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ABSTRACT 

SPATIAL AND TEMPORAL MODELING OF IED EMPLACEMENTS AGAINST 

DISMOUNTED PATROLS 

Arun Shankar, Ph.D. 

George Mason University, 2014 

Dissertation Director: Dr. John Shortle 

 

IED (Improvised Explosive Device) activity has been a concern for US and 

coalition troops in the Middle East for more than a decade. This dissertation describes a 

data collection effort in Afghanistan where IED event data and dismounted friendly force 

patrol movements were obtained. The IED event data is analyzed in time and space with 

no clear resemblance to a Poisson process in either domain. Consequently, a spatial 

clustering model is developed to model the collected data with high fidelity and few input 

parameters. Next, an IED emplacement model is developed to estimate emplacement 

times based on the interaction between the time and spatial dimensions of the friendly 

force data and the IED encounter data. Finally, simulated data is used to test the 

sensitivity of the model to a range of input parameters. From this we suggest 

improvements to the fidelity of the input data for the most accurate output results. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Tactical-level commanders in Afghanistan face the near-daily challenge of 

estimating IED (Improvised Explosive Device) activity as they send out dismounted 

patrols. More accurate models to forecast likely times and locations of IED events are in 

high demand. Such models require the collection of unique data that has been difficult to 

acquire for a variety of reasons. This dissertation describes a data collection effort 

conducted by the first author to obtain friendly force movement of dismounted patrols in 

Afghanistan. From this data, models are developed to estimate IED emplacement times 

based on the interaction between spatial and temporal components of the data. The 

models provide a probabilistic characterization of the emplacement process in time and 

space. 

While such a study of emplacements does not predict exactly when events will 

occur, it does provide a foundation for understanding the patterns of IED emplacements 

that are likely to occur in time and space. An appreciation of these trends can directly 

assist commanders in safely employing troops against the IED threat. In particular, initial 

versions of the models and data analyses in this dissertation were used by tactical units in 

Afghanistan to identify IED hotspots. Feedback from commanders for more sophisticated 

models was encouraging. Military staffs can also use this information to ideally allocate 
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IED clearance resources such as unmanned aerial vehicles or ground sweeping assets. 

Additionally, military intelligence sectors can immediately overlay IED emplacement 

data on existing analysis to directly influence enemy targeting efforts.  

IED activity has been a prominent concern for U.S. military forces since the start 

of both the Iraq and Afghanistan campaigns. IEDs have accounted for over 70% of all 

U.S. casualties during these conflicts and continue to be the primary security concern for 

U.S. troops today (OAD, 2010). In 2010 alone, U.S. troops in Afghanistan encountered 

over 14,000 IEDs and suffered over 4,500 casualties due to IEDs (Cordesman, 2010). 

Between 2003 and 2010, there were almost 83,000 IED attacks (unexpected detonation in 

the presence of friendly forces) in Iraq (OAD, 2010). The Department of Defense has 

spent in excess of 15 billion dollars to mitigate this threat (OAD, 2010).   

 

 

Figure 1: Number of IED-related Casualties and IED Encounters in Afghanistan 
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IED activity is not limited to Iraq and Afghanistan and is not a new threat to 

warfare. IEDs have been a strategic weapon in every major conflict since the American 

Revolution and continue to threaten lives all over the world. Besides Afghanistan and 

Iraq, much of the world’s IED activity occurs in Albania, Pakistan, and Indonesia (OAD, 

2010). Military strategists believe that as conventional warfare transforms into irregular 

warfare, IEDs will likely be the weapon of choice for any future counterinsurgency 

(OAD, 2010).  

The use of IEDs remains resilient because of their simple construction and 

autonomous nature. IED materials can range from military grade munitions to a coffee 

can with household cleaning products. A simple IED can be just as devastating as a 

complex one. Insurgent forces are not hesitant to employ IEDs in any place they believe 

US troops will be traveling, whether on foot or in vehicles. IEDs are easy to activate and 

do not require manpower after the initial setup. Like a typical land mine, most IEDs are 

set off by the victim. The simplicity of IEDs has allowed even the crudest insurgencies to 

pose a significant threat against the world’s most advanced militaries.  

Commanders need information about the nature of the IED activity they can 

expect in their battlespaces. This includes the anticipated time of placement, quantity, 

lethality, location, and initiator. The information allows them to deter, defend, and reduce 

this threat. A commander that understands IED activity in his area can mitigate the threat 

against his troops and improve overall security.  
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1.2 Essential Background 

Analysts have made considerable efforts over the last 10 years to understand, 

estimate, and predict IED activity. A general focus has been placed on statistical analysis, 

geospatial hotspot analysis, and future estimation of IED events. Statistical analysis 

includes summary statistics of IED activity over a given time period, significance tests to 

determine a change in activity, and trend comparisons to understand the causes of shifts 

in activity levels. Geospatial analysis considers the location of IED activity and identifies 

high activity areas with appropriate visual markers on a map. Future estimation can 

encompass a variety of techniques including mathematical model fitting or law 

enforcement investigative methods. 

Together, the three techniques form a base for the majority of IED analyses since 

2002. Such work is often presented in deployed environments or within organizations 

that support DoD research and procurement. Much of the analysis is comprised of routine 

products that are created at regular time intervals. Despite the amount of research that has 

been conducted in this area, shortfalls still remain.  Commanders still need analysis that 

provides quick, actionable ways of mitigating the IED threat. They need a more exact 

understanding of where IEDs are located and when they were emplaced. 

1.3 Proposed Research and Expected Contributions 

Most attempts at IED analysis have focused on routine statistics explaining 

historical data. Some analysis is conducted on estimating future IED activity with limited 

success. The most sophisticated geospatial and predictive analysis on IED activity is 

constrained to IED events on road networks. Much of the analysis is based on friendly 
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actions that remain in a perfect steady state, an assumption that is traditionally unrealistic. 

Additionally, the majority of casualties by IED events in Afghanistan occur against 

dismounted troops on foot, not vehicles. These IEDs are far more lethal than those 

targeted at vehicles because of the highly exposed nature of dismounted troops. A model 

focused on dismounted patrols could provide better utility for commanders. 

Additionally, the use of friendly force data to develop such a model would greatly 

enhance its utility. A reliable estimation of IED emplacements in a two-dimensional 

space cannot be achieved without knowing friendly force travel patterns. No amount of 

simulated data can provide the fidelity needed for this endeavor. A real world data 

collection effort must be executed. 

Four key research questions are examined in this dissertation. They are focused 

on the study of IED emplacements against dismounted patrols and the incorporation of 

friendly force patrol data in the study of IED emplacements. 

 What spatial patterns do IED emplacements have with one another?  

 Do IED emplacements conform to a particular spatial point process? 

 How can friendly force patrol data be incorporated into the modeling of IED 

emplacements? 

 What estimation benefits can be achieved over models that do not account for 

friendly force patrol data? 

This dissertation describes a data collection effort of IED activity against 

dismounted patrols in Afghanistan and provides two models that estimate the times and 
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locations of IED emplacements, given friendly force data in a two-dimensional space. 

There are three main contributions in this dissertation.  

 The first is the data collection effort by the first author of friendly force data and 

associated IED encounters for dismounted patrols in Afghanistan (IED encounters 

are defined here as events in which an IED is unexpectedly found or detonated by 

friendly forces). A unique aspect of the collection effort is that the friendly force 

data is collected in a two-dimensional space, versus road-patrol data which can be 

viewed as one-dimensional. A spatial analysis shows that the IED encounter data 

are not well modeled by a spatial Poisson process. The second contribution is the 

development of a spatial clustering model to characterize the spatial traits of the 

data.  

 The second contribution is the development of a clustering model to explain the 

data in two-dimensional space. While IED encounters can be directly measured, 

IED emplacements must be inferred.  

 The third contribution is a model to estimate IED emplacement times based on the 

two-dimensional friendly force data (IED emplacements are defined as events in 

which an IED has been set up and armed, and is representing a threat to friendly 

forces).  A sensitivity analysis of the model is conducted to understand the 

potential benefits of acquiring more accurate friendly force data. 

1.4 Structure of the Dissertation 

We structure the remainder of this dissertation into six additional chapters. 

Chapter 2 is a detailed background and literature review of existing research and an 
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explanation of relevant stochastic and point processes. Chapter 3 describes the data 

collected and utilized for this research. Chapter 4 is focused on the temporal analysis of 

the collected IED event data. Chapter 5 is primarily dedicated to the spatial analysis of 

the collected data and the development of a spatial clustering estimation model. Chapter 6 

describes the development of the emplacement calculation model. Chapter 7 explains the 

conclusions found from the research effort and possible future initiatives to remaining 

unanswered questions. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

The employment and effects of IEDs are similar to those of conventional 

landmines from previous military conflicts. The primary difference is in their 

construction. While landmines have historically been produced with military grade 

quality through large scale manufacturing processes, IEDs are generally made of 

homemade materials and constructed at a bomb maker’s home residence. IEDs target 

people, buildings, and vehicles, just as landmines do. But unlike most landmines, the 

victim is not required to activate them. IEDs are often initiated by the enemy through 

either cellular phones or electric switches.  

The majority of IEDs in Iraq and Afghanistan target vehicles patrolling urban 

districts or troops patrolling areas on foot. The urban terrain and established road 

networks in Iraq allowed troops to conduct most operations in vehicles. Hence, most IED 

events in Iraq targeted vehicles. In contrast, Afghanistan’s rural and mountainous terrain 

does not easily provide freedom of maneuver for military vehicles. Military forces must 

often dismount from vehicles and traverse ground objectives on foot, leaving them highly 

exposed to IED threats with almost assuredly fatal consequences. Routine missions 

require troops to associate with local populations and positively influence US presence in 

the area. Consequently, military forces focus patrols in populated areas. IED emplacers 

are well aware of these objectives and use this information to target troops. 
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The immediate consequences of IED events range from minor equipment damage 

to multiple fatalities. However, less obvious consequences include a loss of confidence 

from the local population, restricted freedom of movement, and a degraded security 

perception. It is imperative that commanders understand the IED threat in their areas of 

operations in order to mitigate these effects.  

We view IED activity as a game theoretical model involving the actions of both 

friendly and enemy forces. That is, the discovery of an IED requires emplacement by the 

enemy and discovery by friendly forces. We know when friendly forces encounter IEDs, 

but we do not know when they are emplaced. A useful estimation model might provide a 

solution to this dilemma. 

Analysts throughout Afghanistan and Iraq focus significant efforts towards the 

study of IED activity. Particular interests include pattern exploration, statistical analysis, 

and predictive modeling. Of the most desired but least successful has been predictive 

modeling. Analysts are effective at exploring past IED trends and displaying them in a 

coherent manner to commanders. But it is usually up to the commanders to estimate 

future activity based on the historical trends. They are forced to integrate their qualitative 

understanding of the battlespace, past experiences, and gut instinct to prepare for future 

IED threats. Though this is a respected methodology, it lacks the analytical foundation 

that most decision makers prefer.  

We divide the literature review section into six subsections. The first portion 

concerns examples of common statistical analysis focused on IED activity. The second 

section explores geospatial analysis conducted on IED activity, and the third section is 
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focused on future estimation techniques. The fourth section investigates the concept of 

IED emplacement and research that has been completed in this area. The fifth section is a 

general overview of common point processes that could have application in the study of 

IED activity. The final section explores gaps in the research and opportunities for further 

study. 

2.1 Statistical Analysis 

Most of the analysis conducted in Iraq and Afghanistan regarding IED activity is 

rooted in the fundamental statistics of historical activity. This type of analysis is very 

popular for a few key reasons. First, historical data about enemy activity is readily 

available and easy to interpret. Almost all US commands in Iraq and Afghanistan have 

dedicated resources to collecting data on IED activity and share it through web-enabled 

systems around the world. Secondly, the analysis is simple for commanders to 

understand. Basic statistics like means, modes, and ranges are intuitive concepts that do 

not require advanced mathematical understanding. And even more advanced techniques 

that are explained properly can be understood by a variety of audiences. Third, statistics 

are a universal language that commanders can trust. Unlike optimization or simulation, 

statistics are often seen on TV in opinion polls or sports programs. Simple statistics are 

familiar to commanders, so they are more likely to adopt such analysis into their 

operations. 

In the literature, the most straightforward approach to analyzing IED activity is a 

trend analysis. A classic analysis is a chart displaying IED encounter rates over time 
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(Huddleton, 2010; Shearer, 2011). The analysis may be augmented by moving averages 

or comparisons to other types of enemy activity.  

Another approach is a statistical characterization. A common model is the Poisson 

process and/or the nonhomogeneous Poisson process (NHPP). Researchers have analyzed 

historical IED event data with Poisson control charts and other fitting mechanisms and 

have demonstrated that vehicular IED event activity across a broad enough time period 

can coincide with a NHPP (Kolesar 2008, Kolesar 2009). Though this research was only 

conducted on one dataset, it is believed that the results are transferable based on the 

nature of IED events and their relation to the Poisson distribution. A Poisson model is 

motivated by the hypothesis that IED encounters may be a result of a number of 

independent entities planting IEDs that contribute to the overall IED encounter process. 

The independence assumption may be weakened if the entities planting IEDs are 

coordinated or if they are affected by the movement of friendly forces. A partition of IED 

activity into emplacements and encounters provides a clearer understanding of the effects 

surrounding the process. Similar to other studies, no consideration is given to the effect of 

friendly force patrols or the analysis of IED activity against dismounted foot patrols. 

If commanders are interested in estimating future activity over shorter time 

intervals with little historical data, the assumption that IED event data independently 

follows an NHPP may not be sufficient. The proper estimation of parameters for an 

NHPP often requires a large dataset, and the predictive power gains reliability as the 

future time period gets larger and loses granularity. Constraining the model with 
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additional parameters (location, type, target) could provide more actionable results for 

commanders. 

The approximate emplacement time of a future IED by an enemy is extremely 

valuable intelligence for a commander. Through survival analysis, the window of 

emplacement could be narrowed to a reasonable level (Koyak, 2009a). The period of 

“survival” could be defined as the period of time an IED remains emplaced in an area 

before it is encountered.   

Within a given time period, some IEDs are encountered, and others are not. 

However, assuming that they are all eventually encountered, the time of encounter for the 

IEDs that are not encountered during this given time period is censored. Typical 

censoring techniques are used to incorporate this data into an IED emplacement model. 

Such a model would incorporate Type I censoring, where the point of completion of the 

study is not related to the number of IED events being analyzed (Klein, 1997). In 

practice, the completion time would be predetermined. Furthermore, the data could be 

right or left censored. Right censored data would incorporate emplaced IEDs that were 

never encountered during the time period. Left censored data would include IED events 

that were emplaced before the data collection began.  

This survival experiment would require the construction of a likelihood function 

to complete the model. A likelihood function is defined by using maximum likelihood 

estimation (MLE), a process by which the probability of the existence of certain unknown 

variable values is maximized based on a set of given parameters. The likelihood requires 

the definition of a survival function as the underlying distribution for the data. The 
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function need not be complex; something as simple as the Product-Limit Estimator or 

Nelson-Aalen Estimator (Klein, 1997) might be sufficient. Both estimators are step 

functions clearly defined by the given data. 

Mine warfare has the closest parallel to present day IED threats, and models have 

been developed to analyze various aspects of this threat. Similar to IEDs, mines are 

stationary threats that explode when triggered by either the victim or the enemy. One 

model utilizes the Katz distribution to estimate the number of mines initially present prior 

to clearance operations (Washburn, 2006). Another model quantifies the risk of various 

types of mines towards friendly ships (Monarch, 2006). Neither model utilizes friendly 

force data or focuses on foot patrol movement.  

Several statistical techniques exist to assist commanders with better understanding 

IED activity. Most are simple and easy for decision makers to understand. However, they 

generally do not incorporate all of the necessary variables, such as the movement of 

friendly forces, to provide a holistic understanding of IED activity in a complex 

environment. 

2.2 Geospatial Analysis 

Much of the statistical analysis conducted on IED activity data is complemented 

by geospatial techniques that portray historical IED activity on a two dimensional plane. 

This plane is usually a map of the area of interest, where the x and y axes represent the 

spatial position on the ground. Some analysts have begun using a z-axis to represent a 

relative point in time with “hovering” markers of various heights above the map. 
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Additionally, various clustering techniques have been used to group IED activity by 

similar characteristics such as time, location, or other traits.  

For the most part, the geospatial techniques used to analyze IED activity are 

rudimentary in nature. In practice, dots are plotted on a map and intuitive conclusions are 

drawn from the portrayal. There is very little mathematical analysis that goes into the 

conclusions. However, thorough techniques for geospatial analysis do exist. The most 

applicable for IED analysis along road networks is known as linear referencing. This 

technique is popularly used in studying transportation networks and other fields related to 

networks in engineering (Curtin, 2009b).  

Linear referencing offers the analyst an opportunity to shrink the problem space 

and focus on IED incidents along road networks. In the past, vehicular IED incidents 

were a matter of concern due to high casualty rates from lightly armored vehicles. Rather 

than studying an entire geographic area for IED activity, linear referencing allows an 

analyst to focus resources solely on the road networks (Curtin, 2007). A referencing 

system along the road networks is established to replace the need for a conventional 

Cartesian coordinate system or other grid reference platform.  

Recent studies in IED analysis have incorporated linear referencing to analyze the 

density of IED events along a road network (Curtin, 2009a). This analysis allows for a 

visual and mathematical representation of IED events along road segments of any length. 

Such information could be useful for commanders, because it provides thorough, but 

simple, information about the battlespace that can be implemented in decision making. 

Additionally, the use of linear referencing is not confined to road networks. With the 
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focus of IED activity now against dismounted foot patrols, a variation of the linear 

networks based on terrain features or other spatial characteristics might be useful in 

studying IED activity.  

An extension of this research is the study of points along networks that are 

affected by infrastructure elements or the type of roads within the network (Okabe, 

1995). For instance, the formation of points may have preference near certain landmarks 

or on particular road types. Models exist to account for these characteristics. Such a 

model might prove useful in the study of IED activity, because it would allow analysts to 

consider similar scenarios on the battlefield. Examples include roads that are more 

traversed, foot paths that have ideal target opportunities, and choke points that seem to 

attract more IED activity.  

We have surveyed the literature for mathematical analysis techniques used on the 

estimation of landmine activity in previous wars. The few available articles related to 

spatial analysis were focused on search theory methods (Cooper, 2003). These models 

produce a probability heat map that portrays areas with high and low probabilities of 

success when searching for a landmine. The probabilities are calculated from a multitude 

of inputs, including terrain, weather, and enemy capabilities. The theory is that mine 

“sweepers” will start at the areas with the highest probabilities first, then proceed in an 

efficient way to the areas with the lowest probabilities last. Probabilities are refreshed 

with each unsuccessful search within the area. Bayesian methods are a critical part of this 

technique.  
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This methodology is still used in present day warfare to search for (or avoid) 

IEDs. The ideas of heat maps and IED estimation probabilities are all related to search 

theory. Information is provided about the potential IED event and translated into 

probabilities. However, the recent abundance of data and computing resources has 

trivialized the modeling that takes place to produce these probability maps. Prepackaged 

software has allowed for the creation of such briefs in a matter of seconds. Heat maps can 

be ideal, but the input probabilities to create them still need refinement. Most are based 

on historical IED encounter data with no incorporation of friendly force movement or 

other key variables.  

The field of spatial statistics and spatial processes lends many ideas and 

techniques that have potential application in IED analysis. One of note is the use of 

quadrats to divide a spatial region and investigate the data within each quadrat. Several 

methods are possible, including the division of a region into equal squares and tallying 

the quantity of data points within each square (Ripley, 1981). The counts would then be 

fit to a particular statistical distribution. This use of quadrats can be modified to only 

include random squares within the grid, or squares of different sizes.  

Additionally, metrics are available to study the relative “clustering” of data points 

within a region (Ripley, 1981). This data might yield conclusions on whether IED 

activity is homogenously distributed throughout a region, only focused in particular 

areas, or randomly grouped throughout the space. Many of these clustering techniques 

yield models that support the study of clustered Poisson processes and doubly stochastic 

Poisson processes (Ripley, 1981). Both processes promote an idea that the clusters follow 
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one spatial distribution or process, while the data points within the cluster may fit a 

separate spatial process. A very popular cluster process is known as the Poisson Cluster 

Process, where cluster centers are spatially distributed according to a Poisson 

distribution, and cluster members are independently and identically distributed (Daley, 

2003).  

Many of the analysis techniques discussed so far are regularly found in a field 

known as crime analysis. Local law enforcement agencies use statistical methods, 

clustering analysis, and spatial statistics to study crime patterns (Boba, 2005). Data 

collection in this field usually has a much higher fidelity than within IED analysis, 

mainly because law enforcement systems are well-established. Queries are run on the 

incidents to detect trends, patterns, or relationships between data points. From a 

mathematical standpoint, most of the analysis is simple and performed by user-friendly 

software applications. Though crime analysis may sound very similar to IED analysis, it 

has one distinct difference. Crime analysis is generally performed in the United States in 

established cities that hold volumes of historical data linked together for thorough 

analysis. Whereas, IED analysis is conducted in unfamiliar war zones with little historical 

data and almost no prior understanding of local level geography or demographics. 

Additionally, crime analysis is conducted with the assistance of established data 

collection systems (Boba, 2005). The shortfalls of such systems that retain IED data will 

be discussed subsequently.      

Geospatial analysis techniques provide decision makers with a visual 

understanding of IED activity in a given area. Several of the techniques could potentially 
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assist IED analysis, but the necessary input data to study interactive variables is still 

lacking in most cases. More focus on understanding friendly force movement and 

applicable spatial processes would add significant value.  

2.3 Future Estimation 

The estimation of future IED activity is certainly the most beneficial method of 

analysis, but also the least utilized. Though commanders have interest in historical trends 

and clear visualizations of IED activity, they are most interested in threats against future 

operations. They want to understand where IEDs will be encountered when troops 

conduct patrols. Information should be precise, accurate, and actionable. To date, few 

analysts have met this requirement. 

Some analysts have attempted predictive analysis of temporal observations. One 

researcher has produced a learning algorithm that better predicts the time of future events 

from historical data by utilizing a temporal clustering algorithm (Shenk, 2014). Change 

point detection is a method of detecting small changes in a process that may signal larger 

changes in the future. This method has been used in cumulative sum charting (CUSUM) 

to estimate future casualty trends in Iraq (Schneider, 2004). The technique has been used 

to detect when a significant rise or fall in IED events is about to occur. The CUSUM 

charting technique has heavy application in manufacturing industries and other processes 

of that nature, where events occur constantly and have little variation. IED events are 

typically more variable and unpredictable than a steady process. For that reason, limited 

research has been conducted by applying known statistical distributions to IED activity in 

hopes that predictable trends could be drawn from the analysis.  
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The Joint IED Defeat Organization (JIEDDO) houses a group known as the Crime 

Pattern Analysis Team (CPAT) that provides future IED activity estimates to 

commanders in Afghanistan (JIEDDO, 2010). The team contains four to six people with 

expertise in mathematics, law enforcement, psychology, and other related backgrounds. 

They use both quantitative and qualitative historical data as well as intelligence reporting 

to estimate when and where the next IED event will occur. Though an exact point in time 

and space is never presented, the prediction range provides commanders a range estimate 

to factor in future operations. In practice, this type of analysis is helpful, but it requires 

lead time, unique expertise, steady operations, and a volume of data that is not always 

available. It is also not strictly mathematical, which means it cannot be calculated with 

software applications and has a degree of subjectivity. 

The JIEDDO Threatmapper is another predictive tool (JIEDDO, 2010). It is 

strictly a geospatial software tool that produces fast, objective results. It searches for 

similarities between geography and IED incidents within a given region. The results are 

only as good as the geographic data inputted into the system. For instance, the 

Threatmapper could conclude that four way intersections have a high probability of IED 

incidents based on historical data, and then highlight all of the four way intersections 

within a region as highly probable for future IED events. The results can have utility, but 

the requirement for detailed geographic and terrain data within a region is generally too 

cumbersome for the average tactical unit.   

The Joint Warfare Analysis Center’s (JWAC) Route Threat Assessment Tool 

similarly searches historical data and estimates the probability of encountering an IED 
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along particular road segments within a network (JWAC, 2011).  The analysis can be 

worthwhile to commanders if operations are steady and the friendly force traffic patterns 

are constant. Since the model only incorporates historical IED events as input parameters, 

it lacks the flexibility to integrate changes in future friendly force movement and those 

effects on IED activity. 

Researchers have attempted prediction of US casualties in Afghanistan using 

equations known as progress curves (Johnson, 2011). Progress curves are used in biology 

and manufacturing processes to estimate the future production of goods or spread of 

diseases while considering the competition of the marketplace or medical advancements. 

In the case of US casualties, the curves attempt to estimate future days where casualties 

will occur while factoring improvements in US tactics to mitigate those casualties. The 

curves are general and demonstrate that in the long term, the push and pull between US 

and insurgent forces does indeed exist. The analysis also demonstrates the use of future 

estimation as a way to detect a change in US or enemy tactics. When overlaying a 

prediction on actual data, a deviation from the prediction may indicate a significant 

change on the battlefield. The technique is interesting to note and might provide a 

valuable methodology in an IED estimation model.   

Significant research has been performed in optimizing the employment of 

vehicular convoys to reduce the threat of casualties due to IED encounters. One model 

inherently estimates the probability of encountering a casualty-causing IED in the future 

by analyzing historical IED casualty data (DeGregory, 2007). Another model optimizes 

the use of IED clearing assets to minimize future damage to military assets, but assumes 
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all friendly and enemy interactions to be independent of one another (Washburn, 2009). 

Neither of these assumptions allows the consideration of IED emplacement within the 

models. 

Future estimation is the preferred method of analysis for most commanders, this 

field still faces significant challenges. The reliability and utility of the predictions is still 

in development. In most cases, either an inordinate amount of data is necessary to 

compute an estimate, or the prediction is too broad for an actionable decision.   

2.4 IED Emplacement 

Statistical analysis, geospatial analysis, and the estimation of future IED activity 

were presented in the previous sections. In practice, most of this analysis is focused on 

IED encounters by friendly forces. An IED encounter, however, requires two opposing 

forces to meet at a single point – the friend, and the enemy. Models that estimate IED 

encounters are limited in value because they do not account for friendly troop movement. 

Because every IED encounter is necessarily preceded by an IED emplacement, battlefield 

commanders would be better served by a model that solely estimates emplacement. 

Consequently, a model dedicated to estimating IED emplacements might have more 

practical utility for commanders. 

One researcher incorporated the probability of an IED emplacement on a 

vehicular route as part of a convoy scheduling problem (Marks, 2009). The model 

attempts to determine the optimal time to schedule patrols to clear IEDs from roadways 

and permit other military vehicles to pass freely. The objective is to clear the roads 

immediately after the IEDs are emplaced. The research is promising, but unfortunately 
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was not utilized on real world military data. With the absence of this data analysis, the 

emplacement probability is determined from a standard exponential distribution (Marks, 

2009). 

One analyst in the community has attempted to build a model focused on IED 

emplacement that incorporates friendly force activity. The scarcity of research in this area 

is not unexpected. The idea of studying IED emplacement has long been the task of 

intelligence agencies and reconnaissance teams to simply obtain visual confirmation of 

such events and provide the information to commanders. Few analysts have considered 

building a mathematically based model that can aid in this mission. The obvious 

challenge is building a model, or set of models, to estimate the emplacement of the IED 

with the sparse data at hand. An analyst would need to quantify and bound the 

uncertainty of an IED emplacement, then build a model that could process these inputs 

and produce actionable results. 

The one, existing IED emplacement model supports IED estimation along road 

networks (Koyak, 2009a). Emplacement dates of historical IED data are estimated and 

then fit to a statistical model to support the prediction of future emplacements. Various 

models under a similar framework are drawn up to estimate the emplacement date of a 

historical IED event. The underlying premise is that an IED could not have been 

emplaced any earlier than the last time friendly forces were in that area. This can be 

modified with stochastic or deterministic functions to allow flexibility in this assertion, 

but the fundamental concept still holds. 
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The model is further developed to include terms that directly accommodate Blue 

Force Tracker data (Koyak, 2009b). Almost every tactical vehicle in Iraq and 

Afghanistan is equipped with a Blue Force Tracker, a device that logs the movement of 

the vehicle and provides real time position information back to the command 

headquarters. The data from this device is archived by various agencies, including 

JIEDDO. Though it is not provided in a user-friendly format, the data is eventually 

brought into a spreadsheet where meaningful calculations can be accomplished. A final 

iteration of the research includes 32 functions in the statistical software package R that 

allows computations of emplacement probabilities and computes the chance of a vehicle 

convoy encountering an IED along a given road segment (Koyak, 2010). 

In summary, IED emplacement is a critical segment of IED analysis that has had 

little focus to date. Only one researcher has devoted study to this area. Opportunities to 

broaden this research beyond vehicular IED incidents still exists.  

2.5 Point Processes – Overview of Capabilities and Limitations 

IED encounters and IED emplacements are best modeled mathematically by point 

processes. The most common point process used to model IED activity to date is the 

NHPP. Though this model is simple and flexible, other point processes could potentially 

have better results. Several point processes are introduced in this section, and the benefits 

and drawbacks of each are highlighted.  

The stationary Poisson Process is the most fundamental point process and is found 

in many types of queuing models as well as manufacturing and industrial processes. The 

process is based on exponentially distributed interarrival times between events, or that the 
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arrival and service rates follow a Poisson distribution (Gross, 2008). A Poisson 

distribution has stationary increments, meaning that the quantities of events in intervals 

of equal time are identically distributed. Events that follow a stationary Poisson process 

allow for simple calculations of probabilities and relevant statistics. However, in most 

circumstances, the assumptions of the stationary Poisson process are too constraining for 

real world application. 

A slightly more flexible model is the NHPP. The NHPP is similar to the 

stationary Poisson Process except that it allows for nonstationary increments (Ross, 

2000). Unlike the stationary Poisson process, the NHPP allows for events to be more 

likely to occur at some times than others. This characteristic relieves the requirement for 

exponentially distributed interarrival times. The mean arrival rate in an NHPP varies over 

time. Though the NHPP offers flexibility for modeling purposes, it still requires that the 

quantity of events over a fixed time period corresponds to a Poisson random variable, and 

that each time increment is independent. Most importantly, the nonstationary rate 

changes over time are deterministic. The changes in average arrival rates are 

predetermined by historical data or another assumption. There is no uncertainty in how 

and when the average arrival rate will change when designing an NHPP model. This 

requirement can be challenging to overcome in many applications. 

One analyst has introduced a model where IED activity is portrayed as a Poisson 

arrival process. The basic model states that IED emplacements are arrivals, and IED 

encounters are departures. Using Little’s Law, over a long enough period of time, the 

quantity of arrivals and departures is assumed to be equal (Woodaman, 2008). An 
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additional assumption states that IED encounters follow an NHPP, so IED arrivals follow 

the same. This model allows for several probabilistic results concerning IED 

emplacement rates, encounter rates, and future IED activity. However, even if the 

assumptions were validated, the conclusions would only be applicable at a very high 

level. The results do not provide the granularity or specificity in actionable information 

for commanders. 

The Batch Markovian Arrival Process (BMAP) is a flexible arrival process that 

does not require Poisson distributed events or deterministic rate changes (Chakravarthy, 

2001). The process portrays arrivals in batches of more than one event. When the batch 

equals one event, the process is called the Markov Modulated Poisson Process (MMPP) 

(Chakravarthy, 2001).  Both models incorporate stochastic rate changes of events, so rate 

changes can be determined by a separate probabilistic process. This might prove 

applicability in the study of IED activity if it is assumed that IED emplacements occur in 

independent “surges” that are not highly predictable. The model can serve a wide variety 

of applications, but is often underutilized because of the complicated techniques required 

to calculate final metrics. The fitting of all input parameters to the model is a difficult 

endeavor. Several of the techniques involve numerical solution methods that may not be 

practical.  

Analysts have often compared IED activity to neighborhood crime activity. This 

is not a far leap when examined closely. IED activity and neighborhood crimes are both 

usually found in populated areas. Bad neighborhoods and combat zones are both kept 

under surveillance by policing authorities, whether civil or military. Analysis techniques 
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for local crime are very similar to those of IED analysts, to include pattern and hotspot 

analysis (Boba, 2005). Clustering algorithms have also been used in studying auto theft 

(Kursun, 2005).  

The Self Exciting point process (also known as the Hawkes process) has found 

application in crime analysis. In some scenarios, crimes in a local area spark more crimes 

in that same area. The Self Exciting point process models this assumption. The model 

was successfully utilized in describing local crime in Los Angeles in 2004 and civilian 

deaths within Iraq (Mohler, 2011; Lewis 2011). The validation of the models is 

performed through visual inspection of the observed and expected outputs as well as a 

quantitative comparison of the actual results. Other validation techniques include 

hypothesis testing, where the Self Exciting point process is compared to the stationary 

Poisson Process and a significance test is performed numerically (Dachian, 2006). 

The Self Exciting point process is more complex than either of the earlier stated 

Poisson processes. Most importantly, it does not necessarily assume independent and 

identically distributed events. In the case of local crime, one incident causes more 

incidents to occur. Specifically, the Self-Exciting point process employs two different 

processes at once – a background event rate and a follow-on event rate. The background 

event rate is initially developed. Background events are the underlying events that 

eventually cause follow-on events to occur. Then a follow-on event rate is developed for 

each background event. Follow-on events do not spark their own follow-on events, unless 

specifically built into the model (Mohler, 2011). Such a model needs to be carefully 

tuned to accurately reflect real world circumstances.  
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Three parameters require estimation and identification to utilize the Self Exciting 

point process (Mino, 2001). The first is the standard background rate, the second is the 

rate of the follow-on events, and the third is the amount of time that the aftershock events 

occur. These parameters are estimated using either maximum likelihood estimation or the 

expectation-maximization (EM) algorithm (Mino, 2001). The estimation is solved 

numerically using computational software.  

The processes described so far focus on analysis in time, but not space. 

Commanders need times and locations of IED events to help them make actionable 

decisions. There exist space-time point processes that track both spatial and temporal 

variables as events occur (Vere-Jones, 2008). Depending on the format, the space and 

time variables can be dependent upon each other, stationary, or nonstationary. The 

probability of an event occurring at a certain location and a given time can be written into 

the model (Daley, 2008). Such a feature is exceptionally useful for military decision 

makers. 

Existing point processes can be modified to include a spatial component, but there 

is usually a cost. For instance, the BMAP described earlier contains a matrix that 

describes a point process. An additional spatial component requires another dimension to 

the matrix (Breuer, 2005). The modification requires every event in the process to be 

subject to a spatial restriction defined by a spatial distribution (Baum, 2001). Depending 

on the size of the state space, the computational requirements of such a change can grow 

exponentially.  
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Space-time point processes are a more specific version of a general class known 

as marked point processes. In short, each point in a marked point process is assigned a 

time and a mark. The mark can be any descriptive characteristic about the point, 

including location, value, or cost (Serefozo, 2009). A point can have any number of 

marks. In the case of IED analysis, a point can vary on time, location, mission of the unit, 

or the type of IED. An associated probability distribution would be assigned to each 

mark. 

Cluster processes characterize points that form in groups positioned closely 

together. Input parameters determine the location of the points and the spread around the 

cluster centers. The Neyman-Scott cluster process assumes unobserved cluster centers 

with associated cluster members surrounding each center (Cowpertwait, 1997). The 

center points are formed according to a Poisson distribution and the cluster members are 

distributed randomly. Cluster processes have the potential to better explain IED activity 

in the spatial domain. 

2.6 Gaps in the Research 

The existing body of knowledge has exploited several areas in the study of IED 

activity. Considerable emphasis has been placed on spatial and temporal analysis with the 

limited data that has been available. The primary focus of research has been on the 

historical patterns of IED encounters in both space and time, particularly against 

vehicular convoys. We summarize key points of the existing research in Table 1 below. 
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Table 1: Literature Review Summary 

 

 

 

Several of the IED incidents in Afghanistan have occurred against dismounted 

patrols, not vehicles. In the past, commanders have been able to mitigate much of the IED 

threat against vehicles with heavier armor and mine resistant designs. Such solutions 

cannot be implemented for dismounted troops. In most circumstances, the consequences 

of IED incidents that target dismounted troops are far greater than those against vehicular 

patrols.  

As discussed before, analysts have attempted to study IED activity as an 

independent phenomenon. That is, one that is not affected by friendly force actions. 

Though this is known to be a flawed methodology, past researchers have had few choices 

otherwise. With the exception of BFT data along vehicular routes, there has been no 

known acceptable record of friendly force movement that can be applied in quantitative 

analysis. 

Author Title Year IED Encounter IED Emplacement Space Time
Friendly 

Force

Patrols 

(General)

Foot 

Patrols

Kolesar, P.J.
Time Series Analysis of Improvised 

Explosive Device Incidence
2008 X X X

Kolesar, P.J. Poisson Trending of IED Event Frequencies 2009 X X X

Huddleston, S.H.
The Warfighter’s Guide to Counter-IED 

Analysis
2010 X X X

Schneider, P.M.
Dynamic Incident Display and Change Point 

Detection and Counterinsurgency Operations
2004 X

Curtin, K.M.
A Comprehensive Process for Linear 

Referencing
2007 X X

Curtin, K.M.
Road Network Analysis and Linear 

Referencing
2009 X X

JIEDDO Threatmapper 2011 X X X

JIEDDO Crime Pattern Analysis Team 2011 X X X X

JWAC Route Planning Tool 2011 X X X X

Koyak, R.A.
Risk on Roads: A Modeling Approach, Parts 

1 & 2
2009 X X X X X

Koyak, R.A.
Risk on Roads: A Modeling Approach, Part 

3
2010 X X X X X
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Additionally, a study of IED encounters provides limited use for commanders 

since the probabilistic portion of an encounter is the emplacement by the enemy, not the 

encounter by the friendly forces. Rather, a study of IED emplacements and estimates of 

future IED emplacement activity could serve a tactical commander with actionable 

information.  

Consequently, models that estimate the time or location of IED emplacements 

against dismounted foot patrols have high utility for commanders. But the creation of 

such models comes with many challenges. The first is collecting or acquiring data with 

enough fidelity to build a useful model for tactical commanders. As trivial as the task 

may sound, it has never been done, mainly because of the nature of the data and the 

obstacles to collecting it in a war zone. The second is the challenge of building the 

framework for an IED emplacement model in a two dimensional space. The previously 

discussed emplacement model that incorporates BFT data and vehicular patrols was built 

for one dimensional, linear roads. Foot patrols are not just restricted to roads, so such a 

model would need more flexibility. And the third challenge is selecting and developing 

the correct point process with proper parameters to describe IED emplacement activity. 

This is arguably the most daunting of the three challenges. These obstacles lend credence 

to why no such research exists to date on this topic.    
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CHAPTER 3: DATA COLLECTION 

During a recent visit to Afghanistan by the author, a data collection effort 

regarding the movement of friendly force patrols on foot and associated IED encounter 

data was conducted. At the conclusion of the deployment, data was obtained for 9,550 

foot patrols and 714 IED encounters over almost a 90 day period for a particular area of 

operations in Afghanistan. The data was documented in an anonymous manner that was 

deemed unclassified. Of the 9,550 foot patrol records, only 4,526 entries had all fields 

completely entered. These 4,526 entries comprise the data set used in this research.  

The locations of the IED events and friendly patrols were provided in Geodetic 

format with familiar latitude and longitude coordinates. In order to present the data in an 

unclassified format, the coordinates were converted to Universal Trans Mercator format 

and the points were shifted to another location in the world. A similar technique was 

performed on the date and time of each event. Consequently, the data is unclassified but 

still maintains the spatial and temporal relationships necessary for analysis.    

3.1 Data Collection Challenges in the Military 

The military often has difficulty evaluating trends and effectiveness over time 

because of a lack of complete and accurate data. In many instances, lower level 

leadership does not make an emphasis on the requirement for deliberate data collection 

strategies. But there are valid reasons for this dilemma. Commanders and military staff 
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members that are deployed focus on future planning. This includes everything from 

movement strategies at the highest levels to food and ammunition readiness at the lowest 

levels. An additional burden to analyze the past is usually not in the interest of decision 

makers, particularly if the benefits of such collection efforts are not obvious.  

Additionally, for those few commanders that are interested in data collection at 

tactical levels, the systems necessary to make the collection possible are often broken or 

nonexistent. These systems include computers, networks, trained personnel, operating 

procedures, quality control, and final analysis required to make data collection efforts 

meaningful and worthwhile. Maintenance of these systems puts a strain on competing 

requirements focused on present and future operations.  

Furthermore, for much of the data that has been gathered meticulously over the 

years, it is believed by many commanders that the analyst community has often not 

produced relevant, timely, and actionable solutions that leaders need to make rapid 

decisions. Commanders have often dedicated resources to data collection only to be 

provided with abstract, theoretical results that do not provide immediate solutions. Such 

results have brought about reputations that shun analysis efforts all together, where 

commanders would rather dedicate energies to assured results like field patrols and 

intelligence operations. In summary, the incentive for dedicated data analysis has come 

up short for many tactical commanders in recent history.  

3.2 Patrol Data Collection Effort 

As previously noted, data regarding enemy activity is maintained in a sufficiently 

complete and accurate manner across nearly all battlespaces in Afghanistan. But data 
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regarding the specific movement of friendly forces is almost nowhere to be found in 

Afghanistan. It might be maintained by local commanders in Powerpoint briefs and 

written logbooks, but it is not stored in a format that can be analyzed in a practical 

manner. The main exception to this is Blue Force Tracker (BFT) data. This data shows 

the movement of US and some coalition troops in vehicles. But even this data is 

dependent upon whether or not the vehicles moving are carrying a BFT device. And it 

does not include data for troops moving on foot that are not in vehicles. 

Research analysts in Afghanistan were surveyed for information about existing 

databases on foot patrol movement. Surprisingly, US units had little to provide, but one 

coalition partner had a skeleton spreadsheet that was being tested on their subordinate 

units. With this inspiration, the author and his fellow analyst began a similar process with 

some tactical units in the Marine Corps. The energy motivated other analysts to consider 

similar collection efforts in their areas. It also recursively generated increased emphasis 

by commanders in the Marine Corps for more thorough and complete collection of 

friendly force data.   

The efforts for collection of such data highlighted several important lessons for 

field analysts. First, matters discussed earlier about the overall challenges of collecting 

data in the military were validated to be true. Convincing a commander of the importance 

of data collection required a high level of patience and effort that was not initially 

expected. Commanders were not willing to support a requirement for data until the 

benefits were thoroughly explained and sample results were produced. They were also 

adamant about fast answers to questions, and 48 hour deadlines for the delivery of 
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statistical products. They also demanded a user-friendly spreadsheet and user training to 

collect the data efficiently.  

These requirements obviously necessitated face to face interaction with the 

tactical units on a regular basis. Routine visits to forward positions were conducted to 

train Marines on inputting data, ensure that all questions were answered, and make 

revisions to the statistical products that were developed with the data. The author utilized 

Visual Basic for Applications (VBA) behind the spreadsheet tracker to automate real-

time statistical reports for the users and develop error control messages so that erroneous 

data was minimized. Such tools allowed the troops in the field to log the patrol data 

directly after the mission was completed. This face to face interaction at the tactical level 

made the collection effort a success.  

Data were obtained for 4,526 foot patrols and 714 IED encounters over an 

approximate three month period for a particular area of operations in Afghanistan. Times 

and locations were shifted to remain unclassified, but necessary spatial and temporal 

relationships remained intact for analysis. For each foot patrol, a start time, a start point, 

and a farthest point were collected. Ideally, a continuous track would have been 

preferred, but such data was not available due to a lack of Global Positioning System 

(GPS) tracking devices and time constraints on data collection efforts. With only a start 

point and a farthest point, an assumption must be made regarding the area or path of the 

patrol. This will be discussed in Chapter 6. Table 2 shows the set of fields collected for 

the patrol data.  These data fields are defined as follows: 
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 Start day – start day of the patrol, where decimal indicates a portion of the 

day. 

 Start x and y (meters) – the x and y coordinates of the patrol start point. 

 Farthest x and y (meters) – the x and y coordinates of the farthest point from 

the start that was traveled by the patrol. 

 

Table 2: Sample Patrol Data 

 

 

 

The foot patrol data is far from perfect, as only a start point and farthest point are 

provided. A set of checkpoints for each foot patrol or even an electronic track that 

accurately reflects where troops have traversed would have been preferred. Furthermore, 

there is reason to believe that the farthest point was not always filled in accurately. The 

finding of several duplicate values highlights that either patrols were continuously 

turning around at the same point, or the more likely scenario that patrol leaders were not 

remembering to document farthest points until they returned to base. The data gives some 

understanding of where the troops patrolled, but a level of estimation is required for this 

data to feed an IED emplacement model.   

Start Day Start x  (m) Start y  (m) Farthest x  (m) Farthest y  (m)

26.80 602400 3491300 601500 3491000

26.80 602400 3491300 601500 3491000

26.99 610400 3477300 610070 3477360

… … … … …

Friendly Force Patrols
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3.3 Available IED Data 

This section describes an existing database of IED events. These events are linked 

to the foot patrol data described previously. IED events fall under the category of enemy 

actions and are recorded in the Combined Information Data Network Exchange (CIDNE). 

Quality control measures are taken to ensure that records are complete and accurate in 

CIDNE. Thus, unlike the foot patrol data collected by the author, all of the data fields are 

complete. Table 3 shows the fields for the IED encounter data used in this research. 

These include the day of the IED event (decimal indicates a portion of the day), and the x 

and y coordinates of the location of the IED encounter. 

 

Table 3: Sample IED Encounter Data 

 

 

 

Because the encounter and patrol data come from separate sources, each IED 

encounter date does not necessarily match with a patrol start date. To link these data sets, 

it is assumed that the most recent patrol whose patrol area (described later) overlaps the 

IED encounter is the patrol that encountered the IED. A single patrol may be matched 

with zero, one, or several encounters. An IED is matched with at most one patrol, and 

Day x  (m) y  (m)

0.00 654420 3520550

0.33 617140 3494130

1.38 597378 3478780

2.00 647732 3506634

… … …

IED Encounter
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some IEDs are not matched with any patrols. Figure 2 shows the relationship between 

these two datasets. 

 

 

Figure 2: Data Source Relationships 

 

Despite the lack of useful data, improvements to data collection have seen leaps 

and bounds since the beginning of the Iraq War in 2003. Many new web-based systems 

archive data in useable forms that can be accessed by US and coalition military forces 

across the globe. Much of the data is utilized by intelligence shops in Afghanistan to help 

produce quantitative and qualitative reports that support operations. The data is stored in 

a combination of web-enabled databases along with several locally owned spreadsheets 

maintained within individual units. 

CIDNE is the primary database of record in Iraq and Afghanistan. Theoretically, a 

plethora of information about patrols, enemy activity, friendly activity, and humanitarian 

aid missions can be stored in this database. However, as discussed earlier, data collection 

is driven by commanders. If commanders are not convinced that a collection effort will 

help them to make decisions, they likely will not support it. As a result, enemy activity 

Start Day Start x  (m) Start y  (m) Farthest x  (m) Farthest y  (m) Day x  (m) y  (m)

t 1 x 11 y 11 x 21 y 21 t 5 x 1 y 1

t 2 x 12 y 12 x 22 y 22 t 6 x 2 y 2

t 3 x 13 y 13 x 23 y 23 t 7 x 3 y 3

t 4 x 14 y 14 x 24 y 24 t 8 x 4 y 4

… … … … … … … …

Friendly Force Patrols IED Encounter
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data is the most complete and accurate of all the available repositories. This includes 

information regarding IED events as well any other enemy engagements with enemy 

weapons. The one dimensional analysis of enemy activity has been a long standing metric 

of progress for commanders in both wars since 2003 as well as justification for the 

purchase of new gear and equipment. Consequently, it has remained the main data 

collection effort. 

Other repositories in CIDNE receive intermittent attention whenever a 

commander considers the need for the data. But the efforts usually fade when it is 

realized that a considerable amount of data is usually required before any noteworthy 

analysis can be produced. Additionally, lateral collection efforts by adjacent units are 

required to compare trends and understand relationships within an area of operations. 

Therefore, if one unit is collecting data but another is not, the existing collection effort 

falls short of its potential and may lose inertia.  

The completeness of data is also a matter of concern. If Commander X collects 

data Y and Commander Z collects data YY, it may not be possible to combine Y and YY 

in a global way to do analysis. Thus the inconsistency of data across multiple collection 

efforts hinders analyses. In general, the military lacks the overarching emphasis to 

consistently collect relevant data in high fidelity across all levels. 

Furthermore, many of the less used and dormant data repositories in CIDNE lack 

the database structure to allow rudimentary analysis of trends and statistics. Several of the 

repositories are laden with free text entries that cannot be analyzed without sophisticated 

word search algorithms that must be customized for each analysis product. Such 



39 

 

circumstances deter analysts from utilizing CIDNE and instead rely on other databases 

for support. 

There exist other data repositories that hold various types of information about 

military operations and their outcomes. The Combat Operations Center, the central hub 

for the coordination of all operations within a battlespace, usually maintains several 

spreadsheet trackers and classified chat logs that can be mined by analysts. The various 

intelligence shops within a unit also maintain spreadsheets and web based systems that 

interact to provide a qualitative understanding of the battlespace. Unfortunately, most 

intelligence products are stored in PowerPoint files that are extremely difficult to mine 

for quantitative analysis.  

3.4 Overview of the Data 

The data is initially examined by location with an expectation that a spatial 

correlation exists between the location of patrol start points, patrol farthest points, and 

IED events. The results are shown in Figure 3 and substantiate this premise. 
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Figure 3: IED and Patrol Data Locations 

 

There appear to be fewer farthest points than start points, but this portrayal is 

misleading. The dataset includes one start point and one farthest point for every entry. 

However, many of the farthest points are identical to each other. The patrol leaders 

probably patrolled to the vicinity of the same farthest point regularly. But rather than 

logging the entry accurately with a GPS, they almost certainly estimated the farthest point 

upon their return, resulting in the same response after numerous patrols. This is unlike the 

determination of start points, where the patrol leader deliberately used a GPS prior to 

departure. 
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Figure 4 portrays the distribution of distances traveled by each patrol to their 

farthest points.  Of the 4526 patrols, 3357 traveled up to 1600 meters to their farthest 

points. In other words, most patrols did not travel more than one mile from their point of 

origin. 

 

 

Figure 4: Distance from Patrol Start to Farthest Point 

 

 

 

 The data collection endeavor was a success on many terms. First, the author and 

his fellow analyst were able to immediately utilize the data to produce statistical products 

that summarized the data. Particular focus was placed on showing patterns of patrolling 

and IED encounters. At the time, a model was not yet created to estimate IED 

emplacements, though leaders were certainly interested. 



42 

 

 The statistical products were provided directly to the local commander and his 

troops within 48 hours of the analysts receiving the data. The rapid response time 

combined with the customized analysis thrilled the unit and energized the tactical level 

leaders to continue to collect more accurate data for this cause. In practice, such analysis 

is usually held at the operational and strategic level for large scale decisions by senior 

officers. However, it was refreshing for analysts to make a direct impact with 

infantryman at the tactical level. 
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CHAPTER 4: ANALYSIS OF EVENTS IN TEMPORAL DOMAIN 

This section provides an analysis of the IED encounter data in the time domain. 

First, we compare the encounter data to a stationary Poisson process with an equivalent 

encounter rate. The Poisson distribution is the benchmark for comparison throughout 

this dissertation because of its positive, discrete nature and simple mathematical 

structure. In the data, there are 714 encounters over 153 days, so the sample encounter 

rate is  = 4.67 per day. The theoretical probability of observing k IED encounters in one 

day from an equivalent stationary Poisson process is / !k

kp e k  . Figure 5 compares 

the observed data with the theoretical fit. The sample mean is 4.67 encounters per day, 

and the sample variance is 9.48. For a Poisson process, the mean and variance would be 

equal. Thus, the data do not support a Poisson fit. This is reinforced by the chi-squared 

test results  0value-p 14,df,63.882   that reject the null hypothesis of the 

observed and expected values coming from the same distribution.  
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Figure 5: IED Encounters Fit to Stationary Poisson Process 

 

 

Next, we compare the encounter data to a NHPP. Figure 6 shows the 3-day, 10-

day, 20-day, and 30-day moving averages of the IED encounters over the time period. 

Three distinct periods of activity are identified, based on visual inspection of the 

encounter rates. Each period is then fit to an individual stationary Poisson process. The 

results are displayed in Figures 7-9. 
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Figure 6: Moving Average of IED Encounters over Time 

 

 

  

Figure 7: IED Encounters Fit to a Stationary Poisson Process (Days 1-58) 
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Figure 8: IED Encounters Fit to a Stationary Poisson Process (Days 59-119) 

 

 

 

 

Figure 9: IED Encounters Fit to a Stationary Poisson Process (Days 120-153) 
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The fit for the middle period (days 59-119) is the best, but still do not follow a 

Poisson distribution. The sample mean (5.74) and the sample variance (9.70) do not 

match. Also, the result of the chi-squared test  0value-p 12,df,39.1392   rejects 

the null hypothesis that the observed and expected values come from the same 

distribution. 

Comparisons of IED encounter processes with NHPPs have also been conducted 

by other researchers such as Kolesar (2008, 2009). In these studies, it was concluded that 

IED encounter processes can reflect an NHPP. A key difference between our work and 

this work is that Kolesar (2008, 2009) used data from Iraq where the majority of IED 

incidents are targeted against vehicles on common roadways. Our study considers IED 

events against foot patrols in a two dimensional space. Foot patrols likely encounter IEDs 

at different rates and have more uncertain patrol routes than vehicular patrols due to the 

two dimensional nature of their movement. Also, encounters are subject to the timings 

and routes of patrols which may have less regularity in a two-dimensional space. 

Furthermore, none of the results were found to reflect a Poisson process. We further 

analyze the IED encounter data in the spatial domain for patterns and statistical 

characterizations. 
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CHAPTER 5: ANALYSIS OF EVENTS IN SPATIAL DOMAIN 

This section provides an analysis of the IED encounter data in the spatial domain. 

One common metric used in geospatial analysis is the nearest neighbor metric – that is, 

the Euclidean distance between a given event and its closest neighboring event. This 

metric can be used to determine if spatial clustering is evident (Ripley, 1981). For a 

spatial Poisson process, the expected Euclidean distance from a given event to its nearest 

neighbor is
1

2 
, where   is the expected number of points per unit of area (Dixon, 

2013). The CDF of this distance is
2

( ) 1 xF x e   . (For a spatial Poisson process, the 

number of events in a region of area A is a Poisson random variable with a mean of A; 

the numbers of events in disjoint regions are independent.)  Figure 10 shows the nearest 

neighbor distribution observed in the data and the corresponding distribution for a spatial 

Poisson process. The value of  is estimated by taking the total number of IED events 

and dividing by the total area associated with square kilometer regions containing at least 

one IED event. The value of  is found to be 2.03 IEDs/km2. A chi-squared test result 

 0value-p20,df ,10*12.1 62   rejects the null hypothesis that the observed data 

and Poisson results come from the same distribution. Furthermore, we perform the Clark-

Evans test (p-value = 0) by assuming a rectangular region around the friendly force travel 

area and also reject the null hypothesis that the observed and expected nearest neighbor 
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distances are equal (Dixon, 2013). Additionally, a large number of nearest neighbor 

values in the observed data are small. We conclude that clustering is evident, and a model 

that considers this characteristic is necessary to reflect the spatial patterns of the data. 

 

 

   

Figure 10: IED Encounters – Nearest Neighbor in Space 

 

 

5.1  Spatial Clustering Model 

We further investigate the degree of clustering in the data using a generalized 

version of the Neyman-Scott cluster process (Cowpertwait, 1997). In the Neyman-Scott 

model, a set of unobserved cluster centers are produced spatially according to a Poisson 

process. Then associated cluster members are formed randomly about the cluster centers.  
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Here we consider a non-stationary variant in which the expected number of events 

per cluster varies by location. Cluster members are assumed to be located a distance from 

the cluster center according to a Rayleigh distribution (Figure 11). We specifically make 

the following assumptions: 

• The number of clusters in grid square k is a Poisson random variable with mean h. 

The locations of the cluster centers within grid square k are chosen according to a 

uniform spatial distribution. (That is, the cluster centers are chosen according to a 

stationary spatial Poisson process.) 

• The number of events in cluster i (in grid cell k) is a Poisson random variable with  

mean 𝜆𝑘 ℎ⁄  . Thus, the average number of events in grid square k isk. 

• The location of event j relative to cluster center i in grid cell k is a random 

variable in polar coordinates (r, ), where r follows a Rayleigh distribution with 

mean µ, and  is uniformly distributed between 0 and 360 degrees. This is 

equivalent to a bivariate normal distribution in Cartesian coordinates. 

 

 

 

Figure 11: Cluster Structure 
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Table 4: Outputs to Spatial Clustering Model 

 

Variable Random Distribution 

Number of clusters in grid square k )(hPoisson  

Position of cluster center i in grid square k Uniform (in grid square) 

Number of events in cluster i in grid square k 









h
Poisson k

 

Distance of event j from cluster center i in grid square k )(Rayleigh  

Angle of event j from cluster center i in grid square k )2,0( Uniform  

 

 

The model is specified by the parameters k, h, and . The average number of 

events k in grid square k is obtained from the data. The average number h of clusters in 

each grid square and the mean distance  of cluster events from each cluster center are 

determined using the k-means algorithm. The k-means algorithm attempts to assign points 

to k clusters in order to minimize the sum of the squared distances of points from their 

cluster centers (the center of a cluster is defined as the centroid of points assigned to the 

cluster). Since the number k (in our case, h) must be pre-specified, a simple heuristic to 

choose h is to run the k-means algorithm for different cluster numbers h and then identify 

a point at which there are diminishing improvements in an error metric (Pham, 2004). For 

each value of h, the algorithm attempts to optimize the location of these cluster centers by 

minimizing the aggregate distance of the cluster centers to the cluster members. A global 

optimization is not guaranteed, and the initial seeding of the algorithm is random. The 

routine is run 10 times for each value of h ranging from 1 to 15 in each 5x5 grid square. 

Each run produces an output metric specifying the average distance of cluster events 

from each cluster center (µ) across all grid squares in the region. The output metrics of 
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the 10 runs are averaged for each value of h. This is plotted in Figure 12 along with the 

difference in averages between each cluster quantity h. We aim to find the smallest h that, 

when increased further, shows little improvement (knee in the curve). Such a choice 

might be in the range of three to five, with a corresponding value of  near 500m. 

 

 

 

Figure 12: Optimal Number of Clusters as a Result of K-Means Computation 

 

 

Figure 13 shows sample output from one run of the simulation compared to the 

actual data, using h = 4. The parameter input value agrees with the results of the earlier k-

means calculations. 
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Figure 13: Sample Results of Spatial Clustering Model 

 

 

To evaluate the performance of the model more rigorously, we use a chi-squared 

test. The simulation is run using five-kilometer grid squares, and the distribution of the 

quantity of events across each of the 25, nested, one-kilometer squares is recorded for 

each simulation (Figure 14). A measure of success is for a simulation methodology to 

output a distribution of events in one-kilometer squares that is similar to the collected 

IED encounter data. This similarity is quantified using the chi-squared test.  

A simulation of the clustering model is run for five different values of the 

clustering parameter h. Each simulation is replicated ten times utilizing five-kilometer 

grid squares and an average 500-meter (µ) distance from the cluster centers. Table 5 

shows the average results of seven different clustering scenarios. The quantity of events 

in each 1x1 square is totaled over all simulations and divided by 10. These averages are 

compared to the actual data in the far right column of Table 5, and the chi-squared p-

value result for each scenario is calculated on the last row. The results indicate that the 

Actual Data 
Simulated 

Results  



54 

 

spatial cluster model outperforms a traditional NHPP or a homogenous Poisson Process. 

The model performs best when we assume an average of three or four clusters per grid 

square (h=3, h=4), as noted by the higher p-values. These parameter values agree with the 

results of the earlier k-means computations. 

 

 

Figure 14: Breakout of IED Encounters from 5x5 to 1x1 
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Table 5: Quantitative Results of Spatial Clustering Model 

 

 

 

 

 

The previous analysis characterized the spatial attributes of the IED encounter 

data. The estimation of IED locations is an essential requirement for commanders to plan 

safer and more effective patrolling efforts. However, more robust conclusions can be 

drawn if the time of enemy IED emplacements were known. The following section 

describes such a model. 

 

Events per 1x1 h=1 h=2 h=3 h=4 h=5 NHPP PP Actual

1 86.40 151.30 192.20 226.40 244.30 269.50 349.70 214

2 35.80 53.80 67.60 69.10 79.50 100.20 108.20 60

3 17.60 26.20 31.50 32.00 33.30 40.20 30.60 27

4 10.70 18.40 14.80 16.20 13.90 16.30 7.10 22

5 7.00 8.40 8.50 8.90 7.80 4.50 2.00 9

6 5.50 5.50 5.00 4.70 3.80 2.40 0.80 5

>6 11.00 13.00 11.90 8.50 8.00 1.40 0.10 14

P-value 0.00 0.00 0.36 0.35 0.01 0.00 0.00

Average of 10 Simulations

5km x 5km Grid, µ=500m
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CHAPTER 6: EMPLACEMENT CALCULATION MODEL 

The most direct way to model IED activity is by observing IED encounters. While 

emplacement times may be of more interest, they can only be inferred indirectly. This 

section gives an emplacement time model that uses both IED encounter data and friendly 

force patrol data to calculate the approximate time that an encountered IED was 

emplaced.  Sample results are given applying the model to the collected data set. Finally, 

a sensitivity analysis is applied to understand the sensitivity of the model to input 

parameters and the quality of the input data.  

When studying IEDs along road networks, a common assumption is that an IED 

could not have been emplaced any earlier than the last time a patrol was in that area – in 

other words, a patrol that passes by an emplaced IED is guaranteed to encounter it 

(Koyak, 2009a). This assumption may be reasonable in a road network since vehicles 

travel along a linear route with little room for deviation. However, foot mobile troops 

patrol two dimensional areas, particularly in urban locations. Depending on the scenario, 

foot patrols can either begin their travel from their base of departure or dismount from a 

vehicle. Since the patrol paths are not exact, it cannot be guaranteed that a patrol that was 

in the vicinity of an IED would have encountered it. This assumption is relaxed in this 

dissertation, so that each patrol has a certain probability of encountering an IED over 

some area of coverage. 
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 The patrol data in this dissertation include a start point and farthest point. Since 

the precise path is unknown, each patrol is assumed to cover an area between the start 

and the farthest point in the shape of an ellipse with some specified width (Figure 15). An 

IED that is emplaced within the ellipse is assumed to be encountered with some 

probability. The actual track may extend beyond the boundary of the ellipse. 

 

 

 

Figure 15: Notional Patrol Track and Assumed Patrol Ellipse 

 

 

The following assumptions are used in the IED emplacement model: First, each 

IED encounter must be assigned to a patrol. Since the encounter data and patrol data are 

separate, the most recent patrol whose ellipse overlaps the location of the IED encounter 

is assumed to be the patrol that encountered the IED. Second, if zero or one patrol 

traversed the area of an IED encounter, the IED encounter is excluded from the analysis 
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and is not assigned an emplacement date. This is because a second patrol is needed to 

provide a non-arbitrary lower bound on the emplacement time. Third, it is assumed that a 

patrol i, whose ellipse overlaps an IED j, encounters that IED with probability p(i, j). 

(This is assuming that the IED was emplaced prior to the start time of the patrol and that 

the IED has not been previously discovered by an earlier patrol.) The probability is 

assumed to be a linear function of distance from the straight-line path between the start 

and farthest points; see equation (1) below. This implicitly assumes that patrols are more 

likely to travel along a direct path between the start and farthest points. Finally, it is 

assumed that the underlying emplacement process is a Poisson Process. Simplicity in 

mathematical structure is the primary driving force behind this assumption. 

To identify IED emplacement times, the following steps are conducted for each 

IED encounter j: 

1) Identify the set of patrols R = {1, 2, …, m} whose ellipses overlap the IED 

encounter and whose start times occurred prior to the IED encounter. The patrols 

are assumed to be indexed in chronological order, and the most recent patrol that 

overlapped the IED encounter event is assumed to be the patrol that encountered 

the IED. Let Aij be the event that IED j was emplaced between patrols i and i+1; i 

={1,2,…, m–1}. Let Bj be the event that IED j was encountered by the most 

recent patrol m; m >1. Also, let dij be the distance of IED j from the axis formed 

between the start and farthest point of patrol ellipse i, and let w be the width of the 

patrol ellipse. Then 
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2
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p i j

w
      (1) 

2) Calculate the probability that IED j was encountered by patrol m, given that the 

IED was emplaced between patrols i and i+1; i ={1,2,…, m–1}: 
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Figure 16: Emplacement Timeline 

 

 

  

3) Calculate the probability that IED j was emplaced between patrols i and i+1: 

)( 11)P(A ii tt

ij e
 


,           i ={1,2,…, m–1}.  (3) 

where  is the average daily rate of IED events and ti is the start time of patrol i. 

Since the number of emplaced IEDs is fixed based on spatial characteristics, 

altering  does not change the emplacement calculation results. 

4) Calculate the probability that IED j was encountered by the most recent patrol 

(Law of Total Probability): 
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
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1

1

)P(A*)A|P(B)P(B
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i

ijijjj
      (4)  

5) Calculate the probability that IED j was emplaced between patrols i and i+1, 

given that it was encountered by the most recent patrol m (Bayes Rule):  

)P(B/)P(A*)A|P(B)B|P(A jijijjjij  , i ={1,2,…, m–1}.  (5) 

6) Input all m-1 probabilities calculated in step 5 into a random sampling algorithm 

and draw one sample that represents a single patrol interval [i, i+1] in which the 

IED was emplaced. Select a uniform random point within the interval to declare 

the exact estimated emplacement time. 

Numerical Results 

To apply the model to the collected data, the first step is to identify patrols whose 

ellipses overlap the IED encounter locations. In the original data set, there are 4,526 foot 

patrols and 714 IED encounters. Of these, 1,381 patrols have ellipses that directly overlap 

at least one IED event (and where the start time of the patrol is before the IED event 

time). Thus, a lower bound on the probability that a patrol encounters an IED that has 

been emplaced within its ellipse is 714 / 1381 ≈ 0.52. (The lower bound is realized in a 

scenario in which all IEDs are emplaced prior to the start of the data collection.) The 

model only considers IED events that are overlapped by two or more patrols that departed 

previous to the IED encounter. Of the 714 IED events, there are only 173 such events. Of 

these 173 events, 24 are overlapped by two patrols, 23 are overlapped by three patrols, 

and the rest are overlapped by four or more patrols. It is expected that IED encounters 
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occurring at the beginning of the time period are overlapped by fewer patrols than those 

occurring at the end of the time period. 

Figure 17 shows an application of the model to data. The figure shows IED 

encounters and patrols over time (from historical data) as well as inferred IED 

emplacements (from the model). Emplacements are shown as long-term averages 

obtained by adding up the long term probabilities of IED emplacements in each day from 

step 5 in the algorithm. 

IED events require an enemy emplacement and a friendly force encounter. Thus, 

emplacements, friendly patrols, and encounters are all related. The hypothesized 

correlations appear to hold true in Figure 17. The rise and fall of IED events correlates 

with the rise and fall of friendly patrols, as shown during days 40-90 and 91-120. The 

variation in IED emplacements is related to the future variation in IED encounters. This 

can be seen with the rise in IED emplacements at Days 20 and 56 along with the rise in 

encounters at Days 40 and 70.  
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Figure 17: Patrols and IED Events by Day 

 

 

 

The IED emplacements do not fit a stationary Poisson process over time (Figure 

18). We can see visually that the observed and expected emplacements generally do not 

equal each other. The results of the chi-squared goodness of fit test agree with this 

assessment, noting a probability of almost zero that the observed and expected values 

come from the same distribution. The mean and variance are also not equal. 
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Figure 18: IED Encounters Fit to Stationary Poisson Process 

 

 

 

Next, the emplacement results from one simulation are fit to a NHPP utilizing the 

method stated earlier for IED encounters. The moving average of IED emplacements is 

displayed in Figure 19. In viewing the 10, 20, and 30 day moving averages, there appears 

to be three distinct periods in which IED emplacement rates remain constant. Data in 

each of the following time periods are fit to Poisson distributions – days 1-55, 56-95, and 

96-123. The results are shown in Figures 20-22.  
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Figure 19: Moving Average of IED Emplacements over Time 

 

 

Each period is fit to a separate Poisson distribution to determine if the aggregate 

forms an NHPP. Chi-squared tests were performed on each period to determine the 

probability of the data resembling a Poisson distribution. The results from the first period 

( ,48.12  df=4, p-value=0.83), the second period  0.46value-p6,df,68.52  , 

and the third period  0.69value-p 1,df ,16.02   do not allow us to reject the null 

hypothesis that the data reflect a NHPP. We assume the underlying emplacement process 

to be a Poisson process in Equation 3, so this result is to be expected and further validates 

the model. 
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Figure 20: IED Emplacements fit to a Stationary Poisson Process (Days 1-55) 

 

 

 

 

Figure 21: IED Emplacements Fit to a Stationary Poisson Process (Days 56-95) 
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Figure 22: IED Emplacements Fit to a Stationary Poisson Process (Days 96-124) 
 

 

The number of IED emplacements over time in one simulation of the model is 

analyzed to determine if temporal clustering is present. The quantity of IED 

emplacements within 10 and 20 days of each IED emplacement is compared to a 

simulated Poisson distributed dataset in Figures 23-24. The actual data should exhibit the 

Poisson distributed simulated dataset if there is no clustering. However, the results show 

no relationship between the actual and simulated datasets, implying the possibility of 

clustering in time. 
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Figure 23: Number of IED Emplacements within 10 Days of Each IED Emplacement 

 

 

 

Figure 24: Number of IED Emplacements within 20 Days of Each IED Emplacement 
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The calculated time lapse between the emplacement of an IED and its encounter 

can add validity to the emplacement algorithm. The commanders from the region of the 

collected dataset implied that a fairly constant patrolling effort occurred throughout the 

area of operations, with key areas being patrolled daily and most other areas weekly or 

bi-weekly. This implies that the lag between most IED emplacements and encounters 

ranged between 1 and 14 days. Figure 25 shows the difference between the IED 

encounter time and the IED emplacement time (as determined by the emplacement 

model). The figure shows that 77% of the IED events were emplaced in this range and 

are therefore consistent with this observation.  

 

 

Figure 25: Time lapse between modeled emplacement time and encounter 
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Specifically, earlier described shortfalls within the collected data prompt a consideration 

for the effect of more precise data on the output of the model. These points are explored 

in the following section.  

 

6.1 Sensitivity of the Model to Hypothetical Data 

The previous emplacement results were calculated using a non-uniform 

probability of encounter that is linearly related to a given IED’s distance from the axis 

formed between the start point and the farthest point of the overlapping patrol ellipse. 

Figure 26 depicts additional results using fixed probabilities of 1.0, 0.50, and 0.05. The 

results of the chi-squared goodness of fit test for all four values of p in Figure 26 show no 

conclusive evidence that the observed values come from a Poisson distribution.  

 

 

Figure 26: IED Emplacements Fit to Stationary Poisson Process 
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Figure 27 shows a sensitivity analysis based on varying the width of the patrol 

ellipse. A larger sized ellipse places more patrols in each IED event area and therefore 

causes more IEDs, particularly in the early portion of the time period, to be assigned 

emplacement dates. The overall temporal trends of IED emplacements remain the same 

regardless of the ellipse size. Since subject matter experts agree that 500 meters is the 

proper estimate, so there is no evidence from the sensitivity analysis to conclude 

otherwise.   

 

  

Figure 27: Ellipse Width Sensitivity 
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start points and farthest points are known, so there is considerable uncertainty in the 

paths. The objective here is to determine whether precise track information would yield 

significantly improved results via a similar emplacement model. To do this, a set of 

hypothetical IED and patrol data are created. We allow for sensitivity in the number of 

patrols to determine if such variation would have a significant effect on the results.  

Figure 28 shows the overall methodology. First, hypothetical patrol tracks and 

IED emplacement data are generated as “truth” data. Second, IED encounter times are 

inferred from the track and emplacement data. Next, the emplacement model is run to 

estimate IED emplacement times. Lastly, the estimated and actual emplacement times are 

compared. 
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Figure 28: Improved Emplacement Calculation Model Workflow 

 

 

Hypothetical patrol tracks are generated as follows. We assume that patrol tracks 

consist of multiple straight-line segments. A patrol track is established by joining five 

segments of lengths that range from 0 to 500 meters, randomly chosen from a uniform 

distribution. Segments are joined at angles between -90◦ and 90◦ relative to the previous 

segment, to model a general direction of travel by the patrols. Patrols are assumed to 

retrace their steps in the reverse direction. Start points are uniformly distributed in space 

across the study region. A commonly known mathematical formulation for this path is the 

random walk with retrace, since the path is a sequence of random steps and the return 
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route of the patrol matches the outbound route. Figure 29 portrays an example of a 

segmented patrol track, and Table 6 outlines the data parameters for the track data. If a 

track exceeds the region’s initially specified boundary as stated in Table 6, the region is 

simply expanded to accommodate the new data.  

 

 

Figure 29: Patrol Track Example 

 

 

Table 6: Patrol Track Data Parameters 

 

 

Start Point

Farthest Point

+/- 90° +/- 90°

+/- 90° +/- 90°

+/- 90°

Hypothetical Patrol Track Data 

Start Times Uniformly distributed over a period of 

121 days 

Start locations Uniformly distributed within an 

approximate 7.62 km x 6.13 km space. 

Number of segments 5 

Length of each segment Uniformly distributed from 0m to 500m 

Angle of each segment Uniformly distributed from +/- 90 

degrees, where angles are relative to 

previous track assignment 

Number of patrols 5,000 or 10,000 - based on sensitivity 

analysis 
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The creation of IED emplacement data is also required for the model. A quantity 

of IED events is chosen and “true” emplacement times and locations are assigned. Each 

event location is uniformly assigned within the study space, and each emplacement time 

is uniformly assigned within a predetermined time period. This data would be unavailable 

in a real-world scenario, but the information is used here as a reference for comparison of 

the calculated emplacement times. Parameters for the data are outlined in Table 7. 

 

Table 7: IED Emplacement Data Parameters 

 

Hypothetical IED Emplacement Data 

Emplacement times Uniformly distributed over a period of 

121 days 

Locations Uniformly distributed within an 

approximate 7.62km x 6.13km space 

Number of events A constant value  

  

 

IED encounter times are calculated with the underlying assumption that patrols 

can encounter more than one IED, and IEDs can only be encountered by one patrol. For 

each patrol, all IEDs are identified that are within 100m of the segmented patrol track and 

emplaced before the start of the patrol. An actual encounter probability is provided to 

determine whether or not a patrol encounters an IED on its path. Once all of the IEDs are 

encountered or all of the patrols are complete, the algorithm is complete. It is likely that 

not all emplaced IEDs are encountered. 

The original model used patrol data that only had start points and farthest points. 

IED emplacement calculations relied upon an assumption that the area patrolled by a 
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given patrol was within an ellipse. Here, we also consider patrol tracks for which the 

entire path is known. The improved track data presented in this section employs a 100m 

buffer around each segment of the patrol that forms the area assumed to be traveled by 

the patrol. Figure 30 displays a comparison of the two concepts. 

 

 

 

Figure 30: Comparison of Ellipse and Segmented Patrol Track Boundaries 

 

 

 

 Finally, a comparison of the difference between the “true” and calculated 

emplacement times is provided as a metric for the accuracy of the model. The model is 

run and sensitivity is performed on two parameters – patrol area shape (ellipse or 
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segmented line) and number of patrols. The assumed encounter probability (p(i, j) in 

Equation 1) is the probability within the emplacement model that an IED is encountered 

by a given patrol. The actual encounter probability is the probability used to generate the 

truth encounter data in Figure 28. We assume both to be described by the same non-

uniform probability function in Equation 1. 

 Table 8 shows the full factorial design and resulting performance of the model, as 

measured by the average lapse between the calculated and actual emplacement times. As 

might be expected, the best results are achieved using a larger number of patrols with full 

track information (segmented line tracks). 

 

Table 8: Full Factorial 

 

 

 

Table 9 shows the main effects observed from the full-factorial design. Though 

increasing the assumed encounter probability generally lowers the lapse time, this 

parameter should still be chosen without bias for the most accurate results. As stated 

before, increasing the number of patrols and utilizing the segmented track data greatly 

Patrol Data

Qty of 

Patrols

Average Lapse b/w calculated 

and actual emplacement time

Estimated Region 1250 24.01

Estimated Region 5000 15.63

Estimated Region 10000 9.54

Actual Track 1250 26.08

Actual Track 5000 11.72

Actual Track 10000 6.17
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increase the effect of the model. Data collection efforts within the field should be targeted 

at these factors for the best calculation results. 

 

Table 9: Main Effects 

 

 

 

 

 A commitment to increasing patrols or better defining patrol tracks has a tradeoff 

for commanders. In the case of the first, leaders must either increase the number of troops 

to raise the patrolling effort or further tax the troops that are presently on the ground. 

However, better patrol track data simply requires carrying a portable GPS device. This 

may be an added expense to wartime efforts, but several units already possess such 

devices. They simply need to be employed in a way that is focused on archiving useful 

data. Table 9 shows that doubling the patrolling effort or improving the patrol tracks both 

have nearly the same benefit. Commanders should initially focus on the data collection 

and then raise patrolling efforts if conditions allow. 

Parameter Value Average Lapse (days) Main Effect (days)

Estimated Region 16.39

Actual Track 14.66

1250 25.04

5000 13.68

5000 13.68

10000 7.85

-11.37

-1.74

-5.82

Patrol Shape

Number of Patrols
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CHAPTER 7: CONCLUSION 

The data collection effort was a key factor to the success of this research. During 

a deployment to Afghanistan, the first author and a fellow analyst developed the 

necessary relationships, spreadsheet tools, and data collection procedures to aggregate an 

event repository of over 4,000 military foot patrols and over 700 IED events. This unique 

endeavor provided real-world data from a recent military campaign that has not been 

known to exist in such a form until now.  

The IED encounter data used in this research did not clearly resemble a Poisson 

Process or NHPP in either space or time. Consequently, a spatial cluster model was 

developed that “recreated” the original IED encounter data with high fidelity and few 

input parameters. Additionally, an IED emplacement time calculation model was 

established and exploited the collected data from Afghanistan to produce results. Greater 

amounts of more precise data were simulated and run against the existing emplacement 

model and benefits were determined. Results were markedly improved when the 

granularity of the patrol track data was improved and the number of foot patrol entries 

was increased.  

The models developed in this dissertation will be provided to military analysts in 

Afghanistan in hopes to eventually assist commanders with estimating the threat of IEDs 

against their troops before they depart friendly lines. Direct applications during steady 
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state operations are most likely. In this scenario, analysts can use historical data to 

estimate future enemy emplacement activity with confidence. Unmanned aerial 

overflights, route clearance scheduling, and intelligence targeting can be improved with 

this trend information. We also expect the research to encourage the cooperation of 

commanders towards more precise and consistent patrol data collection.  

Future research should examine the potential relationship between IED events in 

space and time. Attempts at decreasing the lapse between actual and calculated 

emplacement times should also remain in focus. Presently, the models produce results 

strictly based on inputted historical data, but modifications to the inputs can greatly 

increase the forecasting power of these models in a variety of scenarios.  Other 

applications of the spatial and temporal models developed in this dissertation should be 

examined against air and naval military operations, as the study of friendly and enemy 

movement is not limited to ground forces alone.  

The application of these models need not be limited to IED activity. The IED 

emplacement methodology has particular application in activities within science, 

engineering, and sociology that have unobservable origins but observable effects. For 

instance, the contraction of a disease is usually only known after the symptoms arise, but 

the time of the infection is usually not observed. Similarly, the seeding of plants, origins 

of crime activity, changes in consumer behavior, and even assembly line process errors 

all have unobserved origins that can potentially be calculated using a methodology 

similar to that used in this dissertation to calculate IED emplacement times. The spatial 

clustering model has specific benefits over a traditional spatial NHPP in that it more 
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accurately characterizes the spatial relationships between IED events. The model 

correctly considers that IED activity does not occur uniformly in space. When inputs are 

modified properly, the spatial clustering model can forecast IED activity in a given region 

that can greatly assist intelligence targeting and IED clearance efforts. The development 

of both the temporal and spatial models combine to form a unique advancement in the 

research of IED activity.  
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