HYPOTHESIS-DRIVEN CONSTRUCTIVE
INDUCTION IN AQ17:
A METHOD AND EXPERIMENTS

J. Wnek

R. S. Michalski

Proceedings of the IJCAI-91 Workshop on Evaluating and Changing Representation
in Machine Learning, Sydney, Australia, August 1991.

HYPOTHESIS-DRIVEN
CONSTRUCTIVE INDUCTION
IN AQ17: A Method and Experiments

J. Wnek and R. S. Michalski

P 919
MLI 91-4

Copyright © Artificial Inteiligence Center, 1991

Submitted to the IJCAI-91 Workshop on

Evaluating and Changing Represeniation in Machine Learning

HYPOTHESIS-DRIVEN CONSTRUCTIVE INDUCTION
IN AQ17: A Method and Experiments

J. Wnek and R. S. Michalski

Abstract

This paper presents a method for constructive induction in which new problem-relevant attributes
are generated by analyzing iteratively created inductive hypotheses. The method starts by creating a
set of rules from given examples using the AQ algorithm. These rules are then evaluated according
to a "rule quality criterion.” Subsets of the best-performing rules for each decision class are
selected to form new attributes. These new attributes are used to reformulate the training examples
used in the previous step, and the whole inductive process starts again. This iterative process ends
when the performance of the rules exceeds a determined threshold. In the experiments on learning
different DNF functions, the method outperformed in terms of predictive accuracy both, the AQ15
rule learning method, as well as the REEDWOOD decision tree learning method.

Acknowledgements

The authors thank Giulia Pagallo for the help in the design of the experiment, and Kenneth De
Jong for comments on the paper. This work was done in the Center for Artificial Intelligence at
George Mason University. Research in the Center for Artificial Intelligence is supported in part
by the Defense Advanced Research Projects agency under grant NO. N00014-87-K-0874,
administered by the Office of Naval Research, and in part by the Office of Naval Research
under grants No. N00014-88-K-0226, No. N00014-88-K-0397, and No. N00014-91-J-1351.

1. Introduction

Most programs for inductive learning from examples create descriptions that contain attributes that
are selected from those present in the original examples. Such programs, e.g., AQ11 (Michalski
and Larson, 1978), ID3 (Quinlan, 1983), ASSISTANT (Cestnik et al., 1987), CN2 (Clark and
Niblett, 1989)), do not create new attributes (or, in general, concepts) in the process of learning. In
contrast to such selective inductive programs, a constructive induction program is able to generate
and use new concepts in the hypothesized description. These new concepts can be attributes,
predicates, terms, operators, etc., and should be more "relevant” to the learning problem than those

initially given.

A constructive learning program thus performs a transformation of the knowledge representation
space (Michalski, 1980). The creation of new concepts that are more relevant to a learning problem
than the initial ones has turned out to be a very difficult task. In general, new concepts are created
by employing background knowledge, and/or by a trial and test search process that constructs
various combinations of the initially supplied concepts.

This paper is concerned with constructive induction that is able to create more relevant attributes
than those initially given. One approach to automate the formation of new attributes is to extend the
initial set of attributes with arithmetic and Boolean combinations of the primitive attributes of a
fixed type and size (Utgoff, 1986). Another approach is to let the learning algorithm adaptively
define its own attributes while learning. The capability of a learning system to adaptively enlarge
the initial concept description language has been sometimes called a dynamic bias (Utgoff, 1986).

There have been several systems developed that exhibit some constructive induction capabilities.
Among them one can list the INDUCE program that generates new attributes or predicates by
applying "constructive generalization rules" (Michalski, 1980), the LEX system for acquiring and
refining problem-solving heuristics (Mitchell, Utgoff and Banerji, 1983); the BACON system for
discovering mathematical expressions representing physical or chemical laws (Langley, Bradshaw
and Simon, 1983) and the EURISKO program that discovers new heuristics (Lenat, 1983). More
recently, Schlimmer (1986) and Muggleton (1987) described various new efforts toward
constructive induction. Pagallo and Haussler (1990) proposed three learning algorithms, FRINGE,
GREEDY?3 and GROVE, that adaptively introduce relevant attributes while learning a decision tree
or decision list from examples.

In an attribute-based learning system with a fixed concept representation language, the level of
abstraction ("grain") of attributes strongly affects the complexity of the hypothesized rules. By
employing high-level attributes, the concept representation can be greatly simplified. Such
attributes may, however, be encoded as very complex functions of low-level primitives. In such a
case, the learning system will have to compile these complex functions (e.g., Flann and Dietterich,
1986). The usual goal of constructive induction is therefore to discover attributes that lead to the
maximal simplification of the generated hypotheses.

An alternative, although related goal of constructive induction can be to discover attributes that
produce the best performing hypotheses, that is, to emphasize primarily the predictive performance
of a hypothesis, rather than its overall simplicity. The predictive performance can be measured by
applying the hypothesis to the testing data, and determining the correctness of the predictions. One
important aspect of the constructive induction method proposed in this paper is that its primary goal
is to increase the predictive performance.

Another important aspect of the proposed method is that it generates new attributes by analyzing
the hypothesis initially created by a selective induction process, and then by consecutive learning
steps. For that reason, the method is called a "hypothesis-driven" constructive induction (HCID).
To generate the initial and consecutive selective hypotheses we applied the rule learning program
AQ15 (Michalski el al., 1986). AQ1S5 learns rules from examples represented as sequences of
attribute-value pairs. Attributes can be of different types, such as nominal, linear or structured. The
teacher presents to the learner a set of examples of every concept or decision class under
consideration. The program outputs a set of general decision rules for each class that cover all the
examples of the class and none of the other classes (i.e. consistent and complete descriptions). The
rules generated optimize a problem-dependent "criterion of preference.” In the case of noisy data,
the program may generate only partially consistent or complete rules.

The program is based on the AQ algorithm, which recessively employs a "star" generation
procedure (Michalski et al., 1986). A "star" of an example is the set of all alternative general rules
that cover that example, but do not cover any negative examples. After a star is generated, the
"best" rule in it, as defined by the preference criterion, is selected, and all examples covered by the

1 This abbreviation is already used as Human-Computer-Interface. However,
Constructive Induction methods are in the spirit of this kind of interface. The
interface is built on the knowledge level, where a computer communicates
discovered ideas and partial solutions to a human. The user can take advantage of the
discovered ideas, test them, and make use of them.

rule are removed from further consideration. A new example (called seed) is selected from the yet-
uncovered examples, and the process repeats. The algorithm stops when all positive examples are
covered. If all the examples of a given class can be covered just by one rule only (that is, there
exists a conjunctive characterization of the concept), the algorithm terminates after the first step. In

the presented method, the above algorithm is combined with a process of iteratively generating new
attributes, and using them in subsequent learning steps.

Source of
INPUT FACTS
and
EXAMPLES

INPUT DATA FORMULATION MODULE

X Hypothod-drlvon
- bonstructive induction

' batl-drlvon
constructive induction

Expert advies |

Ducﬂptor ovaluatlon and refor

LEARNING MODULE

. RULE GENERA TION AND EVALUATION

: 'KNOWLEDGE BASE: :
Rules and descriptors [

Figure 1. AQ17 with different types of constructive induction

Figure 1 presents a functional diagram of the AQ17 program where the HCI method was

implemented as one of the four constructive induction mechanisms:

a) constructive generalization rules (Michalski, 1983)

b) domain knowledge encoded in the form of arithmetic and logic rules (A-rules and L-rules)
(Michalski et al., 1986)

¢) data-driven constructive induction (Bloedorn and Michalski, 1991)

d) hypothesis-driven constructive induction

2. A description of the HCI method

As mentioned above, the proposed HCI method ('hypothesis-driven constructive induction’)
determines new problem-relevant attributes by analyzing the currently held inductive hypothesis.
Its primary goal is to determine new attributes such that they lead to a maximal improvement of the
predicted performance of the hypothesis. A natural extension of this goal is detection and removal
from the input data any of irrelevant attributes. (Such attributes may be introduced in the process of
input data formulation by a domain expert, or by the new descriptor generation module.)

Source of
INPUT FACTS
and
EXAMPLES

RULE
GENERATION

NEW DESCRIPTOR
GENERATION

Figure 2. HCI method built into a rule based system

Basic steps of the proposed HCI method are:
1. Induce rules from a selected sample of a training set
2. For each decision class generate one candidate attribute that corresponds to a subset
of the highest quality rules, and identify irrelevant attributes

3. Modify the set of training examples by adding the values of newly generated
attributes and removing irrelevant ones
4. Induce rules from the modified selected sample of the training set

5. Evaluate the predictive performance of the rules on the remaining training examples;
If the performance does not exceed a predefined threshold then go to step 1
6. Induce rules from the complete training set using modified description language.

The steps 1, 4, and 6 are performed by the AQ15 program. The heuristic for constructing the
appropriate attribute in Step 2 includes extracting a part of a classification hypothesis which
contains best rules. This is done by sorting all rules from the output hypothesis according to their
r2u-weights and selecting the maximum number of rules with the highest t2u-weights to fulfill the

inequality (1):
[(Z 2upeq) / (T 2uy] < TH1 6))

t2u = t-weight + (2 * u-weight) 2)

where, t-weight is the total number of positive examples covered by the rule, u-weight is the
number of positive examples that are uniquely covered by the rule (no other rule in the hypothesis
covers those examples). The constant number “2” in the formula (2) was determined
experimentally. It means that rules with higher uniqueness are preferred in constructed attribute.
The THI1 threshold is a program parameter and is primarily set up to 0.65. The number of best
rules defined by the TH1 threshold can be extended by those remaining rules with t2u-weights
greater than (TH2 * 2Upeqt-min)- 2Ubest-min iS the minimal weight among best rules. The TH2
threshold was equal to 0.65. The primary setup of TH1 and TH2 thresholds is due to the
assumption of the nature of constructed attributes: they should convey to the next learning session
the most precise knowledge of the learned problem as possible. The setting is flexible enough to
cover the base of a learned concept and express it as a new attribute. The remaining rules, not
included in the new description, will hold exemptions or noise in the data. The role of the TH2
threshold is to assure that a/l strong rules from a hypothesis will form a new attribute.

Initially, there are only two values assigned to the candidate attribute that characterize a class
membership. More values can be added if the same attribute description occurred in other classes.
The new attributes are logical expressions of the old attribute values. After new attributes were
being constructed, the training set was updated with new attribute values: for each training example
the values of the new attributes are calculated by evaluating the logical expression characterizing the
new attribute.

From the outline of the method we can see that the process of inducing rules from examples may
be repeated several times in order to achieve the desired predictive performance. This could add
some complexity to the learning algorithm depending on how many times steps 1-5 were repeated.
The complexity of inducing rules from examples in AQ1S is O(MN), where M is number of
positive examples and N is number if negative examples (every positive example a generalized
against all negative examples). The HCI multiplies this complexity by factor 2*I, where Iisa
number of iterations of steps 1-5. Also, all examples have to be modified with the values of new
attributes which requires a simple evaluation of DNF formulas.

On the other hand, new attributes introduced in each iteration in the form of learned sub-concepts
from the searched hypothesis space make the learning problem easier. The training set was already
pre-partitioned by problem oriented and statistically significant attributes. Most of the training
examples will be covered with the new attributes, and only exemptions will require building
additional concept descriptions.

3. Exemplary problem

To illustrate the performance of the constructive search, we describe an experiment on learning a
multiplexer function with 3 inputs and 8 outputs: the so-called multiplexer-11 problem (Wilson,
1987). For each positive integer &, there exists a multiplexer function defined on a set of k + 2k
attributes or bits. The function can be defined by thinking of the first k attributes as address bits
and the last attributes as data bits. The function has the value of the data bit indexed by the address
bits. In the experiment, the input examples were encoded in terms of 11 binary atwributes. Thus,
the description space contains 2048 elements. The training set had 64 (6%) positive examples and
64 (6%) of the negative examples. Table 1 shows a sample of positive and negative examples. The
attributes a0, al, a2 describe address lines, and d0-d7 describe data lines.

Positive examples Negative examples

a0ala2 d0dld2d3dadsdédl a0ala2 d0dlded3dedsdedr
001 01000000 001 00111110
010 00100001 010 00000001
010 11111110 010 11011110
101 00001101 101 00000000
110 00001111 110 00001000

Table 1. A part of the training set of examples

From these examples, the rule generation phase (Step 1) produced rules for the correct (POS-
Class) and incorrect (NEG-Class) behavior of the multiplexer. The rules are shown in Table 2.

POS-Class |If

1. (a0=1) & (al=1) & (a2=0) & (d6=1) or (t:11, u6)
2. (a0=0) & (al=0) & (a2=1) & (d1=1) or (t:11, u:5)
3. (a0=1) & (al=0) & (a2=1) & (d5=1) or (t:10, w6)
4. (a0=1) & (al=1) & (a2=1) & (d7=1) or (10, wd)
5. (a0=1) & (al=0) & (a2=0) & (d4=1) or (t:9, u:s)
6. (al=1) & (d4=1) & (d6=1) & (d7=1) or (t:8, u:l)
7. (al=1) & (a2=1) & (d3=1) & (d7=1) or (8, ul)
8. (a0=0) & (a2=1) & (d1=1) & (d5=0) or (u:8, wl)
9. (a2=0) & (d1=0) & (d2=1) & (d3=1) or (t:6, u2)
10. (a0=0) & (al=1) & (d3=1) & (d4=0) or (t:6, u:2)
11. (d0=0) & (d3=0) & (d4=1) & (d5=1) or (t:6, u:l)
12. (a2=1) & (d0=1) & (d1=0) & (d2=0) & (d5=1) & (d7=0) (t:3, u:l)
NEG-Class if
1. (a0=1) & (al=1) & (a2=1) & (d7=0) or (t:13, u:s)
2. (a0=0) & (a2=0) & (d2=0) or (t:12, w:7)
3. (a2=0) & (d3=0) & (d4=0) & (d7=1) or (t11, w2)
4. (a0=0) & (al=0) & (a2=1) & (d1=0) or (10, w8)
5. (a0=1) & (a2=1) & (d5=0) & (d7=0) or (t:10, w2)
6. (al=0) & (a2=0) & (d1=1) & (d4=0) or (7, u:4)
7. (a0=1) & (al=1) & (a2=0) & (d6=0) or 7, wl)
8. (d0=0) & (d3=0) & (d5=0) & (d6=0) or (t:6, u:l)
9. (a0=0) & (al=1) & (a2=1) & (d3=0) or (t:5, u:s)
10. (d1=0) & (d2=1) & (d3=0) & (d5=0) or (u:5, u:l)
11. (a0=1) & (al=0) & (d5=0) & (d7=1) (t4, u:4)

Table 2. Rules induced by AQ15 from examples

POS-Class and NEG-Class are hypotheses in the k-DNF form. Each rule in the hypotheses is
accompanied with t-weights and u-weights that represent total and unique numbers of training
examples covered by a rule.

For the above POS-Class hypothesis, the rules presented in Table 3 were chosen to constitute the

candidate attribute c0, (Step 2): (here we present attribute generation for POS hypothesis only).
Table 4 shows the definition of the new attribute c0. .

1. (a0=1) & (al=1) & (a2=0) & (d6=1) (t:11, u:6) 2u=23
2. (a0=0) & (al=0) & (a2=1) & (d1=1) (11, w:5) 2u =21
3. (a0=1) & (al=0) & (a2=1) & (d5=1) (t:10, u:6) 2u=22
4. (a0=1) & (al=1) & (a2=1) & (d7=1) (t:10, u:4) t2u =18
5. (a0=1) & (al=0) & (a2=0) & (d4=1) (u:9, u:s) t2u =19
pX a“best =103; T Quan =166; (T [Z“best) /1 auau)] =0.62
I Qupegy,= 113; I 2u,y,; = 166; [(Z Quyegrip)/ (T 2u,)] =0.68
Table 3. Maximal rules according to the formula (1)
c0=1 if (a0=1) & (al=1) & (a2=0) & (d6=1) or
(a0=0) & (a1=0) & (a2=1) & (d1=1) or
(a0=1) & (al=0) & (a2=1) & (d5=1) or
(a0=1) & (al=1) & (a2=1) & (d7=1) or
(a0=1) & (al=0) & (a2=0) & (d4=1)
c0=0 otherwise

Table 4. The definition of the c0 attribute

Table 5 shows the modified training set. For each old training example a new c0 attribute value has
been added (Step 3). Table 6 presents rules generated from the modified training set (Step 4).

Positive examples Negative examples
a0ala2 d0d1d2d3d4d5d6d7¢0 a0ala2 d0d1d2d3ddd5d6dicd
a(?01 01000000 1 001 00111110 0
10 00100001 O 010 00000001 O
0o1o 11111110 O 010 11011110 O
101 00001101 1 101 00000000 O
110 00001111 1 110 00001000 O
Table 5. The part of the modified training set
POS-Class if
1. (c0=1) (t:51, u:45)
2. (a0=0) & (al=1) & (a2=1) & (d3=1) (t:7, u:5)
3. (a2=0) & (d1=0) & (d2=1) & (d3=1) (t:6, u:2)
4. (a0=0) & (al=1) & (d2=1) & (d7=0) (5, w2)
5. (a0=0) & (d0=1) & (d1=1) & (d2=1) (t:5, u:l)
NEG-Class if
1. (a0=1) & (c0=0) t:34, ul2)
2. (a2=0) & (d2=0) & (c0=0) (t:20, u:8)
3. (a1=0) & (d5=0) & (c0=0) (18, ud)
4. (d3=0) & (d5=1) & (d7=1) & (c0=0) (t:13, u:4)
5. (a2=1) & (d1=0) & (d2=1) & (d4=1) & (c0=0) (:10, u:2)
6. (a2=1) & (d0=1) & (d1=0) & (d6=0) & (c0=0) (r:7, u:2)

Table 6. Decision rules with the constructed attribute

As expected, the new attribute was used in the output hypothesis for both POS and NEG classes.
We can observe that most of the training examples were uniquely covered by a rule (c0=1). Also,
there is a new rule (2.) in the POS-Class hypothesis which is a part of the target concept. The
ongoing research investigates ways of detecting and incorporating useful items into constructed
attributes.

The final output hypothesis given by AQ17-HCI was tested against the testing set. The result was
85.60% accuracy (to be compared with 74% accuracy from rules generated by AQ15 without
constructive abilities, e.g. rules obtained in Step 1).

4. Experiments with the method
A major measure of the performance of a learning algorithm is the classification accuracy of the

learned concepts on the testing examples. The goal of our experiments was to test how well the
algorithms do according to this criterion, and how well they compare to the other methods:

standard decision rule algorithm - AQ135, standard decision tree algorithm - REDWOOD, and
algorithms with constructive abilities: FRINGE, GREEDY?3, and GROVE (Pagallo and Haussler,
1989, 1990).

4.1 Experimental domains

The domains for testing AQ17-HCI and comparison with other methods were four Boolean
functions: DNF3, DNF4, MX11, and PARS. The same functions were used to test decision tree
algorithms: REDWOOD (based on ID3) and FRINGE, and decision list algorithms: GREEDY3
and GROVE (Pagallo and Haussler, 1989, 1990).

DNF3 x1x2x6x8x25x28-x29 +x2x9x14-x16—x22x25 + x1—x4—-x19—-x22x27x28 +
—x2-x10x14—x21—-x24 +x11x17x19x21-x25 +—x1—x4x13—x25
(x3 x5 x7 x12 x15 x18 x20 x23 x26 x30 x31 x32) have random values for each example.

DNF4 x1x4x13x57-x59 +x18—x22—x24 + x30—x46x48—-x58 +
—x9x12-x38x55 + —x5x29-x48 + x23x33x40x52 +
x4—x26—x38—x52 + x6x11x36—x55 + —x6—-x9—x10x39—x46 +
x3x4x21-x37-x57

(x2 x7 x8 x14 x15 x16 x17 x19 x20 x21 x25 x27 x28 x31 x32 x34 x35 x41 x42 x43 x44 x45 x47 x49
x50 x51 x53 x54 x56 x60 x61 x62 x63 x64) have random values for each example.

MX11 multiplexer-11 function (k=3) (Wilson, 1987).
For each positive integer k, there exists a multiplexer function defined on a set of k + 2K agributes or bits.
The function can be defined by thinking of the first k attributes as address bits and the last attributes as data
bits . The function has the value of the data bit indexed by the address bits2.
(x12 .. x32) have random values for each example.

PARS parity-5 function.
For each positive integer k, there exists an even parity function defined on a set of k attributes. The
function has value true on an observation if an even number of attributes are present, otherwise it has the
value false.
(x6 .. x32) have random values for each example.

2 In experiments with multiplexer function, Pagallo and Haussler (1989, 1990)
classified an example as positive when the value of the function was / and negative
for the value 0. However, according to the definition, both values: 0 and / are valid
values of the function. Thus, cach multiplexer function needs an additional bit to
indicate whether the value of the function was properly assigned. For the sake of
comparability of the results of the HCI method with other methods (Pagallo and
Haussler; 1989, 1990; VanDeVelde, 1989) we used the same, simpler multiplexer
function. This function learns how to “switch on” or “set to 1” the addressed line.

10

In the Table 7, we provide a short description of the test domains. The number of training
examples is set as specified in (Pagallo and Haussler, 1989).

Number of
Target Number of | Number of | Number of | Average training
concept attributes classes rules rule length examples
DNF 3 32 2 6 5.5 1650
DNF 4 64 2 10 4.1 2640
PARS 32 2 16 5.0 4000

Table 7. Target functions

4.2 Experimental results

Here we compare the performance of the AQ15 and AQ17-HCI programs. The rules generated by
both programs were tested using the ATEST program (Reinke, 1984). ATEST views rules as
expressions which, when applied to a vector of attribute values, will evaluate to a real number.
This number is called the degree of consonance between the rule and the event. The method for
arriving at the degree of consonance varies with the settings of the various ATEST parameters.
Rule testing is summarized by grouping the results of testing all the events of a single class. This is
done by establishing equivalence classes among the rules that were tested on those events. Each
equivalence class (called a rank) contains rules whose degrees of consonance were within a
specified tolerance (tau) of the highest degree of consonance for that rank. When ATEST
summarizes the results it reports the percentage of 1st rank decisions (tau=0.02) as well as the

percentage of only choice decisions (tau=0). In our experiments we used ATEST with its default
parameters.

‘ Average % error
Target
concept AQ1S5 HCI
%1st Rank | %Only Choice] % 1st Rank % Only Choice

DNF3 0.3 15 0.0 0.0
DNF4 0.2 11.5 0.0 0.0
MX11 0.0 0.0 0.0 0.0
PARS 1.6 18.8 0.0 0.0

Table 8. The experimental results for different problems

11

12

Table 8 presents the average results (ten runs) for DNF3, DNF4, MX11, and PARS problems on
the randomly generated training sets. The size of training sets was specified in Table 7. We used
2000 examples (independent from training examples) to test classification performance. Table 9
summarizes the average results for the DNF4 problem for different numbers of training examples.

Average % error in learning target concept dnf4
Number of
training AQ15 HCI
examples [" 15t Rank | %Only Choice] %1st Rank %Only Choice
330 29.6 48.2 149 35.4
660 7.7 24.8 1.8 7.0
1320 1.8 16.4 0.0 0.0
1980 0.8 13.6 0.0 0.0
2640 0.2 114 0.0 0.0
3960 0.2 10.5 0.0 0.0

Table 9. The experimental results for different numbers of training examples in learning DNF4

In learning DNF functions, the HCI method outperformed AQ15 program in terms of performance
accuracy. This result is due to better descriptors used in expressing learned concepts both in a
learning phase (relations already discovered and stored under new attributes make it possible for a
deeper search for dependencies among training data) and a testing phase (if a concise rule match an
example this results in higher degree of consonance (Reinke, 1984)).

4.3 Empirical comparison of HCI with other methods

Average % error
congel. | Decision TREES (*) | Decision LISTS (*) | Decision RULES
REDWOOD| FRINGE |GREEDY3| GROVE| AQ1s | HCI
DNF3 7.4 0.3 06 1.4 0.3 0.0
DNF 24.9 0.0 0.0 7.8 0.2 0.0
MX11 13.1 0.0 0.5 3.9 0.0 0.0
PARS5 36.5 22.1 45.8 41.3 16 0.0

Table 10. The experimental results (*) from (Pagallo and Haussler, 1989, 1990)

Table 10 summarizes the results obtained in ten executions of the tested algorithms. The results for
REDWOOD, FRINGE, GREEDY?3, and GROVE algorithms come from (Pagallo and Haussler,
1989, 1990). AQ17 with hypothesis-driven constructive induction capabilities has learned all the
target concepts. All concepts were learned for less than the assumed number of examples. It is
worth mentioning that the standard decision rule system AQ15 uses the same form of adaptive
features as those implemented in FRINGE, GREEDY3, and GROVE. This justifies comparable
results obtained from those methods.

5. Conclusion

The presented HCI method of constructive induction generates new attributes on the basis of an
analysis of the hypotheses, rather than by directly combining different attributes. This way the
search for new attributes is very efficient, although is more limited in the repertoire of the attributes
that can be constructed by direct, data-driven methods (Bloedorn and Michalski, 1991). In our
experiments, the proposed method performed very favorably in comparison to methods employed
in such programs as AQ15, REDWOOD, FRINGE, GREEDY3, and GROVE.

In the HCI method, new attributes correspond to subsets of best performing rules obtained in the
previous iteration of the method. This is a real advantage of the method because it is not limited by
the current implementation of the rule based system: the method can handle Boolean, nominal,
linear, as well as structural attributes currently implemented in the AQ15 program.

The Hypothesis-driven Constructive Induction method proved to be a very effective way to
improve the performance accuracy of learned rules. Also, the number of rules and their complexity
(a number of conditions) has decreased. The algorithm detects irrelevant attributes among those
used in a primary description of a problem as well as those introduced during attributes’ generation
process. Old and new attributes are examined according to classification abilities and new
hypotheses are built based on the most relevant attributes.

On the other hand, the generated attributes are rather complex. In the future research, we plan to
investigate a generation of attributes based on selected components of the best preforming rules.
This could potentially lead to both a rapid improvement of the accuracy as well as to a greater
simplification of the overall complexity of the hypotheses. We also plan to test the method on
different types of learning problems in order to determine its strongest areas of applicability.

13

E f o REDWOOD e GREEDY3 ® AQ15
r
r - O FRINGE @ GROVE ¢ HCl
o
r 30
R
a
t
e 20
(%)

10_

0
I |
0 330 660 1320 1980 2640 3960

Number of Training Examples

Figure 2. Learning curves for DNF4

References

Bloedorn, E., and Michalski, R.S., “Data-driven Constructive Induction in AQ17-PRE: A Method and
Experiments,” Reports of Machine Learning and Inference Laboratory, Center for Al at George Mason University, 1991.
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K,, “Occam’s Razor,” Information Processing
Letters, 24, pp.377-380, 1987.

Cestnik, B., Kononenko, I., and Bratko, I., "ASSISTANT 86: A Knowledge Elicitation Tool for Sophisticated
Users,” Proceedings of EWSL-87, Bled, Yugoslavia, pp. 3145, 1987.

Clark, P., and Niblett, T., "The CN2 Induction Algorithm,” Machine Learning, 3, pp. 261-284, 1989.

Flann, N.S., and Dietterich, T.G., "Selecting Appropriate Representations for Learning from Examples,"

Proceedings of AAAI-86, Philadelphia, PA, pp. 460-466, 1986.

14

135

Langley, P, Bradshaw, G.L., and Simon, H.A., "Rediscovering Chemistry With the BACON System,” in
Machine Learning: An Artificial Intelligence Approach, R.S. Michalski, J.G. Carbonell and T.M. Mitchell (eds.), 1983.
Matheus, C., "Feature Construction: An Analytic Framework and Application to Decision Trees,” Ph.D. Thesis,
University of Illinois, 1989.

Michalski, R.S., and Larson, J.B., "Selection of Most Representative Training Examples and Incremental
Generation of VL1 Hypotheses: The Underlying Methodology and Description of Programs ESEL and AQ11,"” Rep. 867,
Univ.of Dlinois, 1978.

Michalski, R.S., "Pattern Recognition as Rule-Guided Inductive Inference," IEEE Transactions on Pattern Analysis and
Machine Intelligence,” PAMI, 2, No. 4, pp. 349-361, 1980.

Michalski, R.S., Mozetic, I., Hong, J., and Lavrac, N, “The Multi-Purpose Incremental Learning System
AQI15 and its Testing Application to Three Medical Domains,” Proceedings of AAAI-86, pp. 1041-1045, 1986.

Mitchell, T.M., Utgoff, P.E,, and Banerji, R., "Learning by Experimentation: Acquiring and Refining Problem-
Solving Heuristics," in Machine Learning: An Artificial Intelligence Approach, R.S. Michalski, J.G. Carbonell, and TM.
Mitchell (eds.), Morgan Kaufmann, Los Altos, CA, 1983.

Muggleton, S., "Duce, and Oracle-Based Approach to Constructive Induction,” Proceedings of 1JCAI-87, pp.287-292,
Morgan Kaufman, Milan, Italy, 1987.

Pagallo, G., and Haussler, D., "Two Algorithms that Lean DNF by Discovering Relevant Features,” Proceedings of
the 6th International Workshop on Machine Learning, Ithaca, pp. 119-123, 1989.

Pagallo, G., and Haussler, D., "Boolean Feature Discovery in Empirical Learning,” Machine Learning S, pp. 71-99,
1990.

Quinlan, J.R., "Induction of Decision Trees,” Machine Learning 1, Kluwer Academic Pubs., pp. 81-106, 1986.

Reinke, R.E., Knowledge Acquisition and Refinement Tools for the ADVISE Meta-expert System,” Master Thesis,
University of Illinois, 1984,

Rivest, R., "Learning Decision Lists," Machine Learning 2, Kluwer Academic Pubs., pp. 229-246, 1987.

Schlimmer, J.C, "Concept Acquisition Through Representational Adjustment," Machine Learning 1, pp.81-106, 1986.
Utgoff, P.E., "Shift of Bias for Inductive Learning,” in Machine Learning: An Artificial Intelligence Approach Vol. I,
R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.), Morgan Kaufmann, Los Altos, CA, pp. 107-148, 1986.

Van de Velde, W., “IDL, or Taming the Multiplexer,” Proceedings of the 4th EWSL-89, France, pp. 211-225, 1989.
Wilson, S.W., Classifier systems and the animat problem, Machine Learning, 2, pp. 199-228, 1987.

Copyright © Artificial Intelligence Center, 1991

