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ABSTRACT 

COMPARATIVE ANALYSIS OF DATABASE SPATIAL TECHNOLOGIES (CADST) 

Jodi Deprizio, M.S. 

George Mason University, 2018 

Thesis Director:  Dr. Ruixin Yang 

 

Spatial databases are increasingly utilized in, and are a major component of, any 

Geographic Information System (GIS). There are diverse types of SDBMS available, 

each with its own advantages and disadvantages, making it difficult to know which one is 

best suited for a given task. In addition, there is a lack of peer-reviewed literature on this 

subject specific to using GIS vector datasets that would help guide users into making the 

proper database choice. The following is a comprehensive comparison of spatial database 

management systems (SDBMS) for filling the gaps mentioned above. In this thesis five 

database technologies were analyzed and compared to determine which was more 

effective for use when storing and querying spatial vector data. Metrics for comparison 

were ingest performance, storage size, query performance, accuracy, system usability, 

and complexity. The databases analyzed were MySQL, MongoDB, MarkLogic, Neo4j, 

and PostgreSQL (with PostGIS). Each database had significant differences in data 

ingestion time, storage size, system usability, and complexity as well as substantial 

variations in query execution times.
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CHAPTER ONE: INTRODUCTION 

When database management systems (DBMS) were first developed, they focused 

primarily on storing generic tabular data with support for simple data types like text, 

numbers, and dates. The needs of a DBMS were typically limited to accounting and 

business data warehousing where data was stored and could be efficiently retrieved using 

simple queries. As data evolved over time, largely due to advancements in technology 

and the growing GIS movement, many databases added enhanced support for storing and 

querying more specific data types. These include objects, as well as semantic and spatial 

data (Worboys & Duckham, 2004; Guting, 1994; Shekhar & Chawla, 2003). In addition 

to these extensions, entirely new types of databases were being created to fill gaps left by 

traditional relational databases where the size and schema rigidity were issues. These 

limitations were mostly due to the onset of GIS and the copious amounts of geospatial 

data being collected. 

Geospatial data, or spatial data, has geographic positioning information included 

within it that identifies features and boundaries in relation to their location on Earth. This 

data is usually stored as coordinates (latitude, longitude) or other spatial objects like lines 

and polygons, can be mapped, and are often found in large datasets. Non-spatial data is 

also relationally stored within a spatial dataset and is used to characterize features of 

objects not related to a spatial location, e.g. mineral name, deposit type, and lithologic 

and stratigraphic information (Gandhi et al., 2007). GIS is a major technological 

motivation for spatial databases (Shekhar & Chawla, 2003). 



2 
 

Spatial Database Management Systems, or SDBMS, can work with underlying 

DBMS and fall under the general category of GIS. They are used to create, store, 

visualize, process and manipulate geospatial data (Clarke, 2011; Worboys & Duckham, 

2004; Guting, 1994; Shekhar & Chawla, 2003). A critical component of any GIS is the 

database as it is the basis of all decision making. Spatial data requires additional 

functionalities not readily available in a general-purpose DBMS that facilitates data 

extraction, storage, and analysis (Worboys & Duckham, 2004; Longley et al., 2001; 

Singleton & Longley, 2010). Some of these functionalities include spatial indexing, query 

optimization, and algorithms for processing spatial operations (Guting, 1994; Dolton & 

Lowe, 2001). There are many SDBMS that offer a wide range of features, many specific 

to a problem or data type. As a result, this can make choosing the right system 

challenging. This is especially true for data types specific to GIS because they can 

influence the resulting analysis.  
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CHAPTER TWO: LITERATURE REVIEW  

There are several types of SDBMS used in GIS but the relational and non-

relational models are the most prevalent (Healey, 1991). The relational database 

management system, or RDBMS, was created by a researcher who worked for IBM in the 

1970’s named Edgar Codd. His goal was to set up a relational schema that allowed users 

to easily retrieve and store data without redundancy (Codd, 1970). The relational model 

uses collections of tables that represent stored objects. Each table has rows and columns 

where the rows store data for the object and each column represents an attribute. The 

stored data in these tables are linked by using unique values such as an index or primary 

key. All associated tables have the unique primary key (per row) but in the linked tables 

(non-initial) the attribute is called a foreign key. A Relational join is achievable when a 

primary key in one table matches a foreign key in another table (Healey, 1991). SQL, or 

Structured Query Language, is used to query and maintain the data within a relational 

database. SQL, the most widely used database language, was one of the first commercial 

languages used with Codd’s relational model. A RDBMS requires a schema to be defined 

before adding any records to the database and changes to it can be difficult, requiring 

transformation and/or re-ingestion of the source data (Worboys & Duckham, 2004; 

Abdalla & Niall, 2007; Dolton & Lowe, 2001; Longley et al., 2001). Popular examples of 

RDBMS include MySQL and PostgreSQL. 

Non-relational, or NoSQL databases, entered the market place in the late 1990’s 

and have been slowly gaining popularity ever since (Penchikala, 2013; Madison et al., 
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2015). NoSQL databases do not rely heavily on the use of tables, typically don’t use SQL 

for data manipulations, and work well with enormous amounts of data (Padhy et al., 

2011; Moniruzzaman & Hossain, 2013; Bazar & Sebastian, 2014; Madison et al., 2015). 

With that said, the most notable difference between a NoSQL database and a relational 

database is that data is stored without the use of a traditional relational schema. Major 

types of NoSQL databases include key-value stores, column oriented databases, 

document based stores, and graph databases (Padhy et al., 2011; Moniruzzaman & 

Hossain, 2013).  

The key-value store model, based from a paper written by Amazon in 2007, puts 

the data in key pairs that are indexed for retrieval, which can hold structured and 

unstructured data (Perdue, 2016). This is achieved in part using Hash tables. Hash tables, 

broadly speaking, are data structures used to create an associative array and use a hash 

function to compute an index that is stored in a table where specified values can be found 

(USA Patent No. US 7085911 B2, 2006). Searches using this model can only be 

performed on the key pairs and are limited to exact matches (Madison et al., 2015). The 

Oracle NoSQL database is an example of a key-value store (Oracle, 2016).   

Column oriented databases were created to store and process very large amounts 

of data over several machines. Data tables are stored in columns, rather than rows, but are 

otherwise very similar to the common relational database. Predictive analytics and time 

stamping are functions of these systems making them ideal for analysis and data 

versioning (Moniruzzaman & Hossain, 2013; Madison et al., 2015). Cassandra is a type 

of column oriented database (The Apache Software Foundation, 2016). 
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Document based stores organize data as a collection of documents encoded in a 

standard data exchange format like XML (eXtensible Markup Language) or JSON 

(JavaScript Object Notation). Searches can be conducted on both the keys and the values 

and each document can contain hundreds of attributes of different data types (Perdue, 

2016; Madison et al., 2015). MongoDB and MarkLogic are both document based 

databases (MongoDB, Inc., 2016; MarkLogic Corporation, 2016). 

Graph databases became popular in the 1980’s and 90’s and were an attempt to 

overcome the limitations of traditional RDBMS, particularly where GIS is concerned. In 

general graph databases are a collection of nodes and edges where each node represents a 

conceptual object and each edge represents a relationship (Angles & Gutierrez, 2008; 

Padhy et al., 2011; Madison et al., 2015). This relationship is fundamental to the graph 

database model and is best when storing substantial amounts of interconnected data. 

Neo4j is an example of a graph database (Neo4j, 2016).   

Choosing the right spatial database for the task at hand is extremely important 

(Shekhar & Chawla, 2003; Guting, 1994). Each system has its own advantages and 

disadvantages that are dependent upon the type of ingested data and the expected 

outcome of the analysis (Worboys & Duckham, 2004; Dolton & Lowe, 2001). Making 

the right choice is becoming increasingly difficult as more and more DBMS are adding 

spatial modules or extensions for use with geospatial data (Van Oosterom et al., 2002). 

The following is a review of the available literature for MySQL, MongoDB, MarkLogic, 
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Neo4j, and PostgreSQL (with PostGIS) databases focusing on SDBMS comparative 

analysis.  

MySQL is purported to be the most popular open source RDBMS and uses SQL 

to maintain and query data within the database. This system was originally developed to 

manage substantial amounts of information faster than the traditional databases available 

at the time. The most recent version of MySQL (5.7) offers GIS functions and spatial 

indexes (R-Tree) out-of-the-box with additional extensions that allow users to perform 

operations on spatial data, such as determining the distance between two objects. 

Documentation for GIS features and extensions supported are available on the MySQL 

website which facilitate the generation, storage, and analysis of geographic information 

(Oracle Corporation, 2016; Karlsson, 2008).  

Nair et al. (2015) did a side by side comparison of MySQL, PostgreSQL (with 

PostGIS), and SpatialLite, all open source RDBMS, and concluded that MySQL 

performed best when used with web applications but lacked in stability, raster support, 

and spatial features (Nair et al., 2015). With that said, the spatial features that MySQL 

does support have very fast query executing times as was pointed out in an analysis 

conducted by Zhou et al. (2009). In this study, they compared the query speeds of 

MySQL to PostgreSQL (with PostGIS), Oracle Spatial, and IBM DB2 Spatial Extender, 

other popular open-source and commercial databases (Zhou, et al., 2009). When MySQL 

was compared to SQL Server, a commercially supported RDBMS, to determine which 

had better query processing times, the results were in favor of SQL Server (Amlanjyoti et 

al., 2015). The query execution time was measured as a performance metric in both the 
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Zhou et al., and Amalanjyoti et al., analysis, however, only one of these studies used a 

geospatial dataset. In addition, the ingestion time and storage and memory footprint were 

only loosely captured in the future research section of the Amalanjyoti et al. analysis 

(Amlanjyoti et al., 2015; Nair, Chauhan, & Vats, 2015). 

PostgreSQL is another mature open-source RDBMS that utilizes a structured 

query language. It has no limitations on the size of the database or the number of rows 

and indexes per table (The PostgreSQL Global Development Group, 2017). It is also 

highly customizable and can run stored procedures in a plethora of programming 

languages which include Java, Python, and its own PL/pgSQL. PostGIS is one of the 

features offered by PostgreSQL which provides support for geographic objects that are 

used to create a spatial database for GIS like ESRI’s Spatial Database Engine (The 

PostgreSQL Global Development Group, 2017).  

Miler et al. (2013) compared the performance of Dijkstra’s shortest path 

calculation using Neo4j and PostGIS to determine if there was any difference in 

calculation time using road data from OpenStreetMap (Miler, Medak, & Odobasic, 

2013). They hypothesized that the graph database (Neo4j) would be the better choice for 

this type of calculation however that was not the case. They determined that Neo4j was 

not suitable for the shortest path algorithm because it uses a full graph traversal which 

takes up substantial amounts of memory (Miler, Medak, & Odobasic, 2013). In this study 

PostgreSQL (with PostGIS) had both lower peak memory consumption and faster hot and 

cold query times. 
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Another open-source option is MongoDB which differs from MySQL and 

PostgreSQL because it is a NoSQL, document based, database. Rather than store data in 

tables like relational databases, MongoDB uses collections of fields and values, in a 

structured BinaryScript Object Notation (BSON) format. Standard SQL is not supported 

by MongoDB; however, it does support a rich query text of its own as well as JavaScript. 

Queries can consist of a mix of non-JavaScript and JavaScript code in the same instance. 

Geospatial indexes and query tools are available to analyze spatial data. Further 

documentation can be found on their website (MongoDB, Inc., 2016).  

A study conducted by Bazar & Sebastian (2014) compared popular open-source, 

NoSQL, databases to aid readers in transitioning from a traditional RDBMS to a NoSQL 

solution. One of the databases in this study was MongoDB. The other two databases in 

this study were Couchbase, similar to MongoDB as it is another document-based 

database, and Cassandra, a column oriented database. The analysis concluded that 

MongoDB processed requests faster than Cassandra but slower than Couchbase even 

though they all showed approximately equal read speeds (Bazar & Sebastian, 2014). In a 

similar analysis comparing MongoDB to MySQL, Kumar et al. (2015) found that 

MongoDB had data processing speeds that were much faster than MySQL. In addition, 

Aghi et al. (2015) found that MongoDB performed better than MySQL when there were 

complex queries especially when they involved multiple joins. Query execution times, 

data ingestion, and memory footprints were evaluated in these studies but weren’t 

specific to geospatial data or spatial queries.  
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MarkLogic is a commercially supported, document based, NoSQL database that 

provides storage for many data types including JSON, XML, and geospatial objects. 

Structured and unstructured data, as well as any pertinent metadata, are stored in the same 

database (MarkLogic Corporation, 2016). Although MarkLogic was released in 2001, 

there are no apparent peer reviewed database comparative analysis available. With that 

said, there are blog posts available that compare the MarkLogic product to other similar 

databases, such as MongoDB, as well as highlight the overall benefits of using 

MarkLogic but these are based on opinion and lack unbiased scientific discovery 

(Fowler, 2013).  

Neo4j is a NoSQL graph database that contains a spatial extension library. This 

library provides spatial indexes that allow users to search their data for objects within a 

certain distance (proximity) or within a specified area (Bass, 2012; Neo4j, 2016). The 

database is queried using the Cypher Query Language, a recent addition to the Neo4j 

platform (Jaiswal & Agrawal, 2013; Batra & Tyagi, 2012).  

Batra & Tyagi (2012) conducted a comparative analysis of MySQL and Neo4j to 

showcase graph databases as a replacement for traditional RDBMS when dealing with 

large datasets that need a dynamic schema. They found that Neo4j could retrieve data at a 

much faster rate than MySQL and the schema for Neo4j was more flexible as new 

relationships could be added without the need for restructuring (Batra & Tyagi, 2012). 

Jaiswal & Agrawal (2013) also compared Neo4j to MySQL and, similar to Batra & Tyagi 

(2013), determined that the graph database outperformed the RDBMS in query retrieval 
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time. While these studies looked at query performance and retrieval times they were not 

specific to geospatial data.  

This thesis will assist the GIS community by evaluating the spatial competency of 

MySQL, MongoDB, MarkLogic, Neo4j and PostgreSQL (with PostGIS) databases when 

used with a vector dataset. Overall the literature review showed gaps in the lack of 

comparative analysis available for these databases using geospatial data. Although some 

literature is available on query performance there was little to none for storage and 

memory footprint, ingest performance, and the complexity, usability, and accuracy of the 

database. There was no peer reviewed literature for MarkLogic. In some cases, such as 

Neo4j, the range or type of database used to conduct the comparative analysis was 

limited, e.g. Neo4j vs MySQL. Almost all the studies reviewed emphasized the need for 

future comparative research on other SDBMS largely because there are many to choose 

from and each has its own pros and cons. The following will evaluate each selected 

database and provide valuable information to assist users in making the right SDBMS 

choice for their data. 
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CHAPTER THREE: METHODOLOGY  

Research was performed by initializing the five selected databases and comparing 

them to one another. The same geospatial (vector) dataset and spatial queries were used 

for the analysis. Further information on the data used in this analysis is available in the 

About the Data section. The five databases chosen to conduct this comparative analysis 

were MySQL, MongoDB, MarkLogic, Neo4j, and PostgreSQL (with PostGIS). Table 1 

provides a reference guide to each database and its respective model. Table 2 lists the 

version, architecture, and install/download size. 

 

Table 1: Quick reference guide to the analyzed database and its respective model. 

Database Open 
Source 

Commercially 
Supported RDBMS 

NoSQL 
(Non-
Relational) 

Graph 
Database 

MySQL X  X   
MongoDB X   X  
MarkLogic  X  X  
Neo4j    X X 
PostgreSQL X  X   

 
 

Table 2: Listing of the version, architecture, and install size of each database into the virtual machine. 
Database  Version Architecture Install Size 
MySQL Community Server 5.7.17-1 64 bit 202 MB 
MongoDB 3.4.2 for Redhat Enterprise Linux 7 64 bit 257 MB 
MarkLogic For CentOS 7 8.0-6.1 64 bit 193 MB 
Neo4j Community Edition 3.1.2 64 bit 99 MB 
PostgreSQL 9.6.3 with PostGIS 2.3.2 r15302 64 bit 104 MB 
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To provide a controlled environment, a single virtual machine was created and 

cloned for each database type. The VM hosting platform used was VirtualBox version 

5.1.14. The parameters for the virtual machine image are described in Table 3. 

 

Table 3: Listing of parameters for Virtual Machine Configurations. 
Parameter  Value 
Processor Dual-Core with VT-x hardware support 
RAM 8192MB 
Storage 32GB 
Network Interface Bridged to host adapter, 1GB 

 

The Operating System installed on the VM image was CentOS Linux release 

7.3.1611. For simplicity, both SELinux and the firewalld process were disabled on the 

image before cloning. After cloning the image, the database systems were installed, and 

the tests were performed. 

Loading data into a database can typically be done in several ways. For the 

purposes of this analysis data ingestion was performed using the most common method 

for each system. These methods are explained in detail below per database. 

 

Installation, Configuration, and Ingestion 

MarkLogic 
MarkLogic was installed using yum via the RPM package obtained from the 

MarkLogic website. The command used to install the product was: 

#yum install MarkLogic-RHEL7-8.0-6.1.x86_64.rpm 
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After installation, the initial configuration was performed automatically. 

MarkLogic is configured and managed via a web interface. Using this interface, a 

geospatial element pair index was created on the Documents database prior to loading the 

data. MarkLogic offers a tool called the MarkLogic Content Pump for ingesting data. 

This tool was used to parse the CSV file and insert the data into the Documents database. 

The following command was run to load the data into MarkLogic: 

#./mlcp.sh import -host localhost -port 8006 -username admin -password ###### \ 

-input_file_type delimited_text -document_type json -input_file_path /tmp/mrds.csv 

  

MarkLogic can execute 2 types of queries: ad-hoc and stored. Stored queries are 

typically inserted into a modules database within MarkLogic and run via calling a web 

service or invoked via an ad-hoc query. Ad-hoc queries are run via a web interface that is 

built into MarkLogic called QConsole. 

After the data was ingested, a transformation was run on all the documents in 

order to extract the latitude and longitude values into a usable format for the range index 

created previously. This was a three-step process. First, a stored module was created that 

contained logic to produce a point property from the latitude and longitude properties 

stored in the documents. This module was then loaded into the modules database for 

execution. Finally, an ad-hoc query was run to apply the transformation module against 

every document. This process is detailed below: 

1. Stored Transformation Module: 

declareUpdate(); 
function createGeoPoint(doc) { 
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    if (doc.latitude && doc.longitude) { 
        doc.point = {latitude: parseFloat(doc.latitude), longitude: 
parseFloat(doc.longitude)}; 
    } 
    return doc; 
} 
var doc = cts.doc(uri); 
var docObject = doc.toObject(); 
xdmp.nodeReplace(doc, createGeoPoint(docObject)); 
 

2. Load the transformation module into the modules database (executed from 

QConsole) 

// Load the transformation Module 
declareUpdate(); 
xdmp.documentLoad('/tmp/createGeoPoint.sjs', {uri: '/createGeoPoint.sjs', permissions: 
xdmp.defaultPermissions()}); 
 

3. Run the transformation module against every document (Executed from 

QConsole) 

for (var uri of cts.uris(null, null, cts.trueQuery())) { 
  xdmp.spawn( 
    '/createGeoPoint.sjs', 
    {uri: uri}, 
    {transactionMode: 'update-auto-commit'} 
  ); 
} 

 

MySQL 
 MySQL was installed using yum directly from the preconfigured repositories in 

CentOS: 

#yum install mysql-community-server  
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To interface with MySQL, the tool MySQL Workbench 6.3 Community Edition 

was installed on the host machine and configured to connect to the MySQL instance 

running within the guest VM. After installation and startup, a spatial index was created 

by running a query in MySQL Workbench. Next, the data was loaded by running a 

second query. Finally, a transformation was run to synthesize point fields for each row to 

use with the MySQL spatial index. The process is detailed below: 

1. Create spatial index 

ALTER TABLE mrds.mrds ADD SPATIAL INDEX coords_index (coords); 
 

2. Ingest data into MySQL 

LOAD DATA INFILE '/var/lib/mysql-files/mrds.csv' 
INTO TABLE mrds.mrds 
FIELDS TERMINATED BY ',' 
 OPTIONALLY ENCLOSED BY '"' 
LINES TERMINATED BY '\n' 
IGNORE 1 LINES 
(dep_id,url,mrds_id,mas_id,site_name,@vlat,@vlon,region,country,state,county,com_typ
e,commod1,commod2,commod3,oper_type,dep_type,prod_size,dev_stat,ore,gangue,othe
r_matl,orebody_fm,work_type,model,alteration,conc_proc,names,ore_ctrl,reporter,hrock
_unit,hrock_type,arock_unit,arock_type,structure,tectonic,ref,yfp_ba,yr_fst_prd,ylp_ba,y
r_lst_prd,dy_ba,disc_yr,prod_yrs,discr) 

SET latitude = nullif(@vlat,''), 
longitude = nullif(@vlon,''); 
 

3. Synthesize point fields 

UPDATE mrds.mrds SET coords = GeometryFromText( CONCAT( 'POINT(', longitude, 
' ', latitude, ')' ) ); 

 

Neo4j 
Neo4j was extracted and run directly from its source package: 
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#tar xf /tmp/neo4j-community-3.1.2-unix.tar.gz 
 

In order to utilize spatial capabilities, the Neo4j spatial library (Release 0.24) was 

installed. The installation process for neo4j-spatial involves building the library from 

source (via Maven) and then copying the compiled jar file into the Neo4j plugin 

directory. Maven was installed on the VM via the preconfigured CentOS yum repository, 

and the spatial plugin was built using the command: 

#mvn install 
 

This produced a jar file that was copied into the Neo4j plugin directory. 

Neo4j comes with a built-in web interface called Neo4j Browser for running ad-hoc 

queries against the database. This interface was used for loading the data and running 

queries. The loading and transformation process for Neo4j consisted of running an initial 

load query, followed by running a query to produce the geospatial layer necessary for 

utilizing the Neo4j-spatial plugin. These queries are detailed below: 

1. Load the data into Neo4j 

USING PERIODIC COMMIT 10000 
LOAD CSV WITH HEADERS FROM "file:/tmp/mrds.csv" AS row 
CREATE (:Resource {dep_id: row.dep_id, url: row.url, mrds_id: row.mrds_id, mas_id: 
row.mas_id, site_name: row.site_name, latitude: toFloat(row.latitude), longitude: 
toFloat(row.longitude), region: row.region, country: row.country, state: row.state, county: 
row.county, com_type: row.com_type, commod1: row.commod1, commod2: 
row.commod2, commod3: row.commod3, oper_type: row.oper_type, dep_type: 
row.dep_type, prod_size: row.prod_size, dev_stat: row.dev_stat, ore: row.ore, gangue: 
row.gangue, other_matl: row.other_matl, orebody_fm: row.orebody_fm, work_type: 
row.work_type, model: row.model, alteration: row.alteration, conc_proc: row.conc_proc, 
names: row.names, ore_ctrl: row.ore_ctrl, reporter: row.reporter, hrock_unit: 
row.hrock_unit, hrock_type: row.hrock_type, arock_unit: row.arock_unit, arock_type: 
row.arock_type, structure: row.structure, tectonic: row.tectonic, ref: row.ref, yfp_ba: 
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row.yfp_ba, yr_fst_prd: row.yr_fst_prd, ylp_ba: row.ylp_ba, yr_lst_prd: row.yr_lst_prd, 
dy_ba: row.dy_ba, disc_yr: row.disc_yr, prod_yrs: row.prod_yrs, discr: row.discr}); 

 

2. Construct a geospatial layer containing all the records in the dataset. 

MATCH (r:Resource) WHERE r.latitude is not null and r.longitude is not null 
WITH r 
CALL spatial.addNode("layer_resources", r) YIELD node as n 
RETURN COUNT(*) as cnt; 
 

Of significance, this step took over 10 hours to complete. 

MongoDB 
MongoDB was installed directly in CentOS via the preconfigured yum repository 

system: 

#yum install mongodb-org 
 

MongoDB provides a tool called mongoimport for ingesting data. This tool was 

used to parse the CSV file and insert the data into the mrds collection within the local 

database. The following command was run to load the data into MongoDB: 

#mongoimport -d local -c mrds --type csv --file /tmp/mrds.csv –headerline 
 

Queries in MongoDB were run via a tool called Robo 3T, a GUI interface for 

managing and querying MongoDB. In order to make use of MongoDB’s geospatial 

indexes, a field was synthesized in each record to hold the geospatial data in the format 

[longitude, latitude] by running the following query: 

db.mrds.find().forEach(function(row) { if (row.latitude && row.longitude) {row.point = 
[row.longitude, row.latitude]; } db.mrds.save(row); }); 
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 A text index was created on the com_type field for use in Queries 1 and 3: 

db.mrds.createIndex( { com_type: “text” }, { sparse: true } ); 
 

Finally, a geospatial index was created on the point field constructed above: 

db.mrds.createIndex( { point: "2dsphere" }, { sparse: true } ); 

 

PostgreSQL 
 PostgreSQL and PostGIS were both installed directly in CentOS via the 

preconfigured yum repository system: 

#yum install postgresql96-server.x86_64 
#yum install postgis2_96.x86_64 
 

For interacting with PostgreSQL, the open-source tool pgAdmin4 was used. The 

tool provides mechanisms for configuring and connecting to PostgreSQL databases, as 

well as executing queries and loading data. The following query was run to create a new 

table: 

CREATE TABLE public.mrds 
( 
 dep_id character varying, 
 url character varying, 
 mrds_id character varying, 
 mas_id character varying, 
 site_name character varying, 
 latitude character varying, 
 longitude character varying, 
 region character varying, 
 country character varying, 
 state character varying, 
 county character varying, 
 com_type character varying, 
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 commod1 character varying, 
 commod2 character varying, 
 commod3 character varying, 
 oper_type character varying, 
 dep_type character varying, 
 prod_size character varying, 
 dev_stat character varying, 
 ore character varying, 
 gangue character varying, 
 other_matl character varying, 
 orebody_fm character varying, 
 work_type character varying, 
 model character varying, 
 alteration character varying, 
 conc_proc character varying, 
 names character varying, 
 ore_ctrl character varying, 
 reporter character varying, 
 hrock_unit character varying, 
 hrock_type character varying, 
 arock_unit character varying, 
 arock_type character varying, 
 structure character varying, 
 tectonic character varying, 
 ref character varying, 
 yfp_ba character varying, 
 yr_fst_prd character varying, 
 ylp_ba character varying, 
 yr_lst_prd character varying, 
 dy_ba character varying, 
 disc_yr character varying, 
 prod_yrs character varying, 
 discr character varying, 
 PRIMARY KEY (dep_id) 
) 
WITH 
( 
 OIDS = FALSE 
); 
 
ALTER TABLE public.mrds 
OWNER 
to 
postgres; 
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After the table was created, the data from the csv file was loaded into the table by running 

COPY mrds FROM '/tmp/mrds.csv' WITH DELIMITER ',' CSV HEADER; 
 

Once the data was loaded, the latitude/longitude fields needed to be synthesized 

into a geography data type to take advantage of PostGIS indexes. A new column 

“pointgeo” with type “geography” was added to the “mrds” table and an index was added 

on the column via the pgAdmin4 graphical interface. Finally, the latitude/longitude fields 

were parsed to construct the “pointgeo” geography within the table. 

update mrds 
set pointgeo = st_geogfromtext('SRID=4326;POINT(' || longitude || ' ' || latitude || ')'); 
 

Key Metrics 
The five systems have been analyzed by way of both qualitative and quantitative 

methods. Ingest performance, query performance, accuracy, and storage and memory 

footprint have been quantitatively measured while usability and complexity were 

assessed subjectively. The strategy included: 

1. Installing the databases on identical virtual machines. 

2. Loading the same dataset into each management system. 

3. Running the same predefined set of queries against each database. 

4. Analyzing the query outputs for accuracy (it might be possible that differences 

in query languages and or styles could cause the system to return a different 

number of results). 

Table 4 below further details these metrics and how they have been measured. 
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Table 4: Description of the evaluation metrics 
Metric Name Measurement Unit Description of Measurement 

Ingest 
performance Seconds 

How long does it take to load the entire 
dataset? Are there extra steps to loading 
(pre or post-processing)? 

Storage Bytes How much space does the loaded 
database consume on disk? 

Query 
performance Seconds 

Data retrieval time. How long does 
each query take to resolve the results? 
Provide wait analysis and graphs. 

Accuracy Number of records returned Do all the databases provide the 
expected query results? 

Usability Qualitative description of 
user experience 

Were there any other factors that made 
one database easier to use than another? 

Complexity 

Lines of query, number of 
processes for each database 
used, and available 
documentation  

How difficult is it to query for data? Do 
some databases require more complex 
queries to achieve the same results 
(using the same objective and 
instruction)? 

 
 

Measuring each of these metrics relied on the instrumentation provided by each 

individual database and tool. For example, MongoDB provides a tool called 

mongoimport for loading data, that displays its runtime in its program output. 

MarkLogic’s mlcp tool also displays its runtime as program output, but appears to round 

the time value to the nearest second. For Neo4j, MySQL, and PostgreSQL, loading was 

performed by executing ad-hoc queries against each database, and the query runtime was 

recorded by the Neo4j Browser, MySQL Workbench, and pgAdmin4 respectively.  

Likewise, storage size measurement relied on the tools provided. Storage size for 

MarkLogic was taken from its administration interface. Neo4j storage was recorded from 

the Neo4j Browser. MySQL, PostgreSQL, and MongoDB storage values were recorded 

from the operating system measurement of the database directory size on disk. 
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Usability is a subjective measurement that was derived from the amount of effort 

required to construct each query or transform the input or output from a system. The 

more preprocessing and data manipulation required to execute a query or transform a 

dataset, the less usable a system is considered. Other considerations for usability include 

toolsets, documentation, and community support (access to online resources for training 

and reference material). 

About the Data 
The dataset used was the US Geological Survey’s (USGS) Mineral Resource Data 

System (MRDS). It contains records about mineral resources, such as the type, location, 

reporter, site name, discovery year, and more. It is available online here 

https://mrdata.usgs.gov/mrds/. The original publication date for this dataset was 2005 and 

it was last updated in March of 2016. The dataset contains 304,633 total records with 44 

heterogenous fields including text, scalar values, and spatial data (latitude/longitude). 

Querying the Data:  
A database may have many simultaneous operations occurring at any given time, 

which can cause minor variations in the performance of a query at a given moment. 

Likewise, the operating system may have intermittent maintenance and housekeeping 

tasks that can affect processing performance from one moment to the next. Compounding 

this variance, most database systems employ a caching mechanism that provides for 

improved performance of frequently run queries. After a query is executed, the partial 

results from the execution are maintained in cache to provide faster access for subsequent 

runs. Queries that are assisted by this cache are generally referred to as “warm” queries, 
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and queries that occur with no cache assistance are referred to as “cold” queries. To take 

these variables into account, each query was executed a total of 10 times, 5 immediately 

after a database restart (to measure performance with an empty cache), and 5 executed in 

immediate succession. The results of these trials were averaged for the conclusive results 

detailed below. This methodology was followed to remove any minor variances in 

performance across trials due to external influences. 

The spatial queries used for performance measurements are defined below and 

will be notated throughout this thesis by the corresponding number (e.g. Query 1): 

1. Find all records with the attribute type of “non-metal.” 

2. Find all records within a specified geometry. This was manually 

conducted for10 different regions (Refer to Figure 1 for an illustration of 

the geometries queried). 

3. Find all records of type “non-metal” within a defined geometry. This was 

manually conducted for 10 different regions (Refer to Figure 1 for an 

illustration of the geometries queried). 

4. Find all records within 5 miles of the Potomac River in Washington DC. 

(Refer to Figure 2 for a detailed map view of the defined space). 

5. Find all records within 1 mile of Uranium deposits. (For a detailed view of 

the Uranium deposit locations refer to Figure 3). 

These five queries were formulated to test different properties of each DBMS, 

ranging from basic, non-spatial information retrieval, to more complex geospatial 

queries. Query 1 is a basic attribute query, without any geospatial properties. Query 2 is a 
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simple geospatial geometry query. Query 3 is a combination of queries 1 and 2. Query 4 

is a complex polygon geospatial query. Lastly, Query 5 is a 2-part query, using the output 

of the initial attribute query to dynamically construct a geospatial query. 

Because each of the databases use a different query language, the methods for 

querying data differed substantially. MarkLogic and MongoDB both use JavaScript as 

their query language, but each provides a separate set of extensions and support functions 

for executing queries. MySQL and PostgreSQL use SQL as their querying languages, 

with some geospatial-specific language extensions and features for querying spatial data. 

Neo4j uses Cypher as its query language, which is similar to SQL but with some features 

that enhance the ability to query multi-level relationships within a connected graph. 

Query 1 was the simplest query of the set, and therefore the most logically 

consistent query across all the databases. This query serves as a baseline for simple data 

retrieval within the DBMS. 

The geometries for Queries 2 and 3 were produced by drawing 10 bounded areas, 

5 rectangles and 5 polygons, each randomly chosen in separate geographic regions within 

the United States using Google Earth. These latitude and longitudes were recorded, and 

the resulting geometries were used in the queries for all 5 databases using their respective 

languages. 

The geometries for Query 4 were constructed by producing a KML file using 

Google Earth. A line was drawn along the center of the Potomac river within Washington 

D.C. and a 5-mile buffer was applied to the line, and the output was saved into a KML 

file. MarkLogic and PostgreSQL with the PostGIS extension could automatically load the 



25 
 

geometry within the KML file and use it as part of the query. All other databases required 

extracting the KML file as text, and then constructing the appropriate geometries as 

strings that the candidate database would understand. This process required a significant 

amount of time and effort and is typical of the workflow of a geospatial analyst. 

The first part of Query 5 returned a result set that contained all the mineral 

deposits with a primary commodity type of Uranium. The query then used the resulting 

latitudes and longitudes from this set to dynamically construct a geospatial query of a 1-

mile radius circle around every item. Because each database represents distances 

differently and expects different geometries to represent a point buffer (circle), this query 

had the most inconsistent logic across all the databases. Figure 3 illustrates the first part 

of this query highlighting the locations of all the Uranium deposits within the Continental 

United States. 
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Figure 1: ArcMap image of the 10 manually defined geospatial boundaries used for queries 2 and 3. 
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Figure 2: ArcMap image showing the 5-mile buffer area of interest used for query 4. 
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Figure 3: ArcMap image of the locations of Uranium deposits from the interim output of query 5. 
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RESULTS 

Ingestion and Storage 
Based on the reviewed literature, it was deemed likely that there would be 

significant differences in the data ingestion time in each of the different database systems. 

It was also expected that the data within each of the spatial databases would have 

different storage and memory footprints after ingesting the same dataset. This anticipated 

difference would occur because all five databases employ vastly different data structures 

for storing information. These different data structures influence the size of the stored 

data, as well as the performance of data retrieval. 

The first stage of this comparative analysis consisted of loading the preprocessed 

geospatial data into the respective databases to measure ingest performance and the 

overall size of the database (storage and memory footprint). As predicted, there were 

significant differences in the amount of time each database took to load the same dataset 

with a maximum ingest time of 108s with MarkLogic and a minimum time of 3s with 

PostgreSQL. Figure 4 further details these differences in data ingestion time per database. 

Likewise, there were large variations in the resulting storage size for each system with a 

maximum of 1901MBs for MarkLogic and a minimum of 177MBs for MySQL, as 

detailed in Figure 5. The data loading times tended to correlate with the resulting 

database size, with larger database sizes linked to longer ingestion times. This distinction 

will be further discussed in the Conclusion and Future Research section of this Thesis. 
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Figure 4: Data ingest time (seconds) for each database to load the same dataset. 
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Figure 5: Size (MB) of each database after the same dataset was loaded. 
 

 

Query Performance 
It was anticipated that there would be significant differences in query 

performance, measured by their execution times, between each of the spatial databases 

compared. As noted in the Ingestion and Storage section, the data structures a database 

uses affects the query and retrieval performance of a DBMS. Since each one of the 

candidate databases utilized different indexing mechanisms, it was estimated that they 

would perform differently under different scenarios, with some being better suited at 

certain types of queries than others. 
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As anticipated, all five systems demonstrated substantial variations in query 

execution times. Table 5 shows the discrete results of the cold and warm queries run 

against each database apart from queries 2 and 3 where the computed average of the 

average cold and warm performance times for all the 10 bounding geometries are 

documented. Table 6 aggregates these values into the average overall runtimes per query 

per database.  A full list of discrete query runtimes is available in the Appendix section of 

this thesis. 

These results show that MarkLogic was the fastest performing database among 

the group across all 5 queries. MySQL had the second fastest retrieval performance for 

queries 2, 3, and 4 while PostgreSQL and MongoDB came in second for query 1 and 

query 5 respectively. MongoDB had the third fastest performance for queries 1, 4, and 2 

along with MySQL for query 5 and PostgreSQL for query 3. For queries 2, 4, and 5 

PostgreSQL had the fourth fastest times along with MySQL for query 1 and MongoDB 

for query 3. Neo4j consistently required longer query processing times for all 5 queries 

executed.  

All five databases were able to complete all five of the defined queries although 

performance times varied significantly between databases. Query 5 had the largest 

variance across all the databases observed with a minimum runtime of 0.055s with 

MarkLogic and a maximum of 1585.9s, approximately 26 minutes, with Neo4j. These 

and other outcomes are further illustrated in Figures 6-10. Each query was defined 

previously under the Methodology section and will be noted using the same numerical 
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key. The full query text for each query performed can be found in the Appendix section of 

this thesis. 

 

Table 5: Discrete Query Performance Results (time in seconds) Query 2 and 3 are an average of the average cold 
and warm run times for all 10 geometries queried. This is done for simplicity, but Table 15 in the Appendix 
section provides an entire detailed list of all query run times. 
Database Query # Query Time (cold) Query Time (warm) 
MarkLogic 1 0.001954 0.0012574 

2 0.001585 0.000712 
3 0.002306 0.001224 
4 0.0121788 0.0104978 
5 0.06227 0.0474812 

MongoDB 1 0.026 0.0184 
2 0.10742 0.04246 
3 0.35222 0.15742 
4 0.071 0.057 
5 740.961 769.7186 

MySQL 1 0.024875 0.024839 
2 0.05692351 0.039764865 
3 0.043668845 0.027020345 
4 0.036066 0.032606 
5 783.5784 786.5094 

Neo4j 1 0.9546 0.363 
2 1.27264 0.46942 
3 1.31064 0.51334 
4 8.9392 6.5932 
5 1666.435 1505.4304 

PostgreSQL 1 0.010747 0.008265 
2 0.11455298 0.11076532 
3 0.2778676 0.08241374 
4 3.39914 3.333564 
5 1303.978 1462.89 
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Table 6: Average runtime (seconds) for the overall (cold and warm) execution time for each query per database. 
Query 2 and 3 are an average of the average cold and warm run times for all 10 geometry queries. 

Query # 
Database 1 2 3 4 5 
MarkLogic 0.0016 0.0011 0.0018 0.0113 0.0549 
MongoDB 0.0222 0.0749 0.2548 0.0640 755.3398 
MySQL 0.0249 0.0483 0.0353 0.0343 785.0439 
Neo4j 0.6588 0.8710 0.9120 7.7662 1,585.9327 
PostgreSQL 0.0095 0.1127 0.1801 3.3664 1,383.4340 

 
 

 
Figure 6: Query Time (cold) in blue and Query Time (warm) in yellow for Query 1. Numbers shown are the 
time needed to process the query in seconds. 
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Figure 7: Query Time (cold) and Query Time (warm) for Query 2. Numbers shown are the time needed to 
process the query in seconds. 
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Figure 8:Figure 8: Query Time (cold) and Query Time (warm) for Query 3. Numbers shown are the time needed 
to process the query in seconds. 

 

 
Figure 9: Query Time (cold) and Query Time (warm) for Query 4. Numbers shown are the time needed to 
process the query in seconds. 
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Figure 10: Query Time (cold) and Query Time (warm) for Query 5. Numbers shown are the time needed to 
process the query in seconds. 

 

Accuracy 
As the primary purpose of a database is accurate data storage and retrieval, it was 

expected that each database would produce the exact same results for the same high-level 

queries issued. There were not expected to be any variances in the number of results 

returned. In addition, this metric was used to ensure that the functions used to query each 

database were in fact the proper ones to use as each database used different query 

languages.  

Somewhat unexpected, not all databases returned the same number of results for 

every query. Queries 1 and 4 were the only queries that returned the same number of 

results for all five databases tested. The remainder of the results returned for each of the 

databases per query had only slight variances from database to database however there 
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were a few noteworthy deviations. For queries 2 and 3, MarkLogic, MongoDB, and 

PostgreSQL all agreed on the number of results returned per executed query, while 

MySQL and Neo4j agreed on a different number of result matches. None of the databases 

agreed on query 5, and they each returned a slightly different number of results with the 

minimum returned result of 17,032 from MongoDB and a maximum of 17,059 from 

MySQL, a difference of 24 data points. Table 7 illustrates these commonalities and 

differences in further detail including the query number, database, and the number of 

results returned. These deviations will be further discussed in the Conclusions section of 

this thesis. 

 

 

Table 7: Count of results returned per query for each database. 
Database 

Query # MarkLogic MongoDB MySQL Neo4j PostgreSQL 
1 111061 111061 111061 111061 111061 
2a 3254 3254 3236 3236 3254 
2b 3763 3763 3758 3758 3763 
2c 19020 19020 19073 19074 19020 
2d 15130 15130 16217 16217 15130 
2e 1342 1342 1290 1290 1342 
2f 4701 4701 4793 4793 4701 
2g 1669 1669 1642 1642 1669 
2h 3493 3493 3631 3631 3493 
2i 9813 9813 9581 9581 9813 
2j 37323 37323 37636 37636 37323 
3a 1730 1730 1736 1736 1730 
3b 1209 1209 1203 1203 1209 
3c 3050 3050 3078 3078 3050 
3d 4748 4748 4886 4886 4748 
3e 1085 1085 1045 1045 1085 
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3f 2850 2850 2887 2887 2850 
3g 1331 1331 1330 1330 1331 
3h 2230 2230 2312 2312 2230 
3i 2582 2582 2549 2549 2582 
3j 7385 7385 7259 7259 7385 
4 74 74 74 74 74 
5 17039 17032 17059 17040 17038 

 

Usability and Complexity 
Because each of the tested databases were initially built with a specific intention, 

it was predicted that there would likely be differences in usability and complexity 

between them. In some cases, a geospatial capability was not built directly into the 

platform, but rather added as an extension after the product was released. In other cases, 

the database was built for more general-purpose data storage with geospatial as a small 

subset of the overall platform. 

As expected, there were significant differences in the usability and complexity of 

each of the database systems tested. All the databases required some amount of initial 

preprocessing to produce the proper format for optimal indexing within each database 

system. This effort was mostly equivalent across all the databases. Essentially, the initial 

ingested data needed to be supplemented to convert its scalar-based data into a geospatial 

format. Of note, the data preprocessing step for Neo4j was significant in that although the 

syntax was relatively trivial, the processing itself took over 10 hours to complete. 

Out of the databases surveyed, the databases that required the least overall query 

preprocessing and data manipulation were MarkLogic and PostgreSQL (with PostGIS). 

As mentioned in the Methodology section, the complex geometry for Query 4 required a 
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significant amount of preprocessing for all tested databases except MarkLogic and 

PostgreSQL (with PostGIS), due to both databases having native support for KML. 

Support-wise, Neo4j tended to have the fewest information resources available 

online. MarkLogic tended to not have much community-provided information but had 

very comprehensive documentation that made query construction relatively straight-

forward. MongoDB tended to have very broad community support and relatively useful 

product documentation. MySQL had broad community support, but had some vagueness 

in its documentation, particularly surrounding the units used for geospatial buffers. Both 

PostgreSQL and PostGIS had an extensive online community with comprehensive 

documentation which made query construction considerably easier.  

Subjectively speaking, the order of usability from best to worst was MarkLogic, 

MongoDB, PostgreSQL (with PostGIS), MySQL, and Neo4j. 
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CONCLUSION AND FUTURE RESEARCH 

Given an identical input dataset, there were significant differences in the data 

ingestion time and the resulting storage footprint of the databases. The ingestion time 

tended to strongly correlate with the resulting size of the database. This relationship is 

illustrated in Figure 11 which shows the subsequent database size per system as well as 

the data ingest time. MarkLogic took the longest time to load the data (108 seconds) and 

had the largest resulting database size (876MB). MongoDB, a NoSQL document-based 

database, like MarkLogic, had a storage footprint of 425MB, a full 451MB less than 

MarkLogic, and took 11.5 seconds to load the data. In comparison, MySQL had the 

second shortest loading time at 4.5 seconds, and the smallest resulting database size 

(177MB) while PostgreSQL, also an RDBMS, ingested the dataset the fastest (3 seconds) 

with a resulting database size almost double that of MySQL (342MB). Neo4j, the only 

graph database of the group, had a loading time of 24.4 seconds, and a resulting database 

size of 632.3MB. 
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Figure 11. Data ingest time and storage footprint.  

 

The reason for the large variations in storage size and ingestion time is due in part 

to the difference in data structures used by each database to store the dataset. Figures 12, 

13, and 14 show how each database stored the same dataset differently. MarkLogic and 

MongoDB store their data as JSON documents. MySQL and PostgreSQL store their data 

in tabular format (relational), and Neo4j stores its data as Nodes, which contain keys and 

values (much like a document). Additionally, the databases have different default 

indexing strategies. For example, upon ingestion into the MarkLogic database every field 

from each record is added to its universal index, which is MarkLogic’s mechanism for 

querying data by value. This universal index provides capabilities more aligned with a 

search engine, such as term-frequency/inverse-document-frequency relevance scoring for 

results. As a result, MarkLogic had the longest data ingest time and largest storage 

footprint. The other analyzed databases don’t build a general-purpose index by default, 
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and instead rely on a complete database scan when running queries on non-indexed 

fields. The lack of these indexes by default results in smaller on-disk sizes, at the expense 

of general-purpose query performance. To more accurately compare the databases in this 

regard, it would be necessary to add a text index on every field in each record and 

compare resulting data size. 
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Figure 12: The JSON based data structure for MarkLogic and MongoDB. 
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Figure 13: View of a Neo4j node (a node contains keys and values). 

 

 
Figure 14: MySQL (and PostrgeSQL data view (tabular). 
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Variations in query time and database performance were also prevalent among the 

five systems analyzed with query 5 resulting in the longest execution time for all systems. 

MarkLogic had the fastest query time for all 5 queries with an overall average resolution 

time of 0.014 seconds. MongoDB and MySQL had similar overall average query times of 

151 and 157 seconds respectively with query 1 being the fastest and query 5 taking the 

longest to resolve for both databases. This similarity occurred even though MongoDB 

and MySQL store and retrieve data in very different ways. In comparison, the variance 

that resulted between MarkLogic and MongoDB was unexpected because, on paper, 

these two databases seem to be most similar in that they are both NoSQL document-

based databases. 

Neo4j had the longest runtime out of the five systems for every query performed 

including Query 1, which was the simplest of all the defined queries. For query 5 Neo4j 

took an additional 202 seconds longer than PostgreSQL to complete and finished Query 4 

in 7.76 seconds while this same query took MySQL a mere 0.034 seconds, a difference of 

7.72 seconds. The overall lackluster performance of Neo4j compared to MySQL, was 

unexpected because it has been reported that this system is roughly 1000 times faster than 

relational systems (Nixon, 2015).  

MySQL and PostgreSQL both outperformed MongoDB in executing Query 3 

where it had a faster runtime by 0.22 and .07 seconds, respectively. In contrast, 

PostgreSQL had the second longest runtimes for queries 2, 4, and 5. It took PostgreSQL 

1,383 seconds or 23 minutes to complete query 5 while MySQL executed in 785 seconds, 

coming in third fastest. It is important to note that the reason MySQL didn’t process the 
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query faster is likely an effect of not using an index to calculate this result, as this result 

was orders of magnitude slower than the previous complex geometry, Query 4, conducted 

using MySQL. An “explain plan” on Query 5 against MySQL showed that it would use 

an index, but the astronomical result indicates otherwise. Multiple attempts were made to 

force MySQL to use the index, but the results were similar. 

With respect to accuracy, each database agreed on the returned results for both 

queries 1 and 4. Query 1 was a simple attribute query and therefore left little room for 

ambiguity. Query 4 was a complex geospatial buffer query confined to a small region and 

thus not heavily influenced by the projections employed by each database tested. Queries 

2, 3, and 5 showed variations in the number of results returned among all the databases 

tested, with some observable groupings present in the outputs.  

For queries 2 and 3, MarkLogic, MongoDB, and PostgreSQL output the same 

number of results, which differed from the number of results output by Neo4j and 

MySQL, which both agreed with each other. Figures 15, 16, 17, and 18 below illustrate 

the differences observed in queries 2a, 2f, 3a, where the red points represent outputs 

unique to MarkLogic, MongoDB, and PostgreSQL while the light green points represent 

those outputs unique to Neo4j and MySQL. What is noteworthy is that these 

discrepancies occurred on or near the borders of the predefined geographic regions only 

with no extreme outliers.  
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Figure 15: Differences in the results returned from query 2a for MarkLogic, Mongo, and PostgreSQL and Neo4j 
and MySQL databases. 
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Figure 16: Differences in the results returned from query 2f for MarkLogic, Mongo, and PostgreSQL and Neo4j 
and MySQL databases. 
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Figure 17: Differences in the results returned from query 3a for MarkLogic, Mongo, and PostgreSQL and Neo4j 
and MySQL databases. 
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Figure 18: Differences in the results returned from query 3f for MarkLogic, Mongo, and PostgreSQL and Neo4j 
and MySQL databases. 
 

 

The variation observed in these queries between the two groups is likely because 

the regions queried were relatively large, and thus heavily influenced by the curvature of 

the earth. These two groupings expose a difference of projection by the query engines in 

these two groups of databases. MarkLogic, MongoDB, and PostgreSQL all execute 

geodesic calculations when resolving these polygon queries, while MySQL and Neo4j do 

not appear to have a way to run their calculations geodesically (considering the curvature 

of the Earth). Interestingly, MarkLogic, MongoDB, and PostgreSQL do provide settings 

to perform their calculations non-geodesically and return the same result values as 

MySQL and Neo4j. This problem didn't appear to affect query 4, which was also a 
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polygon query, likely because the polygons for the buffer were contained to a much 

smaller area, and therefore less susceptible to the influence of the curvature of the Earth. 

Query 5 further highlights some differences in the geospatial query techniques 

between these databases, as every database tested returned a slightly different number of 

results. Figure 19 below illustrates the total output for all 5 databases combined for query 

5. Neo4j, MySQL, and Mongo output points that were unique among the full set while 

MarkLogic and PostgreSQL with PostGIS had identical outputs. Figure 20 shows the 3 

unique values for Neo4j. Figure 21 illustrates the 635 unique records ouput by MySQL. 

Figure 22 shows the lone unique record output by Mongo. These variances are due to 

assumptions that each database makes regarding distance when calculated with respect to 

their query projection and the location of the queried region on the earth. The reason 

MySQL had so many unique values was because it does not natively support a geospatial 

buffer query using miles as the unit of measure instead it uses decimal degrees. 

Therefore, the conversion from decimal degrees to miles was an approximation based on 

a singular point on the globe.  

 



53 
 

 
Figure 19: Query 5 outputs for all 5 databases combined.  
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Figure 20: Query 5 results where points unique to only Neo4j are shown in orange while all else are in yellow. 
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Figure 21: Query 5 results where points unique to only MySQL are shown in purple while all else are in yellow. 

 



56 
 

 
Figure 22: Query 5 results where points unique to only Mongo are shown in cyan while all else are in yellow. 
 

 

As also predicted, there were noticeable differences in system usability and 

complexity between each of the database systems analyzed. Based on the ingestion 

process, data preprocessing, and queries executed in this thesis, the database that seems 

best suited for geospatial queries and analysis is MarkLogic. MarkLogic required the 

least amount of query preprocessing. This is because MarkLogic has built-in support for 

building geometries directly from KML files and using them in queries, which eliminated 

the need for any preprocessing for Query 4, and saved a significant amount of time and 

effort. With JavaScript being its primary query language, it has a vast vocabulary of 

structures for performing a large array of complex tasks. Additionally, MarkLogic 

provides the built-in QConsole web interface for executing ad-hoc queries, which greatly 
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enhances its usability by providing syntax highlighting, database browsing, and result 

viewing. 

MongoDB was similarly noteworthy in this regards but fell short in its ability to 

natively handle KML, which is a very common format used in geospatial analysis, and 

substantially increased the complexity of Query 4. Additionally, its performance in 

executing Query 5 was several orders of magnitude slower than MarkLogic. There are 

GUI’s available, like Robo 3T, that allow for the execution of queries against MongoDB 

that decrease the overall complexity of formulating queries and processing data. In 

Addition, its simple and powerful query syntax also makes it very well suited for running 

geospatial queries and analysis. 

MySQL’s rigid language syntax was frustrating for constructing geospatial 

queries. Due to its lack of native KML support, and SQL’s inherent shortcomings in 

expressiveness, building the geometries for the geospatial queries required a great deal of 

complexity. Its performance was mostly good, with the notable exception of Query 5. 

More analysis should be done to determine why the database didn’t appear to use the 

provided index for this query. On the positive side, MySQL has a vast userbase and broad 

community support, and the available tools for interfacing with it, namely MySQL 

Workbench, enhance its overall usability. 

Neo4j uses a third-party library for executing geospatial queries, and its geospatial 

capabilities feel likewise an afterthought. Constructing geospatial queries in the Cypher 

language seemed unintuitive and needlessly complicated. Like MarkLogic, Neo4j 

provides a built-in web interface for running ad-hoc queries, loading data, and visualizing 
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results. This did enhance its usability considerably, but ultimately didn’t compensate for 

its other shortcomings in performance and usability. 

PostgreSQL is purpose-built for geospatial queries and therefore has native KML 

support. It is considered in the community as the predominant database for geospatial 

data storage and retrieval. As a result, there is a plethora of community online 

documentation and support as well as many available query tools, such as pgAdmin4. 

SQL is the language used to query the database which does impose some limitations 

however it also lowers the barrier of entry due to the pervasiveness of SQL. Based on the 

results of this thesis, what is surprising is that PostgreSQL was not the overall fastest or 

best geospatial database solution for this dataset. 

Table 8 below provides an overall ranking of each of the database systems 

analyzed in this thesis. Each database was scored for one of seven metrics enumerated 

and from that the overall system was ranked. For the accuracy component, a score of 1 

was given to the databases that were able to correctly query using the geodetic geometries 

and a score of 2 was given to those which were not. This tabulation mostly agrees with 

the subjective analysis above, but doesn’t consider the scale of the differences between 

the databases. For instance, the two-minute data load time for MarkLogic pales in 

comparison to the 26-minute query time for PostgreSQL when executing Query 5, or the 

ten-hour processing time of creating the geospatial layer for Neo4j. 
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Table 8: Overall ranking analysis of each system based on predefined metrics 

Database 
Metric MarkLogic MongoDB MySQL Neo4j PostgreSQL 
Ingest Time 5 3 2 4 1 
Storage & Memory 
Footprint 5 3 1 4 2 

Query Performance 
Rank Avg. 1 3 2 5 4 

Accuracy 1 1 2 2 1 
Complexity 1 2 4 5 3 
Usability 1 2 4 5 3 

 

Future research should focus on more in-depth analysis of the index types used by 

each database system, and the strengths and weaknesses of each. More exploration of 

third-party tools may also result in enhanced usability and increases in query and data 

ingestion performance for each database examined here. Additionally, each of these 

database technologies is still being developed and enhanced, so revisiting the same 

queries in the future is warranted and may yield different results. 
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APPENDIX 

The following tables contain supplemental data mentioned within this thesis. 

 
Table 9: Example of the contents within the KML file 

Potomac Buffer KML File 
<?xml version="1.0" encoding="UTF-8"?> 
    <kml xmlns="http://www.opengis.net/kml/2.2"> 
        <Document> 
            <LookAt> 
                <longitude>-77.0861321636</longitude> 
                <latitude>38.9022958677</latitude> 
                <range>3000</range> 
                <tilt>0</tilt> 
                <heading>0</heading> 
            </LookAt> 
            <Style id="examplePolyStyle"> 
                <PolyStyle> 
                    <color>ff0000cc</color> 
                    <colorMode>random</colorMode> 
                    <fill>1</fill> 
                    <outline>0</outline> 
                </PolyStyle> 
            </Style> 
            <Placemark> 
                <name>Potomac</name> 
                <description> Buffer: 5 miles</description> 
                <styleUrl>#examplePolyStyle</styleUrl> 
                <MultiGeometry> 
                    <Polygon> 
                        <outerBoundaryIs> 
                            <LinearRing> 
                                <coordinates>-77.1232869978,38.7908060665,0 -77.1258730736,38.8171074753,0 -
76.9409902771,38.8313033005,0 -76.9384042013,38.8050018916,0 -
77.1232869978,38.7908060665,0</coordinates> 
                            </LinearRing> 
                        </outerBoundaryIs> 
                    </Polygon> 
                     
                    [MORE POLYGON COORDINATE DATA HERE] 
 
                </MultiGeometry> 
            </Placemark> 
        </Document> 
    </kml> 
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MySQL Queries 
 

Table 10: MySQL supplemental code and data structure 
# Code 
1 SELECT count(*) FROM mrds.mrds WHERE com_type = "N" 

2 SELECT count( * ) from mrds.mrds WHERE st_contains(geomfromtext('POLYGON(([Coordinates for 
specific subquery]))', 4326), coords); 

3 SELECT count(*) from mrds.mrds 
WHERE st_contains( 
   geomfromtext('POLYGON(([Coordinates for specific subquery]))'), 
   mrds.coords 
) 
AND mrds.com_type = "N" 

4 SELECT count(*) FROM mrds.mrds 
WHERE ST_CONTAINS(GeomFromText('MULTIPOLYGON((([Coordinates])), coords)  

5 set session group_concat_max_len = 100000000; 
set @str := ''; 
SELECT @str := group_concat(astext(buffer(coords, .018))) from mrds.mrds  
WHERE mrds.commod1 = 'uranium'; 
set @str := cast(@str as CHAR); 
set @str := replace(@str, 'POLYGON', ''); 
set @str := concat('MULTIPOLYGON(', @str, ')'); 
 
SELECT count(*) from mrds.mrds force index (coords_index) 
WHERE st_contains(st_geomfromtext(@str, 4326), coords); 
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Neo4j Queries 
 

Table 11: Neo4j supplemental code and data structure 
# Code 
1 MATCH (r:Resource) 

WHERE r.com_type = "N" 
RETURN count(*) 

2 WITH "POLYGON(([Coordinates for specific subquery]))" AS polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
RETURN count(*) 

3 WITH "POLYGON(([Coordinates for specific subquery]))" AS polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WHERE node.com_type = "N" 
RETURN count(*) 

4 WITH [] as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
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CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 



64 
 

"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds as depIds, 
"POLYGON(([Coordinates]))" as polygon 
CALL spatial.intersects('layer_resources', polygon) YIELD node 
RETURN size(filter(x IN collect(node.dep_id) WHERE NOT x IN depIds) + depIds) 

5 MATCH (r:Resource) 
WHERE r.commod1 = "Uranium" AND r.latitude <> "" AND r.longitude <> "" 
WITH {latitude: r.latitude, longitude: r.longitude} as coordinate 
CALL spatial.withinDistance('layer_resources', coordinate, 1.60934) YIELD node 
RETURN count(DISTINCT node.dep_id) 
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MarkLogic Queries 
 

Table 12: MarkLogic supplemental code and data structure 
# Code 

1 var q = cts.elementValueQuery("com_type", "N"); 
[cts.estimate(q), xdmp.elapsedTime()]; 

2 var boxes = [ 
  cts.polygon([cts.point(37.7544, -79.3124), cts.point(40.0182, -79.3124), cts.point(40.0182, -74.7763), 
cts.point(37.7544, -74.7763)]), 
  cts.polygon([cts.point(31.33, -86.99), cts.point(33.78, -86.99), cts.point(33.78, -82.46), cts.point(31.33, -
82.46)]), 
  cts.polygon([cts.point(34.88, -119.27), cts.point(41.41, -119.27), cts.point(41.41, -114.54), cts.point(34.88, -
114.54)]), 
  cts.polygon([cts.point(45.41, -121.2), cts.point(48.56, -121.2), cts.point(48.56, -103.27), cts.point(45.41, -
103.27)]), 
  cts.polygon([cts.point(30.37, -102.13), cts.point(34.17, -102.13), cts.point(34.17, -94.75), cts.point(30.37, -
94.75)]) 
]; 

 
var shapes = [ 
  cts.polygon("41.77131,-79.98047 40.14529,-76.06934 37.09024,-78.92578 38.69938,-85.08694 40.77448,-
83.63219"), 
  cts.polygon("31.16581,-89.5166 30.9797,-95.29633 34.17735,-97.89283 33.06392,-93.60352 35.45702,-
91.58515 32.99024,-88.28613"), 
  cts.polygon("42.45589,-101.77734 45.59973,-106.7638 47.36859,-101.20605 42.45589,-92.90039"), 
  cts.polygon("42.87596,-120.9375 42.74701,-112.67578 47.36533,-117.73573"), 
  cts.polygon("40.04444,-117.94922 40.11169,-105.11719 35.03,-107.92969 34.95836,-119.75142") 
]; 

 
var q = cts.jsonPropertyPairGeospatialQuery( 
    "point", 
    "latitude", 
    "longitude", 
    boxes[4]  //Update this variable depending on the shape being queried 
); 

 
[cts.estimate(q), xdmp.elapsedTime()]; 

3 var boxes = [ 
  cts.polygon([cts.point(37.7544, -79.3124), cts.point(40.0182, -79.3124), cts.point(40.0182, -74.7763), 
cts.point(37.7544, -74.7763)]), 
  cts.polygon([cts.point(31.33, -86.99), cts.point(33.78, -86.99), cts.point(33.78, -82.46), cts.point(31.33, -
82.46)]), 
  cts.polygon([cts.point(34.88, -119.27), cts.point(41.41, -119.27), cts.point(41.41, -114.54), cts.point(34.88, -
114.54)]), 
  cts.polygon([cts.point(45.41, -121.2), cts.point(48.56, -121.2), cts.point(48.56, -103.27), cts.point(45.41, -
103.27)]), 
  cts.polygon([cts.point(30.37, -102.13), cts.point(34.17, -102.13), cts.point(34.17, -94.75), cts.point(30.37, -
94.75)]) 
]; 

 
var shapes = [ 
  cts.polygon("41.77131,-79.98047 40.14529,-76.06934 37.09024,-78.92578 38.69938,-85.08694 40.77448,-
83.63219"), 
  cts.polygon("31.16581,-89.5166 30.9797,-95.29633 34.17735,-97.89283 33.06392,-93.60352 35.45702,-
91.58515 32.99024,-88.28613"), 
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  cts.polygon("42.45589,-101.77734 45.59973,-106.7638 47.36859,-101.20605 42.45589,-92.90039"), 
  cts.polygon("42.87596,-120.9375 42.74701,-112.67578 47.36533,-117.73573"), 
  cts.polygon("40.04444,-117.94922 40.11169,-105.11719 35.03,-107.92969 34.95836,-119.75142") 
]; 

 
var q1 = cts.jsonPropertyPairGeospatialQuery( 
    "point", 
    "latitude", 
    "longitude", 
    boxes[4]  //Update this variable depending on the shape being queried 
); 
 
var q2 = cts.jsonPropertyValueQuery("com_type", "N"); 
 
var q = cts.andQuery([q1, q2]); 
 
[cts.estimate(q), xdmp.elapsedTime()]; 

4 var geokml = require('/MarkLogic/geospatial/kml.xqy'); 
 

var kmlText = xdmp.filesystemFile('/tmp/potomac_buffer_5_miles.kml'); 
var kml = fn.head(fn.head(xdmp.unquote(kmlText)).root.xpath('.//*:Placemark[1]//*:MultiGeometry')); 
var geometry = geokml.parseKml(kml); 
var query = cts.jsonPropertyPairGeospatialQuery( 
    "point", 
    "latitude", 
    "longitude", 
    Geometry 
); 
[cts.estimate(query), xdmp.elapsedTime()] 

5 // Find all records within 1 mile of another record with its primary commodity being uranium  
var q1 = cts.jsonPropertyValueQuery("commod1", "uranium"); 
 
var uraniumPoints = cts.elementPairGeospatialValues("point", "latitude", "longitude", null, null, q1); 
 
var circleBuffers = []; 
for (point of uraniumPoints) { 
  circleBuffers.push(cts.circle(1, point)); 
} 
 
var q2 = 
    cts.jsonPropertyPairGeospatialQuery( 
    "point", 
    "latitude", 
    "longitude", 
    circleBuffers 
  ); 
 
[xdmp.estimate(q2), xdmp.elapsedTime()] 
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MongoDB Queries 
 

Table 13: MongoDB supplemental code and data structure 
# Code 

1 function propertyQuery() { 
    var a = new Date(); 
    var results = db.mrds.find({com_type: "N"}).hint("com_type_1").count(); 
    var b = new Date(); 
    var time = b - a; 
    return [results, time]; 
} 

2 function polygonQuery(idx) { 
    var points = [ 
        [[-79.3124, 37.7544], [-79.3124, 40.0182], [-74.7763, 40.0182], [-74.7763, 37.7544], [-79.3124, 37.7544]], 
//2a 
        [[-86.99, 31.33], [-86.99, 33.78], [-82.46, 33.78], [-82.46, 31.33], [-86.99, 31.33]], //2b 
        [[-119.27, 34.88], [-119.27, 41.41], [-114.54, 41.41], [-114.54, 34.88], [-119.27, 34.88]], //2c 
        [[-121.2, 45.41], [-121.2, 48.56], [-103.27, 48.56], [-103.27, 45.41], [-121.2, 45.41]], //2d 
        [[-102.13, 30.37], [-102.13, 34.17], [-94.75, 34.17], [-94.75, 30.37], [-102.13, 30.37]], //2e 
        [[-79.98047, 41.77131], [-76.06934, 40.14529], [-78.92578, 37.09024], [-85.08694, 38.69938], [-
83.63219, 40.77448], [-79.98047, 41.77131]], //2f 
        [[-89.5166, 31.16581], [-95.29633, 30.9797], [-97.89283, 34.17735], [-93.60352, 33.06392], [-91.58515, 
35.45702], [-88.28613, 32.99024], [-89.5166, 31.16581]], //2g 
        [[-101.77734, 42.45589], [-106.7638, 45.59973], [-101.20605, 47.36859], [-92.90039, 42.45589], [-
101.77734, 42.45589]], //2h 
        [[-120.9375, 42.87596], [-112.67578, 42.74701], [-117.73573, 47.36533], [-120.9375, 42.87596]], //2i 
        [[-117.94922, 40.04444], [-105.11719, 40.11169], [-107.92969, 35.03], [-119.75142, 34.95836], [-
117.94922, 40.04444]] //2j 
    ]; 
    var a = new Date(); 
    var results = db.mrds.find({ 
        point: { 
            $geoWithin: { 
                $geometry: { 
                    type: "Polygon", 
                    coordinates: [points[idx]] 
                } 
            } 
        } 
    }).count(); 
    var b = new Date(); 
    var time = b - a; 
    return [results, time]; 
} 

 
polygonQuery(0); // Change the input value here depending on the query 

3 function polygonQuery(idx) { 
        var points = [ 
                [[-79.3124, 37.7544], [-79.3124, 40.0182], [-74.7763, 40.0182], [-74.7763, 37.7544], [-79.3124, 
37.7544]], //2a 
                [[-86.99, 31.33], [-86.99, 33.78], [-82.46, 33.78], [-82.46, 31.33], [-86.99, 31.33]], //2b 
                [[-119.27, 34.88], [-119.27, 41.41], [-114.54, 41.41], [-114.54, 34.88], [-119.27, 34.88]], //2c 
                [[-121.2, 45.41], [-121.2, 48.56], [-103.27, 48.56], [-103.27, 45.41], [-121.2, 45.41]], //2d 
                [[-102.13, 30.37], [-102.13, 34.17], [-94.75, 34.17], [-94.75, 30.37], [-102.13, 30.37]], //2e 
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                [[-79.98047, 41.77131], [-76.06934, 40.14529], [-78.92578, 37.09024], [-85.08694, 38.69938], [-
83.63219, 40.77448], [-79.98047, 41.77131]], //2f 
                [[-89.5166, 31.16581], [-95.29633, 30.9797], [-97.89283, 34.17735], [-93.60352, 33.06392], [-
91.58515, 35.45702], [-88.28613, 32.99024], [-89.5166, 31.16581]], //2g 
                [[-101.77734, 42.45589], [-106.7638, 45.59973], [-101.20605, 47.36859], [-92.90039, 42.45589], [-
101.77734, 42.45589]], //2h 
                [[-120.9375, 42.87596], [-112.67578, 42.74701], [-117.73573, 47.36533], [-120.9375, 42.87596]], 
//2i 
                [[-117.94922, 40.04444], [-105.11719, 40.11169], [-107.92969, 35.03], [-119.75142, 34.95836], [-
117.94922, 40.04444]] //2j 
        ]; 
        var a = new Date(); 
        var results = db.mrds.find( 
        { 
            $and: [ 
                { 
                    point: { 
                        $geoWithin: { 
                            $geometry: { 
                                type: "Polygon", 
                                coordinates: [points[idx]] 
                            } 
                        } 
                    } 
                }, 
                { 
                    com_type: "N" 
                } 
            ] 
        }).count(); 
        var b = new Date(); 
        var time = b - a; 
        return [results, time]; 
} 

 
polygonQuery(0); // Change the input value here depending on the query 

4 function bufferQuery() { 
    var geoQuery = { 
        "$or":[ 

{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
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{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}, 
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}} 

    ] 
}; 
    var a = new Date(); 
    var results = db.mrds.find(geoQuery).count(); 
    var b = new Date(); 
    var time = b - a; 
    return [results, time]; 
} 
bufferQuery(); 

5 function geoPointQuery() { 
    var a = new Date(); 
    var circleQueries = db.mrds.find({commod1: "Uranium"}, {point: 1, _id: 
0}).toArray().filter(function(point){return point.point != null}).map( 
        function(point) { 
            return { 
                point: { 
                    $geoWithin: { 
                        $centerSphere: [point.point.coordinates, 1/3963.2] 
                    } 
                } 
            } 
        } 
    ); 
    var geoQuery = { 
        $or: circleQueries 
    }; 
    var results = db.mrds.find(geoQuery).count(); 
    var b = new Date(); 
    var time = b - a; 
    return [results, time]; 
} 
 
geoPointQuery(); 
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PostgreSQL Queries 
 

Table 14: PostgreSQL supplemental code and data structure 
# Code 

1 SELECT count(*) from mrds 
WHERE com_type = 'N' 

2 SELECT count(*) from mrds 
WHERE st_covers( 
 st_geogfromtext('SRID=4326;POLYGON(([Coordinates from specific subquery]))'), 
 pointgeo 
) 

3 SELECT count(*) from mrds 
WHERE st_covers( 
  st_geogfromtext('SRID=4326;POLYGON(([Coordinates from specific subquery]))'), 
  pointgeo 
) 
AND com_type = 'N' 

4 SELECT count(*) FROM mrds 
WHERE st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
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OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))'), pointgeo) 

5 SELECT COUNT(distinct "b".dep_id) FROM (SELECT * FROM mrds WHERE commod1 = 'Uranium') "a" 
INNER JOIN mrds "b" ON st_dwithin("a".pointgeo, "b".pointgeo, 1609.34); 
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Query Runtime Results Table 
 

 
Table 15: List of all cold and warm query completion times per database and their calculated average 

Database Query # Cold 
Duration (s) 

Cold Duration 
Average (s) 

Warm 
Duration (s) 

Warm 
Duration 
Average (s) 

MarkLogic 1 0.002023 0.001954 0.001069 0.0012574 

MarkLogic 0.002006 0.001241 

MarkLogic 0.001919 0.001408 

MarkLogic 0.001937 0.001056 

MarkLogic 0.001885 0.001513 

MarkLogic 2a 0.00123 0.0012946 0.000905 0.0008108 

MarkLogic 0.001339 0.000783 

MarkLogic 0.001303 0.000802 

MarkLogic 0.001335 0.000825 

MarkLogic 0.001266 0.000739 

MarkLogic 2b 0.001427 0.0014914 0.000864 0.0006768 

MarkLogic 0.001526 0.00063 

MarkLogic 0.001657 0.000713 

MarkLogic 0.001434 0.000599 

MarkLogic 0.001413 0.000578 

MarkLogic 2c 0.001809 0.001642 0.000583 0.0006826 

MarkLogic 0.001637 0.000563 

MarkLogic 0.001715 0.001097 

MarkLogic 0.001534 0.00057 

MarkLogic 0.001515 0.0006 

MarkLogic 2d 0.001504 0.0015252 0.000663 0.0006722 

MarkLogic 0.001568 0.000614 

MarkLogic 0.001454 0.000757 

MarkLogic 0.001564 0.000635 

MarkLogic 0.001536 0.000692 

MarkLogic 2e 0.001902 0.0015868 0.000817 0.0006534 

MarkLogic 0.001441 0.000607 

MarkLogic 0.001476 0.000634 

MarkLogic 0.001589 0.000602 
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MarkLogic 0.001526 0.000607 

MarkLogic 2f 0.002038 0.0017004 0.000964 0.0008022 

MarkLogic 0.001534 0.000629 

MarkLogic 0.001625 0.001043 

MarkLogic 0.001614 0.000637 

MarkLogic 0.001691 0.000738 

MarkLogic 2g 0.001527 0.0015996 0.000645 0.0006752 

MarkLogic 0.001598 0.000659 

MarkLogic 0.001632 0.000719 

MarkLogic 0.00156 0.000678 

MarkLogic 0.001681 0.000675 

MarkLogic 2h 0.001735 0.001688 0.000815 0.0006288 

MarkLogic 0.00156 0.000162 

MarkLogic 0.00163 0.000691 

MarkLogic 0.001739 0.000692 

MarkLogic 0.001776 0.000784 

MarkLogic 2i 0.00179 0.0016724 0.000654 0.000735 

MarkLogic 0.001569 0.000769 

MarkLogic 0.001641 0.000682 

MarkLogic 0.001703 0.000901 

MarkLogic 0.001659 0.000669 

MarkLogic 2j 0.001596 0.0016494 0.000601 0.0007792 

MarkLogic 0.001582 0.000776 

MarkLogic 0.001689 0.000714 

MarkLogic 0.001557 0.000775 

MarkLogic 0.001823 0.00103 

MarkLogic 3a 0.002078 0.0019682 0.001122 0.0011516 

MarkLogic 0.002029 0.001091 

MarkLogic 0.001951 0.001175 

MarkLogic 0.001846 0.001296 

MarkLogic 0.001937 0.001074 

MarkLogic 3b 0.002195 0.0022102 0.001335 0.0010912 

MarkLogic 0.002233 0.001205 

MarkLogic 0.00217 0.001162 

MarkLogic 0.002226 0.000675 

MarkLogic 0.002227 0.001079 

MarkLogic 3c 0.001908 0.0022858 0.001281 0.0012224 
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MarkLogic 0.002296 0.001133 

MarkLogic 0.002579 0.001176 

MarkLogic 0.002247 0.001029 

MarkLogic 0.002399 0.001493 

MarkLogic 3d 0.003089 0.002508 0.001605 0.001206 

MarkLogic 0.002127 0.001107 

MarkLogic 0.00233 0.001512 

MarkLogic 0.002774 0.0011 

MarkLogic 0.00222 0.000706 

MarkLogic 3e 0.001596 0.002065 0.001418 0.0012 

MarkLogic 0.002252 0.001138 

MarkLogic 0.002059 0.001127 

MarkLogic 0.002226 0.001129 

MarkLogic 0.002192 0.001188 

MarkLogic 3f 0.001942 0.002285 0.001274 0.0012758 

MarkLogic 0.002525 0.001203 

MarkLogic 0.002288 0.001446 

MarkLogic 0.002277 0.00123 

MarkLogic 0.002393 0.001226 

MarkLogic 3g 0.003547 0.0027116 0.00144 0.0012098 

MarkLogic 0.002967 0.001239 

MarkLogic 0.002491 0.001145 

MarkLogic 0.002176 0.000664 

MarkLogic 0.002377 0.001561 

MarkLogic 3h 0.001905 0.0022582 0.001527 0.0014268 

MarkLogic 0.00229 0.001629 

MarkLogic 0.002458 0.001344 

MarkLogic 0.002298 0.00154 

MarkLogic 0.00234 0.001094 

MarkLogic 3i 0.002514 0.0024084 0.001186 0.001238 

MarkLogic 0.002412 0.00123 

MarkLogic 0.002297 0.00112 

MarkLogic 0.002385 0.00161 

MarkLogic 0.002434 0.001044 

MarkLogic 3j 0.001816 0.0023626 0.001225 0.0012186 

MarkLogic 0.002588 0.001106 

MarkLogic 0.002775 0.001219 
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MarkLogic 0.002412 0.001479 

MarkLogic 0.002222 0.001064 

MarkLogic 4 0.01201 0.0121788 0.010643 0.0104978 

MarkLogic 0.012078 0.010474 
MarkLogic 0.012714 0.010288 
MarkLogic 0.012029 0.010882 
MarkLogic 0.012063 0.010202 
MarkLogic 5 0.059287 0.06227 0.047869 0.0474812 

MarkLogic 0.064712 0.047973 
MarkLogic 0.062569 0.047875 
MarkLogic 0.063208 0.047063 
MarkLogic 0.061574 0.046626 
MongoDB 1 0.025 0.026 0.019 0.0184 

MongoDB 0.026 0.018 

MongoDB 0.028 0.018 

MongoDB 0.025 0.018 

MongoDB 0.026 0.019 

MongoDB 2a 0.046 0.0444 0.012 0.013 

MongoDB 0.044 0.013 

MongoDB 0.045 0.013 

MongoDB 0.043 0.015 

MongoDB 0.044 0.012 

MongoDB 2b 0.055 0.05 0.017 0.0178 

MongoDB 0.049 0.017 

MongoDB 0.049 0.016 

MongoDB 0.049 0.023 

MongoDB 0.048 0.016 

MongoDB 2c 0.175 0.1726 0.069 0.0684 

MongoDB 0.163 0.068 

MongoDB 0.184 0.068 

MongoDB 0.176 0.068 

MongoDB 0.165 0.069 

MongoDB 2d 0.173 0.1702 0.075 0.0752 

MongoDB 0.175 0.075 

MongoDB 0.167 0.077 

MongoDB 0.172 0.075 

MongoDB 0.164 0.074 
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MongoDB 2e 0.047 0.0434 0.009 0.0094 

MongoDB 0.048 0.009 

MongoDB 0.037 0.01 

MongoDB 0.049 0.01 

MongoDB 0.036 0.009 

MongoDB 2f 0.079 0.0744 0.027 0.0276 

MongoDB 0.07 0.028 

MongoDB 0.081 0.028 

MongoDB 0.072 0.027 

MongoDB 0.07 0.028 

MongoDB 2g 0.065 0.0626 0.017 0.018 

MongoDB 0.055 0.018 

MongoDB 0.063 0.018 

MongoDB 0.064 0.018 

MongoDB 0.066 0.019 

MongoDB 2h 0.059 0.0546 0.015 0.0152 

MongoDB 0.048 0.015 

MongoDB 0.059 0.016 

MongoDB 0.059 0.014 

MongoDB 0.048 0.016 

MongoDB 2i 0.093 0.087 0.035 0.0346 

MongoDB 0.084 0.034 

MongoDB 0.082 0.035 

MongoDB 0.093 0.034 

MongoDB 0.083 0.035 

MongoDB 2j 0.316 0.315 0.143 0.1454 

MongoDB 0.313 0.145 

MongoDB 0.302 0.145 

MongoDB 0.317 0.147 

MongoDB 0.327 0.147 

MongoDB 3a 0.061 0.0612 0.014 0.0134 

MongoDB 0.061 0.013 

MongoDB 0.061 0.013 

MongoDB 0.062 0.013 

MongoDB 0.061 0.014 

MongoDB 3b 0.059 0.0588 0.018 0.0182 

MongoDB 0.059 0.018 
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MongoDB 0.058 0.018 

MongoDB 0.059 0.019 

MongoDB 0.059 0.018 

MongoDB 3c 0.166 0.1734 0.074 0.074 

MongoDB 0.179 0.073 

MongoDB 0.177 0.075 

MongoDB 0.176 0.073 

MongoDB 0.169 0.075 

MongoDB 3d 0.166 0.1706 0.081 0.0804 

MongoDB 0.175 0.079 

MongoDB 0.175 0.08 

MongoDB 0.171 0.08 

MongoDB 0.166 0.082 

MongoDB 3e 0.053 0.0528 0.01 0.01 

MongoDB 0.052 0.01 

MongoDB 0.053 0.01 

MongoDB 0.053 0.01 

MongoDB 0.053 0.01 

MongoDB 3f 0.085 0.0822 0.03 0.0296 

MongoDB 0.075 0.03 

MongoDB 0.084 0.029 

MongoDB 0.085 0.029 

MongoDB 0.082 0.03 

MongoDB 3g 0.059 0.0654 0.019 0.0192 

MongoDB 0.071 0.02 

MongoDB 0.059 0.019 

MongoDB 0.07 0.019 

MongoDB 0.068 0.019 

MongoDB 3h 0.064 0.0604 0.016 0.016 

MongoDB 0.055 0.016 

MongoDB 0.054 0.016 

MongoDB 0.065 0.016 

MongoDB 0.064 0.016 

MongoDB 3i 0.101 0.1002 0.039 0.0388 

MongoDB 0.101 0.039 

MongoDB 0.091 0.038 

MongoDB 0.105 0.039 
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MongoDB 0.103 0.039 

MongoDB 3j 1.684 2.1488 0.221 0.2218 

MongoDB 1.842 0.221 

MongoDB 2.232 0.222 

MongoDB 2.442 0.222 

MongoDB 2.544 0.223 

MongoDB 4 0.076 0.071 0.058 0.057 

MongoDB 0.075 0.056 
MongoDB 0.065 0.057 
MongoDB 0.074 0.057 
MongoDB 0.065 0.057 
MongoDB 5 711.039 740.961 724.445 769.7186 

MongoDB 781.032 775.201 
MongoDB 728.428 838.035 
MongoDB 717.286 736.225 
MongoDB 767.02 774.687 
PostgreSQL 1 0.012244 0.0107466 0.008024 0.0082652 

PostgreSQL 0.01145 0.008661 

PostgreSQL 0.009759 0.0081 

PostgreSQL 0.011152 0.00805 

PostgreSQL 0.009128 0.008491 

PostgreSQL 2a 0.129094 0.108353 0.097041 0.097687 

PostgreSQL 0.101668 0.102763 

PostgreSQL 0.108412 0.103519 

PostgreSQL 0.105354 0.092618 

PostgreSQL 0.097237 0.092494 

PostgreSQL 2b 0.099354 0.0995096 0.095681 0.100943 

PostgreSQL 0.10388 0.09901 

PostgreSQL 0.097711 0.098417 

PostgreSQL 0.099058 0.116239 

PostgreSQL 0.097545 0.095368 

PostgreSQL 2c 0.135068 0.140339 0.13295 0.1359644 

PostgreSQL 0.136782 0.131826 

PostgreSQL 0.141565 0.151737 

PostgreSQL 0.137947 0.1323 

PostgreSQL 0.150333 0.131009 

PostgreSQL 2d 0.115272 0.1174038 0.12789 0.1214968 
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PostgreSQL 0.116201 0.119979 

PostgreSQL 0.117706 0.111208 

PostgreSQL 0.121547 0.119398 

PostgreSQL 0.116293 0.129009 

PostgreSQL 2e 0.096518 0.098741 0.090741 0.0921078 

PostgreSQL 0.099538 0.090726 

PostgreSQL 0.096794 0.096247 

PostgreSQL 0.095655 0.090447 

PostgreSQL 0.1052 0.092378 

PostgreSQL 2f 0.104489 0.1066626 0.096285 0.0989164 

PostgreSQL 0.114789 0.104451 

PostgreSQL 0.104783 0.09602 

PostgreSQL 0.103699 0.096932 

PostgreSQL 0.105553 0.100894 

PostgreSQL 2g 0.100946 0.103942 0.095145 0.1019834 

PostgreSQL 0.10306 0.113774 

PostgreSQL 0.101316 0.097008 

PostgreSQL 0.106119 0.094291 

PostgreSQL 0.108269 0.109699 

PostgreSQL 2h 0.101955 0.1057526 0.094552 0.1004204 

PostgreSQL 0.11471 0.101705 

PostgreSQL 0.101784 0.10957 

PostgreSQL 0.101488 0.094735 

PostgreSQL 0.108826 0.10154 

PostgreSQL 2i 0.11261 0.1103262 0.103392 0.1080274 

PostgreSQL 0.110404 0.10334 

PostgreSQL 0.108643 0.116534 

PostgreSQL 0.110925 0.104328 

PostgreSQL 0.109049 0.112543 

PostgreSQL 2j 0.155091 0.1545 0.146954 0.1501066 

PostgreSQL 0.151675 0.147875 

PostgreSQL 0.152379 0.143874 

PostgreSQL 0.160909 0.148863 

PostgreSQL 0.152446 0.162967 

PostgreSQL 3a 0.185597 0.1915766 0.076251 0.077634 

PostgreSQL 0.180146 0.081913 

PostgreSQL 0.195119 0.073577 
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PostgreSQL 0.193725 0.083405 

PostgreSQL 0.203296 0.073024 

PostgreSQL 3b 0.293427 0.3285902 0.079521 0.073425 

PostgreSQL 0.300274 0.069943 

PostgreSQL 0.285929 0.070851 

PostgreSQL 0.360579 0.070227 

PostgreSQL 0.402742 0.076583 

PostgreSQL 3c 0.362699 0.4312846 0.091222 0.0824508 

PostgreSQL 0.494764 0.090421 

PostgreSQL 0.502965 0.080669 

PostgreSQL 0.465643 0.07543 

PostgreSQL 0.330352 0.074512 

PostgreSQL 3d 0.329671 0.333806 0.077243 0.0878634 

PostgreSQL 0.395672 0.099652 

PostgreSQL 0.3356 0.101867 

PostgreSQL 0.304615 0.085078 

PostgreSQL 0.303472 0.075477 

PostgreSQL 3e 0.313314 0.351766 0.073072 0.0790392 

PostgreSQL 0.276604 0.090791 

PostgreSQL 0.436541 0.071411 

PostgreSQL 0.439728 0.088525 

PostgreSQL 0.292643 0.071397 

PostgreSQL 3f 0.339362 0.3836084 0.084776 0.0838524 

PostgreSQL 0.451154 0.076153 

PostgreSQL 0.421306 0.076887 

PostgreSQL 0.357272 0.083512 

PostgreSQL 0.348948 0.097934 

PostgreSQL 3g 0.134353 0.2686088 0.076854 0.0849066 

PostgreSQL 0.39837 0.085205 

PostgreSQL 0.244928 0.107742 

PostgreSQL 0.241992 0.079566 

PostgreSQL 0.323401 0.075166 

PostgreSQL 3h 0.281429 0.1823866 0.073224 0.086149 

PostgreSQL 0.171118 0.074177 

PostgreSQL 0.119878 0.073967 

PostgreSQL 0.186826 0.104618 

PostgreSQL 0.152682 0.104759 
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PostgreSQL 3i 0.194407 0.1531976 0.077072 0.0789438 

PostgreSQL 0.138303 0.074346 

PostgreSQL 0.120643 0.082007 

PostgreSQL 0.143108 0.074768 

PostgreSQL 0.169527 0.086526 

PostgreSQL 3j 0.148842 0.1538512 0.092119 0.0898732 

PostgreSQL 0.196334 0.085196 

PostgreSQL 0.126435 0.08284 

PostgreSQL 0.147359 0.100643 

PostgreSQL 0.150286 0.088568 

PostgreSQL 4 3.41959 3.3991404 3.345733 3.3335642 

PostgreSQL 3.426663 3.329342 
PostgreSQL 3.406785 3.338428 
PostgreSQL 3.357049 3.327378 
PostgreSQL 3.385615 3.32694 
PostgreSQL 5 1299.979374 1303.977861 1467.178303 1462.889549 

PostgreSQL 1329.012883 1456.45122 
PostgreSQL 1290.551296 1490.61865 
PostgreSQL 1301.038063 1450.57571 
PostgreSQL 1299.307687 1449.623861 
MySQL 1 0.0250045 0.0248753 0.02388725 0.02483925 

MySQL 0.02477325 0.02353325 
MySQL 0.02492425 0.02482625 
MySQL 0.02484175 0.02532725 
MySQL 0.02483275 0.02662225 
MySQL 2a 0.020427 0.02000455 0.01391025 0.01139035 

MySQL 0.019128 0.01064275 
MySQL 0.0194845 0.010588 
MySQL 0.02077175 0.011277 
MySQL 0.0202115 0.01053375 
MySQL 2b 0.01776175 0.0194645 0.013762 0.01320935 

MySQL 0.018215 0.01325 
MySQL 0.01806625 0.012788 
MySQL 0.0248995 0.01236325 
MySQL 0.01838 0.0138835 
MySQL 2c 0.0824365 0.0822352 0.06268825 0.05995515 

MySQL 0.0807585 0.05919325 
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MySQL 0.08247025 0.05967 
MySQL 0.084169 0.0592835 
MySQL 0.08134175 0.05894075 
MySQL 2d 0.07167075 0.0731389 0.054087 0.05121995 

MySQL 0.0727985 0.0502725 
MySQL 0.07558575 0.050472 
MySQL 0.07301675 0.05109325 
MySQL 0.07262275 0.050175 
MySQL 2e 0.0105 0.0094997 0.00579375 0.0051088 

MySQL 0.00862475 0.00481775 
MySQL 0.0097595 0.00485775 
MySQL 0.00923825 0.00524075 
MySQL 0.009376 0.004834 
MySQL 2f 0.04194075 0.03976385 0.0283595 0.02585385 

MySQL 0.04009 0.02487575 
MySQL 0.038883 0.02517375 
MySQL 0.03874675 0.02532025 
MySQL 0.03915875 0.02554 
MySQL 2g 0.0329225 0.03225445 0.02151 0.02030085 

MySQL 0.03193675 0.02081675 
MySQL 0.031804 0.019708 
MySQL 0.0326435 0.019886 
MySQL 0.0319655 0.0195835 
MySQL 2h 0.03596875 0.03479905 0.024112 0.0221698 

MySQL 0.03495475 0.02099925 
MySQL 0.03412925 0.0221815 
MySQL 0.03439625 0.02172825 
MySQL 0.03454625 0.021828 
MySQL 2i 0.07665325 0.074301 0.05450125 0.0520951 

MySQL 0.07394425 0.052812 
MySQL 0.072917 0.04950525 
MySQL 0.07464375 0.05039125 
MySQL 0.07334675 0.05326575 
MySQL 2j 0.191123 0.1837739 0.13695225 0.13634545 

MySQL 0.18070175 0.135557 
MySQL 0.17951525 0.135768 
MySQL 0.18309575 0.136286 
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MySQL 0.18443375 0.137164 
MySQL 3a 0.0184645 0.01696375 0.01059425 0.0090177 

MySQL 0.01512575 0.008472 
MySQL 0.016968 0.0089375 
MySQL 0.0171625 0.0088145 
MySQL 0.017098 0.00827025 
MySQL 3b 0.013969 0.01442865 0.00989525 0.0089291 

MySQL 0.013863 0.008384 
MySQL 0.01465825 0.0087365 
MySQL 0.0151645 0.00885125 
MySQL 0.0144885 0.0087785 
MySQL 3c 0.059653 0.0577175 0.03618275 0.03569315 

MySQL 0.055749 0.0371995 
MySQL 0.057273 0.03466575 
MySQL 0.05619325 0.03521975 
MySQL 0.05971925 0.035198 
MySQL 3d 0.05823475 0.05543885 0.03632775 0.03354725 

MySQL 0.0552085 0.03249325 
MySQL 0.0552385 0.033222 
MySQL 0.0535715 0.03275925 
MySQL 0.054941 0.032934 
MySQL 3e 0.008218 0.00908605 0.00528025 0.0048373 

MySQL 0.00983425 0.00510175 
MySQL 0.0091115 0.004666 
MySQL 0.0090485 0.0045655 
MySQL 0.009218 0.004573 
MySQL 3f 0.03681075 0.0358545 0.0235245 0.02216085 

MySQL 0.03452925 0.02194475 
MySQL 0.03578075 0.02095475 
MySQL 0.0347995 0.02119375 
MySQL 0.03735225 0.0231865 
MySQL 3g 0.03185025 0.0308635 0.021196 0.01916135 

MySQL 0.0296725 0.0189365 
MySQL 0.031208 0.019097 
MySQL 0.03140875 0.0186505 
MySQL 0.030178 0.01792675 
MySQL 3h 0.03194675 0.0310507 0.019318 0.0175506 
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MySQL 0.03055825 0.01777125 
MySQL 0.0311115 0.016914 
MySQL 0.030256 0.01668875 
MySQL 0.031381 0.017061 
MySQL 3i 0.05862725 0.0571284 0.035218 0.03533485 

MySQL 0.05776525 0.036236 
MySQL 0.056396 0.03589175 
MySQL 0.05675075 0.03544025 
MySQL 0.05610275 0.03388825 
MySQL 3j 0.12845725 0.12815655 0.084478 0.0839713 

MySQL 0.1267 0.0858295 
MySQL 0.12618275 0.08290075 
MySQL 0.1299495 0.08310825 
MySQL 0.12949325 0.08354 
MySQL 4 0.03439625 0.03606555 0.0320135 0.0326055 

MySQL 0.03358025 0.032234 
MySQL 0.03584725 0.03284175 
MySQL 0.04096975 0.0337455 
MySQL 0.03553425 0.03219275 
MySQL 5 781.203 783.5784 784.781 786.5094 

MySQL 784.11 792.953 
MySQL 780.719 793.047 
MySQL 783.297 781.578 
MySQL 788.563 780.188 
Neo4j 1 0.979 0.9546 0.405 0.363 

Neo4j 0.932 0.347 
Neo4j 1.026 0.356 
Neo4j 0.901 0.349 
Neo4j 0.935 0.358 
Neo4j 2a 0.801 0.8506 0.282 0.249 

Neo4j 0.863 0.239 
Neo4j 0.956 0.239 
Neo4j 0.829 0.247 
Neo4j 0.804 0.238 
Neo4j 2b 0.865 0.8552 0.312 0.2762 

Neo4j 0.899 0.263 
Neo4j 0.867 0.268 
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Neo4j 0.913 0.255 
Neo4j 0.732 0.283 
Neo4j 2c 1.38 1.3326 0.59 0.5546 

Neo4j 1.385 0.55 
Neo4j 1.324 0.56 
Neo4j 1.237 0.534 
Neo4j 1.337 0.539 
Neo4j 2d 1.366 1.3326 0.569 0.5366 

Neo4j 1.303 0.517 
Neo4j 1.1 0.532 
Neo4j 1.357 0.527 
Neo4j 1.537 0.538 
Neo4j 2e 0.875 0.8762 0.227 0.229 

Neo4j 0.782 0.233 
Neo4j 0.777 0.231 
Neo4j 1.038 0.222 
Neo4j 0.909 0.232 
Neo4j 2f 1.3 1.2138 0.483 0.4132 

Neo4j 1.271 0.44 
Neo4j 1.09 0.406 
Neo4j 1.231 0.376 
Neo4j 1.177 0.361 
Neo4j 2g 1.167 1.1342 0.323 0.3228 

Neo4j 1.319 0.329 
Neo4j 1.02 0.309 
Neo4j 1.014 0.316 
Neo4j 1.151 0.337 
Neo4j 2h 1.366 1.1466 0.441 0.4252 

Neo4j 1.177 0.415 
Neo4j 1.119 0.521 
Neo4j 1.101 0.399 
Neo4j 0.97 0.35 
Neo4j 2i 1.669 1.49 0.67 0.599 

Neo4j 1.458 0.612 
Neo4j 1.309 0.571 
Neo4j 1.519 0.569 
Neo4j 1.495 0.573 
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Neo4j 2j 2.388 2.4946 1.12 1.0886 

Neo4j 2.509 1.064 
Neo4j 2.892 1.07 
Neo4j 2.273 1.111 
Neo4j 2.411 1.078 
Neo4j 3a 0.827 0.886 0.282 0.2686 

Neo4j 0.879 0.265 
Neo4j 0.931 0.27 
Neo4j 0.86 0.266 
Neo4j 0.933 0.26 
Neo4j 3b 0.887 0.899 0.322 0.3078 

Neo4j 0.899 0.338 
Neo4j 0.885 0.329 
Neo4j 0.974 0.28 
Neo4j 0.85 0.27 
Neo4j 3c 1.296 1.3652 0.802 0.7714 

Neo4j 1.292 0.765 
Neo4j 1.598 0.761 
Neo4j 1.267 0.766 
Neo4j 1.373 0.763 
Neo4j 3d 1.347 1.3484 0.584 0.5528 

Neo4j 1.304 0.547 
Neo4j 1.36 0.536 
Neo4j 1.381 0.543 
Neo4j 1.35 0.554 
Neo4j 3e 0.957 0.8734 0.241 0.2236 

Neo4j 0.744 0.219 
Neo4j 0.872 0.214 
Neo4j 0.881 0.225 
Neo4j 0.913 0.219 
Neo4j 3f 1.152 1.2424 0.502 0.4482 

Neo4j 1.323 0.464 
Neo4j 1.308 0.465 
Neo4j 1.265 0.419 
Neo4j 1.164 0.391 
Neo4j 3g 1.236 1.1802 0.379 0.362 

Neo4j 1.274 0.366 
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Neo4j 1.172 0.365 
Neo4j 1.098 0.34 
Neo4j 1.121 0.36 
Neo4j 3h 1.16 1.1496 0.416 0.3866 

Neo4j 1.044 0.386 
Neo4j 1.331 0.386 
Neo4j 1.236 0.386 
Neo4j 0.977 0.359 
Neo4j 3i 1.571 1.6332 0.75 0.5932 

Neo4j 1.76 0.606 
Neo4j 1.581 0.542 
Neo4j 1.641 0.532 
Neo4j 1.613 0.536 
Neo4j 3j 2.51 2.529 1.254 1.2192 

Neo4j 2.601 1.218 
Neo4j 2.578 1.183 
Neo4j 2.421 1.227 
Neo4j 2.535 1.214 
Neo4j 4 8.352 8.9392 6.608 6.5932 

Neo4j 8.628 6.536 
Neo4j 10.745 6.586 
Neo4j 8.761 6.627 
Neo4j 8.21 6.609 
Neo4j 5 1649.513 1666.435 1502.476 1505.4304 

Neo4j 1668.13 1501.586 
Neo4j 1682.654 1494.196 
Neo4j 1665.882 1511.465 
Neo4j 1665.996 1517.429 
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