SYMBOLIC LEARNING OF
M-OF-N CONCEPTS

Janusz Wnek and Ryszard 5. Michalski

MLI 94-1

April 1994

Symbolic Learning of M-of-N Concepts

Abstract

This paper addresses a class of learning problems that require a construction of descriptions that
combine both M-of-N rules and traditional Disjunctive Normal form (DNF) rules. The presented
method learns such descriptions, which we call conditional M-of-N rules, using the hypothesis-
driven constructive induction approach. In this approach, the representation space is modified
according to patterns discovered in the iteratively generated hypotheses. The need for the M-of-N
rules is detected by observing "exclusive-or” or "equivalence” patterns in the hypotheses. These
patterns indicate symmetry relations among pairs of attributes. Symmetrical attributes are combined
into maximal symmetry classes. For each symmetry class, the method constructs a "counting
attribute” that adds a new dimension to the representation space. The search for hypothesis in
iteratively modified representation spaces is done by the standard AQ inductive rule learning
algorithm. It is shown that the proposed method is capable of solving problems that would be very
difficult to tackle by any of the traditional symbolic learning methods.

Key words: Constructive induction, decision rules, conditional M-of-N rules, XOR patterns

Acknowledgements

This research was conducted in the Center for Artificial Intelligence at George Mason University.
The Center's research is supported in part by the Advanced Research Projects Agency under Grant
No. N00014-91-J-1854, administered by the Office of Naval Research, and the Grant No.
F49620-92-J-0549, administered by the Air Force Office of Scientific Research, in part by the
Office of Naval Research under Grant No, N00014-91-J-1351, and in part by the National Science
Foundation under Grants No. IRI-9020266, CDA-9309725, and DMI-9496192.

1 Introduction

Constructive induction (CI) can be viewed as a process of conducting two intertwined searches:
one~for the most appropriate representation space, the second—for the "best” inductive hypothesis
in the space. Search for the representation space involves applying constructive induction operators
("CI operators") that modify the representation space by generating new dimensions, removing
dimensions, or changing their quantization level. Since there is no limit on what operators can be
applied, the search is very large. Therefore, a central research issue in constructive induction is the
development of rules and heuristics for applying CI operators.

This paper concerns a class of leaming problems that cannot be satisfactorily solved by symbolic
methods that construct DNF-type descriptions using original attributes, because such descriptions
would be prohibitively long. Specifically, such problems require a construction of descriptions that
involve "counting properties” (e.g., that M properties out of N possible properties are present in an
object), which may be additionally combined with logical conditions (e.g., in the DNF form).
Problems of this type occur in many real-world problems (e.g., Spackman, 1988; Towell &
Shavlik, 1994). The proposed solution is based on the application of a new type of constructive
induction rule, "counting attribute generation rule,” which explores an aitribute symmetry in
generated hypotheses. Such a symmetry is indicated by the presence of the "exclusive-or" or
"equivalence” patterns in the hypothesis.

It is shown that M-of-N concepts are easy to detect in descriptions generated by the AQ learning
system, because they form exclusive-or patterns (XOR-patterns). The XOR-pattern characterizes
relationship between two attributes, in a way that only one of the two binary attributes can be
present. This translates to exactly I-of-2, which is a specific form of M-of-N concept. The presence
of an XOR (or non-equivalence symmetry) relationship among two or more binary attributes signals
that these attributes represent independent object properties and, therefore counting them (i.e., how
many of them are true) is likely to produce a new relevant descriptor. On the other hand, the
presence of the equivalence symmetry (EQ) among two or more atiributes signals that they are
interdependent and can be replaced by only one attribute.

By observing the relationships among attributes, the proposed method combines ideas of logic and
arithmetic. The introduced "counting attribute” captures a conceptual transition from logic to
arithmetic.

This work was inspired by the failure of well-known symbolic learning systems in solving the
MONK2 problem used in an international competition of learning programs (Thrun et al, 1991). The
MONK?2 problem was to learn the concept, "exactly two of the six attributes have their first value,"
which is a special case of the M-of-N concept. There has been several efforts concerned with
learning M-of-N concepts. For example, the system CRLS leamns M-of-N rules by employing non-
equivalence symmetry bias and criteria tables (Spackman, 1988), ID-2-of-3 incorporates M-of-N tests
in decision trees (Murphy & Pazzani, 1991), AQ17-DCI (Bloedorn & Michalski, 1991) employs a
variety of operators to construct new attributes, NEITHER-MofN (Baffes & Mooney, 1993) is able to
refine M-of-N rules by increasing or decreasing either of M or N. The idea of "counting attributes”
and the proposed method to derive such attributes is related to research on detecting symmetry in
Boolean %m;gons of many variables (Michalski, 1969), and implementation of SYM programs
(Jensen, 1975).

2 Class-patterns
Our earlier work on AQ-HCI method involved search for three types of patterns, value-patterns,

condition-patterns, and rule-patterns. Value-patterns aggregate subsets of attribute values that often
co-occur 1n a given description. Condition-patterns represent a conjunction of two or more

2

elementary conditions that frequently occur in a ruleset of a given concept. A rule-pattern is a rule
or a subset of rules. Detecting such patterns and using them for expanding the representation space

has shown to be effective in improving performance accuracy in DNF-type problems (Wnek &
Michalski, 1994b).

Following the scheme of different types of patiems, it was conjectured that there may exist class-
patterns. Such patterns would represent relations that are common for subsets of leamed classes
(concepts). The XOR-patterns satisfy this definition. They apply both to examples of a M-of-N
concept as well as its negation. This would imply that new descriptor is needed to discriminate
between classes that have such property.

Following the notation introduced by Michalski (1983), we will formulate a rule for generating
"counting attribute.” To this end, we need to introduce some notation. We use the general term
"symmetry" for two relations: exclusive-or" or "equivalence.” Since one is the negation of the
other, from now on, we will discuss primarily the "exclusive-or" relation.

Relational conditions

Let Ci be relational conditions on values of single attributes (selectors), such as xi = 5, xi > 3,

i=2_5. Relational conditions evaluate to true (1) or false (0). Such conditions are building blocks
in the rules generated by the rule learning system AQ15 employed in the proposed method
(Michalski et al., 1986).

Binary symmetry class

Let R1 and R2 be two conjunctive rules in a ruleset representing a hypothesis. Suppose further that
R1 can be re?rcsemed as Ci & ~Cj & CTX1 and R2 as ~Ci & Cj & CTX2 where CTX1 and CTX2
are "context" conditions, expressed in the form of a conjunction of zero or more relational
conditions. It is said that Ci and Cj represent a "binary symmetry class,” if CTX1 and CTXz arc in
a subsumption relation, that is CTX1 = CTX2 & CTX3 or CTX2 = CTX1 & CTX3, where CTX3
is a context condition. In other words, two attributes or relational conditions constitute a symmetry
class if an XOR relationship binding them constitutes a pattemn.

Maximum symmetry class

Give:} two binary symmetry classes, BC1 = {Ci1, Cj1} and BCz = {Ci2, Cj2), they can be
combined into ternary symmetry class if they have non empty intersection. The resulting class
consists of three relational conditions, the one that is common in both classes, and the two that do
not appear in the other class.

The maximum symmetry class is the maximum number of relational conditions that can be
combined together.

Counting attribute generation rule

Given a k-ary symmetry class, generate a counting attribute CA that stands for the expression
[C1+C2+...+Ck] that sums up evidence given by relational conditions. The domain of the attribute
is an integer interval from 0 to k. Values of the counting attribute represent the number of relational
conditions (attributes) that hold for the given concept example.

The counting attribute represents an arithmetic sum of two or more relational conditions. (Each
relational condition evaluates to 1 or 0.) When the relational conditions Ci use binary attributes
then the "counting atiribute” agglomerates evidence described by those attributes. If the conditions
use d:inyll.ivnlued attributes then the evidence agglomeration is carried over whole relational
conditions.

Note: Systems that use different representational formalisms for data and hypotheses may not be
able to detect class-patemns in hypotheses. In such cases, data could be a source for finding these
patterns. In the case of the AQ learning method that uses the VL1 representational formalism (a form
of propositional calculus) for both data and hypothesis representation, class-patterns are passed
from data to hypotheses. Initial examination of descriptions generated by FOIL (Quinlan, 1990)
indicates that they also contain XOR-pattems (see Appendix Figs Al & A2). The class-patterns are
different from intra-construction and inter-construction operators used in Duce and CIGOL
(Muggleton, 1987; Muggleton & Buntine, 1988).

3 The Relationship Between Logic and Arithmetic

For several decades logic circuits were used in digital computers. It is well known that such
circuits not only facilitated logical operations but also arithmetic ones. Actually, all possible
arithmetic operations, starting with addition through multiplication, ending with the most complex
functions, are in fact represented by logic circuits. The basic link between logic and arithmetic is
the logical XOR operator. Fig. 1 shows the relationship between "XOR" and "ADD" operators.

ADD [y | xor-pattern [¥ |
X y | Carry/AND Sum/XOR Sum=0 | Sumai 1 fr— + 1
o| o 0 0 i
0| 1 0 1 N e
110 a 1 Sum=1 | sume0 || o - |0
51 1 0 X
x| 1 0 | x l 1 [o I

Fig. 1. (a) Truth table for addition of two binary digits, (b) visualization of ADD operator in a
binary domain, (¢) visualization of an XOR-pattern

Carry can be represented as logical AND, and Sum can be represented as logical XOR. Given the
"ADD" operator we can implement multiplication, and other arithmetic operators.

In the case of concept learning, the presence of an XOR relationship among two or more binary
attributes signals that these attributes represent independent object properties, therefore counting
them (i.e., how many of them are true) is likely to produce a relevant new attribute.

Grouping attributes representing pairwise such patterns into XOR-classes is based on the property
of the XOR relationship. Fig. 2 gives an outline of the algorithm.

The determination of the DNF concept representation is done using AQ algorithm. By examining
learned concept descriptions XOR-patterns are detected. XOR-related attributes are grouped into
XOR-classes. For example, if following patterns were detected, x1 XOR x2, x2 XOR x5, x5 XOR
x7, x2 XOR x4, the following XOR-class is created {x1, x2, x4, x5, x7}. XOR relationship holds
the entire class because it holds for all attribute pairs in the set. Next, for each XOR-class a
"counting” attribute is created. The name of such an attribute reflects names of attributes from the
XOR-class. Values of the counting attribute represent the number of properties that hold for the
learned concept. They are established based on direct counting of values of atiributes from the
XOR-class. For the above example, the attribute CA <:: x1+x2+x4+x5+x7 is created. Its domain is
an integer interval from 0 to 5.

Counting attributes used within DNF expressions allow for representing various forms of M-of-N
concepts. Fig. 3 shows examples of such concepts. Note that if the target concept includes an M-of-
N rule as a part of its description, the above method will generate a conditional M-of-N rules. Such a
rule will contain a M-of-N rule with additional conditions represented as a rule set (DNF expression).
This is a consequence of using AQ.

1. Determine a DNF concept representation. If the expression is sufficiently simple, STOP.
2. Detect XOR-patterns in the learned concept description.
3. If XOR-patterns do not exist, then STOP. Otherwise:
Build maximum XOR-classes
For each XOR-class, generate a "counting attribute”
Emjcct data to the new representation space
o to 1.

Fig. 2. Algorithm for Changing the Representation Space Based on XOR-patterns

Parity 5 expressed using 5 binary attributes: x1-x5.
[CA = 0, 2, 4], where CA <t x1+x24x34x4+x5

3-of-6
[CA >= 3], where CA <:: xl+x2+x3+xd+x5+x6

exactly 3-of-6
[CA = 3], where CA <:: x1+x24x3+x4+x5+x6

MONK2 problem "exactly two of six attributes have their first value”
[CA = 2], where CA <i: cl+c2+c3+cd+C5+00

XOR (exactly 1-of-2)
[CA = 1], where CA <:: x1+x2

Fig. 3. Concept representation using counting attributes in DNF

4 Ilustrative Example: MONK2 problem

The concept to be learned is the MONK2 problem (Thrun et al., 1991; Wnek & Michalski, 1994a).
Fig. 8a shows a diagram visualizing the problem. The total number of possible instances in the
representation space is 432. In the diagram, the target concept is represented by 142 instances
(shaded area). The remaining 290 instances represents the negation of the concept. The training
set, an input to the learning system is represented by 64 positive (+) and 105 negative (-)
examples. The data contains no noise.

4.1 Learning in the Original Representation Space

MONK2 problem is hard for symbolic learning systems. In fact, none of the 18 symbolic learners
taking part in the international competition learned the MONK2 concept (Thrun et al., 1991). This
problem is also hard for the AQ1S program. The descriptions generated may slightly vary with
different parameter settings but all have the following characteristics: they are inaccurate (about

75%), they consist of many rules, rules use many conditions. The example! of program's output is
presented in Fig 4. As many as 16 rules generalize only 64 positive examples. Almost all rules
involve all six attributes in describing the concept. It means that all attributes are equally important
in the concept description, and moreover, the logical operators (and, or) are not capable to capture
meaningful relationships.

4.2 Representation. Space Transformation—Iteration #1

In this description however, there are certain patterns that are easy to detect. Many conditions
involving the same attribute tend to use the same set of attribute values and form value-patterns
(Wnek and Michalski, 1994). For example, conditions involving attribute HS use the following
groupings of values {s,0} nine times, {r} four times, {r,0} and {o} once. Taking into
consideration that HS attribute has three values {r,s,0}, this value-pattern is suggestive that the
division of this set into two subsets, {r} and {s,0} should be meaningful. Similarly, values of
other attributes could also be grouped. The AQ-HCI method changes the representation space
according to the following new attribute definitions (Fig. 5). (To contrast the new representation
with the original one we also substitute new attributes for SM and TL Since these attributes are
binary this is only a change in names.)

1 [HS=r] & [BS=s,0] & [SM=y]& |[HO=fb] & JC=)r,g,h] & [Tl=n 9, u:9
2 [HS=s0] & [BS=so] & [SM=y]& [HO=fb] & [IC=ygb] & [TI=y 1:9, u:9
3 [HS=s.o] & [BS=s,0] & [SM=n]& [HO=fb] & =T, & [Tl=y t:7, u:7
4 [HS=r] & [BS=s.0] & [SM=n|& [HO=(b] &]C=5f.g b] & [TI=y t:5, u:§
5 |[HS=ro] & [BS=] & HO=sf] & [IC=g,p] & [II=n 65, u:d
5 [HS=so] & [BS=ro] & [SM=y]& [HO=sb] & [IC=g & [TI=n t:d, ud
7 [HS=s0] & [BS=s,0] & ([SM=n]& [HO=s] & [IC=ygb] & [TI=y t:4, 04
8 |[HS=s.0] & [BS=r] & |[SM=y]& |[H] & [IC=y & [TI=n td, wd
9 S=r0] & [SM=n|& [HO=s] & [IC=yg] & [TI=n tid, w3
10 [HS=s.0] & [BS=r,0] & [SM=n]& C):II‘}])I & |JC=r & |[TI=n t:3, u:3
11 [HS=s,0] & [BS=x] & [SM=n|& [HO=fb] & [IC=y & [TI=y t:3, u:d
12 [HS=s,0] & S-n.u] & [SM=y|& [HO=fb] & [IC=] & [TI=n t:2, w2
13 [HS=r] & [BS=s,0] & [SM=n]& [HO=fb] & [IC= & [TI=n t:2, w2
14 [HS=s,0] & [BS= k [SM=y|& [HO=s] & [IC=yb] & =n t:2, u:l
15 [HS=o0] & [BS=s & [SM=y|& [HO=s] & [IC=g & [TI=n 1, u:l
16 [HS=] & [BS=r & [SM=n] & [HO=b] & [IC=y & [TI=n 1, u:l

Fig. 4. The MONK2 concept learned in the original representation space.

1=1)<: [HS=r 2=1) <:: [BS= =1) <2 -
fﬁ: = u%f:: ??{Ssiol gzaﬁ :;: [i%s:l],u] fﬁ;-:lﬁ Z;: [gﬂg
(o4 = 1) <:: [HO=3] (c5=1) <:: [JC=r] (c6=1) <:: [TI=y]
{cd = 0) <:: [HO=(,b] (c5=0) <:: [JC=vy.g.b] (c6=0) <:: [TI=n]

Fig. 5. Attributes constructed from value-patterns.

The transformed learning task is visualized in Fig. 8b. The new representation space has become
significantly smaller, there are only 64 instances in the new space vs. 432 instances in the original
representation space. The number of attributes is the same but all of them have fewer values. The
number of instances representing the target concept is 15, therefore in the worst case, the number
of rules required to describe the concept is 15. This is a reduction in description complexity in

1 The following parameters were used: disjoint covers mode, so the generated positive and negative descriptions are
disjoint over areas not represented by training examples; the most specific rules are generaied; during rule generation
10 aliernative solutions are considered (beam width); among those rules, one rule is selected that best satisfies the
default criteria, i.e. maximizes the number of newly covered (not covered by previous rules) examples.

6

comparison to the original representation space. Each instance in the new space represents from 1
to 24 instances that were mapped from the original space. The transformation does not cause
ambiguity in the new representation space, i.e., each new instance represents instances of the same
class, either positive or negative. For more details see (Wnek, 1993).

In this representation space, all possible positive examples are present, and only 13 negative
examples are missing (in the original space only 64 positive examples out of 142 are present). It
seems that learning should give better results, However, the AQ15 learning program still generates
a long and inaccurate description of the concept (Fig. 6). Errors are caused by overly general rule
#1. This rule covers not only two positive examples but also covers two negative instances.

1 [el=0] & [c3=0] & c5=1] & [e6=0 {1:2. u:I%
2 [ei=l] & ([c2=1] & [e3=0] & [ed=0] & [c5=0] & [le6=0 el wl
3 cl=1] & [c2=0] & c3=1 & [cd4=0] & [c5=0] & [c6=0] t:1, wl)
4 [ci=1] & [c2=0] & [c3=0] & [cd=1] & |[c3=0] & |c6=0] 1, u:l;
5 lcl=1] & [c2=0] & c3=0] & [cd=0] & [c5=0] & [c6=1 t:1, w:l
6 lel=0] & [c2=1] & [e3=1] & [ed=0] & [c3=0 & [e6=0 t:1, w:l
7 flel=0] & [c2=1] & [c3=0] & [cd=1] & [e3=0] & chi=0 t:1, ul
8 [ci=0] & [c2=1] & [c3=0] & [e4=0] & [c3=0] & [c6=1 1, ul
9 [el=0] & [c2=0] & [c3=1] & |[ed=1] & [e3=0] & |[e6=D t:l, wl
10 [ci=0] & [c2=0] & [c3=1] & [cd4=0] & [c3=1] & [c6=D 1, ul
11 fci=0] & [c2=0] & [c3=1] & [ed=0] & [c5=0] & [c6=] t:l, wl
12 [cl=0] & [c2=0 & c3=0] & [ed=l] & [c5=0] & [cO=1 t:1, wl)
13 [cl=0] & [c2=0] & [e3=0] & led=0] & [c5=1] & [c6=1 1, u:l;
14 [cl=1] & [c2=0] & c3=0] & [cd=0] & [c5=1] & [c6=0 (t:1, u:l

Fig. 6. Concept learned in the representation space developed in iteration #1.

4.3 Répr:unmrian Space Transformation—Iteration #2

The description obtained after the first transformation of the representation space is more accurate
but still very complex (Figs. 6, 8b). Therefore, search for a betier representation is continued, and
the XOR-patterns are found. Fig. 7 lists examples of pairs of rules with XOR-patterns. Due to the
properties of the XOR relation, this is a sufficient evidence that all six attributes are in such relation.
A new counting attribute is constructed. It is defined as CA <:: c14+c2+c3+cd+¢5+¢6. Its domain is
an integer interval from O to 6. Summing up values in the XOR-patterns gives exact value 2. The
final concept description is [CA = 2], i.e., exactly two of the six attributes are present. Fig. 8¢
visualizes the final representation space and the concept leamed.

Rule No

3 [el=1] [c2=0] [e3=1] [e4=0] [e5=0] [c6=0]
6 [el=0] [e2=1] [e3=1] [ed=0] [c5=0] [e6=0]
3 [el=1] [e2=0] [e3=1] [e4=0] [e5=0] [e6=0]
5 [el=1] [c2=0] [c3=0] [c4=0] [5=0] [e6=1]
2 [el=1] [c2=1] {M} [cd=0] [c5=0] [et=0]
7 [el1=0] [e2=1] [e3=0 [cd=1] [c5=0] [e6=0]
6 [e1=0] [e2=1] [e3=1] [cd4=0] [e5=0] [e6=0]
10 [el=0] [c2=0] [e3=1] [cd=0] [e5=1] [e6=0]
10 [el=0] (GH} [c3=1] [e4=0] [e5=1] [e6=0]
14 [cl=1] [c2=0 [e3=0] [c4=0] [c5=1] [c6=0]

Fig. 7. Example of a necessary set of XOR-patterns to create CA <i: cl+c2+c3+cd+c5+c6 attribute

A. MONK2 problem in the original RS TAELET) B. After 1at lieratlon [13 T
= =] = i -l — — = ‘1"1 o o] - _1__1
| - — - - 1 | - — U] 1
= - LA Value patterns | —{— ! L1,
- -2 1 > - | w0
- - - - 1 3 | o e | 1 1
- - - - 1 —— - % :J_
= - h‘. e | B ’
- =3 1
= 311 ‘°1°‘“['-mrmmspam
—B = = i Sl1] e lbi o i Gk dr ik
= 2 « Stilf complex DNF descr,
= = i, 2 = 83% accuracy
—— — — - —
SEE ENR XOR
= i =] F] pﬂ‘tl-l‘ﬂl
- | 1
== Y
- = i, €. After 2nd lteration
P = “’T 3 - |] o [» Simple DNF descr.
- Ld = el e
= = - 313 ||:|.I1I21-l-5§ * 100% accoracy
= =14 [CA=12]
1t el+e2+ed+odcS
BEIA PRI REOIA20] | e e e
2| 3] 2] a ¥ alalsdalali].rraacowmy
x1 3 2 1

[l Target concept: axactly two of the six atiributes have their first vaiue
- Positive sxample EngltIUImh O unknown sxampls

Fig. 8. Learning the MONK2 problem in two iterations of the AQ-HCI method

5 Conclusions

This paper demonstrated that M-of-N relations are easy to detect and learn from descriptions
generated by the AQ inductive learning system, because they form XOR-patterns, The existence of
such patterns in learned descriptions speeds their detection but this is not necessary for the
application of the method with other learning systems. If a learning system does not form XOR-
patterns in descriptions, because of a different syntax in different representational formalisms, then
the input data should be examined for XOR-patterns.

The counting attribute generation rule was introduced and applied using algorithm for changing
representation space based on XOR-patterns. By observing the relationships among attributes, the
proposed method combines ideas of logic and arithmetic. The introduced "counting attribute”
captures a conceptual transition from logic to arithmetic.

It is shown that the proposed method is capable of learning conditional M-of-N rules, using the
hypothesis-driven constructive induction approach. As an illustrative example, the MONK2 learning
problem was solved with 100% accuracy, and "minimal" complexity of the description. The
method gives a good promise for its applicability in real-world problems carrying M-of-N
relationships. The study confirming such applicability is in progress.

References
Baffes, P. T. and Mooney, R. I., "Symbolic Revision of Theories with M-of-N Rules,"

Proceedings of the Second International Workshop on Multistrategy Learning, Michalski, R.S.
and G. Tecuci, Harpers Ferry, WV, pp. 69-75, 1993.

Bloedorn, E. and Michalski, R.S., "Data Driven Constructive Induction in AQI7-PRE: A Method
and Experiments," Proceedings of the Third International Conference on Tools for Al. San Jose,
CA, 1991.

Jensen, G.M., "Determination of Symmetric VL1 Formulas: Algorithm and Program SYM4,"
M.S. Thesis, Report No. UIUCDCS-R-75-774, Department of Computer Science, University of
Tlinois, Urbana-Champaign, December 1975.

Michalski, R.S., "Recognition of Total or Partial Symmetry in a Completely or Incompletely
Specified Switching Function,” Proceedings of the IV Congress of the International Federation on
Automatic Control (IFAC), Vol. 27, pp. 109-129, Warsaw, June 16-21, 1969.

Michalski, R.S., "A Theory and Methodology of Inductive Learning,” in Machine Learning: An
Artificial Intelligence Approach, R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.),
TIOGA Publishing, Palo Alto CA, 1983.

Michalski, R.S., Mozetic, L., Hong, J. and Lavrac, N., "The Multi-Purpose Incremental Learning
System AQI1S5 and its Testing Application to Three Medical Domains," Proceedings of AAAI-86,
pp. 1041-1045, Morgan Kaufmann, San Mateo, CA, 1986.

Muggleton, S., "Duce, an Oracle-Based Ap roach to Constructive Induction,” Proceedings of
JJCAI-87, pp. 287-292, Morgan Kaufmann, San Mateo, CA, 1987.

Muggleton, S. and Buntine, W., "Machine Invention of First Order Predicates by Inverting
Resolution," Proceedings of the 5th International Conference on Machine Learning, pp. 339-352,
Morgan Kaufmann, San Mateo, CA, 1988.

Murphy, P. M. and Pazzani, M. J., "ID2-of-3: Constructive Induction of M-of-N Concepts for
Discriminators in Decision Trees,” Proceedings of the 8th International Workshop on Machine
Learning, Evanston, IlL, pp. 183-187, 1991

Quinlan, J.R., "Learning Logical Definitions from Relations," Machine Learning, Vol. 5, No. 3,
pp. 239-266, 1990.

Spackman, K.A., "Leamning Categorical Decision Criteria in Biomedical Domains," Proc. of the
gga .&ngrgmﬁonai Conference on Machine Learning, Morgan Kaufmann, San Mateo, CA, pp. 36-
, 1988.

Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I, Cestnink, B., Cheng, J., DeJong, K.A,,
Dzeroski, S., Fahlman, S.E., Hamann, R., Kaufman, K., Keller, ., Kononenko, L, Kreuziger,
1., Michalski, R.S., Mitchell, T., Pachowicz, P., Vafaie, H., Van de Velde, W., Wenzel, W.,
Whnek, J. and Zhang, J., "The MONK's Problems: A Performance Comparison of Different
Learning Algorithms," Technical Report, Camnegie Mellon University, December 1991.

Towell, G. G. and Shavlik, J. W., "Refining Symbolic Knowledge Using Neural Networks," in
Machine Learning: A Multistrategy Approach , Vol. IV, Michalski, R.S. and G. Tecuci, Morgan
Kaufmann, San Mateo, CA, pp. 1994.

Whnek, J. Hypothesis-driven Constructive Induction. Ph.D. Dissertation, School of Information
Technology and Engineering, George Mason Univ., Fairfax, VA, University Microfilms Int., Ann
Arbor, MI, 1993,

Whnek, J. and Michalski, R.S., "Comparing Symbolic and Subsymbolic Learning: Three Studies,”
in Machine Learning: A Multistrategy Arpraach, Vol. 4., R.S. Michalski and G. Tecuci (Eds.),
Morgan Kaufmann, San Mateo, CA, 1994a.

Whnek, J. and Michalski, R.S., "Hypothesis-driven Constructive Induction in AQ17-HCI: A
Method and Experiments," Machine Learning, Vol. 14, No. 2, pp. 139-168, 1994b.

Appendix

FOIL 6.1 [February 1994]

Options:
verbosity level 0
minimum clause accuracy 50%

Relation is MORNEZ2

*** Warning: the following definition
*** matches 9 tuples not in the relation
w** does not cover 1 tuple in the relation

l.is_pos{al,B,c0,D,el, £0).

2.is pos(A,bl,C,D,E,F} :- C<>cl, E<»el, F<>fl.
d.is_pos(A,bld,C,D,E,F) :- D<>dl, A<>al, E<>el.
4.i$_m3EHrB;ClpdD;E;F} o E{}elr B{}bl.
5.is_pos(A,b0,C,D,E,F) :- E<»el, C<»cl, F<>f0.
6.is_pos(A,b0,c0,D,E, £0) :- A<sal,
7.is_pos(A,B,C,D,E,F) :- E<»el, A<»al, B<>b0, De>dl.

Time 2.6 secs

Fig. Al. Output from FOIL (with added rule numbers) for MONK2 problem in an abstracted space

2.is_pos(A,bl,C,D,E,F} :- C<»cl, E<sel, Pe>fl.
5.is_pos(A,b0,C,D,E,F) :- C<»cl, E<»el, F<>f0.

3.is_pos(A,bB0,C,D,E,F) :- A<=al, D<>dl, B<»el.
7.is_pos(A,B,C,D,E,F) :- A<»al, B«»b0, D<>dl, E<>el.

Fig. A2, Examples of XOR-patterns found in MONK2 description generated by FOIL

10

i

4

