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ABSTRACT 

MULTIPLE KERNEL LEARNING FOR GENE PRIORITIZATION, CLUSTERING, 
AND FUNCTIONAL ENRICHMENT ANALYSIS 

David H. Millis, M.D., Ph.D. 

George Mason University, 2014 

Dissertation Director: Dr. Jeffrey L. Solka 

 

Gene prioritization is the process of ranking a list of candidate genes such that the genes 

that are most likely involved in a biological process of interest receive the highest 

rankings. In a supervised learning approach to gene prioritization, candidate genes are 

ranked in terms of their degree of similarity to genes that have already been shown to be 

involved in the process of interest. Gene prioritization thus can be cast as a classification 

task, in which a training set of genes and data associated with those genes is used to train 

a classifier to assign rankings to unknown genes, based on their degree of similarity to the 

training genes. This thesis describes the use of kernel methods, and particularly a method 

known as multiple kernel learning, for combining information from multiple data sources 

for purposes of gene prioritization. Multiple kernel learning facilitates the incorporation 

of heterogeneous data types into the assessment of similarity among genes.  In addition, 

the rows of the kernel matrix can be repurposed as feature vectors. We apply clustering 
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methods to these vectors to partition the gene list into related groups. We then perform 

functional enrichment analysis on the gene clusters to identify biological functions that 

are significantly represented in each gene cluster. We thus are able to use a single data 

structure, namely a kernel matrix representing similarities among genes based on multiple 

information sources, as the basis for three common types of bioinformatics analysis: gene 

prioritization, gene clustering, and functional annotation analysis of gene lists. This 

research contributes to the exploration of methods for extracting useful biological 

insights from the continually expanding knowledge base of biological data. 
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CHAPTER ONE: INTRODUCTION 

Research Problem: Gene Prioritization 
A common type of bioinformatics analysis begins with the identification of some 

biological entity of interest, and concludes with the generation of a list of candidate 

interaction partners that may be worthy of further study for their relationship to the entity 

of interest. The biological entity of interest could be a physical structure, such as a 

nucleic acid, small molecule, or pharmaceutical agent. It also could be a descriptive 

construct, such as a disease or phenotype. The candidate interaction partners often are 

genes, and this dissertation will focus on the analysis of lists of candidate genes.  

Gene prioritization is the process of ranking a list of candidate genes such that the 

genes that are most likely involved in a biological process of interest receive the highest 

rankings. In a supervised learning approach to gene prioritization, candidate genes are 

ranked in terms of their degree of similarity to genes that have already been shown to be 

involved in the process of interest. Gene prioritization thus can be cast as a classification 

task, in which a training set of genes and data associated with those genes is used to train 

a classifier to assign rankings to unknown genes, based on their degree of similarity to the 

training genes. 

Once a list of candidate genes is generated, the researcher is left with the task of 

making a biological interpretation of the list. If the candidate genes are given a numerical 

score in the course of the analysis, the candidates with the highest scores might be 
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considered to be the most important. However, simply selecting the highest-scoring genes 

from the front of the list might result in discarding useful information that is embedded in 

the rest of the list. If the bioinformatics analysis generated a list of several hundred or 

several thousand candidate genes, interpretation of the entire list can be difficult.  

An additional problem is that the candidate genes that are included in the list may 

differ depending on the data sources used in the bioinformatics analysis. This necessitates 

the selection of a strategy for generating a single consensus list of candidate genes for 

further analysis.  

One approach might be to run the analysis multiple times, each time using a 

different information source for identifying potential candidate genes. This will result in 

multiple different lists of candidate genes. The researcher would then have to devise a 

strategy for combining the lists. The optimal strategy for doing this might not be obvious. 

The different analyses may rank the genes in different orders, using different scales of 

measurement.  

A different approach might be to combine the data sources and run the 

bioinformatics analysis just once, to create a single list of candidate genes. A potential 

obstacle with this approach is that the different bioinformatics data sources may use 

different formats for data representation, making it difficult to incorporate the data 

sources into a single representation for bioinformatics analysis. 

This dissertation will focus on the second approach: combining the diverse data 

sources into a single data structure, and then performing an analysis of the combined data 

to generate the candidate gene list. We will examine the use of kernel methods, and in 
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particular multiple kernel learning (MKL) using support vector machines, to address 

many of the difficulties involved in the generation and interpretation of candidate gene 

lists.  

Kernel methods are a machine learning approach that has gained much interest in 

the bioinformatics research community. An attractive aspect of kernel methods is that a 

collection of data points gathered on a set of genes can be expressed in terms of pairwise 

relationships among the genes, instead of in the data format of the original data collection 

method. If the set of data points collected on one gene can be represented as a vector, 

then the relationship between two genes can be represented as some function of the dot 

product of the two vectors.  

Any function that can be expressed in terms of the dot product of vectors can be 

used to transform the vectors to a higher-dimensional space. When used in this way, the 

function is called a kernel function. We can construct a matrix consisting of the 

application of the kernel function to all pairs of vectors in the data set. This matrix, called 

a kernel matrix, maps the entire data set of vectors to a higher-dimensional feature space. 

This mapping can sometimes make it easier to computationally identify patterns in the 

data set that might not be easy to recognize in the original vector space.  

In many bioinformatics studies, there may be several diverse data sources that can 

provide data on the set of genes. For this situation, each data source can be used to 

generate a separate kernel matrix. This provides multiple views on the set of genes, with 

each view based on a different source of data on the genes. An attractive aspect of kernel 

methods is that the kernel matrix generated from each data source describes the genes in 
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terms of pairwise relationships among the genes, instead of in the data format of the 

original data collection method. With the various original data formats abstracted away, it 

becomes more tractable to perform mathematical operations that combine the different 

data sources (G. R. Lanckriet, Deng, Cristianini, Jordan, & Noble, 2004). 

We will demonstrate that multiple kernel learning can provide the following 

benefits to the analysis of candidate gene lists: 

1. Heterogeneous bioinformatics data sources can be combined into a single data 

representation, using the mathematics of kernel combination. 

2. The confidence level calculated for each gene by the MKL classifier, which is 

typically translated into a binary label, can also be used for creating an ordered ranking of 

the genes. A higher confidence level indicates a higher degree of relatedness to the 

molecule of interest. 

3. Each row of the kernel matrix can be treated as a vector encapsulating a profile 

of a single gene. Clustering the kernel rows provides a way of breaking the gene list 

down into smaller lists of similar genes. 

4. For each cluster, we can calculate the average confidence level of all genes in 

the cluster. This allows us to rank the clusters, and identify the clusters composed of 

genes that are most highly related to the molecule of interest.  

5. For each cluster, we can perform functional enrichment analysis to identify 

Gene Ontology terms that are significant for that cluster. This allows for a finer-grained 

functional analysis than submitting the entire list of candidate genes for enrichment 
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analysis. The functions identified for the highest-ranking clusters may be the more 

important biological functions of the molecule of interest. 

Research Hypothesis 
The research hypothesis for this dissertation is as follows: 

“Multiple kernel learning enhances the bioinformatics analysis of candidate 

gene lists by [1] allowing integration of heterogeneous data sources into the analysis, 

[2] providing a prioritized ranking of genes in the list, [3] facilitating clustering of 

the genes using the kernel matrix, and [4] simplifying functional enrichment 

analysis by clustering the original gene list into meaningful sub-lists.” 

Research Contributions 
This dissertation demonstrates the benefits of kernel methods for addressing 

several issues that arise in the analysis of biological data: integration of diverse data types 

for problem solving, gene prioritization to add order to a long list of candidate genes, and 

separation of a long gene list into a set of smaller, meaningful lists to facilitate further 

analysis of the gene list. In this research, kernel methods are applied to combine multiple 

data sources to rank a gene list. The kernel matrix is used as a similarity matrix to 

partition the gene list into meaningful sub-lists. The priority rankings within clusters are 

used to identify the most biologically significant clusters. We use functional enrichment 

analysis on the clusters with the most highly-ranked genes to identify the most significant 

functions of the most significant clusters. 

Essentially, this approach starts with an unordered list of genes relate to a target, 

and generates a prioritized ranking that provides structure to the list. This structuring not 
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only identifies the genes that should be selected for further study, but also allows 

generation of hypotheses on the most significant biological functions of the target. 

The construction and analysis of a candidate gene list is a common bioinformatics 

problem. The methods described here are applicable to a wide range of problem domains 

that involve prioritizing a list of candidate genes.  
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CHAPTER TWO: ENSEMBLE METHODS FOR CLASSIFICATION 

Classification Strategies 
In supervised learning, a training set of instances that have already been assigned 

correct labels is used by a classification algorithm as a gold standard from which a model 

of the mapping from instance features to appropriate labels is derived. Each label 

represents a class of instances, where instances within a class have similar sets of 

features, and instances within a class have sets of features that are different from the 

features of instances in the other classes. The objective of a supervised machine learning 

algorithm is to use the labeled training set to develop a decision model that a classifier 

can use to assign labels to new instances, where the features are known but the correct 

labels are not known. 

 

A classification problem may involve any number of features, and any number of 

correct classes. Restriction of the features used as inputs to the machine learning process 

can reduce the computational complexity of the learning task, particularly when the 

number of features is very large. However, visual inspection of the data set may not 

provide clues about the features that contribute most to the class assignment. Training 

and testing classifiers on a training data set can help identify the most useful features for 

the classification task. A classifier is trained and tested on various different subsets of the 

training data set, where each subset leaves out one or more of the features from the 
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original training set. The performance of the classifier is measured after each round of 

training and testing. The differences in performance of the various versions of the 

classifier give an indication of how much the availability of a given feature or 

combination of features contributes to the ability of the classifier to assign correct class 

labels. 

 

The selection of the best machine learning algorithm for a classification problem 

can be quite challenging. Factors that may influence the performance of a particular 

machine learning algorithm include the shape of the decision boundary that separates 

instances in different classes from one another. However, the shape of the decision 

boundary is typically unknown. Identifying the best machine learning algorithm for a 

classification problem can be attempted by training and testing classifiers using different 

learning algorithms on the same training set (Duda, Hart, & Stork, 2000). 

Ensemble Classifiers 
Because the selection of a single best classifier for a classification problem can be 

difficult, we might consider running several different classifiers and then pooling their 

results. The objective of this approach is to help mitigate any weaknesses in the 

individual classifiers, and possibly to generate a labeling of instances that is better than 

could be provided by any of the individual classifiers. Terms used to describe a group of 

classifiers include ensemble systems (Dietterich, 2000; Drucker, Cortes, Jackel, LeCun, 

& Vapnik, 1994), multiple classifier systems (Fumera & Roli, 2005; Ho, Hull, & Srihari, 

1994; Re & Valentini, 2010; Woods, Kegelmeyer, & Bowyer, 1997; L. Xu, Krzyzak, & 
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Suen, 1992), committee of classifiers (Drucker et al., 1994; Hady & Schwenker, 2010), 

and mixture of experts (Jacobs, Jordan, Nowlan, & Hinton, 1991; Jordan & Jacobs, 1994; 

Khalili, 2010; Ng & McLachlan, 2007). The term base classifiers is often used to denote 

the individual classifiers that compose a classifier ensemble (L. Kuncheva, 2004). 

 

The design of an ensemble classifier requires consideration of three key questions 

(Polikar, 2006): 

1. Will the base classifiers be of the same type (i.e. all using the same machine 

learning algorithm) or different types? 

2. What data will be used to train each of the base classifiers? 

3. How will the outputs of the base classifiers be combined?  

 

Structure of Base Classifiers 
The base classifiers in an ensemble can be all of the same type, such as all decision trees, 

all neural networks, or all support vector machines. If the set of available training 

instances is very large, it may be possible to train multiple classifiers by simply dividing 

the training instances into multiple subsets. Each base classifier could then be trained on 

one of the training subsets. A strategy would then be required to combine the outputs of 

the base classifiers into the ensemble's final output.  

 

An ensemble of multiple base classifiers of the same type might be designed if it is 

difficult to train a single classifier to cover the entire feature space. If the feature space 

can be divided into smaller partitions, it may be possible to train individual classifiers to 
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distinguish instances based on the smaller feature sets. In this way, each base classifier 

becomes an expert on how a small number of features relate to the class labels. The 

outputs of the base classifiers can then be combined into the consensus set of labels for 

the ensemble (Giacinto, Roli, & Didaci, 2003). 

 

Instead of dividing the training set, all training examples can be used for each base 

classifier, while changing the training parameters. For example, an ensemble of 

classifiers might be composed of a set of neural networks, with each using different 

initial edge weights and different numbers of layers (El-Melegy & Ahmed, 2007). 

 

The third strategy for introducing diversity in the ensemble is to include base classifiers 

that use different classification algorithms. This strategy can incorporate results from 

classifiers based on different architectures, such as k-nearest neighbor, decision tree, and 

support vector machine, into a single ensemble (Aszfalg, Kriegel, Pryakhin, & Schubert, 

2007). 

 

Design of Base Classifier Training Sets 
In many classification problems, the number of features is large, but the number 

of available training instances is small. For these situations, dividing the training 

instances into smaller non-overlapping groups may not provide a large enough number of 

instances for any of the base classifiers to build useful models. Several resampling 

methods have been developed to allow the creation of multiple training sets by allowing 

the inclusion of some instances in more than one training set. This reuse of instances 
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across training sets allows each base classifier to be exposed to a different training set, 

while providing each base classifier with a large enough number of instances for model 

generation (Breiman, 1996). 

 

Training base classifiers with the same learning algorithm but different training 

sets means that the classification model learned by each classifier will be slightly 

different. The more different the models learned by the base classifiers, the higher the 

diversity of the ensemble (L. I. Kuncheva & Whitaker, 2003). Diversity is a useful 

characteristic of a classifier ensemble. In an ideal diversification of an ensemble, each 

base classifier generally performs well, while each makes errors on different types of 

instances. The hope is that the classifier outputs can then be combined such that the 

overall error of the ensemble is less than that of the individual base classifiers.  

 

Creation of different training sets typically involves drawing instances randomly 

from the original full set of training examples. If the original training set is small, 

dividing the original training set into equal partitions may result in subsets that are too 

small for the base classifiers to build adequate models. One alternative is to select 

instances randomly with replacement, known as bootstrap aggregation or bagging 

(Breiman, 1996). An alternative is the jackknife or k-fold data split, in which the data set 

is divided into k partitions without replacement, and then each classifier is trained on k-1 

partitions (Efron, 1982; Polikar, 2006). In both cases, some instances will be presented to 

more than one base classifier during training, but each base classifier is exposed to a 
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unique set of training instances. The base classifiers in the ensemble may all use the same 

classification algorithm, but their performance is likely to differ because of the 

differences in the training sets used. 

Combining Classifier Outputs 
Methods for combining classifier outputs can be categorized in two ways: as 

supervised vs. unsupervised methods, and as methods that combine categorical classifier 

outputs vs. methods that combine numeric classifier outputs (Polikar, 2006). In the 

supervised case, a separate training algorithm is used to determine optimal weights for 

combining classifier outputs. The unsupervised case includes rules such as majority 

voting. Combination methods based on numeric classifier outputs operate on values 

computed by the base classifiers for each instance in the data set. When functioning as a 

solo classifier, each base classifier would apply some rule to each of these values to 

determine how each instance will be labeled. In ensemble mode, some operation is 

performed on a set of values generated for each instance before determining how that 

instance will be labeled. Combination methods based on categorical classifier outputs 

allow each base classifier to both complete its calculations and apply its own rule to 

assign a label to each instance. The ensemble then performs some operation on the labels 

assigned to each instance by the base classifiers to determine the final set of labels that 

will be generated by the ensemble. 

In the following chapter, we introduce multiple kernel learning, the classifier 

approach applied in this dissertation. This is a supervised classification method. The base 

classifiers are individual support vector machines. After training of several base 
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classifiers, the best-performing base classifiers are selected. The kernel matrices 

underlying these classifiers are combined to generate a single ensemble classifier. We can 

then evaluate the performance of the ensemble classifier and compare its performance to 

that of the base classifiers. 
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CHAPTER THREE: KERNEL METHODS AND MULTIPLE KERNEL 
LEARNING 

Kernel Methods 
A kernel function is any function that can be represented as the dot product of 

vectors. Given a matrix of n x m data points, in which the n rows represent instances and 

the m columns represent features, we can construct a kernel matrix of dimension n x n in 

which each cell is computed by application of the kernel function to two of the n row 

vectors. The kernel matrix thus serves as a similarity matrix consisting of pairwise 

comparisons of each instance to all the other instances, using the kernel function as the 

measure of similarity. For the examples in this dissertation, each data set is comprised of 

a single type of data collected on a list of genes, where each row vector consists of 

several features related to a single gene. Application of a kernel function to all pairs of 

row vectors generates a kernel matrix representing pairwise similarity of all genes in the 

gene list to all other genes in the list 

There are several advantages to the use of kernel methods in the analysis of data 

from heterogeneous sources of genomic data. The creation of a separate kernel matrix for 

each available data source provides different views or perspectives on the genes and on 

their relationships to each other. While the original data sources may store data in a wide 

variety of formats, all kernel matrices represent the relationships between genes as 

pairwise similarities. Abstracting out the original data formats makes it easier to apply 
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straightforward mathematical operations to compare and combine the data sources. 

Additionally, the mapping of a original data to a higher-dimensional space may reveal 

patterns that are easier to identify than in the original vector representation of the data 

source.   

Support Vector Machines 
The support vector machine (SVM) is a kernel method that has gained wide 

adoption in machine learning applications. A typical application area for support vector 

machines is binary classification. The support vector machine approach applies an 

optimization algorithm to identify a boundary that provides maximal separation between 

labeled instances in a training set of data. Identifying a boundary that separates the 

training items into two different classes can be made easier by first applying a function 

that maps the items into an alternative space, known as the kernel space. Items in a test 

set can then be classified by mapping them to the same kernel space, and noting their 

position relative to the hyperplane. Items that map to positions on the same side of the 

hyperplane as the positive examples are assigned to the positive class, and items that map 

to the same side as the negative examples are assigned to the negative class. An item in 

the test set can also be ranked based on its distance from the hyperplane. If the magnitude 

of the distance is small, then the instance from the test set maps to a position close to the 

hyperplane. We might consider such an instance to be only slightly representative of its 

assigned class, since it lies fairly close to training examples in the opposite class. If the 

magnitude of the distance is large, then the instance from the test set maps to a position 

closer to examples of its assigned class, and farther from the examples of the opposite 
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class. Such an instance might be considered to be more strongly representative of its 

assigned class. Distance from the hyperplane may also be useful in identifying unusual 

instances. For example, an instance that lies more than three standard deviations from the 

hyperplane might be classified as an outlier. 

The support vector machine (SVM) is a binary classification algorithm that has 

gained wide adoption in machine learning applications. The algorithm was first 

introduced in 1992 (Boser, Guyon, & Vapnik, 1992), and is based on principles from 

statistical learning theory (Vapnik, 1999). This learning method takes as input a set of 

known, labeled instances, represented as vectors, and applies an optimization algorithm 

to identify a function that characterizes the relationship between the vector values and the 

labels. The function defines a boundary, known as a hyperplane, which provides the best 

possible separation between instances of two different classes. The function identified 

through examination of labeled instances can then be used to classify new instances 

whose labels are unknown. The new instances are classified by mapping them to the 

same kernel space as the training instances, and noting their position relative to the 

hyperplane. An item in the test set can also be ranked based on its distance from the 

hyperplane. Items on the positive side of the hyperplane are classified as members of the 

positive class, while items on the negative side of the hyperplane are classified as 

members of the negative class. Items very close to the hyperplane may be ambiguous and 

difficult to classify, possessing a set of features that is intermediate between the positive 

class and the negative class. Items that are very distant from the hyperplane in either the 
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positive or negative direction may be worth considering as possible outliers. A graphical 

representation of a support vector machine classifier is depicted in Figure 1. 

 

 
Figure 1. Graphical representation of a support vector machine classifier. Positive training examples are shown 
as white circles. Negative training examples are shown as black circles. A new instance to be classified is shown 
as a gray circle. 

 

The set of training instances consists of N  pairs composed of vectors ix  and 

labels iy , where 1, ,i N=  , N
i ∈x 

, and {1, 1}Ny∈ − . A support vector machine 

requires a solution to a convex optimization problem, and can be cast as the convex 

quadratically constrained quadratic program (QCQP) shown in Equation 1 (Cortes & 

Vapnik, 1995): 
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Equation 1. The solution to this convex quadratically constrained quadratic program forms the basis of a 
support vector machine. 

min   
2

2
1

1
2

N

i
i

C ξ
=

+ ∑w   

w.r.t.  , , ,N N bξ∈ ∈ ∈w       
subject to  , ( ) 1i i iy b ξΦ + ≥ −w x    

  and 0, 1, ,i i Nξ ≥ ∀ =     
  

In this formulation of the optimization problem, the iξ  are error values, C is a 

pre-defined cost parameter for the error term, representing a trade-off between model 

simplicity and classification error (Gonen & Alpaydin, 2011), and b is an offset 

parameter estimated from the training examples (Poggio, Mukherjee, Rifkin, Rakhlin, & 

Verri, 2001). 

 
We would like to use some function Φ to map the training vectors to a higher-

dimensional space, where the separation between instances of the two classes might be 

more readily observable than in the original feature space. However, explicit mapping of 

features from the original feature space to the higher-dimensional space may be 

computationally expensive. Machine learning methods based on kernels typically apply 

the so-called “kernel trick” (Aizerman, Braverman, & Rozoner, 1964) to avoid this 

mapping. Instead of mapping each of the training vectors individually to the higher-

dimensional space, we apply a kernel function to all pairwise combinations of the training 

vectors. A kernel function ( , )i jK x x is any function that can be represented in terms of 

the dot product between two vectors: ( , ) ( ) ( )T
i j i jK ≡ Φ Φx x x x . Application of the kernel 

function to two vectors in the original feature space returns the dot product of the images 

of the two vectors in the higher-dimensional feature space. We can then compute the 
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linear separation of the dot-product images, without an explicit higher-dimensional 

mapping (Scholkopf & Smola, 2001).  

 
The optimization algorithm does not identify the best kernel function to use for 

the domain of the classification problem. The investigator must choose from among a 

large number of possible kernel functions. Some experimentation might be required to 

identify a kernel function that provides a useful mapping of the original data into an 

alternative feature space. For this dissertation, we experimented with three commonly-

used kernel functions (Karatzoglou, Smola, Hornik, & Zeileis, 2004). The equations for 

these functions are presented in Table 1. 

 

Table 1. Kernel functions used in this dissertation. 

Name Kernel Function 

Linear: ( , ) T
i j i jK =x x x x  

Polynomial: ( , ) ( ) , 0T d
i j i jK rγ γ= + >x x x x  

Gaussian: 
2

( , ) exp( ), 0i j i jK γ γ= − − >x x x x  

 
 

The kernel parameters γ, r, and d also are not selected by the optimization 

algorithm. Identification of a useful set of kernel parameters typically requires some 

experimentation by the investigator. 
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Combining Kernels 
There are several approaches to combining kernels. Kernels can be combined 

using simple addition of corresponding kernel matrix cells. In an equal weighting 

approach, all kernels contribute equally to the combined kernel. The kernels also can be 

weighted such that the kernels contribute in different proportions to the combined kernel. 

In a heuristic weighting approach, the weights are chosen in advance by the investigator. 

This approach assumes that the investigator has some a priori knowledge that suggests 

that certain types of knowledge should be weighted more heavily in the classification 

process. An alternative approach to selecting kernel weights is known as multiple kernel 

learning (MKL). In this approach, the kernel weights are not selected by the investigator, 

but are chosen computationally. An optimization process for selection of kernel weights 

identifies the weights that maximize the separation of the positive and negative classes in 

the combined kernel space.  

Multiple Kernel Learning 
The support vector machine algorithm operates on a single kernel matrix, 

representing information from a single data source. However, biological problems are 

often better characterized by incorporating data from more than one source of data. This 

has led to an exploration of methods for combining multiple kernel matrices into a single 

classifier.  

 
Lanckriet discussed using a conic combination of kernel matrices for 

classification (G. R. G. Lanckriet, De Bie, Cristianini, Jordan, & Noble, 2004). This can 
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be cast as the convex quadratically constrained quadratic program (QCQP) shown in 

Equation 2, where kD  is the dimensionality of the thk  feature space. 

 

Equation 2. Convex quadratically constrained quadratic program representing a conic combination of kernel 
matrices (G. R. G. Lanckriet et al., 2004). 

min   
2

2
1 1

1
2

K N

i
k i

k
C ξ

= =

  + 
 
∑ ∑w   

w.r.t.  , , ,kD N
k bξ∈ ∈ ∈w   

   

s.t.  
1

, ( ) 1
K

i k k i i
k

y b ξ
=

 Φ + ≥ − 
 
∑ w x    

  and 0, 1, ,i i Nξ ≥ ∀ =     
 

Bach notes that the QCQP algorithm is feasible only for small problems, 

incorporating a small number of features and a small number of kernels (Bach, Lanckriet, 

& Jordan, 2004). Sonnenburg demonstrates that, instead of solving this optimization 

problem directly, the Lagrangian dual function allows rewriting of the problem as the 

equivalent dual formulation shown in Equation 3 (Sonnenburg, Ratsch, Schafer, & 

Scholkopf, 2006):  

 

Equation 3. Equivalent dual formuation of Equation 2 (Sonnenburg et al., 2006). 

min   
1

N

i
i

γ α
=

−∑   

w.r.t.  , Nγ α∈ ∈     

s.t.  
1

, 0
N

i i
i

C yα α
=

≤ ≤ =∑0 1    

  
, 1

1 ( , ) , 1, ,
2

N

i j i j k i j k
i j

y y Kα α γ
=

≤ ∀ =∑ k x x 
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Here α  is a vector of dual variables corresponding to each separation constraint.  

 

Rearranging terms, and substituting 
, 1 1

1 ( , ) ( )
2

N N

i j i j k i j i k
i j i

y y Sα α α α
= =

− =∑ ∑k x x   to 

represent the separation constraints, Sonnenburg rewrites the dual formulation as shown 

in Equation 4 (Sonnenburg et al., 2006): 

 

Equation 4. Reorganization of Equation 3 by rearrangement of terms (Sonnenburg et al., 2006). 
min   γ   

w.r.t.  , Nγ α∈ ∈     

s.t.  
1

, 0
N

i i
i

C yα
=

≤ ≤ =∑0 α 1    

  ( ) , 1, ,k kS Kα γ≤ ∀ =     
 

Sonnenburg converts the dual to the semi-infinite linear program (SILP) 

presenting in Equation 5 (Sonnenburg et al., 2006): 

 

Equation 5. Conversion of Equation 4 to a semi-infinite linear program (Sonnenburg et al., 2006). 
max   θ   

w.r.t.  , Kθ β∈ ∈     

s.t.  
1 1

, 1and ( )
K K

k k k
k k

Sβ β α θ
= =

≤ = ≥∑ ∑0 β    

  
1

for all with and 0
N

N
i i

i
C yα α α

=

∈ ≤ ≤ =∑0 1
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Here the kβ  values are kernel weights for the K  kernels. 

 
The SILP formulation of the multiple kernel learning problem has lower 

computational complexity than the QCQP formulation. This version of the optimization 

problem can be solved using a general-purpose linear programming (LP) solver and a 

standard support vector machine implementation (Sonnenburg et al., 2006).  

 
Sonnenburg’s multiple kernel learning algorithm, depicted in Figure 2, divides the 

problem into an inner subproblem and an outer subproblem. The outer loop, delimited by 

Line 2 and Line 9, determines the optimal β for a fixed α, using a general-purpose linear 

optimizer. The inner loop, Lines 6 through 8, is the dual optimization problem for the 

single kernel case for fixed β. The outer loop is solved using the results of the inner loop 

as input, while the inner loop uses the results of the outer loop as input. The process 

continues until a convergence criterion is met (Sonnenburg et al., 2006).  

 

 

 

1 0 1 1 11, , for 1,...,kS k K
k

θ β= = −∞ = =  

2 for t = 1, 2, … do 

3 
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7   w.r.t.  ,Kβ θ∈ ∈    

8 
  

s.t. 
 

1 1
0 , 1,and for 1, ,

K K
r

k k k
k k

S r tβ β β θ
= =

≤ = ≥ =∑ ∑ 

  

9 end for 
Figure 2. Sonnenburg's multiple kernel learning algorithm (Sonnenburg et al., 2006). 

 

Sonnenburg’s multiple kernel learning algorithm is implemented in the Shogun 

machine language toolbox, with interfaces written in Python, Java, C#, Matlab, Octave, 

R, Lua, and Ruby (Sonnenburg et al., 2010). For this dissertation, the Python interface 

was used to incorporate the multiple kernel learning algorithm into each of the three gene 

prioritization problems described. 
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CHAPTER FOUR: TEXT PROCESSING METHODS  
FOR MEASURING GENE SIMILARITY 

Online literature databases provide rich sources of information about genes stored 

as free text (Lars Juhl Jensen, Saric, & Bork, 2006; Peng & Zhang, 2007). The texts can 

be analyzed in different ways to generate measures of similarity between pairs of genes. 

In this chapter, we will consider two sources of textual information about genes. Both 

sources are maintained by the National Library of Medicine.  

The PubMed database is organized around research articles, such that each record 

stores information about one article. Each article is given a unique identifier, known as 

the PubMed identifier, or PMID. Fields in the database include information such as the 

title of the article, date of publication, author names, keywords assigned to the article, and 

the actual sentences comprising the free text of the article abstract. In most cases, a PMID 

can be associated with both a title and an abstract. However, the title field, abstract field, 

or both title and abstract fields are empty for several PMIDs. 

The Entrez Gene database is organized around genes, such that each record stores 

information about one gene. Each gene is assigned to a single Entrez Gene identifier. One 

field in the database stores a list of PubMed identifiers related to that gene. This field 

may list a single PMID, multiple PMIDs, or may be empty.  

By combining data in the Entrez Gene and PubMed databases, we can associate a 

gene with both a list of PubMed identifiers and a list of free-text sentences. We now 
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describe three methods by which two genes can be compared to each other using data 

from the Entrez Gene and PubMed databases. 

Gene Similarity Based on Shared Abstracts 
The simplest method for comparing two genes is to retrieve from Entrez Gene the 

list of PubMed identifiers associated with each gene. We then simply count the number 

of PubMed identifiers that appear in both lists. By this method, two genes are assigned a 

score of zero if they have no PubMed identifiers in common, or an integer score 

representing the number of PubMed identifiers they share. This method is 

computationally very straightforward to implement, since it is based entirely on retrieving 

annotations from a single field of the Entrez Gene database. 

Gene Similarity Based on Co-Occurrence of Gene Names in Abstracts 
This method of similarity assessment is based on the premise that related genes 

will likely occur together in the same sentences in research abstracts. Several steps are 

required for the processing of abstracts. First, the text of the abstract is separated into 

sentences. Second, each sentence is examined for linguistic cues to find phrases likely to 

represent the names of genes. Third, since different phrases might be used to represent 

the same gene, a thesaurus is used to translate the found phrases to the Entrez Gene 

identifier for the corresponding gene. Finally, for each pair of genes, we count the 

number of sentences in which the genes occur together. 

The identification of textual references to a specific type of object is known as 

named entity recognition (Leser & Hakenberg, 2005). A simple string search can be used 

to identify objects that have only a small number of commonly used names. However, 
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biological molecules often have multiple different names and abbreviations that have 

arisen through different nomenclature systems. The recognition of gene names in free 

text is a difficult task because there is no single standardized system of nomenclature for 

genes. A single gene may be referenced by a large number of noun phrases, 

abbreviations, and numerical identifiers in different texts (Leser & Hakenberg, 2005; 

Torii, Hu, Wu, & Liu, 2009). In addition, some genes have been assigned names that are 

identical to common words in the English language.  

The three main approaches to biological named entity recognition are association-

rule methods involving application of hand-crafted rules to recognize characteristic 

phrases (Chang, Schutze, & Altman, 2004; Hanisch, Fluck, Mevissen, & Zimmer, 2003), 

dictionary lookup methods based on an archived list of entity names (Egorov, Yuryev, & 

Daraselia, 2004; Koike, Niwa, & Takagi, 2005; Kou, Cohen, & Murphy, 2005), and 

machine learning methods in which the system is trained on a tagged corpus (L. Smith et 

al., 2008; Yeh, Morgan, Colosimo, & Hirschman, 2005). Language models are a widely 

used machine learning approach that involves encoding patterns of word use that are 

more often used in text discussing genes. A phrase will be marked as a likely reference to 

a gene only if the word context surrounding the phrase is typically seen in other texts that 

describe genes. The creation of a language model requires training on a set of documents 

in which known references to genes have been labeled. 

Gene Similarity Based on Cosine Similarity of Free Text in Abstracts 
Text processing methods based on analyzing the structure of natural-language text 

are computationally intensive and difficult to implement, since they require the design of 
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programs that attempt to model some of the subtleties of the human understanding and 

interpretation of language (McDonald, Chen, Su, & Marshall, 2004; Saric, Jensen, 

Ouzounova, Rojas, & Bork, 2006). Several approaches based on the statistical analysis of 

words in texts have been studied (Jenssen, Laegreid, Komorowski, & Hovig, 2001; 

Raychaudhuri & Altman, 2003). A vector-space model is a statistical approach that 

converts documents into vectors of word counts (Berry, Drmac, & Jessup, 1999). In the 

vector space, the degree of similarity between documents can be calculated as the cosine 

of the angle between the corresponding vectors. 
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CHAPTER FIVE: CLASSIFIER DESIGN 

Classifier Design: Overview 
This dissertation discusses the application of multiple kernel learning to the gene 

prioritization task in three biological domains: prediction of microRNA-gene 

relationships, prediction of neurotransmitter-gene relationships, and prediction of drug-

gene relationships. These three biological problems will be discussed in more detail in 

Chapters 5, 6, and 7. For the following discussion, we will use the general term “entity” 

to refer to a biological object (microRNA, neurotransmitter, or drug) that is being 

explored for its potential to interact with genes in a gene list.  

For the three domains, lists of known entity-gene interactions was identified by 

querying publicly-available databases: the miRecords microRNA target prediction 

database for microRNA-gene interactions, the STITCH chemical-protein interactions 

database for neurotransmitter-gene interactions, and the PharmGKB pharmacogenomics 

database for drug-gene interactions. In each case, 70% of the known interactions was 

used for classifier training, with 30% set aside for testing. 

The objective of training classifiers on known entity-gene interactions is to then 

apply the classifiers to previously unknown or unlabeled entity-gene interactions. The 

classifier results can then be used to rank the unlabeled genes in order of likelihood of an 

interaction with the entity of interest.  
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To simplify our analysis, we imposed some limitations on the population of genes 

that we would attempt to classify. We focused on human genes, and further limited the 

set of genes we will study to 3217 human genes which appear in all of the data sources 

used for classifier construction. This helped reduce the problem of trying to combine 

information sources that vary greatly in their coverage of the entire set of human genes. 

Throughout this document, we will refer to this list of 3217 genes as our list of core 

genes. 

For each entity of interest, several support vector machine classifiers were 

created, with each classifier incorporating data from a single data source. We will denote 

classifiers trained on a single data source as “base classifiers.” We tested multiple sets of 

parameters to train and test multiple base classifiers for each data source available, for 

each entity. The best-performing base classifiers, as measured by area under the ROC 

curve, were then combined to generate multiple kernel learning classifiers. The best-

performing MKL classifiers were then used to assign labels to all the genes in the list of 

3217 core genes. 

Data Sources 
The three problem domains differ in the data sources available for classifier 

construction. The following curated bioinformatics databases were consulted for all three 

domains: 

The Gene Ontology (GO) Database 
 The Gene Ontology database includes annotations for genes along three 

dimensions: cellular compartment, molecular function, and biological function. We 
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focused on the biological function annotations for genes. Each gene may be annotated 

with multiple biological function terms. For a list of g genes, we construct a g x g feature 

matrix in which each matrix cell represents the number of GO biological process 

annotations shared by gene gi and gene gj. In our discussion, we refer to this data source 

as GO. 

The KEGG Pathway Database  
The KEGG pathway database includes annotations for the biological pathways in 

which a gene participates. For a list of g genes, we construct a g x g feature matrix in 

which each matrix cell represents the number of KEGG pathway annotations shared by 

gene gi and gene gj. In our discussion, we refer to this data source as KEGG. 

The REACTOME Pathway Database 
The REACTOME pathway database includes annotations for the biological 

pathways in which a gene participates. It has some similarities to the KEGG database, but 

with some differences in coverage. For a list of g genes, we construct a g x g feature 

matrix in which each matrix cell represents the number of REACTOME pathway 

annotations shared by gene gi and gene gj. In our discussion, we refer to this data source 

as REACTOME. 

The STRING Protein-Protein Interaction (PPI) Database 
Protein-protein interactions were extracted from the Search Tool for the Retrieval 

of Interacting Genes/Proteins (STRING), a database providing information about known 

and predicted interactions among the proteins coded by genes (Lars J. Jensen et al., 2009; 

Szklarczyk et al., 2011). The database provides a score for protein-protein interactions 

based on eight criteria: results of high-throughput experiments, co-expression data, 
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inference based on homology, evolutionary conservation, gene fusion evidence, physical 

closeness of protein-coding genes on the genome, text mining analysis of PubMed 

abstracts, and retrieval of interactions from other curated databases. For a list of g genes, 

we construct a g x g feature matrix in which each matrix cell represents the score in the 

STRING database representing the strength of evidence for an interaction between gene 

gi and gene gj. In our discussion, we refer to this data source as PPI. 

 

In addition to the above curated databases, several data sources were constructed 

through text mining analysis of PubMed abstracts. For each of the 3217 genes in our list 

of core genes, we queried the Entrez Gene database for the PubMed identifiers associated 

with that gene. We then retrieved the PubMed abstracts linked to those identifiers. This 

provided a database of 207,129 PubMed abstracts. These abstracts were processed to 

generate five different data sources: 

PubMed: Shared Identifiers 
This data source is based on a simple count of the number of PubMed identifiers 

shared by genes. For a list of g genes, we construct a g x g feature matrix in which each 

matrix cell represents the number of PubMed identifiers shared by gene gi and gene gj in 

the Entrez Gene database. In our discussion, we refer to this data source as PMID. 

PubMed: Named Entity Recognition 
This data source is constructed using named entity recognition methods. Each 

abstract was analyzed using a language model based on a hidden Markov model (HMM), 

trained on the Genetag corpus, and implemented in the Lingpipe suite of statistical 
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natural language processing tools. The model tags phrases based on the likelihood that a 

phrase represents a reference to some gene. The HMM cannot determine what specific 

gene is being referenced by the phrase. The Biothesaurus ontology, maintained by the 

Protein Information Resource, was used to translate text phrases to the corresponding 

Entrez Gene identifiers. This process allowed resolution of synonymous phrases to the 

same Entrez Gene identifier. For any two genes, we can then count the number of 

abstracts that include references to both genes. For a list of g genes, we construct a g x g 

feature matrix in which each matrix cell represents the number of PubMed abstracts that 

include references to both gene gi and gene gj. In our discussion, we refer to this data 

source as NER. 

PubMed: Cosine Similarity of Abstracts 
We constructed three data sources, designated as COS1, COS2, and COS3,  by 

calculating the cosine similarity of PubMed abstracts. The data sources differ based on 

the minimum value used for term frequency-inverse document frequency (tf-idf). This 

resulted in data sources that treated different sets of words as being uninformative, thus 

using different-sized vocabularies in the word counts. All abstracts were processed by 

removal of stopwords, stemming, and removal of whitespace. We then identified the 

global vocabulary of words used in all the documents. A vector of word counts was 

created for each abstract. We then calculated the tf-idf value for each term. Any term 

with a tf-idf value below a set minimum was dropped from the vocabulary. The COS1 

data source uses a minimum tf-idf value of 0.1, resulting in a vocabulary size of 295,882 

words. COS2 uses a minimum tf-idf value of 0.75, resulting in a vocabulary size of 
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279,817. COS3 uses a minimum tf-idf value of 1.5, resulting in a vocabulary size of 

207,042. At this point, each data source has an associated document-term matrix. 

The document-term matrix was used to generate a set of gene-term vectors. If a 

gene in the Entrez Gene database was associated with only one PubMed identifier, then 

the corresponding row of the document-term matrix was used as the gene-term vector for 

that gene. If a gene was associated with multiple PubMed identifiers, then a single gene-

term vector was created through a linear combination of vectors, i.e. by adding 

corresponding term counts in all relevant rows in the document-term matrix.  

Once gene-term vectors were generated for all genes, we can calculate the cosine 

similarity between the vectors. For a list of g genes, we construct a g x g feature matrix in 

which each matrix cell represents the cosine similarity between gene gi and gene gj. 

MicroRNA Target Prediction Algorithms 
Three data sources, MIRANDA, PITA, and RNAHYBRID were used only for the 

microRNA-gene relationship domain. Each data source represents the results from 

running one microRNA target prediction algorithm for a single microRNA sequence and 

a list of potential target genes. Details on the design of these data sources are found in 

Chapter 6. 

Risperidone Differential Expression Data 
One data source was used only for the drug-gene relationship domain. This data 

source, which we designate as RISPERIDONE, consists of differential expression values 

for human neuroblastoma cells exposed to risperidone, compared to control cells not 

exposed to risperidone. The expression data was generated in the lab of Mas et al. at the 
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University of Barcelona (Mas, Gasso, Bernardo, & Lafuente, 2013). The expression 

values were downloaded from the GEO Omnibus database (Barrett & Edgar, 2006). 

Genes are compared pairwise based on the magnitude of difference between differential 

expression values.  

Data Preprocessing 
Once a list of genes is selected to serve either as a labeled list for classifier 

training or as an unlabeled list to be classified, the data related to each gene is extracted 

from one or more data sources. The data from each data source is stored in a separate 

matrix, with each matrix row representing one gene and each matrix column representing 

one field from the data source. The columns can be conceptualized as features that 

characterize the genes. Each raw data matrix goes through several processing steps. In 

cases where the number of features is small, as in the microRNA target prediction scores 

(2 or 3 features recorded in each data source), the raw training data is normalized to zero 

mean and unit variance. The scaling parameters used for the normalization are saved, so 

that the same scaling can be applied to the test data and to the unlabeled data. 

In many cases, the number of features is large. This is particularly true when the 

raw data consists of pairwise counts or comparisons between each gene and all other 

genes. Each of the 3217 genes in the study population functions as a feature in the data 

matrix. We felt that it would be useful to reduce the number of features considered, in 

order to limit the possible effect of noise in the data matrix and focus on features that are 

informative in distinguishing the genes from one another. We elected to apply principle 

components analysis on the training data. We retain enough of the principle components 
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to account for 95% of the variance in the data. These principle components are then used 

as a reduced set of features for the training data. We save the scaling parameters and 

loadings matrix used to reduce the training data, and apply the same scaling parameters 

and loadings matrix to the test data and to the unlabeled data. 

SVM Step 
For each problem domain, multiple SVM classifiers were trained for each data 

source. For each data source, we tested three kernel functions: linear, Gaussian, and 

polynomial. The linear kernel function (same as dot product) produces a single support 

vector machine. With the Gaussian kernel function, we varied the weight parameter to 

generate several SVMs. With the polynomial kernel function, we varied the degree 

parameter to generate several SVMs. Each classifier was trained on a training set of data, 

and tested on a test set. The area under the ROC curve was used to evaluate the 

classifiers. We considered the best kernel function for each data source to be the one that 

generated the SVM with the highest AUROC value. 

MKL Step 
For each data source, we select the kernel matrix that generated the SVM with the 

highest AUROC. We only considered data sources that can generate an SVM with an 

AUROC of at least 0.5, since a lower AUROC suggests that the classifier is performing 

at a level worse than random classification. We then ran the multiple kernel learning 

procedure on all combinations of the selected kernels. For each run, we allowed the MKL 

algorithm to select the optimal weight for combining the kernels. We saved the AUROC 

values for all the MKL classifiers. 
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Classifier Diversity 
In many cases, several MKL classifiers share the top position for highest AUROC 

value. To break ties, we favored more diverse classifiers. The concept of classifier 

diversity is found in the literature on ensemble classifiers. If a classifier uses only one 

data source, it may have some limitations in situations where coverage of the unlabeled 

data by that data source has gaps. On the other hand, if a classifier uses many data 

sources, but assigns a very high weight to one kernel and low weights to the others, this is 

not much different from using just one kernel. We used the following heuristic for 

scoring classifiers for diversity. First, we take the average of the weights assigned to each 

kernel. This tends to penalize classifiers that include many low-weight kernels. We then 

multiply the average by the number of kernels with weights greater than 0.3. This 

rewards classifiers that include larger numbers of high-weight kernels. 

Measuring Classifier Performance 
Once a combined kernel is constructed, it can be incorporated into a support 

vector machine classifier. This allows multiple information sources to be incorporated 

into a classification system. The performance of the classifier can be tested using a set of 

known examples, with the class labels removed. The classifier is run to assign its own 

labels to the test cases. We can then compare how closely the labels assigned by the 

classifier match the actual class labels. 

Examining the kernel weights derived by a MKL classifier can provide 

information on the relative usefulness of a data source in the classification process. If the 

classifier chose very low weights for certain kernels during the weight optimization 
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process, then those data sources did not contribute much to the ability of the classifier to 

separate the examples in the positive and negative classes.   

For the following studies, overall classifier performance is evaluated by 

calculating the area under the receiver operating characteristic curve, or ROC curve. This 

value is defined as the area under a curve plotting sensitivity against 1-specificty, using a 

sequential series of threshold values as the separator between the positive and negative 

classes (Fawcett, 2006). 

Selecting Best MKL Classifier 
To select the classifier that will be used to label the unlabeled data, we first 

identify the MKL classifiers with the highest AUROC. To break ties among the highest-

AUROC classifiers, we select the classifier with the highest diversity score. This 

classifier can then be used to label the unlabeled data. 

Once the classification of unlabeled instances is complete, we save the combined 

kernel matrix. This structure can be considered a similarity matrix that uses multiple 

sources of data to compare instances to each other. The rows of this matrix can be used as 

vectors to cluster the unlabeled genes based on their similarity to each of the other genes.   

Clustering Methods 
Once data from all available sources is integrated into a combined kernel matrix, 

each matrix row represents a set of comparisons of that gene to all the other genes in the 

data set. Applying a classification algorithm allows us to score each gene based on the 

amount of similarity to genes in the training set. We can then sort the gene list and focus 

our attention on the genes with the highest similarity scores. However, beyond 
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identifying the genes that are most similar to genes in the training set, another level of 

analysis of the gene list is to identify groups of genes that are similar to each other. We 

collect the highest-scoring genes in the gene list, and then cluster these genes. We expect 

that genes with similar functions will tend to cluster together. 

In our research, we identify groups of related genes by clustering the kernel 

matrix rows. Many clustering algorithms, such as k-means clustering, require the 

investigator to begin the analysis by providing the number of clusters to be extracted 

from the data (Hastie, Tibshirani, & Friedman, 2001). Our approach is to use model-

based clustering, in which the optimal number of clusters is determined computationally 

(Fraley & Raftery, 2002). We use the implementation of model-based clustering 

developed at the University of Washington and implemented as a package for the R 

programming language (Fraley, Raftery, Murphy, & Scrucca, 2012). 

Functional Enrichment Analysis 
Given a list of genes, we can retrieve a list of annotations for each gene from an 

annotation database such as the Gene Ontology. For our research, we focus on the 

biological process (BP) annotations in the Gene Ontology. An annotation may be 

assigned to only one gene, or to many genes. Of the annotations assigned to many genes, 

some are common annotations that would occur frequently even in a randomly selected 

set of genes. We would like to identify the biological process annotations that occur in 

the gene list at a rate higher than would be expected by chance. These annotations are 

designated as being highly enriched for the gene list. For the task of functional annotation 

enrichment analysis, we use the Bioconductor package GOstats, which tests the number 
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of occurrences of an annotation against a hypergeometric distribution to identify 

annotations that are highly enriched in a gene list (Falcon & Gentleman, 2007).      
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CHAPTER SIX:  
PROJECT #1: MICRORNA-GENE INTERACTIONS 

This set of studies involves the ranking of genes based on the likelihood of an 

interaction with a microRNA. The biological question for this project is to identify likely 

gene targets for microRNAs that are differentially expressed in horn tissue in cattle. For 

cattle farmers, handling polled cattle (cattle without horns) is safer than handling horned 

cattle. Several researchers have proposed possible roles for microRNAs in bone and 

keratin development (He, Eberhart, & Postlethwait, 2009; Itoh, Nozawa, & Akao, 2009; 

Li et al., 2008; Lin, Kong, Bai, Luan, & Liu, 2009; Price, 2010; Rogler et al., 2009). A 

better understanding of the gene targets of microRNAs that might be related to horn 

biogenesis may help to clarify the genomic mechanisms underlying horn development, 

and would be useful from the perspective of cattle breeding. 

Background: Biology of microRNAs and microRNA Target Prediction 
MicroRNAs (microRNAs) are short ribonucleotide sequences that are involved in 

post-transcriptional regulation (Bartel, 2009). A microRNA can alter the expression of a 

targeted gene indirectly, by binding to the 3' untranslated region (3' UTR) of the 

messenger RNA (mRNA) transcribed by the gene. The microRNA is incorporated into 

the RNA induced silencing complex (RISC). If the degree of complementarity of the 

microRNA to the mRNA is high, the mRNA is cleaved by the RISC. In cases of lower 

complementarity, translation of the mRNA is repressed. Translational repression is the 
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more common mode for regulation of gene expression by a microRNA. The 

identification of large numbers of microRNAs and their presence in a wide variety of cell 

types has sparked many research efforts to understand the roles that microRNAs play in 

the life of a cell.  

MicroRNAs and Gene Expression 
Several factors are believed to be relevant to the propensity of a microRNA to 

target a gene. These include: [1] the closeness of the alignment of the microRNA 

sequence to the 3’UTR sequence; [2] the number of sites along the 3’UTR sequence to 

which the microRNA can be aligned; [3] the calculated thermodynamic stability of the 

microRNA:mRNA complex; and [4] the degree of evolutionary conservation of the 

potential binding site within the 3’UTR. 

 

[1] Alignment of microRNA and mRNA Sequences 

The higher the degree of complementarity of the microRNA sequence and the 

3’UTR sequence, the more likely the microRNA may target the gene. In plants, perfect 

complementarity is typically observed between the microRNA and target sequences. In 

animals, perfect complementarity is rare. This complicates the process of microRNA 

target prediction for animal genomes, since the alignment scoring must allow for some 

mismatches in the alignment. 

 

[2] Number of Potential Target Sites 
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While the sequence of the mature microRNA molecule is typically small, around 

22 nt, the length of a 3’UTR sequence can vary greatly. A long 3’UTR sequence may 

include multiple locations to which the same microRNA sequence can be aligned, and 

also may provide sites to which different microRNAs can align. Several target prediction 

methods include a count of the number of sites on a gene to which a microRNA could 

bind as a factor in assessing the likelihood that the microRNA targets the gene. For these 

methods, a large number of potential binding sites is considered evidence in favor of 

targeting of the gene by the microRNA.  

 

[3] Thermodynamics of microRNA:mRNA Binding 

Several target prediction programs include an estimation of the thermodynamic 

stability of the microRNA:mRNA duplex, since the microRNA must remain bound long 

enough to either initiate degradation of the mRNA or repress translation. In addition, 

some methods consider how accessible the binding site on the mRNA would be to the 

microRNA, and estimate the amount of free energy that would be required to unfold the 

mRNA enough to make the binding site accessible. 

 

[4] Evolutionary Conservation of Target Sequences 

The conservation across species of a sequence within the 3’UTR may indicate that 

the sequence has some useful biological function and is being preserved over 

evolutionary time. The binding of a microRNA to a conserved gene sequence is more 

likely to reflect a biologically meaningful relationship between the microRNA and the 
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gene compared to microRNA binding to a sequence that is not retained through 

evolution. For this reason, many target prediction programs give a higher score to 

potential targets that have evolutionarily conserved target sequences.  

MicroRNA Target Prediction 
One possible approach to understanding the functional roles of a microRNA is to 

examine the functional roles of the genes targeted by the microRNA. However, a 

microRNA can have multiple targets, and determination of all the targets of a microRNA 

is a difficult task. Several computational approaches have been developed to use 

microRNA and mRNA sequence features to predict which mRNAs will be targeted by a 

microRNA (Enright et al., 2003; Griffiths-Jones, Saini, van Dongen, & Enright, 2008; 

Maziere & Enright, 2007). Databases such as miRBase have been developed to archive 

sequence information about microRNAs, and to store lists of computationally predicted 

microRNA targets (Griffiths-Jones, Grocock, van Dongen, Bateman, & Enright, 2006). 

Verification of the accuracy of computational target prediction approaches requires the 

availability of databases of experimentally verified microRNA targets, such as the 

TarBase database (Sethupathy, Corda, & Hatzigeorgiou, 2006); (Papadopoulos, Reczko, 

Simossis, Sethupathy, & Hatzigeorgiou, 2009). 

Computational microRNA Target Prediction Methods 
Multiple computational methods have been developed for predicting whether a 

particular microRNA will target a gene. To date, no one method has been demonstrated 

to consistently outperform all others on the target prediction task.  The relative 

importance of the factors influencing gene targeting by a microRNA is not clear. 
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Therefore, different prediction methods may incorporate different factors into the target 

prediction task, and may weight these factors differently. This section will discuss several 

well-documented computational microRNA target prediction methods. 

miRanda 
The miRanda algorithm (Enright et al., 2003) uses a dynamic programming 

approach to compute a weighted sum of scores for base pair matches and mismatches. 

Matches in positions 2-8 of the 5’ end of the miRNA (the seed region) and in the 3’ 

region of the miRNA are given greater weight. The free energy of the miRNA-mRNA 

duplex is estimated using the Vienna RNA folding package (Hofacker, 2003). The 

PhastCons conservation score is used as a measure of the degree of conservation of the 

genome sequence to which the miRNA is aligned (Siepel et al., 2005). Thus, the miRanda 

algorithm uses a combination of sequence alignment, secondary structure prediction, and 

sequence conservation information to generate a score for the target. 

PITA 
PITA (Probability of Interaction by Target Accessibility) takes into account the 

accessibility of potential target sites when calculating the likelihood that a microRNA 

will form a complex with that site (Kertesz, Iovino, Unnerstall, Gaul, & Segal, 2007). 

The algorithm first uses sequence alignment to identify possible target sites. It then 

calculates the free energy that would be required to unfold the target mRNA enough to 

allow binding between the microRNA and the mRNA. Evolutionary conservation of the 

target sequence is not considered by the PITA algorithm. 
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RNAhybrid 
The RNAhybrid algorithm is a variation of Zuker’s algorithm for RNA secondary 

structure prediction (Zuker & Stiegler, 1981). Instead of predicting the secondary 

structure for a single RNA sequence, RNAhybrid extends the algorithm to determine the 

most energetically favorable hybridization between two RNA sequences. RNAhybrid 

uses a dynamic programming method to calculate the minimum free energy of 

hybridization for all possible start positions in the microRNA and the target gene 

sequence, with some allowance for the possibility of stretches of unpaired nucleotides in 

either sequence. The RNAhybrid algorithm has been incorporated into a program for 

microRNA target prediction, and is available freely online (Kruger & Rehmsmeier, 

2006). 

DIANA-microT 
The DIANA-microT algorithm considers both sequence alignment and 

evolutionary conservation in scoring potential microRNA targets (Maragkakis et al., 

2009). A weighted sum of scores for each potential target site on the 3'UTR is calculated 

to produce a total score for the target gene. 

PicTar 
PicTar (Probabilistic Identification of Combinations of Target Sites) uses 

sequence alignment, free energy of the miRNA-mRNA complex, and conservation of the 

target sequence to score the likelihood that a microRNA targets a gene (Krek et al., 

2005). In addition, PicTar assigns a higher score to 3’UTR sequences that can be aligned 

simultaneously to multiple microRNAs. This is based on the notion that microRNAs may 

sometimes act cooperatively to regulate target genes. 
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TargetScan 
TargetScan and TargetScanS are related programs that score potential microRNA 

targets primarily on base-pairing criteria. TargetScanS also considers primary sequence 

features, based on the observation of an overrepresentation of adenosines flanking the 

mRNA sequences complementary to the mature microRNA sequence (Lewis, Burge, & 

Bartel, 2005). 

mirTarget2 
The mirTarget2 system is different from the other target prediction methods 

discussed here in that it uses mRNA expression data, rather than sequence data, to predict 

microRNA targets (X. Wang & El Naqa, 2008). A support vector machine approach is 

used to train the system to recognize patterns of gene downregulation in microarray data 

that are correlated with microRNA targeting. This approach can potentially identify 

microRNA targeting when the microRNA achieves gene regulation through cleavage of 

the mRNA. A potential limitation of this approach is that microRNAs more commonly 

affect gene regulation by translational repression than by degradation of the mRNA. 

Measurement of changes in levels of protein synthesis, rather than mRNA expression, 

would provide a better indication of microRNA targeting when repression is the 

mechanism used for modulation of gene expression (Selbach et al., 2008). 

Methods 
MicroRNAs were selected for this study based on review of data generated at the 

USDA Bovine Functional Genomics Laboratory, consisting of microRNA expression 

counts for horn and poll tissues. The microRNAs of interest for this study include 14 

microRNAs: four known from previous research to be involved in bone development 
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(miR-21, miR-214, miR-133, and miR-135), and ten microRNAs that are overexpressed 

in the USDA data set but whose functions are not as well characterized (miR-106, miR-

145, miR-193, miR-195, miR-22, miR-29, miR-423, miR-497, miR-660, and miR-93).  

To create support vector machine classifiers to rank genes as interaction partners 

with microRNAs, a set of known interactions with human microRNA hsa-miR-1 was 

used to provide positive and negative examples. We chose hsa-miR-1 because the 

relatively long history of research on this microRNA has generated a larger number of 

both positive and negative training examples than is available for other microRNAs.  

The plan for the study was to combine data from multiple sources to rank our 

3217 core genes as potential interaction partners for the fourteen microRNAs selected for 

analysis. The data sources used included data from archival bioinformatics databases, 

free-text abstracts, and the results of running microRNA target prediction algorithms. The 

creation of feature matrices based on archival databases and free-text abstracts was 

described in Chapter Five. Here we focus on describing the construction of feature 

matrices based on microRNA target prediction algorithms. 

Kernel Matrices for Classifier Training and Testing 
For classifier training and testing, the miRanda, PITA, and RNAhybrid algorithms 

were run using the mature microRNA sequence for miR-1 and human 3’UTR sequences. 

A list of known gene targets for miR-1 was retrieved from the TarBase database. This 

database lists both experimentally demonstrated targets (positive examples) and genes 

that have been experimentally demonstrated not to be targeted by miR-1 (negative 

examples). From the list of known positive and negative examples, we selected those 
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genes that were also represented in the archival information sources. This would allow 

creation of combined kernel matrices that included data from all the data sources. The 

final lists of positive and negative examples were divided into a training set and test set.  

We ran the miRanda, PITA, and RNAhybrid algorithms using the miR-1 mature 

sequence and the 3’UTR sequences of the genes in the training and test sets. While many 

microRNA target prediction programs have been developed, we selected three programs 

because they are easily accessible online as downloadable software packages for use on a 

local computer, and they have been widely used in other research on microRNA target 

prediction. The human 3’UTR sequences were downloaded from the Ensembl database 

(Flicek et al., 2012). The database includes some very short 3'UTR sequences, some as 

short as one or two nucleotides. Such short 3'UTR sequences caused program crashes 

when submitted to computational target prediction programs to attempt alignment with 

mature microRNA sequences. We eliminated from consideration 3'UTR sequences 

shorter than 25 nt. The miR-1 mature microRNA sequence was retrieved from miRBase 

(Griffiths-Jones et al., 2008). 

For PITA and RNAhybrid, the feature matrices included two features: the number 

of hits, and the free energy of hybridization. For miRanda, the feature matrices included 

three features: the number of hits, the free energy of hybridization, and a composite score 

that gives points for sequence alignment, evolutionary conservation of sequence, and free 

energy of hybridization. Each of the feature matrices was converted to a kernel matrix, as 

described in Chapter 5. The kernel matrix that generated the best-performing classifier 

was selected for incorporation into a set of multiple kernel learning classifiers.  
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Kernel Matrices for Labeling Unlabeled Genes 
After training and testing the MKL classifier, the next step was to use the 

classifier to rank each of the 3217 core genes as a possible target for each of the fourteen 

microRNAs identified as differentially expressed in bovine horn tissue. The mature 

sequences for the microRNAs were downloaded from miRBase. The bovine 3'UTR 

sequences were downloaded from the UCSC Genome Browser (Fujita et al., 2011). For 

each of the microRNAs, we ran the miRanda, PITA, and RNAhybrid algorithms against 

the 3’UTR sequences for the core genes. The results were assembled into feature 

matrices. The feature matrices were scaled using the same scaling parameters as the 

feature matrices used for classifier training and testing. The feature matrices were 

converted to kernel matrices, using the same kernel functions as were used in the best-

performing base classifiers identified during classifier testing. We then used the best-

performing MKL classifier to assign a numeric score to each of the core genes. 

Results 

Micro-RNA Gene Interactions: Classifier Performance 
Table 2 shows the performance, as measured by area under the ROC curve, for 

base classifiers trained to recognize genes as potential interaction partners for miRNA-1. 

We note that the best-performing base classifier was an SVM trained on the cos1 free-

text data, using a linear kernel function, with a resulting AUROC of 0.7321. 

 

Table 2. Best mir1-gene base classifiers.  
Abbreviations: linear = linear kernel function; poly = polynomial kernel function; deg = degree parameter for 
polynomial kernel function; w = weight parameter for Gaussian kernel function. 

Data Source Kernel Function AUROC 
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cos1 linear 0.7321 

ppi linear 0.6786 

pmid linear 0.6786 

kegg poly, deg=10 0.6250 

cos2 linear 0.6250 

reactome poly, deg=2 0.5893 

pita gaussian, w= 0.1 0.5714 

rnahybrid gaussian, w=0.1 0.5714 

go poly, deg=3 0.5714 

cos3 linear 0.5714 

ner linear 0.5357 

miranda gaussian, w=0.0 0.5000 

 

Among the classifier ensembles, several combined classifiers achieved an 

AUROC score of 0.75. This demonstrates that combining data sources can result in 

ensemble classifiers that perform better than any of the base classifiers. 

There are 225 combined kernels that achieved an AUROC score of 0.75. In Table 

3 we show just the classifiers with diversity scores of at least 1.3. 

 

Table 3. Ten highest-diversity mir1-gene ensemble classifiers out of 225 classifiers with AUROC of 0.75. 

Kernels Weights AUROC Diversity 

ppi, ner, cos1, cos2 0.8002, 0.3059, 0.3699, 0.3595 0.75 1.8356 

ppi, ner, cos1 0.8372, 0.3176, 0.4452 0.75 1.6000 

ppi, cos1, cos2 0.8495, 0.3774, 0.3687 0.75 1.5956 



52 
  

ppi, ner, cos2 0.8474, 0.3166, 0.4263 0.75 1.5902 

ppi, ner, pmid 0.8664, 0.3024, 0.3974 0.75 1.5662 

kegg, ppi, ner, cos1, cos2 0.0007, 0.8003, 0.3059, 0.3699, 
0.3594 

0.75 1.4689 

pita, ppi, ner, cos1, cos2 0.0006, 0.8003, 0.3059, 0.3699, 
0.3594 

0.75 1.4689 

rnahybrid, ppi, ner, cos1, 
cos2 

0.0006, 0.8003, 0.3059, 0.3699, 
0.3594 

0.75 1.4688 

go, ppi, ner, cos1, cos2 0.0006, 0.8003, 0.3059, 0.3699, 
0.3594 

0.75 1.4688 

reactome, ppi, ner, cos1, 
cos2 

0.0006, 0.8003, 0.3059, 0.3699, 
0.3594 

0.75 1.4688 

ppi, cos1 0.8901, 0.4558 0.75 1.3459 

ppi, cos2 0.8982, 0.4396 0.75 1.3378 

 

Among the classifier ensembles that achieved an AUROC score of 0.75, the 

ensemble with the highest diversity score was based on data sources ‘ppi’ (protein-

protein interaction data), ‘ner’ (named entity recognition in free text), ‘cos1’ (similarity 

of free-text abstracts using tf-idf of 0.1), and ‘cos2’ (similarity of free-text abstracts using 

tf-idf of 0.75). This classifier was applied for classifying and ranking the set of 

unclassified genes. 

Micro-RNA Gene Interactions: Biological Plausibility 
Many of the microRNAs share targets. For each of the 14, we looked at the 35 

highest-ranked targets, and then looked at targets shared among these lists. This gave 16 

shared targets among the most highly-ranked targets. We have separated these genes into 
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three categories: regulation of transcription and DNA replication; lipid and glycolipid 

metabolism; and other functions. 

Group 1: Regulation of Transcription and DNA Replication 

The genes in this group are listed in Table 4. This set of interaction partners is 

biologically plausible because it reflects a known general role for microRNAs in the 

regulation of transcription. 

 

Table 4. Group 1: microRNA interaction partners related to regulation of transcription and DNA replication. 
Gene descriptions are summarized from the GeneCards database (Safran et al., 2010). 

entrez symbol name description 
10274 STAG1 stromal antigen 1 member of SCC3 family; expressed in 

nucleus; encodes a component of 
cohesion involved in sister chromatid 
cohesion during DNA replication 

54464 XRN1 5’-3’ 
exoribonuclease 1 

involved in mRNA degradation, meiosis, 
telomere maintenance, microtubule 
assembly; may act as a tumor suppressor 
protein in osteogenic sarcoma 

5984 RFC4 replication factor C 
(activator 1) 4, 
37kDa 

accessory proteins required for elongation 
of primed DNA templates by DNA 
polymerase delta and DNA polymerase 
epsilon 

7029 TFDP2 transcription factor 
Dp2; E2F 
dimerization 
partner 2 

member of transcription factor DP 
family; involved in transcriptional 
activation of cell cycle regulated genes; 
involved in both cell proliferation and 
apoptosis 

 
 

Group 2: Glycolipid and Lipid Metabolism 
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The genes in this group are listed in Table 5. Several studies indicate a role for 

microRNAs in glucose and lipid metabolism (Vickers, Sethupathy, Baran-Gale, & 

Remaley, 2013). Much research attention has been given to miR-21, miR-33, miR-122, 

miR-125, miR-370, and miR-758. These microRNAs have been suggested as possible 

biomarkers for disease progression and response to therapy in dyslipidemias, and as 

potential therapeutic targets (Fernández-Hernando, Suárez, Rayner, & Moore, 2011; 

Flowers, Froelicher, & Aouizerat, 2013 Poy, 2007 #1397).  One of these, miR-21, is 

included in our analysis. The gene ABCA1 codes for an ATP binding cassette protein 

which is important in humans in transport of lipids, regulation of cholesterol in peripheral 

cells, and etiologically implicated in the development of atherosclerosis (Brunham, 

Singaraja, & Hayden, 2006). One gene suggested as a possible interaction partners for 

our list of microRNAs is ABCG1, a gene with a protein product that is also in the ATP 

binding cassette class of proteins. Thus, proposing a set of interaction partners involved 

in lipid metabolism appears to have some biological plausibility. 

 

Table 5. Group 2: microRNA interaction partners related to glycolipid and lipid metabolism. 
Gene descriptions are summarized from the GeneCards database (Safran et al., 2010). 

entrez symbol name description 
56894 AGPAT3 1-acylglycerol-3-

phosphate O-
acyltransferase 3 

converts lysophosphatidic acid into 
phosphatidic acid; second step in de 
novo phospholipid biosynthetic 
pathway 

10402 ST3GAL6 ST3 beta-galactoside 
alpha-2,3-
sialyltransferase 6 

member of sialyltransferase family; 
enzymes that transfer sialic acid to 
sialylated glycolipids or 
glycoproteins 

30849 PIK3R4 phosphoinositide-3-
kinase, regulatory 

PIK3s are lipid kinases involved in 
several cell functions: proliferation, 
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subunit 4 cell survival, degranulation, vesicular 
trafficking, cell migration 

9619 ABCG1 ATP-binding 
cassette, sub-family 
G (White), member 1 

ABC proteins transport molecules 
across extra- and intra-cellular 
membranes. This protein is a member 
of the White subfamily; involved in 
macrophage cholesterol and 
phospholipid transport; may regulate 
cellular lipid homeostasis 

4047 LSS lanosterol synthase; 
2,3-oxidosqualene-
lanosterol cyclase 

member of terpene cyclase/mutase 
family; catalyzes first step in 
biosynthesis of cholesterol, steroid 
hormones, and vitamin D 

 

Group 3: Other Functions 

The genes in this group are listed in Table 6. Of the genes in this group, two are of 

particular interest: CLDN1, which codes for a claudin, and TNFSF10, which codes for a 

tumor necrosis factor. 

Several claudins has been found to be regulated by microRNAs. Proteins coded 

by the gene claudin-14 are involved in calcium reabsorption in the kidney, This gene is 

suppressed by two microRNAs, miR-9 and miR-374 (Gong et al., 2012). In the retinal 

epithelium, miR-204 and miR-211 induce the expression of claudins 10, 16, and 19, 

which appear to be important in maintenance of an intact epithelium (F. E. Wang et al., 

2010). Thus, a gene coding for a claudin protein is a biologically plausible microRNA 

interaction partner. 

Several microRNAs are now known to interact with genes coding for proteins in 

the tumor necrosis factor class. MicroRNA-23a mediates the regulation of osteoblast 

apoptosis (Dong, Cui, Jiang, & Sun, 2013) and endothelial cell injury (Ruan, Xu, Li, 
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Yuan, & Dai, 2012) by TNF-alpha. TNF-alpha induces the expression of miR-18a in 

rheumatoid arthritis synovial fibroblasts, contributing to cartilage destruction and chronic 

joint inflammation (Trenkmann et al., 2013). In acute liver failure, miR-1187 mediates 

apoptosis of hepatocytes by TNF-alpha (Yu et al., 2012). In head and neck squamous cell 

carcinoma, miR-375 modulates apoptosis induced by TNF-alpha (J. Wang et al., 2013). 

The large number of studies indicating interactions between microRNAs and tumor 

necrosis factor support the biological plausibility of the relationship proposed in our 

analysis. 

 

Table 6. Group 3: microRNA interaction partners with other functions. 
Gene descriptions are summarized from the GeneCards database (Safran et al., 2010). 

entrez symbol name description 
9076 CLDN1 claudin 1 claudin is an integral membrane 

protein; component of tight junction 
strands 

26061 HACL1 2-hydroxyacyl-coA 
lyase 1 

catalyzes a carbon-carbon cleavage 
reaction 

6747 SSR3 signal sequence 
receptor, gamma 
(translocon-associated 
protein gamma) 

glycosylated endoplasmic reticulum 
membrane receptor; associated with 
protein translocation across the ER 
membrane 

8743 TNFSF10 tumor necrosis factor 
(ligand) superfamily, 
member 10 

a cytokine in the tumor necrosis 
factor ligand family; induces 
apoptosis in transformed and tumor 
cells; does not appear to kill normal 
cells 
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MicroRNA-Gene Interactions: Functional Annotation Analysis 
Table 7 shows the most highly enriched functions for the highest-ranked 

interaction partners shared by the fourteen microRNAs studied. While the microRNAs 

included in this analysis are differentially expressed in horn tissue, the functional 

enrichment analysis for the shared gene targets does not reveal functions that are specific 

to horn development. However, we note a preponderance of functions related to signaling 

and responses to various biochemical entities. This is consistent with research findings 

indicating roles for microRNAs in modulating a wide range of biochemical processes 

(Ameres & Zamore, 2013; H. Dong et al., 2013; Van Wynsberghe, Chan, Slack, & 

Pasquinelli, 2011). 

 

Table 7. Most highly enriched functions for the highest-ranked interaction partners shared by the 14 microRNA 
studied. 

goid pval description 

GO:0044281 3.17E-05 small molecule metabolic process 

GO:0007195 9.46E-05 adenylate cyclase-inhibiting dopamine receptor 
signaling pathway 

GO:0006112 1.70E-04 energy reserve metabolic process 

GO:0032870 1.80E-04 cellular response to hormone stimulus 

GO:0071375 2.11E-04 cellular response to peptide hormone stimulus 

GO:1901653 2.11E-04 cellular response to peptide 

GO:0050852 2.42E-04 T cell receptor signaling pathway 

GO:0044030 2.63E-04 regulation of DNA methylation 

GO:0071495 3.38E-04 cellular response to endogenous stimulus 
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GO:0009719 3.54E-04 response to endogenous stimulus 

GO:0007191 4.22E-04 adenylate cyclase-activating dopamine receptor 
signaling pathway 

GO:0007166 4.27E-04 cell surface receptor signaling pathway 

GO:0044710 4.59E-04 single-organism metabolic process 

GO:0050851 5.74E-04 antigen receptor-mediated signaling pathway 

GO:0002429 7.48E-04 immune response-activating cell surface receptor 
signaling pathway 

GO:0043434 7.53E-04 response to peptide hormone stimulus 

GO:0009725 8.23E-04 response to hormone stimulus 

GO:1901652 8.58E-04 response to peptide 

GO:0048015 8.83E-04 phosphatidylinositol-mediated signaling 

GO:0048017 8.83E-04 inositol lipid-mediated signaling 

GO:0071417 8.96E-04 cellular response to organic nitrogen 

 

MicroRNA-Gene Interactions: Using Target Rankings to Identify Genes with 
Possible Relationship to Horn Development 

In bovine genomics, an animal born without horns is denoted as possessing the 

polled phenotype. Identification of genes related to the polled phenotype may be helpful 

in planning the selective breeding of animals in order to favor generation of offspring that 

have no horns. Previous research on bovine horn development has identified a region 

between the 0.8MB and 2.8MB positions on Chromosome 1 (Chr1) that has been 

implicated in the polled phenotype (Allais-Bonnet et al., 2013). We examined our data on 
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predicted microRNA targets to see whether the microRNAs that are differentially 

expressed in horn tissue target any of the genes located in this region. 

For each of the differentially expressed microRNAs, we retrieved the Chr1 

coordinates for each predicted target, and the score assigned by our ensemble classifier. 

The results are shown in Table 8. 

 

Table 8. Predicted microRNA targets in region 0.8MB to 2.8MB on Chromosome 1. 

mir entrez symbol score start end strand 

mir21 3455 IFNAR2 0.518454 1593290 1627127 - 

mir21 3460 IFNGR2 0.624291 1376156 1408234 - 

mir214 3460 IFNGR2 0.624291 1376156 1408234 - 

mir133 3460 IFNGR2 0.624291 1376156 1408234 - 

mir133 3455 IFNAR2 0.518454 1593290 1627127 - 

mir135 3460 IFNGR2 0.624291 1376156 1408234 - 

mir106 3460 IFNGR2 0.624291 1376156 1408234 - 

mir106 3455 IFNAR2 0.518454 1593290 1627127 - 

mir145 539 ATP5O 0.541558 922635 929993 + 

mir145 3460 IFNGR2 0.624291 1376156 1408234 - 

mir193 3460 IFNGR2 0.624291 1376156 1408234 - 

mir193 3455 IFNAR2 0.518454 1593290 1627127 - 

mir195 3455 IFNAR2 0.518454 1593290 1627127 - 

mir22 3460 IFNGR2 0.624291 1376156 1408234 - 
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mir22 3455 IFNAR2 0.518454 1593290 1627127 - 

mir29 3460 IFNGR2 0.624291 1376156 1408234 - 

mir423 3460 IFNGR2 0.624291 1376156 1408234 - 

mir423 3455 IFNAR2 0.518454 1593290 1627127 - 

mir497 3455 IFNAR2 0.518454 1593290 1627127 - 

mir660 3455 IFNAR2 0.518454 1593290 1627127 - 

mir660 3460 IFNGR2 0.624291 1376156 1408234 - 

mir93 3460 IFNGR2 0.624291 1376156 1408234 - 

 

We note that all of the predicted microRNA targets in the specified Chr1 region 

have been assigned positive scores by the ensemble classifier. Three genes in the 

specified Chr1 region, ATP50, IFNAR2, and IFNGR2, are predicted as targets for one or 

more of the differentially expressed microRNAs. IFNGR2 is a predicted target for twelve 

of the fourteen microRNAs, IFNAR2 is a predicted target for nine microRNAs, and 

ATP50 is a predicted target for one microRNA. These three genes are described in Table 

9. 
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Table 9. Genes on Chr1, 0.8MB to 2.8MB, predicted as microRNA targets. 

entrez  symbol name description 

539 ATP5O ATP synthase, H+ 
transporting, 
mitochondrialF1 
complex, O subunit 

a component of the F-type ATPase 
found in the mitochondrial matrix; 
part of connector linking the 
catalytic core and and membrane 
proton channel of the ATPase 

3455 IFNAR2 interferon alpha, beta, 
and omega receptor 2 

associates with IFNAR1 to form 
the type I interferon receptor; 
involved in signal transduction 
through interaction with Janus 
protein kinases 

3460 IFNGR2 interferon gamma 
receptor 2 

associates with IFNGR1 to form 
the gamma interferon receptor; 
involved in signal transduction 
through interaction with Janus 
protein kinases 

 

Each of the genes listed in Table 9 has been suggested in previous research 

literature as a possible marker for the polled phenotype in cattle. A recent study shows a 

high correlation between the polled phenotype and a single nucleotide polymorphism in 

IFGNR2, based on sequencing and association studies (Glatzer et al., 2013). This is the 

gene in the region of interest predicted to be targeted by the largest number of 

differentially expressed microRNAs.  

The differential expression in horn tissue of multiple microRNAs that target these 

genes is consistent with a possible role for microRNAs in regulating the expression of 

genes that may determine whether offspring display the horn phenotype or the polled 

phenotype. The targeting of two interferon receptors by many of the microRNAs suggests 
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that signal transduction through the Janus protein kinases may have a significant role in 

the expression of the horned vs. polled phenotype. 

This study provides further evidence that the MKL ensemble classifier method 

can help to identify biologically meaningful relationships between microRNAs and 

genes. For several of the microRNAs, the classifier assigned positive labels to genes on 

Chromosome 1 that have been previously implicated in determining the polled 

phenotype. These are biologically plausible relationships which could be explored further 

experimentally through linkage disequilibrium evaluation. 
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CHAPTER SEVEN:  
PROJECT #2: NEUROTRANSMITTER-GENE INTERACTIONS 

This set of studies involves the ranking of genes based on the likelihood of an 

interaction with a chemical entity. The two chemicals examined are the neurotransmitters 

serotonin and melatonin. The STITCH database provides information about known 

interactions between chemicals and proteins. A wide range of chemical entities is covered 

by the database, including neurotransmitters. Here we use interactions with proteins as a 

proxy for interactions with genes coding for the proteins. 

Background: Melatonin and Serotonin 
For this set of experiments, we focus on identifying genes that interact with the 

molecules melatonin and serotonin. This is a useful problem to explore because 

melatonin and serotonin are part of the same biosynthetic pathway, but have different 

biological functions. Serotonin is a precursor to melatonin. Serotonin functions primarily 

as a neurotransmitter, modulating interactions between neurons at the level of the 

synapse. Serotonin also has some hormonal capabilities in that it modulates functions in 

the hypothalamic-pituitary-adrenal axis, though the mechanisms behind this activity are 

unclear. Melatonin functions as a hormone, regulator of circadian rhythms, and 

modulator of apoptosis. Ongoing biological research is uncovering the mechanisms by 

which each of these functions is controlled by interactions among genes. If our 

information extraction method retrieves valid relationships between a biological molecule 
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and the genes with which it interacts, then we should be able to recover known functions 

of the molecule by analysis of the list of genes predicted to interact with the molecule. In 

our case, once we have extracted a gene list of proposed interaction partners for 

melatonin and a separate gene list of interaction partners for serotonin, we should be able 

to verify that the gene lists are different and represent different sets of biological 

functions. In addition, the ranking of genes as potential interaction partners for melatonin 

and serotonin may help to uncover possible mechanisms of action that previously have 

not been recognized. 

Methods 
For this study, we only used kernel matrices based on data from the archival 

bioinformatics data sources. For classifier training, we retrieved information from the 

STITCH chemical database on genes known to interact with melatonin and serotonin. We 

used the STITCH score assigned by the database curators and stored in the database for 

each neurotransmitter-gene pair to select positive and negative examples for training. The 

score represents a level of confidence that a chemical and a gene in the database interact, 

based on multiple information sources, including experimental data, mining of free-text 

abstracts, and information retrieved from other curated databases. We selected 

neurotransmitter-gene pairs with a score above 0.85 to serve as positive examples, and 

neurotransmitter-gene pairs with a score below 0.5 to serve as negative examples. The 

preparation of data from our set of archival data sources for representation as kernel 

matrices is described in Chapter 5. 
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Results 

Serotonin-Gene Interactions: Classifier Performance 
Table 10 shows the performance, as measured by area under the ROC curve, for 

base classifiers trained to recognize genes as potential interaction partners for serotonin. 

We note that the best-performing base classifier was an SVM trained on the ppi data, 

using a linear kernel function, with a resulting AUROC of 0.9666. 

 

Table 10. Best serotonin-gene base classifiers. 
Abbreviations: linear = linear kernel function; poly = polynomial kernel function; deg = degree parameter for 
polynomial kernel function; w = weight parameter for Gaussian kernel function. 

Data Source Kernel Function AUROC 

ppi linear 0.9666 

reactome poly, deg=10 0.9091 

go linear 0.8988 

cos2 linear 0.8977 

cos1 linear 0.8896 

pmid linear 0.8724 

cos3 linear 0.8643 

kegg linear 0.8287 

ner linear 0.7561 

 

Among the classifier ensembles, several combined classifiers achieved an 

AUROC score of 0.9839. This demonstrates that combining data sources can result in 

classifiers that perform better than any of the base classifiers. The best ensemble 

classifiers are described in Table 11. 
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Table 11. Serotonin-gene ensemble classifiers with AUROC score of 0.9839. 
This AUROC score is higher than that of any of the base classifiers. 
The ensemble classifiers are presented in order of decreasing diversity. 

Kernels Weights AUROC Diversity 

ppi, ner 0.9513, 0.3082 0.9839 1.2595 

reactome, ppi, ner 0.0014, 0.9513, 0.3082 0.9839 0.8406 

kegg, ppi 0.2722, 0.9622 0.9839 0.6172 

kegg, ppi, ner 0.2520, 0.9335, 0.2552 0.9839 0.4802 

kegg, reactome, ppi 0.2722, 0.0015, 0.9622 0.9839 0.4120 

kegg, reactome, ppi, ner 0.2520, 0.0013, 0.9335, 0.2551 0.9839 0.3605 

 

Among the classifier ensembles that achieved an AUROC score of 0.9839, the 

ensemble with the highest diversity score was based on data sources 'ppi' (protein-protein 

interaction data) and 'ner' (named entity recognition in free text). This classifer was 

selected for classifying and ranking the set of unclassified genes. 

Serotonin-Gene Interactions: Biological Plausibility of Highly Ranked 
Unknown Interaction Partners 

The ppi-ner classifier was run to assign a numeric score to each of the unlabeled 

genes in our core gene set. The genes were then ranked based on their scores. The ten 

highest-ranked genes are listed in Table 12. 

 

Table 12. Previously unlabeled genes in the core gene set that were ranked highest as potential interaction 
partners for serotonin.The ppi-ner classifier was used to rank the genes. 

entrez symbol name 

5565 PRKAB2  5'-AMP-activated protein kinase, beta-2 subunit 
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245972 ATP6V0D2  ATPase, H+ transporting, lysosomal 38kDa, V0 subunit D, 
isoform 2 

3985 LIMK2  LIM domain kinase 2 

7534 YWHAZ  tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, zeta polypeptide 

6093 ROCK1  Rho-associated coiled-coil containing protein kinase 1 

54106 TLR9  toll-like receptor 9 

635 BHMT  betaine-homocysteine S-methyltransferase 

8890 EIF2B4  eukaryotic translation initiation factor 2B, subunit 4 delta 

50628 GEMIN4  GEM (nuclear organelle) associated protein 4 

226 ALDOA  fructose-1,6-bisphosphate aldolase A 
 

While the neurotransmitter serotonin has a well-known role as a neurotransmitter, 

a review of the highly-ranked unclassified genes suggests a possible role for serotonin in 

muscle metabolism. The gene PRKAB2 codes for a regulatory subunit of the AMP-

activated protein kinase, which is highly expressed in skeletal muscle (Lee-Young et al., 

2009; Sanchez et al., 2012). The proteins coded by LIMK2 and ROCK1 participate in a 

phosphorylation pathway that contributes to the reorganization of the actin cytoskeleton 

(Dai et al., 2006; Heng et al., 2012). While actin is a significant component of all 

eukaryotic cells, it is particularly abundant in muscle cells (Gerthoffer, 2005; Kee, 

Gunning, & Hardeman, 2009; Koubassova & Tsaturyan, 2011; Lehman & Morgan, 2012; 

J. Wang, Zohar, & McCulloch, 2006). The gene ALDOA codes for the protein aldolase-

A, which is highly expressed in skeletal muscle. Deficiency in aldolase-A is associated 

with hemolytic anemia and myopathy (Dai et al., 2006; Heng et al., 2012).  
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The possibility of a role for serotonin in muscle metabolism is supported by 

recent studies in which the expression of tryptophan hydroxylase 1 (TPH1), the enzyme 

that catalyzes the rate limiting step in serotonin synthesis, was found to be increased in 

skeletal muscle in mice (Chandran et al., 2012). The article describing this research was 

not included in the set of articles used to construct the classifiers, since it did not have a 

PubMed identifier assigned at the time that texts were retrieved from PubMed to build the 

classifiers. Thus, a proposed relationship between serotonin and muscle, suggested by the 

high ranking of muscle-related genes by the ensemble classifier, turns out to be a 

biologically plausible relationship, based on recent experimental studies. 

Serotonin: Clustering and Functional Enrichment Analysis  
 

In reviewing the functional enrichment of the gene clusters, it might be reasonable 

to expect that the largest clusters would be enriched for functions related to chemical 

response and signaling. Since genes typically act in networks rather than alone, a cluster 

consisting of a single gene may represent an outlier that the clustering algorithm could 

not relate to any other genes. Medium-sized clusters may represent less well 

characterized but potentially important functions. Table 13 depicts lists of highly 

enriched functional annotations for clusters of genes ranked highly as potential 

interaction partners for serotonin. In this analysis, we note several large clusters 

functionally enriched for terms related to signaling and chemical response. One cluster of 

69 genes is enriched for terms related to wound healing, coagulation, and stress response. 

This is consistent with a role for platelet-derived serotonin in wound healing. Thus, the 



69 
  

functional annotation analysis of predicted gene targets is able to reveal different 

categories of function for the chemical entity of interest. 

 

Table 13. Functional annotations for clusters of genes ranked highly as interaction partners for serotonin. 
Model-based clustering, using the mclust R package, was applied to the rows of the kernel matrix on which the 
combined classifier is based, with each matrix row representing one gene. The annotation lists were generated 
using the GOstats R package, with the list of entrez IDs in one cluster serving as the input to GOstats. 

cluster # of 
genes 

functions 

clust_4 291 G-protein coupled receptor signaling pathway; cellular 
response to stimulus; cell surface receptor signaling 
pathway; response to stimulus; G-protein coupled receptor 
signaling pathway, coupled to cyclic nucleotide second 
messenger; signal transduction; signaling; single organism 
signaling; response to chemical stimulus; cell 
communication 

clust_3 256 response to chemical stimulus; cell surface receptor 
signaling pathway; response to stimulus; cellular response to 
stimulus; G-protein coupled receptor signaling pathway; 
small molecule metabolic process; cellular response to 
chemical stimulus; regulation of biological quality; cellular 
calcium ion homeostasis; phospholipase C-activating G-
protein coupled receptor signaling pathway 

clust_5 192 G-protein coupled receptor signaling pathway; G-protein 
coupled receptor signaling pathway, coupled to cyclic 
nucleotide second messenger; adenylate cyclase-modulating 
G-protein coupled receptor signaling pathway; system 
process; response to stimulus; cell surface receptor signaling 
pathway; adenylate cyclase-inhibiting G-protein coupled 
receptor signaling pathway; cell-cell signaling; adenylate 
cyclase-activating G-protein coupled receptor signaling 
pathway; response to chemical stimulus 

clust_2 172 response to chemical stimulus; cell surface receptor 
signaling pathway; cellular response to chemical stimulus; 
cellular response to stimulus; response to stimulus; response 
to stress; signaling; single organism signaling; signal 
transduction; cell communication 
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clust_1 69 response to wounding; response to chemical stimulus; 
response to stress; wound healing; blood coagulation; 
coagulation; hemostasis; response to external stimulus; 
regulation of body fluid levels; cellular component 
movement 

clust_11 10 negative regulation of hydrolase activity; basophil 
chemotaxis; negative regulation of cysteine-type 
endopeptidase activity involved in apoptotic process; 
negative regulation of cysteine-type endopeptidase activity 

clust_10 2 regulation of vitamin D biosynthetic process; regulation of 
vitamin metabolic process; vitamin D biosynthetic process; 
regulation of calcidiol 1-monooxygenase activity; fat-soluble 
vitamin biosynthetic process; vitamin D metabolic process; 
vitamin biosynthetic process; fat-soluble vitamin metabolic 
process; regulation of lipid storage; regulation of steroid 
biosynthetic process 

clust_9 1 coenzyme A biosynthetic process; pantothenate metabolic 
process; nucleoside bisphosphate biosynthetic process; 
ribonucleoside bisphosphate biosynthetic process; purine 
nucleoside bisphosphate biosynthetic process 

clust_14 1 glycogen cell differentiation involved in embryonic placenta 
development; negative regulation of fatty acid beta-
oxidation; regulation of G1/S transition checkpoint; negative 
regulation of plasma membrane long-chain fatty acid 
transport; negative regulation of fatty acid oxidation; 
regulation of plasma membrane long-chain fatty acid 
transport; response to UV-A; activation-induced cell death of 
T cells; plasma membrane long-chain fatty acid transport; 
peripheral nervous system myelin maintenance 

 
 

Melatonin-Gene Interactions: Classifier Performance 
Table 14 shows the performance, as measured by area under the ROC curve, for 

base classifiers trained to recognize genes as potential interaction partners for melatonin. 

We note that the best-performing base classifier was an SVM trained on the ppi data, 

using a linear kernel function, with a resulting AUROC of 0.9194. 
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Table 14. Best melatonin-gene base classifiers. 
Abbreviations: linear = linear kernel function; poly = polynomial kernel function; deg = degree parameter for 
polynomial kernel function. 

Data Source Kernel Function AUROC 

ppi linear 0.9194 

reactome linear 0.9083 

pmid linear 0.8056 

go linear 0.7944 

cos2 linear 0.7556 

cos1 linear 0.7389 

ner linear 0.6917 

cos3 linear 0.6778 

kegg poly, deg = 10 0.6333 

 

Among the classifier ensembles, two combined classifiers achieved AUROC 

scores of 0.9222, which is higher than the AUROC achieved by any of the individual 

classifiers. This demonstrates that combining data sources can result in classifiers that 

perform better than any of the base classifiers. The two best ensemble classifiers are 

described in Table 15. 

 

Table 15. Melatonin-gene ensemble classifiers with AUROC score of 0.9222 
This AUROC score is higher than that of any of the base classifiers 
The ensemble classifiers are presented in order of decreasing diversity. 

Kernels Weights AUROC Diversity 

go, reactome, ppi, ner, pmid, 0.3424, 0.2196, 0.7427, 0.9222 1.4813 



72 
  

cos3 0.3375, 0.3118, 0.2678 

go, kegg, reactome, ppi, ner, 
pmid, cos3 

0.3424, 0.0002, 0.2196, 
0.7427, 0.3375, 0.3118, 
0.2678 

0.9222 1.2698 

 

Among the classifier ensembles that achieved an AUROC score of 0.9222, the 

ensemble with the highest diversity score was based on six data sources: 'go' (Gene 

Ontology annotations), 'reactome' (REACTOME pathway data), 'ppi' (protein-protein 

interaction data), 'ner' (named entity recognition in free text), 'pmid' (shared PubMed 

identifiers), and 'cos3' (similarity of free-text abstracts). This classifer was selected for 

classifying and ranking the set of unclassified genes. 

 

Melatonin-Gene Interactions: Biological Plausibility of Highly Ranked 
Unknown Interaction Partners 

The go-reactome-ppi-ner-pmid-cos3 classifier was run to assign a numeric score 

to each of the unlabeled genes in our core gene set. The genes were then ranked based on 

their scores. The ten highest-ranked genes are listed in Table 16. 

 

Table 16. Previously unlabeled genes in the core gene set that were ranked highest as potential interaction 
partners for melatonin. The go-reactome-ppi-ner-pmid-cos3 classifier was used to rank the genes. 

entrez symbol name 

1176 AP3S1 adaptor-related protein complex 3, sigma 1 subunit 

84265 POLR3GL polymerase (RNA) III (DNA directed) polypeptide G 
(32kD)-like 
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9184 BUB3  bub3 budding uninhibited by benzimidazoles 3 homolog 

347733 TUBB2B  tubulin beta-2b chain 

5296 PIK3R2  phosphatidylinositol 3-kinase, regulatory subunit, 
polypeptide 2 

3918 LAMC2  laminin gamma 2 

23705 CADM1 cell adhesion molecule 1 

80025 PANK2  pantothenate kinase 2 

27127 SMC1B  structural maintenance of chromosomes protein 1b 

5289 PIK3C3 phosphatidylinositol 3-kinase, catalytic subunit type 3 

 

Melatonin is a hormone with a well-characterized role in the maintenance of 

circadian rhythms (Cagnacci, Elliott, & Yen, 1992). It is also known to have strong 

antioxidant properties (Rodriguez et al., 2004).  

A review of the unclassified genes highly ranked as potential interaction partners 

for melatonin reveals several genes involved in neurogenesis and cell migration. AP3S1 

is part of the AP-3 complex, which is required for packaging proteins into vesicles for 

delivery to nerve terminals (Hirst, Bright, Rous, & Robinson, 1999; Simpson, Peden, 

Christopoulou, & Robinson, 1997). PIK3R2 and PIK3C3 are phosphatidiylinositol 

kinases. These enzymes phosphorylate phosphatidylinositol to create second messengers 

involved in growth signaling pathways, which are the basis of cellular functions such as 

cell migration and proliferation (Gout et al., 1992). LAMC2 codes for a laminin, a class 
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of proteins involved in cell adhesion, differentiation, migration, signaling, neurite growth, 

and metastasis (Korang, Christiano, Uitto, & Mauviel, 1995; S. C. Smith et al., 2009). 

Studies on CADM1 reveal a possible role as a synaptic cell adhesion molecule driving 

synapse assembly, and possible involvement in neuronal migration, axon growth, and 

neuronal differentiation (Michels et al., 2008; Moiseeva, Leyland, & Bradding, 2012; 

Zhiling et al., 2008). Mutations in the gene PANK2 are associated with pantothenate 

kinase-associated neurodegeneration (Brunetti et al., 2012; Gatto, Etcheverry, Converso, 

Bidinost, & Rosa, 2010).  

This review of the highest-ranked unclassified genes suggests the possibility of a 

role for melatonin in neuronal cell differentiation and migration. Such a role is supported 

by recent laboratory research indicating the involvement of melatonin in neurogenesis 

(Chern, Liao, Wang, & Shen, 2012; Ramirez-Rodriguez, Ortiz-Lopez, Dominguez-

Alonso, Benitez-King, & Kempermann, 2011; Ramirez-Rodriguez, Vega-Rivera, 

Benitez-King, Castro-Garcia, & Ortiz-Lopez, 2012; Sarlak, Jenwitheesuk, Chetsawang, 

& Govitrapong, 2013). Thus, a proposed relationship between melatonin and 

neurogenesis, suggested by the high ranking of genes involved in neuronal cell 

differentiation and migration by the ensemble classifier, turns out to be a biologically 

plausible relationship, based on recent experimental studies. 

Melatonin: Clusters and Functional Enrichment Analysis 
Table 17 depicts lists of highly enriched functional annotations for clusters of 

genes ranked highly as potential interaction partners for melatonin. The clusters of genes 

related to melatonin are fairly similar in size. As in the functional enrichment analysis for 
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serotonin, the largest clusters of interaction partners for melatonin are highly enriched for 

function terms related to cell signaling and responses to chemical stimuli. An interesting 

difference in the functional annotations for melatonin-related genes is the large number of 

terms related to organonitrogen compound metabolism, and to symbiosis and inter-

species processes. Both may be explained by emerging knowledge about the relationships 

between melatonin and mitochondria. Endosymbiotic theory suggests that mitochondria 

evolved from symbiotic alpha-proteobacteria (Burger & Lang, 2003; Richards & 

Archibald, 2011; Wallace, 2009). Mitochondria are significant sources of free radical 

generation. Melatonin is a strong free radical scavenger and antioxidant, and it has been 

theorized that synthesis of melatonin originated to protect mitochondria from oxidative 

and nitrosative stress (Acuña Castroviejo et al., 2011; Tan et al., 2013). Thus, our 

clustering and functional enrichment analysis reveals an important functional difference 

between genes that interact with serotonin and those that interact with melatonin. 

 

Table 17. Functional annotations for clusters of genes ranked highly as interaction partners for melatonin. 
Model-based clustering, using the mclust R package, was applied to the rows of the kernel matrix on which the 
combined classifier is based, with each matrix row representing one gene. The annotation lists were generated 
using the GOstats R package, with the list of entrez IDs in one cluster serving as the input to GOstats. 

cluster # of 
genes 

functions 

clust_3 185 small molecule metabolic process; single-organism metabolic 
process; cellular process; response to stress; organonitrogen 
compound metabolic process; carbohydrate derivative 
biosynthetic process; phosphorus metabolic process; response 
to chemical stimulus; cellular metabolic process; phosphate-
containing compound metabolic process 

clust_5 148 G-protein coupled receptor signaling pathway; cell surface 
receptor signaling pathway; G-protein coupled receptor 
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signaling pathway, coupled to cyclic nucleotide second 
messenger; small molecule metabolic process; defense 
response; metal ion homeostasis; organonitrogen compound 
metabolic process; single-organism metabolic process; cation 
homeostasis; regulation of biological quality 

clust_4 143 cell-cell signaling; response to stimulus; response to chemical 
stimulus; small molecule metabolic process; regulation of 
biological quality; organonitrogen compound metabolic 
process; response to oxygen-containing compound; positive 
regulation of cell proliferation; response to organic substance; 
response to wounding 

clust_6 135 single-organism metabolic process; phosphorus metabolic 
process; phosphate-containing compound metabolic process; 
small molecule metabolic process; multi-organism process; 
regulation of cellular protein metabolic process; cellular 
protein metabolic process; regulation of protein metabolic 
process; regulation of protein modification process; regulation 
of biological quality 

clust_8 107 small molecule metabolic process; single-organism metabolic 
process; response to chemical stimulus; cellular amino acid 
catabolic process; immune response; organonitrogen 
compound metabolic process; organonitrogen compound 
catabolic process; response to cytokine stimulus; phosphorus 
metabolic process; cellular response to cytokine stimulus 

clust_2 96 cellular response to stimulus; signal transduction; cell surface 
receptor signaling pathway; response to endogenous stimulus; 
response to organic nitrogen; signaling; single organism 
signaling; response to nitrogen compound; cell 
communication; response to chemical stimulus 

clust_7 80 G-protein coupled receptor signaling pathway; response to 
chemical stimulus; response to external stimulus; chemotaxis; 
taxis; G-protein coupled receptor signaling pathway, coupled 
to cyclic nucleotide second messenger; response to stimulus; 
inflammatory response; metal ion homeostasis; single-
multicellular organism process 

clust_1 69 response to stress; mRNA metabolic process; symbiosis, 
encompassing mutualism through parasitism; interspecies 
interaction between organisms; multi-organism process; RNA 
splicing, via transesterification reactions with bulged 
adenosine as nucleophile; mRNA splicing, via spliceosome; 
antigen processing and presentation; RNA splicing, via 
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transesterification reactions; antigen processing and 
presentation of exogenous peptide antigen 

clust_9 35 translational termination; nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay; SRP-dependent 
cotranslational protein targeting to membrane; cotranslational 
protein targeting to membrane; protein targeting to ER; 
establishment of protein localization to endoplasmic reticulum; 
protein localization to endoplasmic reticulum; viral genome 
expression; viral transcription; translational elongation 
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CHAPTER EIGHT: 
PROJECT #3: DRUG-GENE INTERACTIONS 

This set of studies involves the ranking of genes based on the likelihood of an 

interaction with a pharmaceutical agent. The agent examined is risperidone, an atypical 

antipsychotic medication approved for use in the treatment of both schizophrenia and 

bipolar disorder. 

Background: Risperidone 
Despite wide adoption of the atypical or second-generation antipsychotics for 

treatment of schizophrenia and bipolar disorder, the mechanism of action of these agents 

is not fully understood. All antipsychotic medications have some affinity for 

dopaminergic receptors, but they vary in the degree of affinity for different types of 

dopamine receptors. They also vary in their affinity for serotonergic, cholinergic, and 

histaminic receptors. Variability in receptor binding is felt to have a role in the different 

side effect profiles of antipsychotic medications. The second-generation antipsychotic 

medications, such as risperidone, clozapine, olanzapine, quetiapine, ziprasidone, and 

aripiprazole, are felt to have a somewhat lower risk of neuromuscular side effects such as 

tardive dyskinesia in comparison to first-generation antipsychotic medications, such as 

haloperidol, fluphenazine, and chlorpromazine. However, the second generation 

antipsychotics have been found to increase the risk for adult-onset diabetes and lipid 

abnormalities for many patients.  
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While both first-generation and second-generation antipsychotics are effective in 

controlling psychotic symptoms, their mechanisms of action remain unclear. This makes 

it difficult to predict which medication will be the most effective for any particular 

patient. There has been much interest in exploring both possible genomic mechanisms 

underlying drug effectiveness, and genotypic markers that might predict medication 

effectiveness or sensitivity to particular side effects for an individual patient. 

In the following study, we examine a gene expression data set comparing cells 

exposed to risperidone and control cells. We integrate the expression data with data from 

other bioinformatics information sources in order to rank genes in our core set of genes as 

possible interaction partners for risperidone. We then focus attention on highly-ranked 

genes that have not previously been reported as interaction partners for risperidone, and 

examine their functions. This type of exploratory analysis can help to suggest previously 

unrecognized mechanisms for either the therapeutic action or adverse effects of a drug.   

Methods 

Gene Expression Data Set 
The classifiers used in this study incorporated data from the archival 

bioinformatics data sources, plus one data source based on gene expression data. This 

data source, which we designate as RISPERIDONE, consists of differential expression 

values for human neuroblastoma cells exposed to risperidone, compared to control cells 

not exposed to risperidone. The expression data was generated in the lab of Mas et al. at 

the University of Barcelona (Mas et al., 2013).  
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The gene expression data was downloaded from the GEO Omnibus database 

(Barrett & Edgar, 2006). The data set includes, for each gene, a single value for 

differential expression, expressed as the log2 of the fold change (log2FC) in expression 

values between the risperidone-exposed cells and the control cells. To create a feature 

matrix, a g x g matrix for our 3217 core genes is created such that each matrix cell is 

calculated as the difference in magnitude between the log2FC for gene1 and the log2FC 

for gene 2. To limit noise in the feature matrix, principle components analysis was done 

to reduce this to a 3217 x 32 matrix, using as features the 32 principle components that 

account for 95% of the variability in the data. This feature matrix was then transformed 

into a set of kernel matrices for incorporation into several support vector machine 

classifiers, as discussed in Chapter 5. 

Identification of Examples for Classifier Training 
The PharmGKB pharmacogenomics database provides information curated from 

the research literature about known interactions between pharmaceutical agents and 

genes. This database was used to identify a list of genes known to interact with 

risperidone. The list of known interaction partners was used as a set of positive examples 

for classifier training. Identifying a set of negative examples was more challenging, since 

the database stores information about known interactions but not about confirmations of 

the absence of an interaction. For our studies, the set of negative examples was chosen 

randomly, with one constraint on the population of genes used for the random selection. 

We created a list of all drugs in PharmGKB that are used to treat psychiatric illnesses. 

For each drug, we queried PharmGKB to retrieve a list of genes known to interact with 
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that drug. We combined these gene lists to generate a single list of genes that are known 

to interact with at least one psychotropic agent. These genes were subtracted from the 

total population of candidate genes. The remaining genes, at the present time, have not 

been found to interact with any psychotropic agent. These were felt to represent likely 

negative examples of interaction partners for risperidone. From this list, we randomly 

selected a list of genes equal in size to the list of known positive examples. These genes 

were used as negative examples for classifier training. 

Results 

Risperidone-Gene Interactions: Classifier Performance 
Table 18 shows the performance, as measured by area under the ROC curve, for 

base classifiers trained to recognize genes as potential interaction partners for the drug 

risperidone. We note that the highest AUROC score was 0.8571. This score was achieved 

by two classifiers. The first was trained on the KEGG pathway data, and was based on a 

SVM using a polynomial kernel function. The second was trained on the PMID database 

of shared PubMed identifiers, and was based on a SVM using a Gaussian kernel function. 

 

Table 18. Best risperidone-gene base classifiers. 
Abbreviations: linear = linear kernel function; poly = polynomial kernel function; deg = degree parameter for 
polynomial kernel function; w = weight parameter for Gaussian kernel function.. 

Data Source Kernel Function AUROC 

kegg poly, deg=10 0.8571 

pmid gaussian, w=2.1 0.8571 

go poly, deg=5 0.7857 

ppi gaussian, w=5.8 0.7857 
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cos1 linear 0.7857 

reactome poly, deg=2 0.7143 

cos2 linear 0.7143 

cos3 linear 0.7143 

risperidone poly, deg=2 0.6429 

ner gaussian, w= 0.1 0.6429 

 

Among the combined classifier ensembles, none achieved an AUROC score 

higher than 0.8571. For this problem domain, combining the data sources did not result in 

an improvement in classifier performance. The best ensemble classifiers are described in 

Table 19. 

 

Table 19. Risperidone-gene ensemble classifiers with AUROC score of 0.8571. This AUROC score is the same as 
that of the best-performing base classifiers. The ensemble classifiers are presented in order of decreasing 
diversity. 

Kernels Weights AUROC Diversity 

kegg, ppi, ner 0.6433, 0.5414, 0.5414 0.8571 1.7260 

kegg, ppi, pmid 0.6433, 0.5414, 0.5414 0.8571 1.7260 

kegg, ner, pmid 0.6433, 0.5414, 0.5414 0.8571 1.7260 

kegg, ppi 0.7466, 0.6653 0.8571 1.4119 

kegg, ner 0.7466, 0.6653 0.8571 1.4119 

kegg, pmid 0.7466, 0.6653 0.8571 1.4119 

kegg 1.0000 0.8571 1.0000 

pmid 1.000 0.8571 1.0000 
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Among the classifier ensembles that achieved an AUROC score of 0.8571, the 

highest diversity score was 1.7260. This score was reached by three different classifier 

ensembles. In this case, the diversity score did not break the tie among the highest-

performing classifiers. We randomly selected the ensemble based on data sources ‘kegg’ 

(KEGG pathway data), ‘ppi’ (protein-protein interaction data), and ‘ner’ (named entity 

recognition in free text). This classifier was used for classifying and ranking the set of 

unclassified genes. 

Risperidone-Gene Interactions: Biological Plausibility of Highly Ranked 
Unknown Interaction Partners 
 

The keg-ppi-ner classifier was run to assign a numeric score to each of the 

unlabeled genes in our core gene set. The genes were then ranked based on their scores. 

The ten highest-ranked genes are listed in Table 20. 

 

Table 20. Previously unlabeled genes in the core gene set that were ranked highest as potential interaction 
partners for risperidone. The kegg-ppi-ner classifier was used to rank the genes. 

entrez symbol name 

93010 B3GNT7  beta-1,3-N-acetylglucosaminyltransferase 7 

10914 PAPOLA  poly(a) polymerase, alpha 

126541 OR10H4  olfactory receptor, family 10, subfamily h, member 4 

51302 CYP39A1  cytochrome P450, family 39, subfamily A, polypeptide 1 

8021 NUP214  nucleoporin 214kDa 

130399 ACVR1C  activin A receptor kinase 

10250 SSRM1  serine/arginine repetitive matrix protein 1 

10478 SLC25A17  solute carrier family 25 (mitochondrial carrier), member 17 
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2796 GNRH1  gonadotropin-releasing hormone 1 

4361 MRE11A  meiotic recombination 11 homolog A 

 

One of the highly ranked unclassified genes, CYP39A1, is a member of the 

cytochrome P450 family of enzymes, known to have significant involvement in drug 

metabolism (Wrighton & Stevens, 1992). This enzyme is a plausible interaction partner 

for risperidone, as it has already been established that risperidone undergoes metabolism 

through other members of the cytochrome P450 family, notably CYP2D6 and CYP3A4 

(Berecz et al., 2004).  

The relationship between risperidone and GNRH can be traced through known 

biological mechanisms. Dopamine normally suppresses prolactin secretion by the 

pituitary gland. Blockade of dopamine receptors by risperidone results in increased 

prolactin secretion. A rise in prolactin levels inhibits GNRH. This results in biological 

changes that have been reported as side effects of risperidone, including decreased 

menstruation and spontaneous lactation in females, and gynecomastia in men (Byerly et 

al., 2006; Liu-Seifert, Kinon, Tennant, Sniadecki, & Volavka, 2009; Mendhekar & 

Andrade, 2005; Nakonezny, Byerly, & Rush, 2007; Roke, Buitelaar, Boot, Tenback, & 

van Harten, 2012). 

The list of unclassified genes highly ranked as potential interaction partners for 

risperidone reveals several genes involved in cell signaling and receptor mechanisms. 

SLC25A17 is a member of the mitochondrial transporter family of proteins. These 

proteins are potassium-chloride cotransporters that affect the cell potential by lowering 
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the intracellular chloride concentration. SLC25A17 is the only member of the 

mitochondrial transporter family known to be localized in the membranes of 

peroxisomes, which are cellular organelles involved in fatty acid metabolism (Agrimi, 

Russo, Scarcia, & Palmieri, 2012). Previous studies indicate changes in fatty acid 

metabolism associated with both schizophrenia and mood disorders (Hamazaki, 

Hamazaki, & Inadera, 2013; Iwayama et al., 2010; Maekawa, Owada, & Yoshikawa, 

2011; Ramos-Loyo et al., 2013). ACVR1C is a receptor for the TGFB family of signaling 

molecules. When bound, these receptors phosphorylate cytoplasmic SMAD transcription 

factors, which move to the nucleus and can interact directly with DNA or with other 

transcription factors (Bondestam et al., 2001). PubMed searches do not reveal any 

previously established relationships between ACVR1C and either schizophrenia or 

risperidone. An exploration of additional mechanisms for the action of risperidone might 

begin with these highly-ranked potential interaction partners. 

The appearance of SLC25A17 as a potential interaction partner is interesting to 

note. Two other genes in the class of potassium-chloride cotransporters, SLC1A1 and 

SLC6A4, appear in the PharmGKB database as known interaction partners for 

risperidone (Kwon et al., 2009; Llerena, Berecz, Penas-Lledo, Suveges, & Farinas, 2013; 

Lopez-Rodriguez et al., 2013). In addition, another gene in the same class, SLC18A1, 

was one of eight genes differentially expressed in the human neuroblastoma cells exposed 

to risperidone (Mas et al., 2013). Thus, we identified a potentially important gene class 

that was identified by gene expression experiments, even though our ensemble classifier 

did not include the kernel matrix based on the expression data. These findings together 
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support the potential usefulness of further exploration of the potential role of this gene 

class in the mechanism of action of risperidone. 

Risperidone-Gene Interactions: Clustering and Functional Enrichment 
Analysis 
 

The kernel matrix rows were clustered using model-based clustering as 

implemented in the R package mclust (Fraley et al., 2012). Functional annotation analysis 

was then performed on the gene list in each cluster, using the R/Bioconductor package 

GOstats (Falcon & Gentleman, 2007). Table 21 depicts lists of highly enriched functional 

annotations for clusters of genes ranked highly as potential interaction partners for 

risperidone. The clustering of the combined kernel matrix rows placed a large number of 

genes in a single cluster (Cluster 4). There are several very small clusters, several 

containing only a single gene. Here we offer some comments on Cluster 14, the largest of 

the small clusters, with seven members. We found this group of genes to be interesting 

because the clustering algorithm grouped them together and segregated them from the 

genes in the largest cluster. The genes in Cluster 14 are listed in Table 22. 

 

Table 21. Functional annotations for clusters of genes ranked highly as interaction partners for risperidone. 
Model-based clustering, using the mclust R package, was applied to the rows of the kernel matrix on which the 
combined classifier is based, with each matrix row representing one gene. 
The annotation lists were generated using the GOstats R package, with the list of entrez IDs in one cluster 
serving as the input to GOstats.  

cluster # of 
genes 

functions 

Cluster 4 976 response to stimulus; response to chemical stimulus; 
response to stress; cellular response to stimulus; cell surface 
receptor signaling pathway; regulation of biological quality; 
single-organism cellular process; signaling; single organism 
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signaling; signal transduction 

Cluster 14 7 integrin-mediated signaling pathway; cell adhesion; 
biological adhesion; cell-substrate adhesion; cell-substrate 
junction assembly; leukocyte migration; cell migration; 
hemidesmosome assembly; cell motility; localization of cell 

Cluster 2 4 response to mycotoxin; B cell selection; B cell negative 
selection; establishment or maintenance of transmembrane 
electrochemical gradient; post-embryonic camera-type eye 
morphogenesis 

Cluster 12 2 cell-matrix adhesion; cell-substrate adhesion 

Cluster 1 1 nucleotide-excision repair, DNA damage recognition 

Cluster 5 1 regulation of blood vessel remodeling; positive regulation of 
protein kinase C signaling cascade; regulation of protein 
kinase C signaling cascade; lymphangiogenesis 

Cluster 6 1 D-aspartate transport; D-aspartate import; D-amino acid 
transport; C4-dicarboxylate transport; aspartate transport; L-
glutamate import; L-amino acid import; amino acid import 

Cluster 7 1 glycogen cell differentiation involved in embryonic placenta 
development; negative regulation of fatty acid beta-
oxidation; regulation of G1/S transition checkpoint; negative 
regulation of plasma membrane long-chain fatty acid 
transport; negative regulation of fatty acid oxidation; 
regulation of plasma membrane long-chain fatty acid 
transport; response to UV-A; activation-induced cell death 
of T cells; plasma membrane long-chain fatty acid transport; 
peripheral nervous system myelin maintenance 

Cluster 8 1 aromatic amino acid transport 

Cluster 10 1 protein neddylation 

Cluster 11 1 ISG15-protein conjugation; histone H2B ubiquitination 

Cluster 13 1 hemidesmosome assembly 

Cluster 15 1 ganglioside catabolic process; glycosphingolipid catabolic 
process; neuromuscular process controlling posture; 
glycolipid catabolic process; keratan sulfate catabolic 
process; ganglioside metabolic process; chondroitin sulfate 
catabolic process; hyaluronan catabolic process 

 



88 
  

Table 22. Genes in Cluster 14, one of the clusters of potential interaction partners for risperidone. 

entrez symbol name 

7058 THBS2 thrombospondin 2 

3678 ITGA5 integrin, alpha 5  

3695 ITGB7 integrin, beta 7 

3655 ITGA6 integrin, alpha 6 

3685 ITGAV integrin, alpha V 

3694 ITGB6 integrin, beta 6 

3915 LAMC1 laminin, gamma 1 

 
 

Integrins are integral membrane proteins, involved in adhesion and cell-surface 

mediated signal transduction (Arcangeli & Becchetti, 2010; Campbell & Humphries, 

2011). There is a plausible relationship between integrins and risperidone. Patients 

studied after a first episode of schizophrenia were found to have increased expression of 

the integrin receptor alpha(IIb)beta(IIIa) (Walsh et al., 2002). Other studies have shown 

that patients diagnosed with schizophrenia show higher platelet aggregation than healthy 

individuals, and antipsychotic medications, including risperidone, reduce platelet 

aggregation (De Clerck, Somers, Mannaert, Greenspan, & Eerdekens, 2004; Dietrich-

Muszalska & Olas, 2009). Peptides designed to bind with integrins have been shown to 

inhibit platelet aggregation (Silverman, Kariolis, & Cochran, 2011). It is possible that the 

reduction in platelet aggregation related to risperidone could be caused by an interaction 

between risperidone and one or more of the integrins. Interestingly, a PubMed search for 
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articles discussing both risperidone and integrins yields zero results. Thus, this 

relationship would not be revealed by a simple literature search. 

Thrombospondin-2, another gene included in this cluster, is a glycoprotein known 

to have a role in angiogenesis (Bornstein, Kyriakides, Yang, Armstrong, & Birk, 2000) 

and inhibition of tumor growth (Hawighorst et al., 2001). It also has been demonstrated 

that thrombospondin-2 activity is required in megakaryocytes for normal platelet 

formation and function (Kyriakides et al., 2003). The link between thrombospondin-2 and 

platelet function, and between the integrins and platelet function, supports the biological 

plausibility of clustering gene THBS2 with the integrins. 

Laminins are a constituent of basement membranes, and are widely expressed in 

the nervous system (Yang, Ma, Liu, & Lee, 2011). They are involved in cell adhesion, 

differentiation, migration, signaling, neurite outgrowth, and metastasis. Laminin 

expression has been found to be decreased in the parieto-occipital cortex in patients with 

schizophrenia, depression, and bipolar disorder, and increased in the prefrontal cortex in 

patients with schizophrenia (Laifenfeld, Karry, Klein, & Ben-Shachar, 2005). In post-

mortem studies of depressed patients, antidepressant treatment was found to reverse the 

decrease in laminin expression in the parieto-occipital cortex (Laifenfeld et al., 2005). 

The positive effects of antidepressants on mood may be modulated through the 

mechanism of neuronal plasticity (Castrén & Hen, 2013). There is also strong evidence 

that disruption in neuronal plasticity is a key mechanism in the etiology of schizophrenia 

(Hasan, Falkai, & Wobrock, 2013; Meyer-Lindenberg & Tost, 2013; Voineskos, 

Rogasch, Rajji, Fitzgerald, & Daskalakis, 2013). Studies also suggest that effects on 
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neuronal plasticity may be a component of the action of atypical antipsychotic 

medications (Calabrese et al., 2013; Fumagalli et al., 2012; Fumagalli et al., 2003; 

Molteni, Calabrese, Racagni, Fumagalli, & Riva, 2009).  While our analysis suggests the 

gene for the laminin gamma-1 chain as a possible interaction partner for risperidone, gene 

sequencing studies have revealed mutations for genes coding for the laminin alpha-1 

chain (Girard et al., 2011) and the laminin alpha-2 chain (B. Xu et al., 2012) in patients 

with schizophrenia. In summary, these studies support the biological plausibility of a 

relationship between risperidone and genes that code for laminins. 

 



91 
  

CHAPTER NINE: CONCLUSIONS 

Contributions 
The research hypothesis stated in Chapter 1 is as follows: 

“Multiple kernel learning enhances the bioinformatics analysis of candidate 

gene lists by [1] allowing integration of heterogeneous data sources into the analysis, 

[2] providing a prioritized ranking of genes in the list, [3] facilitating clustering of 

the genes using the kernel matrix, and [4] simplifying functional enrichment 

analysis by clustering the original gene list into meaningful sub-lists.” 

We believe that all of the elements of this research hypothesis have been 

demonstrated. 

[1] We have shown that the multiple kernel learning approach allows integration 

of bioinformatics data sources in various data formats into the gene prioritization task. 

Data sources that we were able to utilize include Gene Ontology annotations, KEGG 

pathway annotations, REACTOME pathway annotations, protein-protein interaction data 

from the STRING database, free-text abstracts from the PubMed database, results from 

microRNA target prediction algorithms, and gene expression data. While other studies 

have explored the use of kernel methods for gene prioritization, our studies are unique in 

using the kernel weights calculated by the multiple kernel learning algorithm both to 

identify the most useful data sources and to maximize the diversity of base classifiers in 
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the final classifier ensemble while limiting the incorporation of base classifiers that do 

not contribute significantly to classifier performance. 

[2] Binary classification algorithms such as support vector machines typically 

provide output in the form as true/false labels for instances. This can generate two long, 

unordered lists of labeled instances. Generating new insights from unordered gene lists 

can be difficult. By recovering the distance of each newly labeled instance from the 

maximally separating hyperplane, we can order the instances in terms of their strength of 

membership in the positive or negative class. 

[3] We have not seen other examples in the research literature of using the rows 

of a combined kernel matrix to cluster instances. We have found that clustering the kernel 

matrix rows provides an additional avenue for analysis of a gene list. While the 

prioritized list of labeled instances allows identification of genes that are most similar to 

the training instances, clustering allows identification of groups of genes that are similar 

to each other. 

[4] Clustering of the genes by the kernel matrix rows provides small sub-lists of 

genes that can be submitted for functional enrichment analysis. We see this as preferable 

to submitting the entire list of positively labeled genes for enrichment analysis. The list of 

all positive examples may include functions that are not enriched for the entire list of 

positive examples, since that list includes a large number of genes representing a wide 

variety of functions. Our analysis revealed some gene clusters that could be distinguished 

from other clusters by their unique functional enrichment. The functions identified for the 

gene clusters provides a basis for proposing functions for the entity that interacts with 
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those genes. We generated hypotheses for functions and mechanisms of action for the 

neurotransmitters serotonin and melatonin, several microRNAs, and the drug risperidone, 

based on functional enrichment analysis of their interaction partners. We were able to 

find results in the research literature that supports the biological plausibility of these 

hypotheses. We noted several examples in which the research support for a function 

suggested by our enrichment analysis appears in recent research papers that had not yet 

been written at the time we completed the construction of our classifiers.  

Limitations and Areas for Future Work 
The research described here demonstrates a kernel-based machine learning 

approach to gene prioritization that integrates data from multiple sources. One limitation 

of this approach is shared with all supervised machine learning methods, which is the 

requirement of a set of examples with known labels for classifier training. For 

experimental data in which there are no known examples for training, exploration of the 

data set using unsupervised learning methods might help to clarify the structure of the 

data set, uncovering groups of related instances and features that are most useful in 

separating the instances into groups. Instances that emerge as the clearest prototype 

examples from each group could then be selected as examples for classifier training. 

The archival bioinformatics data sources vary in their coverage of genes. We 

limited our list of core genes to genes that had entries in all of the data sources. This 

reliance on prior knowledge limits the number of genes that can be included in the 

prioritized list of interaction partners. A possible improvement might be some method for 

imputation of missing database entries. Any such method brings the risk of introducing 
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inaccuracies that could defeat the advantages of using archival data, if the number of 

imputed database entries is large in comparison to the number of curated entries. 

We did not do a formal evaluation of methods for gene name entity recognition, 

but instead selected a method that has been tested in other well-documented research. 

However, there is much ongoing research in gene name entity recognition. More detailed 

testing of available methods may help us to identify approaches that would perform better 

on the recognition of gene names in the free text abstracts. 

In the design of both the base SVM classifiers and the combined MKL classifiers, 

there are many parameters that could be optimized. We selected a small number of 

parameters for optimization, and used default values for other parameters. A more 

rigorous approach to parameter testing will help determine which parameters have the 

greatest influence on the performance of either the base classifiers or the combined 

classifiers. 
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