPM package obtained from the

MarkLogic website. The command used to install the product was:

#yum install MarkLogic-RHEL7-8.0-6.1.x86_64.rpm

13

After installation, the initial configuration was performed automatically.

MarkLogic is configured and managed via a web interface. Using this interface, a

geospatial element pair index was created on the Documents database prior to loading the

data. MarkLogic offers a tool called the MarkLogic Content Pump for ingesting data.

This tool was used to parse the CSV file and insert the data into the Documents database.

The following command was run to load the data into MarkLogic:

#./mlcp.sh import -host localhost -port 8006 -username admin -password ###### \

-input_file_type delimited_text -document_type json -input_file_path /tmp/mrds.csv

MarkLogic can execute 2 types of queries: ad-hoc and stored. Stored queries are

typically inserted into a modules database within MarkLogic and run via calling a web

service or invoked via an ad-hoc query. Ad-hoc queries are run via a web interface that is

built into MarkLogic called QConsole.

After the data was ingested, a transformation was run on all the documents in

order to extract the latitude and longitude values into a usable format for the range index

created previously. This was a three-step process. First, a stored module was created that

contained logic to produce a point property from the latitude and longitude properties

stored in the documents. This module was then loaded into the modules database for

execution. Finally, an ad-hoc query was run to apply the transformation module against

every document. This process is detailed below:

1. Stored Transformation Module:

declareUpdate();
function createGeoPoint(doc) {

14

 if (doc.latitude && doc.longitude) {
 doc.point = {latitude: parseFloat(doc.latitude), longitude:
parseFloat(doc.longitude)};
 }
 return doc;
}
var doc = cts.doc(uri);
var docObject = doc.toObject();
xdmp.nodeReplace(doc, createGeoPoint(docObject));

2. Load the transformation module into the modules database (executed from

QConsole)

// Load the transformation Module
declareUpdate();
xdmp.documentLoad('/tmp/createGeoPoint.sjs', {uri: '/createGeoPoint.sjs', permissions:
xdmp.defaultPermissions()});

3. Run the transformation module against every document (Executed from

QConsole)

for (var uri of cts.uris(null, null, cts.trueQuery())) {
 xdmp.spawn(
 '/createGeoPoint.sjs',
 {uri: uri},
 {transactionMode: 'update-auto-commit'}
);
}

MySQL
 MySQL was installed using yum directly from the preconfigured repositories in

CentOS:

#yum install mysql-community-server

15

To interface with MySQL, the tool MySQL Workbench 6.3 Community Edition

was installed on the host machine and configured to connect to the MySQL instance

running within the guest VM. After installation and startup, a spatial index was created

by running a query in MySQL Workbench. Next, the data was loaded by running a

second query. Finally, a transformation was run to synthesize point fields for each row to

use with the MySQL spatial index. The process is detailed below:

1. Create spatial index

ALTER TABLE mrds.mrds ADD SPATIAL INDEX coords_index (coords);

2. Ingest data into MySQL

LOAD DATA INFILE '/var/lib/mysql-files/mrds.csv'
INTO TABLE mrds.mrds
FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY '\n'
IGNORE 1 LINES
(dep_id,url,mrds_id,mas_id,site_name,@vlat,@vlon,region,country,state,county,com_typ
e,commod1,commod2,commod3,oper_type,dep_type,prod_size,dev_stat,ore,gangue,othe
r_matl,orebody_fm,work_type,model,alteration,conc_proc,names,ore_ctrl,reporter,hrock
_unit,hrock_type,arock_unit,arock_type,structure,tectonic,ref,yfp_ba,yr_fst_prd,ylp_ba,y
r_lst_prd,dy_ba,disc_yr,prod_yrs,discr)

SET latitude = nullif(@vlat,''),
longitude = nullif(@vlon,'');

3. Synthesize point fields

UPDATE mrds.mrds SET coords = GeometryFromText(CONCAT('POINT(', longitude,
' ', latitude, ')'));

Neo4j
Neo4j was extracted and run directly from its source package:

16

#tar xf /tmp/neo4j-community-3.1.2-unix.tar.gz

In order to utilize spatial capabilities, the Neo4j spatial library (Release 0.24) was

installed. The installation process for neo4j-spatial involves building the library from

source (via Maven) and then copying the compiled jar file into the Neo4j plugin

directory. Maven was installed on the VM via the preconfigured CentOS yum repository,

and the spatial plugin was built using the command:

#mvn install

This produced a jar file that was copied into the Neo4j plugin directory.

Neo4j comes with a built-in web interface called Neo4j Browser for running ad-hoc

queries against the database. This interface was used for loading the data and running

queries. The loading and transformation process for Neo4j consisted of running an initial

load query, followed by running a query to produce the geospatial layer necessary for

utilizing the Neo4j-spatial plugin. These queries are detailed below:

1. Load the data into Neo4j

USING PERIODIC COMMIT 10000
LOAD CSV WITH HEADERS FROM "file:/tmp/mrds.csv" AS row
CREATE (:Resource {dep_id: row.dep_id, url: row.url, mrds_id: row.mrds_id, mas_id:
row.mas_id, site_name: row.site_name, latitude: toFloat(row.latitude), longitude:
toFloat(row.longitude), region: row.region, country: row.country, state: row.state, county:
row.county, com_type: row.com_type, commod1: row.commod1, commod2:
row.commod2, commod3: row.commod3, oper_type: row.oper_type, dep_type:
row.dep_type, prod_size: row.prod_size, dev_stat: row.dev_stat, ore: row.ore, gangue:
row.gangue, other_matl: row.other_matl, orebody_fm: row.orebody_fm, work_type:
row.work_type, model: row.model, alteration: row.alteration, conc_proc: row.conc_proc,
names: row.names, ore_ctrl: row.ore_ctrl, reporter: row.reporter, hrock_unit:
row.hrock_unit, hrock_type: row.hrock_type, arock_unit: row.arock_unit, arock_type:
row.arock_type, structure: row.structure, tectonic: row.tectonic, ref: row.ref, yfp_ba:

17

row.yfp_ba, yr_fst_prd: row.yr_fst_prd, ylp_ba: row.ylp_ba, yr_lst_prd: row.yr_lst_prd,
dy_ba: row.dy_ba, disc_yr: row.disc_yr, prod_yrs: row.prod_yrs, discr: row.discr});

2. Construct a geospatial layer containing all the records in the dataset.

MATCH (r:Resource) WHERE r.latitude is not null and r.longitude is not null
WITH r
CALL spatial.addNode("layer_resources", r) YIELD node as n
RETURN COUNT(*) as cnt;

Of significance, this step took over 10 hours to complete.

MongoDB
MongoDB was installed directly in CentOS via the preconfigured yum repository

system:

#yum install mongodb-org

MongoDB provides a tool called mongoimport for ingesting data. This tool was

used to parse the CSV file and insert the data into the mrds collection within the local

database. The following command was run to load the data into MongoDB:

#mongoimport -d local -c mrds --type csv --file /tmp/mrds.csv –headerline

Queries in MongoDB were run via a tool called Robo 3T, a GUI interface for

managing and querying MongoDB. In order to make use of MongoDB’s geospatial

indexes, a field was synthesized in each record to hold the geospatial data in the format

[longitude, latitude] by running the following query:

db.mrds.find().forEach(function(row) { if (row.latitude && row.longitude) {row.point =
[row.longitude, row.latitude]; } db.mrds.save(row); });

18

 A text index was created on the com_type field for use in Queries 1 and 3:

db.mrds.createIndex({ com_type: “text” }, { sparse: true });

Finally, a geospatial index was created on the point field constructed above:

db.mrds.createIndex({ point: "2dsphere" }, { sparse: true });

PostgreSQL
 PostgreSQL and PostGIS were both installed directly in CentOS via the

preconfigured yum repository system:

#yum install postgresql96-server.x86_64
#yum install postgis2_96.x86_64

For interacting with PostgreSQL, the open-source tool pgAdmin4 was used. The

tool provides mechanisms for configuring and connecting to PostgreSQL databases, as

well as executing queries and loading data. The following query was run to create a new

table:

CREATE TABLE public.mrds
(
 dep_id character varying,
 url character varying,
 mrds_id character varying,
 mas_id character varying,
 site_name character varying,
 latitude character varying,
 longitude character varying,
 region character varying,
 country character varying,
 state character varying,
 county character varying,
 com_type character varying,

19

 commod1 character varying,
 commod2 character varying,
 commod3 character varying,
 oper_type character varying,
 dep_type character varying,
 prod_size character varying,
 dev_stat character varying,
 ore character varying,
 gangue character varying,
 other_matl character varying,
 orebody_fm character varying,
 work_type character varying,
 model character varying,
 alteration character varying,
 conc_proc character varying,
 names character varying,
 ore_ctrl character varying,
 reporter character varying,
 hrock_unit character varying,
 hrock_type character varying,
 arock_unit character varying,
 arock_type character varying,
 structure character varying,
 tectonic character varying,
 ref character varying,
 yfp_ba character varying,
 yr_fst_prd character varying,
 ylp_ba character varying,
 yr_lst_prd character varying,
 dy_ba character varying,
 disc_yr character varying,
 prod_yrs character varying,
 discr character varying,
 PRIMARY KEY (dep_id)
)
WITH
(
 OIDS = FALSE
);

ALTER TABLE public.mrds
OWNER
to
postgres;

20

After the table was created, the data from the csv file was loaded into the table by running

COPY mrds FROM '/tmp/mrds.csv' WITH DELIMITER ',' CSV HEADER;

Once the data was loaded, the latitude/longitude fields needed to be synthesized

into a geography data type to take advantage of PostGIS indexes. A new column

“pointgeo” with type “geography” was added to the “mrds” table and an index was added

on the column via the pgAdmin4 graphical interface. Finally, the latitude/longitude fields

were parsed to construct the “pointgeo” geography within the table.

update mrds
set pointgeo = st_geogfromtext('SRID=4326;POINT(' || longitude || ' ' || latitude || ')');

Key Metrics
The five systems have been analyzed by way of both qualitative and quantitative

methods. Ingest performance, query performance, accuracy, and storage and memory

footprint have been quantitatively measured while usability and complexity were

assessed subjectively. The strategy included:

1. Installing the databases on identical virtual machines.

2. Loading the same dataset into each management system.

3. Running the same predefined set of queries against each database.

4. Analyzing the query outputs for accuracy (it might be possible that differences

in query languages and or styles could cause the system to return a different

number of results).

Table 4 below further details these metrics and how they have been measured.

21

Table 4: Description of the evaluation metrics
Metric Name Measurement Unit Description of Measurement

Ingest
performance Seconds

How long does it take to load the entire
dataset? Are there extra steps to loading
(pre or post-processing)?

Storage Bytes How much space does the loaded
database consume on disk?

Query
performance Seconds

Data retrieval time. How long does
each query take to resolve the results?
Provide wait analysis and graphs.

Accuracy Number of records returned Do all the databases provide the
expected query results?

Usability Qualitative description of
user experience

Were there any other factors that made
one database easier to use than another?

Complexity

Lines of query, number of
processes for each database
used, and available
documentation

How difficult is it to query for data? Do
some databases require more complex
queries to achieve the same results
(using the same objective and
instruction)?

Measuring each of these metrics relied on the instrumentation provided by each

individual database and tool. For example, MongoDB provides a tool called

mongoimport for loading data, that displays its runtime in its program output.

MarkLogic’s mlcp tool also displays its runtime as program output, but appears to round

the time value to the nearest second. For Neo4j, MySQL, and PostgreSQL, loading was

performed by executing ad-hoc queries against each database, and the query runtime was

recorded by the Neo4j Browser, MySQL Workbench, and pgAdmin4 respectively.

Likewise, storage size measurement relied on the tools provided. Storage size for

MarkLogic was taken from its administration interface. Neo4j storage was recorded from

the Neo4j Browser. MySQL, PostgreSQL, and MongoDB storage values were recorded

from the operating system measurement of the database directory size on disk.

22

Usability is a subjective measurement that was derived from the amount of effort

required to construct each query or transform the input or output from a system. The

more preprocessing and data manipulation required to execute a query or transform a

dataset, the less usable a system is considered. Other considerations for usability include

toolsets, documentation, and community support (access to online resources for training

and reference material).

About the Data
The dataset used was the US Geological Survey’s (USGS) Mineral Resource Data

System (MRDS). It contains records about mineral resources, such as the type, location,

reporter, site name, discovery year, and more. It is available online here

https://mrdata.usgs.gov/mrds/. The original publication date for this dataset was 2005 and

it was last updated in March of 2016. The dataset contains 304,633 total records with 44

heterogenous fields including text, scalar values, and spatial data (latitude/longitude).

Querying the Data:
A database may have many simultaneous operations occurring at any given time,

which can cause minor variations in the performance of a query at a given moment.

Likewise, the operating system may have intermittent maintenance and housekeeping

tasks that can affect processing performance from one moment to the next. Compounding

this variance, most database systems employ a caching mechanism that provides for

improved performance of frequently run queries. After a query is executed, the partial

results from the execution are maintained in cache to provide faster access for subsequent

runs. Queries that are assisted by this cache are generally referred to as “warm” queries,

23

and queries that occur with no cache assistance are referred to as “cold” queries. To take

these variables into account, each query was executed a total of 10 times, 5 immediately

after a database restart (to measure performance with an empty cache), and 5 executed in

immediate succession. The results of these trials were averaged for the conclusive results

detailed below. This methodology was followed to remove any minor variances in

performance across trials due to external influences.

The spatial queries used for performance measurements are defined below and

will be notated throughout this thesis by the corresponding number (e.g. Query 1):

1. Find all records with the attribute type of “non-metal.”

2. Find all records within a specified geometry. This was manually

conducted for10 different regions (Refer to Figure 1 for an illustration of

the geometries queried).

3. Find all records of type “non-metal” within a defined geometry. This was

manually conducted for 10 different regions (Refer to Figure 1 for an

illustration of the geometries queried).

4. Find all records within 5 miles of the Potomac River in Washington DC.

(Refer to Figure 2 for a detailed map view of the defined space).

5. Find all records within 1 mile of Uranium deposits. (For a detailed view of

the Uranium deposit locations refer to Figure 3).

These five queries were formulated to test different properties of each DBMS,

ranging from basic, non-spatial information retrieval, to more complex geospatial

queries. Query 1 is a basic attribute query, without any geospatial properties. Query 2 is a

24

simple geospatial geometry query. Query 3 is a combination of queries 1 and 2. Query 4

is a complex polygon geospatial query. Lastly, Query 5 is a 2-part query, using the output

of the initial attribute query to dynamically construct a geospatial query.

Because each of the databases use a different query language, the methods for

querying data differed substantially. MarkLogic and MongoDB both use JavaScript as

their query language, but each provides a separate set of extensions and support functions

for executing queries. MySQL and PostgreSQL use SQL as their querying languages,

with some geospatial-specific language extensions and features for querying spatial data.

Neo4j uses Cypher as its query language, which is similar to SQL but with some features

that enhance the ability to query multi-level relationships within a connected graph.

Query 1 was the simplest query of the set, and therefore the most logically

consistent query across all the databases. This query serves as a baseline for simple data

retrieval within the DBMS.

The geometries for Queries 2 and 3 were produced by drawing 10 bounded areas,

5 rectangles and 5 polygons, each randomly chosen in separate geographic regions within

the United States using Google Earth. These latitude and longitudes were recorded, and

the resulting geometries were used in the queries for all 5 databases using their respective

languages.

The geometries for Query 4 were constructed by producing a KML file using

Google Earth. A line was drawn along the center of the Potomac river within Washington

D.C. and a 5-mile buffer was applied to the line, and the output was saved into a KML

file. MarkLogic and PostgreSQL with the PostGIS extension could automatically load the

25

geometry within the KML file and use it as part of the query. All other databases required

extracting the KML file as text, and then constructing the appropriate geometries as

strings that the candidate database would understand. This process required a significant

amount of time and effort and is typical of the workflow of a geospatial analyst.

The first part of Query 5 returned a result set that contained all the mineral

deposits with a primary commodity type of Uranium. The query then used the resulting

latitudes and longitudes from this set to dynamically construct a geospatial query of a 1-

mile radius circle around every item. Because each database represents distances

differently and expects different geometries to represent a point buffer (circle), this query

had the most inconsistent logic across all the databases. Figure 3 illustrates the first part

of this query highlighting the locations of all the Uranium deposits within the Continental

United States.

26

Figure 1: ArcMap image of the 10 manually defined geospatial boundaries used for queries 2 and 3.

27

Figure 2: ArcMap image showing the 5-mile buffer area of interest used for query 4.

28

Figure 3: ArcMap image of the locations of Uranium deposits from the interim output of query 5.

29

RESULTS

Ingestion and Storage
Based on the reviewed literature, it was deemed likely that there would be

significant differences in the data ingestion time in each of the different database systems.

It was also expected that the data within each of the spatial databases would have

different storage and memory footprints after ingesting the same dataset. This anticipated

difference would occur because all five databases employ vastly different data structures

for storing information. These different data structures influence the size of the stored

data, as well as the performance of data retrieval.

The first stage of this comparative analysis consisted of loading the preprocessed

geospatial data into the respective databases to measure ingest performance and the

overall size of the database (storage and memory footprint). As predicted, there were

significant differences in the amount of time each database took to load the same dataset

with a maximum ingest time of 108s with MarkLogic and a minimum time of 3s with

PostgreSQL. Figure 4 further details these differences in data ingestion time per database.

Likewise, there were large variations in the resulting storage size for each system with a

maximum of 1901MBs for MarkLogic and a minimum of 177MBs for MySQL, as

detailed in Figure 5. The data loading times tended to correlate with the resulting

database size, with larger database sizes linked to longer ingestion times. This distinction

will be further discussed in the Conclusion and Future Research section of this Thesis.

30

Figure 4: Data ingest time (seconds) for each database to load the same dataset.

31

Figure 5: Size (MB) of each database after the same dataset was loaded.

Query Performance
It was anticipated that there would be significant differences in query

performance, measured by their execution times, between each of the spatial databases

compared. As noted in the Ingestion and Storage section, the data structures a database

uses affects the query and retrieval performance of a DBMS. Since each one of the

candidate databases utilized different indexing mechanisms, it was estimated that they

would perform differently under different scenarios, with some being better suited at

certain types of queries than others.

32

As anticipated, all five systems demonstrated substantial variations in query

execution times. Table 5 shows the discrete results of the cold and warm queries run

against each database apart from queries 2 and 3 where the computed average of the

average cold and warm performance times for all the 10 bounding geometries are

documented. Table 6 aggregates these values into the average overall runtimes per query

per database. A full list of discrete query runtimes is available in the Appendix section of

this thesis.

These results show that MarkLogic was the fastest performing database among

the group across all 5 queries. MySQL had the second fastest retrieval performance for

queries 2, 3, and 4 while PostgreSQL and MongoDB came in second for query 1 and

query 5 respectively. MongoDB had the third fastest performance for queries 1, 4, and 2

along with MySQL for query 5 and PostgreSQL for query 3. For queries 2, 4, and 5

PostgreSQL had the fourth fastest times along with MySQL for query 1 and MongoDB

for query 3. Neo4j consistently required longer query processing times for all 5 queries

executed.

All five databases were able to complete all five of the defined queries although

performance times varied significantly between databases. Query 5 had the largest

variance across all the databases observed with a minimum runtime of 0.055s with

MarkLogic and a maximum of 1585.9s, approximately 26 minutes, with Neo4j. These

and other outcomes are further illustrated in Figures 6-10. Each query was defined

previously under the Methodology section and will be noted using the same numerical

33

key. The full query text for each query performed can be found in the Appendix section of

this thesis.

Table 5: Discrete Query Performance Results (time in seconds) Query 2 and 3 are an average of the average cold
and warm run times for all 10 geometries queried. This is done for simplicity, but Table 15 in the Appendix
section provides an entire detailed list of all query run times.
Database Query # Query Time (cold) Query Time (warm)
MarkLogic 1 0.001954 0.0012574

2 0.001585 0.000712
3 0.002306 0.001224
4 0.0121788 0.0104978
5 0.06227 0.0474812

MongoDB 1 0.026 0.0184
2 0.10742 0.04246
3 0.35222 0.15742
4 0.071 0.057
5 740.961 769.7186

MySQL 1 0.024875 0.024839
2 0.05692351 0.039764865
3 0.043668845 0.027020345
4 0.036066 0.032606
5 783.5784 786.5094

Neo4j 1 0.9546 0.363
2 1.27264 0.46942
3 1.31064 0.51334
4 8.9392 6.5932
5 1666.435 1505.4304

PostgreSQL 1 0.010747 0.008265
2 0.11455298 0.11076532
3 0.2778676 0.08241374
4 3.39914 3.333564
5 1303.978 1462.89

34

Table 6: Average runtime (seconds) for the overall (cold and warm) execution time for each query per database.
Query 2 and 3 are an average of the average cold and warm run times for all 10 geometry queries.

Query #
Database 1 2 3 4 5
MarkLogic 0.0016 0.0011 0.0018 0.0113 0.0549
MongoDB 0.0222 0.0749 0.2548 0.0640 755.3398
MySQL 0.0249 0.0483 0.0353 0.0343 785.0439
Neo4j 0.6588 0.8710 0.9120 7.7662 1,585.9327
PostgreSQL 0.0095 0.1127 0.1801 3.3664 1,383.4340

Figure 6: Query Time (cold) in blue and Query Time (warm) in yellow for Query 1. Numbers shown are the
time needed to process the query in seconds.

35

Figure 7: Query Time (cold) and Query Time (warm) for Query 2. Numbers shown are the time needed to
process the query in seconds.

36

Figure 8:Figure 8: Query Time (cold) and Query Time (warm) for Query 3. Numbers shown are the time needed
to process the query in seconds.

Figure 9: Query Time (cold) and Query Time (warm) for Query 4. Numbers shown are the time needed to
process the query in seconds.

37

Figure 10: Query Time (cold) and Query Time (warm) for Query 5. Numbers shown are the time needed to
process the query in seconds.

Accuracy
As the primary purpose of a database is accurate data storage and retrieval, it was

expected that each database would produce the exact same results for the same high-level

queries issued. There were not expected to be any variances in the number of results

returned. In addition, this metric was used to ensure that the functions used to query each

database were in fact the proper ones to use as each database used different query

languages.

Somewhat unexpected, not all databases returned the same number of results for

every query. Queries 1 and 4 were the only queries that returned the same number of

results for all five databases tested. The remainder of the results returned for each of the

databases per query had only slight variances from database to database however there

38

were a few noteworthy deviations. For queries 2 and 3, MarkLogic, MongoDB, and

PostgreSQL all agreed on the number of results returned per executed query, while

MySQL and Neo4j agreed on a different number of result matches. None of the databases

agreed on query 5, and they each returned a slightly different number of results with the

minimum returned result of 17,032 from MongoDB and a maximum of 17,059 from

MySQL, a difference of 24 data points. Table 7 illustrates these commonalities and

differences in further detail including the query number, database, and the number of

results returned. These deviations will be further discussed in the Conclusions section of

this thesis.

Table 7: Count of results returned per query for each database.
Database

Query # MarkLogic MongoDB MySQL Neo4j PostgreSQL
1 111061 111061 111061 111061 111061
2a 3254 3254 3236 3236 3254
2b 3763 3763 3758 3758 3763
2c 19020 19020 19073 19074 19020
2d 15130 15130 16217 16217 15130
2e 1342 1342 1290 1290 1342
2f 4701 4701 4793 4793 4701
2g 1669 1669 1642 1642 1669
2h 3493 3493 3631 3631 3493
2i 9813 9813 9581 9581 9813
2j 37323 37323 37636 37636 37323
3a 1730 1730 1736 1736 1730
3b 1209 1209 1203 1203 1209
3c 3050 3050 3078 3078 3050
3d 4748 4748 4886 4886 4748
3e 1085 1085 1045 1045 1085

39

3f 2850 2850 2887 2887 2850
3g 1331 1331 1330 1330 1331
3h 2230 2230 2312 2312 2230
3i 2582 2582 2549 2549 2582
3j 7385 7385 7259 7259 7385
4 74 74 74 74 74
5 17039 17032 17059 17040 17038

Usability and Complexity
Because each of the tested databases were initially built with a specific intention,

it was predicted that there would likely be differences in usability and complexity

between them. In some cases, a geospatial capability was not built directly into the

platform, but rather added as an extension after the product was released. In other cases,

the database was built for more general-purpose data storage with geospatial as a small

subset of the overall platform.

As expected, there were significant differences in the usability and complexity of

each of the database systems tested. All the databases required some amount of initial

preprocessing to produce the proper format for optimal indexing within each database

system. This effort was mostly equivalent across all the databases. Essentially, the initial

ingested data needed to be supplemented to convert its scalar-based data into a geospatial

format. Of note, the data preprocessing step for Neo4j was significant in that although the

syntax was relatively trivial, the processing itself took over 10 hours to complete.

Out of the databases surveyed, the databases that required the least overall query

preprocessing and data manipulation were MarkLogic and PostgreSQL (with PostGIS).

As mentioned in the Methodology section, the complex geometry for Query 4 required a

40

significant amount of preprocessing for all tested databases except MarkLogic and

PostgreSQL (with PostGIS), due to both databases having native support for KML.

Support-wise, Neo4j tended to have the fewest information resources available

online. MarkLogic tended to not have much community-provided information but had

very comprehensive documentation that made query construction relatively straight-

forward. MongoDB tended to have very broad community support and relatively useful

product documentation. MySQL had broad community support, but had some vagueness

in its documentation, particularly surrounding the units used for geospatial buffers. Both

PostgreSQL and PostGIS had an extensive online community with comprehensive

documentation which made query construction considerably easier.

Subjectively speaking, the order of usability from best to worst was MarkLogic,

MongoDB, PostgreSQL (with PostGIS), MySQL, and Neo4j.

41

CONCLUSION AND FUTURE RESEARCH

Given an identical input dataset, there were significant differences in the data

ingestion time and the resulting storage footprint of the databases. The ingestion time

tended to strongly correlate with the resulting size of the database. This relationship is

illustrated in Figure 11 which shows the subsequent database size per system as well as

the data ingest time. MarkLogic took the longest time to load the data (108 seconds) and

had the largest resulting database size (876MB). MongoDB, a NoSQL document-based

database, like MarkLogic, had a storage footprint of 425MB, a full 451MB less than

MarkLogic, and took 11.5 seconds to load the data. In comparison, MySQL had the

second shortest loading time at 4.5 seconds, and the smallest resulting database size

(177MB) while PostgreSQL, also an RDBMS, ingested the dataset the fastest (3 seconds)

with a resulting database size almost double that of MySQL (342MB). Neo4j, the only

graph database of the group, had a loading time of 24.4 seconds, and a resulting database

size of 632.3MB.

42

Figure 11. Data ingest time and storage footprint.

The reason for the large variations in storage size and ingestion time is due in part

to the difference in data structures used by each database to store the dataset. Figures 12,

13, and 14 show how each database stored the same dataset differently. MarkLogic and

MongoDB store their data as JSON documents. MySQL and PostgreSQL store their data

in tabular format (relational), and Neo4j stores its data as Nodes, which contain keys and

values (much like a document). Additionally, the databases have different default

indexing strategies. For example, upon ingestion into the MarkLogic database every field

from each record is added to its universal index, which is MarkLogic’s mechanism for

querying data by value. This universal index provides capabilities more aligned with a

search engine, such as term-frequency/inverse-document-frequency relevance scoring for

results. As a result, MarkLogic had the longest data ingest time and largest storage

footprint. The other analyzed databases don’t build a general-purpose index by default,

43

and instead rely on a complete database scan when running queries on non-indexed

fields. The lack of these indexes by default results in smaller on-disk sizes, at the expense

of general-purpose query performance. To more accurately compare the databases in this

regard, it would be necessary to add a text index on every field in each record and

compare resulting data size.

44

Figure 12: The JSON based data structure for MarkLogic and MongoDB.

45

Figure 13: View of a Neo4j node (a node contains keys and values).

Figure 14: MySQL (and PostrgeSQL data view (tabular).

46

Variations in query time and database performance were also prevalent among the

five systems analyzed with query 5 resulting in the longest execution time for all systems.

MarkLogic had the fastest query time for all 5 queries with an overall average resolution

time of 0.014 seconds. MongoDB and MySQL had similar overall average query times of

151 and 157 seconds respectively with query 1 being the fastest and query 5 taking the

longest to resolve for both databases. This similarity occurred even though MongoDB

and MySQL store and retrieve data in very different ways. In comparison, the variance

that resulted between MarkLogic and MongoDB was unexpected because, on paper,

these two databases seem to be most similar in that they are both NoSQL document-

based databases.

Neo4j had the longest runtime out of the five systems for every query performed

including Query 1, which was the simplest of all the defined queries. For query 5 Neo4j

took an additional 202 seconds longer than PostgreSQL to complete and finished Query 4

in 7.76 seconds while this same query took MySQL a mere 0.034 seconds, a difference of

7.72 seconds. The overall lackluster performance of Neo4j compared to MySQL, was

unexpected because it has been reported that this system is roughly 1000 times faster than

relational systems (Nixon, 2015).

MySQL and PostgreSQL both outperformed MongoDB in executing Query 3

where it had a faster runtime by 0.22 and .07 seconds, respectively. In contrast,

PostgreSQL had the second longest runtimes for queries 2, 4, and 5. It took PostgreSQL

1,383 seconds or 23 minutes to complete query 5 while MySQL executed in 785 seconds,

coming in third fastest. It is important to note that the reason MySQL didn’t process the

47

query faster is likely an effect of not using an index to calculate this result, as this result

was orders of magnitude slower than the previous complex geometry, Query 4, conducted

using MySQL. An “explain plan” on Query 5 against MySQL showed that it would use

an index, but the astronomical result indicates otherwise. Multiple attempts were made to

force MySQL to use the index, but the results were similar.

With respect to accuracy, each database agreed on the returned results for both

queries 1 and 4. Query 1 was a simple attribute query and therefore left little room for

ambiguity. Query 4 was a complex geospatial buffer query confined to a small region and

thus not heavily influenced by the projections employed by each database tested. Queries

2, 3, and 5 showed variations in the number of results returned among all the databases

tested, with some observable groupings present in the outputs.

For queries 2 and 3, MarkLogic, MongoDB, and PostgreSQL output the same

number of results, which differed from the number of results output by Neo4j and

MySQL, which both agreed with each other. Figures 15, 16, 17, and 18 below illustrate

the differences observed in queries 2a, 2f, 3a, where the red points represent outputs

unique to MarkLogic, MongoDB, and PostgreSQL while the light green points represent

those outputs unique to Neo4j and MySQL. What is noteworthy is that these

discrepancies occurred on or near the borders of the predefined geographic regions only

with no extreme outliers.

48

Figure 15: Differences in the results returned from query 2a for MarkLogic, Mongo, and PostgreSQL and Neo4j
and MySQL databases.

49

Figure 16: Differences in the results returned from query 2f for MarkLogic, Mongo, and PostgreSQL and Neo4j
and MySQL databases.

50

Figure 17: Differences in the results returned from query 3a for MarkLogic, Mongo, and PostgreSQL and Neo4j
and MySQL databases.

51

Figure 18: Differences in the results returned from query 3f for MarkLogic, Mongo, and PostgreSQL and Neo4j
and MySQL databases.

The variation observed in these queries between the two groups is likely because

the regions queried were relatively large, and thus heavily influenced by the curvature of

the earth. These two groupings expose a difference of projection by the query engines in

these two groups of databases. MarkLogic, MongoDB, and PostgreSQL all execute

geodesic calculations when resolving these polygon queries, while MySQL and Neo4j do

not appear to have a way to run their calculations geodesically (considering the curvature

of the Earth). Interestingly, MarkLogic, MongoDB, and PostgreSQL do provide settings

to perform their calculations non-geodesically and return the same result values as

MySQL and Neo4j. This problem didn't appear to affect query 4, which was also a

52

polygon query, likely because the polygons for the buffer were contained to a much

smaller area, and therefore less susceptible to the influence of the curvature of the Earth.

Query 5 further highlights some differences in the geospatial query techniques

between these databases, as every database tested returned a slightly different number of

results. Figure 19 below illustrates the total output for all 5 databases combined for query

5. Neo4j, MySQL, and Mongo output points that were unique among the full set while

MarkLogic and PostgreSQL with PostGIS had identical outputs. Figure 20 shows the 3

unique values for Neo4j. Figure 21 illustrates the 635 unique records ouput by MySQL.

Figure 22 shows the lone unique record output by Mongo. These variances are due to

assumptions that each database makes regarding distance when calculated with respect to

their query projection and the location of the queried region on the earth. The reason

MySQL had so many unique values was because it does not natively support a geospatial

buffer query using miles as the unit of measure instead it uses decimal degrees.

Therefore, the conversion from decimal degrees to miles was an approximation based on

a singular point on the globe.

53

Figure 19: Query 5 outputs for all 5 databases combined.

54

Figure 20: Query 5 results where points unique to only Neo4j are shown in orange while all else are in yellow.

55

Figure 21: Query 5 results where points unique to only MySQL are shown in purple while all else are in yellow.

56

Figure 22: Query 5 results where points unique to only Mongo are shown in cyan while all else are in yellow.

As also predicted, there were noticeable differences in system usability and

complexity between each of the database systems analyzed. Based on the ingestion

process, data preprocessing, and queries executed in this thesis, the database that seems

best suited for geospatial queries and analysis is MarkLogic. MarkLogic required the

least amount of query preprocessing. This is because MarkLogic has built-in support for

building geometries directly from KML files and using them in queries, which eliminated

the need for any preprocessing for Query 4, and saved a significant amount of time and

effort. With JavaScript being its primary query language, it has a vast vocabulary of

structures for performing a large array of complex tasks. Additionally, MarkLogic

provides the built-in QConsole web interface for executing ad-hoc queries, which greatly

57

enhances its usability by providing syntax highlighting, database browsing, and result

viewing.

MongoDB was similarly noteworthy in this regards but fell short in its ability to

natively handle KML, which is a very common format used in geospatial analysis, and

substantially increased the complexity of Query 4. Additionally, its performance in

executing Query 5 was several orders of magnitude slower than MarkLogic. There are

GUI’s available, like Robo 3T, that allow for the execution of queries against MongoDB

that decrease the overall complexity of formulating queries and processing data. In

Addition, its simple and powerful query syntax also makes it very well suited for running

geospatial queries and analysis.

MySQL’s rigid language syntax was frustrating for constructing geospatial

queries. Due to its lack of native KML support, and SQL’s inherent shortcomings in

expressiveness, building the geometries for the geospatial queries required a great deal of

complexity. Its performance was mostly good, with the notable exception of Query 5.

More analysis should be done to determine why the database didn’t appear to use the

provided index for this query. On the positive side, MySQL has a vast userbase and broad

community support, and the available tools for interfacing with it, namely MySQL

Workbench, enhance its overall usability.

Neo4j uses a third-party library for executing geospatial queries, and its geospatial

capabilities feel likewise an afterthought. Constructing geospatial queries in the Cypher

language seemed unintuitive and needlessly complicated. Like MarkLogic, Neo4j

provides a built-in web interface for running ad-hoc queries, loading data, and visualizing

58

results. This did enhance its usability considerably, but ultimately didn’t compensate for

its other shortcomings in performance and usability.

PostgreSQL is purpose-built for geospatial queries and therefore has native KML

support. It is considered in the community as the predominant database for geospatial

data storage and retrieval. As a result, there is a plethora of community online

documentation and support as well as many available query tools, such as pgAdmin4.

SQL is the language used to query the database which does impose some limitations

however it also lowers the barrier of entry due to the pervasiveness of SQL. Based on the

results of this thesis, what is surprising is that PostgreSQL was not the overall fastest or

best geospatial database solution for this dataset.

Table 8 below provides an overall ranking of each of the database systems

analyzed in this thesis. Each database was scored for one of seven metrics enumerated

and from that the overall system was ranked. For the accuracy component, a score of 1

was given to the databases that were able to correctly query using the geodetic geometries

and a score of 2 was given to those which were not. This tabulation mostly agrees with

the subjective analysis above, but doesn’t consider the scale of the differences between

the databases. For instance, the two-minute data load time for MarkLogic pales in

comparison to the 26-minute query time for PostgreSQL when executing Query 5, or the

ten-hour processing time of creating the geospatial layer for Neo4j.

59

Table 8: Overall ranking analysis of each system based on predefined metrics

Database
Metric MarkLogic MongoDB MySQL Neo4j PostgreSQL
Ingest Time 5 3 2 4 1
Storage & Memory
Footprint 5 3 1 4 2

Query Performance
Rank Avg. 1 3 2 5 4

Accuracy 1 1 2 2 1
Complexity 1 2 4 5 3
Usability 1 2 4 5 3

Future research should focus on more in-depth analysis of the index types used by

each database system, and the strengths and weaknesses of each. More exploration of

third-party tools may also result in enhanced usability and increases in query and data

ingestion performance for each database examined here. Additionally, each of these

database technologies is still being developed and enhanced, so revisiting the same

queries in the future is warranted and may yield different results.

60

APPENDIX

The following tables contain supplemental data mentioned within this thesis.

Table 9: Example of the contents within the KML file

Potomac Buffer KML File
<?xml version="1.0" encoding="UTF-8"?>
 <kml xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <LookAt>
 <longitude>-77.0861321636</longitude>
 <latitude>38.9022958677</latitude>
 <range>3000</range>
 <tilt>0</tilt>
 <heading>0</heading>
 </LookAt>
 <Style id="examplePolyStyle">
 <PolyStyle>
 <color>ff0000cc</color>
 <colorMode>random</colorMode>
 <fill>1</fill>
 <outline>0</outline>
 </PolyStyle>
 </Style>
 <Placemark>
 <name>Potomac</name>
 <description> Buffer: 5 miles</description>
 <styleUrl>#examplePolyStyle</styleUrl>
 <MultiGeometry>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>-77.1232869978,38.7908060665,0 -77.1258730736,38.8171074753,0 -
76.9409902771,38.8313033005,0 -76.9384042013,38.8050018916,0 -
77.1232869978,38.7908060665,0</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>

 [MORE POLYGON COORDINATE DATA HERE]

 </MultiGeometry>
 </Placemark>
 </Document>
 </kml>

61

MySQL Queries

Table 10: MySQL supplemental code and data structure
Code
1 SELECT count(*) FROM mrds.mrds WHERE com_type = "N"

2 SELECT count(*) from mrds.mrds WHERE st_contains(geomfromtext('POLYGON(([Coordinates for
specific subquery]))', 4326), coords);

3 SELECT count(*) from mrds.mrds
WHERE st_contains(
 geomfromtext('POLYGON(([Coordinates for specific subquery]))'),
 mrds.coords
)
AND mrds.com_type = "N"

4 SELECT count(*) FROM mrds.mrds
WHERE ST_CONTAINS(GeomFromText('MULTIPOLYGON((([Coordinates])), coords)

5 set session group_concat_max_len = 100000000;
set @str := '';
SELECT @str := group_concat(astext(buffer(coords, .018))) from mrds.mrds
WHERE mrds.commod1 = 'uranium';
set @str := cast(@str as CHAR);
set @str := replace(@str, 'POLYGON', '');
set @str := concat('MULTIPOLYGON(', @str, ')');

SELECT count(*) from mrds.mrds force index (coords_index)
WHERE st_contains(st_geomfromtext(@str, 4326), coords);

62

Neo4j Queries

Table 11: Neo4j supplemental code and data structure
Code
1 MATCH (r:Resource)

WHERE r.com_type = "N"
RETURN count(*)

2 WITH "POLYGON(([Coordinates for specific subquery]))" AS polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
RETURN count(*)

3 WITH "POLYGON(([Coordinates for specific subquery]))" AS polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WHERE node.com_type = "N"
RETURN count(*)

4 WITH [] as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon

63

CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,

64

"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
RETURN size(filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds)

5 MATCH (r:Resource)
WHERE r.commod1 = "Uranium" AND r.latitude <> "" AND r.longitude <> ""
WITH {latitude: r.latitude, longitude: r.longitude} as coordinate
CALL spatial.withinDistance('layer_resources', coordinate, 1.60934) YIELD node
RETURN count(DISTINCT node.dep_id)

65

MarkLogic Queries

Table 12: MarkLogic supplemental code and data structure
Code

1 var q = cts.elementValueQuery("com_type", "N");
[cts.estimate(q), xdmp.elapsedTime()];

2 var boxes = [
 cts.polygon([cts.point(37.7544, -79.3124), cts.point(40.0182, -79.3124), cts.point(40.0182, -74.7763),
cts.point(37.7544, -74.7763)]),
 cts.polygon([cts.point(31.33, -86.99), cts.point(33.78, -86.99), cts.point(33.78, -82.46), cts.point(31.33, -
82.46)]),
 cts.polygon([cts.point(34.88, -119.27), cts.point(41.41, -119.27), cts.point(41.41, -114.54), cts.point(34.88, -
114.54)]),
 cts.polygon([cts.point(45.41, -121.2), cts.point(48.56, -121.2), cts.point(48.56, -103.27), cts.point(45.41, -
103.27)]),
 cts.polygon([cts.point(30.37, -102.13), cts.point(34.17, -102.13), cts.point(34.17, -94.75), cts.point(30.37, -
94.75)])
];

var shapes = [
 cts.polygon("41.77131,-79.98047 40.14529,-76.06934 37.09024,-78.92578 38.69938,-85.08694 40.77448,-
83.63219"),
 cts.polygon("31.16581,-89.5166 30.9797,-95.29633 34.17735,-97.89283 33.06392,-93.60352 35.45702,-
91.58515 32.99024,-88.28613"),
 cts.polygon("42.45589,-101.77734 45.59973,-106.7638 47.36859,-101.20605 42.45589,-92.90039"),
 cts.polygon("42.87596,-120.9375 42.74701,-112.67578 47.36533,-117.73573"),
 cts.polygon("40.04444,-117.94922 40.11169,-105.11719 35.03,-107.92969 34.95836,-119.75142")
];

var q = cts.jsonPropertyPairGeospatialQuery(
 "point",
 "latitude",
 "longitude",
 boxes[4] //Update this variable depending on the shape being queried
);

[cts.estimate(q), xdmp.elapsedTime()];

3 var boxes = [
 cts.polygon([cts.point(37.7544, -79.3124), cts.point(40.0182, -79.3124), cts.point(40.0182, -74.7763),
cts.point(37.7544, -74.7763)]),
 cts.polygon([cts.point(31.33, -86.99), cts.point(33.78, -86.99), cts.point(33.78, -82.46), cts.point(31.33, -
82.46)]),
 cts.polygon([cts.point(34.88, -119.27), cts.point(41.41, -119.27), cts.point(41.41, -114.54), cts.point(34.88, -
114.54)]),
 cts.polygon([cts.point(45.41, -121.2), cts.point(48.56, -121.2), cts.point(48.56, -103.27), cts.point(45.41, -
103.27)]),
 cts.polygon([cts.point(30.37, -102.13), cts.point(34.17, -102.13), cts.point(34.17, -94.75), cts.point(30.37, -
94.75)])
];

var shapes = [
 cts.polygon("41.77131,-79.98047 40.14529,-76.06934 37.09024,-78.92578 38.69938,-85.08694 40.77448,-
83.63219"),
 cts.polygon("31.16581,-89.5166 30.9797,-95.29633 34.17735,-97.89283 33.06392,-93.60352 35.45702,-
91.58515 32.99024,-88.28613"),

66

 cts.polygon("42.45589,-101.77734 45.59973,-106.7638 47.36859,-101.20605 42.45589,-92.90039"),
 cts.polygon("42.87596,-120.9375 42.74701,-112.67578 47.36533,-117.73573"),
 cts.polygon("40.04444,-117.94922 40.11169,-105.11719 35.03,-107.92969 34.95836,-119.75142")
];

var q1 = cts.jsonPropertyPairGeospatialQuery(
 "point",
 "latitude",
 "longitude",
 boxes[4] //Update this variable depending on the shape being queried
);

var q2 = cts.jsonPropertyValueQuery("com_type", "N");

var q = cts.andQuery([q1, q2]);

[cts.estimate(q), xdmp.elapsedTime()];

4 var geokml = require('/MarkLogic/geospatial/kml.xqy');

var kmlText = xdmp.filesystemFile('/tmp/potomac_buffer_5_miles.kml');
var kml = fn.head(fn.head(xdmp.unquote(kmlText)).root.xpath('.//*:Placemark[1]//*:MultiGeometry'));
var geometry = geokml.parseKml(kml);
var query = cts.jsonPropertyPairGeospatialQuery(
 "point",
 "latitude",
 "longitude",
 Geometry
);
[cts.estimate(query), xdmp.elapsedTime()]

5 // Find all records within 1 mile of another record with its primary commodity being uranium
var q1 = cts.jsonPropertyValueQuery("commod1", "uranium");

var uraniumPoints = cts.elementPairGeospatialValues("point", "latitude", "longitude", null, null, q1);

var circleBuffers = [];
for (point of uraniumPoints) {
 circleBuffers.push(cts.circle(1, point));
}

var q2 =
 cts.jsonPropertyPairGeospatialQuery(
 "point",
 "latitude",
 "longitude",
 circleBuffers
);

[xdmp.estimate(q2), xdmp.elapsedTime()]

67

MongoDB Queries

Table 13: MongoDB supplemental code and data structure
Code

1 function propertyQuery() {
 var a = new Date();
 var results = db.mrds.find({com_type: "N"}).hint("com_type_1").count();
 var b = new Date();
 var time = b - a;
 return [results, time];
}

2 function polygonQuery(idx) {
 var points = [
 [[-79.3124, 37.7544], [-79.3124, 40.0182], [-74.7763, 40.0182], [-74.7763, 37.7544], [-79.3124, 37.7544]],
//2a
 [[-86.99, 31.33], [-86.99, 33.78], [-82.46, 33.78], [-82.46, 31.33], [-86.99, 31.33]], //2b
 [[-119.27, 34.88], [-119.27, 41.41], [-114.54, 41.41], [-114.54, 34.88], [-119.27, 34.88]], //2c
 [[-121.2, 45.41], [-121.2, 48.56], [-103.27, 48.56], [-103.27, 45.41], [-121.2, 45.41]], //2d
 [[-102.13, 30.37], [-102.13, 34.17], [-94.75, 34.17], [-94.75, 30.37], [-102.13, 30.37]], //2e
 [[-79.98047, 41.77131], [-76.06934, 40.14529], [-78.92578, 37.09024], [-85.08694, 38.69938], [-
83.63219, 40.77448], [-79.98047, 41.77131]], //2f
 [[-89.5166, 31.16581], [-95.29633, 30.9797], [-97.89283, 34.17735], [-93.60352, 33.06392], [-91.58515,
35.45702], [-88.28613, 32.99024], [-89.5166, 31.16581]], //2g
 [[-101.77734, 42.45589], [-106.7638, 45.59973], [-101.20605, 47.36859], [-92.90039, 42.45589], [-
101.77734, 42.45589]], //2h
 [[-120.9375, 42.87596], [-112.67578, 42.74701], [-117.73573, 47.36533], [-120.9375, 42.87596]], //2i
 [[-117.94922, 40.04444], [-105.11719, 40.11169], [-107.92969, 35.03], [-119.75142, 34.95836], [-
117.94922, 40.04444]] //2j
];
 var a = new Date();
 var results = db.mrds.find({
 point: {
 $geoWithin: {
 $geometry: {
 type: "Polygon",
 coordinates: [points[idx]]
 }
 }
 }
 }).count();
 var b = new Date();
 var time = b - a;
 return [results, time];
}

polygonQuery(0); // Change the input value here depending on the query

3 function polygonQuery(idx) {
 var points = [
 [[-79.3124, 37.7544], [-79.3124, 40.0182], [-74.7763, 40.0182], [-74.7763, 37.7544], [-79.3124,
37.7544]], //2a
 [[-86.99, 31.33], [-86.99, 33.78], [-82.46, 33.78], [-82.46, 31.33], [-86.99, 31.33]], //2b
 [[-119.27, 34.88], [-119.27, 41.41], [-114.54, 41.41], [-114.54, 34.88], [-119.27, 34.88]], //2c
 [[-121.2, 45.41], [-121.2, 48.56], [-103.27, 48.56], [-103.27, 45.41], [-121.2, 45.41]], //2d
 [[-102.13, 30.37], [-102.13, 34.17], [-94.75, 34.17], [-94.75, 30.37], [-102.13, 30.37]], //2e

68

 [[-79.98047, 41.77131], [-76.06934, 40.14529], [-78.92578, 37.09024], [-85.08694, 38.69938], [-
83.63219, 40.77448], [-79.98047, 41.77131]], //2f
 [[-89.5166, 31.16581], [-95.29633, 30.9797], [-97.89283, 34.17735], [-93.60352, 33.06392], [-
91.58515, 35.45702], [-88.28613, 32.99024], [-89.5166, 31.16581]], //2g
 [[-101.77734, 42.45589], [-106.7638, 45.59973], [-101.20605, 47.36859], [-92.90039, 42.45589], [-
101.77734, 42.45589]], //2h
 [[-120.9375, 42.87596], [-112.67578, 42.74701], [-117.73573, 47.36533], [-120.9375, 42.87596]],
//2i
 [[-117.94922, 40.04444], [-105.11719, 40.11169], [-107.92969, 35.03], [-119.75142, 34.95836], [-
117.94922, 40.04444]] //2j
];
 var a = new Date();
 var results = db.mrds.find(
 {
 $and: [
 {
 point: {
 $geoWithin: {
 $geometry: {
 type: "Polygon",
 coordinates: [points[idx]]
 }
 }
 }
 },
 {
 com_type: "N"
 }
]
 }).count();
 var b = new Date();
 var time = b - a;
 return [results, time];
}

polygonQuery(0); // Change the input value here depending on the query

4 function bufferQuery() {
 var geoQuery = {
 "$or":[

{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},

69

{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}

]
};
 var a = new Date();
 var results = db.mrds.find(geoQuery).count();
 var b = new Date();
 var time = b - a;
 return [results, time];
}
bufferQuery();

5 function geoPointQuery() {
 var a = new Date();
 var circleQueries = db.mrds.find({commod1: "Uranium"}, {point: 1, _id:
0}).toArray().filter(function(point){return point.point != null}).map(
 function(point) {
 return {
 point: {
 $geoWithin: {
 $centerSphere: [point.point.coordinates, 1/3963.2]
 }
 }
 }
 }
);
 var geoQuery = {
 $or: circleQueries
 };
 var results = db.mrds.find(geoQuery).count();
 var b = new Date();
 var time = b - a;
 return [results, time];
}

geoPointQuery();

70

PostgreSQL Queries

Table 14: PostgreSQL supplemental code and data structure
Code

1 SELECT count(*) from mrds
WHERE com_type = 'N'

2 SELECT count(*) from mrds
WHERE st_covers(
 st_geogfromtext('SRID=4326;POLYGON(([Coordinates from specific subquery]))'),
 pointgeo
)

3 SELECT count(*) from mrds
WHERE st_covers(
 st_geogfromtext('SRID=4326;POLYGON(([Coordinates from specific subquery]))'),
 pointgeo
)
AND com_type = 'N'

4 SELECT count(*) FROM mrds
WHERE st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)

71

OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo)

5 SELECT COUNT(distinct "b".dep_id) FROM (SELECT * FROM mrds WHERE commod1 = 'Uranium') "a"
INNER JOIN mrds "b" ON st_dwithin("a".pointgeo, "b".pointgeo, 1609.34);

72

Query Runtime Results Table

Table 15: List of all cold and warm query completion times per database and their calculated average

Database Query # Cold
Duration (s)

Cold Duration
Average (s)

Warm
Duration (s)

Warm
Duration
Average (s)

MarkLogic 1 0.002023 0.001954 0.001069 0.0012574

MarkLogic 0.002006 0.001241

MarkLogic 0.001919 0.001408

MarkLogic 0.001937 0.001056

MarkLogic 0.001885 0.001513

MarkLogic 2a 0.00123 0.0012946 0.000905 0.0008108

MarkLogic 0.001339 0.000783

MarkLogic 0.001303 0.000802

MarkLogic 0.001335 0.000825

MarkLogic 0.001266 0.000739

MarkLogic 2b 0.001427 0.0014914 0.000864 0.0006768

MarkLogic 0.001526 0.00063

MarkLogic 0.001657 0.000713

MarkLogic 0.001434 0.000599

MarkLogic 0.001413 0.000578

MarkLogic 2c 0.001809 0.001642 0.000583 0.0006826

MarkLogic 0.001637 0.000563

MarkLogic 0.001715 0.001097

MarkLogic 0.001534 0.00057

MarkLogic 0.001515 0.0006

MarkLogic 2d 0.001504 0.0015252 0.000663 0.0006722

MarkLogic 0.001568 0.000614

MarkLogic 0.001454 0.000757

MarkLogic 0.001564 0.000635

MarkLogic 0.001536 0.000692

MarkLogic 2e 0.001902 0.0015868 0.000817 0.0006534

MarkLogic 0.001441 0.000607

MarkLogic 0.001476 0.000634

MarkLogic 0.001589 0.000602

73

MarkLogic 0.001526 0.000607

MarkLogic 2f 0.002038 0.0017004 0.000964 0.0008022

MarkLogic 0.001534 0.000629

MarkLogic 0.001625 0.001043

MarkLogic 0.001614 0.000637

MarkLogic 0.001691 0.000738

MarkLogic 2g 0.001527 0.0015996 0.000645 0.0006752

MarkLogic 0.001598 0.000659

MarkLogic 0.001632 0.000719

MarkLogic 0.00156 0.000678

MarkLogic 0.001681 0.000675

MarkLogic 2h 0.001735 0.001688 0.000815 0.0006288

MarkLogic 0.00156 0.000162

MarkLogic 0.00163 0.000691

MarkLogic 0.001739 0.000692

MarkLogic 0.001776 0.000784

MarkLogic 2i 0.00179 0.0016724 0.000654 0.000735

MarkLogic 0.001569 0.000769

MarkLogic 0.001641 0.000682

MarkLogic 0.001703 0.000901

MarkLogic 0.001659 0.000669

MarkLogic 2j 0.001596 0.0016494 0.000601 0.0007792

MarkLogic 0.001582 0.000776

MarkLogic 0.001689 0.000714

MarkLogic 0.001557 0.000775

MarkLogic 0.001823 0.00103

MarkLogic 3a 0.002078 0.0019682 0.001122 0.0011516

MarkLogic 0.002029 0.001091

MarkLogic 0.001951 0.001175

MarkLogic 0.001846 0.001296

MarkLogic 0.001937 0.001074

MarkLogic 3b 0.002195 0.0022102 0.001335 0.0010912

MarkLogic 0.002233 0.001205

MarkLogic 0.00217 0.001162

MarkLogic 0.002226 0.000675

MarkLogic 0.002227 0.001079

MarkLogic 3c 0.001908 0.0022858 0.001281 0.0012224

74

MarkLogic 0.002296 0.001133

MarkLogic 0.002579 0.001176

MarkLogic 0.002247 0.001029

MarkLogic 0.002399 0.001493

MarkLogic 3d 0.003089 0.002508 0.001605 0.001206

MarkLogic 0.002127 0.001107

MarkLogic 0.00233 0.001512

MarkLogic 0.002774 0.0011

MarkLogic 0.00222 0.000706

MarkLogic 3e 0.001596 0.002065 0.001418 0.0012

MarkLogic 0.002252 0.001138

MarkLogic 0.002059 0.001127

MarkLogic 0.002226 0.001129

MarkLogic 0.002192 0.001188

MarkLogic 3f 0.001942 0.002285 0.001274 0.0012758

MarkLogic 0.002525 0.001203

MarkLogic 0.002288 0.001446

MarkLogic 0.002277 0.00123

MarkLogic 0.002393 0.001226

MarkLogic 3g 0.003547 0.0027116 0.00144 0.0012098

MarkLogic 0.002967 0.001239

MarkLogic 0.002491 0.001145

MarkLogic 0.002176 0.000664

MarkLogic 0.002377 0.001561

MarkLogic 3h 0.001905 0.0022582 0.001527 0.0014268

MarkLogic 0.00229 0.001629

MarkLogic 0.002458 0.001344

MarkLogic 0.002298 0.00154

MarkLogic 0.00234 0.001094

MarkLogic 3i 0.002514 0.0024084 0.001186 0.001238

MarkLogic 0.002412 0.00123

MarkLogic 0.002297 0.00112

MarkLogic 0.002385 0.00161

MarkLogic 0.002434 0.001044

MarkLogic 3j 0.001816 0.0023626 0.001225 0.0012186

MarkLogic 0.002588 0.001106

MarkLogic 0.002775 0.001219

75

MarkLogic 0.002412 0.001479

MarkLogic 0.002222 0.001064

MarkLogic 4 0.01201 0.0121788 0.010643 0.0104978

MarkLogic 0.012078 0.010474
MarkLogic 0.012714 0.010288
MarkLogic 0.012029 0.010882
MarkLogic 0.012063 0.010202
MarkLogic 5 0.059287 0.06227 0.047869 0.0474812

MarkLogic 0.064712 0.047973
MarkLogic 0.062569 0.047875
MarkLogic 0.063208 0.047063
MarkLogic 0.061574 0.046626
MongoDB 1 0.025 0.026 0.019 0.0184

MongoDB 0.026 0.018

MongoDB 0.028 0.018

MongoDB 0.025 0.018

MongoDB 0.026 0.019

MongoDB 2a 0.046 0.0444 0.012 0.013

MongoDB 0.044 0.013

MongoDB 0.045 0.013

MongoDB 0.043 0.015

MongoDB 0.044 0.012

MongoDB 2b 0.055 0.05 0.017 0.0178

MongoDB 0.049 0.017

MongoDB 0.049 0.016

MongoDB 0.049 0.023

MongoDB 0.048 0.016

MongoDB 2c 0.175 0.1726 0.069 0.0684

MongoDB 0.163 0.068

MongoDB 0.184 0.068

MongoDB 0.176 0.068

MongoDB 0.165 0.069

MongoDB 2d 0.173 0.1702 0.075 0.0752

MongoDB 0.175 0.075

MongoDB 0.167 0.077

MongoDB 0.172 0.075

MongoDB 0.164 0.074

76

MongoDB 2e 0.047 0.0434 0.009 0.0094

MongoDB 0.048 0.009

MongoDB 0.037 0.01

MongoDB 0.049 0.01

MongoDB 0.036 0.009

MongoDB 2f 0.079 0.0744 0.027 0.0276

MongoDB 0.07 0.028

MongoDB 0.081 0.028

MongoDB 0.072 0.027

MongoDB 0.07 0.028

MongoDB 2g 0.065 0.0626 0.017 0.018

MongoDB 0.055 0.018

MongoDB 0.063 0.018

MongoDB 0.064 0.018

MongoDB 0.066 0.019

MongoDB 2h 0.059 0.0546 0.015 0.0152

MongoDB 0.048 0.015

MongoDB 0.059 0.016

MongoDB 0.059 0.014

MongoDB 0.048 0.016

MongoDB 2i 0.093 0.087 0.035 0.0346

MongoDB 0.084 0.034

MongoDB 0.082 0.035

MongoDB 0.093 0.034

MongoDB 0.083 0.035

MongoDB 2j 0.316 0.315 0.143 0.1454

MongoDB 0.313 0.145

MongoDB 0.302 0.145

MongoDB 0.317 0.147

MongoDB 0.327 0.147

MongoDB 3a 0.061 0.0612 0.014 0.0134

MongoDB 0.061 0.013

MongoDB 0.061 0.013

MongoDB 0.062 0.013

MongoDB 0.061 0.014

MongoDB 3b 0.059 0.0588 0.018 0.0182

MongoDB 0.059 0.018

77

MongoDB 0.058 0.018

MongoDB 0.059 0.019

MongoDB 0.059 0.018

MongoDB 3c 0.166 0.1734 0.074 0.074

MongoDB 0.179 0.073

MongoDB 0.177 0.075

MongoDB 0.176 0.073

MongoDB 0.169 0.075

MongoDB 3d 0.166 0.1706 0.081 0.0804

MongoDB 0.175 0.079

MongoDB 0.175 0.08

MongoDB 0.171 0.08

MongoDB 0.166 0.082

MongoDB 3e 0.053 0.0528 0.01 0.01

MongoDB 0.052 0.01

MongoDB 0.053 0.01

MongoDB 0.053 0.01

MongoDB 0.053 0.01

MongoDB 3f 0.085 0.0822 0.03 0.0296

MongoDB 0.075 0.03

MongoDB 0.084 0.029

MongoDB 0.085 0.029

MongoDB 0.082 0.03

MongoDB 3g 0.059 0.0654 0.019 0.0192

MongoDB 0.071 0.02

MongoDB 0.059 0.019

MongoDB 0.07 0.019

MongoDB 0.068 0.019

MongoDB 3h 0.064 0.0604 0.016 0.016

MongoDB 0.055 0.016

MongoDB 0.054 0.016

MongoDB 0.065 0.016

MongoDB 0.064 0.016

MongoDB 3i 0.101 0.1002 0.039 0.0388

MongoDB 0.101 0.039

MongoDB 0.091 0.038

MongoDB 0.105 0.039

78

MongoDB 0.103 0.039

MongoDB 3j 1.684 2.1488 0.221 0.2218

MongoDB 1.842 0.221

MongoDB 2.232 0.222

MongoDB 2.442 0.222

MongoDB 2.544 0.223

MongoDB 4 0.076 0.071 0.058 0.057

MongoDB 0.075 0.056
MongoDB 0.065 0.057
MongoDB 0.074 0.057
MongoDB 0.065 0.057
MongoDB 5 711.039 740.961 724.445 769.7186

MongoDB 781.032 775.201
MongoDB 728.428 838.035
MongoDB 717.286 736.225
MongoDB 767.02 774.687
PostgreSQL 1 0.012244 0.0107466 0.008024 0.0082652

PostgreSQL 0.01145 0.008661

PostgreSQL 0.009759 0.0081

PostgreSQL 0.011152 0.00805

PostgreSQL 0.009128 0.008491

PostgreSQL 2a 0.129094 0.108353 0.097041 0.097687

PostgreSQL 0.101668 0.102763

PostgreSQL 0.108412 0.103519

PostgreSQL 0.105354 0.092618

PostgreSQL 0.097237 0.092494

PostgreSQL 2b 0.099354 0.0995096 0.095681 0.100943

PostgreSQL 0.10388 0.09901

PostgreSQL 0.097711 0.098417

PostgreSQL 0.099058 0.116239

PostgreSQL 0.097545 0.095368

PostgreSQL 2c 0.135068 0.140339 0.13295 0.1359644

PostgreSQL 0.136782 0.131826

PostgreSQL 0.141565 0.151737

PostgreSQL 0.137947 0.1323

PostgreSQL 0.150333 0.131009

PostgreSQL 2d 0.115272 0.1174038 0.12789 0.1214968

79

PostgreSQL 0.116201 0.119979

PostgreSQL 0.117706 0.111208

PostgreSQL 0.121547 0.119398

PostgreSQL 0.116293 0.129009

PostgreSQL 2e 0.096518 0.098741 0.090741 0.0921078

PostgreSQL 0.099538 0.090726

PostgreSQL 0.096794 0.096247

PostgreSQL 0.095655 0.090447

PostgreSQL 0.1052 0.092378

PostgreSQL 2f 0.104489 0.1066626 0.096285 0.0989164

PostgreSQL 0.114789 0.104451

PostgreSQL 0.104783 0.09602

PostgreSQL 0.103699 0.096932

PostgreSQL 0.105553 0.100894

PostgreSQL 2g 0.100946 0.103942 0.095145 0.1019834

PostgreSQL 0.10306 0.113774

PostgreSQL 0.101316 0.097008

PostgreSQL 0.106119 0.094291

PostgreSQL 0.108269 0.109699

PostgreSQL 2h 0.101955 0.1057526 0.094552 0.1004204

PostgreSQL 0.11471 0.101705

PostgreSQL 0.101784 0.10957

PostgreSQL 0.101488 0.094735

PostgreSQL 0.108826 0.10154

PostgreSQL 2i 0.11261 0.1103262 0.103392 0.1080274

PostgreSQL 0.110404 0.10334

PostgreSQL 0.108643 0.116534

PostgreSQL 0.110925 0.104328

PostgreSQL 0.109049 0.112543

PostgreSQL 2j 0.155091 0.1545 0.146954 0.1501066

PostgreSQL 0.151675 0.147875

PostgreSQL 0.152379 0.143874

PostgreSQL 0.160909 0.148863

PostgreSQL 0.152446 0.162967

PostgreSQL 3a 0.185597 0.1915766 0.076251 0.077634

PostgreSQL 0.180146 0.081913

PostgreSQL 0.195119 0.073577

80

PostgreSQL 0.193725 0.083405

PostgreSQL 0.203296 0.073024

PostgreSQL 3b 0.293427 0.3285902 0.079521 0.073425

PostgreSQL 0.300274 0.069943

PostgreSQL 0.285929 0.070851

PostgreSQL 0.360579 0.070227

PostgreSQL 0.402742 0.076583

PostgreSQL 3c 0.362699 0.4312846 0.091222 0.0824508

PostgreSQL 0.494764 0.090421

PostgreSQL 0.502965 0.080669

PostgreSQL 0.465643 0.07543

PostgreSQL 0.330352 0.074512

PostgreSQL 3d 0.329671 0.333806 0.077243 0.0878634

PostgreSQL 0.395672 0.099652

PostgreSQL 0.3356 0.101867

PostgreSQL 0.304615 0.085078

PostgreSQL 0.303472 0.075477

PostgreSQL 3e 0.313314 0.351766 0.073072 0.0790392

PostgreSQL 0.276604 0.090791

PostgreSQL 0.436541 0.071411

PostgreSQL 0.439728 0.088525

PostgreSQL 0.292643 0.071397

PostgreSQL 3f 0.339362 0.3836084 0.084776 0.0838524

PostgreSQL 0.451154 0.076153

PostgreSQL 0.421306 0.076887

PostgreSQL 0.357272 0.083512

PostgreSQL 0.348948 0.097934

PostgreSQL 3g 0.134353 0.2686088 0.076854 0.0849066

PostgreSQL 0.39837 0.085205

PostgreSQL 0.244928 0.107742

PostgreSQL 0.241992 0.079566

PostgreSQL 0.323401 0.075166

PostgreSQL 3h 0.281429 0.1823866 0.073224 0.086149

PostgreSQL 0.171118 0.074177

PostgreSQL 0.119878 0.073967

PostgreSQL 0.186826 0.104618

PostgreSQL 0.152682 0.104759

81

PostgreSQL 3i 0.194407 0.1531976 0.077072 0.0789438

PostgreSQL 0.138303 0.074346

PostgreSQL 0.120643 0.082007

PostgreSQL 0.143108 0.074768

PostgreSQL 0.169527 0.086526

PostgreSQL 3j 0.148842 0.1538512 0.092119 0.0898732

PostgreSQL 0.196334 0.085196

PostgreSQL 0.126435 0.08284

PostgreSQL 0.147359 0.100643

PostgreSQL 0.150286 0.088568

PostgreSQL 4 3.41959 3.3991404 3.345733 3.3335642

PostgreSQL 3.426663 3.329342
PostgreSQL 3.406785 3.338428
PostgreSQL 3.357049 3.327378
PostgreSQL 3.385615 3.32694
PostgreSQL 5 1299.979374 1303.977861 1467.178303 1462.889549

PostgreSQL 1329.012883 1456.45122
PostgreSQL 1290.551296 1490.61865
PostgreSQL 1301.038063 1450.57571
PostgreSQL 1299.307687 1449.623861
MySQL 1 0.0250045 0.0248753 0.02388725 0.02483925

MySQL 0.02477325 0.02353325
MySQL 0.02492425 0.02482625
MySQL 0.02484175 0.02532725
MySQL 0.02483275 0.02662225
MySQL 2a 0.020427 0.02000455 0.01391025 0.01139035

MySQL 0.019128 0.01064275
MySQL 0.0194845 0.010588
MySQL 0.02077175 0.011277
MySQL 0.0202115 0.01053375
MySQL 2b 0.01776175 0.0194645 0.013762 0.01320935

MySQL 0.018215 0.01325
MySQL 0.01806625 0.012788
MySQL 0.0248995 0.01236325
MySQL 0.01838 0.0138835
MySQL 2c 0.0824365 0.0822352 0.06268825 0.05995515

MySQL 0.0807585 0.05919325

82

MySQL 0.08247025 0.05967
MySQL 0.084169 0.0592835
MySQL 0.08134175 0.05894075
MySQL 2d 0.07167075 0.0731389 0.054087 0.05121995

MySQL 0.0727985 0.0502725
MySQL 0.07558575 0.050472
MySQL 0.07301675 0.05109325
MySQL 0.07262275 0.050175
MySQL 2e 0.0105 0.0094997 0.00579375 0.0051088

MySQL 0.00862475 0.00481775
MySQL 0.0097595 0.00485775
MySQL 0.00923825 0.00524075
MySQL 0.009376 0.004834
MySQL 2f 0.04194075 0.03976385 0.0283595 0.02585385

MySQL 0.04009 0.02487575
MySQL 0.038883 0.02517375
MySQL 0.03874675 0.02532025
MySQL 0.03915875 0.02554
MySQL 2g 0.0329225 0.03225445 0.02151 0.02030085

MySQL 0.03193675 0.02081675
MySQL 0.031804 0.019708
MySQL 0.0326435 0.019886
MySQL 0.0319655 0.0195835
MySQL 2h 0.03596875 0.03479905 0.024112 0.0221698

MySQL 0.03495475 0.02099925
MySQL 0.03412925 0.0221815
MySQL 0.03439625 0.02172825
MySQL 0.03454625 0.021828
MySQL 2i 0.07665325 0.074301 0.05450125 0.0520951

MySQL 0.07394425 0.052812
MySQL 0.072917 0.04950525
MySQL 0.07464375 0.05039125
MySQL 0.07334675 0.05326575
MySQL 2j 0.191123 0.1837739 0.13695225 0.13634545

MySQL 0.18070175 0.135557
MySQL 0.17951525 0.135768
MySQL 0.18309575 0.136286

83

MySQL 0.18443375 0.137164
MySQL 3a 0.0184645 0.01696375 0.01059425 0.0090177

MySQL 0.01512575 0.008472
MySQL 0.016968 0.0089375
MySQL 0.0171625 0.0088145
MySQL 0.017098 0.00827025
MySQL 3b 0.013969 0.01442865 0.00989525 0.0089291

MySQL 0.013863 0.008384
MySQL 0.01465825 0.0087365
MySQL 0.0151645 0.00885125
MySQL 0.0144885 0.0087785
MySQL 3c 0.059653 0.0577175 0.03618275 0.03569315

MySQL 0.055749 0.0371995
MySQL 0.057273 0.03466575
MySQL 0.05619325 0.03521975
MySQL 0.05971925 0.035198
MySQL 3d 0.05823475 0.05543885 0.03632775 0.03354725

MySQL 0.0552085 0.03249325
MySQL 0.0552385 0.033222
MySQL 0.0535715 0.03275925
MySQL 0.054941 0.032934
MySQL 3e 0.008218 0.00908605 0.00528025 0.0048373

MySQL 0.00983425 0.00510175
MySQL 0.0091115 0.004666
MySQL 0.0090485 0.0045655
MySQL 0.009218 0.004573
MySQL 3f 0.03681075 0.0358545 0.0235245 0.02216085

MySQL 0.03452925 0.02194475
MySQL 0.03578075 0.02095475
MySQL 0.0347995 0.02119375
MySQL 0.03735225 0.0231865
MySQL 3g 0.03185025 0.0308635 0.021196 0.01916135

MySQL 0.0296725 0.0189365
MySQL 0.031208 0.019097
MySQL 0.03140875 0.0186505
MySQL 0.030178 0.01792675
MySQL 3h 0.03194675 0.0310507 0.019318 0.0175506

84

MySQL 0.03055825 0.01777125
MySQL 0.0311115 0.016914
MySQL 0.030256 0.01668875
MySQL 0.031381 0.017061
MySQL 3i 0.05862725 0.0571284 0.035218 0.03533485

MySQL 0.05776525 0.036236
MySQL 0.056396 0.03589175
MySQL 0.05675075 0.03544025
MySQL 0.05610275 0.03388825
MySQL 3j 0.12845725 0.12815655 0.084478 0.0839713

MySQL 0.1267 0.0858295
MySQL 0.12618275 0.08290075
MySQL 0.1299495 0.08310825
MySQL 0.12949325 0.08354
MySQL 4 0.03439625 0.03606555 0.0320135 0.0326055

MySQL 0.03358025 0.032234
MySQL 0.03584725 0.03284175
MySQL 0.04096975 0.0337455
MySQL 0.03553425 0.03219275
MySQL 5 781.203 783.5784 784.781 786.5094

MySQL 784.11 792.953
MySQL 780.719 793.047
MySQL 783.297 781.578
MySQL 788.563 780.188
Neo4j 1 0.979 0.9546 0.405 0.363

Neo4j 0.932 0.347
Neo4j 1.026 0.356
Neo4j 0.901 0.349
Neo4j 0.935 0.358
Neo4j 2a 0.801 0.8506 0.282 0.249

Neo4j 0.863 0.239
Neo4j 0.956 0.239
Neo4j 0.829 0.247
Neo4j 0.804 0.238
Neo4j 2b 0.865 0.8552 0.312 0.2762

Neo4j 0.899 0.263
Neo4j 0.867 0.268

85

Neo4j 0.913 0.255
Neo4j 0.732 0.283
Neo4j 2c 1.38 1.3326 0.59 0.5546

Neo4j 1.385 0.55
Neo4j 1.324 0.56
Neo4j 1.237 0.534
Neo4j 1.337 0.539
Neo4j 2d 1.366 1.3326 0.569 0.5366

Neo4j 1.303 0.517
Neo4j 1.1 0.532
Neo4j 1.357 0.527
Neo4j 1.537 0.538
Neo4j 2e 0.875 0.8762 0.227 0.229

Neo4j 0.782 0.233
Neo4j 0.777 0.231
Neo4j 1.038 0.222
Neo4j 0.909 0.232
Neo4j 2f 1.3 1.2138 0.483 0.4132

Neo4j 1.271 0.44
Neo4j 1.09 0.406
Neo4j 1.231 0.376
Neo4j 1.177 0.361
Neo4j 2g 1.167 1.1342 0.323 0.3228

Neo4j 1.319 0.329
Neo4j 1.02 0.309
Neo4j 1.014 0.316
Neo4j 1.151 0.337
Neo4j 2h 1.366 1.1466 0.441 0.4252

Neo4j 1.177 0.415
Neo4j 1.119 0.521
Neo4j 1.101 0.399
Neo4j 0.97 0.35
Neo4j 2i 1.669 1.49 0.67 0.599

Neo4j 1.458 0.612
Neo4j 1.309 0.571
Neo4j 1.519 0.569
Neo4j 1.495 0.573

86

Neo4j 2j 2.388 2.4946 1.12 1.0886

Neo4j 2.509 1.064
Neo4j 2.892 1.07
Neo4j 2.273 1.111
Neo4j 2.411 1.078
Neo4j 3a 0.827 0.886 0.282 0.2686

Neo4j 0.879 0.265
Neo4j 0.931 0.27
Neo4j 0.86 0.266
Neo4j 0.933 0.26
Neo4j 3b 0.887 0.899 0.322 0.3078

Neo4j 0.899 0.338
Neo4j 0.885 0.329
Neo4j 0.974 0.28
Neo4j 0.85 0.27
Neo4j 3c 1.296 1.3652 0.802 0.7714

Neo4j 1.292 0.765
Neo4j 1.598 0.761
Neo4j 1.267 0.766
Neo4j 1.373 0.763
Neo4j 3d 1.347 1.3484 0.584 0.5528

Neo4j 1.304 0.547
Neo4j 1.36 0.536
Neo4j 1.381 0.543
Neo4j 1.35 0.554
Neo4j 3e 0.957 0.8734 0.241 0.2236

Neo4j 0.744 0.219
Neo4j 0.872 0.214
Neo4j 0.881 0.225
Neo4j 0.913 0.219
Neo4j 3f 1.152 1.2424 0.502 0.4482

Neo4j 1.323 0.464
Neo4j 1.308 0.465
Neo4j 1.265 0.419
Neo4j 1.164 0.391
Neo4j 3g 1.236 1.1802 0.379 0.362

Neo4j 1.274 0.366

87

Neo4j 1.172 0.365
Neo4j 1.098 0.34
Neo4j 1.121 0.36
Neo4j 3h 1.16 1.1496 0.416 0.3866

Neo4j 1.044 0.386
Neo4j 1.331 0.386
Neo4j 1.236 0.386
Neo4j 0.977 0.359
Neo4j 3i 1.571 1.6332 0.75 0.5932

Neo4j 1.76 0.606
Neo4j 1.581 0.542
Neo4j 1.641 0.532
Neo4j 1.613 0.536
Neo4j 3j 2.51 2.529 1.254 1.2192

Neo4j 2.601 1.218
Neo4j 2.578 1.183
Neo4j 2.421 1.227
Neo4j 2.535 1.214
Neo4j 4 8.352 8.9392 6.608 6.5932

Neo4j 8.628 6.536
Neo4j 10.745 6.586
Neo4j 8.761 6.627
Neo4j 8.21 6.609
Neo4j 5 1649.513 1666.435 1502.476 1505.4304

Neo4j 1668.13 1501.586
Neo4j 1682.654 1494.196
Neo4j 1665.882 1511.465
Neo4j 1665.996 1517.429

88

REFERENCES

Abdalla, R. M., & Niall, K. K. (2007). Review of spatial-database system usability:
Recommendations for the ADDNS Project. Toronto: Defense R&D Canada.

Aghi, R., Mehta, S., Chauhan, R., Chaudhary, S., & Bohra, N. (2015). A Comprehensive
Comparison of SQL and MongoDB Databases. International Journal of
Scienctific and Research Publications, 5(2).

Amlanjyoti, S., Sherin, J., Dhondup, D., & Roseline, M. R. (2015). Comparative
Performance Analysis of MySQL and SQL Server Relational Database SYstems
in WIndows Enivironment. International Journal of Advanced Research in
Computer and Communication Engineering, 4(3), 160-164.

Angles, R., & Gutierrez, C. (2008). Survey of Graph Database Models. ACM Computing
Surveys, 40(1), 39. doi:10.1145/1322432.1322433

Bass, B. (2012). NoSQL spatial - Neo4j versus PostGIS. Geographical Information
Management and Applications.

Batra, S., & Tyagi, C. (2012). Comparative Analysis of Relational and Graph Databases.
International Journal of Soft Computing and Engineering (IJSCE), 2(2), 509-512.

Bazar, C., & Sebastian, C. (2014). The Transition from RDBMS to NoSQL. A
Comparative Analysis of Three Popular Non-Relational Solutions: Cassandra,
MongoDB and Couchbase. Database Systems Journal.

Clarke, K. C. (2011). Getting Started with Geographic Information Systems. Pearson.
Codd, E. (1970, June). A Relational Model of Data for Large Shared Data Banks. (P.

Baxendale, Ed.) Communications of the ACM, 13(6), 377-387.
Dolton, L. M., & Lowe, J. W. (2001). Prospecting Spatial Database Offerings. Geospatial

Solutions.
Fowler, A. (2013, Nov). MarkLogic, huh, what is it good for?…. Retrieved from NoSQL,

Sales Engineering, And Arduino Blog:
https://adamfowler.org/2013/11/25/marklogic-huh-what-is-it-good-for/

Gandhi, V., Kang, J., & Shekhar, S. (2007). Spatial Databases - Technical Report.
Minneapolis: Department of Computer Science and Engineering University of
Minnesota.

Guting, R. H. (1994). An Introduction to Spatial Database Systems. VLDB.
Healey, R. (1991). Database Management Systems (Vol. 1). (D. J. Maguire, M. F.

Goodchild, & D. W. Rhind, Eds.) New York: Longman Scientific & Technical.
Jaiswal, G., & Agrawal, A. P. (2013). Comparative Analysis of Relational and Graph

Databases. IOSR Journal of Engineering (IOSRJEN), 25-27.
Karlsson, A. (2008). My SQL for GIS Applications. Geo:Connexion.
Kumar, L., Rajawat, S., & Joshi, K. (2015). Comparative Analysis of NoSQL

(MongoDB) with MySQL Database. International Journal of Modern Trends in
Engineering and Research, 2(5), 120-127.

Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2001). Geographic
Information Systems and Science. New York: John Wiley & Sons LTD.

89

Madison, M., Barnhill, M., Napier, C., & Godin, J. (2015). NoSQL Database
Technologies. International Information Management Association, Inc.

MarkLogic Corporation. (2016). Flexible Model Datasheet. Retrieved from MarkLogic:
http://cdn.marklogic.com/wp-content/uploads/2016/09/Flexible-Data-Model-
Datasheet.pdf

Miler, M., Medak, D., & Odobasic, D. (2013). The Shortest Path Algorithm Performance
Comparison in Graph and Relational Database on A Transportation Network.
Information and Communication Technology - Preliminary Communication, 75-
82.

MongoDB. (2016). Documents. Retrieved from Introduction to MongoDB:
https://docs.mongodb.com/manual/core/document/#bson-document-format

MongoDB, Inc. (2016). Calculate Distance Using Spherical Geometry. Retrieved from
MongoDB: https://docs.mongodb.com/manual/tutorial/calculate-distances-using-
spherical-geometry-with2d-geospatial-indexes/

MongoDB, Inc. (2016). FAQ - MongoDB Fundamentals. Retrieved from MongoDB:
https://docs.mongodb.com/manual/faq/fundamentals/

Moniruzzaman, A., & Hossain, S. A. (2013). NoSQL Database: New Era of Databases
for Big data Analytics - Classification, Characteristics and Comparison.
International Journal of Database Theory and Applicaion.

Nair, R., Chauhan, R., & Vats, M. (2015). Comparitive Analysis of Open Source Spatial
Database Systems. International Journal of Innocative Computer Science &
Engineering, 2(6), 1-3.

Neo4j. (2016). Neo4j - Product. Retrieved from Neo4j Spatial: https://neo4j.com/product/
Nixon, K. (2015, February). Sustainable Competitive Advantage: Creating Business

Value through Data Relationships. White Paper. neo4j.
Oracle. (2016). Oracle NoSQL Database. Retrieved from Integrated Cloud Applications

& Platform Services: https://www.oracle.com/database/nosql/index.html
Oracle Corporation. (2016). 13.15.9 Functions That Test Spatial Relations Between

Geometry Objects. Retrieved from MySQL - Spatial Relation Functions:
http://dev.mysql.com/doc/refman/5.7/en/spatial-relation-functions.html

Oracle Corporation. (2016). What is MySQL. Retrieved from MySQL:
https://dev.mysql.com/doc/refman/5.7/en/what-is-mysql.html

Padhy, R. P., Patra, M. R., & Satapathy, S. C. (2011). RDBMS to NoSQL: Reviewing
Some Next-Genergation Non-Relational Database's. International Journal of
Advanced Engineering Sciences and Technologies, 15-30.

Penchikala, S. (2013, July 23). NoSQL Database Adoption Trends. Retrieved 2016, from
InfoQ: https://www.infoq.com/research/nosql-databases

Perdue, T. (2016, April 03). NoSQL: An Overview of NoSQL Databases. Retrieved 2016,
from Lifewire: https://www.lifewire.com/nosql-an-overview-of-nosql-databases-
2495393

Sachedina, A., Huras, M. A., & Romanufa, K. K. (2006, Aug). USA Patent No. US
7085911 B2.

Shekhar, S., & Chawla, S. (2003). Spatial Databases: A Tour. Upper Saddle River, New
Jersey: Prentice Hall.

90

Singleton, A. M., & Longley, P. (2010). Developing Efficient We-based GIS
Applications. London: UCL Centre for Advanced Spatial Analysis.

The Apache Software Foundation. (2016). What is Cassandra. Retrieved from Apache
Cassandra: http://cassandra.apache.org/

The PostgreSQL Global Development Group. (2017). About. Retrieved from
PostgreSQL: https://www.postgresql.org/about/

Van Oosterom, P., Quak, W., & Tijssen, T. (2002). Testing Current DBMS Products with
Real Spatial Data. Management of Urban and Rural Information, 7.

Worboys, M., & Duckham, M. (2004). GIS: A Computing Perspectinve Second Edition.
CRC Press.

Zhou, Z., Zhou, B., Li, W., Griglak, B., Caiseda, C., & Huang, Q. (2009). Evaluating
Query Performance on Object-Relational Spatial Databases. Computer Science
and Information Technology (pp. 489-492). Beijing: 2nd IEEE International
Conference on, Beijing. doi:10.1109/ICCSIT.2009.5234509

91

BIOGRAPHY

Jodi Deprizio received her Bachelor of Science from George Mason University in 2012.
She is employed as a Senior Data Analyst in Fairfax County.

	List of Tables
	List of Figures
	List of Abbreviations
	Abstract
	Chapter One: Introduction
	Chapter Two: Literature Review
	Chapter Three: Methodology
	Installation, Configuration, and Ingestion
	MarkLogic
	MySQL
	Neo4j
	MongoDB
	PostgreSQL

	Key Metrics
	About the Data
	Querying the Data:

	Results
	Ingestion and Storage
	Query Performance
	Accuracy
	Usability and Complexity

	Conclusion and Future Research
	Appendix
	MySQL Queries
	Neo4j Queries
	MarkLogic Queries
	MongoDB Queries
	PostgreSQL Queries
	Query Runtime Results Table

	Potomac Buffer KML File
	References

