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ABSTRACT 

IMPROVING IOT CONNECTION RESILIENCY IN WIRELESS NETWORKS 

Hieu Thanh Nguyen, M.S. 

George Mason University, 2022 

Thesis Director: Dr. Bijan Jabbari 

 

Internet of Things (IoT) wireless network is expected to connect billions of IoT 

devices in the next period of modern technologies. This is because IoT applications have 

more and more applicability in various fields, including services, health, agriculture, and 

so on. However, along with the significant benefits, IoT requires low-latency and high 

resilience of wireless communications in order to maintain a high quality of service. IoT 

networks should constantly maintain a high level of resilience in wireless communication 

in order to sustain the increasing number of new IoT devices connected to the networks. 

Since IoT networks consist of thousands of devices sharing the frequency spectrum in a 

given local area, IoT networks also address the problem of wireless interference that results 

in link degradation and low network connectivity. Therefore, the performance of In this 

thesis, we propose two technical solutions to improve the resilience of communications in 

IoT networks by suppressing wireless interference.  



 
 

We develop our system models that represent the interference with IoT network 

access and elements of graph theory for improving the resilience of connections. Our 

system models include node distribution following Point Poisson Process, wireless 

network as a graph, modeling interference in IoT network access, node criticality, and 

elasticity theory. Then, we utilize these models in our proposed solutions for improving 

the resilience of wireless communications.  

 In order to avoid channel interference, we implement an algorithm based on the 

concept of graph theory to efficiently allocate channels used by IoT devices in the network. 

We observe that the number of colors labeled for each node can be minimized by 

eliminating several less important nodes, but it is a trade-off between color reduction and 

network connectivity. Also, we propose an additional solution using deep deterministic 

policy gradient (DDPG) based on graph coloring to determine the minimum number of 

colors used. 

 Our simulation results indicate that the gain of eliminating the least important nodes 

is color reduction, but depending on each particular wireless network, the solution can 

achieve a high probability. Another proposed solution is to determine the chromatic 

number by using deep reinforcement learning-based channel allocation. Although several 

nodes in the network have the same colors, which leads to invalid/disconnected links, the 

number of colors using the DDPG algorithm is always smaller than the greedy coloring 

algorithm. 
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CHAPTER 1: INTRODUCTION 

1.1 OVERVIEW OF IOT NETWORKS AND MOTIVATION 

The growth of the Internet of Things applications has brought human beings to the 

next period of modern technologies, coming along with massive benefits in our daily 

activities. Internet of Things (IoT) is a system of physical objects combined with various 

sensors, software, processing data, and other technologies that have the ability to exchange 

data over a network without requiring human-to-human or human-to-computer interaction 

[1]. IoT has an ecosystem consisting of multiple web-enabled smart devices that collect, 

transmit, and analyze the data over a network because most of the IoT devices are assigned 

an Internet Protocol (IP) address. Sometimes, instead of the IoT devices using the Internet 

to transfer data, these devices also have the ability to communicate locally. Multiple smart 

devices can collaborate for the efficiency of productivity. The IoT applications are enabled 

by the latest technologies in Radio Frequency Identification (RFID), sensors, and 

protocols. With the diversity of modern technologies, the IoT can take advantage of the 

evolving new applications that are enabled by intelligent decision-making [2]. 

Within the century of digital transformation and the Age of Industry 4.0, an IoT 

network is expected to connect billions of IoT devices and provide users with the best 

Quality of Services (QoS) in data transmission, computation, and storage. Compared to the 
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previous 4th Generation (4G) cellular network, in the 5G cellular network, 500 times more 

IoT-connected devices can operate effectively and reliably [3]. Ergun et al. have stated a 

prediction that by 2025 the number of IoT-connected devices will reach up to 40 billion, 

and the IoT applications have received much attention from investors [4]. As a result of the 

massive numbers of IoT devices connected to the network, the requirement of resilience, 

low latency, and efficiency in wireless communication has been increased to meet the 

demand of the users, as well as the high demand of network traffic. In addition, a wide 

range of communication protocols is available to enable various IoT applications. 

Therefore, IoT network management is also crucial to ensure that this network can meet 

all the requirements. Network management in IoT networks is characterized by scalability, 

fault tolerance, QoS, energy efficiency, security, and self-configuration. 

In order to utilize wireless networks to meet the requirement and the demand of the 

users, four types of wireless networks are commonly used. These networks are Wide Area 

Networks (WANs), Local Area Networks (LANs), Metropolitan Area Networks (MANs), 

and Personal Area Networks (PANs). They include a wide range of recent wireless 

technologies from decentralized networks to centralized networks. 

A cellular network (i.e., 2G, 3G, 4G, 5G, and NextG technologies), which is one of 

the most common networks of wireless WANs, has received much attention from 

researchers to successfully adapt to IoT networks. Compared to LANs, MANs, and PANs, 

cellular networks provide users with a service to access and connect to others over further 

distances in a larger network. In end-to-end communications of these networks, the user 
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devices are required to maintain the connectivity to a base station, which uses radio 

frequency antennae to transmit the signals to other wireless devices. Base stations (BSs) 

have a responsibility to serve as a central point for receiving and transmitting signals 

between wireless devices to communicate. Since all wireless devices need to transmit and 

receive the signals over a base station, the QoS and performance of a wireless network can 

depend on a base station’s capabilities, such as transmission power, spectrum, and channel 

availability. However, although cellular networks have a high capacity, as well as 

availability, IoT applications may encounter various challenges if adapted to the cellular 

network. First of all, the network infrastructures to deploy cellular technologies are 

expensive. Moreover, if the IoT network consists of thousands of IoT sensors operating 

simultaneously, the power consumption to transmit the signals is expected to be extremely 

high. 

IoT networks take advantage of wireless technologies to maintain connectivity and 

resilient communication not only between devices but also between devices and the edges 

or the cloud. Unlike the other networks, IoT networks are available for IoT devices or IoT 

sensors to automatically transmit the data in real-time to IoT applications. In a cellular 

network, wireless devices are required to connect to a base station for communications. 

However, IoT networks can have both device-to-device and device-to-base station 

communications. Since such networks are heterogeneous and dynamic, IoT networks take 

advantage of various wireless networks (for example, Wi-Fi and Bluetooth) in order to 

optimize the performance of each link of the network. Maintaining a high level of IoT 

communication networks is dependent on various factors, some of which are objective 



4 
 

(e.g., network traffic and network latency), and some of which are subjective (e.g., 

transmitted power, channel interference, and the number of devices on the network). 

However, we will discuss three major concerns of IoT networks that all IoT applications 

have to encounter: resilience, latency, and efficiency. An example of an IoT network 

architecture is demonstrated in Figure 1.1. The IoT network architecture does not deploy 

only one type of wireless network. Multiple wireless networks can collaborate for 

transmitting data from local areas to global ones. 

  

 

Figure 1.1: IoT Network Architecture 
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1.2 PROBLEM STATEMENT AND PROPOSED SOLUTIONS 

The applications of IoT have increasingly become an important part of our lives 

because of their incredible benefits, such as healthcare monitoring, smart city designs 

(smart building and smart grid), autonomous vehicles, and so on. Along with the wide 

coverage of IoT applications, IoT network protocols, which are used to communicate and 

transmit the data, must optimize higher resilience and efficient paths with minimum latency 

to send the information between nodes.  

1.2.1 Resilience 

 According to network perspectives, a resilient system can be defined as a system 

that has the ability to immediately recover to normal after the network has suffered cyber-

attacks, node failures, or hardware issues. The self-recovery systems can not only provide 

normal services immediately after the threats occur but also identify vulnerable parts of the 

network [5]. In IoT networks, there are many IoT applications, which are required to 

operate in real-time. Thus, archiving the resilience of the communication system is crucial 

for successfully deploying and operating an IoT application. The principles of a resilience 

strategy for real-time networked systems must follow the framework: defend, detect, 

remediate, recover, diagnose, and refine [6]. In [7], Sterbenz has proposed “islands of 

resilience and corridors of resilience” to achieve resilience in a complex multilevel 

structure of the IoT network. To conclude, resilience is one of the most important 

characteristics of IoT networks to avoid the unavailability of IoT applications. 
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1.2.2 Latency 

Network latency describes delays in communication over a network. It sometimes 

takes longer than expected time to transmit the packets of data from the source to the 

destination. The possible causes of network latency are overloaded network traffic, 

selection of transmission mediums, round trip time, and so on. With the emergence of IoT 

applications in terms of latency and reliability in communication networks, reducing 

latency needs to take priority to order to maintain the QoS of IoT applications. In recent 

years, many applications of IoT networks, such as self-driving vehicles, smart grids, and 

live streaming applications, may require Ultra-Reliability Low-Latency Communications 

(URLLC). URLLC is one of the most innovative technical approaches that is supported by 

5G technologies. For low latency in wireless communications, some perspectives, 

including packet length, transmitters/receivers, and access protocols, need to be 

considered. For example, latency mainly depends on packet length because shorter packets 

can be processed more quickly than longer packets. The transmission delay, propagation 

delay, nodal processing, and queueing can be significantly reduced when simple and short 

packets are transmitted between the nodes. However, reliability and latency may be a trade-

off because reducing the packet size for low latency can lead to decreased reliability [8]. 

In some IoT networks, the total transmission delay must be guaranteed in an interval time. 

Therefore, many latency reduction techniques have been proposed and published by 

researchers. Third Generation Partnership Project (3GPP) [9, 10] has stated that optimizing 

latency in wireless communications is a part of the evolution of 4G and LTE networks. In 

[11], the authors have demonstrated two potential latency reduction techniques for NB-
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IoT. These are short transmission time intervals and semi-persistent scheduling. 

Ultimately, low latency is a desirable goal for all wireless networks to achieve because it 

provides a better experience for users. 

1.2.3 Efficiency 

In terms of efficiency in IoT network communications, we may need to take into 

account a variety of perspectives, such as energy or spectrum. However, this section will 

focus on the spectrum efficiency of IoT networks. When the number of nodes increases in 

the network, the number of required spectrum frequencies also increases. Therefore, it 

causes the spectrum frequencies (i.e., network channels) to be increasingly scarce. Similar 

to most existing wireless networks, IoT networks have to optimize spectrum efficiency. 

The spectral efficiency of wireless networks can be divided into two strategies. The first 

strategy is to deal with channel interference when two nodes are using the same channel to 

transmit the signals. The method must be applied to properly use available channels in the 

network to limit the negative impact of the interference. For example, by using power 

domain non-orthogonal multiple access multiplexing, Khan et al. have provided a novel 

resource management strategy to increase the overall spectrum efficiency in IoT networks 

[12]. Next, the second strategy is to detect both external and internal interferences 

occurring, called spectrum sensing. One example of spectrum sensing used to improve 

channel selectivity is demonstrated in [13]. To sum up, the efficiency of IoT networks is 

required to achieve for IoT applications to provide clients with the best service. 
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1.2.4 Proposed Solutions 

In this thesis, we focus on improving the performance of IoT wireless networks. 

We must assure that high network connectivity and a low probability of the network being 

disconnected need to be achieved. In other words, no node is separated or unreachable from 

the network. Moreover, the links between each node (i.e., IoT device) must be operated 

effectively to supply enough connections in the network. Hence, in order to maintain a high 

level of network connectivity and overall performance, we propose a technical solution to 

effectively allocate channels of the network using the concept of graph theory. It is called 

graph coloring, where two adjacent nodes must use the distinct frequency spectrum for 

transmitting the signals. We then indicate the importance of the nodes in the network by 

measuring the eigenvector centrality scores. Based on the node centrality and the graph 

coloring, we next eliminate the least important nodes of the network to avoid interference. 

The concepts of graph coloring, eigenvector centrality, and node elimination will be 

presented in Chapter 3, and the simulations are done in Chapter 5. 

In the real world, the nodes distribution (i.e., IoT devices distribution) is dynamic 

and unpredictable because of their mobility. It is important to keep updating a new network 

strategy in real-time. In other words, the routing optimization must change based on the 

status of the network at that time. Therefore, we also propose an additional solution for 

channel allocation using machine learning-based graph coloring, which can learn from the 

historical data and update a new strategy in the IoT network to optimally utilize the number 
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of available channels. We will discuss more details of the machine learning (ML) technique 

in Chapter 4 and the simulation in Chapter 5.       

1.3 OUTLINE AND CONTRIBUTION OF THESIS 

In this thesis project, we will implement a graph coloring approach for channel 

allocation in IoT networks. In addition, we propose machine learning-based graph coloring 

to optimize the resilience of the networks and maintain the QoS for IoT users. 

 In Chapter 2, we address the problem which can negatively impact IoT networks – 

wireless interference. Furthermore, we present some prior research to solve the IoT 

problems that can degrade the performance, as well as network connectivity. Lastly, we 

give a discussion of our solution approaches to avoid interference in IoT network access. 

 Chapter 3 demonstrates the graph coloring-based channel allocation. In addition, 

we present system models used to run our simulations and obtain the simulation results. 

We will present the following perspectives in the system models: node distribution using 

Point Poisson Process, graphs as wireless network models, modeling interference in IoT 

networks, node criticality, and elasticity theory. Our approach to suppress channel 

interference is eliminating the less important nodes from the network. 

 In Chapter 4, we introduce deep reinforcement learning-based channel allocation. 

The background of deep reinforcement is provided to deeply understand all required 

components that need to be defined. Also, we demonstrate the deep learning network 
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process to train a model. Accordingly, we define our system model with the state, the 

action, and the reward corresponding to wireless networks. 

 Chapter 5 demonstrates several perspectives of our system model. Next, we 

introduce a graph coloring algorithm for solving channel allocation in IoT networks. We 

discuss the graph coloring theory and a greedy graph coloring algorithm that is used to 

determine the chromatic number of a graph. Based on the graph coloring implementation, 

we reduce the number of colors labeled by applying node importance. In addition, the 

concept of a deep neural network is discussed before we propose our solution for channel 

allocation using deep reinforcement learning-based graph coloring in an IoT network. Also, 

using our approaches can increase and maintain a higher level of resilience in IoT networks. 

 Finally, in Chapter 6, we analyze our simulation results and arrive at our main 

conclusions about our contributions. In addition, we provide some suggestions for future 

research based on what we have done.  
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CHAPTER 2: INTERFERENCE IN IOT NETWORK ACCESS 

2.1 INTRODUCTION 

Outside interference in wireless networks, including IoT networks, is one of the 

most challenging obstacles to overcome. Interference has received much attention from 

researchers because network performance is influenced by this factor. Interference occurs 

when two or more devices transmit or receive a wireless signal using the same frequency 

spectrum. The quality of the wireless signal may be degraded due to network interference. 

Channel interference may come from common sources like Bluetooth devices, wireless 

video cameras, cellphones, and so on. Specifically, for IoT networks, since there are many 

IoT devices or sensors autonomously operating in a particular area to collect and transmit 

the measured data, wireless interference is a major problem, which prevents wireless 

communication between each node (i.e., IoT devices). In this thesis, we divide interference 

into two categories: external interference and internal interference. External interference is 

caused by devices coming from outside our network, while internal interference is caused 

by devices in our network. Therefore, external interference is more difficult to manage and 

reduce the interfering problem than internal interference. IoT devices that are participating 

in the network cause internal interference because they may use the same channel to 

transmit the data. In practice, wireless interference cannot be eliminated in the network. 

We can limit the adverse consequences of channel interference by channel allocation. 

To solve the interfering problem of wireless networks, the devices must avoid 

transmitting and receiving the signals using the same frequency channel. In other words, 
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adjacent nodes must use different frequencies to send and receive wireless signals. Since 

the network channel (i.e., bandwidth) is a scarce resource, it is important to efficiently 

allocate the channel in the network to maintain the availability and maximize the resilience 

of the network connectivity. Therefore, the detection of interference is an applicable 

approach to avoid the channels that have been already used by other nodes. Therefore, 

channel allocation and interference detection approaches are generally proposed as a way 

of improving channel interference in the network. 

Regarding external channel interference, since we cannot manage the components 

belonging to an outside network, including physical hardware (e.g., servers, routers, 

transmission medium, connecting devices, etc.) and software (e.g., operating system and 

network protocol), it is more feasible to avoid the channels that have been already taken by 

detecting and analyzing interference of other wireless networks. In particular, spectrum 

sensing is an effective technique for the detection and analysis of channel interference. 

Wireless interference is detected by hypothesis testing, which evaluates the presence and 

absence of the observed signal by comparing it to a pre-established threshold. If the output 

obtained from the observed signal is greater than the threshold, the presence of the signal 

is assumed. On the other hand, the absence of the signal is assumed if the output of the 

observed signal is less than the threshold. The general model of spectrum sensing is 

illustrated in Figure 2.1: 
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Figure 2.1: General Block Diagram of Spectrum Sensing 

 

There are three common types of spectrum sensing approaches as follows: 

• Feature Detection: According to [14], the principal technique of feature detection 

is finding particular statistical features in a given communications signal. These 

features usually have repeating characteristics in many telecommunication signals. 

The theoretical knowledge of second-order statistics, which is derived from the 

autocorrelation function, is applied to design a feature detector for spectrum 

sensing. 

 

• Energy Detection: Energy Detection is one of the simplest approaches for 

detecting channel interference. The operation of energy detection is to use received 

signal power for identifying the presence or absence of a signal. The principle of 

this approach is to compare the average energy of IoT devices with the threshold 

value. The average energy of IoT devices can be computed by the following Figure 

2.2 [15]: 
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Figure 2.2: Energy Detection Block Diagram 

 

In the diagram, the signal is represented by  𝑦(𝑡). The bandpass filter is used to 

capture the signal within an observed range of frequencies while eliminating 

unwanted frequencies of the signal. Then, the signal is squared for calculating the 

average energy of the signal. 

 

• Matched Filter Detection: This approach firstly requires a matched filter based on 

the primary signal. Consequently, the matched filter detector needs to have prior 

knowledge of the primary signal. The matched filter correlates the input signal with 

time-shifted, and then the outcome is used to compare with the threshold in order 

to determine the presence or absence of the observed signal. The matched filter can 

perform well when the cognitive radio has a priori knowledge of primary waveform 

systems. Therefore, the results of the matched filter detection are not accurate if the 

provided information of primary signal systems is marginally incorrect [16]. The 

general model of matched filter detection is illustrated in Figure 2.3. 
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Figure 2.3: General Model of Matched Filter Detection 

 

 When it comes to internal interference, channel allocation is one of the best 

solutions. After we eliminate the channels that cause external interference, we can obtain 

a list of available channels that the nodes of the network can use to transmit or receive 

wireless signals to avoid interference. In order for all nodes to be assigned to channels, 

allocating the available channels needs to be optimized, but it must not cause interference. 

Three possible scenarios may happen when the channels are allocated to each node of the 

network: 

1. The number of available channels is fewer than the number of channels 

needed. In this case, the wireless network is disconnected because no channel is 

currently available for the nodes of the network to transmit or receive the data. 

 

2. The number of available channels is greater than the number of channels 

needed. In this situation, we want to optimize the utility of accessible channels by 
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finding the minimum number of channels used to avoid channel interference. The 

network, of course, is fully connected because all nodes are reachable. 

 

3. The number of available channels is equal to the number of channels needed. 

This means the number of channels provides exactly the demand of the wireless 

network. The minimum number of accessible channels is equivalent to the number 

of channels needed. Therefore, the network is fully connected, but in the real world, 

it is not realistic because the number of IoT devices is always much more than the 

number of available channels. 

 

Graph coloring is one of the most common techniques used for channel allocation. 

In Chapter 3, we will introduce graph theory and apply it to the process of allocating 

channels in a wireless network.       

2.2 IMPACT OF INTERFERENCE ON IOT PERFORMANCE 

In the previous section, we introduced the definition of channel interference and 

two technical approaches to tackle the interfering problem in wireless networks. Next, we 

will discuss the consequences of interference in IoT network access. 

 Since IoT nodes usually need to prioritize power efficiency, the power constraint 

restricts the transmitted power of each IoT node. On the other hand, the maximum 

operational distance, which is the maximum distance that a node has the capability to 
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transmit a wireless signal, must depend on the transmitted power of the node. In other 

words, maximum operational distance is directly proportional to transmitted power. 

Nevertheless, in order to maintain a high level of network connectivity so that one IoT 

node can be reachable from any other nodes belonging to the network, a node must have 

at least one link connection with another node. Along with the limited transmitted distance, 

IoT nodes may need to have a high node density to shape a fully connected IoT network. 

However, as the node density of the IoT network increases, the probability of interference 

occurring increases as well. Therefore, all scenarios need to be carefully considered to 

avoid wireless interference in IoT networks. 

 It is evident that the link connectivity of wireless networks plays an important role 

in IoT performance. Interference is one of the major concerns of wireless networks that 

leads to poor IoT performance and a low level of resilience. The actual impact of the 

interference can be degradation of the link performance, as well as node denial, which 

means the node is unable to access the network. In other words, due to channel interference, 

a node can be completely disconnected from the remaining nodes of the IoT network. From 

a wireless network perspective, the network is defined as a disconnected network topology 

when one of the nodes belonging to the network cannot be reachable. Increasing the 

resilience of IoT networks is expected to maintain high link connectivity. Thus, link 

connectivity and resilience of IoT networks are directly proportional to each other. 
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2.3 PRIOR RESEARCH WORKS 

Optimizing the resilient communication of wireless networks has many positive 

effects on various fields, including academia, commerce, and the military. The diverse set 

of wireless technologies can be used to optimize the overall performance of the network. 

In this section, we will review several prior research works which focus on resource 

allocation approaches and graph coloring algorithms for wireless networks. All these works 

aim to improve the resilience of wireless communication by minimizing channel 

interference. 

2.3.1 Resource Allocation Approaches 

In recent years, with the rapid growth of technological advances in wireless 

communications, network optimization has received more attention from researchers. 

Guaranteeing QoS is one of the major concerns for the services in wireless 

communications. Maintaining a high level of performance for wireless communication 

depends on various parameters of the QoS (e.g., data transmission rate, transmission delay, 

throughput, and so forth). Channel allocation is the most common problem in wireless 

communications, including IoT networks. Since IoT applications have increased gradually, 

IoT networks are expected to increase IoT devices, which are required to connect to the 

IoT network. Nevertheless, the number of channels (i.e., bandwidth) is a very scarce 

resource. Effectively utilizing the available channels is necessary to guarantee the 

performance of the links. 
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Traditional Channel Allocation Methods 

In fact, the bandwidth can be divided into a set of available radio channels, which 

are used for communication between IoT devices and base stations. The techniques that 

are used to divide the radio spectrum into different channels are frequency division (FD), 

time division (TD), and code division (CD). In FD, the total bandwidth available is divided 

into a set of non-overlapping frequency bands, which ensures that none of the channels 

have the same frequency bands. TD is a technique for dividing the channel’s signals into 

different time slots for transmitting. In CD, the channel is separated by using different 

coding schemes. Other techniques tend to be designed based on the combination of the 

three techniques mentioned above.  

When it comes to channel allocation, there are three categories of channel allocation 

techniques, which are used widely: statics channel allocation (i.e., fixed channel 

allocation), dynamic channel allocation, and hybrid channel allocation. In fixed channel 

allocation (FCA), the strategy is to allocate the same number of channels to each cell (i.e., 

a node or IoT device) for the channels to be uniform in the network. For example, the FCA 

algorithms are simple borrowing methods and localized channel-sharing methods. In 

contrast to FCA, dynamic channel allocation (DCA) is a technique to encounter a dynamic 

wireless network, in which the nodes (i.e., IoT devices) are not fixed. Hence, the channel 

allocation must consider the current network conditions to optimize the performance. 

Compared to FCA, DCA has a better performance when the network traffic is light. Some 

proposed DCA algorithms are dynamic load balancing based DCA method, dynamic 
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frequency-time channel allocation, and reused partitioning based on dynamic channels 

[17]. 

Separately, many other algorithms of channel allocation have been proposed by 

researchers. Dealing with channel allocation problems in a cognitive radio network, Sharna 

et al. proposed a game theory to implement [18]. Game theory has been applied to various 

areas of human activity, such as economics, finance, regulation, and so forth. The goal of 

the game theory algorithm in a cognitive radio network is to maximize the overall 

performance of the network by achieving a Nash Bargaining solution, which is a fair 

outcome that all players of the game agree. It has three components: 1) a set of players, 2) 

a set of actions, and 3) a utility function. The utility functions are evaluated by the signal-

to-interference-plus-noise ratio (SINR). Furthermore, as stated by [19], Papazoglou et al. 

gives a survey of other channel allocation approaches, including genetic algorithms, swarm 

intelligence, and ant colony optimization. Both methods are based on computational 

intelligence. In other words, the best solutions for the optimization of channel allocation 

can be implemented based on the condition of the network. In addition, Zhang et al. have 

proposed a solution for channel allocation, which is the frequency spectrum division of a 

30-MHz channel. The 30-MHz channel will be divided into three different ranges to use 

on purpose. The priority of network traffic determines which range of the frequency band 

can be assigned. This solution has been applied to car-to-car communication called 

Intelligent Transportation System (ITS), which is a part of the IoT application [20]. 

Resource Allocation-based Machine Learning 
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In recent years, the applications of  ML have encompassed various fields from 

academia to industry. Since ML has high applicability, it has received much attention from 

researchers to improve the performance of existing solutions. Therefore, many works focus 

on developing and implementing ML techniques to effectively allocate resources in 

wireless networks. From a wireless network perspective, resources refer to power, energy, 

time slot, or bandwidth (i.e., channels). Besides that, since wireless networks consist of 

mobile devices, it is difficult to determine the best routing options. However, ML can learn 

from the historical routing paths or collected data to achieve the best solution. In wireless 

networks, there are many different ML applications developed to allocate power [21, 22] 

and channels [23]. In addition, the deep neural network has been successfully applied to 

cognitive radio modulation recognition [24]. In this work, we also develop a deep 

reinforcement learning model to determine channel allocation in IoT networks. 

Regarding channel allocation approaches, adjacent channel interference and co-

channel interference are two major interference problems that need to be taken into 

account. While adjacent channel interference is a result of a signal in an adjacent channel, 

co-channel interference is interference caused by two nodes of the network using the same 

channel to transmit the signals. 

2.3.2 Graph Coloring for Wireless Networks 

One of the potential solutions for channel allocation in wireless networks is using 

graph coloring algorithms. A wireless network can be modelized as a graph with a set of 

vertices and a set of edges (see Figures 2.4 & 2.5). In a modeling graph, a vertex is a node 
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or an IoT device, and an edge is a link, which is used to connect every two vertices. The 

fundamental idea of graph coloring theory is the labeling of vertices or edges in order for 

two adjacent vertices or edges to avoid having the same color. In other words, each channel 

of the network is assigned to each color. The major goal of graph coloring is to minimize 

the number of colors used for labeling vertices or edges. The smaller number of colors, the 

smaller number of channels that are used to transmit data in the network. Since minimizing 

the number of colors is an NP-hard problem, almost all available graph coloring algorithms 

are sub-optimal solutions, and they have a high level of complexity. In graph theory, the 

minimum number of colors needed to label all vertices is called the chromatic number. In 

past decades, various researchers have proposed different graph coloring algorithms to 

optimize and determine the chromatic number. These proposed methods for graph coloring 

are edge table scheme [25], algorithm ECG [26], Dsatur [27], tabu search [28], simulated 

annealing [29], and greedy algorithm [30]. 
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Figure 2.4: Fully Connected Wireless Network as Graph 𝐺 
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Figure 2.5: Disconnected Wireless Network as Graph 𝐺 

 

When it comes to graph coloring algorithms in wireless communications, their 

typical applications are graph coloring-based spectrum sharing [31, 32] and resource 

allocation based on graph coloring [33, 34, 35]. More discussion of graph coloring will be 

provided in Chapter 3, and our simulations for channel allocation using the graph coloring 

algorithm will be in Chapter 5. 
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2.3 SOLUTION APPROACHES 

 We have discussed the constraints of IoT networks, as well as some existing 

technical solutions to solve these problems. IoT networks may contain thousands of nodes, 

which can transmit between the source and the destination using other nodes as relays. 

Since this concept is a particular situation of wireless multi-hop networks, in this thesis 

project, we will focus on a multi-hop network. In general, a multi-hop network uses a single 

spectrum frequency for all nodes and enables spectrum sharing in case of a multiple access 

approach. Nonetheless, this approach leads to interference across the network. Thus, the 

network connectivity can be degraded, and the network cannot provide a high level of 

resilience. Figure 2.6 illustrates an example of a multi-hop IoT network. In this project, we 

have attempted to answer the problems of channel allocation to avoid channel interference. 

Hence, some questions have arisen: How do we ensure that the channel allocation over the 

network is optimal? How do we ensure that any solutions deal with a dynamic and 

heterogeneous wireless network like an IoT network? How do we ensure that interference 

over the network minimizes? 
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Figure 2.6: Multi-hop Routing 

 

  Our proposed solutions require that each node sends and receives on multiple 

channels (i.e., spectrum frequencies), and no two adjacent nodes use the same channel. We 

propose two different approaches based on graph coloring. The first approach is to 

implement the greedy graph coloring to determine the number of channels assigned to each 

node. We then decrease the number of channels (i.e., minimize interference) in the network 

by reducing the least important nodes. The second approach we propose is combining deep 
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deterministic policy gradient and graph coloring to efficiently allocate available channels 

in the network. Relied on the power of ML, the number of channels can be efficiently 

allocated to each node in order to avoid channel interference. 
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CHAPTER 3: GRAPH COLORING-BASED CHANNEL ALLOCATION 

3.1 INTRODUCTION 

In order to address our issue of enhancing the network connectivity of an IoT 

network, we concentrate on frequency diversity, which allows the same message signal to 

be transmitted using multiple carrier frequencies [36], by channel allocation. By varying 

the frequencies that the network uses, this strategy improves network connectivity while 

reducing interference risk. 

In wireless networks, optimal resource allocation is important for effective wireless 

spectrum use. This is still the case for either homogeneous or heterogenous wireless 

networks. Network resource refers to the bandwidth and the power that is assigned to users 

to transmit their data between the source and destination [37]. Therefore, resource 

allocation aims to distribute radio frequencies to specific individuals in a way that 

maximizes system capacity while maintaining the quality of service. 

There are many different techniques to allocate network resources. One common 

resource allocation approach is a wireless network using only a single frequency spectrum 

to distribute to all nodes in the network. Nonetheless, sharing a frequency spectrum in the 

network can increase the risk of interference, as well as multiple access problems. Another 

straightforward approach is to share the total bandwidth W that is available equally across 

N nodes in the network. As a consequence, each node has 𝑊
𝑁

  Hz of bandwidth. However, 

since the spectrum resource is scarce, this approach may encounter a problem regarding 
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scalability in a large wireless network. Practically, the number of available channels may 

not have enough to allocate to all nodes. Therefore, we assume that the number of nodes 

in the network is much more than the number of channels available. Channel allocation 

now can turn into an optimization problem in mathematics. In this chapter, we describe 

various aspects of our system model in more detail, including node distribution,  graphs as 

wireless network models, modeling interference in IoT networks, node criticality, and 

elasticity theory. 

3.2 SYSTEM MODEL 

 In the previous chapters, we have described our system model at a high level, which 

focuses on improving the high level of network resilience for IoT networks, as well as 

maintaining the QoS. Therefore, in order to achieve this goal, we need to avoid channel 

interference between IoT devices of the network. To put it differently, effectively 

allocating channels in the network can minimize network interference. In this section, we 

next describe various aspects of our system model in more detail, including node 

distribution,  graphs as wireless network models, and node criticality. 

3.2.1 Node Distribution 

 In general, wireless networks are dynamic and unpredictable because the locations 

of the nodes keep changing over time. Therefore, we have decided to use the Poisson Point 

Process (PPP) to assign the distributed locations of the nodes in the wireless network. We 
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assume that in a given area 𝐴 ∈  𝑅2 the N nodes are distributed following the PPP process. 

The probability 𝑃(𝑁) that N nodes are allocated in A is expressed as follows: 

 𝑃(𝑁) =  
(𝜆𝐴)𝑁𝑒−𝜆𝐴

𝑁!
 (3.1) 

From Equation (3.1),  𝜆 is the node density in a unit area of the network. The node density 

represents the relationship between the location and activity of the nodes in the network 

[38]. Accordingly, the node density is directly proportional to the number of nodes in a 

given area. It is also clear that the initial value of the node density that we have assigned 

plays an important role in analytical and simulated calculations. Figure 3.1 illustrates an 

example of a wireless network with 45 nodes distributed using PPP in a given area of 

100,000 m2. 
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Figure 3.1: Node Distribution using Point Poisson Process 

 

Each wireless network has a specific range of operation, within which the antennas 

can have enough transmission power to transmit the data from the source to the destination 

in the network. For example, routes in a Wi-Fi network normally operate for point-to-point 

communications in a maximum range of 50 meters. Another example is an Ad Hoc 

network, which is a type of LAN. In the Ad Hoc network, the operational range is 

approximately 100 meters, which is capable to transmit data longer than the Wi-Fi network. 

An IoT device can have a link to another device only if they are in the operational range of 

each other. On the other hand, the distance between every two nodes (i.e., IoT devices) can 
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be used to compute the power consumption and the signal-to-interference-plus-noise ratio 

(SINR). 

3.2.2 Graphs as Wireless Network Models 

 In communications, mathematical graphs are used to represent wireless 

communication networks with a set of vertices and a set of edges. In the graph, a set of 

vertices V represents a set of nodes (i.e., IoT devices), while communication links between 

each node are represented by a set of edges E. We assume that undirected graphs, in which 

all the edges are bidirectional, are used in this project. An example of a wireless network 

graph is demonstrated in the following figure: 

 

 

Figure 3.2: A Wireless Network Graph 
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According to Figure 3.2, the network graph consists of a set of vertices is 𝑉 =

{A, B, C, D, E, F} and a set of edges is 𝐸 =  {1, 2, 3, 4, 5, 6, 7}.  

 In graph theory, there are a variety of ways to critically analyze graphs, such as 

degree matrix, transition matrix, adjacency matrix, and incidence matrix. An adjacency 

matrix is a squared matrix, which is used to demonstrate the relationship between nodes 

and how the communication links are used to connect them together. With the network 

consisting of N nodes, we can have a list of nodes { node 1, node 2, node 3, … node N}. 

Additionally, we can have its adjacency matrix 𝐴𝑁×𝑁 as follows: 

𝐴𝑁×𝑁  =  [

𝐴11 𝐴12 ⋯ 𝐴1𝑁
𝐴21 𝐴22 ⋯ 𝐴2𝑁
⋮ ⋮ ⋱ ⋮

𝐴𝑁1 𝐴𝑁2 ⋯ 𝐴𝑁𝑁

] 

To simplify, the adjacency matrix can be expressed as the following equation: 

 𝐴𝑖𝑗  =  {1, 𝑖𝑓 𝑖𝑗 ∈ 𝐸 (𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (3.2) 

where 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑁. For example, the adjacency matrix of the wireless 

network in Figure 3.2 is the squared matrix as follows: 

𝐴6×6 =  

[
 
 
 
 
 
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
0 0 1 0 0 1
0 0 0 0 1 0]
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The diagonal of this adjacency matrix has all zeros. It means that none of the nodes do have 

a loopback connection. In addition, the adjacency matrix is symmetric. 

Based on the adjacency matrix which represents the link connections between 

nodes, we also define the maximum operational distance which is the maximum distance 

that a node can transmit or receive the signal to/from any node. Therefore, the definition 

of a maximum operational distance matrix D can be derived as follows: 

 𝐷𝑖𝑗 =  {
𝑑𝑖𝑗, 𝑖𝑗 ∈ 𝐸 (𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡) 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.3) 

Similar to the adjacency matrix, the maximum operational distance matrix has the same 

properties. However, the only difference between the two matrices is that the maximum 

operational distance matrix determines not only the connections between nodes but also 

the distance of these connections. 

3.2.3 Modeling Interference in IoT Networks 

Next, we will demonstrate the general model of interference on IoT networks. This 

model will greatly contribute to channel allocation. Also, this model is one of the parts that 

are used to evaluate the performance of our system later. 

 Since a multi-hop network is one of the most common wireless networks that are 

used in IoT networks, we have applied the characteristic of the multi-hop network in our 

system model. In the multi-hop network, any destination node can be reached from a source 
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node by using other nodes as relays. Our system model is an IoT network, which consists 

of a total of N nodes. We assume this network has a total available bandwidth of W Hz. 

Also, other similar networks use the same spectrum, which results in a higher probability 

of interference occurring. We assume there are M available channels, which will be 

allocated to N nodes of the IoT network. However, since the channels are limited, we can 

have a relation between M available channels and N nodes of the network: 

 𝑀 <  𝑁 , ∀ 𝑁 (3.4) 

This expression means some nodes of the network must use the same channel as each other 

because there are not enough available channels covering all nodes of the network. 

However, using the same frequency spectrum is also a major reason causing the 

interference problem. Therefore, the available channels must be allocated properly to 

minimize channel interference. 

 In the modeling of interference, we consider both external and internal interference. 

We denote a node, which belongs to our IoT network, by 𝐴𝑖, where 1 < 𝑖 < 𝑁. Meanwhile, 

we denote a node, which belongs to other interfering networks, by 𝐵𝑗, where 1 < 𝑗 < 𝐾. 

Since we have no a priori knowledge of the nodes from other networks, we only pay 

attention to the nodes causing the interference to our IoT network, and we assume K is the 

total number of interfering nodes from other networks.  

 In our IoT network, we assume that each node has equal transmitted power 𝑃𝑡(𝐴). 

We also assume that a node in the interfering network has a transmitted power. From the 
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wireless communication perspective, there is a direct relation between the transmitted 

power and the distance. This relationship is expressed by a Free-Space Path Loss (FSPL), 

which is used to calculate the loss of a waveform strength when a transmitted antenna 

transmits the waveform to a received antenna through free space. The free-space path loss 

derives from the Fiirs transmission formula [39] as follows: 

 𝐹𝑆𝑃𝐿 = (
4𝜋𝑑
𝜆

)
2

=  (
4𝜋𝑑𝑓

𝑐
)
2

 (3.5) 

where 

d is the distance between two nodes (m) 

𝜆 is the signal wavelength (m) 

f is the signal frequency (Hz) 

c is the speed of light (m/s) 

Equation (3.5) is also written in terms of unit dB: 

 𝐹𝑆𝑃𝐿𝑑𝐵 = 20 × log10(𝑑) + 20 × log10(𝑓) + 92.45  (3.6) 

The transmission loss between node 𝑖 and node 𝑗 is denoted by the free-space loss 

channel gain 𝛿𝑖,𝑗. Meanwhile, the FSPL channel gain of other interfering nodes is 𝛾. 

Therefore, the following is a summary of all parameters we assume: 
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𝑃𝑡(𝐴𝑖) Transmitted power of node 𝑖  in our IoT network A 

𝑃𝑡(𝐵𝑘) Transmitted power of node 𝑘 in other interfering networks B 

𝛿𝑖,𝑗 Free-space path loss channel gain between node 𝑖 and 𝑗 in network A 

𝛾 Free-space path loss channel gain between the receiver and an interfering node 

 

 

Figure 3.3: Interference Model 
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 The concept of external and internal interference is illustrated in Figure 3.3. 

Accordingly, the solid line represents a signal transmission link between the nodes in our 

network. Meanwhile, the dashed lines represent signal transmission links, which are 

interfering links occurred by interfering nodes from other networks impacting the received 

node of our network. In our network, the signal received by transmitting from a node 𝑖 to 

a node 𝑗 is denoted by 𝑃𝑡(𝐴𝑖) 𝛿𝑖,𝑗. In addition to other networks, the signal received by 

transmitting from an interfering node 𝑘 to a received node 𝑗 in our network is denoted by  

𝑃𝑡(𝐵𝑘) 𝛾𝑘,𝑗. Aside from Additive White Gaussian Noise (AWGN), interference from both 

internal network nodes and external network nodes can deteriorate the signal. We 

demonstrate that the interference caused by the nodes of  network A as  

[𝐴1, 𝐴3, 𝐴4, 𝐴5, … , 𝐴𝑛] can directly impact node 𝐴2. On the other hand, the nodes of outside 

network A (i.e., network B) as [𝐵1, 𝐵2, 𝐵3, 𝐵4,… , 𝐵𝑘 ] cause to the interference at node 𝐴2. 

 It is clear that channel interference can degrade the quality of the received signal, 

as well as the performance of communication links in the network. Therefore, we need to 

have a measurement to assess whether the signal is accurate after traveling from transmitter 

to receiver. According to the wireless communication perspective, the Signal-to-

Interference-plus-Noise ratio (SINR) is used to measure the strength of the desired signal 

to the interference and unwanted signal (i.e., noise). Since the network is complicated with 

various variables that need to be considered, the SINR equation is as follows for node j of 

network A receiving a transmission link from node 𝑖: 
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 𝑆𝐼𝑁𝑅𝑗 =  
𝑃𝑡(𝐴)𝛿𝑖,𝑗

𝜎2 + ∑ 𝑃𝑡(𝐴)𝛿𝑝,𝑗 + ∑ 𝑃𝑡(𝐵)𝛾𝑘,𝑖 𝑘∈𝐵𝑝∈𝐴,𝑝≠𝑖
 (3.7) 

Every wireless network (including IoT networks) must deal with interference, one 

of the most challenging issues. By effectively avoiding the assignment of conflicting 

channels, called channel allocation, the interference between the nodes in network A can 

be solved. Since these nodes belong to the same channel, which is controlled by IoT 

management, it is feasible to allocate the channels to avoid interference. Regarding 

interference from outside the IoT network, spectrum sensing techniques must be applied to 

identify which channels cause the interference to our IoT network. In the next section, we 

will present a solution strategy to minimize the interference experienced at each node. 

3.2.4 Measuring Node Criticality 

Some nodes have more influence on the performance of the network than others. 

Therefore, nodes in the network vary in their level of importance. Measuring the node 

criticality (i.e., node importance) can be a way to evaluate how a node contributes to 

wireless network connectivity. The importance of the nodes is determined by the nodes’ 

locations and the connections with their neighboring nodes. According to the graph theory 

perspective, the node importance is usually indicated by degree centrality, closeness 

centrality, betweenness centrality, and the number of spanning trees reduced [40].  

In some situations, we cannot guarantee that all nodes operate effectively in the 

network. Several nodes may be denied access due to channel interference that leads to the 
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resilience reduction of link connectivity. Therefore, to maintain a high level of resilience 

in the network, it is necessary to measure the node criticality to identify which node needs 

to be protected. On the other hand, some nodes, which are not worthwhile, may be removed 

to avoid channel interference. In this thesis, we measure the node criticality by using the 

eigenvector centrality of the network. 

Unlike degree centrality, which simply determines the number of edges a node has 

in terms of ranking [41], eigenvector centrality can indicate the importance of these edges. 

To put it in another way, degree centrality only considers the number of communication 

links a node has, but eigenvector centrality considers both the number of neighbors and the 

neighbors’ links. According to the principle of eigenvector centrality, a node has a high 

score of eigenvector centrality if it has many communication links to other important 

nodes. On the other hand, a node that has many connected links to its neighbors does not 

necessarily have a high score of eigenvector centrality. Next, we assume that a wireless 

network graph 𝐺 ∶= (𝑉, 𝐸) contains N nodes and the adjacency matrix 𝐴(𝐺). The formula 

to calculate the eigenvector centrality 𝑥𝑖 of node 𝑖 is represented as 

 𝑥𝑖 =  
1
𝜆

∑𝐴𝑖𝑗𝑥𝑗

𝑁

𝑗=1

 (3.8) 

where 𝐴𝑖𝑗 is the elements of the adjacency matrix 𝐴(𝐺) and 1
𝜆
 is proportionality factor with 

𝜆 a constant. Accordingly, the eigenvector centrality 𝑥𝑖 is dependent on the sum of the 
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centrality scores of all nodes communicated with node 𝑖. The equation of the eigenvector 

can be rewritten in matrix notation as 

 𝑨𝒙 =  𝝀𝒙 (3.9) 

where 𝑨 is the adjacency matrix, 𝝀 is a vector of eigenvalue calculated from the 

adjacency matrix 𝑨, and 𝒙 is the eigenvector corresponding to the largest eigenvalue 

calculated obtained from 𝝀. The eigenvector centrality of a wireless network graph with 

79 total nodes randomly connected is illustrated in Figure 3.4. The importance of the 

node is indicated from the lowest (blue) to the highest (red) in the color bar of the figure. 
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Figure 3.4: Eigenvector Centrality of a Random Wireless Network Graph 

 

3.2.5 Elasticity Theory 

According to our proposed solution, we desire to eliminate several less important 

nodes, which are based on eigenvector centrality, so that the total number of channels 

allocated to each node can decrease. In other words, minimizing the number of channels 

can avoid interference, but the network connectivity can also be affected in terms of the 

total number of nodes, the number of communication links between nodes, and the average 

number of nodes connected to each node in the network. Therefore, we introduce elasticity 

theory to present the relationship between node elimination and network connectivity. 
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In business and economics, price elasticity of demand refers to the percentage 

change in demand divided by the percentage change in price [42]. The following equation 

expresses the calculation of the price elasticity coefficient: 

 𝐸 = 
% △ 𝑄
% △ 𝑃

 (3.10) 

The amount demanded and the price change proportionally when the price elasticity 

coefficient equals one. As a result, while setting prices, the firms frequently adopt the going 

rate. When the price elasticity coefficient is smaller than one, it demonstrates that if the 

company adopts a low-price strategy for their products, the demand to purchase the 

products will not increase significantly, but profits would decline. In contrast, when the 

price elasticity coefficient is greater than one, it means that the marginal change in price 

can produce a larger change in demand. This shows that the overall revenue may increase. 

 The price elasticity of demand is applied to our simulations in order to provide 

analytical insight into the overall profitability in case of node elimination and required 

channel reduction.   

3.3 GRAPH COLORING THEORY 

As we have described, wireless networks can be modeled as graphs. In the next 

section, we describe our proposed channel allocation based on graph coloring theory to 

avoid interference. Before we propose our technical solution, we will quickly introduce 

graph coloring. 
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Considering that we have a graph 𝐺 ∶= (𝑉, 𝐸) and a set of available colors 

{1, 2, 3, 4, …𝑀}, there are two approaches to color graph 𝐺. The first graph coloring 

approach is labeling the vertices of the graph using one of the colors belonging to the set 

of available colors, which is called vertex coloring. The vertices are colored following the 

rule that no two adjacent vertices of the graph are allocated the same color. The second 

approach is called edge coloring. It has a similar concept to vertex coloring. All edges of a 

given vertex must have distinct colors. The examples of vertex coloring and edge coloring 

are demonstrated in Figures 3.5 and 3.6, respectively. 

 

 

Figure 3.5: Vertex Coloring (left) and Edge Coloring (right) 
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 In graph theory, the minimum number of colors used to label the vertices or edges 

of a graph is called the chromatic number, denoted by 𝜒(𝐺). In several particular cases of 

a large wireless network graph, which contains thousands of vertices and edges with a 

complex structure, determining the exact value of chromatic number 𝜒(𝐺) can be difficult. 

From the wireless network perspective, the chromatic number 𝜒(𝐺) represents the number 

of channels that are used to transmit or receive the data in the network. Therefore, 

determining the number of colors used is important to exactly identify the number of 

channels. Even though it is difficult to determine exactly the chromatic number, this 

number can be limited by an upper bound. Brooks's theorem states that the maximum 

degree of the network graph 𝐺, denoted by 𝑑𝑚𝑎𝑥(𝐺), is equal to or greater than the 

chromatic number 𝜒(𝐺) [43]. It can also be written in form of inequality: 

 𝜒(𝐺) ≤  𝑑𝑚𝑎𝑥(𝐺) (3.11) 

The maximum degree of the network graph 𝐺 is equivalent to the maximum number of 

colors that graph 𝐺 needs. Besides that, determining 𝑑𝑚𝑎𝑥(𝐺) plays an important role in 

designing the training model in our ML section later. There are several algorithms to color 

a graph, as we have mentioned in Section 2.3.2 of Chapter 2. In this project, we implement 

a greedy coloring algorithm for graph coloring. 

3.3.1 Greedy Graph Coloring for Channel Allocation 

As we have mentioned previously, the minimum number of colors used to label the 

vertices or edges of a graph represents the number of channels. Therefore, for the channel 
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allocation problem, the desired goal is to minimize the number of colors required. In other 

words, the smaller number of channels used, the less interference affects a given node of 

the network. 

 Firstly, we implement the greedy coloring algorithm for determining the minimum 

number of colors required (i.e., chromatic number 𝜒(𝐺)). There are two steps for graph 

coloring. 

1. Graph Generation: This step is to generate the graph 𝐺 with a set of vertices, which 

relate to each other by a set of edges. The graph represents an IoT network, which consists 

of nodes and communication links. The locations of the nodes are distributed based on the 

Poisson Point Process (as defined in Section 3.2.1). We assume that each node in the 

network uses a fixed transmitted power to send the data. Therefore, the communication 

links between the nodes are generated based on the maximum operational distance (as 

defined in Section 3.2.2) and the measurement of SINR (see Section 3.2.3). In other words, 

with the fixed transmitted power, we can figure out the maximum operational distance and 

acceptable SINR for a received signal. 

2. Graph Coloring: This step is to properly color the vertices of the graph generated in the 

previous step. 

Now, we specifically describe how to implement the greedy coloring algorithm in our 

graph. After the graph is generated, we have a set of nodes, an adjacency matrix, and a 

maximum operational distance matrix. The greedy coloring algorithm starts with a given 
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set of nodes and a set of available colors. Also, the relationship between a given node and 

its neighboring nodes is represented by the adjacency matrix. The greedy coloring initially 

assigns color 1 to node 1 of the network. Next, the adjacent nodes of node 1 are identified 

to assign the different colors such that no adjacent nodes of node 1 have the same color as 

node 1. Then, we continue to assign the remaining nodes in a similar way until all nodes 

have their colors. The total number of colors used is the chromatic number 𝜒(𝐺). Also, the 

number of available channels depends on the chromatic number 𝜒(𝐺). The overall 

algorithm is presented as follows: 

  



Algorithm 1: Graph Coloring

Input: Graph G with the Adjacency Matrix A(G)

STEP 1: Find number of nodes in graph G

Define number of nodes in graph G : numberOfNodes

STEP 2: Initialization

Initialize zero vector of length numberOfNodes, called color

Initialize totalColor = 1, defined as total number of colors used for graph G

STEP 3: Use a loop to assign the color for all nodes of graph G

for k = 1 to numberOfNodes do

Create a vector colorOfNeighbors, defined as the color of the neighbors

Assign the smallest value of color that is not used by graph G, called

currentColor

if currentColor is empty then

Increment totalColor by 1

currentColor = totalColor

else

Do nothing

end

Set the k th value of color equal to currentColor

end

Result: The total number of colors used in graph G

48
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In order to achieve the desired goal of minimizing the number of colors used, we 

next consider removing several nodes, which are less important, based on the measurement 

of node criticality (as discussed in Section 3.2.4). In other ways, removing several nodes, 

which have low influence on the network, can avoid interference, but also maintain a high 

level of network connectivity. 

 Our proposed solution for the channel allocation problem is to combine the greedy 

graph coloring algorithm with the node importance to minimize the number of colors used 

to label the nodes. 

3.4 NODE ELIMINATION-BASED GRAPH COLORING FOR CHANNEL ALLOCATION 

After implementing the greedy coloring algorithm to determine the chromatic 

number of the network graph, we aim to reduce this chromatic number to suppress channel 

interference. To achieve this, we will remove several nodes from the network graph. 

However, we need to carefully consider removing the nodes from the network because it 

can be related to network connectivity (i.e., some nodes might be unreachable from the 

remaining nodes). Hence, some questions have arisen: How should the nodes be removed 

from the network so that the maximum number of colors can be reduced? Which nodes 

should be eliminated to achieve the maximum gain from this technique? and How many 

nodes should be removed? 

The mandatory requirement is that the wireless network must be fully connected. 

In other words, all the remaining nodes must be reachable after several nodes are removed 
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from the network. If the network is disconnected or partly disconnected, removing the 

nodes to reduce the number of used channels is meaningless. Therefore, to answer the 

questions that have arisen, we propose to eliminate several less important nodes so that it 

does not significantly affect the network connectivity. The node importance is measured 

by using the eigenvector centrality technique we have introduced in Section 3.2.4. The gain 

of this solution is defined as the percentage of color reduction (i.e., channel reduction).  

3.5 CONCLUSION 

As described earlier, IoT networks must maintain a high level of resilient 

communication. IoT networks use a single frequency for all nodes that enable spectrum 

sharing. Spectrum sharing is unquestionably the best option for the IoT due to the dramatic 

growth of IoT devices, but the scarcity of spectrum resources makes this an unsustainable 

solution. Besides that, along with the advantages of the spectrum-sharing strategy, the 

interference that adversely affects the network’s transmission link is a major concern, 

which we would like to solve in this thesis. 

We have thus developed a channel allocation algorithm using a combination of the 

greedy coloring algorithm and the node removal, related to the node criticality technique. 

In addition, we have also demonstrated the modeling wireless network graph, along with 

our system models, including node distribution using PPP, node importance using 

eigenvector centrality, modeling interference, and the price elasticity of demand. The 

greedy algorithm is implemented first to determine the number of colors used, then the 

least important nodes are removed from the network to decrease the number of colors. The 
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price elasticity of demand is used later to evaluate the simulation results and the gain of 

our proposed solution.  
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CHAPTER 4: DEEP LEARNING-BASED CHANNEL ALLOCATION 

4.1 INTRODUCTION 

In Chapter 3, we have proposed the technical solution to suppress the channel 

interference by determining the minimum number of colors used in the network, then 

reducing this number using node removal. In this chapter, we continue to propose another 

approach to efficiently allocate channels in IoT networks using deep reinforcement 

learning. 

Although the greedy coloring algorithm is fast to implement in many cases with 

few available colors, this algorithm is not an optimal solution for channel allocation in 

large IoT networks (i.e., these networks require many available colors assigned to all nodes, 

and IoT devices may be mobile). As described earlier, in graph theory, determining exactly 

the chromatic number is not easy due to the dynamic topology of wireless networks. 

Therefore, it is more possible to specify the chromatic number’s upper and lower bounds. 

The upper bound of the chromatic number is the maximum degree 𝑑𝑚𝑎𝑥 of the network 

graph based on Brooks's theorem (as stated in Equation 3.11). On the other hand, the lower 

bound is not necessarily specified because our goal is to determine the minimum number 

of colors allocated to the nodes. Besides that, our training models require the upper bound 

(i.e., the maximum degree) as the input data. Therefore, we propose a deep reinforcement 

learning-based channel allocation as an alternative solution, which can work well in a large 

IoT network containing thousands of nodes.   
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4.2 BACKGROUND OF DEEP REINFORCEMENT LEARNING 

One of the most active areas of artificial intelligence research is reinforcement 

learning. In computer science, it has been considered a useful tool to solve problems 

regarding wireless communications. Therefore, we choose to develop and implement the 

deep reinforcement learning algorithm for channel allocation. In contrast to other ML 

techniques (e.g., Naïve Bayes, Support Vector Machine, and Nearest Neighbor), 

reinforcement learning involves learning from actions mapping onto the environment. The 

behavior of an agent, which interacts with the environment, obtains the reward. In other 

words, the actions directly affect the performance of the learning machine. The goal of 

reinforcement learning is to maximize the reward value obtained. From the perspective of 

reinforcement learning, at least five essential components need to be defined. These are 

policy, reward, state, agent, and environment. Designing reinforcement learning algorithms 

must be dependent on these elements. Figure 5.1 demonstrates the deep reinforcement 

learning process. Accordingly, an agent is an object that can learn to behave from the 

environment. The agent will continuously take the action at each state. Each action of the 

agent to the environment will fetch the reward. Throughout the learning process, the model 

tries to achieve the maximum expected reward so that the agent can behave optimally at 

each state [45]. 
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Figure 4.1: Deep Reinforcement Learning Process 

 

Deep reinforcement learning, in which machines can generalize the representation 

of data by autonomously learning from their features, is a combination of deep learning 

and reinforcement learning. With the increase in computational powers these days, deep 

reinforcement learning can speed up the process of inputting data in multiple layers.  

Several deep learning architectures are designed for various purposes of 

applications. For example, to deal with supervised learning problems, convolutional 

networks, and recurrent neutral networks can be applied to train the model. In contrast, 

self-organizing maps and autoencoders can be used to solve unsupervised learning 

problems. Regardless of the architecture of deep learning, three essential components are 
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required to design a deep learning architecture. These are an input layer, a set of hidden 

layers, and an output layer. The sampled diagram of deep learning network architecture is 

illustrated in Figure 4.2 below. 

 

 

Figure 4.2: Deep Learning Network Architecture 

 

Figure 4.2 is a generalized deep-learning network. Accordingly, all layers of the network 

can consist of multiple neurons. To summarize, the input layer is the first layer where initial 

data is taken into the deep learning network and passed to the next layer (i.e., the hidden 

layer). The second part is the hidden layer, where all the computations of the model are 
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operated. Lastly, the output layer is where the results of given input data are produced. The 

design of input and output layers is generally straightforward. However, the hidden layer 

is much more complicated than the two other layers because it contains multiple neurons 

in multiple layers of the hidden layer. We need to seriously consider the complexity of the 

hidden layer because the performance of the model mostly depends on the complex 

structure of the hidden layer. However, if the hidden layer is too complicated, the time to 

train the network can be extremely high [44].  

4.3 SYSTEM MODEL 

In this thesis, we choose deep deterministic policy gradient (DDPG), which is one 

of the types of deep reinforcement learning, to determine the minimum number of colors 

used to label a network graph [45]. The principle of the DDPG is based on the combination 

of the actor-critic method and the deep Q-learning architecture. The DDPG algorithm uses 

four neutral networks (actor-network, target actor network, critic network, and target critic 

network) to search for an optimal policy so that the expected result can be maximized. In 

each training step, the actor-network is employed to generate the action for the 

environment. Then, the critic network is utilized to evaluate the performance of the action 

network by calculating the Q-value. In addition, the target action network and the target 

critic network are used to calculate the loss function so that the stability of  DDPG can be 

improved. The architecture of the DDPG algorithm is illustrated in Figure 4.3 below: 
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Figure 4.3: The Architecture of the DDPG Algorithm 

 

As we have described in the previous section, a fully connected neutral network is 

formed by three layers as follows: the input layer, the hidden layer, and the output layer. 

Indeed, all four neural networks in Figure 4.3 must be followed have three layers. Each 

layer consists of neurons, which are connected by weighted links. The weight of each link 

is randomly assigned in the first state, then it is adjusted later based on the environment.  
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Now, the state, the action, the reward, and the next state of DDPQ need to be 

defined below. Assuming that the network graph 𝐺 has 𝑁 nodes, we have the adjacency 

matrix 𝐴(𝐺) and the location of the nodes following PPP. The system model is similar to 

the graph coloring-based channel allocation described in the previous chapter. 

1. State: There are three different components used to represent the current status of the 

given environment after each action is done. These are the location of the node, the adjacent 

links, and the associated color of the node where the agent is staying. 

2. Action: The agent will release the color results of each node in the network graph 𝐺. 

For each node, the color will be chosen from the list of available colors 𝐶 =

 {1, 2, 3, … 𝑑𝑚𝑎𝑥}, where 𝑑𝑚𝑎𝑥 is the maximum degree, which is defined as the upper 

bound of the chromatic number in graph coloring.  

3. Reward: Depending on the action at each state, the reward is the summation of the total 

number of colors used and invalid/disconnected links. The invalid/disconnected links 

between the nodes are identified when two adjacent nodes have the same color. The 

expected reward needs to be maximized, but we aim to minimize the total number of colors 

and the invalid/disconnected links between the nodes. Therefore, in our situation, the final 

results are multiplied by (-1) to maximize the reward. The calculation of the reward can be 

expressed as follows: 
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 𝑅 = 𝑀 + 
𝐼
𝛾

 (4.1) 

where 𝑅 is defined as the reward, 𝑀 is the number of colors required, 𝐼 is the total 

invalid/disconnected links of each two nodes having the same colors, and 𝛾 is the weight. 

Here, the weight (𝛾) which is the parameter of a neural network is used to transform input 

data within the hidden layer. The inverse of the weight (𝛾) is indicated in Equation 4.2 as 

follows: 

 
𝛾 =  

1

𝐹 ∗ 𝐸
𝑑𝑚𝑎𝑥

 (4.2) 

where 𝐹 is a factor, 𝐸 represents the total number of communication links, and 𝑑𝑚𝑎𝑥 is the 

maximum degree of the network graph. 

4. Next State: Similar to the definition of the state above, the next state represents the next 

node in terms of the location, the adjacent links, and the used colors of previous nodes. All 

of these components are updated by using action. 

4.4 SUMMARY 

 In order to suppress channel interference in IoT networks, an effective technique 

for channel allocation needs to be implemented. The goal is to minimize the number of 

colors labeled in the network graph. Although the greedy coloring algorithm can determine 
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the chromatic number (i.e., the minimum number of colors), this algorithm is sub-optimal 

because it may not work well in a large network like an IoT network. Therefore, we propose 

a more powerful technique to specify the total number of colors. This is a DDPG algorithm 

based on the graph coloring theory. 

In various types of ML technology, deep reinforcement learning is considered the 

best possible choice to develop and implement for our wireless networks’ problem. There 

are two important things that all deep reinforcement learning needs to take into account. 

The first important thing is to define state, action, reward, policy, and agent of learning 

models. With each particular case, these elements need to be correctly identified. The 

second thing is to design a good neutral network, including an input layer, hidden layer, 

and output layer, to train the data so that the maximum reward can be achieved as much as 

possible. 

In addition, we follow the requirements of a typical DDPG to describe the state, the 

action, and the reward corresponding to our system model. This will be used to run the 

simulation in the next chapter.   
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CHAPTER 5: SIMULATION  

5.1 INTRODUCTION 

In the previous chapters, we have introduced the theoretical concepts and our 

system models, including the wireless network graph and deep reinforcement learning. We 

now run our simulations for channel allocation using two proposed solutions: node 

elimination and DDPG. To run the simulation, we use two different programming 

languages (MATLAB and Python) corresponding to the following software applications: 

MATLAB and PyCharm. Channel allocation using node elimination-based graph coloring 

is simulated in MATLAB because this program provides the package containing all 

materials of mathematical graph theory. Also, the network graphs can be easily plotted 

using MATLAB. On the other hand, deep reinforcement learning-based channel allocation 

is simulated in Python language because Python is the best option for ML and Artificial 

Intelligence projects. Python provides the access to great libraries and frameworks for ML, 

and many ML projects are available in Python due to the immense community contributing 

to Python.   

5.2 CHANNEL ALLOCATION USING NODE ELIMINATION-BASED GRAPH COLORING 

We now focus on the first proposed solution of channel allocation based on graph 

coloring. We first introduce the simulation model, then obtain the results from the 

simulation to have a critical discussion in the later section. 
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5.2.1 Simulation Model 

For all simulations of our network model as a random geometric graph, we assume 

that the total number of nodes 𝑁 is distributed in a 100,000 𝑚2 area 𝐴. The number of 

nodes in a given area 𝐴 follows the Point Poisson Process with the node density 𝜆. All 

nodes of our network model have a fixed transmit power 𝑃𝑡 of 10 𝑚𝑊 (or 10 𝑑𝐵𝑚) and a 

frequency 𝑓 of 2.0 𝐺𝐻𝑧. Based on the fixed transmit power 𝑃𝑡 and the frequency 𝑓, the 

maximum operational distance 𝑑𝑡 is 20 𝑚 that follows a free-space path loss model. The 

adjacency matrix of the network graph can be easily calculated when the maximum 

operation distance matrix is defined. Once the adjacency matrix is identified, the degree 

matrix and node criticality of the network graph can be derived. 

5.2.2 Simulation Results 

We consider that the network consists of 83 IoT devices (or 83 nodes), with other 

parameters (including given area, transmit power, frequency, etc.) defined above. Figure 

5.1 indicates the locations of the nodes and communication links between nodes. 
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Figure 5.1: Network Graph 𝐺 with 83 Random Nodes 

 

With node distribution and connections between nodes indication, it does not provide much 

information on network graph 𝐺. Hence, we need more insight into network graph 𝐺 to 

evaluate the performance, in order words, network connectivity. The eigenvector centrality 

is measured to provide more insight regarding the importance of each node based on their 

neighboring nodes and communication links. Results for an 83-node eigenvector centrality 

of network graph 𝐺 simulation are provided in Figure 5.2. According to the eigenvector 

centrality, we can identify that the most important node is node 39 (indicated as red), while 

the least important node is node 48 (indicated as blue). It is clear that the neighboring nodes 
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of node 39 also have high eigenvector centrality scores. Therefore, we conclude that the 

important nodes are always located in a cluster or a group. On the other hand, the least 

important nodes are located in the boundary of the network, and they do not have many 

connected links with their neighboring nodes. Next, the greedy coloring algorithm was 

implemented in this network graph to calculate the chromatic number, in other words, the 

number of channels needed to efficiently allocate to each node. The result of the chromatic 

number obtained from the simulation is 8. Equivalently, the channel allocation requires at 

least 8 different colors so that no adjacent nodes have the same colors. 

 

 

Figure 5.2: Eigenvector Centrality Scores of 83 Random Nodes 
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The following figure demonstrates the network graph 𝐺 applying the greedy coloring 

algorithm to assign the color to the nodes. It is clear that none of the adjacent nodes have 

the same colors.  

 

 

Figure 5.3: Graph Coloring with 83 Random Nodes 

 

In addition to the graph coloring, Table 5.1 shows the node numbers corresponding to the 

colors. The nodes of the network graph 𝐺 are denoted by a list of {1, 2, 3, … 83} and the 
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colors used to label each node is denoted by a list of {1, 2, 3, … 8}. Therefore, we can 

know exactly which color is associated with which node of the network. 

 

Table 5.1: Greedy Graph Coloring of an 83-Node Wireless Network 𝐺 

Node 
Number 

Assigned 
Color 

Node 
Number 

Assigned 
Color 

Node 
Number 

Assigned 
Color 

Node 
Number 

Assigned 
Color 

1 1 22 2 43 6 64 7 
2 1 23 2 44 5 65 8 
3 1 24 3 45 3 66 5 
4 1 25 5 46 4 67 6 
5 2 26 3 47 4 68 6 
6 1 27 1 48 2 69 5 
7 1 28 1 49 5 70 7 
8 1 29 2 50 4 71 5 
9 1 30 3 51 3 72 8 
10 3 31 2 52 5 73 6 
11 1 32 4 53 6 74 1 
12 2 33 4 54 5 75 5 
13 2 34 2 55 4 76 6 
14 3 35 4 56 4 77 6 
15 2 36 3 57 3 78 7 
16 2 37 3 58 7 79 6 
17 3 38 5 59 4 80 7 
18 4 39 4 60 6 81 8 
19 2 40 3 61 4 82 6 
20 1 41 6 62 5 83 1 
21 1 42 5 63 2   
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Next, we start to simulate our wireless network models with the different values of 

node density. Other parameters of the system models follow the assumption above. To 

analyze the networks, we take into account the following elements: node density, the total 

number of nodes, the average number of nodes connected for each node, the total number 

of edges, total transmit power in W, the maximum number of colors, and the number of 

colors used when applying the greedy coloring approach. As the node density increases, 

the chromatic number increases as well (see Figure 5.4). 

 

Table 5.2: Simulation Results of Node Density Varying from 50 to 250 

Node Density 50 100 150 200 250 

Total Nodes 54 83 131 228 248 

Average Nodes Connected to 
Each Node 5.81 7.81 12.9 22.83 25.07 

Total Communication Links 157 324 845 2603 3109 

Total Transmit Power (W) 15.7 32.4 84.5 260.3 310.9 

Maximum Needed Colors 11 13 25 36 39 

Number of Colors Used to Label 7 8 13 19 21 
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Figure 5.4: Node Density vs. Chromatic Number using Greedy Coloring Algorithm 

 

Again, the goal is to minimize the number of colors used to avoid channel 

interference and reduce channel usage. According to our simulations, we observe that 

eliminating the least important nodes does not significantly affect a small network, but it 

does in a large network (e.g., a wireless network consists of more than 200 nodes). 

Therefore, we run our simulation with node density 𝜆 of 250. Table 5.3 demonstrates the 

simulation results with the following variables: percentage node removal, number of nodes, 

the average number of nodes connected to each node, number of connected links, and 
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number of colors used. In addition, Figure 5.5 illustrates the relationship between the 

percentage of node removal and the number of colors using the greedy coloring algorithm.  

 

Table 5.3: Simulation Results with Node Density 𝜆 of 250 

Percentage 
Node of 

Removal (%) 

Number of 
Nodes 

Average 
Number of 

Nodes 
Connected 

Number of 
Connected 

Links 

Number of 
Colors Used 

0 248 25.07 3109 21 

10 224 22.56 2527 19 

20 199 19.85 1975 17 

30 174 17.44 1517 15 

40 149 15.05 1136 14 

50 124 12.15 753 12 
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Figure 5.5: Number of Colors vs. Percentage of Node Removal 

 

According to the simulation, the number of colors linearly decreases when the 

percentage of node removal increases. Also, the percentage of node removal is inversely 

proportional to the average number of nodes connected to each node and the number of 

connected links. It is difficult to conclude that this approach is good if we just evaluate 

based on the collected data in Table 5.3 and Figure 5.5. Therefore, we need to calculate the 

price elasticity coefficient using the elasticity theory. From the data collected in Table 5.3, 

the price elasticity coefficient is 0.964 when the percentage of node removal changes from 

0 percent to 20 percent. This demonstrates that the value of the elasticity coefficient is 
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approximately one. It means that the overall profitability does not always decrease or 

increase if the less important nodes are eliminated to suppress the number of colors. 

Therefore, we conclude that this proposed approach can be applied to wireless networks, 

but it depends on each scenario and the certain time when this approach is implemented. 

In other words, the performance can achieve high revenue if the proposed approach is 

applied to a suitable wireless network. The factors to define this network can be listed as 

follows: the location of the nodes, network topology, number of nodes, and maximum 

operational distance. However, the gain of the network (as defined in Section 3.4) is 0.2 

when the number of colors reduces from 21 distinct colors to 17 distinct colors. That means 

our proposed solution can bring a certain benefit to suppress the interference impacting 

each node of the network.  

5.3 CHANNEL ALLOCATION USING DEEP REINFORCEMENT LEARNING 

In the previous section, we reduced the chromatic number determined by the greedy 

coloring algorithm by eliminating the least important nodes. We now run the simulations 

to determine the chromatic number by deep reinforcement learning based on the principled 

ideas of graph coloring theory.  

5.3.1 Simulation Model 

For wireless network graph generation, we also use the same assumption as Section 

5.2.1. In particular, we assume that there are N nodes distributed in a given area of 

100,000 𝑚2 following PPP. Also, the maximum operational distance 𝑑𝑡 is 20 𝑚, which is 
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calculated based on the free-space path loss In the ML part, we define two parameters to 

evaluate our simulation results. These are the number of colors used to allocate the nodes 

(as defined in Chapter 4) and the invalid/disconnected links. 

5.3.2 Simulation Results 

 The performance of the DDPG model is highly dependent on choosing the value of 

the weight to train the model. Therefore, we want to demonstrate the relationship between 

the value of the weight and two elements of the reward (i.e., the number of colors required 

and total invalid/disconnected links. In Figure 5.6, we can see that the DDGP model can 

achieve the maximum reward (a low number of colors required and a low number of 

disconnected links) when the weights are in the range of 11 – 17 in this case. 

 

 

Figure 5.6: 1
𝛾
 vs. Number Of Colors (left) and vs. 1 

𝛾
 Number of Invalid Links (right) 
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Results of different simulations using the DDPG algorithm are indicated in Table 

5.4 and Figure 5.7 below. To evaluate the performance of the DDPG algorithm, we 

compare it with a baseline algorithm (i.e., greedy coloring algorithm). 

 

Table 5.4: Simulation Results to Determine 𝜒(𝐺) using the DDPG Algorithm  

Node 
Density 

𝜒(𝐺) 

Greedy 
Coloring 

Algorithm 

𝜒(𝐺) 

DDPQ 
Algorithm 

Disconnected 
Links 

Total 
Number of 

Links 

Disconnected 
Links 

Percent (%) 

50 9 7 24 165 14.55 

75 10 7 45 328 13.72 

100 10 8 54 449 12.03 

125 15 12 130 1210 10.74 
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We observe that the greedy coloring algorithm uses a possible number of colors to 

allocate channels, and it can guarantee that no adjacent nodes have the same colors. 

Therefore, the greedy algorithm does not have any disconnected links. Meanwhile, even 

though the DDPQ algorithm does not guarantee that all adjacent nodes have distinct colors, 

allocating the channels using the DDPG can optimize the effectiveness with the minimum 

number of colors. However, several links between two adjacent nodes having the same 

colors will be vulnerable that causing them to be disconnected. we only take into account 

the outcomes of invalid/disconnected links that fall within an acceptable range from 10 

percent to 15 percent of the total number of communication links in the wireless network. 

According to Figure 5.7, to allocate the channels in wireless networks with node density 

varying from 50 to 125, the DDPG algorithm always requires a smaller number of colors 

than the greedy algorithm. 

 

 

Figure 5.7: Node Density 𝜆 vs. Number Of Color 𝜒(𝐺) 
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In addition, the plots of the wireless networks applied DDPG-based channel allocation are 

demonstrated in Figures 5.8 and 5.9. 

 

 

Figure 5.8: Graph Coloring using DDPG with 𝜆 of 50 (left) and 75 (right) 

 

 

Figure 5.9: Graph Coloring using DDPG with 𝜆 of 100 (left) and 125 (right) 
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 5.4 CONCLUSION 

In terms of the wireless network, not all nodes are equally important. It depends on 

not only the position of the node but also the involvement of its surrounding nodes. 

Therefore, we also present the method for measuring the node criticality using eigenvector 

centrality. We can determine which node is the most significant in the network based on 

the effects of its importance. With the less significant nodes, we can consider removing 

these nodes to lessen the interference. 

We calculated the price elasticity of demand to determine that the overall 

profitability of our proposed approach depends on the topology of wireless networks. In 

some particular cases, the benefits can be achieved high when the least important nodes are 

eliminated from the network graph. In addition, the gain we obtain is the number of colors 

reduced compared to the results of the greedy coloring algorithm. The gain can increase if 

the percentage of node removal increases as well. 

We also propose deep reinforcement learning-based channel allocation to 

determine the number of colors used to allocate the nodes. The results show that the number 

of colors using the DDPG algorithm is always smaller than the greedy coloring algorithm. 

Therefore, we conclude that deep reinforcement learning-based channel allocation 

outperforms graph coloring-based channel allocation. However, the training time for the 

learning model is a challenge. In the real world, since wireless networks are dynamic, as 

well as IoT devices have the ability to move around, the updated locations of the IoT 
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devices and the optimal routing path need to propose in the shortest time (e.g., 

milliseconds).  
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CHAPTER 6: SUMMARY AND FUTURE WORK 

6.1 SUMMARY 

IoT networks are heterogenous and dynamic because they are flexible and 

dependent on IoT applications and these applications’ ability to communicate with other 

components. In this thesis, we first introduced other research works related to route 

optimization, channel allocation, and graph coloring. Next, we discussed the concept of 

IoT networks in terms of applications, operation, and constraints (including resiliency, 

latency, and efficiency). We also introduced an interference model with IoT network access 

to determine the negative effects of channel interference on the performance of network 

connectivity and quality of service. We then implemented the greedy graph coloring 

algorithm based on the concept of graph theory to allocate the channels in the wireless 

network. From the perspective of our system models, we developed and defined the 

following concepts: node distribution using Point Poisson Process, free-space path loss 

formula, Signal-to-Interference-plus-Noise ratio (considering external and internal 

interference), and node centrality. All components of the system model above are utilized 

to do analytical simulations.  

We also proposed two different approaches for improving the resilience of 

connections. The first approach is reducing the number of colors labeled by eliminating 

several less important nodes. By observing the results of the simulations applied to this 

approach, we conclude that it is a trade-off between link connectivity (i.e., link density) 

and channel interference. The second approach we propose is determining the number of 
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channels used by using deep reinforcement learning (i.e., DDPG) based on the principled 

idea of graph coloring. According to the simulation results, it is evident that the DDPG 

algorithm outperforms the greedy coloring algorithm in effectively allocating the channels. 

However, to apply the DDPG algorithm for channel allocation in the real world, we also 

need to minimize the training time of the learning model to obtain the final results as soon 

as possible (in milliseconds).      

6.2 FUTURE WORK 

In this thesis, we discussed the solution to avoid channel interference by eliminating 

several nodes, which have the lowest score for node centrality. This work can be extended 

by deeply analyzing to determine which nodes should be removed so that the number of 

colors used can be minimum, but the links between nodes can still have a high level of 

connectivity. On the other hand, we used node centrality to measure node importance. 

Future work can focus on developing a measurement to provide a better performance of 

evaluation for node criticality. 

Another aspect, which can be extended for future work, is to develop a better 

performance of DDPG to determine the number of colors labeled for channel allocation. 

This could reduce the computational cost to obtain the outcomes, as well as decrease the 

time that DDPG needs to run the simulation for reaching the highest reward. 
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APPENDIX A: MATLAB 

%{  
Written by Hieu Nguyen 
Date: Oct 28, 2022 
Description: This program demonstrates the wireless network with the 
following components: 
    1) Node Distribution using Point Poisson Process (Node Location) 
    2) Maximum Operational Distance Matrix 
    3) Adjacency Matrix 
    4) Degree of Each Node in Graph G 
    5) Average Number of Nodes Connected to a Given Node 
    6) Total Number of Communication Links 
    7) Total Number of Transmit Power/ Average Transmit Power 
    8) Node Centrality 
    9) Greedy Coloring Algorithm (Number of Colors) 
    10) Plot Figures 
%} 
 
clc; 
clear; 
close all; 
 
%% 1) Node Distribution using Point Poisson Process (Node Location) 
 
%Simulation window parameters 
xMin=0;xMax=1; 
yMin=0;yMax=1; 
xDelta=xMax-xMin;yDelta=yMax-yMin; %rectangle dimensions 
areaTotal=xDelta*yDelta; 
  
%Point process parameters 
lambda=120; %intensity (ie mean density) of the Poisson process 
fprintf('Node density: %d \n', lambda); 
 
%Simulate Poisson point process 
numberOfNodes=poissrnd(areaTotal*lambda);%Poisson number of points 
xx=xDelta*(rand(numberOfNodes,1))+xMin;%x coordinates of Poisson points 
yy=yDelta*(rand(numberOfNodes,1))+yMin;%y coordinates of Poisson points 
 
%Node Location 
nodeLocation = zeros(numberOfNodes,2); 
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for i = 1:numberOfNodes 
        nodeLocation(i,:) = [xx(i) yy(i)]; 
end 
 
fprintf('The total number of nodes: %d nodes\n', numberOfNodes); 
 
%% 2) Maximum Operational Distance Matrix 
 
%Calculate distance between each node 
distanceMatrix = zeros(numberOfNodes,numberOfNodes); 
for i = 1:numberOfNodes 
    for j = 1:numberOfNodes 
        distanceMatrix(i,j) = norm(nodeLocation(i,:) - nodeLocation(j,:)); 
    end 
end 
 
%Maximum Opeartional Distance Matrix 
maxOperationDistance = zeros(numberOfNodes,numberOfNodes); 
for i = 1:numberOfNodes 
    for j = 1:numberOfNodes 
        if distanceMatrix(i,j) > 0.20 
            maxOperationDistance(i,j) = 0; 
        else 
            maxOperationDistance(i,j) = distanceMatrix(i,j); 
        end 
    end 
end 
 
%% 3) Adjacency Matrix 
 
%Adjacency Matrix of Graph G 
adjacencyMatrix = maxOperationDistance;  
 
for i = 1:numberOfNodes 
    for j = 1:numberOfNodes 
        if adjacencyMatrix(i,j) > 0  
            adjacencyMatrix(i,j) = 1;  
        end 
        adjacencyMatrix(j,i) = adjacencyMatrix(i,j); %copy the values of upper matrix to 
lower matrix 
    end 
end 
 
%Network Graph G 
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G = graph(adjacencyMatrix); 
 
%% 4) Degree of Each Node in Graph G 
 
degreeVector = degree(G); 
 
%The maximum value of degree (dmax - upper bound) 
maxDegree = max(degreeVector); 
fprintf('The maximum value of degree: %d \n', maxDegree); 
%Check whether or not the graph is fully connected 
minDegree = min(degreeVector); 
if min(degreeVector) == 0 
    fprintf('Graph G is disconnected\n'); 
else 
    fprintf('Graph G is fully connected\n'); 
end 
 
%% 5) Average Number of Nodes Connected to a Given Node 
 
nodeConnected = sum(adjacencyMatrix(:,:)==1); 
nodeConnected = nodeConnected'; 
expectedNodes = mean(nodeConnected); 
fprintf('The expected number of nodes connected for each node: %.2f nodes\n', 
expectedNodes); 
 
%% 6) Total Number of Communication Links 
 
numberOfEdges = numedges(G); 
fprintf('The total number of edges: %d links\n', numberOfEdges); 
 
%% 7) Total Number of Transmit Power/ Average Transmit Power 
 
%Assume that the transmit power of each node (Pt) = 10 mW (10 dBm) 
totalPower = 10*numberOfEdges*10E-3; 
fprintf('The total transmit power: %.2f W\n', totalPower); 
 
%Average Transmit Power 
averagePower = totalPower/numberOfNodes; 
fprintf('The average transmit power of each node: %.2f W\n', averagePower); 
 
%% 8) Node Centrality 
 
nodeCentrality = centrality(G,"eigenvector"); 
eigenvalue = eig(adjacencyMatrix); 
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fprintf('The total number of eigenvalues: %d \n', length(eigenvalue)); 
maxEigenvalue = max(eigenvalue); 
fprintf('The largest eigenvalue: %.2f \n', maxEigenvalue); 
 
%% 9) Greedy Coloring Algorithm (Number of Colors) 
 
%n = length(xx); 
color = zeros(numberOfNodes,1); % Initialize array to hold color numbering 
numcolors = 1; % Number of colors needed (so far) 
for k = 1:numberOfNodes 
    idx = neighbors(G,k); % Get neighbors of the kth node 
    idx = idx(idx < k);   % But just those that have an assigned color 
    neighborcolors = unique(color(idx)); % Get colors used by neighbors 
    % Assign the smallest color value not used by the neighboring nodes 
    thiscolor = min(setdiff(1:numcolors,neighborcolors)); 
    % If there isn't one, add another color to the map 
    if isempty(thiscolor) 
        numcolors = numcolors + 1; 
        thiscolor = numcolors; 
    end 
    color(k) = thiscolor; 
end 
disp([num2str(numcolors),' colors needed']) 
 
%% 10) Plot Figures 
 
%Plotting node location map 
figure(1); 
sz = 100; 
p1 = scatter(xx,yy,sz,'filled','o'); 
p1.MarkerFaceColor = [0.6350 0.0780 0.1804]; 
p1.MarkerEdgeColor = 'k'; 
xlabel('100m');ylabel('100m');title('Node Distribution using Point Poisson Process'); 
xlim([xMin xMax]); ylim([yMin yMax]); 
set(gca,'fontsize',12,'FontWeight','bold'); 
grid on; 
 
%Plotting network graph G 
figure(2); 
p2 = plot(G, 'XData', nodeLocation(:,1), 'YData', nodeLocation(:,2),'MarkerSize',8); 
xlabel('100m');ylabel('100m'); title(['Network Graph G with ',num2str(numberOfNodes),' 
Random Nodes']); 
xlim([xMin xMax]); ylim([yMin yMax]); 
set(gca,'fontsize',12,'FontWeight','bold'); 
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grid on; 
hold on; 
 
%Plotting eigenvector centrality scores 
figure(3); 
p3 = plot(G, 'XData', nodeLocation(:,1), 'YData', nodeLocation(:,2),'MarkerSize',10); 
p3.NodeCData = nodeCentrality; 
colormap jet; 
colorbar 
xlim([xMin xMax]); ylim([yMin yMax]); title(['Eigenvector Centrality Scores of 
',num2str(numberOfNodes),' Random Nodes']); 
set(gca,'fontsize',12,'FontWeight','bold'); 
grid on; 
 
%Plotting the graph coloring 
 
figure(6); 
p6 = plot(G, 'XData', nodeLocation(:,1), 'YData', nodeLocation(:,2),'MarkerSize',10); 
xlabel('100m');ylabel('100m'); title(['Graph Coloring with ',num2str(numberOfNodes),' 
Random Nodes']); 
xlim([xMin xMax]); ylim([yMin yMax]); 
set(gca,'fontsize',12,'FontWeight','bold'); 
grid on; 
hold on; 
 
nodeColor = [nodeLocation color]; 
for i = 1:numberOfNodes 
    if nodeColor(i,3) == 1 
        s1 = scatter(nodeColor(i,1),nodeColor(i,2), 80,'filled'); 
        s1.MarkerFaceColor = [0 0.4470 0.7410]; 
    elseif nodeColor(i,3) == 2 
        s2 = scatter(nodeColor(i,1),nodeColor(i,2), 80,'filled'); 
        s2.MarkerFaceColor = [0 1 0]; 
    elseif nodeColor(i,3) == 3 
        s3 = scatter(nodeColor(i,1),nodeColor(i,2), 80,'filled'); 
        s3.MarkerFaceColor = [1 0 0]; 
    elseif nodeColor(i,3) == 4 
        s4 = scatter(nodeColor(i,1),nodeColor(i,2), 80,'filled'); 
        s4.MarkerFaceColor = [1 0 1]; 
    end 
end 
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APPENDIX B: PYTHON 

B.1 NETWORK GENERATION 

# Import packages 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib 
import dill 
import class_set as CL 
matplotlib.rcParams['pdf.fonttype'] = 42 
matplotlib.rcParams['ps.fonttype'] = 42 
plt.close('all') 
# Simulation window parameters 
xMin = 0 
xMax = 1 
yMin = 0 
yMax = 1 
xDelta = xMax - xMin 
yDelta = yMax - yMin  # rectangle dimensions 
areaTotal = xDelta * yDelta 
"(1) Node Distribution using Point Poisson Process" 
# Point process parameters 
lambda0 = 125 # intensity (ie mean density) of the Poisson process 
# Simulate Poisson point process 
numberOfNodes = np.random.poisson(lambda0 * areaTotal)  # Poisson number of points 
# numberOfNodes =100 
xx = xDelta * np.random.uniform(0, 1, numberOfNodes) + xMin  # x coordinates of 
Poisson points 
yy = yDelta * np.random.uniform(0, 1, numberOfNodes) + yMin  # y coordinates of 
Poisson points 
# Node Locations 
xx1 = [xx] 
yy1 = [yy] 
nodeLocation = np.concatenate((xx1, yy1)) 
nodeLocation = np.transpose(nodeLocation) 
"(2) Maximum Operational Distance" 
# Calculate the distance between nodes 
xx = np.transpose(xx) 
yy = np.transpose(yy) 
distance = np.zeros(shape=(numberOfNodes, numberOfNodes)) 
for i in range(0, numberOfNodes): 
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    for j in range(0, numberOfNodes): 
        distance[i][j] = ((xx[i] - xx[j])**2 + (yy[i] - yy[j])**2)**0.5 
# Maximum Operational Distance Matrix 
maxOperDistance = np.zeros(shape=(numberOfNodes, numberOfNodes)) 
for i in range(0, numberOfNodes): 
    for j in range(0, numberOfNodes): 
        if distance[i][j] > 0.2: 
            maxOperDistance[i][j] = 0 
        else: 
            maxOperDistance[i][j] = distance[i][j] 
"(3) Adjacency Matrix" 
# Calculate Adjacency Matrix 
adjacencyMatrix = np.zeros(shape=(numberOfNodes, numberOfNodes)) 
for i in range(0, numberOfNodes): 
    for j in range(0, numberOfNodes): 
        if maxOperDistance[i][j] > 0: 
            adjacencyMatrix[i][j] = 1 
        else: 
            adjacencyMatrix[i][j] = 0 
 
"(4) Average Number of Nodes Connected" 
# Calculate number of nodes connected to each node 
nodeConnected = sum(adjacencyMatrix[:][:] == 1) 
# Mean of nodes connected number 
averNodeConnected = np.mean(nodeConnected) 
"(5) Degree of the Graph" 
# Degree Values of each Node 
degreeVector = nodeConnected 
# The maximum value of degree vector (upper bound) 
maxDegree = np.max(degreeVector) 
# Check the network G is connected or not 
minDegree = np.min(degreeVector) 
if minDegree == 0: 
    print("The network graph G is disconnected") 
else: 
    print("The network graph G is connected") 
 
"(6) Total Number of Edges" 
numberOfEdges = sum(nodeConnected)/2 
 
"(7) Plot Figures" 
 
# Plotting Network Graph G 
plt.figure(1) 
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plt.scatter(xx, yy, edgecolor='black', facecolor='r', linewidths=1) 
for i in range(numberOfNodes): 
    for j in range(numberOfNodes): 
        if adjacencyMatrix[i][j] == 1: 
            node1 = nodeLocation[i] 
            node2 = nodeLocation[j] 
            x_value = [node1[0], node2[0]] 
            y_value = [node1[1], node2[1]] 
            plt.plot(x_value, y_value, color='b', linewidth=0.5, markersize=12) 
for i in range(0, numberOfNodes): 
    plt.text(xx[i], yy[i]+0.015, i+1, fontsize=8) 
plt.xlabel("100") 
plt.ylabel("100m") 
plt.xlim(0, 1) 
plt.ylim(0, 1) 
plt.title("Network Graph G with " + str(numberOfNodes) + " Random Nodes") 
plt.grid() 
filename = ('position' + '.pdf') 
plt.savefig(filename, format='pdf') 
plt.ion()  # plt.show() 
plt.pause(4)   
plt.close() 
"(11) Print out the results" 
print("Number of Nodes: " + str(numberOfNodes)) 
print("Number of Edges: " + str(numberOfEdges)) 
print("Upper Bound for Number of Colors Used: " + str(maxDegree)) 
print("Average Number of Nodes Connected to Each Node: " + str(averNodeConnected)) 
#####         save variable into load.pkl            ##### 
load              = CL.Load() 
load.N_ue         = numberOfNodes 
load.nodloc       = nodeLocation 
load.ad           = adjacencyMatrix 
load.maxDe        = maxDegree 
filename = ('load4'+'.pkl') 
# filename = os.path.join(dir_path, 'bs'+ '.pkl') 
bsfile = open(filename, 'wb') 
dill.dump(load, bsfile) 
bsfile.close() 
 
B.2 MAIN 

import dill 
import numpy as np 
import class_set as CL 
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from RL_ddpg import RL_ddpg 
import ddpg_agent as agent_ddpg 
from collections import Counter 
 
load =[] 
filename='load4'+'.pkl' 
load = dill.load(open(filename, "rb" )) 
N_ue   = load.N_ue 
Adm    = load.ad 
maxDe  = load.maxDe 
nodloc = load.nodloc 
num_epoch      = 1                 ###  number of training epochs 
num_slot       = 7000              ###  number of training steps 
 
action_size    = load.maxDe 
load.num_epoch = num_epoch 
load.num_slot  = num_slot 
 
######### Initialize the machine learning agent  ######### 
params = {"num_pos": 3, 
          "num_UE":  N_ue, 
          "appnum":  1, 
          "num_intf_bs": 6, 
          "num_epoch" : num_epoch, 
          "tti_sec" : 1e-3, 
          "num_slot": num_slot, 
          "pf_alpha": 0.97, 
          "alpha" : 5e-5, 
          "beta" : 5e-4, 
          "gamma": 0.99, 
          "tau": 0.001, 
          "replay_buffer_size" : 1000000, 
          "batch_size" :  64, 
          "layer1_size" : 800, 
          "layer2_size" : 600, 
          "layer3_size":  600, 
          "action_space_high" : 1, 
          "action_space_low" : -1 
           } 
agent = {} 
agent = agent_ddpg.Agent(alpha=params["alpha"], beta=params["beta"], 
gamma=params["gamma"], tau=params["tau"], 
                         input_dims=(params["num_UE"]*params["num_UE"]) + 
params["num_UE"], 
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                         n_actions=params["num_UE"], 
                         replay_buffer_size=params["replay_buffer_size"], 
batch_size=params["batch_size"], 
                         layer1_size=params["layer1_size"], layer2_size=params["layer2_size"], 
                         layer3_size=params["layer3_size"], 
                         action_space_high=params["action_space_high"], 
action_space_low=params["action_space_low"]) 
######### Initialize actions ######### 
RLL = {} 
RLL = CL.Rll(N_ue) 
QoE_all = {} 
load.weight = np.sum(Adm) * 0.5 * 0.5/ maxDe 
 
for tt in range(num_epoch): 
    print("This is the %sth slot." % tt) 
    load.color = np.random.randint(0, load.maxDe, N_ue) 
    ###        start machine learning      ### 
    RLL.print = 20 
    RLL.epoch = tt 
    RLL.current_state = np.zeros(N_ue*N_ue+N_ue).astype(int) 
    RLL.action = np.zeros(N_ue).astype(int) 
 
    RLL, agent, load = RL_ddpg(RLL, agent, load, tt) 
    QoE_all[tt] = [] 
    QoE_all[tt] = np.array(RLL.QoE_state_vect) 
    alloc = [] 
    alloc = RLL.allocation 
 
    final_color = np.unique(alloc[np.where(alloc >0)[0]]) 
    print('alloc = \n%s' % alloc) 
    print('final_color = \n%s\n' % final_color ) 
color, colorResult  = [], [] 
color   = alloc 
invalid_links = 0 
for i in range(N_ue): 
    for j in range(N_ue): 
        if Adm[i][j] == 1: 
            if color[i] == color[j]: 
                invalid_links = invalid_links + 1 
invalid_links = invalid_links / 2 
colorResult  = len(Counter(color)) 
 
bs = [] 
bs = CL.Bs() 
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bs.outcome      = [-RLL.reward, colorResult, invalid_links] 
print('The final result is:\n%s\n' %bs.outcome) 
 
B.3 DDPG AGENT 

import numpy as np 
import tensorflow as tf 
from tensorflow.keras import layers 
 
class Agent(object): 
    def __init__(self, alpha, beta, gamma, tau, input_dims, n_actions, 
                 replay_buffer_size, batch_size, layer1_size, layer2_size,layer3_size, 
                 action_space_high, action_space_low): 
        self.gamma = gamma 
        self.tau = tau 
        self.input_dims = input_dims 
        self.n_actions = n_actions 
        self.replay_buffer_size = replay_buffer_size 
        self.batch_size = batch_size 
        self.layer1_size = layer1_size 
        self.layer2_size = layer2_size 
        self.layer3_size = layer3_size 
        self.action_space_high = action_space_high 
        self.action_space_low = action_space_low 
        self.mem_cntr = 0 
        self.state_buffer = np.zeros((self.replay_buffer_size, self.input_dims )) 
        self.action_buffer = np.zeros((self.replay_buffer_size, self.n_actions)) 
        self.reward_buffer = np.zeros((self.replay_buffer_size, 1)) 
        self.next_state_buffer = np.zeros((self.replay_buffer_size, self.input_dims)) 
 
        # Initialize actor and critic models 
        self.actor_model = self.get_actor() 
        self.target_actor = self.get_actor() 
        self.critic_model = self.get_critic() 
        self.target_critic = self.get_critic() 
 
        # Set target weights equal to initial actor/critic weights 
        self.target_actor.set_weights(self.actor_model.get_weights()) 
        self.target_critic.set_weights(self.critic_model.get_weights()) 
 
        self.actor_optimizer = tf.keras.optimizers.Adam(alpha) 
        self.critic_optimizer = tf.keras.optimizers.Adam(beta) 
        # self.noise = OUNoise(mu=np.zeros(n_actions)) 
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    def record(self, state, action, reward, new_state): 
        # Set index to zero if buffer_capacity is exceeded, 
        # replacing old records 
        index = self.mem_cntr % self.replay_buffer_size 
 
        self.state_buffer[index] = state 
        self.action_buffer[index] = action 
        self.reward_buffer[index] = reward 
        self.next_state_buffer[index] = new_state 
        self.mem_cntr += 1 
 
    def update_target(self): 
 
        new_weights = [] 
        target_variables = self.target_actor.weights 
        for i, variable in enumerate(self.actor_model.weights): 
            new_weights.append(variable * self.tau + target_variables[i] * (1 - self.tau)) 
 
        self.target_actor.set_weights(new_weights) 
 
        new_weights = [] 
        target_variables = self.target_critic.weights 
        for i, variable in enumerate(self.critic_model.weights): 
            new_weights.append(variable * self.tau + target_variables[i] * (1 - self.tau)) 
 
        self.target_critic.set_weights(new_weights) 
 
    def choose_action(self, state, noise_pre): 
        state = state[np.newaxis, :] 
        mu = self.actor_model(state) 
        noise =self.noise_update(mu, noise_pre) 
        mu_prime = mu + noise 
        mu_prime=mu 
        mu_legal = np.clip(mu_prime, self.action_space_low, self.action_space_high) 
 
        return mu_legal[0], noise 
 
    def noise_update(self, mu, noise_pre): 
        is_empty = tf.equal(tf.size(noise_pre), 0) 
        if is_empty: 
            noise_pre = np.zeros_like(mu) 
        sigma, theta, dt = 0.15, .2, 1e-2 
        noise = noise_pre + theta * (mu - noise_pre) * dt + sigma * np.sqrt(dt) * 
np.random.normal(size=mu.shape) 



92 
 

        return noise 
 
    def learn(self): 
        if self.mem_cntr < self.batch_size: 
            return 
        # reward_index=np.argmax(self.reward_buffer)  #### Liang 2021.6.9 
        batch_indices = np.random.choice(self.mem_cntr, self.batch_size) 
 
        # Convert to tensors 
        state_batch = tf.convert_to_tensor(self.state_buffer[batch_indices]) 
        action_batch = tf.convert_to_tensor(self.action_buffer[batch_indices]) 
        reward_batch = tf.convert_to_tensor(self.reward_buffer[batch_indices]) 
        reward_batch = tf.cast(reward_batch, dtype=tf.float32) 
        next_state_batch = tf.convert_to_tensor(self.next_state_buffer[batch_indices]) 
 
        # Training and updating Actor & Critic networks. 
        # See Pseudo Code. 
        with tf.GradientTape() as tape: 
            target_actions = self.target_actor(next_state_batch) 
            y = reward_batch + self.gamma * self.target_critic([next_state_batch, 
target_actions]) 
            critic_value = self.critic_model([state_batch, action_batch]) 
            critic_loss = tf.math.reduce_mean(tf.math.square(y - critic_value)) 
 
        critic_grad = tape.gradient(critic_loss, self.critic_model.trainable_variables) 
        self.critic_optimizer.apply_gradients( 
            zip(critic_grad, self.critic_model.trainable_variables) 
        ) 
 
        with tf.GradientTape() as tape: 
            actions = self.actor_model(state_batch) 
            critic_value = self.critic_model([state_batch, actions]) 
            # Used `-value` as we want to maximize the value given 
            # by the critic for our actions 
            actor_loss = -tf.math.reduce_mean(critic_value) 
 
        actor_grad = tape.gradient(actor_loss, self.actor_model.trainable_variables) 
        self.actor_optimizer.apply_gradients( 
            zip(actor_grad, self.actor_model.trainable_variables) 
        ) 
 
    def get_actor(self): 
        # Initialize weights between -3e-3 and 3-e3 
        last_init = tf.random_uniform_initializer(minval=-0.003, maxval=0.003) 
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        inputs = layers.Input(shape=(self.input_dims)) 
        out = layers.Dense(self.layer1_size, activation="relu")(inputs) 
        out = layers.BatchNormalization()(out) 
        out = layers.Dense(self.layer2_size, activation="relu")(out) 
        out = layers.BatchNormalization()(out) 
        # out = layers.Dense(self.layer3_size, activation="relu")(out) 
        # out = layers.BatchNormalization()(out) 
        outputs = layers.Dense(self.n_actions, activation="tanh", 
kernel_initializer=last_init)(out) 
 
        model = tf.keras.Model(inputs, outputs) 
        return model 
 
    def get_critic(self): 
        # State as input 
        state_input = layers.Input(shape=(self.input_dims)) 
        state_out = layers.Dense(128, activation="relu")(state_input) 
        state_out = layers.BatchNormalization()(state_out) 
        state_out = layers.Dense(256, activation="relu")(state_out) 
        state_out = layers.BatchNormalization()(state_out) 
 
        # Action as input 
        action_input = layers.Input(shape=(self.n_actions)) 
        action_out = layers.Dense(256, activation="relu")(action_input) 
        action_out = layers.BatchNormalization()(action_out) 
 
        # Both are passed through seperate layer before concatenating 
        concat = layers.Concatenate()([state_out, action_out]) 
 
        out = layers.Dense(self.layer1_size, activation="relu")(concat) 
        out = layers.BatchNormalization()(out) 
        out = layers.Dense(self.layer2_size, activation="relu")(out) 
        out = layers.BatchNormalization()(out) 
        # out = layers.Dense(self.layer3_size, activation="relu")(out) 
        # out = layers.BatchNormalization()(out) 
        outputs = layers.Dense(1)(out) 
 
        # Outputs single value for give state-action 
        model = tf.keras.Model([state_input, action_input], outputs) 
 
        return model 
 
B.4 REINFORCEMENT LEARNING DDPG 
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import os 
import time 
import random 
import math 
import dill 
import numpy as np 
from random import randint 
import class_set as CL 
from collections import Counter 
 
def RL_ddpg(RLL, agent, load, tt): 
 
    print_interval = RLL.print   
    for slot in range(load.num_slot): 
        # print("This is the %sth slot."%slot) 
        run_ddpg(RLL,agent,load, tt) 
 
        if slot % print_interval == 0 and slot != 0: 
            print(f"# of num_slots :{slot}, reward = : {RLL.reward}, next_reward = : 
{RLL.QoE_state_vect[slot + 1]}") 
    return RLL, agent, load 
 
def run_ddpg(RLL, agent, load, tt): 
    norm_ue_assoc = normalize_assoc(load.ad) 
    used_color = load.color 
    norm_used_color = normalize_rate(used_color) 
    RLL.next_state = np.hstack((norm_ue_assoc.flatten(),norm_used_color.flatten())) 
 
    get_reward(RLL) 
    RLL.score += RLL.reward 
    agent.record(RLL.current_state, RLL.action, RLL.reward, RLL.next_state) 
    agent.learn() 
    agent.update_target() 
    RLL.current_state = RLL.next_state 
    action=[] 
    RLL.action, RLL.noise = agent.choose_action(RLL.current_state, RLL.noise) 
    allocation = denormalize_action(RLL.action,load) 
    load.color = allocation 
    RLL.allocation=allocation 
    net_update(RLL, load, tt) 
    return RLL, load 
 
def normalize_assoc(cqi): 
    min_cqi = 0 
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    max_cqi = 1 
    lo_cqi = (max_cqi - min_cqi) / 2 
    hi_cqi = (max_cqi + min_cqi) / 2 
    normalized_assoc = (cqi - hi_cqi) / lo_cqi 
    return normalized_assoc 
 
def normalize_rate(rate): 
    min_rate = min(rate) 
    temp     = max(rate) 
    max_rate = max(temp,1) 
    lo_rate = (max_rate - min_rate) / 2 
    hi_rate = (max_rate + min_rate) / 2 
    if lo_rate ==0: 
        lo_rate = 0.00001 
    normalized_rate = (rate - hi_rate) / lo_rate 
    return normalized_rate 
 
def denormalize_action(action,load): 
    min_action = 0 
    max_action = load.maxDe 
    lo_action = (max_action - min_action) / 2 
    hi_action = (max_action + min_action) / 2 
    denormalized_action = np.rint(lo_action * action + hi_action) 
    return np.int_(denormalized_action) 
 
def get_reward(RLL): 
    if RLL.reward == True: 
        RLL.reward = int(RLL.reward) 
        RLL.reward = 0 
    else: 
        RLL.reward=RLL.QoE 
        return RLL 
 
def net_update(RLL, load, tt): 
    allocation       = RLL.allocation 
    load.allocation = allocation 
    #########         calculate the reward            ########## 
    N_ue    = load.N_ue 
    Adm     = load.ad 
    maxDe   = load.maxDe 
    nodloc  = load.nodloc 
    color   = load.color 
    weight  = load.weight 
    invalid_links = 0 
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    for i in range(N_ue): 
        for j in range(N_ue): 
            if Adm[i][j] == 1: 
                if color[i] == color[j]: 
                    invalid_links = invalid_links + 1 
    invalid_links = invalid_links / 2 
    colorResult  = len(Counter(color)) 
    reward_temp  = colorResult + invalid_links /weight 
    reward_temp  = np.round(100*reward_temp)/100 
    #########         calculate the reward            ########## 
    RLL.QoE      =  -reward_temp 
    RLL.QoE_state_vect.append(-reward_temp) 
    return RLL,load 
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