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ABSTRACT

COMPARATIVE ANALYSIS OF DATABASE SPATIAL TECHNOLOGIES (CADST)
Jodi Deprizio, M.S.
George Mason University, 2018

Thesis Director: Dr. Ruixin Yang

Spatial databases are increasingly utilized in, and are a major component of, any
Geographic Information System (GIS). There are diverse types of SDBMS available,
each with its own advantages and disadvantages, making it difficult to know which one is
best suited for a given task. In addition, there is a lack of peer-reviewed literature on this
subject specific to using GIS vector datasets that would help guide users into making the
proper database choice. The following is a comprehensive comparison of spatial database
management systems (SDBMS) for filling the gaps mentioned above. In this thesis five
database technologies were analyzed and compared to determine which was more
effective for use when storing and querying spatial vector data. Metrics for comparison
were ingest performance, storage size, query performance, accuracy, system usability,
and complexity. The databases analyzed were MySQL, MongoDB, MarkLogic, Neo4j,
and PostgreSQL (with PostGIS). Each database had significant differences in data
ingestion time, storage size, system usability, and complexity as well as substantial

variations in query execution times.



CHAPTER ONE: INTRODUCTION

When database management systems (DBMS) were first developed, they focused
primarily on storing generic tabular data with support for simple data types like text,
numbers, and dates. The needs of a DBMS were typically limited to accounting and
business data warehousing where data was stored and could be efficiently retrieved using
simple queries. As data evolved over time, largely due to advancements in technology
and the growing GIS movement, many databases added enhanced support for storing and
querying more specific data types. These include objects, as well as semantic and spatial
data (Worboys & Duckham, 2004; Guting, 1994; Shekhar & Chawla, 2003). In addition
to these extensions, entirely new types of databases were being created to fill gaps left by
traditional relational databases where the size and schema rigidity were issues. These
limitations were mostly due to the onset of GIS and the copious amounts of geospatial
data being collected.

Geospatial data, or spatial data, has geographic positioning information included
within it that identifies features and boundaries in relation to their location on Earth. This
data is usually stored as coordinates (latitude, longitude) or other spatial objects like lines
and polygons, can be mapped, and are often found in large datasets. Non-spatial data is
also relationally stored within a spatial dataset and is used to characterize features of
objects not related to a spatial location, e.g. mineral name, deposit type, and lithologic
and stratigraphic information (Gandhi et al., 2007). GIS is a major technological

motivation for spatial databases (Shekhar & Chawla, 2003).



Spatial Database Management Systems, or SDBMS, can work with underlying
DBMS and fall under the general category of GIS. They are used to create, store,
visualize, process and manipulate geospatial data (Clarke, 2011; Worboys & Duckham,
2004; Guting, 1994; Shekhar & Chawla, 2003). A critical component of any GIS is the
database as it is the basis of all decision making. Spatial data requires additional
functionalities not readily available in a general-purpose DBMS that facilitates data
extraction, storage, and analysis (Worboys & Duckham, 2004; Longley et al., 2001;
Singleton & Longley, 2010). Some of these functionalities include spatial indexing, query
optimization, and algorithms for processing spatial operations (Guting, 1994; Dolton &
Lowe, 2001). There are many SDBMS that offer a wide range of features, many specific
to a problem or data type. As a result, this can make choosing the right system
challenging. This is especially true for data types specific to GIS because they can

influence the resulting analysis.



CHAPTER TWO: LITERATURE REVIEW

There are several types of SDBMS used in GIS but the relational and non-
relational models are the most prevalent (Healey, 1991). The relational database
management system, or RDBMS, was created by a researcher who worked for IBM in the
1970’s named Edgar Codd. His goal was to set up a relational schema that allowed users
to easily retrieve and store data without redundancy (Codd, 1970). The relational model
uses collections of tables that represent stored objects. Each table has rows and columns
where the rows store data for the object and each column represents an attribute. The
stored data in these tables are linked by using unique values such as an index or primary
key. All associated tables have the unique primary key (per row) but in the linked tables
(non-initial) the attribute is called a foreign key. A Relational join is achievable when a
primary key in one table matches a foreign key in another table (Healey, 1991). SQL, or
Structured Query Language, is used to query and maintain the data within a relational
database. SQL, the most widely used database language, was one of the first commercial
languages used with Codd’s relational model. A RDBMS requires a schema to be defined
before adding any records to the database and changes to it can be difficult, requiring
transformation and/or re-ingestion of the source data (Worboys & Duckham, 2004;
Abdalla & Niall, 2007; Dolton & Lowe, 2001; Longley et al., 2001). Popular examples of
RDBMS include MySQL and PostgreSQL.

Non-relational, or NoSQL databases, entered the market place in the late 1990’s

and have been slowly gaining popularity ever since (Penchikala, 2013; Madison et al.,



2015). NoSQL databases do not rely heavily on the use of tables, typically don’t use SQL
for data manipulations, and work well with enormous amounts of data (Padhy et al.,
2011; Moniruzzaman & Hossain, 2013; Bazar & Sebastian, 2014; Madison et al., 2015).
With that said, the most notable difference between a NoSQL database and a relational
database is that data is stored without the use of a traditional relational schema. Major
types of NoSQL databases include key-value stores, column oriented databases,
document based stores, and graph databases (Padhy et al., 2011; Moniruzzaman &
Hossain, 2013).

The key-value store model, based from a paper written by Amazon in 2007, puts
the data in key pairs that are indexed for retrieval, which can hold structured and
unstructured data (Perdue, 2016). This is achieved in part using Hash tables. Hash tables,
broadly speaking, are data structures used to create an associative array and use a hash
function to compute an index that is stored in a table where specified values can be found
(USA Patent No. US 7085911 B2, 2006). Searches using this model can only be
performed on the key pairs and are limited to exact matches (Madison et al., 2015). The
Oracle NoSQL database is an example of a key-value store (Oracle, 2016).

Column oriented databases were created to store and process very large amounts
of data over several machines. Data tables are stored in columns, rather than rows, but are
otherwise very similar to the common relational database. Predictive analytics and time
stamping are functions of these systems making them ideal for analysis and data
versioning (Moniruzzaman & Hossain, 2013; Madison et al., 2015). Cassandra is a type

of column oriented database (The Apache Software Foundation, 2016).



Document based stores organize data as a collection of documents encoded in a
standard data exchange format like XML (eXtensible Markup Language) or JSON
(JavaScript Object Notation). Searches can be conducted on both the keys and the values
and each document can contain hundreds of attributes of different data types (Perdue,
2016; Madison et al., 2015). MongoDB and MarkLogic are both document based
databases (MongoDB, Inc., 2016; MarkLogic Corporation, 2016).

Graph databases became popular in the 1980’s and 90’s and were an attempt to
overcome the limitations of traditional RDBMS, particularly where GIS is concerned. In
general graph databases are a collection of nodes and edges where each node represents a
conceptual object and each edge represents a relationship (Angles & Gutierrez, 2008;
Padhy et al., 2011; Madison et al., 2015). This relationship is fundamental to the graph
database model and is best when storing substantial amounts of interconnected data.
Neo4j is an example of a graph database (Neo4j, 2016).

Choosing the right spatial database for the task at hand is extremely important
(Shekhar & Chawla, 2003; Guting, 1994). Each system has its own advantages and
disadvantages that are dependent upon the type of ingested data and the expected
outcome of the analysis (Worboys & Duckham, 2004; Dolton & Lowe, 2001). Making
the right choice is becoming increasingly difficult as more and more DBMS are adding
spatial modules or extensions for use with geospatial data (Van Oosterom et al., 2002).

The following is a review of the available literature for MySQL, MongoDB, MarkLogic,



Neo4j, and PostgreSQL (with PostGIS) databases focusing on SDBMS comparative
analysis.

MySQL is purported to be the most popular open source RDBMS and uses SQL
to maintain and query data within the database. This system was originally developed to
manage substantial amounts of information faster than the traditional databases available
at the time. The most recent version of MySQL (5.7) offers GIS functions and spatial
indexes (R-Tree) out-of-the-box with additional extensions that allow users to perform
operations on spatial data, such as determining the distance between two objects.
Documentation for GIS features and extensions supported are available on the MySQL
website which facilitate the generation, storage, and analysis of geographic information
(Oracle Corporation, 2016; Karlsson, 2008).

Nair et al. (2015) did a side by side comparison of MySQL, PostgreSQL (with
PostGIS), and SpatialL.ite, all open source RDBMS, and concluded that MySQL
performed best when used with web applications but lacked in stability, raster support,
and spatial features (Nair et al., 2015). With that said, the spatial features that MySQL
does support have very fast query executing times as was pointed out in an analysis
conducted by Zhou et al. (2009). In this study, they compared the query speeds of
MySQL to PostgreSQL (with PostGIS), Oracle Spatial, and IBM DB2 Spatial Extender,
other popular open-source and commercial databases (Zhou, et al., 2009). When MySQL
was compared to SQL Server, a commercially supported RDBMS, to determine which
had better query processing times, the results were in favor of SQL Server (Amlanjyoti et

al., 2015). The query execution time was measured as a performance metric in both the



Zhou et al., and Amalanjyoti et al., analysis, however, only one of these studies used a
geospatial dataset. In addition, the ingestion time and storage and memory footprint were
only loosely captured in the future research section of the Amalanjyoti et al. analysis
(Amlanjyoti et al., 2015; Nair, Chauhan, & Vats, 2015).

PostgreSQL is another mature open-source RDBMS that utilizes a structured
query language. It has no limitations on the size of the database or the number of rows
and indexes per table (The PostgreSQL Global Development Group, 2017). It is also
highly customizable and can run stored procedures in a plethora of programming
languages which include Java, Python, and its own PL/pgSQL. PostGIS is one of the
features offered by PostgreSQL which provides support for geographic objects that are
used to create a spatial database for GIS like ESRI’s Spatial Database Engine (The
PostgreSQL Global Development Group, 2017).

Miler et al. (2013) compared the performance of Dijkstra’s shortest path
calculation using Neo4j and PostGIS to determine if there was any difference in
calculation time using road data from OpenStreetMap (Miler, Medak, & Odobasic,
2013). They hypothesized that the graph database (Neo4j) would be the better choice for
this type of calculation however that was not the case. They determined that Neo4j was
not suitable for the shortest path algorithm because it uses a full graph traversal which
takes up substantial amounts of memory (Miler, Medak, & Odobasic, 2013). In this study
PostgreSQL (with PostGIS) had both lower peak memory consumption and faster hot and

cold query times.



Another open-source option is MongoDB which differs from MySQL and
PostgreSQL because it is a NoSQL, document based, database. Rather than store data in
tables like relational databases, MongoDB uses collections of fields and values, in a
structured BinaryScript Object Notation (BSON) format. Standard SQL is not supported
by MongoDB; however, it does support a rich query text of its own as well as JavaScript.
Queries can consist of a mix of non-JavaScript and JavaScript code in the same instance.
Geospatial indexes and query tools are available to analyze spatial data. Further
documentation can be found on their website (MongoDB, Inc., 2016).

A study conducted by Bazar & Sebastian (2014) compared popular open-source,
NoSQL, databases to aid readers in transitioning from a traditional RDBMS to a NoSQL
solution. One of the databases in this study was MongoDB. The other two databases in
this study were Couchbase, similar to MongoDB as it is another document-based
database, and Cassandra, a column oriented database. The analysis concluded that
MongoDB processed requests faster than Cassandra but slower than Couchbase even
though they all showed approximately equal read speeds (Bazar & Sebastian, 2014). In a
similar analysis comparing MongoDB to MySQL, Kumar et al. (2015) found that
MongoDB had data processing speeds that were much faster than MySQL.. In addition,
Aghi et al. (2015) found that MongoDB performed better than MySQL when there were
complex queries especially when they involved multiple joins. Query execution times,
data ingestion, and memory footprints were evaluated in these studies but weren’t

specific to geospatial data or spatial queries.



MarkLogic is a commercially supported, document based, NoSQL database that
provides storage for many data types including JSON, XML, and geospatial objects.
Structured and unstructured data, as well as any pertinent metadata, are stored in the same
database (MarkLogic Corporation, 2016). Although MarkLogic was released in 2001,
there are no apparent peer reviewed database comparative analysis available. With that
said, there are blog posts available that compare the MarkLogic product to other similar
databases, such as MongoDB, as well as highlight the overall benefits of using
MarkLogic but these are based on opinion and lack unbiased scientific discovery
(Fowler, 2013).

Neo4j is a NoSQL graph database that contains a spatial extension library. This
library provides spatial indexes that allow users to search their data for objects within a
certain distance (proximity) or within a specified area (Bass, 2012; Neo4j, 2016). The
database is queried using the Cypher Query Language, a recent addition to the Neo4j
platform (Jaiswal & Agrawal, 2013; Batra & Tyagi, 2012).

Batra & Tyagi (2012) conducted a comparative analysis of MySQL and Neo4j to
showcase graph databases as a replacement for traditional RDBMS when dealing with
large datasets that need a dynamic schema. They found that Neo4j could retrieve data at a
much faster rate than MySQL and the schema for Neo4j was more flexible as new
relationships could be added without the need for restructuring (Batra & Tyagi, 2012).
Jaiswal & Agrawal (2013) also compared Neo4j to MySQL and, similar to Batra & Tyagi

(2013), determined that the graph database outperformed the RDBMS in query retrieval



time. While these studies looked at query performance and retrieval times they were not
specific to geospatial data.

This thesis will assist the GIS community by evaluating the spatial competency of
MySQL, MongoDB, MarkLogic, Neo4j and PostgreSQL (with PostGIS) databases when
used with a vector dataset. Overall the literature review showed gaps in the lack of
comparative analysis available for these databases using geospatial data. Although some
literature is available on query performance there was little to none for storage and
memory footprint, ingest performance, and the complexity, usability, and accuracy of the
database. There was no peer reviewed literature for MarkLogic. In some cases, such as
Neo4j, the range or type of database used to conduct the comparative analysis was
limited, e.g. Neo4j vs MySQL. Almost all the studies reviewed emphasized the need for
future comparative research on other SDBMS largely because there are many to choose
from and each has its own pros and cons. The following will evaluate each selected
database and provide valuable information to assist users in making the right SDBMS

choice for their data.
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CHAPTER THREE: METHODOLOGY

Research was performed by initializing the five selected databases and comparing
them to one another. The same geospatial (vector) dataset and spatial queries were used
for the analysis. Further information on the data used in this analysis is available in the
About the Data section. The five databases chosen to conduct this comparative analysis
were MySQL, MongoDB, MarkLogic, Neo4j, and PostgreSQL (with PostGIS). Table 1
provides a reference guide to each database and its respective model. Table 2 lists the

version, architecture, and install/download size.

Table 1: Quick reference guide to the analyzed database and its respective model.

. NoSQL
Database Open Commercially RDBMS | (Non- Graph
Source Supported . Database
Relational)
MySQL X X
MongoDB X X
MarkLogic X X
Neo4j X X
PostgreSQL X X

Table 2: Listing of the version, architecture, and install size of each database into the virtual machine.

Database Version Architecture | Install Size
MySQL Community Server 5.7.17-1 64 bit 202 MB
MongoDB 3.4.2 for Redhat Enterprise Linux 7 64 bit 257 MB
MarkLogic For CentOS 7 8.0-6.1 64 bit 193 MB
Neo4j Community Edition 3.1.2 64 bit 99 MB
PostgreSQL | 9.6.3 with PostGIS 2.3.2 r15302 64 bit 104 MB

11



To provide a controlled environment, a single virtual machine was created and
cloned for each database type. The VM hosting platform used was VirtualBox version

5.1.14. The parameters for the virtual machine image are described in Table 3.

Table 3: Listing of parameters for Virtual Machine Configurations.

Parameter Value

Processor Dual-Core with VT-x hardware support
RAM 8192MB

Storage 32GB

Network Interface Bridged to host adapter, 1GB

The Operating System installed on the VM image was CentOS Linux release
7.3.1611. For simplicity, both SELinux and the firewalld process were disabled on the
image before cloning. After cloning the image, the database systems were installed, and
the tests were performed.

Loading data into a database can typically be done in several ways. For the
purposes of this analysis data ingestion was performed using the most common method

for each system. These methods are explained in detail below per database.

Installation, Configuration, and Ingestion

MarkLogic
MarkLogic was installed using yum via the RPM package obtained from the

MarkLogic website. The command used to install the product was:

#yum install MarkLogic-RHEL7-8.0-6.1.x86_64.rpm

12



After installation, the initial configuration was performed automatically.
MarkLogic is configured and managed via a web interface. Using this interface, a
geospatial element pair index was created on the Documents database prior to loading the
data. MarkLogic offers a tool called the MarkLogic Content Pump for ingesting data.
This tool was used to parse the CSV file and insert the data into the Documents database.

The following command was run to load the data into MarkLogic:

#./mlcp.sh import -host localhost -port 8006 -username admin -password ##### \

-input_file_type delimited_text -document_type json -input_file_path /tmp/mrds.csv

MarkLogic can execute 2 types of queries: ad-hoc and stored. Stored queries are
typically inserted into a modules database within MarkLogic and run via calling a web
service or invoked via an ad-hoc query. Ad-hoc queries are run via a web interface that is
built into MarkLogic called QConsole.

After the data was ingested, a transformation was run on all the documents in
order to extract the latitude and longitude values into a usable format for the range index
created previously. This was a three-step process. First, a stored module was created that
contained logic to produce a point property from the latitude and longitude properties
stored in the documents. This module was then loaded into the modules database for
execution. Finally, an ad-hoc query was run to apply the transformation module against
every document. This process is detailed below:

1. Stored Transformation Module:

declareUpdate();
function createGeoPoint(doc) {

13




if (doc.latitude && doc.longitude) {
doc.point = {latitude: parseFloat(doc.latitude), longitude:
parseFloat(doc.longitude)};
}

return doc;
}
var doc = cts.doc(uri);
var docObject = doc.toObject();
xdmp.nodeReplace(doc, createGeoPoint(docObject));

2. Load the transformation module into the modules database (executed from

QConsole)

/I Load the transformation Module

declareUpdate();

xdmp.documentLoad('/tmp/createGeoPoint.sjs', {uri: /createGeoPoint.sjs', permissions:
xdmp.defaultPermissions()});

3. Run the transformation module against every document (Executed from

QConsole)

for (var uri of cts.uris(null, null, cts.trueQuery())) {
xdmp.spawn(

'IcreateGeoPoint.sjs’,

{uri: uri},

{transactionMode: 'update-auto-commit'}

);

}

MySQL
MySQL was installed using yum directly from the preconfigured repositories in

CentOS:

#yum install mysgl-community-server
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To interface with MySQL, the tool MySQL Workbench 6.3 Community Edition
was installed on the host machine and configured to connect to the MySQL instance
running within the guest VM. After installation and startup, a spatial index was created
by running a query in MySQL Workbench. Next, the data was loaded by running a
second query. Finally, a transformation was run to synthesize point fields for each row to
use with the MySQL spatial index. The process is detailed below:

1. Create spatial index

ALTER TABLE mrds.mrds ADD SPATIAL INDEX coords_index (coords);

2. Ingest data into MySQL

LOAD DATA INFILE ‘/var/lib/mysgl-files/mrds.csv'
INTO TABLE mrds.mrds
FIELDS TERMINATED BY '/

OPTIONALLY ENCLOSED BY "
LINES TERMINATED BY \n'
IGNORE 1 LINES
(dep_id,url,mrds_id,mas_id,site_name,@vlat,@vlon,region,country,state,county,com_typ
e,commodl,commod2,commod3,oper_type,dep_type,prod_size,dev_stat,ore,gangue,othe
r_matl,orebody_fm,work_type,model,alteration,conc_proc,names,ore_ctrl,reporter,hrock
__unit,hrock_type,arock_unit,arock_type,structure,tectonic,ref,yfp_ba,yr_fst_prd,ylp_ba,y
r_Ist_prd,dy_ba,disc_yr,prod_yrs,discr)

SET latitude = nullif(@vlat,"),

longitude = nullif(@vlon,");

3. Synthesize point fields

UPDATE mrds.mrds SET coords = GeometryFromText( CONCAT( 'POINT(', longitude,
"', latitude, ') );

Neo4j
Neo4j was extracted and run directly from its source package:
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#tar xf /tmp/neodj-community-3.1.2-unix.tar.gz

In order to utilize spatial capabilities, the Neo4j spatial library (Release 0.24) was
installed. The installation process for neo4j-spatial involves building the library from
source (via Maven) and then copying the compiled jar file into the Neo4j plugin
directory. Maven was installed on the VM via the preconfigured CentOS yum repository,

and the spatial plugin was built using the command:

#mvn install

This produced a jar file that was copied into the Neo4j plugin directory.
Neo4j comes with a built-in web interface called Neo4j Browser for running ad-hoc
queries against the database. This interface was used for loading the data and running
queries. The loading and transformation process for Neo4j consisted of running an initial
load query, followed by running a query to produce the geospatial layer necessary for
utilizing the Neo4j-spatial plugin. These queries are detailed below:

1. Load the data into Neo4j

USING PERIODIC COMMIT 10000

LOAD CSV WITH HEADERS FROM "file:/tmp/mrds.csv" AS row

CREATE (:Resource {dep_id: row.dep_id, url: row.url, mrds_id: row.mrds_id, mas_id:
row.mas_id, site_name: row.site_name, latitude: toFloat(row.latitude), longitude:
toFloat(row.longitude), region: row.region, country: row.country, state: row.state, county:
row.county, com_type: row.com_type, commodl: row.commodl, commod2:
row.commod2, commod3: row.commod3, oper_type: row.oper_type, dep_type:
row.dep_type, prod_size: row.prod_size, dev_stat: row.dev_stat, ore: row.ore, gangue:
row.gangue, other_matl: row.other_matl, orebody_fm: row.orebody_fm, work_type:
row.work_type, model: row.model, alteration: row.alteration, conc_proc: row.conc_proc,
names: row.names, ore_ctrl: row.ore_ctrl, reporter: row.reporter, hrock_unit:
row.hrock_unit, hrock_type: row.hrock_type, arock_unit: row.arock_unit, arock_type:
row.arock_type, structure: row.structure, tectonic: row.tectonic, ref: row.ref, yfp_ba:
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row.yfp_ba, yr_fst_prd: row.yr_fst_prd, ylp_ba: row.ylp_ba, yr_Ist_prd: row.yr_lIst prd,
dy ba: row.dy ba, disc_yr: row.disc_yr, prod_yrs: row.prod_yrs, discr: row.discr});

2. Construct a geospatial layer containing all the records in the dataset.

MATCH (r:Resource) WHERE r.latitude is not null and r.longitude is not null
WITH r

CALL spatial.addNode("layer_resources”, r) YIELD node as n

RETURN COUNT(*) as cnt;

Of significance, this step took over 10 hours to complete.

MongoDB
MongoDB was installed directly in CentOS via the preconfigured yum repository

system:

#yum install mongodb-org

MongoDB provides a tool called mongoimport for ingesting data. This tool was
used to parse the CSV file and insert the data into the mrds collection within the local

database. The following command was run to load the data into MongoDB:

| #mongoimport -d local -c mrds --type csv --file /tmp/mrds.csv —headerline

Queries in MongoDB were run via a tool called Robo 3T, a GUI interface for
managing and querying MongoDB. In order to make use of MongoDB’s geospatial
indexes, a field was synthesized in each record to hold the geospatial data in the format

[longitude, latitude] by running the following query:

db.mrds.find().forEach(function(row) { if (row.latitude && row.longitude) {row.point =
[row.longitude, row.latitude]; } db.mrds.save(row); });
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A text index was created on the com_type field for use in Queries 1 and 3:

db.mrds.createlndex( { com_type: “text” }, { sparse: true });

Finally, a geospatial index was created on the point field constructed above:

db.mrds.createlndex( { point: "2dsphere™ }, { sparse: true } );

PostgreSQL
PostgreSQL and PostGIS were both installed directly in CentOS via the

preconfigured yum repository system:

#yum install postgresql96-server.x86_64
#yum install postgis2_96.x86_64

For interacting with PostgreSQL, the open-source tool pgAdmin4 was used. The
tool provides mechanisms for configuring and connecting to PostgreSQL databases, as
well as executing queries and loading data. The following query was run to create a new

table:

CREATE TABLE public.mrds

(
dep_id character varying,
url character varying,
mrds_id character varying,
mas_id character varying,
site_name character varying,
latitude character varying,
longitude character varying,
region character varying,
country character varying,
state character varying,
county character varying,
com_type character varying,
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)
WITH

(
);

commod1l character varying,
commod2 character varying,
commod3 character varying,
oper_type character varying,
dep_type character varying,
prod_size character varying,
dev_stat character varying,
ore character varying,
gangue character varying,
other_matl character varying,
orebody_fm character varying,
work_type character varying,
model character varying,
alteration character varying,
conc_proc character varying,
names character varying,
ore_ctrl character varying,
reporter character varying,
hrock_unit character varying,
hrock_type character varying,
arock_unit character varying,
arock_type character varying,
structure character varying,
tectonic character varying,
ref character varying,

yfp_ba character varying,
yr_fst_prd character varying,
ylp_ba character varying,
yr_Ist_prd character varying,
dy_ba character varying,
disc_yr character varying,
prod_yrs character varying,
discr character varying,
PRIMARY KEY (dep_id)

OIDS = FALSE

ALTER TABLE public.mrds
OWNER

to

postgres;
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After the table was created, the data from the csv file was loaded into the table by running

COPY mrds FROM '/tmp/mrds.csv' WITH DELIMITER "' CSV HEADER,;

Once the data was loaded, the latitude/longitude fields needed to be synthesized
into a geography data type to take advantage of PostGIS indexes. A new column
“pointgeo” with type “geography” was added to the “mrds” table and an index was added
on the column via the pgAdmin4 graphical interface. Finally, the latitude/longitude fields

were parsed to construct the “pointgeo” geography within the table.

update mrds
set pointgeo = st_geogfromtext('SRID=4326;POINT(' || longitude || ' " || latitude || )");

Key Metrics
The five systems have been analyzed by way of both qualitative and quantitative

methods. Ingest performance, query performance, accuracy, and storage and memory
footprint have been quantitatively measured while usability and complexity were
assessed subjectively. The strategy included:
1. Installing the databases on identical virtual machines.
2. Loading the same dataset into each management system.
3. Running the same predefined set of queries against each database.
4. Analyzing the query outputs for accuracy (it might be possible that differences
in query languages and or styles could cause the system to return a different
number of results).

Table 4 below further details these metrics and how they have been measured.
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Table 4: Description of the evaluation metrics

Metric Name = Measurement Unit Description of Measurement

Ingest How long does it take to load the entire
g Seconds dataset? Are there extra steps to loading

performance

(pre or post-processing)?

How much space does the loaded
database consume on disk?

Data retrieval time. How long does
Seconds each query take to resolve the results?

Storage Bytes

Query

performance Provide wait analysis and graphs.
Accuracy Number of records returned Do all the databases provide the
expected query results?
Usabilit Qualitative description of Were there any other factors that made
y user experience one database easier to use than another?
Lines of querv. number of How difficult is it to query for data? Do
query, some databases require more complex
. processes for each database : .
Complexity queries to achieve the same results

used, and available

documentation (using the same objective and

instruction)?

Measuring each of these metrics relied on the instrumentation provided by each
individual database and tool. For example, MongoDB provides a tool called
mongoimport for loading data, that displays its runtime in its program output.
MarkLogic’s micp tool also displays its runtime as program output, but appears to round
the time value to the nearest second. For Neo4j, MySQL, and PostgreSQL, loading was
performed by executing ad-hoc queries against each database, and the query runtime was
recorded by the Neo4j Browser, MySQL Workbench, and pgAdmin4 respectively.

Likewise, storage size measurement relied on the tools provided. Storage size for
MarkLogic was taken from its administration interface. Neo4j storage was recorded from
the Neo4j Browser. MySQL, PostgreSQL, and MongoDB storage values were recorded

from the operating system measurement of the database directory size on disk.
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Usability is a subjective measurement that was derived from the amount of effort
required to construct each query or transform the input or output from a system. The
more preprocessing and data manipulation required to execute a query or transform a
dataset, the less usable a system is considered. Other considerations for usability include
toolsets, documentation, and community support (access to online resources for training

and reference material).

About the Data
The dataset used was the US Geological Survey’s (USGS) Mineral Resource Data

System (MRDS). It contains records about mineral resources, such as the type, location,
reporter, site name, discovery year, and more. It is available online here
https://mrdata.usgs.gov/mrds/. The original publication date for this dataset was 2005 and
it was last updated in March of 2016. The dataset contains 304,633 total records with 44

heterogenous fields including text, scalar values, and spatial data (latitude/longitude).

Querying the Data:
A database may have many simultaneous operations occurring at any given time,

which can cause minor variations in the performance of a query at a given moment.
Likewise, the operating system may have intermittent maintenance and housekeeping
tasks that can affect processing performance from one moment to the next. Compounding
this variance, most database systems employ a caching mechanism that provides for
improved performance of frequently run queries. After a query is executed, the partial
results from the execution are maintained in cache to provide faster access for subsequent

runs. Queries that are assisted by this cache are generally referred to as “warm” queries,
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and queries that occur with no cache assistance are referred to as “cold” queries. To take
these variables into account, each query was executed a total of 10 times, 5 immediately
after a database restart (to measure performance with an empty cache), and 5 executed in
immediate succession. The results of these trials were averaged for the conclusive results
detailed below. This methodology was followed to remove any minor variances in
performance across trials due to external influences.
The spatial queries used for performance measurements are defined below and

will be notated throughout this thesis by the corresponding number (e.g. Query 1):

1. Find all records with the attribute type of “non-metal.”

2. Find all records within a specified geometry. This was manually
conducted for10 different regions (Refer to Figure 1 for an illustration of
the geometries queried).

3. Find all records of type “non-metal” within a defined geometry. This was
manually conducted for 10 different regions (Refer to Figure 1 for an
illustration of the geometries queried).

4. Find all records within 5 miles of the Potomac River in Washington DC.
(Refer to Figure 2 for a detailed map view of the defined space).

5. Find all records within 1 mile of Uranium deposits. (For a detailed view of
the Uranium deposit locations refer to Figure 3).

These five queries were formulated to test different properties of each DBMS,
ranging from basic, non-spatial information retrieval, to more complex geospatial

queries. Query 1 is a basic attribute query, without any geospatial properties. Query 2 is a
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simple geospatial geometry query. Query 3 is a combination of queries 1 and 2. Query 4
is a complex polygon geospatial query. Lastly, Query 5 is a 2-part query, using the output
of the initial attribute query to dynamically construct a geospatial query.

Because each of the databases use a different query language, the methods for
querying data differed substantially. MarkLogic and MongoDB both use JavaScript as
their query language, but each provides a separate set of extensions and support functions
for executing queries. MySQL and PostgreSQL use SQL as their querying languages,
with some geospatial-specific language extensions and features for querying spatial data.
Neo4j uses Cypher as its query language, which is similar to SQL but with some features
that enhance the ability to query multi-level relationships within a connected graph.

Query 1 was the simplest query of the set, and therefore the most logically
consistent query across all the databases. This query serves as a baseline for simple data
retrieval within the DBMS.

The geometries for Queries 2 and 3 were produced by drawing 10 bounded areas,
5 rectangles and 5 polygons, each randomly chosen in separate geographic regions within
the United States using Google Earth. These latitude and longitudes were recorded, and
the resulting geometries were used in the queries for all 5 databases using their respective
languages.

The geometries for Query 4 were constructed by producing a KML file using
Google Earth. A line was drawn along the center of the Potomac river within Washington
D.C. and a 5-mile buffer was applied to the line, and the output was saved into a KML

file. MarkLogic and PostgreSQL with the PostGIS extension could automatically load the
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geometry within the KML file and use it as part of the query. All other databases required
extracting the KML file as text, and then constructing the appropriate geometries as
strings that the candidate database would understand. This process required a significant
amount of time and effort and is typical of the workflow of a geospatial analyst.

The first part of Query 5 returned a result set that contained all the mineral
deposits with a primary commaodity type of Uranium. The query then used the resulting
latitudes and longitudes from this set to dynamically construct a geospatial query of a 1-
mile radius circle around every item. Because each database represents distances
differently and expects different geometries to represent a point buffer (circle), this query
had the most inconsistent logic across all the databases. Figure 3 illustrates the first part
of this query highlighting the locations of all the Uranium deposits within the Continental

United States.
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Figure 2: ArcMap image showing the 5-mile buffer area of interest used for query 4.
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RESULTS

Ingestion and Storage
Based on the reviewed literature, it was deemed likely that there would be

significant differences in the data ingestion time in each of the different database systems.
It was also expected that the data within each of the spatial databases would have
different storage and memory footprints after ingesting the same dataset. This anticipated
difference would occur because all five databases employ vastly different data structures
for storing information. These different data structures influence the size of the stored
data, as well as the performance of data retrieval.

The first stage of this comparative analysis consisted of loading the preprocessed
geospatial data into the respective databases to measure ingest performance and the
overall size of the database (storage and memory footprint). As predicted, there were
significant differences in the amount of time each database took to load the same dataset
with a maximum ingest time of 108s with MarkLogic and a minimum time of 3s with
PostgreSQL. Figure 4 further details these differences in data ingestion time per database.
Likewise, there were large variations in the resulting storage size for each system with a
maximum of 1901MBs for MarkLogic and a minimum of 177MBs for MySQL, as
detailed in Figure 5. The data loading times tended to correlate with the resulting
database size, with larger database sizes linked to longer ingestion times. This distinction

will be further discussed in the Conclusion and Future Research section of this Thesis.
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Figure 4: Data ingest time (seconds) for each database to load the same dataset.
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Query Performance
It was anticipated that there would be significant differences in query

performance, measured by their execution times, between each of the spatial databases
compared. As noted in the Ingestion and Storage section, the data structures a database
uses affects the query and retrieval performance of a DBMS. Since each one of the
candidate databases utilized different indexing mechanisms, it was estimated that they
would perform differently under different scenarios, with some being better suited at

certain types of queries than others.
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As anticipated, all five systems demonstrated substantial variations in query
execution times. Table 5 shows the discrete results of the cold and warm queries run
against each database apart from queries 2 and 3 where the computed average of the
average cold and warm performance times for all the 10 bounding geometries are
documented. Table 6 aggregates these values into the average overall runtimes per query
per database. A full list of discrete query runtimes is available in the Appendix section of
this thesis.

These results show that MarkLogic was the fastest performing database among
the group across all 5 queries. MySQL had the second fastest retrieval performance for
queries 2, 3, and 4 while PostgreSQL and MongoDB came in second for query 1 and
query 5 respectively. MongoDB had the third fastest performance for queries 1, 4, and 2
along with MySQL for query 5 and PostgreSQL for query 3. For queries 2, 4, and 5
PostgreSQL had the fourth fastest times along with MySQL for query 1 and MongoDB
for query 3. Neo4j consistently required longer query processing times for all 5 queries
executed.

All five databases were able to complete all five of the defined queries although
performance times varied significantly between databases. Query 5 had the largest
variance across all the databases observed with a minimum runtime of 0.055s with
MarkLogic and a maximum of 1585.9s, approximately 26 minutes, with Neo4j. These
and other outcomes are further illustrated in Figures 6-10. Each query was defined

previously under the Methodology section and will be noted using the same numerical
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key. The full query text for each query performed can be found in the Appendix section of

this thesis.

Table 5: Discrete Query Performance Results (time in seconds) Query 2 and 3 are an average of the average cold
and warm run times for all 10 geometries queried. This is done for simplicity, but Table 15 in the Appendix
section provides an entire detailed list of all query run times.

Database Query # | Query Time (cold) Query Time (warm)
MarkLogic 1 0.001954 0.0012574

2 0.001585 0.000712

3 0.002306 0.001224

4 0.0121788 0.0104978

5 0.06227 0.0474812
MongoDB 1 0.026 0.0184

2 0.10742 0.04246

3 0.35222 0.15742

4 0.071 0.057

5 740.961 769.7186
MySQL 1 0.024875 0.024839

2 0.05692351 0.039764865

3 0.043668845 0.027020345

4 0.036066 0.032606

5 783.5784 786.5094
Neo4j 1 0.9546 0.363

2 1.27264 0.46942

3 1.31064 0.51334

4 8.9392 6.5932

5 1666.435 1505.4304
PostgreSQL 1 0.010747 0.008265

2 0.11455298 0.11076532

3 0.2778676 0.08241374

4 3.39914 3.333564

5 1303.978 1462.89
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Table 6: Average runtime (seconds) for the overall (cold and warm) execution time for each query per database.
Query 2 and 3 are an average of the average cold and warm run times for all 10 geometry queries.

Query #
Database 1 2 3 4 5
MarkLogic 0.0016 0.0011 0.0018 0.0113 0.0549
MongoDB 0.0222 0.0749 0.2548 0.0640 755.3398
MySQL 0.0249 0.0483 0.0353 0.0343 785.0439
Neo4j 0.6588 0.8710 0.9120 7.7662 1,585.9327
PostgreSQL 0.0095 0.1127 0.1801 3.3664 1,383.4340
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Figure 6: Query Time (cold) in blue and Query Time (warm) in yellow for Query 1. Numbers shown are the
time needed to process the query in seconds.
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Figure 7: Query Time (cold) and Query Time (warm) for Query 2. Numbers shown are the time needed to
process the query in seconds.
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Figure 8:Figure 8: Query Time (cold) and Query Time (warm) for Query 3. Numbers shown are the time needed
to process the query in seconds.
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Figure 9: Query Time (cold) and Query Time (warm) for Query 4. Numbers shown are the time needed to
process the query in seconds.
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Figure 10: Query Time (cold) and Query Time (warm) for Query 5. Numbers shown are the time needed to
process the query in seconds.

Accuracy
As the primary purpose of a database is accurate data storage and retrieval, it was

expected that each database would produce the exact same results for the same high-level
queries issued. There were not expected to be any variances in the number of results
returned. In addition, this metric was used to ensure that the functions used to query each
database were in fact the proper ones to use as each database used different query
languages.

Somewhat unexpected, not all databases returned the same number of results for
every query. Queries 1 and 4 were the only queries that returned the same number of
results for all five databases tested. The remainder of the results returned for each of the

databases per query had only slight variances from database to database however there
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were a few noteworthy deviations. For queries 2 and 3, MarkLogic, MongoDB, and
PostgreSQL all agreed on the number of results returned per executed query, while
MySQL and Neo4j agreed on a different number of result matches. None of the databases
agreed on query 5, and they each returned a slightly different number of results with the
minimum returned result of 17,032 from MongoDB and a maximum of 17,059 from
MySQL, a difference of 24 data points. Table 7 illustrates these commonalities and
differences in further detail including the query number, database, and the number of
results returned. These deviations will be further discussed in the Conclusions section of

this thesis.

Table 7: Count of results returned per query for each database.

Database

Query# = MarkLogic MongoDB MySQL Neo4j PostgreSQL
1 111061 111061 111061 111061 111061
2a 3254 3254 3236 3236 3254
2b 3763 3763 3758 3758 3763
2C 19020 19020 19073 19074 19020
2d 15130 15130 16217 16217 15130
2e 1342 1342 1290 1290 1342
2f 4701 4701 4793 4793 4701
29 1669 1669 1642 1642 1669
2h 3493 3493 3631 3631 3493
2i 9813 9813 9581 9581 9813
2j 37323 37323 37636 37636 37323
3a 1730 1730 1736 1736 1730
3b 1209 1209 1203 1203 1209
3c 3050 3050 3078 3078 3050
3d 4748 4748 4886 4886 4748
3e 1085 1085 1045 1045 1085

38



3f 2850 2850 2887 2887 2850

39 1331 1331 1330 1330 1331
3h 2230 2230 2312 2312 2230
3i 2582 2582 2549 2549 2582
3j 7385 7385 7259 7259 7385
4 74 74 74 74 74
5 17039 17032 17059 17040 17038

Usability and Complexity
Because each of the tested databases were initially built with a specific intention,

it was predicted that there would likely be differences in usability and complexity
between them. In some cases, a geospatial capability was not built directly into the
platform, but rather added as an extension after the product was released. In other cases,
the database was built for more general-purpose data storage with geospatial as a small
subset of the overall platform.

As expected, there were significant differences in the usability and complexity of
each of the database systems tested. All the databases required some amount of initial
preprocessing to produce the proper format for optimal indexing within each database
system. This effort was mostly equivalent across all the databases. Essentially, the initial
ingested data needed to be supplemented to convert its scalar-based data into a geospatial
format. Of note, the data preprocessing step for Neo4j was significant in that although the
syntax was relatively trivial, the processing itself took over 10 hours to complete.

Out of the databases surveyed, the databases that required the least overall query
preprocessing and data manipulation were MarkLogic and PostgreSQL (with PostGIS).

As mentioned in the Methodology section, the complex geometry for Query 4 required a
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significant amount of preprocessing for all tested databases except MarkLogic and
PostgreSQL (with PostGIS), due to both databases having native support for KML.

Support-wise, Neo4j tended to have the fewest information resources available
online. MarkLogic tended to not have much community-provided information but had
very comprehensive documentation that made query construction relatively straight-
forward. MongoDB tended to have very broad community support and relatively useful
product documentation. MySQL had broad community support, but had some vagueness
in its documentation, particularly surrounding the units used for geospatial buffers. Both
PostgreSQL and PostGIS had an extensive online community with comprehensive
documentation which made query construction considerably easier.

Subjectively speaking, the order of usability from best to worst was MarkLogic,

MongoDB, PostgreSQL (with PostGIS), MySQL, and Neo4j.
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CONCLUSION AND FUTURE RESEARCH

Given an identical input dataset, there were significant differences in the data
ingestion time and the resulting storage footprint of the databases. The ingestion time
tended to strongly correlate with the resulting size of the database. This relationship is
illustrated in Figure 11 which shows the subsequent database size per system as well as
the data ingest time. MarkLogic took the longest time to load the data (108 seconds) and
had the largest resulting database size (876MB). MongoDB, a NoSQL document-based
database, like MarkLogic, had a storage footprint of 425MB, a full 451MB less than
MarkLogic, and took 11.5 seconds to load the data. In comparison, MySQL had the
second shortest loading time at 4.5 seconds, and the smallest resulting database size
(177MB) while PostgreSQL, also an RDBMS, ingested the dataset the fastest (3 seconds)
with a resulting database size almost double that of MySQL (342MB). Neo4j, the only
graph database of the group, had a loading time of 24.4 seconds, and a resulting database

size of 632.3MB.
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Figure 11. Data ingest time and storage footprint.

The reason for the large variations in storage size and ingestion time is due in part
to the difference in data structures used by each database to store the dataset. Figures 12,
13, and 14 show how each database stored the same dataset differently. MarkLogic and
MongoDB store their data as JSON documents. MySQL and PostgreSQL store their data
in tabular format (relational), and Neo4j stores its data as Nodes, which contain keys and
values (much like a document). Additionally, the databases have different default
indexing strategies. For example, upon ingestion into the MarkLogic database every field
from each record is added to its universal index, which is MarkLogic’s mechanism for
querying data by value. This universal index provides capabilities more aligned with a
search engine, such as term-frequency/inverse-document-frequency relevance scoring for
results. As a result, MarkLogic had the longest data ingest time and largest storage

footprint. The other analyzed databases don’t build a general-purpose index by default,
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and instead rely on a complete database scan when running queries on non-indexed
fields. The lack of these indexes by default results in smaller on-disk sizes, at the expense
of general-purpose query performance. To more accurately compare the databases in this
regard, it would be necessary to add a text index on every field in each record and

compare resulting data size.
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Figure 12: The JSON based data structure for MarkLogic and MongoDB.
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Variations in query time and database performance were also prevalent among the
five systems analyzed with query 5 resulting in the longest execution time for all systems.
MarkLogic had the fastest query time for all 5 queries with an overall average resolution
time of 0.014 seconds. MongoDB and MySQL had similar overall average query times of
151 and 157 seconds respectively with query 1 being the fastest and query 5 taking the
longest to resolve for both databases. This similarity occurred even though MongoDB
and MySQL store and retrieve data in very different ways. In comparison, the variance
that resulted between MarkLogic and MongoDB was unexpected because, on paper,
these two databases seem to be most similar in that they are both NoSQL document-
based databases.

Neo4j had the longest runtime out of the five systems for every query performed
including Query 1, which was the simplest of all the defined queries. For query 5 Neo4j
took an additional 202 seconds longer than PostgreSQL to complete and finished Query 4
in 7.76 seconds while this same query took MySQL a mere 0.034 seconds, a difference of
7.72 seconds. The overall lackluster performance of Neo4j compared to MySQL, was
unexpected because it has been reported that this system is roughly 1000 times faster than
relational systems (Nixon, 2015).

MySQL and PostgreSQL both outperformed MongoDB in executing Query 3
where it had a faster runtime by 0.22 and .07 seconds, respectively. In contrast,
PostgreSQL had the second longest runtimes for queries 2, 4, and 5. It took PostgreSQL
1,383 seconds or 23 minutes to complete query 5 while MySQL executed in 785 seconds,

coming in third fastest. It is important to note that the reason MySQL didn’t process the
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query faster is likely an effect of not using an index to calculate this result, as this result
was orders of magnitude slower than the previous complex geometry, Query 4, conducted
using MySQL. An “explain plan” on Query 5 against MySQL showed that it would use
an index, but the astronomical result indicates otherwise. Multiple attempts were made to
force MySQL to use the index, but the results were similar.

With respect to accuracy, each database agreed on the returned results for both
queries 1 and 4. Query 1 was a simple attribute query and therefore left little room for
ambiguity. Query 4 was a complex geospatial buffer query confined to a small region and
thus not heavily influenced by the projections employed by each database tested. Queries
2, 3, and 5 showed variations in the number of results returned among all the databases
tested, with some observable groupings present in the outputs.

For queries 2 and 3, MarkLogic, MongoDB, and PostgreSQL output the same
number of results, which differed from the number of results output by Neo4j and
MySQL, which both agreed with each other. Figures 15, 16, 17, and 18 below illustrate
the differences observed in queries 2a, 2f, 3a, where the red points represent outputs
unique to MarkLogic, MongoDB, and PostgreSQL while the light green points represent
those outputs unique to Neo4j and MySQL. What is noteworthy is that these
discrepancies occurred on or near the borders of the predefined geographic regions only

with no extreme outliers.
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Figure 15: Differences in the results returned from query 2a for MrkLogic, Mongo, and PostgreSQL and Neo4j
and MySQL databases.
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Figure 16: Differences in the results returned from query 2f for MarkLogic, Mongo, and PostgreSQL and Neo4j
and MySQL databases.
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Figure 17: Differences in the results returned from query 3a for MarkLogic, Mongo, and PostgreSQL and Neo4j
and MySQL databases.
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Figure 18: Differences in the results returned from query 3f for MarkLogic, Mongo, and PostgreSQL and Neo4j
and MySQL databases.

The variation observed in these queries between the two groups is likely because
the regions queried were relatively large, and thus heavily influenced by the curvature of
the earth. These two groupings expose a difference of projection by the query engines in
these two groups of databases. MarkLogic, MongoDB, and PostgreSQL all execute
geodesic calculations when resolving these polygon queries, while MySQL and Neo4j do
not appear to have a way to run their calculations geodesically (considering the curvature
of the Earth). Interestingly, MarkLogic, MongoDB, and PostgreSQL do provide settings
to perform their calculations non-geodesically and return the same result values as

MySQL and Neo4j. This problem didn't appear to affect query 4, which was also a
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polygon query, likely because the polygons for the buffer were contained to a much
smaller area, and therefore less susceptible to the influence of the curvature of the Earth.
Query 5 further highlights some differences in the geospatial query techniques
between these databases, as every database tested returned a slightly different number of
results. Figure 19 below illustrates the total output for all 5 databases combined for query
5. Neo4j, MySQL, and Mongo output points that were unique among the full set while
MarkLogic and PostgreSQL with PostGIS had identical outputs. Figure 20 shows the 3
unique values for Neo4j. Figure 21 illustrates the 635 unique records ouput by MySQL.
Figure 22 shows the lone unique record output by Mongo. These variances are due to
assumptions that each database makes regarding distance when calculated with respect to
their query projection and the location of the queried region on the earth. The reason
MySQL had so many unique values was because it does not natively support a geospatial
buffer query using miles as the unit of measure instead it uses decimal degrees.
Therefore, the conversion from decimal degrees to miles was an approximation based on

a singular point on the globe.
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Figure 19: Query 5 outputs for all 5 databases combined.
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Figure 21: Query 5 results where points unique to only MySQL are showin purple while all else are in yellow.
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Figure 22: Query 5 results where points unique to only Mongo are shown in cyan while all else are in yellow.

As also predicted, there were noticeable differences in system usability and
complexity between each of the database systems analyzed. Based on the ingestion
process, data preprocessing, and queries executed in this thesis, the database that seems
best suited for geospatial queries and analysis is MarkLogic. MarkLogic required the
least amount of query preprocessing. This is because MarkLogic has built-in support for
building geometries directly from KML files and using them in queries, which eliminated
the need for any preprocessing for Query 4, and saved a significant amount of time and
effort. With JavaScript being its primary query language, it has a vast vocabulary of
structures for performing a large array of complex tasks. Additionally, MarkLogic

provides the built-in QConsole web interface for executing ad-hoc queries, which greatly
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enhances its usability by providing syntax highlighting, database browsing, and result
viewing.

MongoDB was similarly noteworthy in this regards but fell short in its ability to
natively handle KML, which is a very common format used in geospatial analysis, and
substantially increased the complexity of Query 4. Additionally, its performance in
executing Query 5 was several orders of magnitude slower than MarkLogic. There are
GUI’s available, like Robo 3T, that allow for the execution of queries against MongoDB
that decrease the overall complexity of formulating queries and processing data. In
Addition, its simple and powerful query syntax also makes it very well suited for running
geospatial queries and analysis.

MySQL’s rigid language syntax was frustrating for constructing geospatial
queries. Due to its lack of native KML support, and SQL’s inherent shortcomings in
expressiveness, building the geometries for the geospatial queries required a great deal of
complexity. Its performance was mostly good, with the notable exception of Query 5.
More analysis should be done to determine why the database didn’t appear to use the
provided index for this query. On the positive side, MySQL has a vast userbase and broad
community support, and the available tools for interfacing with it, namely MySQL
Workbench, enhance its overall usability.

Neo4j uses a third-party library for executing geospatial queries, and its geospatial
capabilities feel likewise an afterthought. Constructing geospatial queries in the Cypher
language seemed unintuitive and needlessly complicated. Like MarkLogic, Neo4j

provides a built-in web interface for running ad-hoc queries, loading data, and visualizing
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results. This did enhance its usability considerably, but ultimately didn’t compensate for
its other shortcomings in performance and usability.

PostgreSQL is purpose-built for geospatial queries and therefore has native KML
support. It is considered in the community as the predominant database for geospatial
data storage and retrieval. As a result, there is a plethora of community online
documentation and support as well as many available query tools, such as pgAdmin4.
SQL is the language used to query the database which does impose some limitations
however it also lowers the barrier of entry due to the pervasiveness of SQL. Based on the
results of this thesis, what is surprising is that PostgreSQL was not the overall fastest or
best geospatial database solution for this dataset.

Table 8 below provides an overall ranking of each of the database systems
analyzed in this thesis. Each database was scored for one of seven metrics enumerated
and from that the overall system was ranked. For the accuracy component, a score of 1
was given to the databases that were able to correctly query using the geodetic geometries
and a score of 2 was given to those which were not. This tabulation mostly agrees with
the subjective analysis above, but doesn’t consider the scale of the differences between
the databases. For instance, the two-minute data load time for MarkLogic pales in
comparison to the 26-minute query time for PostgreSQL when executing Query 5, or the

ten-hour processing time of creating the geospatial layer for Neo4j.
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Table 8: Overall ranking analysis of each system based on predefined metrics

Database
Metric MarkLogic MongoDB | MySQL  Neo4j PostgreSQL
Ingest Time 5 3 2 4 1
Storag(_e & Memory 5 3 1 4 5
Footprint
Query Performance
Rank Avg. 1 3 2 > 4
Accuracy 1 1 2 2 1
Complexity 1 2 4 5 3
Usability 1 2 4 5 3

Future research should focus on more in-depth analysis of the index types used by
each database system, and the strengths and weaknesses of each. More exploration of
third-party tools may also result in enhanced usability and increases in query and data
ingestion performance for each database examined here. Additionally, each of these
database technologies is still being developed and enhanced, so revisiting the same

queries in the future is warranted and may yield different results.
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APPENDIX

The following tables contain supplemental data mentioned within this thesis.

Table 9: Example of the contents within the KML file

Potomac Buffer KML File

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<LookAt>
<longitude>-77.0861321636</longitude>
<latitude>38.9022958677</latitude>
<range>3000</range>
<tilt>0</tilt>
<heading>0</heading>
</LookAt>
<Style id="examplePolyStyle">
<PolyStyle>
<color>ff0000cc</color>
<colorMode>random</colorMode>
<fill>1</fill>
<outline>0</outline>
</PolyStyle>
</Style>
<Placemark>
<name>Potomac</name>
<description> Buffer: 5 miles</description>
<styleUrI>#examplePolyStyle</styleUrl>
<MultiGeometry>
<Polygon>
<outerBoundaryls>
<LinearRing>
<coordinates>-77.1232869978,38.7908060665,0 -77.1258730736,38.8171074753,0 -
76.9409902771,38.8313033005,0 -76.9384042013,38.8050018916,0 -
77.1232869978,38.7908060665,0</coordinates>
</LinearRing>
</outerBoundaryls>
</Polygon>

[MORE POLYGON COORDINATE DATA HERE]
</MultiGeometry>
</Placemark>

</Document>
</kml>
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MySQL Queries

Table 10: MySQL supplemental code and data structure

#

1
2
3

Code
SELECT count(*) FROM mrds.mrds WHERE com_type = "N"

SELECT count( *) from mrds.mrds WHERE st_contains(geomfromtext('POLY GON(([Coordinates for
specific subquery]))', 4326), coords);
SELECT count(*) from mrds.mrds
WHERE st_contains(
geomfromtext('POLY GON(([Coordinates for specific subquery]))",
mrds.coords
)
AND mrds.com_type = "N"
SELECT count(*) FROM mrds.mrds
WHERE ST_CONTAINS(GeomFromText(MULTIPOLY GON((([Coordinates])), coords)
set session group_concat_max_len = 100000000;
set @str :=";
SELECT @str := group_concat(astext(buffer(coords, .018))) from mrds.mrds
WHERE mrds.commod1 = 'uranium’;
set @str := cast(@str as CHAR);
set @str := replace(@str, 'POLYGON', ");
set @str := concat('MULTIPOLYGON(', @str, ")");

SELECT count(*) from mrds.mrds force index (coords_index)
WHERE st_contains(st_geomfromtext(@str, 4326), coords);

61



Neo4j Queries

Table 11: Neo4j supplemental code and data structure
# Code

1 MATCH (r:Resource)
WHERE r.com_type = "N"
RETURN count(*)
2 WITH "POLYGON(([Coordinates for specific subquery]))" AS polygon
CALL spatial.intersects(‘layer_resources', polygon) YIELD node
RETURN count(*)
3 WITH "POLYGON(([Coordinates for specific subquery]))" AS polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WHERE node.com_type = "N"
RETURN count(*)
4 WITH [] as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
CALL spatial.intersects('layer_resources', polygon) YIELD node
WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon
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CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
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"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects(‘layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

WITH filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds as deplds,
"POLYGON(([Coordinates]))" as polygon

CALL spatial.intersects('layer_resources', polygon) YIELD node

RETURN size(filter(x IN collect(node.dep_id) WHERE NOT x IN deplds) + deplds)
MATCH (r:Resource)

WHERE r.commod1 = "Uranium" AND r.latitude <> "" AND r.longitude <> ""
WITH {latitude: r.latitude, longitude: r.longitude} as coordinate

CALL spatial.withinDistance('layer_resources', coordinate, 1.60934) YIELD node
RETURN count(DISTINCT node.dep_id)
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MarkLogic Queries

Table 12: MarkLogic supplemental code and data structure

# Code

1
2

var = cts.elementValueQuery("com_type", "N");
[cts.estimate(q), xdmp.elapsedTime()];
var boxes = [

cts.polygon([cts.point(37.7544, -79.3124), cts.point(40.0182, -79.3124), cts.point(40.0182, -74.7763),
cts.point(37.7544, -74.7763)]),

cts.polygon([cts.point(31.33, -86.99), cts.point(33.78, -86.99), cts.point(33.78, -82.46), cts.point(31.33, -
82.46)]),

cts.polygon([cts.point(34.88, -119.27), cts.point(41.41, -119.27), cts.point(41.41, -114.54), cts.point(34.88, -
114.54)]),

cts.polygon([cts.point(45.41, -121.2), cts.point(48.56, -121.2), cts.point(48.56, -103.27), cts.point(45.41, -
103.27)]),

cts.polygon([cts.point(30.37, -102.13), cts.point(34.17, -102.13), cts.point(34.17, -94.75), cts.point(30.37, -
94.75)])

var shapes = [

cts.polygon(*41.77131,-79.98047 40.14529,-76.06934 37.09024,-78.92578 38.69938,-85.08694 40.77448,-
83.63219"),

cts.polygon("31.16581,-89.5166 30.9797,-95.29633 34.17735,-97.89283 33.06392,-93.60352 35.45702,-
91.58515 32.99024,-88.28613"),
cts.polygon(*42.45589,-101.77734 45.59973,-106.7638 47.36859,-101.20605 42.45589,-92.90039"),
cts.polygon("42.87596,-120.9375 42.74701,-112.67578 47.36533,-117.73573"),
cts.polygon("40.04444,-117.94922 40.11169,-105.11719 35.03,-107.92969 34.95836,-119.75142")

I;

var q = cts.jsonPropertyPairGeospatial Query(

"point",

"latitude",

"longitude",

boxes[4] //Update this variable depending on the shape being queried
);

[cts.estimate(q), xdmp.elapsedTime()];
var boxes = [

cts.polygon([cts.point(37.7544, -79.3124), cts.point(40.0182, -79.3124), cts.point(40.0182, -74.7763),
cts.point(37.7544, -74.7763)]),

cts.polygon([cts.point(31.33, -86.99), cts.point(33.78, -86.99), cts.point(33.78, -82.46), cts.point(31.33, -
82.46))),

cts.polygon([cts.point(34.88, -119.27), cts.point(41.41, -119.27), cts.point(41.41, -114.54), cts.point(34.88, -
114.54)]),

cts.polygon([cts.point(45.41, -121.2), cts.point(48.56, -121.2), cts.point(48.56, -103.27), cts.point(45.41, -
103.27)]),

cts.polygon([cts.point(30.37, -102.13), cts.point(34.17, -102.13), cts.point(34.17, -94.75), cts.point(30.37, -
94.75)])

var shapes = [

cts.polygon(“41.77131,-79.98047 40.14529,-76.06934 37.09024,-78.92578 38.69938,-85.08694 40.77448,-
83.63219"),

cts.polygon(*31.16581,-89.5166 30.9797,-95.29633 34.17735,-97.89283 33.06392,-93.60352 35.45702,-
91.58515 32.99024,-88.28613"),
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cts.polygon(“42.45589,-101.77734 45.59973,-106.7638 47.36859,-101.20605 42.45589,-92.90039"),
cts.polygon("42.87596,-120.9375 42.74701,-112.67578 47.36533,-117.73573"),
cts.polygon("40.04444,-117.94922 40.11169,-105.11719 35.03,-107.92969 34.95836,-119.75142")

var g1 = cts.jsonPropertyPairGeospatialQuery(

"point",

"latitude",

"longitude",

boxes[4] //Update this variable depending on the shape being queried
)i

var g2 = cts.jsonPropertyValueQuery(*com_type", "N");
var q = cts.andQuery([q1, 92]);

[cts.estimate(q), xdmp.elapsedTime()];
var geokml = require('/MarkLogic/geospatial/kml.xqy");

var kmIText = xdmp.filesystemFile('/tmp/potomac_buffer_5_miles.kml");
var kml = fn.head(fn.head(xdmp.unquote(kmlIText)).root.xpath('.//*:Placemark[1]//*:MultiGeometry"));
var geometry = geokml.parseKml(kml);
var query = cts.jsonPropertyPairGeospatialQuery(
"point",
"latitude",
"longitude",
Geometry
);
[cts.estimate(query), xdmp.elapsedTime()]
// Find all records within 1 mile of another record with its primary commodity being uranium
var g1 = cts.jsonPropertyValueQuery(*commod1", "uranium");

var uraniumPoints = cts.elementPairGeospatialValues("point", “latitude"”, "longitude”, null, null, q1);

var circleBuffers = [J;
for (point of uraniumPoints) {
circleBuffers.push(cts.circle(1, point));

}

var g2 =
cts.jsonPropertyPairGeospatialQuery(
"point",
"latitude",
"longitude",
circleBuffers

);

[xdmp.estimate(q2), xdmp.elapsedTime()]
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MongoDB Queries

Table 13: MongoDB supplemental code and data structure

# Code

1

function propertyQuery() {
var a = new Date();
var results = db.mrds.find({com_type: "N"}).hint("com_type_1").count();
var b = new Date();
vartime="b - a;
return [results, time];

}
2 function polygonQuery(idx) {
var points = [
[[-79.3124, 37.7544], [-79.3124, 40.0182], [-74.7763, 40.0182], [-74.7763, 37.7544], [-79.3124, 37.7544]],
/12a
[[-86.99, 31.33], [-86.99, 33.78], [-82.46, 33.78], [-82.46, 31.33], [-86.99, 31.33]], //2b
[[-119.27, 34.88], [-119.27, 41.41], [-114.54, 41.41], [-114.54, 34.88], [-119.27, 34.88]], //2c
[[-121.2, 45.41], [-121.2, 48.56], [-103.27, 48.56], [-103.27, 45.41], [-121.2, 45.41]], //2d
[[-102.13, 30.37], [-102.13, 34.17], [-94.75, 34.17], [-94.75, 30.37], [-102.13, 30.37]], //2e
[[-79.98047, 41.77131], [-76.06934, 40.14529], [-78.92578, 37.09024], [-85.08694, 38.69938], [-
83.63219, 40.77448], [-79.98047, 41.77131]], //2f
[[-89.5166, 31.16581], [-95.29633, 30.9797], [-97.89283, 34.17735], [-93.60352, 33.06392], [-91.58515,
35.45702], [-88.28613, 32.99024], [-89.5166, 31.16581]], //2g
[[-101.77734, 42.45589], [-106.7638, 45.59973], [-101.20605, 47.36859], [-92.90039, 42.45589], [-
101.77734, 42.45589]], //2h
[[-120.9375, 42.87596], [-112.67578, 42.74701], [-117.73573, 47.36533], [-120.9375, 42.87596]], //2i
[[-117.94922, 40.04444], [-105.11719, 40.11169], [-107.92969, 35.03], [-119.75142, 34.95836], [-
117.94922, 40.04444]] 112j
I
var a = new Date();
var results = db.mrds.find({
point: {
$geoWithin: {
$geometry: {
type: "Polygon",
coordinates: [points[idx]]
}
}
}
}.count();
var b = new Date();
vartime =b - a;
return [results, time];
}
polygonQuery(0); // Change the input value here depending on the query
3 | function polygonQuery(idx) {

var points = [
[[-79.3124, 37.7544], [-79.3124, 40.0182], [-74.7763, 40.0182], [-74.7763, 37.7544], [-79.3124,
37.75441], /12a
[[-86.99, 31.33], [-86.99, 33.78], [-82.46, 33.78], [-82.46, 31.33], [-86.99, 31.33]], //2b
[[-119.27, 34.88], [-119.27, 41.41], [-114.54, 41.41], [-114.54, 34.88], [-119.27, 34.88]], //2C
[[-121.2, 45.41], [-121.2, 48.56], [-103.27, 48.56], [-103.27, 45.41], [-121.2, 45.41]], //2d
[[-102.13, 30.37], [-102.13, 34.17], [-94.75, 34.17], [-94.75, 30.37], [-102.13, 30.37]], //2e
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[[-79.98047, 41.77131], [-76.06934, 40.14529], [-78.92578, 37.09024], [-85.08694, 38.69938], [-
83.63219, 40.77448], [-79.98047, 41.77131]], //2f
[[-89.5166, 31.16581], [-95.29633, 30.9797], [-97.89283, 34.17735], [-93.60352, 33.06392], [-
91.58515, 35.45702], [-88.28613, 32.99024], [-89.5166, 31.16581]], //2g
[[-101.77734, 42.45589], [-106.7638, 45.59973], [-101.20605, 47.36859], [-92.90039, 42.45589], [-
101.77734, 42.45589]], //2h
[[-120.9375, 42.87596], [-112.67578, 42.74701], [-117.73573, 47.36533], [-120.9375, 42.87596]],
112i
[[-117.94922, 40.04444], [-105.11719, 40.11169], [-107.92969, 35.03], [-119.75142, 34.95836], [-
117.94922, 40.04444]] 112
I
var a = new Date();
var results = db.mrds.find(

$and: [
{
point: {
$geoWithin: {
$geometry: {
type: "Polygon”,
coordinates: [points[idx]]

}

}
b
{
com_type: "N"

] }
}-count();

var b = new Date();
var time =b - a;
return [results, time];

}
polygonQuery(0); // Change the input value here depending on the query

4 function bufferQuery() {
var geoQuery = {
"$or':[
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point™:{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon”, "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", “coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon”, "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon”, "coordinates":[[Coordinates]]}}}},
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5

{"point":{"$geoWithin":{"$geometry":{"type":"Polygon"
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon"
{"type":"Polygon"
{"point™:{"$geoWithin":{"$geometry":{"type":"Polygon"
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon"
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon"
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon"
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon"
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon"
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon"
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon

{"point™:{"$geoWithin":{"$geometry":

1
1

"coordinates":[[Coordinates]]}}}},
"coordinates":[[Coordinates]]}}}},
"coordinates™:[[Coordinates]]}}}},
“coordinates":[[Coordinates]]}}}},
“coordinates™:[[Coordinates]]}}}},
“coordinates":[[Coordinates]]}}}},
"coordinates":[[Coordinates]]}}}},
"coordinates":[[Coordinates]]}}}},
"coordinates":[[Coordinates]]}}}},
"coordinates":[[Coordinates]]}}}},

" “coordinates":[[Coordinates]]}}}},
" “coordinates™:[[Coordinates]]}}}},
" “coordinates™:[[Coordinates]]}}}},
" “coordinates":[[Coordinates]]}}}},

{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", “coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", “coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon”, "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon”, "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon”, "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon”, "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon”, "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon”, "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}},
{"point":{"$geoWithin":{"$geometry":{"type":"Polygon", "coordinates":[[Coordinates]]}}}}

]

var a = new Date();
var results = db.mrds.find(geoQuery).count();
var b = new Date();
vartime =b - g;
return [results, time];
}
bufferQuery();
function geoPointQuery() {
var a = new Date();

var circleQueries = db.mrds.find({commod1: "Uranium"}, {point: 1, _id:

0}).toArray().filter(function(point){return point.point '= null}).map(

function(point) {
return {
point: {
$geoWithin: {

$centerSphere: [point.point.coordinates, 1/3963.2]

}
}
}
)i
var geoQuery = {
$or: circleQueries

var results = db.mrds.find(geoQuery).count();
var b = new Date();

var time=b - a;

return [results, time];

}
geoPointQuery();
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PostgreSQL Queries

Table 14: PostgreSQL supplemental code and data structure

# Code

1 SELECT count(*) from mrds
WHERE com_type ='N'

2  SELECT count(*) from mrds
WHERE st_covers(
st_geogfromtext('SRID=4326;POLYGON(([Coordinates from specific subquery]))"),
pointgeo
)

3 SELECT count(*) from mrds
WHERE st_covers(

st_geogfromtext('SRID=4326;POLY GON(([Coordinates from specific subquery]))"),
pointgeo

)
AND com_type ='N'

4 SELECT count(*) FROM mrds
WHERE st_covers(st_geogfromtext('POLYGON(([Coordinates]))), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
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OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLY GON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
OR st_covers(st_geogfromtext('POLYGON(([Coordinates]))"), pointgeo)
SELECT COUNT(distinct "b".dep_id) FROM (SELECT * FROM mrds WHERE commod1 = 'Uranium’) "a"
INNER JOIN mrds "b" ON st_dwithin("a".pointgeo, "b".pointgeo, 1609.34);
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Query Runtime Results Table

Table 15: List of all cold and warm query completion times per database and their calculated average

Database

MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic

Query #

2a

2b

2C

2d

2e

Cold

Cold Duration

Duration (s) | Average (s)

0.002023
0.002006
0.001919
0.001937
0.001885

0.00123
0.001339
0.001303
0.001335
0.001266
0.001427
0.001526
0.001657
0.001434
0.001413
0.001809
0.001637
0.001715
0.001534
0.001515
0.001504
0.001568
0.001454
0.001564
0.001536
0.001902
0.001441
0.001476
0.001589

0.001954

0.0012946

0.0014914

0.001642

0.0015252

0.0015868
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Warm
Duration (s)

0.001069
0.001241
0.001408
0.001056
0.001513
0.000905
0.000783
0.000802
0.000825
0.000739
0.000864
0.00063
0.000713
0.000599
0.000578
0.000583
0.000563
0.001097
0.00057
0.0006
0.000663
0.000614
0.000757
0.000635
0.000692
0.000817
0.000607
0.000634
0.000602

Warm
Duration
Average (s)

0.0012574

0.0008108

0.0006768

0.0006826

0.0006722

0.0006534



MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic

2f

29

2h

2i

2j

3a

3b

3c

0.001526
0.002038
0.001534
0.001625
0.001614
0.001691
0.001527
0.001598
0.001632

0.00156
0.001681
0.001735

0.00156

0.00163
0.001739
0.001776

0.00179
0.001569
0.001641
0.001703
0.001659
0.001596
0.001582
0.001689
0.001557
0.001823
0.002078
0.002029
0.001951
0.001846
0.001937
0.002195
0.002233

0.00217
0.002226
0.002227
0.001908

0.0017004

0.0015996

0.001688

0.0016724

0.0016494

0.0019682

0.0022102

0.0022858
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0.000607
0.000964
0.000629
0.001043
0.000637
0.000738
0.000645
0.000659
0.000719
0.000678
0.000675
0.000815
0.000162
0.000691
0.000692
0.000784
0.000654
0.000769
0.000682
0.000901
0.000669
0.000601
0.000776
0.000714
0.000775

0.00103
0.001122
0.001091
0.001175
0.001296
0.001074
0.001335
0.001205
0.001162
0.000675
0.001079
0.001281

0.0008022

0.0006752

0.0006288

0.000735

0.0007792

0.0011516

0.0010912

0.0012224



MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic

3d

3e

3f

39

3h

3i

3j

0.002296
0.002579
0.002247
0.002399
0.003089
0.002127

0.00233
0.002774

0.00222
0.001596
0.002252
0.002059
0.002226
0.002192
0.001942
0.002525
0.002288
0.002277
0.002393
0.003547
0.002967
0.002491
0.002176
0.002377
0.001905

0.00229
0.002458
0.002298

0.00234
0.002514
0.002412
0.002297
0.002385
0.002434
0.001816
0.002588
0.002775

0.002508

0.002065

0.002285

0.0027116

0.0022582

0.0024084

0.0023626

74

0.001133
0.001176
0.001029
0.001493
0.001605
0.001107
0.001512
0.0011
0.000706
0.001418
0.001138
0.001127
0.001129
0.001188
0.001274
0.001203
0.001446
0.00123
0.001226
0.00144
0.001239
0.001145
0.000664
0.001561
0.001527
0.001629
0.001344
0.00154
0.001094
0.001186
0.00123
0.00112
0.00161
0.001044
0.001225
0.001106
0.001219

0.001206

0.0012

0.0012758

0.0012098

0.0014268

0.001238

0.0012186



MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MarkLogic
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB

2a

2b

2C

2d

0.002412
0.002222

0.01201
0.012078
0.012714
0.012029
0.012063
0.059287
0.064712
0.062569
0.063208

0.061574
0.025

0.026
0.028
0.025
0.026
0.046
0.044
0.045
0.043
0.044
0.055
0.049
0.049
0.049
0.048
0.175
0.163
0.184
0.176
0.165
0.173
0.175
0.167
0.172
0.164

0.0121788

0.06227

0.026

0.0444

0.05

0.1726

0.1702

75

0.001479
0.001064

0.010643
0.010474
0.010288
0.010882
0.010202
0.047869
0.047973
0.047875
0.047063

0.046626
0.019

0.018
0.018
0.018
0.019
0.012
0.013
0.013
0.015
0.012
0.017
0.017
0.016
0.023
0.016
0.069
0.068
0.068
0.068
0.069
0.075
0.075
0.077
0.075
0.074

0.0104978

0.0474812

0.0184

0.013

0.0178

0.0684

0.0752



MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB

2e

2f

29

2h

2i

2j

3a

3b

0.047
0.048
0.037
0.049
0.036
0.079

0.07
0.081
0.072

0.07
0.065
0.055
0.063
0.064
0.066
0.059
0.048
0.059
0.059
0.048
0.093
0.084
0.082
0.093
0.083
0.316
0.313
0.302
0.317
0.327
0.061
0.061
0.061
0.062
0.061
0.059
0.059

0.0434

0.0744

0.0626

0.0546

0.087

0.315

0.0612

0.0588

76

0.009
0.009

0.01

0.01
0.009
0.027
0.028
0.028
0.027
0.028
0.017
0.018
0.018
0.018
0.019
0.015
0.015
0.016
0.014
0.016
0.035
0.034
0.035
0.034
0.035
0.143
0.145
0.145
0.147
0.147
0.014
0.013
0.013
0.013
0.014
0.018
0.018

0.0094

0.0276

0.018

0.0152

0.0346

0.1454

0.0134

0.0182



MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB

3c

3d

3e

3f

39

3h

3i

0.058
0.059
0.059
0.166
0.179
0.177
0.176
0.169
0.166
0.175
0.175
0.171
0.166
0.053
0.052
0.053
0.053
0.053
0.085
0.075
0.084
0.085
0.082
0.059
0.071
0.059

0.07
0.068
0.064
0.055
0.054
0.065
0.064
0.101
0.101
0.091
0.105

77

0.1734

0.1706

0.0528

0.0822

0.0654

0.0604

0.1002

0.018
0.019
0.018
0.074
0.073
0.075
0.073
0.075
0.081
0.079

0.08

0.08
0.082

0.01

0.01

0.01

0.01

0.01

0.03

0.03
0.029
0.029

0.03
0.019

0.02
0.019
0.019
0.019
0.016
0.016
0.016
0.016
0.016
0.039
0.039
0.038
0.039

0.074

0.0804

0.01

0.0296

0.0192

0.016

0.0388



MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
MongoDB
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL

3j

2a

2b

2C

2d

0.103
1.684
1.842
2.232
2.442
2.544

0.076
0.075
0.065
0.074
0.065
711.039
781.032
728.428
717.286

767.02
0.012244

0.01145
0.009759
0.011152
0.009128
0.129094
0.101668
0.108412
0.105354
0.097237
0.099354

0.10388
0.097711
0.099058
0.097545
0.135068
0.136782
0.141565
0.137947
0.150333
0.115272

2.1488

0.071

740.961

0.0107466

0.108353

0.0995096

0.140339

0.1174038

78

0.039
0.221
0.221
0.222
0.222
0.223

0.058
0.056
0.057
0.057
0.057
724.445
775.201
838.035
736.225

774.687
0.008024

0.008661
0.0081
0.00805
0.008491
0.097041
0.102763
0.103519
0.092618
0.092494
0.095681
0.09901
0.098417
0.116239
0.095368
0.13295
0.131826
0.151737
0.1323
0.131009
0.12789

0.2218

0.057

769.7186

0.0082652

0.097687

0.100943

0.1359644

0.1214968



PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL

2e

2f

29

2h

2i

2j

3a

0.116201
0.117706
0.121547
0.116293
0.096518
0.099538
0.096794
0.095655
0.1052
0.104489
0.114789
0.104783
0.103699
0.105553
0.100946
0.10306
0.101316
0.106119
0.108269
0.101955
0.11471
0.101784
0.101488
0.108826
0.11261
0.110404
0.108643
0.110925
0.109049
0.155091
0.151675
0.152379
0.160909
0.152446
0.185597
0.180146
0.195119

0.098741

0.1066626

0.103942

0.1057526

0.1103262

0.1545

0.1915766

79

0.119979
0.111208
0.119398
0.129009
0.090741
0.090726
0.096247
0.090447
0.092378
0.096285
0.104451

0.09602
0.096932
0.100894
0.095145
0.113774
0.097008
0.094291
0.109699
0.094552
0.101705

0.10957
0.094735

0.10154
0.103392

0.10334
0.116534
0.104328
0.112543
0.146954
0.147875
0.143874
0.148863
0.162967
0.076251
0.081913
0.073577

0.0921078

0.0989164

0.1019834

0.1004204

0.1080274

0.1501066

0.077634



PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL

3b

3c

3d

3e

3f

39

3h

0.193725
0.203296
0.293427
0.300274
0.285929
0.360579
0.402742
0.362699
0.494764
0.502965
0.465643
0.330352
0.329671
0.395672
0.3356
0.304615
0.303472
0.313314
0.276604
0.436541
0.439728
0.292643
0.339362
0.451154
0.421306
0.357272
0.348948
0.134353
0.39837
0.244928
0.241992
0.323401
0.281429
0.171118
0.119878
0.186826
0.152682

0.3285902

0.4312846

0.333806

0.351766

0.3836084

0.2686088

0.1823866

80

0.083405
0.073024
0.079521
0.069943
0.070851
0.070227
0.076583
0.091222
0.090421
0.080669

0.07543
0.074512
0.077243
0.099652
0.101867
0.085078
0.075477
0.073072
0.090791
0.071411
0.088525
0.071397
0.084776
0.076153
0.076887
0.083512
0.097934
0.076854
0.085205
0.107742
0.079566
0.075166
0.073224
0.074177
0.073967
0.104618
0.104759

0.073425

0.0824508

0.0878634

0.0790392

0.0838524

0.0849066

0.086149



PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
PostgreSQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL

3i

3j

2a

2b

2C

0.194407
0.138303
0.120643
0.143108
0.169527
0.148842
0.196334
0.126435
0.147359
0.150286

3.41959
3.426663
3.406785
3.357049
3.385615

1299.979374
1329.012883
1290.551296
1301.038063
1299.307687
0.0250045
0.02477325
0.02492425
0.02484175
0.02483275
0.020427
0.019128
0.0194845
0.02077175
0.0202115
0.01776175
0.018215
0.01806625
0.0248995
0.01838
0.0824365
0.0807585

0.1531976

0.1538512

3.3991404

1303.977861

0.0248753

0.02000455

0.0194645

0.0822352

81

0.077072
0.074346
0.082007
0.074768
0.086526
0.092119
0.085196

0.08284
0.100643
0.088568

3.345733
3.329342
3.338428
3.327378
3.32694
1467.178303
1456.45122
1490.61865
1450.57571
1449.623861
0.02388725
0.02353325
0.02482625
0.02532725
0.02662225
0.01391025
0.01064275
0.010588
0.011277
0.01053375
0.013762
0.01325
0.012788
0.01236325
0.0138835
0.06268825
0.05919325

0.0789438

0.0898732

3.3335642

1462.889549

0.02483925

0.01139035

0.01320935

0.05995515



MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL

2d

2e

2f

29

2h

2i

2j

0.08247025
0.084169
0.08134175
0.07167075
0.0727985
0.07558575
0.07301675
0.07262275
0.0105
0.00862475
0.0097595
0.00923825
0.009376
0.04194075
0.04009
0.038883
0.03874675
0.03915875
0.0329225
0.03193675
0.031804
0.0326435
0.0319655
0.03596875
0.03495475
0.03412925
0.03439625
0.03454625
0.07665325
0.07394425
0.072917
0.07464375
0.07334675
0.191123
0.18070175
0.17951525
0.18309575

0.0731389

0.0094997

0.03976385

0.03225445

0.03479905

0.074301

0.1837739

82

0.05967
0.0592835
0.05894075
0.054087
0.0502725
0.050472
0.05109325
0.050175
0.00579375
0.00481775
0.00485775
0.00524075
0.004834
0.0283595
0.02487575
0.02517375
0.02532025
0.02554
0.02151
0.02081675
0.019708
0.019886
0.0195835
0.024112
0.02099925
0.0221815
0.02172825
0.021828
0.05450125
0.052812
0.04950525
0.05039125
0.05326575
0.13695225
0.135557
0.135768
0.136286

0.05121995

0.0051088

0.02585385

0.02030085

0.0221698

0.0520951

0.13634545



MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL

3a

3b

3c

3d

3e

3f

39

3h

0.18443375
0.0184645
0.01512575
0.016968
0.0171625
0.017098
0.013969
0.013863
0.01465825
0.0151645
0.0144885
0.059653
0.055749
0.057273
0.05619325
0.05971925
0.05823475
0.0552085
0.0552385
0.0535715
0.054941
0.008218
0.00983425
0.0091115
0.0090485
0.009218
0.03681075
0.03452925
0.03578075
0.0347995
0.03735225
0.03185025
0.0296725
0.031208
0.03140875
0.030178
0.03194675

0.01696375

0.01442865

0.0577175

0.05543885

0.00908605

0.0358545

0.0308635

0.0310507

83

0.137164
0.01059425
0.008472
0.0089375
0.0088145
0.00827025
0.00989525
0.008384
0.0087365
0.00885125
0.0087785
0.03618275
0.0371995
0.03466575
0.03521975
0.035198
0.03632775
0.03249325
0.033222
0.03275925
0.032934
0.00528025
0.00510175
0.004666
0.0045655
0.004573
0.0235245
0.02194475
0.02095475
0.02119375
0.0231865
0.021196
0.0189365
0.019097
0.0186505
0.01792675
0.019318

0.0090177

0.0089291

0.03569315

0.03354725

0.0048373

0.02216085

0.01916135

0.0175506



MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j

3i

3j

2a

2b

0.03055825
0.0311115
0.030256
0.031381
0.05862725
0.05776525
0.056396
0.05675075
0.05610275
0.12845725
0.1267
0.12618275
0.1299495
0.12949325
0.03439625
0.03358025
0.03584725
0.04096975
0.03553425
781.203
784.11
780.719
783.297
788.563
0.979

0.932

1.026

0.901

0.935

0.801

0.863

0.956

0.829

0.804

0.865

0.899

0.867

0.0571284

0.12815655

0.03606555

783.5784

0.9546

0.8506

0.8552
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0.01777125
0.016914
0.01668875
0.017061
0.035218
0.036236
0.03589175
0.03544025
0.03388825
0.084478
0.0858295
0.08290075
0.08310825
0.08354
0.0320135
0.032234
0.03284175
0.0337455
0.03219275
784.781
792.953
793.047
781.578
780.188
0.405

0.347

0.356

0.349

0.358

0.282

0.239

0.239

0.247

0.238

0.312

0.263

0.268

0.03533485

0.0839713

0.0326055

786.5094

0.363

0.249

0.2762



Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j

2C

2d

2e

2f

29

2h

2i

0.913
0.732
1.38
1.385
1.324
1.237
1.337
1.366
1.303
11
1.357
1.537
0.875
0.782
0.777
1.038
0.909
13
1.271
1.09
1.231
1.177
1.167
1.319
1.02
1.014
1.151
1.366
1.177
1.119
1.101
0.97
1.669
1.458
1.309
1.519
1.495

85

1.3326

1.3326

0.8762

1.2138

1.1342

1.1466

1.49

0.255
0.283

0.59

0.55

0.56
0.534
0.539
0.569
0.517
0.532
0.527
0.538
0.227
0.233
0.231
0.222
0.232
0.483

0.44
0.406
0.376
0.361
0.323
0.329
0.309
0.316
0.337
0.441
0.415
0.521
0.399

0.35

0.67
0.612
0.571
0.569
0.573

0.5546

0.5366

0.229

0.4132

0.3228

0.4252

0.599



Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j

2j

3a

3b

3c

3d

3e

3f

39

2.388
2.509
2.892
2.273
2411
0.827
0.879
0.931

0.86
0.933
0.887
0.899
0.885
0.974

0.85
1.296
1.292
1.598
1.267
1.373
1.347
1.304

1.36
1.381

1.35
0.957
0.744
0.872
0.881
0.913
1.152
1.323
1.308
1.265
1.164
1.236
1.274

86

2.4946

0.886

0.899

1.3652

1.3484

0.8734

1.2424

1.1802

1.12
1.064

1.07
1.111
1.078
0.282
0.265

0.27
0.266

0.26
0.322
0.338
0.329

0.28

0.27
0.802
0.765
0.761
0.766
0.763
0.584
0.547
0.536
0.543
0.554
0.241
0.219
0.214
0.225
0.219
0.502
0.464
0.465
0.419
0.391
0.379
0.366

1.0886

0.2686

0.3078

0.7714

0.5528

0.2236

0.4482

0.362



Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j
Neo4j

3h

3i

3j

1.172
1.098
1.121
1.16
1.044
1.331
1.236
0.977
1.571
1.76
1.581
1.641
1.613
2.51
2.601
2.578
2.421
2.535
8.352
8.628
10.745
8.761
8.21
1649.513
1668.13
1682.654
1665.882
1665.996
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1.1496

1.6332

2.529

8.9392

1666.435

0.365
0.34

0.36
0.416
0.386
0.386
0.386
0.359
0.75
0.606
0.542
0.532
0.536
1.254
1.218
1.183
1.227
1.214
6.608
6.536
6.586
6.627
6.609
1502.476
1501.586
1494.196
1511.465
1517.429

0.3866

0.5932

1.2192

6.5932

1505.4304
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