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Abstract

PARAMETER ESTIMATION IN HYBRID DYNAMICAL SYSTEMS
WITH APPLICATION TO NEURONAL MODELS

Anish Mitra, PhD

George Mason University, 2014

Dissertation Director: Dr. Andre Manitius

Analysis and recreation of brain dynamics has been identified as one of the greatest

scientific challenge of this century. Detection of electrical impulses in the brain was the

first step towards understanding how it functions. An interconnected network of neurons

relay information and communicate with one another through these impulses also referred

to as ‘spikes’. Knowledge of the spiking behavior and connectivity in different regions of

the brain will help in the diagnosis and treatment of neurological disorders such as epilepsy

and Parkinsons disease. There are also efforts to develop intelligent algorithms inspired by

the functioning of the brain and build efficient processing and computing units.

Mathematical modeling of neuronal spiking and the different observed phenomenon

has helped researchers study the properties of neurons and understand their physiological

attributes. Scientists have been able to use these models to develop input-output charac-

teristics. This has enabled us to draw conclusions about brain functionality. Mathematical

models can also be used to estimate parameters and neuronal connections that allow the

prediction of neuronal spiking activity. Over the last few decades better and more efficient

models have been designed. Coupled with the improvement in computing resources, the

objective of building a brain simulator is slowly turning into reality. As models are now



able to successfully reproduce cognitive tasks, there is the need of algorithms that can use

such models to interpret and analyze biological neurons and connectivity in the brain.

The theory of nonlinear dynamical systems plays an important role in reconstructing

brain dynamics. There are various dynamic models, linear and nonlinear, that attempt to

generate the neuronal spiking patterns observed experimentally. More recently, discontinu-

ous resets have been introduced in otherwise continuous time models to expand the range of

the spiking phenomenon that the model can produce. This also reduces the computational

complexity of the system allowing for simulation of larger networks.

This doctoral dissertation focuses on two such hybrid neuron models and describes new

methods of system identification based on observations of the neuron. Parameter estimation

in a single neuron is achieved by designing a novel spike train comparison technique. The

optimal parameters of the model are the computed by using the steepest descent method

to locate the minima of the squared error between the model and the experimental spikes.

Results show that the optimized model is then able to predict the spiking of the biological

neuron. This is indicative of not only the accuracy of the model but also the success of

the optimization algorithm that enables the automatic fitting of models to experimental

data. For networks of neurons, the least squares estimation technique is implemented to

identify the connections. This method proves to be robust and accurate in estimation the

connectivity even in the presence of significant model error and observation noise. The

sensitivity and specificity measures show that the synaptic connections from excitatory as

well as inhibitory neurons are identified correctly. The evolution of the neuronal connectivity

is also observed by tracking the generation of new synapses and degeneration of existing

ones.



Chapter 1: Introduction

The presence of electrical signals in the nervous system was first discovered in 1790 by Luis

Galvani [2]. It was almost a 100 years later that the ‘neuron theory’ was developed and

the presence of basic functional units in the nervous system was described.The historical

relevance of this theory is summarized in [3]. The twentieth century saw research and

development in the measurement technqiues that allowed scientists to record the electrical

activity from neurons and neuronal populations. Beginning from the first account of being

able to measure electrical discharges in single nerve fibres [4], to patch clamp methods [5], to

finally the advancement of multi-unit recording [6], the different types of neural signals and

how they are responsible in the functioning of the nervous system are still being discovered.

[7] mentions an observation, similar to Moore’s Law, that in the past 5 decades the number

of simultaneously recorded neurons has doubled every 7 years. Brain-Machine interfaces

(BMI) [8] use the electrical activity measured from groups of neurons to interact control

devices and processes such as prosthetic limbs [9] and synthetic telepathy [10].

As different types neural signals are being discovered and detected by new experimental

techniques, one of the objectives has always been to mathematically model these physio-

logical phenomenon. Over the last 60 years there has been extensive research on nonlinear

dynamical systems and their ability to model ‘real life’ phenomena. The Hodgkin-Huxley

model [11] is a bio-plausible model that has equations and parameters relating to phys-

iological variables. To address the issue of computational complexity a number of non

bio-plausible models were developed such as the Fitzhugh-Nagumo (FHN) ([12, 13]). [14]

compares several dynamical models with respect to biological plausibility and computa-

tional efficiency. The Izhikevich model [15] performs well in comparison to other models.

Another recent model is the Augmented multiscale adaptive threshold (AugMAT) model

1



([16, 17]). Gernster and Naud discuss several models in [1] and address the desirables of

a good model. According to the results of a competition organized by International Neu-

roinformatics Coordinating Facility (INCF), it was very tough to tune the parameters of

a bio-plausible model. Simple models with fewer parameters are being preferred because

they are amenable to mathematical analysis. Another class of models present in literature

are those based on stochastic processes such as renewal theory [18] or Markov chain pro-

cesses [19]. As mentioned previously, the multi-unit recording and observation of groups of

neurons has proved the experimental data to build neuronal network models. Measurement

of the neural signals that are transmitted from one neuron to another has also assisted

in modeling the coupling of the neurons which is a crucial component in network models.

Simple neuron models and an increase in computational resources has led to the simulation

of a million neurons with more than half a billion connections [20].

1.1 Motivation

Mathematical models have historically been used to simulate physical phenonmenon. Ap-

plications of such models range from explaining and analyzing the phenomenon, making

predictions to making decisions based on observations. While neuron models, single and

network, have been in existence since the 1950s, there is the need of techniques that can

analyze such models based on observations from biological neurons. Parameter estimation

is one such analysis that can provide more information about neurons and the neural com-

munication that leads to the functioning of the brain and nervous system. Models with

correctly identified parameters can be efficient predictors of the biological neuron and can

be used to diagnose any changes in neuronal dynamics or to detect abnormalities in the

neural signal. Parameters such as the connections between a pair of neurons have physio-

logical significance. Accurate estimation of such parameters will lead to the mapping of the

functional network of the brain and help in the study of the dynamics of connectivity.

Parameter estimation in neuronal models remains a developing research field due to the

2



presence of new and improved models and detection of complex neural signals. The imple-

mentation of existing methods for models of different classes and types is difficult. One such

class of models that has gained considerable attention in the last decade is continuous dy-

namical systems with a discontinuous reset based on a pre-defined condition. Such systems

are also known as hybrid dynamical models [21]. The concept of such models is not new, and

has been developed for applications in areas such as power systems and power electronics

[22]. However, the use of such systems in modeling neurons is much more recent [23]. They

are able to satisfy the requirements of a single neuron model, while being computationally

inexpensive at the same time. This makes them useful for analysis as they can be used to

construct large networks of data, or to simulate neural activity for a long period of time.

However, the hybrid nature of such models presents difficulties when trying to implement

existing methods of model analysis. Hence the study of such models, specifically parameter

estimation, requires new methods that are able to successfully navigate the discontinuity.

The objective of this dissertation is to define, discuss and implement new techniques of

parameter identification for neuronal models based on hybrid dynamical systems.

1.2 Contribution

The next chapters of this dissertation are organized as the technical preliminaries, opti-

mization of single neuron models, identification of connections in a neuronal network and

discussion of the techniques developed and the results achieved.

1.2.1 Single Neuron Model

Chapter 3 discusses a new technique of fitting a mathematical model to an experimental

spike train. The objective is to estimate the optimal parameters of a pre-defined model

based on the time of spikes of the biological neuron. The application and relevance of the

problem is discussed, before reviewing the existing techniques present in current literature

and their disadvantages when applied to the mathematical model in consideration. The

criteria for model selection was that it should be a hybrid dynamical system that is able to

3



reproduce the range of spiking behavior observed in a biological neuron. The model chosen

for the work related to this chapter is based on previous published results of model fitting

so that the accuracy of the proposed technique could be evaluated.

The new technique, consisting of the formulation an error function and the derivation

of the gradient based optimization method, is explained in detail. The results are presented

based on synthetic data, generated by the model itself, as well as experimental spikes

measured from a biological neuron.

1.2.2 Neuronal Network

It is well documented that a large number of interconnected neurons form the nervous

system. The nature of the connectivity is of great interest since specifically studying a

single neuron does not give us information about population dynamics. The communication

between neurons and the transfer of information has been extensively researched and single

neuron models have been extended to build simulators of groups of neurons. The model

selected in Chapter 4 is based on the large scale hybrid dynamical model of the mammalian

thalamocortical systems described in [20]. A systems identification approach is developed to

estimate the connectivity of a neuronal network. The chapter discusses the formulation of

this novel technique in detail, with emphasis on the derivation based on the model selected.

Results show that the method is accurately able to identify the connections in medium

scaled networks of 50 neurons. The method is also used to estimate the changes in the con-

nectivity in the presence of model error and observation noise, demonstrating the robustness

of such an approach.

4



Chapter 2: Technical Background

2.1 Nonlinear dynamic systems

The use of mathematical modeling to describe, analyze and predict physical phenomenon is

well documented. The advancement of technology has ensured that we can observe newer

and more relevant events and use the observations to generate models. A mathematical

model is a simplified version of the real world that employs the tools of mathematics -

algebraic equations, probability, statistics, graph theory, etc. One of the different classes

of mathematical models available is Dynamical Systems. Developed in the first half of the

twentieth century it is used to describe the time dependence of a point in multi-dimensional

space. Applications of such models include fluid dynamics, chemical reactions, analysis of

cardiac rythms and neuronal spiking as well as description of joint angles in human motion.

In [24] differential equations are used to formally describe dynamic system theory. Typ-

ically the independent variable of the equations is time. The basic first order dynamic

system contains a linear equation that is used to define the rate of change of the state of

the point. Mathematically this can be written as

dx(t)

dt
= Ax(t) (2.1)

The variable x(t) represents a vector in n-dimensional space at the time instance t. It is

also referred to as the state of the system, or system state. The n× n matrix A defines the

temporal ‘dynamics’ of the vector x. The linear equation is unable to reproduce complex

phenomenon such as autonomous oscillations. To achieve this the rate of change is defined

5



using a nonlinear equation.

dx(t)

dt
= f(x(t)) (2.2)

The function f(.) contains nonlinear terms of x(t). The above equation forms the

basis of first order nonlinear dynamic models (in continuous time). The exact form of the

equation will govern the dynamics of the point. Often the equation is parameterized and

different patterns of the same phenomenon (e.g. oscillatory patterns) can be reproduced by

changing the parameters of the equation. We illustrate this using a well known example of

an oscillatory system.

2.1.1 Van der Pol equation

The Van der Pol Oscillator [25] is a non-conservative oscillator with nonlinear damping. It’s

dynamics are described by a second order nonlinear differential equation.

d2y(t)

dt2
− µ[1− y(t)2]

dy(t)

dt
+ y(t) = 0 (2.3)

This can be redefined as a two dimensional first order nonlinear dynamic system by

using the substitutions x1(t) = y(t) and x2(t) = dy(t)
dt .

dx1(t)

dt
=x2(t)

dx2(t)

dt
=µ[1− x1(t)2]x2(t)− x1(t)

(2.4)

As the name suggests, the Van der Pol Oscillator reproduces an oscillating response

whose dynamics and frequency depends on the initial conditions and the parameter µ.

Fig. 2.1 shows the responses for several parameter values. This particular aspect of non-

linear dynamic systems makes it applicable to phenomenon where the dynamics are non-

deterministic but limited to a pre-defined range. The differential equations used in most
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practical applications do not have a closed-form solution and need to be solved numerically.
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Figure 2.1: Multiple patterns of the Van der Pol oscillator based on value of µ

2.1.2 Discrete time dynamic system

While the dynamical system theory was developed for continuous time mathematical mod-

els, they are implemented in discrete time using a defined time-step. Differential equations

are replaced by difference equations to describe these models mathematically. For a first

order system the value of the system state at instance k+1 is calculated based on the value

at instance k.

x(k + 1) = g(x(k)) (2.5)
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One of the techniques used to convert continuous time equations to discrete difference

equations is the explicit forward Euler method [26]. The derivative of the state with respect

to time is approximated as

x′(tk+1) =
x(tk+1)− x(tk)

tk+1 − tk
(2.6)

The time increment is kept constant, and equal to T . Using the above equation, the

Van der Pol system can be written in discrete time as

x1(k + 1) =x1(k) + Tx2(k)

x2(k + 1) =x2(k) + T{µ[1− x1(k)2]x2(k)− x1(k)}
(2.7)

The quantization error between the discrete and continuous time model depends on the

value of T . A smaller value of T will reduce the error and make the discrete model more

accurate. However, it will increase the number of iterations required to simulate the model.

T should be chosen carefully after analyzing the trade off between the accuracy and the

computational cost for the concerned application.

2.2 Kalman filter

The Kalman filter [27], developed in 1959, is an estimator that utilizes the knowledge of the

system dynamics to compute an unobserved state based on observations of the system. It

has been used in various applications of dynamic systems and has proved to be efficient and

accurate in being able to track and predict based on past observations. The algorithm is a

combination of two steps - a prediction followed by a correction. It adds process noise and

observation noise (typically white Gaussian) to model the uncertainty in system dynamics

and measurements respectively. Originally the Kalman filter was developed to be used

with linear dynamic systems. The extended Kalman filter (EKF) [28] used linearization

techniques on nonlinear dynamic systems that enabled the application of the Kalman filter.
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The accuracy of EKF results depends on the linearization error of the system. For systems

with a ‘high’ degree of nonlinearity this is often outside of acceptable limits.

2.2.1 Unscented Kalman filter

One of the latest developments in the Kalman filtering literature has been the Unscented

Kalman filter (UKF) [29]. It is a nonlinear filter that utilizes the unscented transform [30]

to compute the error covariances and the Kalman gain. It generates an ensemble of sample

vectors at every time step of the system and uses the non linear equations to propagate all

these vectors to the next time step. Assuming a Gaussian distribution, the updated ensem-

ble is used to compute the covariance matrix and the mean. The ensemble for the next time

step is generated based on these statistics. While this technique is computationally more

expensive than the EKF, it avoids using the linearized equation of the model to update the

state covariances and means.

We define the nonlinear dynamic system as

X(k + 1) = f(X(k)) + ν(k) (2.8)

The observations are a function of the system states

Y (k) = h(X(k)) +w(k) (2.9)

ν(k) and w(k) represent the process noise and observation noise.

The augmented state vector is computed by appending to the state vector of the nonlinear

dynamic system (Eq. 2.8) the process noise vector, ν(k).

Xa(k) =

 X(k)

ν(k)

 (2.10)
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The mean and covariance of the state estimate at time step k are assumed to be of the

following form

X̂
a
(k|k) =

 X(k)

0



P a(k|k) =

 P (k) 0

0 Qν(k)


(2.11)

The ensemble or sigma points are created based on the present covariance and mean.

χa0 =X̂
a
(k|k)

χai =X̂
a
(k|k) + (

√
naP a(k|k))i, i = 1, 2, .., na

χai =X̂
a
(k|k)− (

√
naP a(k|k))i, i = na, na + 1.., 2na

(2.12)

na is the dimension of the augmented state vector Xa and (
√
naP a(k|k))i is the ith

row/column of the matrix square root of naP a(k|k). Details of different computational

methods used to generate the ensemble, χ, of 2na + 1 sigma points can be found in [31].

The sigma points are each propagated using the nonlinear dynamics of the system, Eq. 2.8

to generate the ensemble of apriori state estimates.

χai (k + 1|k) = f [χai (k|k)] (2.13)

The apriori mean and covariance can be computed as a weighted sum of the sigma points.

10



[32] discusses the selection of the weights.

X̂
a
(k + 1|k) =

2na∑
i=0

Wiχ
a
i (k + 1|k)

P a(k + 1|k) =
i=2na∑
i=0

Wi[χ
a
i (k + 1|k)− X̂a

(k + 1|k)][χai (k + 1|k)− X̂a
(k + 1|k)]T

(2.14)

where

W0 =
κ

κ+ na
, Wi =

1

2(κ+ na)
i = 1, .., 2na

W0 is the weight assigned to the mean and Wi are the weights assigned to other vectors in

the emsemble. The ratio of W0 to Wi depends on κ, a constant. It has been observed that

estimation results are more accurate when the mean is weighed higher than other vectors.

The output function, Eq. 2.9 is used to compute the predicted output from the ensemble of

state estimates.

γi(k + 1|k) = h[χai (k + 1|k)], i = 0, .., 2na (2.15)

The mean and the innovation covariance are calculated as

ŷ(k + 1|k) =
2na∑
i=0

Wiγi(k + 1|k)

Pyy(k + 1|k) =R+
2na∑
i=0

Wi[γi(k + 1|k)− ŷ(k + 1|k)][γi(k + 1|k)− ŷ(k + 1|k)]T

(2.16)

where R is the variance of the observation noise.

The cross covariance is calculated according to

P xy(k + 1|k) =
2na∑
i=0

Wi[χ
a
i (k + 1|k)− X̂a

(k + 1|k)][γi(k + 1|k)− ŷ(k + 1|k)]T (2.17)
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The aposteriori states and covariances are then computed using the Kalman gain, K.

K(k) =P xy(k + 1|k)Pyy(k + 1|k)−1

X̂
a
(k + 1|k + 1) =X̂

a
(k + 1|k) +K(k)[yobs(k)− ŷ(k + 1|k)

P a(k + 1|k + 1) =P a(k + 1|k)−K(k)P xy(k + 1|k)

(2.18)

The aposteriori states are used as information that was unavailable from the observations

of the system. The UKF can be used in applications where the observations need to be

smoothed. In such cases there are no unobservable states, but the measurement noise is very

high. It is also used to estimate hidden, or unobservable states based on the measurements.

2.3 Least squares parameter estimation

One of the fundamental techniques for parameter estimation in linear systems is minimizing

the prediction errors [33]. The predicted output is a linear combination of the observed

variables, with the coefficients being the parameters of the system. The error between the

predicted and observed output is computed. The parameter estimate is then computed such

that the sum of squared prediction errors over a series of observations is minimal.

The derivation of the least squares algorithm for a multiple input single output dynamic

system is shown in the following section.

2.3.1 Multiple input single output dynamic system

The actual discrete time system with M inputs, {u1(k), ..., uM (k)}, and one output, y(k),

is described as

y(k) +

ny∑
i=1

ai y(k − i) =
M∑
m=1

nm∑
j=0

bm,j um(k − j) + ν(k) (2.19)
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ν(k) represents the effect of noise and model error. The output can be represented in vector

notation.

y(k) = ϕT (k)θ + ν(k) (2.20)

where

ϕ(k) = [u1(k), ..., u1(k − n1), u2(k), ..., u2(k − n2), ..., uM (k), ..., uM (k − nM ),

− y(k − 1), ...,−y(k − ny)]T

θ = [b1,0, b1,1, ..., b1,n1 , b2,0, ..., b2,n2 , ..., bM,0, ..., bM,nM , a1, ..., any ]
T

The predicted output is based on the estimated parameter vector, θ̂, and the observed

regressor, ϕ(k).

ŷ(k) = ϕT (k)θ (2.21)

The sum of the squared prediction errors is computed over N observations.

ξ(k,N) =
∑

n = 0N−1[ŷ(k − n)− y(k − n)]2 (2.22)

The least squares estimate of the parameter vector is derived by minimizing ξ. The gradient

of the above function with respect to the parameters is computed as

∂ξ(k,N)

∂θ̂
=

N−1∑
n=0

2ϕ(k − n)[ϕT (k − n)θ̂ − y(k − n)] (2.23)

and equated to zero at the location of optimimum, θ∗.

N−1∑
n=0

2ϕ(k − n)[ϕT (k − n)θ∗ − y(k − n)] = 0 (2.24)
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The optimal estimate of the parameter vector is then derived as

[
N−1∑
n=0

ϕ(k − n)ϕT (k − n)

]
θ∗ =

N−1∑
n=0

ϕ(k − n)y(k − n)

θ∗ =

[
N−1∑
n=0

ϕ(k − n)ϕT (k − n)

]−1 [N−1∑
n=0

ϕ(k − n)y(k − n)

] (2.25)
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Chapter 3: Optimization of Single Neuron Models

Neurons form the basic building blocks of our brain and central nervous system. Networks

of neurons communicate with each other to perform complicated tasks. This communica-

tion amongst neurons is through the ‘spiking’of the membrane potential which is between

−70mV and −50mV in its ‘inactive’ state and jumps to about 30mV when there is a suffi-

cient post synaptic potential generated by other connected neurons. The time between two

spikes is called an inter-spike interval (ISI) [34]. The spiking response of a single neuron is

used to create a spike train - a string of binary values with a 1 indicating the presence of

a spike. The temporal coding scheme [34] is one of methods used to characterize neurons

based on spike trains. [35] explains why spike times are meaningful, particularly in the case

of fast spiking neurons.

Following the success of these different single neuron models referenced in Chapter 1,

the problem of parameter fitting has drawn huge attention in the last decade. Efforts are

being made to accurately estimate model parameters from experimental data using inno-

vative methods. For the class of stochastic models, parameter estimation using maximum

likelihood (ML) has been explained in [36]. Expectation maximization (EM) techniques and

point processes [37] are other methods of estimating stochastic models from data. These

probabilistic methods cannot be used for determining dynamic models. However, tracking

states of a dynamic system is a well researched problem with very accurate results. The

Kalman filter (KF) [27], used since the 1960s, is one of the most successful methods which

is able to estimate the state of the system based on observed measurements. Although

initially only applicable to linear systems, the extended Kalman filter (EKF) and unscented

Kalman filter (UKF) [32] were developed to work with nonlinear systems. In [38] the UKF

has been used to track the dynamics of a model of the cerebral cortex. The UKF is also
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been applied in tracking the parameters of the model based on voltage measurements as

described in [39], where the HH model was used to produce the membrane potential of a

single biological neuron. A summary of the efforts to use Kalman filters to estimate states

of a neuron model can be found in [40].

Another approach to estimate parameters or states is to develop an error function that

quantifies the comparison between the experimental and model spike trains and use opti-

mization techniques to find the optimal solution. [41] compares multiple shooting techniques

and UKF in estimating the state variable of a Fitzhugh-Nagumo neuron. It is important

to construct a proper cost function. If the function is too complex, gradient based methods

cannot be used to converge to the optimum. In such cases global optimization techniques,

such as particle swarm optimization (PSO) [42] or Nelder-Mead (N-M) method [43] are

used. [44] summarizes the efforts in this area and mentions the different methods currently

being used. It mentions that in situations where the number of unknown parameters is

small even a simple ‘exhaustive search’ technique is found to be effective as compared to

existing methods. This is due to the fact that the models are highly complex and developing

a guided search technique is challenging. This suggests that there is still a huge scope of

research in this area, mainly to develop automated and efficient techniques with which can

fit models to neural spike trains.

A majority of the existing estimation techniques utilize the measured voltage trace to

define the error ([44,45]). In most experimental recordings [46] the entire trajectory of the

membrane potential is not available. Only the spike times, or the ISIs, are available. Also,

due to the complexity of the dynamical systems, the trajectory of the membrane potential

during the ‘inactive’ state of the neuron model is not always the same. Models are able

to synchronize with the experimental ISIs, but not with the entire trace of the membrane

potentials. The challenge, therefore, is to estimate parameters using only the ISIs (or the

spike times). This is investigated in [47] with measurements from the primary motor cortex

area (M1 neurons). The input current and the parameters are adjusted to synchronize the

spikes of the model to that of the experimental data. Though the error between the model
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output and the measured data is very low, there is no guarantee that the model will be a

good predictor.

The objective is to accurately fit a model to the measured neuronal spike times. The

same input stimulation current is applied to both the biological neuron and the mathemat-

ical model. The outputs are compared and using an adaptive algorithm the parameters of

the model are adjusted such that the error is minimized. The model is then used to predict

the spike times for the biological neuron, as shown in Fig. 3.1. The three major aspects

of this problem are (i) the model, (ii) the comparison technique and (iii) the method of

optimization.

In this chapter, a new technique to compare spike trains of single neurons is described.

Furthermore, the parameters of the model are estimated by formulating a nonlinear opti-

mization problem using the proposed performance function. The solution is found by using

the gradient descent method. The method is also successfully applied on experimental data

from an L5 neuron and the results are presented. The model is fitted to a 4s experimental

spike train and the proposed technique is successful in computing the optimal parameters.

It outperforms other automated search techniques such as Nelder-Mead.

Figure 3.1: Prediction of neuronal spiking using an optimized mathematical model [1]
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3.1 The Model

The augmented multi-timescale adaptive threshold model (AugMAT) is chosen to mathe-

matically represent the spike train of a biological neuron. It is a two dimensional nonlinear

dynamical system where the first state represents the membrane potential, V (t) (Eq. 3.1),

and the other is the adaptive threshold, θ(t) (Eq. 3.2).

τm
dV (t)

dt
= −V (t) +RI(t) (3.1)

θ(t) =
∑
i

H(t− ti) + β κ(t) + ω

H(t) =
L∑
j=1

αje
−t/τj

κ(t) =

∫ t

0
K(s)V ′(t− s)ds, K(s) = se−s/τv

(3.2)

The adaptive threshold represented by Eq. 3.2 is a combination of three terms. The

first term, H(t), represents a weighted sum of decaying exponentials. The time constants

are represented by the parameters τj and each exponential is scaled by αj . L represents the

number of decaying exponentials used. The second term, κ(t), integrates the time derivative

of V (t) scaled by the kernel function K(s). This term, multiplied by the parameter β,

ensures that small perturbations in the input do not result in a spike. The kernel applies

maximum scaling at a delay of τv. The third term, ω, is a resting potential and it defines the

minimum value that the threshold can decay to. If the input, I(t) in nA, is not sufficiently

high to raise the voltage to ω then the neuron will never spike.

A neuronal spike is generated if the membrane potential becomes greater than the

threshold. The neuron is a hybrid model, that uses a discrete reset to change the value of
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the threshold at the instance of the spike. This introduces discontinuities in the threshold

function. The set of spike times, tk, is defined as

ε(t) = V (t)− θ(t); tk : ε(tk) = 0andε′(tk) > 0 (3.3)

ε(t) is the difference between the voltage and the threshold and equals to zero with positive

slope at each of the instances that belong to the set of spike times.

The selection of the model parameters is described in [17]. The threshold is chosen to be

a sum of two exponentials with fixed time constants after simulatons showed that increasing

the number of exponentials did not add to the range of model behavior. Also, the time

constant, τm, and gain, R, of the voltage equation and the kernel function parameter, τv,

do not vary. As a result of numerical experiments the best values were chosen as

τm = 10ms, R = 50MΩ, τv = 5ms, L = 2, τ1 = 10ms, τ2 = 200ms (3.4)

The scaling of the adaptive threshold terms, α1, α2, β and ω are defined as the ‘varying’

parameters of the model. While they are constant for a particular simulation, the values

can be changed to achieve different spiking patterns. The range of the parameter space and

the corresponding model behavior is reported in [17].

Fig. 3.2 shows a simulation of the model, and the computation of the spike train from

the states of the differential equations. The top row is the input current. It is a sum of

different exponentials, to reproduce the type of stimulus a biological neuron receives from

its dendritic tree. The second row shows v(t) (blue, dashed) and θ(t) (red, solid) functions.

The last row shows the constructed spike train, which is a binary string of 1s and 0s. The

parameters chosen for this simulation were

α1 = 180, α2 = 3, β = 0.2, ω = 15
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Figure 3.2: Simulation of AugMAT model

This chapter defines a new gradient based optimization technique to optimize the model

parameters based on spike times obtained from an experimental spike train. While the

model is capable of producing the spiking activity observed in a biological neuron, computing

the parameters of the model from the observations is not a trivial task. The method is

derived by first defining a suitable error function that represents the difference between

the model spike train and the biological neuron spikes. The analytical gradient of the

error function with respect to the varying parameters is computed and the steepest descent

algorithm is implemented to estimate the optimal parameter vector. The ‘fixed’ parameters

defined in Eq. 3.4 are assumed known. The varying parameters, {α1, α2, β, ω} along with

the initial condition, θ0, are estimated by the proposed algorithm.
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3.1.1 Performance function :

The performance function is the most crucial component of the parameter estimation prob-

lem. As mentioned in [44] the function should be relevant to the problem, convex and as

smooth as possible. There are several existing methods to compute the error between two

spike trains ([44],[48], [49]). However, due to the non-smooth nature the performance of the

optimization algorithm is hindered [50]. Kobayashi et al. [16] describe a coincidence factor

based on the number of spikes which coincide within an allowable time range, ∆. This has

to be maximized to find the optimal parameter set.

Γ =
Ncoinc− < Ncoinc >

Ndata +Nmodel
× 2

1− 2ν∆
(3.5)

Ncoinc is the number of spikes which coincide, < Ncoinc > is the expected number of coin-

cidences for a Poisson spike train of rate ν. Ndata and Nmodel are the number of spikes in

the data and model spike trains respectively. The second component in the equation is a

normalizing factor, such that the assessment value is 1 if all the spikes coincide, and 0 if the

model performs no better than a poisson spike train. Although this function is representa-

tive of the ‘goodness of fit’ of the model, it is difficult to utilize it for the purpose of model

optimization. The complex nature of the function makes it difficult to compute the gradi-

ent. Global optimization techniques, such as particle swarm optimization or Nelder-Mead

are used to find the optimum. The initialization of the parameter set becomes important

and the convergence is not guaranteed for any random starting point.

The properties of a performance function that leads to successful computation of the

optimal parameter set using various optimization techniques has been outlined in the liter-

ature of applications of optimization. It is well known that it should approximate a convex

function as best as it can while at the same time qualitatively represent relation between

the parameters and the final objective. It is important then to understand the application

for which the optimal parameters need to be computed. The comparison of spike trains

must take into consideration the number of spikes in a finite time window as well as the
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synchronization of these spikes.

To derive the error function, first the time of spikes is extracted from the spike train,

tspikes =

[
t1 t2 . . tn

]

where t1, t2, .. are the time of spikes and n is the total number of spikes in the spike train

of length tf .

A ‘staircase’ function based on the time of spikes is defined as

ψ(t) =
n∑
k=1

υ(t− tk) (3.6)

where υ(x) is the step function which is equal to 1 for x > 0 and 0 otherwise.

The error, ξ, is given by the square of the difference between the area of the staircase

function, ψ(t), of each model. ψ1(t) and ψ2(t) are the staircase functions of two different

spike trains.

ξ =
1

tf

∫ tf

0
[ψ1(t)− ψ2(t)]

2dt (3.7)

Fig. 3.3 illustrates the error function that compares two spike trains and has all the

required properties to be used as an objective function candidate that is minimized in

searching for the optimal parameter set. The top and bottom row represent the two spike

trains. The middle row shows the staircase function, ψ(t) for both spike trains - defined in

Eq. 3.6. The error between the spike trains is the square of the area between the two lines,

defined mathematically in Eq. 3.7.

Fig. 3.4 represents different examples of spike train comparisons, and lists the perfor-

mance function value for each case. The top row in both (a) and (b) is the observed spike

train, in black. The spike trains that are compared to the observed one are shown below,

with the numerical value of comparison shown on the left. In example (a), the blue and
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Figure 3.3: Comparison of two neuronal spike trains

green spike trains (rows 2 and 3) are time-shifted versions of the observed spike train. A

smaller time-shift results in a smaller error value. The red and pink spike trains (rows 4 and

5) contain a few spikes that coincide exactly with spikes of the observed one. However, the

error in these cases should be large due to the fact that they don’t have the same number of

spikes and the spike patterns do not much. This is captured by the proposed performance

function as shown by the values in the figure. Example (b) uses a bursting neuron response

as the observed spike train. Similar to the first example, it can be observed that spike trains

having the same spike pattern (blue and green) have lower errors even though none of the

spike times actually coincide. The numbers for the red and pink spike trains indicate that

the comparison of bursting spike neurons is more complicated as there is a bigger trade-off

between coincidental spikes and total number of spikes in the finite time window. The

extra spikes result in a higher error, as compared to having an equal number of spikes, even

though it contains all the spikes of the observed spike train.
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Figure 3.4: Comparison of spike trains based on the proposed error function

It is also necessary to evaluate the convexity of the error function with respect to the

parameters of the model. While it is difficult to develop a purely convex function due to

nonlinear dynamics, an approximation with a small number of local minimas would result in

a fast and accurate convergence of the parameter estimates. Fig. 3.5 plots the surface of the

error function with respect to the parameters, taken in pairs. The value of the parameters

were considered over the entire range for which different patterns of neuronal spiking could

be generated. The error surface is computed as a function of changing parameters and was

found to be smooth. It is not a complex function, and hence does not affect the speed of

optimization. There is an interesting aspect of the surface, that it has a lot of variation

as compared for example to a classical quadratic surface. However, it is not clear that

the function is nonsmooth in the sense of not having a derivative. In the next section the

derivative with respect to each individual parameter is computed and simulations prove

that the computations are accurate.
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(a) α2 and β

(b) α2 and ω

Figure 3.5: Surface of the proposed error function, plotted as a function of two varying
parameters

3.2 Model optimization

There are numerous iterative algorithms available in the literature of numerical optimization

to search the minimum of a function (ξ). Gradient based algorithms [51] compute the

gradient of the function with respect to the parameter vector, p. The vector is then updated

using the gradient. If the update, p̂ is in the opposite direction of the gradient, then by

updating the vector iteratively, it converges to a minima. To reach a maxima, the update

25



should be in the direction of the gradient.

p̂ = p− ν ∂ξ
∂p

(3.8)

ν is the step size of the gradient based search. For the problem defined in the previous

section, the performance function, ξ, is given by Eq. 3.7 and the parameter vector consists

of the variable parameters of the AugMAT model.

p = [α1, α2, β, ω, θ0]
T

Computation of the gradient requires analytical formulae of the derivatives of the perfor-

mance function with respect to each parameter.

∂ξ

∂p
=

1

tf

∫ tf

0
2[ψ(t)− ψd(t)]∂ψ(t)

∂p
dt (3.9)

∂ψ(t)

∂p
=

M∑
k=1

δ(t− tk)[−
∂tk
∂p

] (3.10)

In Eq. 3.10, the ∂tk
∂p expression represents the change in the kth spike time with respect to

the change in parameter p. The perturbations in p changes the value of tk, but the value of

the function ε(tk, p) (Eq. 3.3) remains zero. A similar computation has been done by Booij

and Nguyen in [52]. Applying the total differential identity to the constant contour of the
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function ε(tk, p) = 0 in the problem described,

∂ε(tk, p)

∂tk
dtk +

∂ε(tk, p)

∂p
dp = 0

∂tk
∂p

=

−∂ε(tk)
∂p

∂ε(tk, p)

∂tk

(3.11)

While the derivative of ε(tk, p) with respect to the spike time, tk, can be calculated by

applying small pertubations in the region of tk, the derivative with respect to the parameters

needs to be calculated analytically.

∂ε(tk, p)

∂tk
=
ε(tk, p)− ε(tk −∆, p)

∆

∂ε(tk, p)

∂p
=
∂V (tk, p)

∂p
− ∂θ(tk, p)

∂p

(3.12)

Gradient computation for parameter αj

dθ(tk)

dαj
=
∂θ(tk)

∂αj
+
∑
i:ti<tk

∂θ(tk)

∂ti

∂ti
∂αj

=
∑
i:ti<tk

e−(tk−ti)/τj +
∑
i:ti<tk

[
L∑
j=1

αj
τj
e−(tk−ti)/τj ]

∂ti
∂αj

(3.13)

Gradient computation for parameter β

dθ(tk)

dβ
=
∂θ(tk)

∂β
+
∑
i:ti<tk

∂θ(tk)

∂ti

∂ti
∂β

=

∫ tf

0
K(s)V ′(tk − s)ds+

∑
i:ti<tk

[

L∑
j=1

αj
τj
e−(tk−ti)/τj ]

∂ti
∂β

(3.14)
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Gradient computation for parameter ω

dθ(tk)

dω
=
∂θ(tk)

∂ω
+
∑
i:ti<tk

∂θ(tk)

∂ti

∂ti
∂ω

= 1 +
∑
i:ti<tk

[

L∑
j=1

αj
τj
e−(tk−ti)/τj ]

∂ti
∂ω

(3.15)

Gradient computation for parameter θ0

dθ(tk)

dθ0
=
∂θ(tk)

∂θ0
+
∑
i:ti<tk

∂θ(tk)

∂ti

∂ti
∂θ0

=
θ0∑L
j=1 αj

L∑
j=1

αje
−tk/τj +

∑
i:ti<tk

[
L∑
j=1

αj
τj
e−(tk−ti)/τj ]

∂ti
∂θ0

(3.16)

Gradient of V (t) with respect to any parameter

dV (tk)

dp
= 0 (3.17)

Combining Eqs. 3.8-3.11, the gradient of the proposed error function can be computed

for each parameter in the vector p.

1. Initialize parameter vector at n = 0.

p̂(0) =
[
α̂1(0), α̂2(0), β̂(0), ω̂(0), θ̂0(0)

]T

2. Use equations Eq. 3.9-3.17 to compute the gradient vector.

∂ξ(p̂(n))

∂p̂(n)
=

[
∂ξ(p̂(n))

∂α̂1(n)
,
∂ξ(p̂(n))

∂α̂2(n)
,
∂ξ(p̂(n))

∂β̂(n)
,
∂ξ(p̂(n))

∂ω̂(n)
,
∂ξ(p̂(n))

∂θ̂0(n)

]T
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3. Update the parameter vector. ν is chosen as 10−4.

p̂(n+ 1) = p̂(n)− ν ∂ξ(p̂(n))

∂p̂(n)

4. Check for termination condition. Otherwise increment iteration. n = n+ 1.

3.3 Results

3.3.1 Synthetic spike train

The AugMAT model was simulated, with parameters as mentioned in Sec. 3.1. The spike

times were extracted and used to estimate parameters of the model from a random starting

point. The parameter space was chosen by setting minimum and maximum values.

χ = [{α1, α2, β, ω, θ0} : 100 < α1 < 220, 0 < α2 < 8,

0.1 < β < 0.5, 0 < θ0 < 100]

Fig. 3.8 shows the convergence of the parameter estimates using the gradient descent

algorithm (GD) with a two dimensional vector. This allows visual interpretation of the

algorithm, and confirm that the analytical gradient computations (derived in Sec. 3.2) are

correct. Different combinations of two varying parameters were taken - (i) α2 and β, (ii) α2

and ω, (iii) β and ω. The error surface was plotted (contour plot). The red trace shows the

convergence of the parameter vector from a random starting point. In each example it can

be seen that the parameter vector is updated in the direction of the gradient, and is able

to navigate through the error surface and reach the minimum in a finite number of steps.

The algorithm is also tested with different initial conditions, and was able to successfully

locate the optimal parameter estimate. The irregularity of the surface in the region of the

minimum can be attributed to the nonlinear dynamics of the model.

Fig. 3.9 shows the convergence of the parameters and the performance function. It is
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Figure 3.6: Parameter search in the α2 − β plane

Figure 3.7: Parameter search in the α2 − ω plane

observed that the error function is not sensitive to the α1 parameter. The other parameters

converge to their true values, indicated by red dashed lines in 2000 iterations. The mean

square error for every iteration is shown in the fourth subplot.
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Figure 3.8: Parameter search in the ω − β plane
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Figure 3.9: Convergence of parameters using th GD method
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3.3.2 Experimental spike train

The gradient based parameter search technique is applied to fit the AugMAT model to

the spike train data of an L5 neuron, made publicly available by INCF 1. A single neuron

was stimulated and the membrane potential was recorded. There were a total of 13 trials

performed and the current and voltage traces were recorded and made publicly available.

A 4s time window (17.5s to 21.5s) was chosen to construct the error function and use it

for model optimization. Yamauchi et al. [17] have reported the optimal model parameters

for the same data set. The coincidence factor computed for the experimental settings

mentioned was 0.74. However, the method of optimization was not discussed. Simulations

showed that the computation of the optimal parameters depended on the initial conditions.

The objective was then to sucessfully converge to the optimal parameter set from random

initial conditions. While it can be shown that, theoretically, gradient based techniques will

achieve convergence when used on a convex error function, the speed of convergence depends

on the nature of the function. Error functions designed for practical problems often have

a small gradient in the neighbourhood of the global minimum. This increases the number

of iterations needed for the parameters to converge to the optimal values. Non-gradient

based methods are able to provide a faster convergence speed, but are more sensitive to the

initial values. One such method is the Simplex (or Nelder-Mead) technique developed by

J.A. Nelder and R. Mead [43] . This technique is based solely on the evaluation of function

values on the vertices of a “simplex” and moving the search in the space of parameters by

iteratively constructing new vertices and modifying the simplex. The method has proved

to be successful in locating the optimal parameters in applications where calculation of the

gradient is not possible [53,54].

The approach used in this section is to combine the two techniques with a pre-defined

switching condition to optimize the neruon model based on experimental spike train obser-

vations. The GD method starts from a random point in the parameter space and attempts

1http://www.incf.org/community/competitions/spike-time-prediction/2009/challenge-a
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to minimize the ‘staircase’ error function, ξ, defined in Eq. 3.7. This iterates until a pre-

defined switching condition is met. The number of iterations is used as the condition. The

parameter estimates of the GD method are then used as the initial estimate in the N-M

method which minimizes the coincidence factor. This hybrid approach, outlined in Fig. 3.10

overcomes the limitations of both methods and the final solution is no longer sensitive to

the initial conditions.

Figure 3.10: Hybrid technique used for optimizing the AugMAT model using experimental
spike train data

Fig. 3.11 shows how the gradient method helps to improve the results. In many cases

the coincidence factor after the GD method is small, but the final result is much closer to

the optimum. This is because even though the GD may not necessarily be able to perfectly

align the spikes, it successfully matches the ‘staircase’ functions bringing the spike trains

closer. This allows the N-M method to maximize the coincidence factor and align the spikes.

100 random sets of parameters were generated and used as the initial points for both

methods (GD + N-M and N-M). The mean and standard deviation are shown in Fig. 3.12.

There is a 20% improvement in the mean. Statistics were computed over the results of

these trials : 0.65± 0.09 for “GD + N-M” and 0.55± 0.1 for “only N-M”. 35% of the

final results were greater than 0.7 using our hybrid approach. This figure was only 9% while

using N-M only.

3.3.3 Prediction of neural spiking activity

In the previous sections the results confirmed that the augmented multi-timescale adaptive

threshold model could be optimized based on the spike times of an experimental neuron.

While the search for the optimal parameter set typically depends on the initial conditions,
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Figure 3.11: Using the hybrib optimization technique to compute the optimal parameter
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Figure 3.12: The results of the hybrid technique are compared with the results of Nelder-
Mead method

the use of the gradient descent method for minimizing the proposed error function reduces

the sensitivity of the search. In this section a small segment of the experimental data [1]

is used to compute the parameters of the model. The parameters are then fixed, and the

model is simulated with the recorded input current. The spike times of the mathematical
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neuron are then compared to the spike times of the experimental neuron. Results show that

the optimized model is able to successfully predict the response of the biological neuron if

the input current is known.

The model was optimized using a 4s spike train where the neuron was stimulated with

constant current. The spike times were extracted and used to estimate parameters of the

model. The parameter space was chosen by setting minimum and maximum values, taking

into consideration the nature of spiking. Different parameter sets from this space were able

to generate the different kinds of responses.

χ =[{α1, α2, β, ω, θ0} : 100 < α1 < 220, 0 < α2 < 8,

0.1 < β < 0.5, 5 < ω < 15, 0 < θ0 < 100]

100 random samples were chosen from the parameter space. Each sample serves as an initial

parameter vector for the optimization algorithm. The optimal parameter vector for each

starting point was found using the gradient descent method (GD). The number of iterations

was set at 20, since it was observed that there was no substantial improvement in the error

after 20 iterations. These estimated parameters were then used to simulate the model. The

simulated spike train was compared to the experimental spike train using the bi-variate

SPIKE-distance [55].

Fig. 3.13 shows the initial and final bi-variate spike distances computed for each sam-

ple. (a) shows the initial distribuition of the SPIKE-distance measure (100 samples) and

(b) shows the distribution after optimization is achieved. The red dotted line shows the

multi-variate distance measure over the 13 different trials of the same experimental neuron.

The distribution of the spike distances for the initial population was 0.28 ± 0.16. After

optimization, the final spike distances were 0.10 ± 0.08. 62% of the final predicted spike

trains had a SPIKE-distance of less than 0.1. As a benchmark, the multi-variate SPIKE-

distance for the 13 trials of the L5 neuron was 0.03, which is indicative of the variability in

the experimental neuron. This indicates that the results achieved are meaningful keeping
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Figure 3.13: Prediction results : Pre-optimization vs Post-optimization

in consideration the inaccuracies of the mathematical model itself.

As a comparison to the proposed optimization technique, the Nelder-Mead (NM) [43]
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Figure 3.14: Using an optimized model to predict spiking activity of a biological neuron

method was also implemented. The same initial population (as in GD) was taken and

the model parameters were estimated by minimizing the SPIKE-distance using NM. It was

36



Table 3.1: Prediction results (SPIKE-distance) for 100 samples

Initial After GD After NM

Mean 0.28 0.10 0.13
Std. Dev. 0.16 0.08 0.12

observed that the prediction results were 0.13± 0.12. The GD method also took less com-

putational time as compared to the NM method. Fig. 3.14 shows the spiking activity of

the biological neuron and the optimized model. The first 4 s (left of the vertical partition

line) is used for model optimization. The model (bottom row) [α1 = 183.4, α2 = 2.53, β =

0.087, ω = 11.93, θ0 = 58.2] is then simulated using the input current provided (top row) and

compared to the experimental data (middle row). The results of the SPIKE-distance be-

tween the predicted and actual spike trains for the 100 samples are summarized in Table 3.1.

37



Chapter 4: Estimation of connectivity in neuronal

population models

Mapping the brain and its complex networked structure hsa been one of the most researched

topics in the field of computation neuroscience [56]. It continues to be the path towards

understanding the communication between different functional regions of the brain. Neu-

rons, the basic building blocks of the brain and central nervous system, relay information

to each other via electrical and chemical connections called synapses. The mechanism of

the interaction between individual neurons in the network is studied experimentally and

has been described in [57] and [58]. As described in the previous chapter, with sufficient

excitiation, the exchange of ions in a neuronal cell generates an action potential or a ‘spike’.

This also results in a post-synaptic potential (PSP) that, depending on the type of pre-

synaptic neuron, is responsible for the excitation or inhibition of the post-synaptic neuron.

The connectivity between different regions in the brain influences brain functions such as

memory, learning, perception and motor control amongst others [59, 60]. There is also ev-

idence of abnormal connectivity in neurological diseases such as schizophrenia [61]. The

connection patterns are dynamic and there is a continuous change in the synapses. Func-

tional tasks also alter the brain connectivity and as the brain evolves, new synapses are

generated while there is degeneration of the pre-existing ones [62]. This phenomenon has

been studied in various experimental settings with functional magnetic resonance imaging

(f-MRI) in [63] and [64]. [65] summarizes the importance of connectivity in a neuronal

network and mentions how the knowledge of the connections can help in reproducing the

dynamics of a brain. Deciphering the connectivity is, therefore, essential as it takes us a

step closer towards recreating brain activity. Also, accurate identification of the synapses

in the brain and tracking changes in the synaptic connections is crucial in the research of
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brain diseases such as Parkinsons and epilepsy and in mapping the functional network of

the neurons in the brain.

There are a variety of methods in published literature that are used to estimate the

functional connectivity in the brain. They can be broadly classified into model based and

model free approaches. As the nomenclature suggests, the model based approaches depend

on an accurate model of neuronal networks. The first approaches to connectivity estimation,

due to the lack of appropriate models, were model free techniques that used statistical

measures to compute the influence of one neuron in the network on another. While basic

correlation measures produced produced decent estimation of the connectivity structure [66],

advanced methods such as the Granger causality index [67] and partial directed coherence

[68] provided better results. The Cox method described in [69] is another technique that

can be used to compute the synaptic connections in a network based on the spikes of the

individual neurons. Recent years have also witnessed an exponential growth of studies

related to the application of Graph theory to unravel characteristic features of structural,

functional and effective connectivity [70]. In [71], spike train data is used to compute the

connections in a discrete acycllic graph. A summary of the model free approaches can be

found in [72]. While these methods have been successful and produced positive results in

estimating static connections, it is unclear if the time window of membrane potential data

used is appropriate for tracking changes in neuronal connectivity. [69] reports that the

statistical method used needs spike train data in the otrder of 103 spikes. Although it is

known that the dynamics of the time varying connections is much slower than the dynamics

of the membrane potential, any changes in the synaptic connections within the spike train

data used will not be estimated. This disadvantage makes the methods unsuitable to be

applied in situations where the generation and degeneration of synapses due to various

functional tasks need to be investigated.

Dynamic causal modeling (DCM) [73] is one of the most recent and successful model

based approaches to connectivity estimation. It uses Bayesian inference techniques to com-

pute the effective connectivity from neuroimaging data. f-MRIs have also been used in [74]
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to estimate the functional connectivity in the hippocampal area of the brain. Changes in the

endogenous and task-dependent effective connectivity were computed in [75] demonstrating

that DCM can be used to track time varying connections. However, this involves the use

of expensive equipment and cannot be implemented in real time. Another limitation of

the methods described above is that they are not able to estimate asymmetrical connec-

tivity. They incorporate the assumption that the connections in the network are always

bi-directional. This is, however, not true in the case of neuronal networks [58].

The focus is, therefore, to develop a model based technique that can use a short window

of time-series data to estimate directed connections in a network of neurons as well as track

the changes in the connectivity in real time. It is also essential that the method does not

use any for of thresholding to compute the connection strengths, as the numerical value

of connections is model dependent and cannot be fixed. It is evident that the neuronal

network model plays a crucial role in the development of such algorithms. As described

previously, dynamic systems have been used extensively to model the spiking patterns of

individual neurons. In the last decade the focus has shifted to measurement and modeling

a group of neurons due to great acceleration in experimental techniques. Improved hybrid

nonlinear dynamic models have been able to successfully reproduce the membrane potential

of different neurons at a micro level. Low complexity allows the simulation of large networks

as shown in [20]. Post-synaptic potential dynamics are included in the model equations and

the individual neurons are coupled together to reproduce the network response observed in

experimental data.

[76] have implemented Kalman filters to estimate the parameters of a coupled nonlin-

ear dynamic model from membrane potential observations. This approach meets all the

requirements stated above and does not require large amounts of data to estimate the con-

nectivity parameters. However, the convergence of the parameter estimates largely depends

on the continuous time dynamics of the model used to simulate the neuronal spiking activ-

ity. A large group of neuron models involve discontinuities at the time of spikes and with a

growing database of hybrid models [23] and absence of methods in current literature that
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can be implemented with such models, it is essential to develop a technique that is able to

produce results with the existing discontinuities. While in Chapter 3 the minimzation of the

staircase error function using the gradient descent method was successful in estimating the

parameters of a single neuron, such an approach would not be appropriate for the problem

of connectivity estimation due to the desired properties of real time implementation and

tracking changes in neuronal connections.

This chapter presents a new systems identification approach to connectivity estimation

in a network of neurons.The problem is represented Fig. 4.1, where membrane potential mea-

surements from individual neurons are used to compute the connections. Hybrid nonlinear

dynamic systems are used to model the population of neurons. The recursive least squares

algorithm is then applied to compute the synaptic connections from other pre-synaptic

neurons in the population. Connectivity estimation is achieved even in the presence of

measurement noise, model error and inaccurate assumption of post-synaptic potential dy-

namics. This allows us to compute the synaptic connections of the neuronal population with

N ≈ 70 neurons in a very small time window of measured electrical activity. The proposed

method is also to implemented track changes in the connections making it applicable in

instances where the network structure evolves with time. The performance of the method

is evaluated by computing the specificity and sensitivity measures, taking into consideration

the N ×N connectivity matrix, for randomly generated networks.

4.1 The Model

Network models have always generated significant interest when being used to describe

different physical phenomenon. They are considered extremely important as they are able to

simulate the intereaction between the different individual elements. Network models exist in

different mathematical forms such as statistical network models, artificial neural networks,

coupled nonlinear dynamic models and are used in a variety of applications ranging from

social network analysis to reconstructing the population dynamics of the neurons in the

brain. As discussed previously, neurons form a complex and intricate network inside the
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Figure 4.1: Identification of connectivity in a network

brain and central nervous system. Information is relayed through the network via action

potentials. Chemical and electrical synapses connect neurons and determining the nature

of the connectivity in a population of neurons is vital to understanding the brain.

The Aug-MAT model used in the previous chapter, while successful in modeling a single

neuron spike response, was not applicable to network models. While it is capable of repro-

ducing the spike times of a biological neuron, the absence of a variable that represents the

membrane potential makes it difficult to extend the model to represent network dynamics

by coupling the individual Aug-MAT neurons. In recent literature, Izhikevich et al. [20]

describe a hybrid nonlinear dynamic system to simulate a large population of neurons. The

single neuron is based on the model explained in [15] and the coupling is mathematically

defined based on the conductance values and glial strengths, that act as a scaling factor

to the synaptic current. The model has been able to successfully recreate the observed

dynamics of different regions in the brain. In this chapter, the large scale population model

referenced above has been chosen to reproduce the dynamics of a group of neurons as it is

one of the most striking examples of neuronal network modeling in published literature.

This section describes the coupled nonlinear dynamic model for a network of neurons.

The model is re-defined as a linear auto-regressive moving average (ARMA) model that en-

ables the use of least squares (LS) estimation methods (Sec. 2.3) to identify the connections.
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4.1.1 Single neuron model :

We use a modified version of the Izhikevich neuron, a nonlinear dynamic model that is

capable to reproducing the different spiking regimes observed. The model consists of two

states and eight parameters. One of the states of the model represents the spiking of the

neuron and the other is a lumped variable containing the dynamics of the potassium and

sodium ions in the cell. Eq. 4.1 describes the spiking dynamics of the single neuron intracel-

lular membrane potential, v(t) and the recovery variable, u(t). The neuron is stimulated by

an external current, I(t). Sufficient stimulus results in the ‘spiking’ of the neuron, during

which the membrane potential reaches the threshold of 30mV . Eq. 4.2 represents a discrete

one-step reset when the membrane potential exceeds the threshold.

v̇(t) =p1v
2(t) + p2v(t) + p3[u(t)− p0I(t)] + p4 = fs(v(t), u(t),p)

u̇(t) =p5v(t) + p6u(t) = gs(v(t), u(t),p)

(4.1)

if v(t) > 30mV

v(t)→ p7

u(t)→ u(t) + p8

(4.2)

p = [p0, p1, .., p8] is the parameter vector associated with the model. The discrete reset

makes it possible for the model to represent the different spiking patterns observed in

a biological neuron, specially the bursting phenomenon. However, the presence of the

discontinuity makes it difficult to apply existing estimation and tracking techniques to this

model. A modified reset condition is described, that preserves the original nature of the

model while at the same time makes the model tractable. The dynamic system is split into
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two different models, one for spiking (Eq. 4.1) and the other for resetting (Eq. 4.3). The

switching condition remains the same as before (v(t) > 30mV ). As the membrane potential

exceeds the threshold, the system switches to the reset model for a pre-defined time. At

the expiration of this time the system switches back to the spike model.

if v(t) > 30mV

v̇(t) =
−(30− p7)

τR
= fr(p); u̇(t) =

p8
τR

= gr(p)

(4.3)

The time taken by the reset model is defined as τR. Simulations were performed to test the

effect of τR on the sensitivity of the response to the parameters. The chosen value of τR =

0.2ms did not affect the spiking patterns generated by the parameter combinations reported

in [15]. Fig. 4.2 graphs the membrane potential (top) and recovery variable (bottom) of the

modified Izhikevich single neuron model. Fig. 4.2a, on the left, shows the dynamics of the

single neuron model. The ‘spike’ phase and ‘reset’ phase are represented by the unshaded

and shaded regions respectively. The horizontal axis represents a time window of 6 ms. The

figure on the right represents a time window of 120 ms and shows the bursting phenomenon

of a single neuron. The figure on the right, Fig. 4.2b, represents a time window of 120 ms

and shows the bursting phenomenon of a single neuron.

4.1.2 Neuronal network model :

Neurons in a network are connected with each other through synapses. As the pre-synaptic

neuron spikes, it provides a stimulus in the form of synaptic current to the post-synaptic

neuron. There are millions of synapses that form a complex network of neurons. If the

sum of synaptic currents from all the pre-synaptic neurons is sufficient, it results in the

spiking of the post-synaptic neuron. The synaptic current also depends on the nature of

the particular pre-synaptic neuron. Inhibitory neurons suppress the spiking activity of the
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(a) Dynamics of the spike model (unshaded
region) and the reset model (shaded region)

(b) ‘Bursting’ of a single neuron. The system
switches between the spike model and reset

model.

Figure 4.2: Simulations of a single neuron dynamics, implemented with the proposed mod-
ified reset

post-synaptic neuron by providing a negative synaptic current while excitatory neurons re-

sult in an increase in the spiking activity. Experiments have been conducted to observe the

dynamics of the synaptic current. Mathematically they are modeled as weighted sums of

decaying exponentials, with a ‘jump’ when the pre-synaptic neuron spikes [].

The single neuron model, described by Eqs. 4.1 and 4.3, is extended to represent the dynam-

ics of a neuronal network. The synaptic current is modeled by a third differential equation.

Eqs. 4.4 and 4.5 define the network model. vi(t), ui(t) represent the membrane potential

and recovery variable of the individual neuron i. The synaptic current is a weighted sum

of decaying exponentials with multiple time constants. The synaptic stimulus to the post-

synaptic neuron is defined by Ii,syn(t) as the weighted sum of the synaptic currents from

all the pre-synaptic neurons. The weights, wij (i : post-synaptic, j : pre-synaptic), are

numerically defined as +1 for excitatory, −1 for inhibitory and 0 for absence of connection.

Fig. 4.3 is a block diagram representation of a single neuron in a network.
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Figure 4.3: Block diagram of the ith neuron in a network.

spiking of neuron i :

v̇i(t) =fs(vi(t), ui(t),pi) + Ii,syn(t)

u̇i(t) =gs(vi(t), ui(t),pi)

ṡi(t) =− 1

τ
si(t)

Ii,syn(t) =
g

N

N∑
j=0,j 6=i

wijsj(t)

(4.4)

if vi(t) > 30mV (reset)

v̇i(t) =
−(30− pi7)

τR
= fr(pi); u̇i(t) =

pi8
τR

= gr(pi); ṡi(t) =
1

τR
(4.5)

pi = [pi0, .., pi8] represents the parameter vector of the individual neuron i. I(t) is the

external input current that stimulates all N neurons of the population. g represents the
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glial strength that affects the synaptic current, Iisyn(t), of the post-synaptic neuron. wij is

the strength of the synaptic connection from neuron i to neuron j. The self-connections,

wii are assumed to be 0. τ is the time constant of the decay of post-synaptic potential.

It is empirically chosen as 10ms, based on the population model described in [20]. τR, as

described above is the reset time equal to 0.2ms. The functions fs, gs, fr and gr are defined

in Eqs. 4.1 and 4.3.

Fig. 4.4 shows the dynamics of a single neuron in a neuronal population of twenty neurons.

The top row is the membrane potential, middle row is the recovery variable and the bot-

tom row represents the synaptic current that modulates according to the action potentials

(spikes) of the neuron. After the neuron spikes, the synaptic current decays exponentially

with a fixed time constant. Fig. 4.5 shows the membrane potentials of all neurons in the

population. It is observed that the spiking activity is irregular. The spike rate of each

neuron depends on the characteristics and type of the neuron, as well as the connectivity

to the other excitatory and inhibitory neurons in the network.

Figure 4.4: Dynamics of a single neuron in a network model

Fig. 4.6 represents the connectivity of the population. The rows and columns represent the
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Figure 4.5: Spiking activity in a network of 20 neurons

Figure 4.6: Connectivity of a network of 20 neurons
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pre-synaptic and post-synaptic neuron numbers respectively. The synaptic strengths from

the pre-synaptic neuron i to the post-synaptic neuron j, wij in Eq. 4.4, is shown by the

(i, j) entry in the matrix (ith row and jth column). 80% of the neurons in the population

are classified as excitatory and the remaining 20% as inhibitory. In the connectivity matrix

used in the model equations, the connections from the pre-synaptic excitatory neurons are

quantified as +1 (red squares, columns 1 to 16) and −1 is used to indicate the connection

from an inhibitory pre-synaptic neuron (blue squares, columns 17 to 20). The absence

of a connection between two neurons is represented by a white space in the figure and a

weight value of 0 in the model. It can also be seen from the figure that the connectivity

matrix is not symmetrical. This is representative of a population of neurons in which the

presence of a synapse from neuron i to neuron j does not ensure a connection from neuron

j to neuron i. Methods that compute the correlatiion matrix from individual membrane

potential measurements are unable to capture this feature of neuronal connectivity.

4.1.3 Linear system (discrete time) :

Computation of unknown parameters in a linear system using a least squares based esti-

mation approach is well established. This method can be extended to nonlinear dynamic

models if the following requirments can be met - (a) the model can be redefined such that

it is linear in the parameter space and (b) the redefined inputs and outputs are in terms

of observable and reconstructed state variables. Fig. 4.7 represents a network of 3 neurons.

The connections are represented by the wij blocks that act as a gain to the post-synaptic

potentials, si(k). The external input, I(k), stimulates all the neurons of the network.

In the proposed model of a neuronal population, the membrane potentials of the individ-

ual neurons are observed and the synaptic currents are reconstructed from the knowledge

of the spike times of the neurons. The objective is, therefore, to eliminate the unobserved

recovery variable, u1(t), from the model equations. Eqs. 4.6-4.12 outline the formulation of

the nonlinear ‘spiking’ model of a neuronal population, Eq. 4.4, as a linear auto-regressive

moving average (ARMA) system. The derivation is shown for a single neuron (i = 1) in a
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Figure 4.7: Block diagram representation of a neuronal network

network of three neurons (N = 3).

The spiking dynamics of neuron 1 in the network is defined by the following differential

equations.

v̇1(t) = p11v
2
1(t) + p12v1(t) + p13[u1(t)− p10I(t)] + p14 +

g

3
(w12s2(t) + w13s3(t)) (4.6a)

u̇1(t) = p15v1(t) + p16u1(t) (4.6b)

ṡ1(t) = −1

τ
s1(t) (4.6c)

We use forward eulers method [77] to approximate the first derivative terms. The constant

time-step is chosen as T = 0.01 ms and the time instances are defined as tk = kT .

ẋ(tk) =
x(tk)− x(tk−1)

tk − tk−1
(4.7)
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Eq. 4.6 can be written in discrete time as

v1(k) =v1(k − 1) + T{p11v21(k − 1) + p12v1(k − 1) + p13[u1(k − 1)− p10I(k − 1)]

+ p14 +
g

3
(w12s2(k − 1) + w13s3(k − 1))} (4.8a)

u1(k) =u1(k − 1) + T{p15v1(k − 1) + p16u1(k − 1)} (4.8b)

s1(k) =s1(k − 1) + T{−1

τ
s1(k − 1)} (4.8c)

The u1(k−1) term in Eq. 4.8a is expanded according to Eq. 4.8b to eliminate the recovery

variable, u1(k), from the equations and express the membrane potential, v1(k), as an auto-

regressive moving average (ARMA) [78] model that contains only observable states. The

membrane potential equation is then defined as

v1(k) =v1(k − 1) + T{p11v21(k − 1) + p12v1(k − 1) + p13[u1(k − 2)

+ T{p15v1(k − 2) + p16u1(k − 2)} − p10I(k − 1)] + p14

+
g

3
(w12s2(k − 1) + w13s3(k − 1))}

=(1 + p12T )v1(k − 1) + p15T
2v1(k − 2) + p11Tv

2
1(k − 1)

+ (1 + p16T )Tp13u1(k − 2) + p14 +
g

3
(w12s2(k − 1) + w13s3(k − 1))

(4.9)

The time delayed recovery variable, u1(k − 2), can be expressed in terms of the membrane

potential and synaptic currents. Rearranging the terms of Eq. 4.8a after applying a delay

gives us

p13Tu1(k − 2) =v1(k − 1)− v1(k − 2)− p11Tv21(k − 2)− p12Tv1(k − 2)

+ p13p10TI(k − 2)− p14T −
gT

3
(w12s2(k − 2) + w13s3(k − 2))

(4.10)
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Eq. 4.10 is substituted in Eq. 4.9

v1(k) =[2 + (p12 + p16)T ]v1(k − 1) + [−1− (p12 + p16)T + p15T
2]v1(k − 2)

+ [p11T ]v21(k − 1) + [−p11T ]v21(k − 2) + [−p13T ]I(k − 1)

+ [p13T + p13p16T
2]I(k − 2) + [−p14p16T 2]

+

[
gT

3

]
w12s2(k − 1) +

[
−gT

3
− p16gT

2

3

]
w12s2(k − 2)

+

[
gT

3

]
w13s3(k − 1) +

[
−gT

3
− p16gT

2

3

]
w13s3(k − 2)

(4.11)

The nonlinear differential equation model, described in Eq. 4.6 can now be expressed as an

ARMA system, Eq. 4.12. The nonlinear term, v1(k)2, is defined as an input to the system.

Let vs1(k) = v21(k − 1).

A1(z)v1(k) = B1(z)vs1(k)+C1,2(z)s2(k−1)+C1,3(z)s3(k−1)+D1(z)I(k−1)+d1 (4.12)

where

A1(z) = 1 + a1,1z
−1 + a1,2z

−2, B1(z) = b1,0 + b1,1z
−1,

C1,j(z) = c1,j,0 + c1,j,1z
−1, D1(z) = d1,0 + d1,1z

−1

The following equations represent the relation between the linear system parameters and

the nonlinear model parameter set, p1 = [p11, p12, p13, p14, p15, p16, w12, w13]
T . The linear

system parameters depend on the discretization time-step, T (0.01 ms). The higher order
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terms of T are neglected.

a1,1 = −2− (p12 + p16)T, a1,2 = 1 + (p12 + p16)T − p15T 2 ≈ 1 + (p12 + p16)T

b1,0 = p11T, b1,1 = −p11T

c1,j,0 =

[
gT

3

]
w1j , c1,j,1 =

[
−gT

3
− p16gT

2

3

]
w1j ≈

[
−gT

3

]
w1j

d1,0 = −p13p10T, d1,1 = p13p10T + p13p10p16T
2 ≈ p13p10T

d1 = −p14p16T 2

(4.13)

c1,2,0 + c1,2,1z
−1

c1,3,0 + c1,3,1z
−1

b1,0 + b1,0z
−1

d1,0 + d1,1z
−1

d1

+

+

+

+

−a1,1z−1−a1,2z−2

s2(k − 1)

s3(k − 1)

vs1(k)

I(k − 1)

υ(k)

v1(k)

w1(k)

v1,obs(k)

Figure 4.8: Block diagram representation of a single neuron in a 3-neuron network

Fig. 4.8 represents the block diagram schematics of the dynamics of a single neuron in a

3-neuron network as a linear ARMA system. s2(k − 1) and s3(k − 1) are the synaptic cur-

rents of neurons 2 and 3 respectively, and act as inputs to neuron 1. vs1(k) is the squared
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membrane potential (nonlinear term) and is re-defined as an input to the system. The

external current stimulus to the network is I(k) and υ(k) is a constant step input to the

system. The output of the system is the membrane potential, v1(k). The measurement

noise, represented by w1(k), is white gaussian. From Eq. 4.13 we can conclude that the

Cj(z), B(z) and D(z) approximate first difference filters. The gain of these filters depends

on the parameters of the original nonlinear dynamic model (Eq. 4.4).

The three neuron example (Eqs. 4.11-4.13, Fig. 4.8) can be extended to derive the linear

ARMA model for every individual neuron, i, in a network of N neurons.

Ai(z)vi(k) = Bi(z)vsi(k)2 +

N∑
j=1,j 6=i

Ci,j(z)sj(k − 1) +Di(z)I(k − 1) + di (4.14)

The system has a total of (N + 2) inputs. There are (N − 1) inputs from other neurons in

the network (sj(k)), 2 external inputs (I(k) and u(k)) and the squared membrane potential,

vsi(k), re-defined as an input. The system has (N + 2) FIR filters and a total of (2N + 5)

filter coefficients to be estimated. The measured membrane potential is assumed to be

corrupted by zero mean white Gaussian observation noise.

vi,obs(k) = vi(k) + wi(k) (4.15)

4.2 Parameter estimation using model generated test data

Parameter estimation in linear systems is a field that has been extensively researched. There

are a variety of existing system identification algorithms that have performed well in tests

of accuracy, speed and robustness [79]. However, the performance of such techniques also

depend on the dynamics of the system. The linear model described in Sec. 4.1.3 is an

ARMA system with multiple inputs and a single output. In this section data generated

from the model is used to estimate the parameters by minimizing the mean squared error.
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The prediction error least squares (PE-LS) error algorithm is formulated for Eq. 4.14 and

its performance is tested for accuracy and robustness. It is important to note that for the

typical parameters of the neuron model (pi in Sec. 4.1.2) the poles of the linear system,

roots of the polynomial A(z), lie outside the unit circle. This makes the system unstable

and difficult to implement the Output Error algorithm as discussed in [80]. Also, since the

performance of the PE-LS algorithm with pre-filtered data was found to be excellent for the

model in question, other unbiased identification algorithms such as the instrumental variable

approach were not investigated. The estimated value of the parameters are compared

with the known true values and the bias and variance of the estimates in the presence of

observation noise is investigated.

Neuron i

Estimator

Inputs
vi

θ̂i

Figure 4.9: Schematic representation of parameter estimation for neuron i

Fig. 4.9 shows the block diagram representation of the parameter estimation. The algo-

rithms used for the estimation are discussed in the following sections.
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4.2.1 Prediction error least squares estimation :

The linear ARMA system of a neuronal network (Eq. 4.14) can be written in terms of a

parameter vector, θi, and a regressor, ϕi(k).

ϕi(k) = [vsi(k), vsi(k − 1),sj(k − 1), sj(k − 2), I(k − 1), I(k − 2), u(k),

− vi(k − 1),−vi(k − 2)]T
(4.16)

θi = [bi,0, bi,1, ci,j,0, ci,j,1, di,0, di,1, di, ai,1, ai,2]
T (4.17)

where j ∈ {1, 2, · · · , N}, j 6= i and vsi(k) = v2i (k − 1).

u(k) represents the step input.

The membrane potential (output) of the ith neuron in the network can be written as

vi(k) = ϕi(k)Tθi (4.18)

From Eq. 4.15 the observed membrane potential can be expressed as

vi,obs(k) = ϕi(k)Tθi + wi(k) (4.19)

The prediction of the output is defined as

v̂i(k) = ϕi,obs(k)T θ̂i(k) (4.20)

where θ̂i is the estimate of the parameter vector and ϕi,obs(k) represents the regressor

(Eq. 4.16) constructed from the observed variable, vi,obs(k).

The error function εi(k) is defined as the difference between the measured output, vi,obs(k)

and the predicted output, v̂i(k). The mean squared error (MSE) of neuron i is represented
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by ξi.

εi(k) =vi,obs(k)− v̂i(k) (4.21a)

ξi =E[εi(k)2] (4.21b)

The formula for LS estimate is derived in Sec.2.3.

Qi =E
[
ϕi(k)ϕi(k)T

]
(4.22a)

P i =E [ϕi(k)vi,obs(k)] (4.22b)

θ̂i =Q−1i P i (4.22c)

Recursive storage (using inter-spike intervals) -

The PE-LS algorithm is implemented with recursive data collection. The observed mem-

brane potential data in between two consecutive spikes is used to construct the regressor.

The estimate obtained is stored. The ‘reset’ of the membrane potential (immediately af-

ter the spike) is disregarded, and data is collected over the next inter-spike interval. The

first few estimates are ignored to account for the transcience and the remaining estimates

obtained for all the ISIs are averaged to calculate the steady state parameter estimates.

Fig. 4.10 represents the trace of membrane potential data that is recorded (blue). ks

is the discrete time instance (integer value) of the sth spike, represented by {k1, k2, k3}

in the figure. The value of the membrane potential is greater than 30 at these instances,

vi,obs(ks) > 30. The time of spike in ms can be computed as ts = ksT . The reset time, τ ,

is used to calculate the number of data points that need to be disregarded (red).

TheQ and P matrices are computed recursively over each segment of inter-spike interval

(ISI) data. The linear system described in Eq. 4.14 defines the dynamics of the spiking model
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Figure 4.10: Construction of regressor from observed membrane potential data.

illustrated in Eq. 4.4 and shown by the blue trace in the above figure. The regressor and

output vectors are constructed as

ϕi(k) =[vsi,obs(k), vsi,obs(k − 1), sj(k − 1), sj(k − 2),

I(k − 1), I(k − 2),υ(k),−vi,obs(k − 1),−vi,obs(k − 2)]T (4.23a)

yi(k) =vi,obs(k) (4.23b)

The recursive computation of the Q and P matrices are shown in Eq. 4.25. As each new

segment of data is available a ‘forgetting factor’, λ, is implemented to reduce the influence of

past data on the parameter estimate. The parameter vector is updated at each spike. This

ensures that the algorithm adapts to changes in the model parameters. Also, perturbations

in the observed variable do not have a permanent effect on the parameter estimates. The

disadvantage of adding the ‘forgetting factor’ is that the algorithm is more sensitive to
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noise. The trade-off is discussed in Sec. 4.2.4 and the value of λ is chosen after repeated

simulation exercises.

The matrices for the current ISI are computed as

qi,s =

ks∑
k=ks−1+

τ
T

ϕi(k)ϕi(k)T (4.24a)

pi,s =

ks∑
k=ks−1+

τ
T

ϕi(k)yi(k) (4.24b)

The current matrices are then added to the older matrices (from past ISI data) with

exponentially decreasing weight values.

Qi,s = qi,s + λQi,s−1 (4.25a)

P i,s = pi,s + λP i,s−1 (4.25b)

The parameter estimate at every spike is computed as

θ̂i,s = Q−1i,sP i,s (4.26)

The inputs to the linear system need to satisfy the persistence excitation conditions to

ensure that the matrix Qi,s is invertible. The truncation of the regressor elements at each

spike time results in a finite signal that prevents the Q matrix from being ill-conditioned and

approaching singularity. Also, the nonlinear relation between the inputs of the linear ARMA

system (Fig. 4.8) results in the absence of a linear dependance amongst the elements of the

collected ISI data. Computing the condition number (ratio of maximum eigenvalue to the

minimum eigenvalue) of the Q matrix for different simulations showed that the persistence

excitation conditions had been met and the inverse matrix was computed accurately.
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4.2.2 3-neuron example (noise free measurements, fixed connections) :

The system identification algorithm described in the previous section is used to compute the

linear system parameters of a network of 3 neurons (Eq. 4.12). The algorithm is implemented

with a forgetting factor of 1. The observed membrane potential is not corrupted by noise.

The input stimulus to the neurons was a sinusoidal current,

I(k) = 5 sin(4πk) + 3 sin(10πk + π/3)

Convergence of linear ARMA system parameter estimates -

Fig. 4.11 shows the convergence of the parameters of the linear ARMA system (Eq. 4.12)

corresponding to a neuron in the network. The membrane potential of the neuron is recorded

and the estimates are updated at each spike time. The final values of the estimated parame-

ter vector are compared in Table 4.1. In the absence of observation noise all parameters are

estimated accurately, indicating that the data is sufficiently conditioned for implementation

of LS techniques. The condition number of Q was found to be of the order of 1010.

Table 4.1: Parameter estimates of the linear ARMA system (Neuron 1 in a 3-neuron net-
work) with noise free measurements

True Value Recursive PE-LS

a1,1 -2.0498 -2.0498
a1,2 1.0498 1.0498
b1,0 0.0004 0.0004
b1,1 -0.0004 -0.0004
c1,2,0 0.0333 0.0333
c1,2,1 -0.0333 -0.0333
c1,3,0 0.0333 0.0333
c1,3,1 -0.0333 -0.0333
d1,0 -0.01 -0.01
d1,1 0.01 0.01
d1 0.0003 0.0003

Fig. 4.11 shows the comparison of the recursive storage LS algorithm estimates with the true
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parameter values. The figures represent a 200 ms time window. The parameter estimate at

each spike (computed using the ISI data) is denoted by a ◦. The true value of the parameter

is indicated by a horizontal line. It is concluded that the algorithm performs well in terms

of accuracy and is able to achieve convergence in one ISI.

0 50 100 150

−2

−1.5

−1

−0.5

0

a
1,1

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

a
1,2

0 50 100 150

0

1

2

3

4

x 10
−4

b
1,0

0 50 100 150

−4

−3

−2

−1

0

x 10
−4

b
1,1

0 50 100 150

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

c
2,1

0 50 100 150
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

c
3,0

0 50 100 150

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

c
3,1

0 50 100 150
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4
 d

1
 

Figure 4.11: Convergence of all nine parameters of the 3-neuron linear regression model
with noise free measurements

Transformation to nonlinear model parameter space -

In Table 4.1 and Fig. 4.11 presented results of the convergence of the linear system param-

eters are presented. The objective is, however, to estimate the parameters of the original
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nonlinear dynamic model. Eq. 4.13 defines the relation between the linear model param-

eter vector, θi and the nonlinear model parameter vector, pi. Selected nonlinear model

parameters are calculated based on the respective equations.

p̂i1 =
b̂i0 − b̂i1

T
(4.27)

p̂i3p̂i0 = p̂2i3 =
d̂i1 − d̂i0

T
(4.28)

ŵij =
N

gT
(ĉi,j,0 − ˆci,j,1) (4.29)

It is observed that the remaining nonlinear model parmaeters form an overdetermined

set of nonlinear equations. To solve for pi2, pi4, pi5 and pi6 based on the estimate of θi,

we use the nonlinear least squares algorithm to minimize the weighted quadratic function

shown in Eq. 4.30.

{p̂i2, p̂i4, p̂i5, p̂6} = arg min
p̂i

1

2
f(θ̂i, p̂i)

T W f(θ̂i, p̂i) (4.30)

where the function vector f(.) represents the equality constraint for the nonlinear optimiza-

tion problem ( for a 3-neuron network).

f3(θ̂1, p̂1) =


a1,1 + 2 + (p12 + p16)T

a1,2 − 1− (p12 + p16) + pi5T
2

d1 + p14p16T
2

 (4.31)

The matrix W is a diagonal matrix consisting of the weights assigned to each individual

equality condition. The weights are chosen such that the contribution of each equality

condition is of the same order.
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The estimated parameters of the nonlinear dynamic model (Eq. 4.4, Neuron 1) are reported

in Table 4.2 and are compared to the true values. The results show that {p13, p14, p15}

are not estimated accurately due to non-unique solutions to the set of equations defined

by f3(.) = 0. The parameters w12 and w13 are of particular importance. They quantify

the connection from pre-synaptic neurons 2 and 3 to the post-synaptic neuron 1 and are

estimated correctly.

Table 4.2: Parameter estimation results for the 1st neuron in a network of 3 neurons

True Value Estimated Value

p11 0.040 0.040
p12 5.000 5.000
p13 -1.000 -1.000
p14 140.0 9.7
p15 0.004 0.03
p16 -0.020 -0.024
w12 1.000 1.000
w13 -1.000 -1.000

4.2.3 3-neuron example (measurement noise added, fixed connections) :

In the previous section the linear model parameters were estimated in the absence of noise

in the observation. It is essential to analyze the performance of the algorithm when the

observation is corrupted by noise. Observation noise (white, gaussian) is added to the

membrane potential, v(t). The output and the regressor is constructed from the observed

membrane potential (Eq. 4.15) and is used to compute the estimate of the parameter vector.

PE-LS algorithms (batch and recursive storage) provide biased estimates in the presence

of observation noise. To reduce the bias, we apply low pass filters to the input and output

measurements. The filtered measurements are then used to construct the regressor and

compute the LS estimate of the parameter vector. The filter reduces the bias in the LS

estimate by improving the signal-to-noise power. The schematic is shown in Fig. 4.12.
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Neuron i

PE-LS
Estimator

H(z)H(z)H(z)

+

H(z)

Inputs
vi,obs

θ̂i

wi

Figure 4.12: Schematic representation of prediction error least squares estimation in pres-
ence of observation noise for neuron i

A second order system is chosen to pre-filter the inputs and outputs.

H(z) =
1

(1− 0.99z−1)2
(4.32)

Convergence of linear model parameter estimates -

Fig. 4.13 shows the convergence of mean square error for a 3-neuron model. The top two

rows represent the PSP from pre-synaptic neurons 2 and 3 that act as inputs to the post-

synaptic neuron 1 system. The observed and true membrane potential is plotted in the

third row. The ratio of the observation noise to signal variance is 0.1. The fourth row

shows the pre-filtered data where the noise to signal variance is reduced to 0.001. It is

observed that the mean square error converges close to the minimum value in two to three

ISIs. The convergence of the parameter estimates takes longer and is shown in Fig. 4.14.

The recursive storage PE-LS algorithm was used (black line). The circles represent the

parameter estimate at each spike, using the ISI data from the previous to the current spike.

The grey line indicates the true value of the parameter. The variance of noise was 10% of

the signal variance before pre-filtering. The low-pass filter reduced the ratio to 2%.

Table 4.3 summarizes the results of the PE-LS algorithm for increasing noise levels. The
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Figure 4.13: Convergence of the mean square error for a post-synaptic neuron in a 3-neuron
network

ratio of noise to signal variance after pre-filtering is reported.

Table 4.3: Parameter estimates of the linear regression model (Neuron 1 in a 3-neuron

network) with white gaussian noise added to the measurements. σ2
w
σ2
v

= 0.1

True Value Recursive PE-LS

a1,1 -2.0498 -2.0428
a1,2 1.0498 1.0428
b1,0 0.0004 0.0003
b1,1 -0.0004 -0.0003
c1,2,0 0.0333 0.0275
c1,2,1 -0.0333 -0.0275
c1,3,0 0.0333 0.0283
c1,3,1 -0.0333 -0.0283
d1 0.0003 0.0008
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Figure 4.14: Convergence of all nine parameters of Neuron 3 in a 3-neuron linear regression
model with noisy measurements.

Transformation to nonlinear model parameter space -

Eqs. 4.27-4.31 are solved using the linear model parameter estimates obtained in Table 4.3.

The results presented in Table 4.2 show that all parameters are not computed correctly.

This is again due to the presence of local minimas in the non-convex objective function

defined in Eq. 4.30. However, the parameters of interest - the connection strengths (w12

and w13) - are estimated with reasonable accuracy.
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Table 4.4: Parameter estimates of an individual neuron in a network of 3 neurons. PE-LS
estimates were used to compute the nonlinear model parameters.

True Value Estimated Value

p31 0.040 0.033
p32 5.000 4.674
p33 -1.000 0.013
p34 140.0 155.8
p35 0.004 0.18
p36 -0.020 -0.003
w31 1.000 0.825
w32 1.000 0.849

4.2.4 3-neuron example (time-varying connections) :

In the previous section the recursive storage PE-LS algorithm produced biased estimates

for linear model parameters when the observations were corrupted by white noise. The

level of bias was reduced by pre-filtering the data generated from a 3-neuron network model

(Eqs. 4.4,4.5).The strengths of the synaptic connections in the network were fixed. This is

however not true in actual neuronal networks where the nature of the synapses can vary

with time and its dynamics are much slower than the dynamics of the neuronal spiking. In

this section the PE-LS algorithm is implemented with a forgetting factor. λ to track the

time varying connections between neurons in the network. The choice of λ is discussed with

the help of multiple simulations with varying noise levels and perturbation. The dynamics

of the connections do not represent the changing synaptic connections of an actual network

of neurons. The purpose here is purely to analyze the least squares algorithm for the model

defined in Sec. 4.1.

Fig. 4.15 shows the tracking of time-varying connections in a noise-free environment.

There was no noise added to the observed membrane potentials. The true value of the con-

nections is shown by the black trace. The blue, red and green traces represent the estimates

with forgetting factors as 0.5, 0.7 and 0.9 respectively. The changes in the connections are

a combination of step changes as well as gradual sinusoids. The PE-LS recursive algorithm

is successfully able to track the changing synaptic strengths over a 10s time window. It is
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observed that, as expected, a lower forgetting factor (λ = 0.5) is more suitable for tracking

changes in the connection parameters.
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Figure 4.15: Tracking of connections in a 3-neuron network

Addition of measurement noise to the observed membrane potentials of the individual

neurons introduces a bias and variance in the estimate. The effect of the forgetting factor

on the estimates is shown in Figs. 4.16,4.17. While a smaller forgetting factor enables the

algorithm to adapt more quickly to the change in connections, it also makes it more sensitive

to perturbations. The results clearly show that while λ = 0.9 is much slower in converging to

the actual value, there is no siginificant improvement of λ = 0.5 over λ = 0.7. The variance

in the estimates for λ = 0.5 is very high and it is difficult to justify the convergence of the

parameters to steady state values. The results are compared for difference noise levels and

the forgetting factor is chosen as λ = 0.7.
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Figure 4.16: Tracking of connections in a 3-neuron network. Ratio of noise to signal variance
(after pre-filtering) = 0.002
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Figure 4.17: Tracking of connections in a 3-neuron network. Ratio of noise to signal variance
(after pre-filtering) = 0.01
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4.2.5 Results and statistical testing :

Successful estimation of a 3-neuron network was shown in the previous sections. The method

is extended to larger networks and the effect of the number of neurons on the accuracy is

investigated in this section. The number of linear model parameters (Nθ) increases linearly

with increase in network size (N), as shown in Eq. 4.14.

Nθ = 2N + 3 (4.33)

Figs. 4.18 and 4.19 show the convergence of connection estimates for networks of N = 20

and N = 30. Few selected post-synaptic neurons are represented from each population. For

each neuron, the red trace represents an estimate for connection from an excitatory pre-

synaptic neuron, blue for a connection from an inhibitory pre-synaptic neuron and green

for the absence of a synaptic connection. The linear model parameters of each neuron

are estimated using the recursive storage PE-LS technique and the connection values are

computed using Eq. 4.29. White noise was added to the membrane potential observations

and the noise to signal variance was 0.05. The figures show that convergence time is short

and steady state value is achieved in 500 ms. This typically corresponds to 20-30 ISIs of

the neuron. The plots show that while there is a degradation in the convergence time with

increase in the network size, steady state estimation is achieved in reasonable time.

Fig. 4.20 illustrates the absolute error, εi,j = |wi,j − ŵi,j |, between the estimated and

actual connections matrix for networks of different sizes. 10% white noise was added to

the observed membrane potentials for each simulation. The trend of the absolute error

in connectivity estimates with increasing network size can be observed. The number of

connections identified incorrectly increases, as represented by the darker colored squares.

However, the error percentage remains within acceptable limits for systems with large num-

ber of parameters ( 60-100). The matrices (a),(b) and (c) are all plotted to the same color

scale. The effect of noise on the estimates is shown in Fig. 4.21. The error bars for absolute
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Figure 4.18: Convergence of connection parameters in a network of 20 neurons

errors is shown for networks ranging from N = 10 to N = 50 neurons. The noise to signal

variance is represented on the horizontal axis. It is observed that the error in the estimates

increases with increase in network size. The increase in the number of linear model param-

eters results in a larger variance in the final estimates of all connections in the network.

The mean, however, remains within satisfactory limits for large networks and high noise to

signal variance. Table 4.5a reports the maximum error for each case while the percentage

of connections estimated with an error less than 20% is shown in Table 4.5b. We conclude

that while the accuracy of the estimates reduces with increase in network size, the PE-LS

technique is able to correctly identify a high percentage of connections (allowing for a small

error).
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Figure 4.19: Convergence of connection parameters in a network of 30 neurons

(a) N = 30 (b) N = 40 (c) N = 50

Figure 4.20: Error in connectivity estimation for networks of different sizes. Ratio of noise
to signal variance for all networks was 0.001 after pre-filtering.

4.3 Identification of connectivity in a different neuronal model

In the previous section the least squares system identification approach was tested on model

generated data. Following the results that showed accurate estimation of the connection
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Figure 4.21: Error bars for connection estimates of different networks and varying noise
levels

Table 4.5: Statistics for connectivity estimates with varying network sizes and noise levels

(a) Maximum Error

σ2
noise
σ2
v
→ 10−6 10−5 10−4 10−3

N = 10 0.10 0.32 0.40 0.44
N = 20 0.40 0.51 0.62 0.67
N = 30 0.47 0.75 0.95 1.70
N = 40 0.84 1.12 1.41 2.10
N = 50 1.21 2.16 3.18 4.02

(b) Percentage of connection estimates with ε < 0.2.

σ2
noise
σ2
v
→ 10−6 10−5 10−4 10−3

N = 10 100 99 98 85
N = 20 99 97 87 75
N = 30 99 90 77 62
N = 40 96 84 69 50
N = 50 89 75 49 35
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parameters for large networks, it is important to test the robustness of the proposed tech-

nique in the presence of unknown membrane potential and post-synaptic potential dynam-

ics. There are multiple neuronal models present in existing literature that, while capable of

producing the required spiking behavior, have significantly different dynamics to the model

considered in Eq. 4.4. This creates a model error while constructing the linear ARMA

system, Eq. 4.14, using the membrane potential observations. As a result, the least square

estimate of the parameter vector is not reliable and the connectivty estimates are not ac-

curate. The difference in dynamics between the mathematical model and the biological

neuron is only bridged in bio-plausible models such as the Hodgkin-Huxley (HH). However,

as discussed in Chapter 3, the use of non bio-plausible models to construct network simu-

lations is more relevant because of low computational cost. It is therefore essential that a

hybrid dynamical system such as the Izhikevich model is used to identify the connections

of the network when the membrane potential dynamics are unknown.

Experimental evidence [35, 81] suggests that the charateristics of a neuron is captured

in the spiking patterns. Extending this idea, a two step approach is applied to estimate

the connectivity of the neuronal population. The first step involves synchronization of the

spikes of the model with the spikes in the membrane potential observations. The proposed

system identification technique is then applied on the synchronized model data to compute

the parameters of every individual neuron as well as the synaptic connections from all pre-

synaptic neurons. In this section the Hindmarsh-Rose [82] and Hodgkin-Huxley [11, 83]

models are used to generate membrane potentials in an interconnected neuronal network

(50 neurons with 40 % connectivity). The pre-synaptic neurons are classified as excitatory

(80 %) and inhibitory (20 %). The results of the estimated connectivity matrix for random

networks and networks with directed connections are reported. As the majority of the

connections in the network are identified correctly, it can be suggested, with a certain degree

of confidence, that the proposed method can be applied to data obtained from biological

neurons.
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4.3.1 Spike synchronization using ensemble Kalman filter :

State and parameter dynamics -

An ensemble Kalman filter is implemented to estimate the state variables and parameters of

an individual neuron. The discretized states of the nonlinear dynamic model can be derived

from Eq. 4.4.

xi(k + 1) = g(xi(k),pi(k), Ii,syn(k), I(k)) + νx(k) (4.34)

The state vector, xi(k) = [vi(k), ui(k)]T , represents the membrane potential and recovery

variable of the Izhikevich model. νx(k) is the process noise that is assumed to be white

gaussian with zero mean. The external input to the neuron, I(k), is assumed to be known

and observable.

The parameter vector, pi(k), and synaptic input, Ii,syn(k), are assumed to have much

slower dynamics than the state variables.

pi(k + 1) =pi(k) + νp(k)

Ii,syn(k + 1) =Ii,syn(k) + νI(k)

(4.35)

The vector combining the states and parameters, X, and its covariance is defined as

X =
[
xTi ,p

T
i , Ii,syn

]T

P (k) =


cov{xi(k)} 0 0

0 cov{pi(k)} 0

0 0 var{Ii,syn(k)}


(4.36)

The output of the Kalman filter is a weighted function of the membrane potential. Successful

synchronization of the model with the observations is achieved by using a nonlinear kernel
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such that the output is weighted more in the neighborhood of the spikes.

yi(k) = h(xi(k)) = (vi(k) + 100)e
vi(k)−30

τ + νy(k) (4.37)

where τ = 50ms.

ν(k) =
[
νx(k)T ,νp(k)T , νI(k)

]T
is the process noise vector. The individual variances are

tuned to provide an accurate estimate of the membrane potential, vi(k). The covariance of

the process noise vector is represented by Qν .

Qν(k) =


cov{νx(k)} 0 0

0 cov{νp(k)} 0

0 0 var{νI(k)}

 (4.38)

As the connectivity of the network is unknown, the dynamics for the synaptic current,

Ii,syn(t) cannot be used. The sum of the external current and synaptic input is treated as

a single variable in the model dynamics within the Kalman filter framework.

The observed output used by the Kalman filter to provide the correction to the parameter

and state estimates is generated by applying the nonlinear kernel function from Eq. 4.37 to

the observed membrane potential.

yi,obs(k) = h(vi,obs(k)) (4.39)

Covariance and state propagation -

The Unscented Kalman filter [32], described in Sec. 2.2, is implemented to estimate the

membrane potential and synchronize the spikes of the model and observed data. The

ensemble is created using the matrix square root of the state covariance. The algorithm
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applies the unscented transform to generate the predicted values of each ensemble members

and computes the weighted mean and covariance. Weighing the mean greater than the

other ensemble members has shown to produce better results [30].

The aposteriori states and covariances are then computed using the Kalman gain, K.

K(k) =P xy(k + 1|k)Pyy(k + 1|k)−1

X̂
a
(k + 1|k + 1) =X̂

a
(k + 1|k) +K(k)[yobs(k)− ŷ(k + 1|k)

P a(k + 1|k + 1) =P a(k + 1|k)−K(k)P xy(k + 1|k)

(4.40)

Comparison of observed membrane potential and filter estimate -

Fig. 4.22 shows the results of spike synchronization using the ensemble Kalman filter. The

membrane potential is shown in the top left subplot, output of nonlinear kernel in the bottom

left and parameter estimates on the right. The estimates are shown in red, observations in

green and the true value in blue. The parameters converge to minimize the error between

the observed output, Eq. 4.39 and the filter output, Eq. 4.37 (shown in the bottom left

subplot). The comparison of the membrane potential estimate (red) and its true value

(blue) is shown in the top left subplot. The green trace represents the observations of the

membrane potential corrupted by white noise with zero mean. It can be seen that the spikes

of the filter estimate is synchronized with the observations. However, as shown in Fig. 4.23,

there remains a significant difference in the dynamics of the membrane potential of the two

models. The unshaded region represents the spike model, Eq. 4.4, and the shaded region

represents the reset model, Eq. 4.5. The spike model trace of the membrane potential is

used to identify the parameters of the neuron model.

4.3.2 Estimating the post-synaptic potential dynamics

Fig. 4.24 shows the membrane potential and post-synaptic potential of the individual neuron

model described in Sec. 4.1.2. Empirical analysis of the dynamics, treating the membrane
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Figure 4.22: Estimation results of the ensemble Kalman filtering.
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Figure 4.23: Comparison of observed and estimated membrane potentials.

potential as an input and the PSP as an output, showed that the response can be approxi-

mated with a first order system. The PSP, si(k), (bottom row) is generated as a first order

response of the spike train (middle row). The membrane potential of the neuron is plotted

in the first row.
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Figure 4.24: Representing the pos-synaptic potential as an output of the spike train pulse.

The spike train pulse, ri(k), shown in the middle row is an artificially generated rectan-

gular pulse signal that is high when the neuron spikes and low otherwise. The pulse width

is a pre-defined parameter equal to the reset time of the neuron model, τR, described in

Eq. 4.3. The input-output relationship of ri(k) and si(k) can be represented by a gain, σi

and filter coefficient, ηi.

si(k) =
σi

1− ηiz−1
ri(k), 0 < ηi < 1 (4.41)

Substituting the above equation in the ARMA system representation described in Sec. 4.1.3

we get

Ai(z)vi(k) =Bi(z)vsi(k)2

+

N∑
j=1,j 6=i

Ci,j(z)
σj

1− ηjz−1
rj(k − 1)

+Di(z)I(k − 1) + di

(4.42)
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The regressor used for least squares estimation is then defined as

ϕi(k) = [vsi(k), vsi(k − 1), vsi(k − 2),

rj(k − 1), rj(k − 2),

I(k − 1), I(k − 2), I(k − 3),

u(k),−vi(k − 1),−vi(k − 2),−vi(k − 3)]T

The synaptic weight wij , can be computed from the elements in the estimated parameter

vector corresponding to rj(k − 1) and rj(k − 2) in the regressor ϕi.

4.3.3 Clustering of connectivity estimates

The presence of model error and a non-observable input (PSP) to the neuron introduces a

scaling factor in the connection estimates. The final value of the weights cannot be decoupled

from the gain of the PSP, σj . However, the scaling factor remains constant for connections

from all the pre-synaptic neurons to the specific post-synaptic neuron. To ensure that

the connection estimates of different post-synaptic neurons in the network are in the same

range, the steady state values are normalized and clustered using the k-means algorithm

[84] in MATLAB (kmeans). The steady state values of the estimates are computed by

averaging the data points over the past 30 ISIs. They are then classified into three clusters

with centers at 1, −1 and 0 signifying an excitatory pre-synaptic neuron, inhibitory pre-

synaptic neuron and no synaptic connection respectively. The clustered connectivity matrix

is then compared to the true connectivity and the results are quantified using sensitivity

and specificity measures.

sensitivity =
TP

TP + FN

specificity =
TN

FP + TN

(4.43)
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where {TP, FN,FP, TN} denote the number of true positives, false negatives, false

positives and true negatives respectively. In numerical terms, a true positive is a +1 or −1

connection being identified correctly and a false positive is a 0 connection being identified

as a +1 or −1. Similarily true negatives and false negatives relate to the 0 connection, the

absence of a synapse.

The next section includes results of connectivity estimation for a network of (a) Hindmarsh-

Rose (HR) neurons and (b) Hodgkin-Huxley (HH) neurons. The equations for both non-

linear dynamic systems are included in the appendix. The dynamics of both models are,

however, significantly different when compared to the dynamics of the Izhikevich neuron.

Results show that inspite of the presence of model error and observation noise, the identi-

fication algorithm is able to correctly estimate the connectivity of the network.

4.3.4 Results :

The identification of the connectivity in a network of neurons discussed in this chapter deals

with the implementation of the prediction error least squares algorithm to estimate the linear

model parameters. The derivation of the linear ARMA model from the nonlinear model

equations is crucial to the convergence of the parameter estimates. After the formulation of

the regressor and the output, Eqs. 4.8-4.14, the proposed identification algorithm involves

the following steps.

1. Synchronization of the model membrane potential with the observed membrane po-

tential using the Unscented Kalman filter (Sec. 4.3.1).

2. Pre-filter the ARMA model output and regressor data (Eq. 4.32).

3. Use the recursive storage PE-LS method (Eqs. 4.24-4.26) to generate the linear model

parameter estimates.

4. Convert the linear model parameter estimate to the nonlinear neuron model param-

eter estimates, specifically the connection parameters, based on the derived relation

(Eqs. 4.27-4.31)
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5. Normalize and cluster the connection estimates (Sec. 4.3.3).

Data is generated using HR and HH neurons for networks of different sizes. The post-

synaptic potential is modeled as a first order response to the spike pulses. Each network

had 40 % connectivity. 80 % of the neurons were classified as excitatory and the remaining

20 % as inhibitory. White noise was added to the observed membrane potentials of all

individual neurons in the network. The ratio of noise to signal variance was maintained at

0.1. The results were based on 100 simulations with randomly generated connections for each

simulation. The convergence of the connection estimates (for four selected post-synaptic

neurons) is shown in Figs. 4.25 and 4.27. The ellipses represent the three clusters - red for

excitatory, blue for inhibitory and green for no connection). A mismatch in the color of the

trace and the ellipse in which it converges indicates that the particular connection was not

identified correctly. It was observed that convergence of the parameters was achieved in less

than 1000 ms which corresponded to 20-40 ISIs depending on the nature of the particular

post-synaptic neuron. The estimated connectivity matrix is then compared to the true

connectivity (Figs. 4.26,4.28) for different network sizes (N = 20, 30, 40). All images are

plotted on the same color scale and the sensitivity and specificity calculations are reported

in Tables 4.6 and 4.7. Results do not indicate a significant deterioration with increase in

network size. The model equations used to generate data are included in the appendix.

Table 4.6: Statistical results for neuronal network data generated from HR model

N = 10 N = 20 N = 30 N = 40 N = 50

Sensitivity 0.99 ± 0.01 0.97 ± 0.03 0.93 ± 0.03 0.90 ± 0.05 0.88 ± 0.05
Specificity 0.99 ± 0.01 0.98 ± 0.02 0.96 ± 0.03 0.94 ± 0.04 0.91 ± 0.04

Table 4.7: Statistical results for neuronal network data generated from HH model

N = 10 N = 20 N = 30 N = 40 N = 50

Sensitivity 0.99 ± 0.01 0.99 ± 0.02 0.95 ± 0.04 0.93 ± 0.05 0.91 ± 0.05
Specificity 0.99 ± 0.01 0.97 ± 0.03 0.96 ± 0.03 0.94 ± 0.04 0.93 ± 0.05
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Figure 4.25: Convergence of connection parameters in a network of 40 HR neurons

(a) N = 20 (b) N = 30 (c) N = 40

Figure 4.26: Connectivity estimation for Hindmarsh-Rose networks of different sizes.
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Figure 4.27: Convergence of connection parameters in a network of 40 HH neurons

(a) N = 20 (b) N = 30 (c) N = 40

Figure 4.28: Connectivity estimation for Hodgkin-Huxley networks of different sizes.
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4.4 Tracking changes in large neuronal networks

The proposed connectivity estimation technique performed excellently on small networks,

even in the presence of a model error and incorrect dynamics of the post-synpatic potential.

The challenge is, however, to estimate the connectivity in large networks ( 50-100 neurons)

and also to be able to track the changes in the synaptic strengths. We generate membrane

potentials from a network of 71 HH and HR neurons. The network (40% connectivity) is

simulated for 10s. Approximately 10% of the connections, chosen at random, are modified

at 5s. The excitatory and inhibitory neurons do not change nature. The changes in the

connections signify the development of new connections and the degeneration of synapses

in the brain. We estimate the connections, and present results of the estimation at 5s and

10s comparing it with the respective connectivity matrices at those times. We also report

the specificity and sensitivity measures in Table 4.8.

Table 4.8: Specificity and sensitivity measures for a 71-neuron network.

Sensitivity Specificity

t = 5s 0.90 0.92
t = 10s 0.88 0.91

Fig. 4.29 shows the results of connectivity estimation. The parameters were averaged

over a 3s window and normalized. The images on the first row represent the actual con-

nections, and the estimated connections are shown on the second row (red for +1 and blue

for −1). The color scale of all images are the same. The connections are estimated at two

time instances, 5s and 10s. The estimated connections are shown in the second row. The

subplots at the bottom represents the convergence of four of the connection parameters.

The red trace is the actual connection with a step change in value at t = 5s. The blue/black

trace is the estimation. The blue part of the trace are the data points that are averaged to

compute the steady state value of the connection. It can be observed that the identification

algorithm is able to accurately capture the changes in the connectivity. The transient time,
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after the step change in the actual connection, is approximately 1s.

(a) t = 5s (b) t = 10s

(c) Estimating time varying connections

Figure 4.29: Connectivity estimation in a network of 71 neurons with time-varying connec-
tions.
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Chapter 5: Discussion

Over the last two decades there has been a lot of research on developing neuron models.

The focus has primarily been in building simple and efficient mathematical models that

can simulate the membrane potential recordings of a biological neuron. While the complex

nonlinear dynamics of the neuron can be achieved by using higher order differential equa-

tions, it is difficult to generate the response of a network of neurons due to computational

limitations. Researchers have been able to use a discontinuous reset to achieve the range

of responses in a two dimensional nonlinear state space system. These hybrid systems have

been used to simulate large populations of neurons. However, due to the presence of the

reset, it is not possible to use estimation techniques to compute the parameters and states

of the models. There is the need to develop new and improvised methods that are able esti-

mate the parameters for this class of neuron models. This dissertation presents parameter

identification techniques for single neuron models and neuronal networks.

5.1 Single Neuron Models

The objective was to optimize a model for neural spiking activity using the ISIs of a single

neuron. Results with synthetic data showed that we were able to estimate the parameters of

the model with sufficiently high accuracy. Since existing error functions for spike trains do

not satisfy the requirements of convexity and smoothness, a new function is designed based

on the time of spikes. The analytical gradient of this function is computed with respect to

the parameters being estimated. The gradient descent algorithm was used to navigate the

parameter space and find the optimal parameter vector.

The model was also optimized to fit the publicly available INCF experimental data.

The gradient descent technique was combined with the Nelder-Mead method. The results
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showed a notable improvement over using Nelder-Mead optimization technique only.

The optimization technique used has not been applied to bio-plausible models. The

method developed in this chapter can be extended to different nonlinear dynamic models,

such as the Hodgkin-Huxley model. Another limitation of the method is the length of the

spike train. The spike train data has been chosen in a way that allows comparison of the

results with the efforts of other researchers in the field. The model can be optimized for

longer spike trains that will enable the formulation of better predictors of neural spiking

activity. The trade off to be considered is that the computational cost of the algorithm

increases proportionally with an increase in the length of the spike train.

5.2 Neuronal Networks

Synaptic connections in the brain are responsible for the transfer of information from one

neuron to the other and the communication between the different functional regions. There

is experimental evidence of changing connectivity in the brain with new synapses contin-

uously being formed as well as decay of existing ones. While a strong correlation exists

between the transformation in the patterns and the response of the brain, there is a lack of

methods that can estimate the connectivity in real time. Dynamic systems have success-

fully simulated large populations of neurons and are moving towards building a complete

brain model. It is therefore important to use such models and develop techniques that can

identify the synaptic connections in a network from the membrane potential observations

of the individual neurons.

Linearly coupled Izhikevich neurons were used to simulate the dynamics of a neuronal

population. The nonlinear model was mathematically re-defined as an auto regressive mov-

ing average system that enabled the implementation of the least squares algorithm for

system identification. The performance of this method was tested for data generated from

the same model to ensure that there is convergence and to report the effect of observation

noise and network size on the accuracy of parameter identification. Data was then generated

from different models of neuronal networks to demonstrate the robustness of the method in
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the presence of model error. Sensitivity and specificity results for networks of different sizes

are reported. While an increase in the number of neurons effects in fewer percentage of

correctly identified connections, the degradation is not significant and the results remains

within acceptable limits even for networks of 50 neurons. The method is also able to track

changes in the connectivity as it utilizes recursive storage of the data implemented with a

forgetting factor. This enables it to estimate the dyamics of time-varying connections and

provide more information about the effects of changing connectivity.

While the method is successful in computing the connections of moderate size networks

(50-100 neurons), it is important to extend this to larger networks (≈ 1000 neurons). Also,

the technique can be adapted to be used with other nonlinear dynamic models with linear

coupling, such as extracellular models of groups of neurons. This would enable us to estimate

the synaptic strengths in in vitro recordings from neuronal tissue.
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Appendix A: An Appendix

A.1 Hindmarsh Rose model

The dynamics of a single neuron is described according the equations below. The excitation

to the neuron is the sum of the external current, I(t), and the synaptic current which is a

weighted sum of the post-synaptic potentials.

ẋi(t) =yi(t)− aix3i (t) + bix
2
i (t)− zi(t) + I(t) +

g

N

N∑
j=1

wijsj(t)

ẏi(t) =ci − dix2i (t)− yi(t)

żi(t) =εi[γi(xi(t)− xi0)− zi(t)]

(A.1)

The state xi(t) represents the membrane potential of the single neuron, i. It is scaled based

on the range of the experimental measurements of a biological neuron. This range is also

in agreement with the range represented by the Izhikevich model.

A second order differential equation is used to represent the dynamics of the post-

synaptic potential.

s̈i(t) +

(
1

τ1
+

1

τ2

)
ṡi(t) +

1

τ1τ2
si(t) = ṗi(t) + α

(
1

τ1
− 1

τ2

)
pi(t) + pi(t) (A.2)

where

pi(t) =
1.5

1 + ke−100xi(t)

The parameters used for the single neuron dynamics are as follows :

ai = 0.5; bi = 5; ci = −8; di = 5; γi = 1; εi = 0.001; xi0 = −1;
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The parameters for the PSP dynamics are randomly chosen from a pre-defined set. The

ranges for each parameter is given below :

τ1 ∈ [5, 15]; τ2 ∈ [300, 500]; α ∈ [0.7, 0.9]; g ∈ [0.5, 1.5]; k = 9

A.2 Hodgkin Huxley model

A bio-plausible model is used to simulate the dynamics of a single neuron in the network,

as discussed in [76]. The post-synaptic potential dynamics remain the same as described in

the previous section, Eq. A.2.

v̇i(t) =− gNam3(t)h(t)[vi(t)− ENa]− gKn4(t)[vi(t)− EK ]− gL[vi(t)− EL]+

I(t) +
g

N

N∑
j=1

wijsj(t)

ṁi(t) =am(vi(t))[1−mi(t)]− bm(vi(t))[mi(t)]

ḣi(t) =ah(vi(t))[1− hi(t)]− bh(vi(t))[hi(t)]

ṅi(t) =an(vi(t))[1− ni(t)]− bn(vi(t))[ni(t)]

(A.3)
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The model functions are :

am(vi(t)) =
0.1(vi(t) + 40)

1− e−(vi(t)+40)/10

bm(vi(t)) =4e−(vi(t)+65)/18

ah(vi(t)) =0.07e−(vi(t)+35)/20

bh(vi(t)) =
1

1 + e−(vi(t)+35)/10

an(vi(t)) =
0.01(vi(t) + 55)

1− e−(vi(t)+55)/10

bn(vi(t)) =0.125e−(vi(t)+65)/80

(A.4)
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