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ABSTRACT 

MITIGATING EFFECTS OF WORKING MEMORY CONSTRAINTS ON 

AUTOMATION USE THROUGH INTERFACE REDESIGN 

Haneen Rezik Saqer, Ph.D. 

George Mason University, 2015 

Dissertation Director: Dr. Tyler Shaw 

 

This dissertation investigated the role of individual differences in human use of 

automation in a simulated command and control task. Using this knowledge we then 

sought to redesign the simulation interface to improve human-automation interaction. In 

the first study, participants completed a battery of cognitive tasks to measure working 

memory capacity, simple memory span, and controlled attention ability. They then 

performed a simulated air defense task under varying levels of workload and automation 

assistance. Eye tracking data recorded fixations to capture eye movements during 

completion of each scenario. Although individual difference measures correlated with 

primary task performance, they did not predict use of automation. Only average percent 

of fixations on the automation messaging interface correlated with automation use. 

Therefore, the second study introduced a redesigned automation interface with the 

integration of an auditory chime and a visual flicker to promote additional fixations to the 
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message interface and encourage increased automation use. However, this redesign did 

not increase average fixation percentage and surprisingly resulted in lower use of 

automation. This finding emphasized Parasuraman and Riley’s (1997) warning that 

automation can change user behavior in unintended ways. Another notable finding from 

the study is the unexpected result that short term memory predicted primary task 

performance. Further, this study provides evidence to support the use of eye tracking 

measures as a continuous unobtrusive measure of automation use in complex systems. 

Limitations and future research are also discussed. 

 



1 

 

INTRODUCTION 

Automation 

Substantial technological advances have significantly altered many facets of the 

human work experience in industries such as aviation, medicine, manufacturing and 

modern military operations. Specifically, the increased development and implementation 

of automation introduces a unique set of human factors implications. Automation is 

defined as a computer or machine that performs partially or fully a task previously 

performed by a human partially or fully (Parasuraman & Riley, 1997; Parasuraman, 

Sheridan, & Wickens, 2000). Tasks once solely completed by humans are increasingly 

aided or performed by automation devices. Many system designers and managers are 

tempted to employ automation whenever possible because of the perceived cost and 

safety features afforded by automation (Kaber, Omal, & Endsley, 1999; Lee & Seppelt, 

2009; Parasuraman, Bahri, Deaton, Morrison, & Barnes, 1992; Parasuraman & Riley, 

1997; Sarter, Woods, & Billings, 1997). Likewise, companies often hastily implement 

automation in products to make them more appealing and to be first in the market to 

promote such cutting-edge innovations. However, the limitations of automation are often 

overlooked and require careful consideration prior to implementation during the design 

process. Introduction of automation to a system is more than the addition of computers 

and technological devices; automation changes the nature of work performed by humans, 

often in unintended and unanticipated ways (Parasuraman & Riley, 1997). Thus, the 
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benefits and limitations of automation should be carefully considered in the 

implementation of automated systems.  

Benefits of Automation 

When designed properly, automation decreases human workload, increases 

productivity, and improves safety, thereby improving overall efficiency. For example, 

Grabowski & Hendrick (1993) reported the number of crew members required to operate 

vessels like cargo ships and oil tankers decreased to 8-12 members from 30-40 members 

required 40 years ago. In the aviation industry, the use of automation has also greatly 

increased efficiency by reducing fuel consumption and flight times. During the late 

1970s, the number of crew required to operate a commercial airliner was reduced from 

three to two, largely as a result of automation of flight engineering functions. Aviation 

automation has also improved safety by aiding crew members in flight operations during 

inclement weather conditions (Parasuraman et al., 1992). In certain instances, automation 

aids human operators with tasks they would not be able to perform in time-critical events. 

For example, while driving in wet or icy conditions automatic braking systems assist 

human operators by decreasing stopping distances (Parasuraman & Riley, 1997). Modern 

smart cars, equipped with adaptive cruise control, adjust driving speeds based on 

headway and time-to-collision (Lee & Seppelt, 2009). These benefits make automation 

an appealing option to include in system design. 

Limitations of Automation 

In addition to the aforementioned benefits, there are also potential drawbacks to 

automation that must be considered carefully prior to implementation during the system 
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design process. These costs primarily occur because automation can be imperfect, for 

several reasons. Automated systems can also be poorly designed, and operators may also 

not receive appropriate training in using automation. The human performance costs of 

automation include, among others, increased mental workload, decreased situational 

awareness, skill degradation, and complacency (Parasuraman et al., 2000). Although one 

of the main goals of automation is to decrease workload, Wiener (1988) and Kirlik 

(1993) found that increased workload occurs in systems implementing “clumsy” 

automation. Examples of clumsy automation include systems in which the automation is 

difficult to initiate or engage and in instances where additional physical work, such as 

extensive data entry, is required to activate the automation. Another potential cost of 

automation is decreased situational awareness. When changes to the system are carried 

out by another agent, specifically automation, human operators become less aware of 

changes in the environment and system states. This is particularly true in systems 

implementing high levels of automation during decision-making functions in dynamic 

environments because human operators lose the ability to evaluate the raw data required 

to make a decision when automation fails (Parasuraman et al., 2000). Similarly, as 

humans become accustomed to using automation regularly, they rely upon manual and 

cognitive skills less frequently. As the length of nonuse increases, so too does the amount 

of skill decay (Arthur, Bennett, Stanush, & McNelly, 1998). This skill degradation 

becomes problematic in instances of automation failure which require human operators to 

revert to manual skills. Additionally, complacency arises in systems comprising high 

levels of automation due to overreliance. This misuse of automation can lead to unique 
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human errors such as decision biases and failures in monitoring (Bahner, Hüper, & 

Manzey, 2008; Parasuraman & Manzey, 2010; Parasuraman & Riley, 1997). In systems 

possessing highly consistent but imperfect reliability, human operators exhibit excessive 

trust in automation, subsequently leading to monitoring failures. Parasuraman, Molloy, 

and Singh (1993) demonstrated complacency empirically in an automation failure 

detection task. Participants detected less automation failures in conditions with 

consistently reliable automation compared to a manual condition. Furthermore, this 

complacency effect was not seen in a condition with automation whose reliability was 

variable. This finding has severe practical implications given that most automated 

systems are highly, but not perfectly, reliable. 

Design Considerations to Mitigate Limitations of Automation 

To mitigate some of the potential pitfalls of automation, careful considerations 

regarding both the context of the task and the human operator should drive automation 

design decisions. Parasuraman, Sheridan, and Wickens (2000) proposed a model for 

determining the appropriate type and level of automation for any given function. The 

model offers a human-centered approach and evaluates the appropriateness of automation 

in the context of the human information processing model (as opposed to the more 

frequent technology-centered approach primarily concerned with cost and technical 

capability). By using the proposed model and iterative design process as guide, 

unforeseen costs of automation can be mitigated. Several studies have documented the 

differential benefits and costs of automation types and levels (for a recent meta-analysis, 

see Onnasch, Wickens, Li, & Manzey, 2013). Context-aware automation is an example of 
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adaptive automation, which has been shown in many studies to reduce some of the costs 

of static automation (Feigh, Dorneich, & Hayes, 2012; Inagaki, 2003; Kaber & Endsley, 

2004; Parasuraman, 2000; Scerbo, 2007; Sheridan, 2011). For example, Parasuraman, 

Mouloua, & Hilburn (1999) used varying degrees of tracking difficulty in a flight 

simulation task to manipulate level of operator workload. Pilots performed the task in 

three blocks with a workload profile of high-low-high, corresponding to the take-off, 

cruise, and landing phases of flight. The pilots were assigned to one of three kinds of 

automation: workload-matched, “clumsy-automation,” and a control group. The 

researchers found that when automation assistance was matched to the required workload 

of a task, tracking performance significantly improved compared to a control group. 

Performance not only improved during matched trials, but also in subsequent tasks after 

the automation was removed. This study also empirically demonstrated the effect of 

“clumsy automation” (Wiener, 1988); when automation was mismatched to operator 

workload, performance benefits from automation were eliminated and in some cases 

performance decreased from baseline. 

Kaber, Omal, & Endsley (1999) performed studies varying the levels of 

automation in a telerobot task to address the specific limitation of decreased situational 

awareness introduced by automation. While they did find enhanced performance and 

lower subjective workload in high levels of automation, intermediate levels of automation 

best supported situational awareness by keeping the human operator involved in the task. 

This study provided further evidence for the need to evaluate the level of automation not 

only in the context of optimal performance, but in consideration of minimizing the costs 
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associated with automation. Finally, in regards to overreliance, Parasuraman, Mouloua, 

and Molloy (1996) demonstrated that implementation of adaptive task allocation can 

reduce complacency in human monitoring. In adaptive task allocation, the system 

transfers control of tasks between human and automated control based upon 

predetermined criteria. Participants performed a multi-task flight simulation under full 

manual control and were then randomly assigned to one of the following three 

automation groups: model-based adaptive, performance-based adaptive, or nonadaptive. 

In the model-based adaptive condition, control of a previously automated task was 

returned to all users in the fifth 10-minute block of the trial. Participants in the 

performance-based group only had automation removed if performance fell below 55% 

after 40 minutes of completing the task. The nonadaptive condition was fully automated 

throughout all trials, but participants were notified that the automation was unreliable and 

they would therefore need to monitor the automated system. Accuracy of detection 

failure improved when automation was varied throughout the completion of the task 

compared to the static automation condition. This adaptive task allocation not only 

mitigated inefficient performance due to complacency, but also significantly enhanced 

monitoring performance in postallocation phases compared to preallocation phases. 

Additionally, because the operators were required to perform the task manually at various 

points throughout the experiment, the chance of skill degradation significantly decreased, 

thereby also reducing the “out of the loop” performance costs associated with static 

automation designs.  
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Adaptive Automation (AA) 
Adaptive automation (AA) can further mitigate the previously described 

automation limitations because it can be designed to be more flexible, context-dependent, 

and user-specific than functional task allocation (de Winter & Dodou, 2014). 

Responsibility of control can be altered in real-time so that the automation becomes more 

flexible to changes in operator state and the environment. In this way, automation can be 

invoked during the times it is most needed (Scerbo et al., 2001). For example, static 

automation may be associated with “out-of-the-loop” performance costs (Endsley & 

Kiris, 1995), including automation complacency and bias (Parasuraman & Manzey, 2010; 

Parasuraman et al., 1993). Conversely, if automation is only engaged during times of 

under-load, the operator may turn off the automation or become frustrated with the 

system. Invoking automation in an adaptive manner alleviates some of these concerns. 

For example, in a study examining human-robot supervision, Parasuraman, Cosenzo, and 

de Visser (2009) found that while mental workload decreased in both an adaptive 

automation condition and static automation condition compared to manual performance, 

workload decreased significantly more when automation was adaptive rather than static. 

Participants supervised both uninhabited air and ground vehicles (UAVs and UGVs) in 

addition to two related tasks in the context of a military reconnaissance mission. In the 

static automation condition, participants were consistently aided by an automated target 

recognition (ATR) system. However, in the adaptive automation condition, the ATR 

system was invoked only if participant performance fell below a predetermined accuracy 

threshold of 50%. The findings of this study support the notion that context-dependent 
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automation (in this case operator performance dependent) not only enhances 

performance, but also reduces mental workload to a greater extent than static automation.  

A study by Prinzel, Freeman, Scerbo, Mikulka, and Pope (2003) further supported 

the case for adaptive automation. They found similar results regarding improved 

performance and decreased mental workload, but also identified that participants in an 

AA condition had additional attentional resources available to allocate to a secondary 

task. Participants of the study completed a modified version of the NASA MAT (Multi-

Attribute Task) battery in one of three conditions. The first condition employed adaptive 

automation (AA), in which the individual operator’s EEG engagement index (20 

beta/(alpha + theta)) was used to switch between manual and automated states. 

Automation was turned off (or remained in manual mode) as long as the engagement 

index was below the individual operators’ baseline engagement index. Conversely, 

automation was turned on (or remained in automatic mode) if the engagement index was 

above baseline. Participants in a yoked condition were paired to participants in the 

adaptive automation condition. In the yoked condition, participants received the same 

schedule of automation mode switches as their automation counterparts to control for any 

effects of the specific patterns of task mode switches. In the last condition, participants 

experienced a random schedule of automation switches. ERP data was collected for all 

participants while performing a secondary auditory oddball task. Results indicated that 

participants in the AA condition demonstrated better tracking performance and lower 

NASA-TLX scores for subjective workload than participants in either the yoked or 

control conditions. Additionally, the P300 response for the ERP for AA participants was 
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significantly larger than for participants in the yoked and control conditions. The working 

hypothesis driving the use of the ERP data was that the amplitude of the P300 elicited 

from the secondary auditory oddball task should be proportional to the attentional 

resources invested in the task. The significantly larger P300 amplitudes for the AA 

participants indicated that that they were able to free attentional resources to perform this 

task. These results are encouraging and suggest that adaptive automation not only 

optimizes mental workload and performance in primary task situations, but can also 

support the freeing of attentional resources to complete secondary tasks. 

Wilson and Russell (2007) also provided empirical support for the advantages of 

adaptive automation and demonstrated the additional benefits of customizing automation 

to individual abilities. Participants were required to locate and designate targets using 

pre-established rules in a complex aviation task in which operators were responsible for 

four uninhabited air vehicles (UAVs). Several psychophysiological measures were 

synthesized into artificial neural networks (ANN) to determine the operator functional 

state (OFS), which would then modulate AA. There were four automation conditions 

manipulated: no adaptive aiding, adaptive aiding, random aiding, and leave-on aiding. In 

the adaptive aiding condition, if the ANN determined that the operator was in a state of 

high cognitive workload, the UAV task was modified to a lower difficulty task (either by 

decreasing the velocity of the vehicles or displaying vehicle health status messages and 

allowing for more time to complete target selection). Conversely, when the ANN 

detected low cognitive workload, the automation returned the task to the original level of 

difficulty (higher vehicle speeds). In the leave-on aiding condition, automation was 
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turned on when the ANN determined that the operator had reached a high workload state, 

and remained on until the weapon release command was given. In the no aiding, adaptive 

aiding, and random aiding conditions, there was an additional experimental manipulation 

for difficulty of task. In half of the conditions, the difficulty of task (vehicle speed) was 

determined by setting the speed to either an individual mean speed or a group-derived 

mean speed. The results indicated that the performance improved in the adaptive aiding 

condition compared to no aiding and random aiding. Furthermore, improvement was 

greater when the task difficulty was adjusted to individual (as opposed to group-derived) 

criteria. This finding suggests that the customization of automation and difficulty level to 

the individual operator has even greater potential benefit than adaptive automation 

developed based on group performance means. 

Adaptive Automation Invocation Strategies 

As evidenced in the various experimental designs of the studies described thus 

far, there exist several strategies to invoke adaptive automation. Parasuraman et al. 

(1992) classify these strategies into five main categories: the presence of a critical event, 

operator performance, operator physiological assessment, operator modeling, and hybrid 

methods that combine one or more of these methods. Each of these invocation strategies 

possesses specific advantages and disadvantages which must also be evaluated prior to 

automation implementation. For example, in critical event invocation the implementation 

of automation is tied to the occurrence of specific tactical events such as a "pop-up" 

weapon delivery sequence that leads to the automation of all aircraft defensive measures 

(Barnes & Grossman, 1985). If the critical event does not occur, automation will not be 
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employed. This kind of automation is relatively easy and inexpensive to implement; 

however, the inherent simplicity of such a method fails to account for actual operator 

workload or performance. Critical event invocation also requires that the events be 

anticipated which is rarely the case in dynamic complex environments.  

In contrast, psychophysiological measures of operator workload offer much more 

sophisticated levels of flexibility and customization. As described in Scerbo et al. (2001), 

there are three main benefits to physiological assessments. First, physiological measures 

allow for continuous monitoring and, unlike behavioral measures, do not require overt 

responses. This allows for greater sensitivity in the measure, given that operators can 

exhibit similar performance metrics under varying task loads. Moreover, physiological 

measures are also diagnostic in that they provide additional inferential information when 

coupled with behavioral responses compared to behavioral responses alone. For example, 

the behavioral measure of reaction time may indicate working memory limitations or 

overload related to response-related processing. Coupled with reaction times, ERP data 

can help localize this overload to central processing. Lastly, physiological assessments 

not only provide information regarding when mental overload may be occurring, but also 

which brain networks may be affected.  

Despite these superior advantages, psychophysiological assessments do possess 

their own set of limitations. Besides the generic limitations of cost and intrusiveness, 

psychophysiological measures have added considerations for both conceptual and 

technical sensitivity and diagnosticity (Scerbo et al., 2001). Another important 

consideration to implementing these measures is their intrusiveness. Many EEG and ERP 



12 

 

studies conducted in laboratories require participants to remain stationary and silent. If 

these adaptive systems are to be implanted in real-world settings, these limitations are 

unrealistic and not easily complied with. Particularly with ERP, a secondary task is often 

necessary to evoke the desired potential. In applied situations, this secondary task adds to 

workload and may be shed by the operator, no longer contributing to logic of the adaptive 

model. Additionally, reliable psychophysiological measures should exhibit minimal 

amounts of artifact (noise) and be able to predict mental states across individual 

differences. Because one of the main benefits of adaptive automation is the ability to 

customize automation for individuals, psychophysiological measures must be compared 

to a control baseline calculated for each individual. Therefore, reliability can be difficult 

to obtain even within subjects because of outside influences like time of day, stress level, 

and medication usage (Byrne & Parasuraman, 1996). 

Given these limitations of invoking AA based on real-time psychophysiological 

measures, new invocation strategies should be explored. One particular concern with 

traditional adaptive automation is that the frequent turning on and off of automation can 

lead to unpredictable workload. If adaptive automation shifts control of the system 

between human and machine based on criteria unknown to the operator, this can result in 

frustration in the operator and potential mistrust in the system. The inability of the 

operators to anticipate when they will be required to take back manual control and when 

automation will be invoked can become very unsettling for the user and can add to the 

cognitive load of the operator. In contrast, individual difference markers can be used to 

invoke automation. In this way, automation invocation remains customized to the 
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individual, but results in less uncertainty for the human. Individual differences in working 

memory capacity (WMC) are of particular interest due their ability to predict 

performance in both basic perceptual tasks like the antisaccade and Stroop tasks (Kane, 

Bleckley, Conway, & Engle, 2001; Kane & Engle, 2003; Unsworth, Schrock, & Engle, 

2004), as well as more complex cognitive tasks such as reading and multitasking 

(Bühner, König, Pick, & Krumm, 2006; Daneman & Carpenter, 1980). Working memory 

has also previously been implicated in the use of automation using command and control 

tasks (de Visser, Shaw, Mohamed-Ameen, & Parasuraman, 2010; McKendrick et al., 

2013). Prior to discussing how individual differences in WMC can inform automation 

design, current models of working memory will be reviewed.  

Working Memory Capacity (WMC) 
Jarrold and Towse (2006) define working memory as the “ability to hold 

information in mind while manipulating and integrating other information in the service 

of some cognitive goal.” This definition emphasizes the importance of both the storage 

and processing aspects of working memory. On the other hand, short-term memory only 

requires the storage of information for a limited amount of time. Although it is not 

uncommon to find the terms working memory and short-term memory used 

interchangeably, the distinctions between the two are important from both theoretical and 

practical perspectives. Incidentally, because the scoring of most working memory tests 

are spans (i.e. counts), many people refer to differences in working memory as 

differences in working memory capacity. However, it is important to realize that these 

span measures also reflect differences in processing speed. Currently, the most widely-
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accepted theory of working memory is the multi-component model of Baddeley and 

Hitch (1974) and the revised model of Baddeley (2000). This model consists of two slave 

systems, the phonological loop and visuospatial sketchpad, which store and rehearse 

auditory/verbal and visual/spatial information, respectively. Both of these systems serve 

the central executive. Initially introduced as a catch-all component that encompassed 

general processing resources, the central executive is now believed to control such 

critical functions as focusing, dividing, and switching attention. In 2000 Baddeley added 

the last component to the model, the episodic buffer. This mechanism explained the 

integration of working memory information with long-term memory. Over four decades 

of research have shed light on the subcomponents of these systems, their neurological 

underpinnings, and their significance in special populations (i.e. children, Alzheimer’s 

patients, and amnesiacs) (Baddeley, 2002, 2003, 2012; Repovs & Baddeley, 2006). In 

addition to the vast volume of research focused on the structure and function of the 

various components of working memory, other studies have explored the challenges of 

measurement and individual differences of working memory (for a review see Jarrold & 

Towse, 2006). 

Measures of Individual Differences in Working Memory 

Prior to the 1980s, several researchers attempted to measure working memory 

with simple short term memory tasks. However, these working memory scores weakly 

correlated with reading comprehension, despite the fact that many theorists argued 

working memory was essential to reading comprehension. In 1980, Daneman and 

Carpenter developed the first complex working memory task that taxed both the storage 



15 

 

and processing components of working memory. Their reading span (RSPAN) task 

required participants to read sentences aloud and recall the final word of each sentence. 

Subjects were then tested on both reading comprehension and recall of the final words. 

This RSPAN measure accounted for differences in reading comprehension and correlated 

with verbal SAT scores; it is still used in present-day working memory studies. Daneman 

and Carpenter argued that differences in working memory were attributable to a domain 

general resource (i.e. shared between processing and storage aspects of working 

memory). In other words, they hypothesized that individuals with faster processing 

speeds had residual resources to serve the storage functions. This argument mirrors initial 

theories of attention and workload. Specifically, Broadbent’s (1958) single-bottleneck 

model posited that cognitive tasks are completed in queue by a central processor (i.e. 

single resource). Just as the single resource theory of workload was later disputed, so too 

was this single resource theory for working memory. 

In another model of individual differences of working memory, Engle and 

colleagues argued that not only is working memory unitary, but it is domain-free (Engle, 

Kane, & Tuholski, 1999; Engle, 2002; Turner & Engle, 1989). Essentially, they defined 

working memory as short-term memory with the addition of controlled attention: WM = 

STM + controlled attention. They postulated that controlled attention is the primary 

reason that WM span tasks differ from simple span tasks, and why WM tasks are 

correlated to higher cognition such as intelligence tests, SAT scores, and academic 

achievement. In fact, they argued that WM is only necessary in tasks that require 

controlled attention such as in situations where irrelevant information competes for 
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attention or in situations of competition resolution (Engle, 2002). Their model comes 

from years of correlational studies investigating variation in working memory capacity 

(WMC). Following the work of Daneman and Carpenter’s (1980) RSPAN, Turner and 

Engle (1989) investigated if the processing component of the complex span task 

(verification of sentences in RSPAN) needed to involve reading in order to correlate with 

reading comprehension (i.e. is WMC task dependent?). They concluded that it is not; the 

computation of mathematical operations taxed processing enough to provide a measure of 

WMC that correlated with RSPAN and reading comprehension. They called this measure 

OSPAN. OSPAN has been shown to correlate with a multitude of tasks ranging from 

antisaccade (Kane et al., 2001; Unsworth et al., 2004), Stroop (Kane & Engle, 2003) and 

allocation of visual attention (Bleckley, Durso, Crutchfield, Engle, & Khanna, 2003). 

They argued that because these tasks are dominated by basic attention (i.e. do not involve 

storage or verbal processing), WMC is the same thing as controlled attention (Kane et al., 

2001). However, this theory may be oversimplifying the role of the phonological loop. 

Although Turner and Engle (1989) found that mathematical operations taxed processing 

enough to provide a robust measure of WMC, others argued that OSPAN was not a pure 

measure of controlled attention and made the case for domain-specific resources.  

Shah and Miyake (1996) provided evidence for domain-specific resources for 

verbal and visuo-spatial information and a dissociation between storage and processing 

functions. They argued that although Turner & Engle (1989) were able to use arithmetic 

computations in the development of OSPAN, this did not remove a verbal storage 

component from the measure. Successful completion of the mental arithmetic tasks 
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requires verbal coding. Therefore, OSPAN was not a pure measure of controlled 

attention. To provide evidence for the importance of domain-specific resources, they used 

the RSPAN (Daneman & Carpenter, 1980) to assess language processes because it taxed 

both storage and processing strictly with verbal information. Following this paradigm, 

they developed a spatial task that taxed both the storage and processing of spatial 

information using only spatial stimuli. Subjects were required to perform a mental 

rotation while simultaneously performing a spatial orientation tracking task. As expected, 

they found that RSPAN measures correlated highly with verbal ability and that spatial 

working memory scores correlated highly with spatial ability. More importantly, they 

found that the RSPAN measures did not correlate with spatial ability and spatial working 

memory scores did not correlate with verbal ability. Clearly this finding suggested the 

existence of separate resource pools for verbal and spatial information. They then 

conducted a follow-up experiment to differentiate between the storage and processing 

aspects of working memory. In this study they used an interference paradigm to cross 

processing and storage demands of both span tasks. They found that although the storage 

requirement was critical to the successful completion of a span task, the processing 

capabilities of an individual explained variance in performance above storage capacity 

alone. Taken together these findings suggest that not only do “two separate pools of 

domain-specific resources” exist, but these resources support both storage and processing 

aspects of task-specific performance. 

This finding was further supported by research conducted by Bayliss, Jarrold, 

Gunn, and Baddeley (2003). Similar to the Shah and Miyake interference study (1996), 
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they developed complex span tasks that crossed verbal and spatial processing with verbal 

and visuospatial storage. They found that both processing efficiency and storage capacity 

independently affected performance on these complex working memory tasks. More 

specifically, their results were consistent with a model consisting of one domain-general 

processing resource pool and two domain-specific storage pools (i.e. at least three 

separate pools). (These results were consistent in populations of both young and old 

participants.) Bayliss et al. (2003) attributed any residual variance in performance not 

explained by one of these three resources to the ability to coordinate storage and 

processing, supporting the existence of a central executive. This further supported work 

by other researchers whose statistical analyses produced three factors to explain 

performance on working memory tasks involving different modalities (Ackerman, Beier, 

& Boyle, 2002; Oberauer, Süß, Schulze, Wilhelm, & Wittmann, 2000; Süß, Oberauer, 

Wittmann, Wilhelm, & Schulze, 2002). Aside from providing converging evidence for 

the existence of three separate resource pools for verbal storage, visuospatial storage, and 

domain-general processing (i.e. a central executive), these studies also highlighted the 

substantial amount of individual differences in each of these components and their 

predictive power. Therefore, when examining the role of individual differences in WMC 

in regards to automation, it is critical to explore individual differences in each of the three 

subcomponents of working memory. 

Finally, the controlled attention model of working memory does not account for 

effects attributed to the phonological loop. Namely, studies manipulating acoustic 

similarity of letters and words have shown that when stimuli are similar in sound, the 



19 

 

rehearsal process suffers and the stimuli are more difficult to recall serially than when 

they share other similarities like meaning. This points to the acoustic component of 

rehearsal (Baddeley, 2002, 2003, 2012). The word-length effect also provides support for 

the phonological loop. Words of longer length are more difficult to recall than shorter 

words because as the time to rehearse each word approaches the two-second limit, words 

are forgotten before they can be rehearsed again (Baddeley, 2000, 2002). Further 

evidence can be found in the effect of articulatory suppression; when given a secondary 

task that prevents rehearsal (such as requiring participants to recite the word “the” 

continuously), retrieval declines greatly. Articulatory suppression also negates the word-

length effect; when rehearsal is suppressed even short words are difficult to remember 

(Baddeley, 2000, 2002). Capacity of the phonological loop is limited and, although 

research findings differ regarding the exact number, most accepted estimates are in the 

range of between four and seven chunks of information (Miller, 1956). 

Working Memory and Attention 

Despite its inability to fully explain all components of working memory, the 

controlled attention model proves useful in exploring individual differences in executive 

function via visual attention tasks. For example, Bleckley et al. (2003) used a visual 

allocation task to show that low and high working memory individuals allocated attention 

differently. Low working memory individuals allocated attention as a spotlight, whereas 

high working memory counterparts allocated attention more flexibly. A similar task, the 

useful field of view task (UFOV®; Visual Awareness, Inc.), was developed to measure 

functional vision, divided visual attention, and selective visual attention. Functional 
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vision is defined as the visual area from which information can be acquired without 

moving the eye or turning the head (Sanders, 1970). The UFOV® has predominantly 

been used to assess useful field of view in older adults (Ball, Beard, Roenker, Miller, & 

Griggs, 1988) and assess driving risk (Ball, Owsley, Sloane, Roenker, & Bruni, 1993; 

Ball & Owsley, 1993; Owsley, Mcgwin Jr, & Ball, 1998; Owsley, Ball, et al., 1998). 

However, it is also useful in measuring divided and selective attention. According to the 

controlled attention theory, individuals with higher working memory should exhibit 

superior performance in the divided and selective attention portions of the UFOV® task. 

Thus, we are including the UFOV® measure in our study to determine if differences in 

working memory span correlate to differences in visual attention allocation and if these 

differences can predict visual allocation in applied settings (i.e. automation interface).  

In addition to control of visual attention, Kane and colleagues argue that the 

critical component of working memory is executive control, particularly in the presence 

of conflict (Engle & Kane, 2004; Engle, 2002; Kane & Engle, 2003). They propose a two 

factor model of controlled attention. Evidence for this theory comes from performance 

data on Stroop tasks. In order to successfully complete a Stroop task, participants must 

maintain two subgoals: 1) maintain the goal to respond to font color and 2) resolve the 

conflict presented by the word spelling. Kane and Engle (2003) found that low span 

participants exhibited faster reaction times in congruent trials compared to neutral trials 

than their high working memory counterparts. The authors considered this facilitation 

effect to reflect goal neglect; lower span participants found it more difficult to ignore 

word meaning. Additionally, low working memory individuals exhibited greater Stroop 
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interference than their high span counterparts as manifested by lower accuracy in 

incongruent trials compared to neutral trial baselines. The authors contend that this 

interference effect represents the participants’ attentional inability to resolve conflict. 

Therefore, we are incorporating this task in our study to determine if Stroop task 

performance correlates with working memory span and the attention abilities of 

participants using the automation interface. 

Individual Differences in Automation Use 
Many individual differences have been shown to affect human interaction with 

automation. Because these traits can be easily assessed in a cost-effective and 

unobtrusive manner they can inform automation design. Examples of traits that can 

contribute to performance with automation include: propensity for complacency (Singh, 

Molloy, & Parasuraman, 1993a, 1993b), trust in automation (Merritt & Ilgen, 2008), 

extraversion (Syrdal, Lee Koay, Walters, & Dautenhahn, 2007), neuroticism (Szalma & 

Taylor, 2011), working memory capacity (de Visser et al., 2010; McKendrick et al., 

2013; Saqer & Parasuraman, 2014), control of executive function (Chen & Barnes, 2012; 

Chen & Terrence, 2009; Parasuraman & Manzey, 2010), including genetic markers 

(Parasuraman et al., 2013), spatial ability (Chen & Barnes, 2012; Chen & Terrence, 2009; 

Lathan & Tracey, 2002) and video game experience (Chen & Terrence, 2009). For 

example, in two studies of human-unmanned vehicle (UV) interaction, Chen and Barnes 

(2012) showed the importance of operator spatial ability in supervisory control 

proficiency. In tasks that required visual scanning, participants with greater spatial ability 

consistently outperformed their low-spatial-ability counterparts.  
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Specifically, working memory and genetic markers of executive function have 

been shown to predict supervisory control performance both in individual and team 

settings (Ahmed et al., 2014; de Visser et al., 2010; McKendrick et al., 2013; 

Parasuraman et al., 2013; Saqer & Parasuraman, 2014). These studies showed that 

operators and teams with higher working memory capacities and COMT Met/Met 

genotypes exhibited better performance than their counterparts. Furthermore, 

McKendrick et al. (2013) found that team working memory scores interacted with task 

load, suggesting that working memory impacts performance in high task load conditions 

to a greater extent than in low task load conditions.  

Preliminary Findings 

In another study using a supervisory control UV task, Saqer and Parasuraman 

(2014) found that although working memory scores did not correlate with overall 

performance, working memory was predictive of automation use in conditions in which 

the level of automation was mismatched to level of workload. In this task participants 

interacted with automation comprising of two components representing different stages 

and levels of automation. Participants performed an air defense UV simulation under 

conditions of high and low task load and were given zero, one, or two autonomous aids to 

assist them. These aids functioned as robotic teammates that patrolled the airspace and 

engaged enemies autonomously. The autonomous aids in this study represented action 

implementation stage of automation functioning at the highest level of automation. The 

actions of the aids were communicated to the participants via a text messaging system 

approximately five seconds prior to their occurrence (information analysis stage of 
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automation presented at a low level). However, nothing prevented operators from 

engaging these targets on their own. Because the actions of the autonomous aids were 

preprogrammed, we were able to calculate an automation effectiveness measure 

reflecting the extent to which an operator coordinated her activity with the autonomous 

aids. This was calculated as: number of successful engagements completed by the 

autonomous aid(s) divided by the total number of pre-programmed engagements. 

Deviation from 100% effectiveness occurred when operators engaged the enemies 

unnecessarily (i.e. automation interference).  

Findings indicated that in context-matched conditions (low workload with low 

level of automation and high workload with high level of automation) automation 

effectiveness did not correlate with working memory score. However, in the non-context-

matched conditions, working memory score was positively correlated with use of 

automation. In other words, when automation was not adaptive, operators with low spans 

used the autonomous aids to a lesser extent. This means that they were less able to adjust 

during periods of automation that were too high or too low for the situation. It should be 

noted that overall performance between low- and high- working memory operators did 

not differ. To keep overall performance high while making less use of the autonomous 

aids, low span operators must have engaged more targets manually, effectively 

duplicating efforts and performing both their own work in addition to the work of the 

aid(s). Higher working memory operators most likely benefited due to increased ability to 

process the verbal texts communicated though the automation messaging system. It 

remains unclear if the disuse of the aids by low span operators was due to a suboptimal 
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attention allocation strategy causing them to miss verbal texts from the messaging 

interface or if they perceived the messages but were unable to incorporate the information 

into their attack strategies.  

Study Rationale and Hypotheses 

Given these findings, the current series of experiments sought to further explore 

individual differences in working memory and their effects on automation use. As 

discussed previously, individual differences in working memory can result from 

differences in executive control (i.e. via the central executive) or differences in capacity 

of the slave systems, the phonological loop and visuospatial sketchpad. Due to the verbal 

nature of the automation messaging interface used in this experimental paradigm, we 

were specifically concerned with differences in the phonological loop. Once the specific 

causes of automation disuse among low span individuals are identified, interventions for 

these causes can be developed and tested. In addition to informing automation design, 

these findings can also help with personnel selection and training. For example, managers 

may want to consider pairing individuals with lower working memory scores with 

teammates or provide additional training using the automation interface. 

This dissertation focuses on two research questions: 

1. Is the disuse of automation exhibited by low-span participants due to 

attention allocation strategies governed by the central executive or due to 

overload of the phonological loop prohibiting the integration of new 

verbal information into current strategy? 
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2. Can automation be specifically redesigned to address each of these 

hypothesized deficiencies and mitigate automation disuse? 

We hypothesized that differences in attention allocation (i.e. the central executive) 

would be the primary reason for automation disuse. Parasuraman and Manzey (2010) 

suggest that complacency is a manifestation of attentional processes. They argue that 

automation complacency occurs under conditions of multiple-task load when the operator 

fails to monitor the system at a sufficient level. Similarly, we suggest that under 

conditions of task overload, users shed the task of monitoring the automation, in this case 

the messaging interface. We believe this is particularly true when the automation is 

designed as an aid and there are no direct negative consequences of automation disuse. 

Furthermore, evidence for a genetic marker of attention has already been shown to 

influence performance in supervisory command and control tasks. Individuals with lower 

working memory exhibited both lower primary task performance as well as reduced 

verification rates for incoming information provided by the automation (Parasuraman et 

al., 2013). We also hypothesized that automation redesign can mitigate these individual 

differences in working memory. With proper redesign we believed participants could 

improve in level of automation use comparable to their high-span counterparts.  

Planned Analyses and Results 

The same performance measures used in the preliminary study were calculated for 

studies 1 and 2: red zone protection, attack efficiency, and automation effectiveness. 

Repeated measures analysis of variance (ANOVAs) were conducted for both studies to 

determine effects of task load and level of automation. As with the preliminary study, we 
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did not expect to observe differences in red zone protection or attack efficiency based on 

working memory scores.  

For the first study, individual difference measures for working memory (Aospan), 

eye tracking data, divided and selective attention (Useful Field of View; UFOV®), 

controlled attention (Stroop task performance), and phonological loop capacity (simple 

digit span) measures were regressed onto automation effectiveness to determine the 

predictive power of each. As with the previous studies, we expected general WMC 

measures using Aospan to correlate positively with automation effectiveness, particularly 

in non-context matched conditions. According to our hypothesis, we expected eye 

tracking data and attention allocation measures (UFOV®, Stroop task performance) to 

correlate with automation effectiveness. From the eye tracking data we hypothesized that 

individuals exhibiting more fixations on the messaging interface would use the 

autonomous aids to a greater extent. We also hypothesized that participants with longer 

mean gaze durations on the messaging interface would exhibit greater disuse of the 

autonomous aids. (According to Fitts, Jones, and Milton (1950), longer gaze durations 

reflect difficulty extracting information from the display.) Likewise, participants who 

exhibited superior divided and selective attention (UFOV® task) and controlled attention 

(Stroop task) would exhibit greater automation effectiveness. We did not expect a simple 

measure of differences in phonological loop capacity (simple digit span task) to correlate 

with automation effectiveness. While it is theoretically possible that differences in 

phonological loop can explain the individual difference effects observed in the 

preliminary study, this measure offers much less variability in healthy young adults. It 
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has frequently been reported that short term memory capacity is in the range of seven 

plus or minus two items (Miller, 1956). The limited sensitivity of this measure makes it 

difficult to find an effect with the sample sizes of these studies. Nevertheless, we 

measured the short term memory span of participants to test this hypothesis. Furthermore, 

we implemented a partial-credit unit scoring scheme on this measure to allow for more 

granularity in performance (for methodological review, see Conway et al., 2005). 

In the second study, subjects performed the simulated air defense tasks with a 

redesigned automation interface. The nature of the redesign was determined from the 

results of the first study. For example, if divided and selective attention abilities 

correlated with automation use, a redesigned interface could incorporate visual and 

auditory cues to assist lower span participants with dividing attention. Similarly, if 

differences in automation use were related to differences in simple verbal spans, a 

redesign could alter the nature of the message to spatial graphics. We hypothesized that 

the attention allocation redesign of the interface would stabilize automation effectiveness 

measures across all levels of WMC. In other words, the redesign should bring the level of 

automation use for low working memory participants to the level of their high working 

memory counterparts. Although a verbal redesign could theoretically improve automation 

use from baseline, it could also have a detrimental effect by increasing workload. Given 

that supervisory command and control tasks are already visuospatial in nature, this 

redesign could place additional burden on the visuospatial sketchpad leading to decreased 

primary task performance. 
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STUDY ONE 

Method 

Participants  

Thirty-seven George Mason University undergraduate students (19 men and 18 

women) with an average age of 21.1 (SD = 3.77) years participated in the study for 

course credit. 

Apparatus  

Participants used a desktop computer running Microsoft Windows XP connected 

to a 32-inch screen to complete a supervisory control task administered via the 

Distributed Dynamic Decision-making 4.0 simulation software (DDD®; Aptima, Inc.). 

The software simulated an air defense task in which operators protected a designated 

zone while simultaneously engaging incoming targets, (see Figure 1). Eye tracking data 

was collected via Tobii X60 eye tracking system that sampled at a rate of 60 Hz. The 

messaging interface was marked as an area of interest (AOI) for eye tracking metrics (see 

Figure 2).  
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Figure 1. DDD® simulated air defense task with six unmanned vehicles controlled by operator (dark green) and 

one automated aid acting autonomously (light green). Operators used these assets to protect a no-fly red zone 

(shaded in red). Incoming enemy aircraft are displayed in red and neutral assets are indicated in blue. 

  

 

 
 

Figure 2. DDD® simulation with messaging interface in lower left corner. Messages appeared five seconds prior 

to an event’s occurrence in the simulation. 
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DDD® Simulation 

Operators were given control of six friendly unmanned assets to defend a no-fly 

“red zone” from incoming enemy and neutral targets. The enemy and neutral targets 

approached the red zone from multiple directions. Enemy targets always appeared with 

red labels whereas neutral targets were labelled in blue. Neutral targets had a 50% 

probability of changing to enemy targets which occurred without cue. The color of the 

aircraft label changed from blue to red to signify this change.  

Participants were instructed to maximize their score for each scenario by 

achieving each of the three priorities: 1) engage and destroy all enemy targets; 2) prevent 

the incursion of any enemy targets into the red zone; and 3) avoid friendly fire against 

own friendly assets, autonomous aid assets, and neutral assets. To control the friendly 

assets, participants right-clicked the asset via mouse and selected a way-point on the map 

via left-click to indicate the desired travel path. To engage enemy aircraft, participants 

moved friendly assets near the desired target, activated missile capability via a menu on 

the left side of the screen, and right-clicked the target. If the enemy aircraft was within 

the range of the missile, the target was destroyed within 3s of engagement and 

disappeared from the display. 

Automation in these scenarios comprised of two parts: an information messaging 

interface and the autonomous aids. The messaging interface was a script that ran 

concurrently with the simulation and delivered 25 relevant messages to the operators 

throughout the scenario. The messages contained the name and initial location of 

incoming enemy assets or the status of an autonomous aid. The messages served to help 

direct attention of the operator to immediate and imminent threats. Operators did not need 
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to read every message to successfully complete the task; however, if an operator missed a 

message regarding the intention of the autonomous aid, it could have resulted in the 

operator engaging the same target as the aid, thereby duplicating efforts. The messages 

were delivered one line at a time 5s prior to the occurrence of the event. On average, 

messages contained approximately seven words (see Figure 2). This messaging interface 

was adapted from previous studies using the same paradigm (Ahmed et al., 2014; de 

Visser et al., 2010; McKendrick et al., 2013; Parasuraman et al., 2013). However, unlike 

in previous experiments that varied reliability of the messages, this study presented 

messages that were 100% reliable. 

Aospan Task 

Aospan was administered to derive a measure of overall working memory 

capacity. Participants performed the automated version of the OSPAN task, Automated 

OSPAN (Aospan; Unsworth, Heitz, Schrock, & Engle, 2005). This task presented 

participants with a simple arithmetic problem which they indicated as true or false 

immediately followed by a letter (e.g. (1*2) + 1 = 3; True or False; P). Participants 

recalled the letters in serial order at the completion of each set of trials. Set sizes ranged 

from three to seven letters and were presented in random order in 3 blocks resulting in a 

total of 75 total letters for recall. The Aospan program automatically recorded the 

working memory score for each participant at the conclusion of the task. 

Useful Field of View (UFOV®) 

Participants completed the useful field of view task (UFOV®; Visual Awareness, 

Inc.) to measure functional vision, divided visual attention, and selective visual attention. 
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The test was administered via computer and mouse and comprised of three subtasks 

presented in order of increasing difficulty. In the first task subjects identified a target 

presented in the center of the screen for varying lengths of time. In the second task, the 

participant detected the centrally located target while also localizing another object in the 

periphery. The final task was similar to the second but included the addition of distractors 

in the periphery. The UFOV® software automatically recorded scores for each of the 

three subtasks. 

Stroop Task 

To obtain a measure of controlled attention we conducted a color Stroop task. The 

task was written and administered via the Psychology Experiment Building Language 

(PEBL, (Mueller, 2012)). The task presented congruent, incongruent, and neutral word 

pairings. Congruent word pairs displayed the word in the matching hue (RED in red). 

Incongruent trials were combinations of the words RED, BLUE, or GREEN displayed in 

a mismatching hue (e.g. BLUE in red). Incongruent trials were combinations of the 

strings JKM, XTQZ, or FPSTW in the hues red, blue, or green. Trials were modeled after 

Kane and Engle’s (2003) Stroop paradigm in which the task consisted of 75% congruent 

trials. A total of 288 trials were presented in three blocks. Each block contained 36 

critical trials with equal numbers of neutral, incongruent, and congruent color-word 

pairings. Each block also contained 60 non-critical trials which were all congruent word 

pairs. Participants were instructed to complete the task as quickly but accurately as 

possible. Reaction times and accuracy measures were recorded automatically for each 

participant. 
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Simple Digit Span  

To obtain a measure of short-term verbal memory (i.e. storage component of 

phonological loop), we presented sets of digits ranging from three to ten items on a 

computer screen. Trials were presented via PEBL software (Mueller, 2012). Digits were 

presented aurally via audio file at the same time that they appeared on the screen for 1 s 

with an interstimulus interval of 150 ms. At the conclusion of each set, participants were 

asked to recall the digits for that set in serial order. Sets of each size were presented three 

times in order of increasing size, resulting in a total of 24 sets. Participants received one 

point for any digit they correctly recalled. Maximum digit span score was 156 points.  

Procedure 

After reviewing and signing an informed consent, participants completed the 

Aospan, UFOV, Stroop, and simple digit span tasks. To gain familiarity with the DDD® 

task and understand the performance objectives, participants viewed a slide presentation. 

Participants then completed two practice trials: low task load with low level of 

automation (one autonomous UV) and high task load with high level of automation (two 

autonomous UVs), presented in counterbalanced order. During these trials participants 

practiced moving assets, engaging enemies, reading messages from messaging interface, 

and interacting with the autonomous aids. Finally, participants performed each of the four 

experimental trials presented in random order.  

Experimental Design 

A 2 x 2 repeated-measures factorial design was used to vary task load (low, high) 

and level of automation (low AA, high AA). Low task scenarios contained 60 enemy and 

neutral targets whereas high task load scenarios contained 75 total aircraft (see Table 1). 
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Workload was determined by the degree of visual, cognitive, and motor task load 

required by the operators to successfully complete task goals. Users were unaware of 

which enemies would switch to neutrals and which would reach the red zone. This 

required them to carefully monitor all UVs as they simultaneously coordinated their 

strategies with the autonomous aids. Therefore, the total number of UVs in the scenario 

was used to determine low and high task load, not the number of red zone incursions. 

Approximately 80% of total aircraft were enemy targets (including neutral UVs that 

converted to enemies). Because each scenario was seven minutes in duration, enemy 

targets appeared at a rate of one every nine seconds in the low task load conditions and 

one every seven seconds in the high task load conditions. Targets entered the scenario 

from the map perimeter and moved in randomly programed routes toward the red zone 

located in the center of the playfield. Targets completed two flight paths prior to 

disappearing. Automation levels varied by the number of autonomous aids available in 

the scenario: 1 or 2. Aids were friendly UVs that autonomously travelled around the red 

zone and engaged pre-programmed targets in their immediate proximity. Operators were 

informed of these engagements 5s prior to their occurrence via the messaging script; 

however, nothing prevented operators from engaging these targets by themselves. Each 

aid was programmed to eliminate 20% of enemy targets. In scenarios with one aid, the 

UV travelled in a circular counterclockwise pattern. In scenarios with two aids, each UV 

was responsible for half of the air space, one for the left and one for the right. 
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Table 1. Experimental Design of UVs Programmed in Each Scenario 

 

Dependent Measures 

The play logs for each scenario recorded all aircraft movements, engagement 

attempts, successful engagements, and incursions to the red zone. Engagement attempts 

were recorded each time the operator activated a missile. Unsuccessful attacks resulted 

from participants selecting targets out of range of the missile or execution errors in 

activating and launching missiles (i.e. inappropriate mouse-clicks and menu selections 

within the simulation interface). Using this data, we calculated the following performance 

measures: 1) red zone protection: 1 – (number of enemy aircraft that penetrated the red 

zone/total number of enemy aircraft programmed to penetrate the red zone); 2) attack 

efficiency: successful enemy engagements/total engagement attempts; 3) automation 

effectiveness: successful aid engagements/total programmed engagements. These 

measures were derived from previously published studies using the same simulation 

software (Ahmed et al., 2014; de Visser et al., 2010; McKendrick et al., 2013; 

Parasuraman et al., 2013). Each scenario differed in the total number of enemy targets 

and the total number of enemy UVs that were programmed to penetrate the red zone (see 

Level of 
Automation 

Total 
UVs 

Neutral 
UVs 

Neutral UVs 

Converted to 
Enemies 

Enemies 

Enemies 

Engaged 
by Aids 

Enemies 

Programmed 

to Penetrate 
Red Zone 

with 100% 

Aid Use 

Enemies 

Programmed to 

Penetrate Red 
Zone with    

0% Aid Use 

       
Low Task Load       

Low – 1 Aid 60 11 9 40 10 14 17 

High – 2 Aids 60 11 9 40 20 10 14 

       

High Task Load       
Low – 1 Aid 75 13 12 50 12 9 10 

High – 2 Aids 75 13 12 50 25 8 13 
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Table 1). Therefore, all measures were computed as percentages ranging from 0 to 1. For 

attack efficiency and red zone safety, higher values indicate superior performance. For 

the automation effectiveness measure, lower values reflect disuse of the automation 

(Parasuraman & Riley, 1997). Unsuccessful engagements of the aids only occurred when 

operators engaged the enemies unnecessarily. Standard errors of the mean were 

calculated as standard deviations divided by square root of the sample size for each 

measure. 

Eye tracking measures. Areas of interest (AOIs) were established around the 

messaging interface and the simulated playfield; they were defined as X and Y 

coordinates on the display. Two eye tracking measures were calculated for each 

participant for each experimental scenario: fixation count and mean gaze duration. 

Fixation count was calculated as the number of fixations within each AOI. More fixations 

on the messaging interface AOI indicated greater importance (Fitts et al., 1950). 

Therefore, higher fixation counts reflected more attention allocation to the automation 

and are hypothesized to correlate with automation use. Mean gaze duration was 

calculated as the cumulative length of consecutive fixations in the messaging AOI 

including the relatively small amount of time for short saccades between these fixations. 

Fitts et al. (1950) predicted that longer gaze durations reflected difficulty extracting 

information from the display. Thus, we hypothesized that longer mean gaze durations in 

the messaging AOI would be correlated with automation disuse. We were also interested 

to see if longer gaze durations correlated to lower simple span. If participants experienced 
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difficulty with verbal information, it would be helpful to determine if low simple verbal 

span is a contributing factor. 

Results 

Primary Performance Measures  

Red zone protection. To assess the effect of task load and level of automation on 

red zone protection, we conducted a 2 x 2 repeated measures ANOVA. The analysis 

revealed a marginal effect of task load F(1, 36) = 3.16, p = .08, 𝜂𝑝
2  = .081. Participants 

more successfully defended the red zone in low task conditions (M = 47.0%, SEM = 

2.40%) than in high task load conditions (M = 42.1%, SEM = 1.90%). There was also a 

main effect for level of automation, F(1, 36) = 18.21, p < .001, 𝜂𝑝
2  = .336. Participants 

exhibited better protection of the red zone with one automated aid (M = 49.0%, SEM = 

1.90%) than they did with two aids (M = 40.0%, SEM = 2.00%). Higher level of 

automation differentially affected red zone protection in the low and high task condition, 

as evidenced by a significant interaction, F(1, 36) = 22.80, p < .001, 𝜂𝑝
2  = .388. In the 

high task load condition, one aid was helpful (M = 51.4%, SEM = 2.81%) whereas two 

aids resulted in reduced red zone protection (MD = 32.8%; SEM = 2.29%) (see Figure 3).  
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Figure 3. Study One: Mean red zone protection percentage for low and high task load conditions as a function of 

level of automation (low, high). Error bars represent standard errors of the  mean. 

  

Attack efficiency. Attack efficiency, a primary performance measure reflecting a 

participant’s ability to successfully engage enemies in relation to engagement attempts, 

was also subjected to a 2 x 2 repeated measures ANOVA. Participants exhibited more 

efficient engagements in low task conditions (M = 74.6%; SEM = 1.70%) compared to 

high task conditions (M = 71.0%; SEM = 1.50%), as evidenced by a significant main 

effect of task load F(1, 36) = 10.20, p < .01, 𝜂𝑝
2  = .221. Level of automation did not 

influence attack efficiency, F(1, 36) = 0.01, p = .92. The analysis did not reveal an 

interaction between level of task load and level of automation, F(1, 36) = 2.80, p = .10 

(see Figure 4).  
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Figure 4. Study One: Mean attack efficiency for low and high task load conditions as a function of level of 

automation. Error bars represent standard errors of the mean. 

 

Automation effectiveness. To determine how level of task load and level of 

automation influenced participants’ use of the automated aids, we conducted a final 2 x 2 

repeated measures ANOVA on the automation effectiveness measure. Level of task load 

did affect use of the autonomous aids, as reflected by a significant main effect F(1, 36) = 

4.31, p = .05, 𝜂𝑝
2  = .107. Participants used the automated aids more in low task conditions 

(M = 68.2%; SEM = 2.50%) than they did in high task load conditions (M = 65.0%; SEM 

= 2.90%). Level of automation did not influence a participant’s use of automation, F(1, 

36) = 0.06, p = .81. However, there was a significant interaction between level of task 

load and level of automation, F(1, 36) = 23.16, p < .001, 𝜂𝑝
2  = .391. In the high task 

conditions participants used the automated aids more when they were only given one aid 

(M = 69.8%; SEM = 3.27%) than they did when they were given two aids (M = 60.2%; 

SEM = 3.05%) (see Figure 5).  
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Figure 5. Study One: Mean use of automation for low and high task load conditions as a function of level of 

automation (low, high). Error bars represent standard errors of the mean. 

 

Individual Difference Measures 

Aospan. Automated operation span reflected the number of correctly recalled 

items in all presented sets, with a maximum possible score of 75. Aospans for 

participants ranged from 0 to 70 (M = 36.70, SD = 20.59). Surprisingly, participant 

Aospan scores only correlated with simple digit spans, r(35) = .52, p < .01 (see Table 2). 

Useful Field of View (UFOV®). Performance on the second UFOV subtask 

represented divided attention ability. Scores below 100 are considered within normal 

range. All but one participant exhibited normal divided attention ability (M = 31.1, SD = 

60.3). For selective attention ability, scores below 350 on the third subtask are considered 

normal. All but one participant exhibited normal selective attention (M = 50.4, SD = 

81.6). Deficits in visual attention on the UFOV task are most common in older adults. 

Because we sampled a young undergraduate population, it is not surprising that the 

majority exhibited divided and selective attention within normal range. To derive one 
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composite measure of attention, we added each participant’s scores on the second and 

third subtasks. Due to a floor effect resulting from the majority of participants responding 

within minimum limits of the task, the scores exhibited a strong positive skew. This skew 

was corrected with an inverse transformation. The mean composite score for the 

transformed measure was 22.45 (SD = 10.85). After the transformation, higher UFOV 

scores signified better attentional ability. Although this transformed composite score did 

not correlate with any other individual difference measures, it did correlate with two 

outcome measures: mean red zone protection (r(35) = .40, p < .05) and mean attack 

efficiency (r(35) = .33, p < .05) (see Table 2). 

Stroop task. Reaction times for correct trials were trimmed to eliminate responses 

more than three standard deviations above the mean for each condition type for each 

participant. Trimming did not exceed 3% of trials for any participant. Recall that Kane 

and Engle (Kane & Engle, 2003) found Stroop task performance differences between low 

and high span individuals in two measures: facilitation reaction time and interference 

accuracy. Accordingly, we limited the analysis of this task to those two measures. To 

arrive at a measure for facilitation reaction time, we subtracted the mean reaction time in 

the congruent condition from the mean reaction time in the neutral condition for each 

participant. Recall that facilitation times represent the reduction in response times lower 

span participants exhibit when they fail to ignore word meaning in the congruent 

condition, i.e., goal neglect. Greater facilitation reaction time is hypothesized to correlate 

with lower working memory. Mean facilitation time was 27.0 ms (SD = 41.6). To 

calculate an interference effect, we subtracted the mean accuracy in the incongruent 
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condition from the mean accuracy in the neutral condition for each participant. The 

interference effect represents the inability of the participant to resolve the conflict of the 

mismatched word and hue in the incongruent conditions. Greater interference accuracy is 

hypothesized to correlate with lower working memory. Mean interference accuracy was 

10.2% (SD = 9.5%). Neither facilitation reaction time nor interference accuracy 

correlated with individual difference or outcome measures. However, facilitation reaction 

time did correlate with average fixation percentage for the automation interface, r(35) = -

.37, p < .05 (see Table 2). 

Simple digit span. Simple digit span reflected the number of correctly recalled 

digits in all presented sets, with a maximum possible score of 156. Spans for participants 

ranged from 44 to 148 (M = 92.05, SD = 29.28). In addition to correlating with Aospan 

measures, participant simple spans also correlated with two outcome measures: mean red 

zone protection (r(35) = .44, p < .01) and mean attack efficiency (r(35) = .34, p < .05) 

(see Table 2). 

Eye tracking measures. To account for differences in eye movement behavior, 

we calculated the number fixations in the automation messaging interface AOI as 

percentage of total fixations for each participant. This was performed for each of the four 

automation scenarios. The average automation fixation percentage was averaged across 

the four scenarios for each participant to derive one measure. On average, participants 

rarely fixated on the automation messaging interface AOI (M = 2.79%, SD = 2.71%). To 

compute average gaze duration, we calculated total gaze time spent in the automation 

messaging interface AOI divided by number of gazes on the AOI for each of the four 
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automation scenarios. These percentages were averaged across participant to derive one 

average gaze duration measure. On average, participants spent 141.5 ms (SD = 54.86) on 

the automation interface each time they gazed upon it. Both eye tracking measures 

correlated with each other, r(35) = .50, p < .01. Participants that looked at the automation 

messaging interface more also looked at it for a longer average duration. Average fixation 

percentage also correlated with average automation effectiveness, r(35) = .45, p < .01 

(see Table 2).  



 

 

 

4
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Table 2. Study One: Correlation Matrix of Individual Difference Measures 

 

 

 
Aospan UFOV 

Facilitation 

RT 

Interference 

Accuracy 

Digit 

Span 

Fixation 

Percent 

Gaze 

Duration 

Red Zone 

Protection 

Attack 

Efficiency 

Automation 

Effectiveness 

Aospan  .15 -.12 -.21 .52** .08 .00 .24 .20 -.06 

UFOV   .04 -.11 .00 -.04 -.29 .40* .33* -.16 

Facilitation 

RT 
   -.10 -.10 -.37* -.28 .09 .18 -.17 

Interference 

Accuracy 
    -.09 .15 .14 -.11 -.18 .08 

Digit Span      .04 .04 .44** .34* -.04 

Fixation 

Percent 
      .50** .10 -.07 .45** 

Gaze 

Duration 
       .16 -.04 .26 

Red Zone 

Protection 
        .68** -.25 

Attack 

Efficiency 
         -.31 

Automation 

Effectiveness 
          

* p < .05. ** p < .01. 
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Outcome Predictors 

To determine which individual difference measures were predictive of 

performance, we regressed the individual difference variables onto each of the 

performance outcomes. Regression data have been summarized in Table 3. 

Red zone protection. Red zone protection scores for each of the four scenarios 

were averaged across participant. Recall that UFOV performance and digit span 

positively correlated with red zone protection. These two predictors accounted for 35.0% 

of the total variance in mean red zone protection, F(2, 34) = 9.17, p < .01, 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = 

.31. Participants with better divided and selective attention ability, as measured via 

UFOV, exhibited better mean red zone protection, β = .40, t(34) = 2.88, p < .01. 

Likewise, participants with higher simple spans better defended the red zone, β = .44, 

t(34) = 3.16, p < .01.  

Attack efficiency. Again, we averaged attack efficiency scores for the four 

automation scenarios across participants. As with mean red zone protection, UFOV 

performance (β = .33, t(34) = 2.17, p < .05) and digit span positively correlated (β = .34, 

t(34) = 2.23, p < .05) with attack efficiency. These predictors accounted for 22.2% of the 

total variance in mean attack efficiency, F(2, 34) = 4.86, p < .01, 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = .18. 

Automation effectiveness. Finally, we averaged automation effectiveness for each 

of the scenarios to derive one measures for each participant. As noted above, the only 

individual difference measure that correlated with mean aid effectiveness was average 

fixation percent allocated to the automation messaging interface. The fixation percent 

explained 20.6% of the variance in use of the automated aids, F(1, 35) = 9.06, p < .01, 
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𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = .18. Not surprisingly, the more a participant fixated on the automation 

messaging interface, the more s/he took advantage of the autonomous aids, β = .45, t(35) 

= 3.01, p < .01.  

 

Table 3. Study One: Multiple Regressions Predicting Performance 

 

Variable B SE B Β t 
2

adjustedR
 

     

Mean Red Zone Protection    .31 

UFOV 3.75 1.30 .40 2.88
**

  

Digit Span 0.00 0.00 .44 3.16
**

  

     

Mean Attack Efficiency    .18 

UFOV 2.75 1.27 .33 2.17
*
  

Digit Span 0.00 0.00 .34 2.23
*
  

     

Mean Aid Effectiveness -     .18 

Fixation Percent 2.66 0.89 .45 3.01
**

  

      
*
 p < .05. 

**
 p < .01.      

 

Discussion 
The goal of this study was to replicate the findings of the preliminary study with 

the incorporation of additional individual difference measures and eye tracking. We 

sought to determine the underlying causes for differences in automation use between high 

and low span individuals. The task load and level of automation manipulations resulted in 

many of the same effects on primary performance and automation use seen in the 

preliminary study. In low task conditions participants exhibited better protection of the 

red zone, superior attack efficiency, and increased use of the autonomous aids, as 
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compared to high task conditions. Participants also better protected the red zone when 

they were given one automated aid compared to when they were given two aids. As seen 

with the preliminary study, the automation once again presented characteristics of 

“clumsy automation” (Wiener, 1988). Primary performance suffered to a greater extent 

when high levels of automation were used in high workload conditions, as evidenced by 

an interaction between these two independent variables on red zone performance. 

Furthermore, participants used the autonomous aids less in high workload conditions 

when they were given two aids as compared to one. They also used the autonomous aids 

to a lesser extent when they were given two aids in the high task load condition compared 

to the low workload condition. This reiterated the finding that costs of ill-designed 

automation are greater in high workload conditions.  

Unfortunately, the working memory differences observed in the preliminary study 

did not replicate in study 1. Participant Aospans did not correlate with use of the 

autonomous aids. This was true for overall mean use of autonomous aids as well as use of 

autonomous aids in each of the four automation scenarios. The scenarios, Aospan 

measurement tool, and participant instructions for this study were identical to those of the 

preliminary study. The lack of correlation can most likely be attributed to sampling error 

or lack of reliability in the Aospan measurement task. The Aospan task has been shown 

to consistently predict performance on tasks that require inhibition of distracting 

information or conflicting goals. It may be possible that the participants of the two 

studies viewed the nature of the automation task differently. Recall that automation in 

this paradigm is two-step automation. First, messages from the messaging interface 
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instruct users of the intents of the autonomous aids and 5s later the autonomous aids 

execute those actions. If the participants of the first study viewed the messaging interface 

as a distractor, low and high span individuals may have differed in how they responded to 

it. It is possible that participants in the second study viewed the messaging interface as a 

secondary extension of the primary task. In this case, both low and high span participants 

could have shed the messaging task in favor of other strategies to accomplish primary 

task objectives, thereby eliminating span differences in automation use. 

In regards to how Aospan correlated with other individual difference measures, it 

did correlate with simple digit span, as expected. This finding supported one of our 

original hypotheses regarding the existence of the phonological loop: working memory is 

more than just controlled attention and also reflects differences in simple storage. 

However, Aospan did not correlate with any other individual difference measures. For 

example, reaction time and accuracy performance on a color Stroop task did not correlate 

with Aospan, contrary to previous research (Engle, 2002; Kane & Engle, 2003). It is 

important to note that Kane and Engle (2003) found a strong link between working 

memory capacity and Stroop performance using an extreme groups design in their 

analysis. To find differences in performance, they compared the data of individuals with 

spans in the first and fourth quartiles of Aospan scores. This design may have 

overestimated the observed effect and may have resulted in an effect that is difficult to 

replicate (Preacher, Rucker, MacCallum, & Nicewander, 2005; Preacher, 2014). In the 

Kane and Engle study (2003), the mean OSPAN scores of participants in the first and 

fourth quartiles were 6.53 (SD = 2.05) and 23.25 (SD = 6.36), respectively. The mean 
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scores of participants in the first and fourth quartiles of study 1 were 10.67 (SD = 6.55) 

and 62.89 (SD = 6.31), respectively. These scores reflect a sample with a higher mean 

and more overall variability. It is possible that an era of pervasive technology and culture 

of multitasking created an undergraduate population that scores higher on the Aospan 

task than seen previously. It is also important to note that although several studies have 

been published reporting the predictive power of Aospan, studies with null effects are 

much less likely to be published and are therefore unavailable for comparison. 

Despite the lack of correlations among span measures, we did find that some 

simple measures of individual differences predicted future performance on a complex 

cognitive task. We found that UFOV task performance and digit span predicted both a 

participant’s ability to defend the red zone and his level of attack efficiency. This finding 

suggests that participants relied on their ability to divide their visual attention to engage 

the appropriate enemies. Participants also relied on their simple storage spans to hold 

relevant information in memory. The predictive nature of simple span is surprising 

considering that primary performance of the UV tasks did not depend on the 

incorporation of verbal information. However, some of the information in the messaging 

interface contained data about the impending location of incoming enemies. Participants 

with higher simple spans may have been better equipped to use this information to their 

advantage. Interestingly simple spans did not correlate with use of the autonomous aids, 

suggesting that participants were reading messages for information about incoming 

enemies and not reading the messages about the actions of the automated aids. This could 
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have been due to a perceived cost/benefit value of the messages. There was no direct cost 

for not using the automated aids, but there was a direct cost of a red zone incursion. 

The only measure that did predict use of the autonomous aids was the percentage 

of total fixations that fell on the area of interest defined by the automation messaging 

interface. In other words, the only predictor of whether or not a participant coordinated 

his actions with the autonomous aids was if s/he looked at the corresponding message. 

Fixations on the automation messaging interface indirectly suggest that these participants 

were better able to divide their attention. However, due to a floor effect in which very 

few participants looked at the interface, we did not see a correlation between eye tracking 

data and UFOV. Therefore, to address the second aim of this dissertation, we conducted a 

follow-up study to design and implement a redesigned automation interface that would 

encourage looking at the messaging interface, thereby also increasing the use of the 

automated aids. Because simple span was not associated with use of the autonomous aids 

(only primary performance measures), a redesign focused on altering the verbal nature of 

the messages was not considered.  
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STUDY TWO 

Method 

Participants 

Forty-two George Mason University undergraduate students (24 men and 18 

women) with an average age of 21.9 (SD = 3.95) years participated in the study for 

course credit.  

Apparatus 

The same computer equipment and eye tracker used in study 1 were used for 

study 2. 

Automation Redesign  

The same DDD® scenarios used in the first study were also used for study 2. 

However, a redesigned messaging interface was introduced. The redesign served to 

mitigate the behavioral limitation observed in study 1: appropriate eye movement 

behavior. The redesign incorporated an auditory and blinking cue with the presentation of 

each verbal message to support the central executive by directing attention. Everything 

else about the messaging interface was identical to the first study (i.e. content of 

messages, interface location, appearance, etc.).  

Procedure 

The same individual difference measures used in the first study were collected 

except for Stroop task performance because it was not associated with any of the outcome 
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variables or individual difference measures. Participants reviewed the same slide 

presentation about the simulation software and objectives of the scenarios. The 

presentation was updated to reflect the new automation interface. Participants then 

completed the same two practice trials administered in the first study to gain familiarity 

with the simulation and motor controls. Participants then performed each of the four 

experimental trials in a counterbalanced order. The same eye tracker used in the first 

study recorded eye movements and the same eye tracking measures were calculated.  

Experimental Design 

A 2 x 2 repeated-measures factorial design was used to vary task load (low, high) 

and level of automation (low AA, high AA). In addition to the performance and 

automation use measures evaluated in the first study, we conducted mixed ANOVAs to 

determine if the redesigned visual interface influenced primary performance or eye 

tracking behavior in study 2. We performed the same correlations and regressions to 

verify if the individual difference and performance measure relationships observed in 

study 1 persisted in study 2. 

Results 

Primary Performance Measures 
Red zone protection. To assess the effect of task load and level of automation on 

red zone protection, we conducted a 2 x 2 repeated measures ANOVA. The analysis 

revealed a main effect of task load F(1, 41) = 7.17, p < .05, 𝜂𝑝
2  = .149. Participants more 

successfully defended the red zone in low task conditions (M = 51.2%, SEM = 2.80%) 

than in high task load conditions (M = 44.8%, SEM = 2.10%). There was also a main 
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effect for level of automation, F(1, 41) = 16.34, p < .001, 𝜂𝑝
2  = .285. Participants 

exhibited better protection of the red zone with one automated aid (M = 52.2%, SEM = 

2.50%) than they did with two aids (M = 43.8%, SEM = 2.30%). Higher level of 

automation differentially affected red zone protection in the low and high task condition, 

as evidenced by a significant interaction, F(1, 41) = 10.01, p < .01, 𝜂𝑝
2  = .196. In the high 

task load condition, one aid was helpful (M = 51.6%, SEM = 2.90%) whereas two aids 

resulted in reduced red zone protection (MD = 38.1%; SEM = 2.00%) (see Figure 6). 

Both main effects and the interaction were consistent with findings from the preliminary 

study and study 1. 

 

 
 

Figure 6. Study Two: Mean red zone protection percentage for low and high task load conditions as a function of 
level of automation (low, high). Error bars represent standard errors of the mean. 

 

Attack efficiency. To determine the effects of workload and level of automation 

on attack efficiency, we conducted a 2 x 2 repeated measures ANOVA. Participants 
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exhibited more efficient engagements in low task conditions (M = 72.6%; SEM = 1.90%) 

compared to high task conditions (M = 69.6%; SEM = 2.00%), as evidenced by a 

significant main effect of task load F(1, 41) = 7.94, p < .01, 𝛈𝐩
𝟐  = .162. Level of 

automation did not influence attack efficiency, F(1, 41) = 0.04, p = .85. The analysis did 

not reveal an interaction between level of task load and level of automation, F(1, 41) = 

0.16, p = .70 (see Figure 7). The effects of workload and automation on attack efficiency 

found in study 1 were replicated in study 2. 

 

 
 

Figure 7. Study Two: Mean attack efficiency for low and high task load conditions as a function of level of 

automation. Error bars represent standard errors of the mean. 

 

Automation effectiveness. We conducted a final 2 x 2 repeated measures 

ANOVA on the automation effectiveness measure to determine how level of task load 

and level of automation influenced participants’ use of the automated aids. Level of task 

load marginally affected use of automation, F(1, 41) = 2.92, p = .10, ηp
2 = .066. Contrary 
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to the preliminary study and study 1, in this study participants used the autonomous aids 

more in high task conditions (M = 60.9%; SEM = 2.40%) than they did in low task load 

conditions (M = 58.3%; SEM = 2.40%). As with the preliminary study and study 1, level 

of automation did not influence a participant’s use of the autonomous aids, F(1, 41) = 

0.01, p = .94. However, there was a significant interaction between level of task load and 

level of automation, F(1, 41) = 8.47, p < .01, ηp
2 = .171. In the high task conditions 

participants used the autonomous aids more when they were only given one aid (M = 

63.9%; SEM = 2.70%) than they did when they were given two aids (M = 57.9%; SEM = 

2.70%) (see Figure 8). This interaction was also found in study 1. 

 

 
 

Figure 8. Study Two: Mean use of automation for low and high task load conditions as a function of level of 

automation (low, high). Error bars represent standard errors of the mean. 

 

Comparisons Across the Two Studies 
To contrast primary performance and eye tracking measures between study 1 and 

study 2, we conducted three-way mixed ANOVAs with study as the between-subjects 
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factor (study 1 vs. study 2) and workload (low vs. high) and level of automation (low vs. 

high) as the within-subjects factors. Main effects for workload, level of automation, and 

interactions between workload and level of automation have been discussed above for 

each study separately and will not be repeated below. Analyses reviewed here address 

between-subject effects and unique interactions. 

Red zone protection. A three-way mixed ANOVA revealed no main effect for 

study on red zone protection, F(1, 77) = 1.54, p = .21. Participants exhibited similar 

levels of red zone protection in study 1 and study 2. Study did not interact with level of 

workload or level of automation, F < 3.20, p > .07. 

Attack efficiency. There was also no difference between level of attack efficiency 

between study 1 and study 2, F(1, 77) = 0.47, p = .50. Study did not interact with level of 

workload or level of automation, F < 1.00, p > .30.  

Automation effectiveness. The three way mixed ANOVA did reveal a main effect 

for study, F(1, 77) = 4.08, p < .05, ηp
2  = .050. Participants used the autonomous aids 7% 

less in study 2 (M = 59.6%, SEM = 2.40%) compared to study 1 (M = 66.7%, SEM = 

2.50%). Additionally, analyses revealed an interaction between level of workload and 

study, F(1, 77) = 7.13, p < .01, ηp
2  = .085. In study 2 participants used the autonomous 

aid(s) more in high workload conditions (M = 60.9%, SEM = 2.60%) compared to low 

workload conditions (M = 58.3%, SEM = 2.40%). Conversely, in study 1 participants 

used the autonomous aid(s) more in low workload conditions (M = 68.2%, SEM = 2.50%) 

compared to high workload conditions (M = 65.0%, SEM = 2.70%) (see Figure 9). Study 
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did not interact with level of automation, nor was there a significant three-way interaction 

between level of workload, level of automation, and study, F < 1.50, p > .25. 

 

 
 

Figure 9. Effect of Study: Mean use of automation for low and high task load conditions as a function of study 
(study 1, study 2). Error bars represent standard errors of the mean. 

 

Eye movements. A three way mixed ANOVA revealed no difference in the 

percentage of eye fixations on the messaging interface between study 1 and study 2, F(1, 

69) = 0.002, p = .97. Study did not interact with level of workload or level of automation, 

nor was there a significant three way interaction, F < 0.25, p > .60. Study did not affect 

the duration of the average gaze allocated to the messaging interface, F(1, 69) = 0.25, p = 

.62. Study did not interact with level of workload or level of automation, nor was there a 

significant three way interaction, F < 2.50, p > .15.  
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Individual Difference Measures  
Aospan. Aospans for participants in study 2 ranged from 6 to 75 (M = 43.88, SD 

= 17.89). Consistent with study 1, Aospan scores only correlated with simple digit spans, 

r(40) = .40, p < .01 (see Table 4). 

 Useful Field of View (UFOV®). Recall that performance on the second subtask 

of the UFOV exercise represents divided attention ability. Scores below 100 are 

considered within normal range. Only one participant fell outside of this limit (M = 19.1, 

SD = 22.8). The third subtask represents selective attention ability with scores below 350 

representing normal performance. All participants’ scores for this subtask fell within 

normal limits (M = 34.7, SD = 36.1). As with study 1, we computed a composite score by 

combining each participant’s performance on subtasks two and three. We then performed 

an inverse transformation to correct a strong positive skew. The mean score for the 

transformed composite measure was 25.70 (SD = 9.20). Congruent with findings in study 

1, this transformed composite score did not correlate with any other individual difference 

measures but maintained a correlation with red zone performance, r(40) = .36, p < .05. 

However, it no longer correlated with attack efficiency (see Table 4).  

Simple digit span. Participant span scores ranged from 44 to 148, M = 91.21, SD 

= 29.97 (maximum possible score = 156). As expected, digit span scores again correlated 

with Aospan scores, r(40) = .40, p < .01. Digit span scores also positively correlated with 

mean red zone protection (r(40) = .52, p < .001) and mean attack efficiency (r(40) = .34, 

p < .05) (see Table 4).  

Eye tracking measures. To assess the amount of visual attention each participant 

allocated to the messaging interface, we calculated the number of fixations that fell on the 
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interface as a percentage of total recorded fixations for each participant in each scenario. 

We then averaged across scenarios for each participant to reflect an index of how often 

each user looked at the messaging interface. Similar to the first study, participants 

exhibited a low percentage of fixations on the messaging interface, M = 3.09%, SD = 

3.37%. To determine how long participants looked at the messaging interface, we 

computed average gaze duration for each fixation (total time spent on the messaging 

interface divided by number of gazes) within each scenario. Again, this measure was 

averaged across scenarios to obtain one measure per user. On average, each time a 

participant looked at the messaging interface, s/he gazed for 145.9 ms (SD = 51.53). The 

two eye tracking measures correlated with each other; participants that looked at the 

messaging system more often exhibited longer average gaze durations, r(40) = .58, p < 

.001. Finally, the positive relationship between average fixation percentage to the 

messaging system and automation effectiveness exhibited in study 1 persisted in study 2, 

r(40) = .33, p < .05 (see Table 4). 
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Table 4. Study Two: Correlation Matrix of Individual Difference Measures 

  

 Aospan UFOV 
Digit 

Span 

Fixation 

Percent 

Gaze 

Duration 

Red Zone 

Protection 

Attack 

Efficiency 

Automation 

Effectiveness 

Aospan  .30 .40** .01 .05 .16 .19 -.14 

UFOV   .19 .14 .13 .36* .16 -.16 

Digit Span    .13 .03 .52*** .34* -.17 

Fixation 

Percent 
    .58*** .09 .10 .33* 

Gaze 

Duration 
     .12 .00 .20 

Red Zone 

Protection 
      .61*** -.31* 

Attack 

Efficiency  
       -.26 

Automation 

Effectiveness 
        

* p < .05. ** p < .01. *** p < .001. 

 

Outcome Predictors 
To test which individual difference measures predicted performance on the 

simulation, we repeated the regressions from study 1. Only predictors exhibiting 

significant correlations with outcomes were included in the analyses (refer to Table 4). 

Table 5 reflects a summary of the regression models. 

Red zone protection. Consistent with findings from study 1, UFOV performance 

and digit span remained correlated with red zone protection. These two predictors 

accounted for 34% of the total variance in mean red zone protection, F(2, 39) = 10.00, p 

< .001, 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = .31. Higher levels of controlled and divided attention as measured on 

the UFOV task corresponded with superior red zone protection, β = .27, t(39) = 2.06, p < 
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.05. Similarly, higher simple digit spans predicted greater red zone protection, β = .46, 

t(39) = 3.50, p < .01. 

Attack efficiency. Recall that in study 1 both UFOV performance and simple digit 

span positively correlated with attack efficiency. In study 2 the relationship between 

UFOV and attack efficiency failed to reach statistical significance. With digit span as the 

only predictor, the model accounted for 12% of the total variance in attack efficiency, 

F(1, 40) = 5.32 p < .05, 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = .10. Digit span remained a positive correlate of 

attack efficiency, β = .34, t(40) = 2.31, p < .05. 

Automation effectiveness. Finally, fixation percentage remained the only 

correlate of automation effectiveness. Fixation percent accounted for 11.2% of the total 

variance in use of the autonomous aids, F(1, 40) = 5.05, p < .05, 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  = .09. As seen 

in the previous study, greater fixations allocated to the messaging interface corresponded 

to greater use of the autonomous aids, β = .34, t(40) = 2.25, p < .05. Although red zone 

protection negatively correlated with automation effectiveness, r(40) = -.31, p < .05, this 

measure was not included in the predictive model because it measures primary 

performance and does not reflect individual differences. 
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Table 5. Study Two: Multiple Regressions Predicting Performance 

 

Variable B SE B β t 2

adjustedR  

     

Mean Red Zone Protection     .31 

UFOV 0.004 0.00 .27 2.06
*
  

Digit Span 0.002 0.00 .46 3.50
**

  

      

Mean Attack Efficiency     .10 

Digit Span 0.00 0.00 .34 2.31
*
  

      

Mean Aid Effectiveness -      .09 

Fixation Percent 1.47 0.66 .34 2.25
*
  

*
 p < .05. 

**
 p < .01 *** p < .001.      

 

 

Discussion 
Based on the finding that eye fixations on the messaging interface predicted use 

of the autonomous aids in study 1, we designed the second study to increase eye fixations 

to this interface. We hypothesized that this increase in eye fixations would result in an 

increase in use of the autonomous aids. To direct more fixations to the interface we 

incorporated an auditory chime and visual flicker with each incoming message. This 

redesigned interface did not affect primary performance metrics like red zone protection 

and attack efficiency. Furthermore, the task load and level of automation effects observed 

in the preliminary study and study 1 persisted in study 2. Red zone protection and attack 

efficiency remained higher in low task conditions compared to high task conditions. 

Participants also better protected the red zone when given one automated aid as opposed 

to when they were given two. The interaction effect between level of workload and level 
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of automation on red zone protection presented once again. The performance decrement 

with two aids was larger in the high workload condition compared to the low workload 

condition.  

In regards to use of automation, the interaction effect between level of workload 

and level of automation on automation use in study 2 replicated the interaction effect seen 

in the preliminary study and study 1. In low task conditions, participants used the aids 

more when they were given two aids compared to when they were given one aid. 

However, in high task conditions participants used the aids more when given only one aid 

compared to when they were provided two aids. In other words, when participants most 

needed the aids (under more significant workload) they relied less on the aids meant to 

assist them.  

Although level of workload and level of automation interacted in similar ways to 

impact automation use in all three studies, level of workload influenced automation use 

differently in study 2. In the preliminary study and study 1 participants exhibited greater 

use of the autonomous aids in low workload conditions compared to high workload 

conditions. However, in study 2 this effect was reversed; participants used the aids more 

in in high workload conditions compared to low workload (marginal p = .10). It is 

unclear what caused this change in coordination with the autonomous aids. We expected 

the redesign to result in an increase in use of the autonomous aids across both conditions 

of task load and were not expecting a differential impact of the redesign. Considering the 

fact that the addition of the auditory chime and visual flicker to the messaging interface 

failed to increase eye fixations, it is unlikely to have caused this unusual finding. This 
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reversed impact of workload on automation use could be the result of a random effect. 

Although the interface redesign was the only difference between study 1 and study 2, 

there are no theoretical explanations to account for this reversed effect of workload on 

use of the automated aids. 

The redesigned messaging interface did have a significant impact on overall use 

of the autonomous aids. Contrary to our hypothesis, we discovered that participants used 

the automated aids 7% less in study 2 than they did in study 1. We expected that the 

addition of the auditory and visual cues to the messaging interface would increase 

fixations to the interface and promote a subsequent increase in participant coordination 

with the autonomous aids. However, the redesign did not affect fixation percentage on 

the interface. In both studies participants spent three percent of total fixations on the area 

of interest containing the messages. Despite allocating an equal proportion of eye 

fixations to the messaging system, participants in study 2 exhibited greater disuse of the 

autonomous aids. One possible explanation for this reduction in automation use is that the 

introduction of the chime and flicker to the messaging system could have distracted 

participants and reduced their ability to coordinate efforts with the aids. It is possible that 

the additional auditory and visual activity added to the cognitive load of participants 

without changing overall eye movement behaviors. Further investigation of the redesign 

is required to test this hypothesis. However, obtaining an empirical measure of cognitive 

load/distraction would require the collection and analysis of physiological measures to 

avoid the introduction of subjective surveys or intrusive secondary tasks. Using 
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physiological measures as an index of cognitive load is a laborious process riddled with 

its own set of limitations due to individual differences.  

Another explanation for the decreased use of the autonomous aids in study 2 

relates to the unexpected negative correlation between red zone protection and 

automation effectiveness. This negative relationship describes operators that successfully 

defended the red zone without needing to coordinate their efforts with the autonomous 

aids. Because there was no negative cost to not coordinating with the aids, these operators 

most likely made a conscious decision to disuse the aids and engaged more enemies on 

their own than was necessary. Although we designed the tasks to reflect high task load to 

encourage automation use, it may not have been difficult enough for these over achievers. 

Further research should investigate if these high performers possess high or low working 

memory spans and examine their data separately from users who disuse automation 

because of inefficient attention allocation or work overload. 

Although the redesign impacted the nature of automation use, it did not affect the 

predictive nature of the individual difference measures. Once again, participant Aospan 

scores did not correlate with any primary performance measures or use of automation. As 

with study 1, working memory scores only correlated with simple digit scores. More 

interestingly, study 2 replicated the finding that simple digit spans positively correlated 

with and predicted red zone protection and attack efficiency. Controlled attention as 

measured via UFOV remained correlated with red zone performance in study 2, but was 

no longer correlated to attack efficiency. These relationships suggest that primary 

performance on complex command and control tasks requires both simple short term 
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memory and controlled attention. Measuring these individual differences provide 

predictive value for future tasks and merit further investigation. The practical 

implications of these results should also be explored to determine if training short term 

memory and controlled attention can improve command and control performance. 

However, in terms of use of automation the only predictor in both studies 1 and 2 

remained average fixation percentage on the messaging interface. The individual 

differences governing automation use/misuse are largely dependent on the specific 

context of the task are more complex that can be fully understood by this series of 

experiments.  
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CONCLUSION  

Through these experiments we sought to: 1) better understand how differences in 

working memory capacity influence human-automation interactions in a simulated air 

defense task and 2) investigate if automation redesign can mitigate differences in 

automation misuse caused by working memory deficiencies.  

In regards to the first goal, unfortunately these studies were inconclusive in 

explaining the relationship between working memory capacity and automation use. In the 

preliminary study differences in working memory capacity correlated with automation 

use. However, this correlation did not replicate in studies 1 or 2. Nevertheless, we 

observed two notable related findings that merit further investigation. Firstly, although 

WMC did not correlate directly with primary performance or automation use, we found 

that differences in short term memory provided predictive value for primary performance. 

In other words, differences in phonological loop capabilities also influenced performance 

on complex cognitive tasks, not just controlled attention. Differences in short term 

memory and their contribution to higher level tasks have been discounted by Engle 

(2002) and Kane et al. (2001). Yet, in both studies 1 and 2 simple digit spans explained 

additional variance in red zone protection and attack efficiency above and beyond the 

variance that controlled attention (via UFOV) explained alone. Future studies should 

investigate if training short term memory can improve performance of command and 
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control tasks. If this relationship between short term memory and primary performance is 

replicated and better understood, practical applications related to personnel selection and 

training should also be explored.  

Secondly, these experiments revealed that we could use eye tracking measures to 

predict automation use. Despite the fact that WMC did not predict automation use, eye 

fixation percentage on the messaging system consistently correlated with automation use 

in both studies 1 and 2. In fact, eye fixation percentage explained between 11 and 21 

percent of the variance in automation use. This provides evidence for real-time 

unobtrusive eye measurements as a means to monitor automation use. System designers 

can implement interventions to maintain automation use within predetermined ranges by 

using eye movements as a more continuous measure of automation use. This measure 

could be particularly helpful in automation that is communicated and implemented in 

multiple stages with varying levels. For example if an automatic braking system needs 

prior user approval or operator input before being executed, eye tracking measures to the 

first stage of the automation can alert potential disuse in the second stage of execution. 

Although our redesigned interface did not successfully increase eye movements, other 

redesigns may prove more successful. 

In regards to exploring if automation redesign can mitigate automation disuse, 

again our findings were inconclusive. However, an important lesson was learned. We 

discovered that redesigning an automation interface does not always produce the 

outcomes expected. In fact, we saw that our redesign resulted in unanticipated changes in 

user behavior (Parasuraman & Riley, 1997). In study 1 we found that eye fixation 
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percentage on the messaging interface was the only predictor of automation use. 

Therefore, in study 2 we redesigned the messaging interface to increase these fixatio ns by 

adding an auditory chime and visual flicker to the interface. In simple tasks the addition 

of an auditory and visual cue would undoubtedly result in more fixations to the cue. 

Thus, we hoped this would encourage increased fixations to the messaging interface and 

subsequently increase use of the autonomous aids. However, the addition of an auditory 

chime and visual flicker to the messaging system did not increase eye fixations to the 

interface and, in fact, decreased use of the automated aids. We can only speculate as to 

why this happened. One theory to explain this reduction in automation use is that the 

redesign may have added cognitive load to the participants by introducing a visual and 

auditory distraction. This theory requires further investigation, but provides an example 

of Parasuraman and Riley’s (1997) warning that automation (and its redesigns) can 

change the way human interact with systems in unintended ways.  

Limitations and Future Research 
Overall the findings from these studies reveal the multifaceted relationship 

between WMC, complex decision-making processes like command and control tasks, and 

automation use. These relationships are not as straight forward as the stable correlations 

found between WMC and other cognitive tasks (e.g. reading comprehension). Many 

potential factors must be accounted for to fully understand how WMC contributes to 

automation use. Some of these factors include: trust in the automation; the user’s 

confidence in his/her abilities compared to the automation; and abilities and skills of the 

user such as spatial span, mental rotation, and video game experience. These factors are 
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complicated by the fact that many of these variables interact with each other. For 

example, some participants exhibited very high red zone protection (primary task 

performance) and high WMC with little to no use of the autonomous aids (as see in study 

2). In this example, misuse of automation may have been the result of a conscious 

strategy and less related to WMC. Because there was no direct negative cost of misuse of 

automation in our paradigm, this strategy was not necessarily a bad one. Therefore, future 

studies should incorporate user interviews to understand the motivations behind 

automation use and design the automation so there is a more dependent reliance on 

automation use and successful primary task performance (e.g. incorporate a cost of 

disuse). Recall that operator skill on the primary task predicted use of automation in both 

the preliminary study and study 2. Therefore, skill level should be controlled for when 

exploring individual difference measures and how they predict automation use. 

Furthermore, other individual difference measures such as spatial span and video game 

experience should be collected to investigate other predictors of automation use.  

Despite these limitations and unexpected findings, this series of studies reinforces 

the importance of individual differences, including short term memory, on primary task 

performance, provides evidence for eye movements as a continuous measure of 

automation use, and serves as an example of how automation design (and redesign) can 

result in unintended user behavior.  
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