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ABSTRACT 

ASSESSING HOSPITAL SYSTEM RESILIENCE TO EVENTS INVOLVING 

PHYSICAL DAMAGE AND DEMAND SURGE 

Bahar Shahverdi, M.S. 

George Mason University, 2019 

Thesis Director:  Elise Miller-Hooks, Professor 

 

 

 

This thesis investigates the effectiveness of formalized collaboration strategies through 

which patients can be transferred and resources, including staff, equipment and supplies 

can be shared across hospitals in response to a disaster incident involving mass casualties 

and area-wide damage. Inflicted damage can affect hospital infrastructure and its 

supporting lifelines, thus impacting capacity and capability or, ultimately, services that are 

provided. Using a discrete event simulation framework and underlying open queuing 

network conceptualization, impacts on critical resources, physical spaces and demand are 

modeled and the system’s resilience to these hazard events is evaluated. Findings from 

numerical experiments on a case study involving multiple hospitals spaced over a large 
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metropolitan region replicating a system similar to the Johns Hopkins Hospital System 

show the potential of strategies involving not only transfers and resource sharing, but also 

joint capacity enhancement alternatives.
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INTRODUCTION 

An urban disaster event can lead to sudden surge demand for regional health care services. 

In 2017 in the U.S. alone, events, including the mass shooting in Las Vegas and Hurricanes 

Irma and Harvey, have highlighted the need for efficient hospital response to incidents 

involving high numbers of casualties, i.e. Mass Casualty Incidents (MCIs). In these 

hurricanes, casualties were estimated at 129, including 44 direct and 85 indirect fatalities 

(Kay, 2018), and 82 (Moravec, 2017), respectively. In the mass shooting event, however, 

the numbers were of significantly greater magnitude at over 500 injured and 59 deaths 

(Blankstein, 2017). Consequently, an expectation of significant demand increase in 

emergency department visits compared to demand in ordinary circumstances can be 

expected in MCIs. Simultaneously, the capability to supply health care services may be 

diminished due to structural damage, reduced workforce, or loss of critical support systems 

(power, water supply, transportation, cyber, sanitation and more) and supplies produced by 

the disaster event. Illustrative of this, in the U.S. Virgin Islands, Hurricane Irma led to a 

reduction in a single hospital’s workforce by 150 of 600 employees (Allen, 2018). Also in 

Hurricane Sandy of 2012, damage to electrical systems, emergency and exam rooms, and 

elevators was incurred, resulting in reduced capacity for admitting new patients in several 

hospitals in the region (Evans, 2012). Thus, efficient use of available health care resources 

is necessary to address the unexpected spike in demand for urgent care despite diminished 

service capacities. Such efficiency is required to achieve minimum fatality rates at 

individual hospitals and in the wider healthcare network. 

In previous work, Tariverdi et al. (2018a) studied the role of capacity enhancing 

actions (i.e. modified operations and alternative standards of care) for a single hospital, 

along with transfers out by patients who would not be seen in reasonable time, in the 

responsiveness of a single hospital to circumstances involving mass casualties. They 

developed a patient-based, resource-constrained, multi-unit hospital modeling approach. 

This paper extends their approach to investigate the effects of diminished capacities and 

potential responses to these reductions when faced with physical damage to the hospital 

infrastructure and its supporting lifelines. In addition to capacity enhancing actions, the 
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potential of coordinated response by two or more hospitals in the form of 

formalized collaboration is also investigated here. Coordination in this study includes the 

sharing of physical spaces, resources (personnel, equipment or supplies) and information, 

as well as patient demand handling in the form of on-scene patient assignment to hospitals 

or transfer of patients who otherwise would not receive timely service at their origin 

hospital. 

Numerous works in the literature consider performance of specific units, such as 

emergency departments (EDs), operating rooms (ORs), intensive care units (ICUs), 

pharmacies, neonatal care, and mental health care departments for conventional 

circumstances within individual hospitals (e.g. Draeger et al., 1992; Duguay and 

Chetouane, 2007; Kaushal et al., 2015; Komashie and Mousavi, 2005, Jun et al.,1999). 

Cimellaro and Pique (2016) employed a discrete event simulation (DES) platform with 

Monte Carlo simulation results to estimate parameters for a metamodel of resilience to 

disaster for the emergency department of a single hospital. Recent comprehensive reviews 

can be found in (Lakshmi and Appa Iyer, 2013; Saghafian et al., 2015). These works 

provide methods for quantifying the capacity (physical) or capability (services) in the 

studied units by such measures as waiting times for patients to be seen and patient 

throughput.  

A few works quantify performance of individual hospitals in an MCI (TariVerdi et 

al., 2018a), and fewer quantify performance of a health care network in such events 

(specifically, Yi et al., 2010; TariVerdi et al., 2018a). Yi et al. calibrated a parametric 

regression model from simulation results for capacity planning of hospitals operating 

independently within a region in relation to an earthquake event or other similar disasters. 

TariVerdi et al. (2018b) propose a multi-stage stochastic optimization model for measuring 

resilience of a network of healthcare facilities where collaboration involves optimal patient 

assignment to hospitals and patient transfers between hospitals. The model accounts for the 

hospital’s dependence on interdependent water, power and transportation lifelines and 

seeks optimal resilience enhancing actions in both preparedness and post-event stages of a 

disaster with potential physical damage and mass casualties. Other related works consider 

intra-unit coordination within a single hospital (Warren et al., 2004; Nyssen et al., 2007). 

While very few works consider the performance of a whole hospital or wider health 

care network, the importance of analyzing the larger system has been recognized (Barbisch 

and Koeing, 2006). Barbisch and Koeing note the important potential role of our national 

Incident Command System (ICS) in hospital system performance for an MCI. Several 

works describe preparedness actions, such as disaster training for health care workers (Hsu 

et al., 2006) or assessed their preparedness for evacuating a hospital in a natural hazard 

event (Schultz et al., 1996). Kaji and Lewis (2006) surveyed hospital preparedness 

strategies for Los Angeles County. 
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Since the number of casualties and injury types could vary significantly across 

hazard event categories, health care providers must be prepared to respond to the variety 

of hazards and range of event impacts that their geographic regions may face, whether 

induced by a malicious act, a natural hazard event, or an accident, e.g. train derailment or 

industrial chemical release. The Federal Emergency Management Agency (FEMA) 

provides a list of disasters for which states must be prepared. The list includes biological 

and chemical threat, drought, earthquake, fire, flood, heat, hurricane, landslide, radiation 

and nuclear accidents, tornados, tsunami, volcano, wildfire, and winter storms. These 

events may overwhelm any single health care facility, thus triggering a need for formal or 

informal collaborations across the system. 

In terms of collaborations, Wang (2009) assessed coordination between hospitals 

and the Center for Disease Control for improved tuberculosis (TB) control in China. Van 

Eyk and Baum (2002) studied the role of prior interactions between personnel in facilitating 

collaboration within a given hospital of the benefits of such intra-hospital coordination. It 

appears that only TariVerdi et al. (2018b) proposes tools for quantifying the performance 

of two or more hospitals operating within a coalition or specific analysis of such systems. 

Further, quantification techniques to assess hospital performance where physical damage 

is incurred is also uniquely addressed in their paper. Their mathematical modeling 

approach can only roughly account for the effects of a disaster impact on the structures and 

supporting lifelines and uses a simplistic collaboration with patient transfers and a single 

patient type. No resource sharing is modeled. Capacity enhancing actions are included only 

through uniformly faster service rates.  

 To address these gaps and a need to consider a wide variety of disaster types, a DES 

framework with underlying open queuing network conceptualization is proposed to model 

disaster impacts on critical resources, physical spaces and demand, and assess the resilience 

of a hospital system given various actions, including coalition formation and 

implementation of capacity enhancement strategies under varying disaster scenarios. This 

DES conceptualization builds on earlier work by Tariverdi et al. (2019) in which a patient-

based, resource-constrained, multi-unit hospital modeling approach was proposed for 

evaluating the performance of a single, stand-alone hospital in routine and surge demand 

scenarios. Findings from numerical experiments on a case study that replicates key 

elements of the five main hospitals in the Johns Hopkins Healthcare System (JHHS) in the 

Greater D.C. and Baltimore areas, based on publically available information, show the 

potential (i.e. reduced losses and wait times) of strategies involving resource sharing, 

patient transferring and joint capacity enhancement alternatives (i.e. cancellation of 

scheduled operations, longer shifts for staff, lower staff-to-patient ratios). In the next 

section, coalition strategies proposed in the literature are discussed and strategies 

considered in the case study are described



4 

 

COALITION POLICIES 

In a formal regional health care coalition operating in a MCI, member hospitals prepare to 

pool physical and personnel resources, as well as share information pertaining to situational 

awareness. This enables efficient re-allocation decisions and distribution of urgently 

needed supplies during the incident. These activities can be facilitated through an ICS, 

which connects health care network entities within the coalition. Such coalitions can be 

very effective. From the analysis of data associated with the management of triage, surge 

demand and resources just after an event involving an attack on the Underground in 

London in 2005 (Aylwin et al. [25]), it was found that the critical mortality rate 

substantially decreased as a consequence of such coordination actions in comparison to 

similar rates under related prior events (Aylwin et al. [25]). These improvements were, at 

least in part, attributed to enabling centralized decisions concerning patient allocation to 

hospitals as a function of injury level, proximity and wait times. 

Participation in a coalition is consistently suggested in hospital preparedness 

planning guidelines, and coalitions are now a significant consideration in MCI and disaster 

preparedness planning within the U.S.  In fact, 56% of hospitals are involved in a coalition 

(American Hospital Associations, 2016). In addition, the existence of Level-1 trauma 

centers (hospitals equipped with highest care levels) reduce risk of death in severely injured 

patients (McConnell [26]). Regional response efforts can incorporate this risk factor in 

patient assignments; otherwise, all health care entities in the area could anticipate receiving 

such patients. Despite this recognition of the importance of coalitions, it appears that no 

prior study in the published literature has sought to quantify benefits of hospital 

participation in a coalition in routine or MCI conditions. 

Patients may enter the health care network independently, choosing a particular 

facility, or they may be brought in from a disaster scene by emergency personnel. In the 

latter case, with a coalition in place, centralized allocation decisions on the assignment of 

patients to individual facilities may be made as was the case in London. In favor of such 

coordination efforts, Jarvis et al. [27] argue that rapid and effective triage enables efficient 

patient flows by member hospitals and improved overall system performance. To a 
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community, efficient response by the wider health care system is as vital as the 

performance of each individual facility. 

Formal coalition agreements or advanced health collaboratives between regional health 

care facilities can aid in joint preparedness planning. This unified approach is facilitated 

through communications and transportation, mechanisms for exchanging services, 

sharing resources and information, and transferring patients or moving staff between 

facilities. The role a specific facility plays within the coalition may depend on the 

incident characteristics. For example, one facility may have a burn unit while 

another may have an isolation unit. Moreover, patient needs are a function of incident type. 

Consider that in an earthquake, the number of severely injured patients needing operating 

room facilities would likely be greater than that found in a flood event. Non-formalized 

collaborations, such as joint emergency preparedness and response planning, even in the 

absence of official agreements between regional hospitals, are also valuable. The National 

Capital Region (NCR) Health Care Coalition in the Washington, D.C. metropolitan area 

involves 10 hospitals across Maryland, Virginia and the District, and is an example of an 

advanced health collaborative. This coalition was designed for joint operations in a regional 

disaster or an MCI where the resources of one hospital might become overwhelmed. The 

collaborative involves hospitals from different hospital systems, public and private. In 

addition to regional collaborations, some hospitals are part of a larger health care system 

in which they share some services and human resources, supply warehouses, and 

operational strategies. Member hospitals in such coalitions are not necessarily spatially 

proximate. JHHS is one such system in the U.S. 

This study seeks to quantify the potential of various coalition agreements in a 

regional health care system in routine and emergency circumstances. Four policies for such 

agreements are envisioned as described next. They are studied further in coming sections. 

Whether coordination involves only information sharing or a centralized allocation scheme 

with sharing of resources, the agreement shapes a queuing network conceptualization used 

here to model hospital system operations and response capabilities under routine or 

emergency conditions. The agreement affects operational policies that determine which 

server is assigned (which department in which hospital) and effectively the order in which 

customers are served. 

The system of hospitals is conceived as a network of open queuing networks (one 

for each hospital). From this perspective, each hospital is a server. Patients (customers) 

arrive to the hospital (server) according to an arrival distribution that is a function of the 

specific disaster event. Each patient is prioritized according to need. For example, those in 

need of immediate care will receive service earlier than those who are in less critical 

condition. Thus, a priority queuing discipline with preemption is employed. Total system 

capacity for serving additional patients is given as c and is computed from the sum of 

available beds at the constituent hospitals. Each of these four policies can be represented 
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as a GI/G/H/GD/c queue, meaning that interarrival and service times are independently and 

identically distributed, both of which are governed by general distributions (GI and G) 

associated with the disaster type, with H servers (hospital nodes), a general queue discipline 

(GD), which is specified by the policy (1-4), and a total system capacity of c. The following 

policies are tested; these policies affect arrival rates and queue disciplines. 

 

Policy 1 (P1). No coordination: Under this assumption, all health care entities operate 

independently with their own patient queues and resource pools. Patients at the MCI scene 

are presumed to walk in or arrive by emergency medical service (EMS) vehicles to the 

closest hospital where initial triage is completed. Minor injuries are presumed to be treated 

at the scene. Patients can choose to leave a hospital to seek faster service elsewhere when 

arriving and finding queues for entering triage to be excessively long. With no cooperation 

between hospitals, neither patients nor resources are transferred or shared. In the queuing 

network conceptualization, this policy is modeled using a set of independent resource 

pools, one pool per hospital. Each hospital has its own set of independently functioning 

queues for its various units. The queueing network topology of a health care system 

operating under this policy is shown in figure 1-a. 

Policy 2 (P2). EMS-only coordination: Under this second policy, hospitals operate 

largely independently, but it is assumed that real-time information on hospital capacities 

for facilities in the area are available to EMS through the ICS. EMS chooses the closest 

hospital to handle each patient from those with available capacity. Once a patient enters a 

hospital, she is treated at that hospital. She cannot be transferred. There is no transfer of 

resources from one hospital to another. Urgent care clinics are not considered as recourse 

to handle excess demand. A queuing network topology that would be associated with this 

policy would be similar to Policy 1 and is depicted in figure 1-b. Only arrival rates would 

differ. For an MCI with a large number of casualties, this policy might be adjusted to use 

a combination of the amount of capacity for taking new patients with given needs and 

distance for a globally optimal assignment. 

Policy 3 (P3). Health care coalition response: The U.S. department of Health and 

Human Services recommends the use of Health care Coalition Response Teams (HCRT) 

operating based on ICS for coordinating coalition member organizations. The primary 

purpose of HCRT is to provide situational awareness for its members. In addition to 

providing incident information, the HCRT assists with the allocation of internal resources 

and the distribution of aid from other organizations (Preparedness Health Emergency, 

2009). This policy models the health care system that benefits from the aid of the HCRT 

as a central coordinating entity. 

In this policy, health care entities are assumed to communicate with each other, 

patients can be transferred between facilities, and resources can be shared. Patients with 
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less severe injuries facing high wait times may be transferred to the next closest facility 

within the coalition that can accept new patients. Secondary facilities may serve as primary 

care units or clinics for patients with minor injuries. Some specialized outpatient facilities, 

such as ambulatory surgical centers, can provide excess OR capacity for affiliated 

hospitals. Hospitals coordinate with EMS for patient transfers as is necessary to exploit 

such excess capacity. This policy benefits from dynamic patient assignments based on 

available capacity information and expected waiting times for cooperating facilities, which 

are assumed to have direct communication with other health care entities in the coalition. 

In the queuing network conceptualization, this policy is modeled using a single shared 

resource pool. Each hospital maintains its own set of independently functioning queues for 

its various units. A similar arrival pattern to that in policy 1 is assumed. The queueing 

network topology of a health care system operating under this policy is shown in figure 1-

c. 

Policy 4 (P4). Centralized processing: Even excellent communications and 

exceptional responsiveness will not prevent fatalities at the MCI scene. However, rapid 

patient transfer to the best-suited hospitals based on prehospital triage and information on 

hospital capacities can increase efficiency by utilizing limited resources and reduce losses. 

This policy presumes that prehospital triage is conducted at the MCI scene or at a few 

locations within the area for MCIs affecting larger geographical areas. Patient allocation 

decisions are also made at the scene. All decisions are made centrally with full information 

about hospital capabilities and current capacities for handling new patients with varying 

injury types and severities. In the queuing network conceptualization, like policies 1 and 

2, this policy is modeled using a set of independent resource pools, one pool per hospital. 

Each hospital has its own set of independently functioning queues for its various units. 

Different from these policies, however, two-stage patient transfer from the MCI scene to 

triage and then to a health care facility is implemented. The queueing network topology of 

a health care system operating under this policy is shown in figure 1-d. 

Policies 1 and 2, thus, are similar in that they do not share resources or patients. 

However, in policy 2, on-scene medical assistants have information on available hospital 

capacities, which they use in the allocation of patients to hospitals. Additionally, Policies 

3 and 4 are similar in that patients are assigned to hospitals using a centralized processing 

approach.  

Commonalities and differences across the four policies are depicted in figure 2. The 

potential combinations are shown in the intersections of the Venn diagram in the figure. 

The next section describes the modeling platform and modeling implications of applying 

these policies. 
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EXPERIMENTAL PLATFORM 

Individual hospitals along with transfer paths for patients coming from specific units of 

one hospital in transferring to a second hospital (i.e. hospital interconnections), shared 

resources and guiding policies for patient assignment to care paths within a hospital were 

modeled within the ExtendSIM microscopic discrete event simulation platform. 

ExtendSim’s Advanced Technology libraries, including value, item, rate and plotter, are 

used extensively in model creation and results analysis. Also used in results analysis and 

error checking is a two-dimensional option to help follow patient flows inside and between 

hospitals. 

The modeling approach here expands on existing modeling capabilities that use a 

patient-based, whole-hospital (including 9 critical units), resource-constrained modeling 

approach developed for a single generic, urban hospital of trauma level-1 or -2 (TariVerdi 

et al., 2019) to multiple, interacting hospitals. Details of the modeling approach taken, 

including for example, by delineation of patient care paths, simulation of patients, tracking 

of pooled resources, shifts for staff, for an individual hospital operating under ordinary, 

surge and extraordinary (MCI) demand scenarios can be found in (Tariverdi et al., 2018a). 

The modeling framework is applied to replicate a system of five hospitals with 

similar geographic proximity and characteristics to the five main hospitals in JHHS. These 

hospitals are set to have 1194, 440, 318, 282 and 222 beds representing The John Hopkins 

Hospital, Bayview Medical Center, Sibley Memorial Hospital, Howard County General 

Hospital, and Suburban Hospital, respectively. The distances between hospitals in this 

system range from 20 to 65 miles. Such distances can be key factors in decisions associated 

with the assignment of patients to hospitals from a disaster scene. 

Each independent hospital is a queuing network into itself, and can be represented 

within a simulation module known in ExtendSIM as a hierarchical block. Details of each 

hospital, including inputs of each of the five hospitals, outputs and activities are tracked. 

Each hospital block includes subblocks that replicate processes and resources maintained 

within that hospital. For example, a shift block can be used to maintain staff shifts for a 

given hospital. Likewise, queue blocks can maintain details of each queue. Each queue 

block has an input and a results tab. The maximum allowable queue length, i.e., queue 

capacity, resources required to provide associated services, and renege options (maximum 

time patients will wait before leaving) are defined for each queue in an input tab. 

Information on queue length, waiting time, number of arrivals or departures, and number 

reneging is recorded within a results tab. Some queues, such as the registration 

queue, contain patients, while others, such as the radiology queue, are associated with 

services. Patients do not generally physically wait in specific queues, but their overall time 
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in the system is determined by their time waiting for such services (along with service and 

exit times). For each hospital, 40 queues are tracked (Tariverdi et al., 2019) and their 

average wait times are computed and recorded. 

The numerical experiments are designed to assess collaboration strategies under 

four hazard types: (1) pandemic, (2) earthquake, (3) flooding, and (4) MCI. Each hazard 

event may impact each hospital in different ways. For example, based on the type of 

disaster and its scale, patient arrival patterns, along with impacts on resources, unit 

capacities and lifeline support for the hospital building may vary significantly. These 

factors are explained further next. 

 

Patient arrival patterns: Patients arriving to a hospital are categorized by an Emergency 

Severity Index (ESI) based on physical need, specifically injury type and severity. ESI-5 

patients have less urgent needs and are discharged without being treated, while ESI-1 are 

in need of immediate care. Patient ESI level and care needs are a function of the hazard 

category and event severity, and these needs affect the care paths they take. For some 

scenario classes, e.g. pandemic and flooding, patients are assumed to walk in on their own. 

They go through the triage process, are diagnosed and assigned an ESI level, and are sent 

along appropriate care paths for the needed services. In an earthquake, however, there are 

likely to be larger numbers of ESI-1 (e.g. with head trauma) or -2 patients who are in need 

of urgent care. When on-scene triage is completed, as is likely the case in an MCI such as 

in Las Vegas, the patient enters the hospital post-triage, thus accelerating service to these 

patients and relieving the burden on the triage unit.  

Impacts on Resources: Resources (number of nurses, doctors, technicians by skill, 

equipment (x-ray machines, Computerized Axial Tomography (CT) scans) and supplies 

(oxygen, blood)) can be affected by a hazard event. Pandemic, earthquake and flooding 

scenarios were assumed to directly affect the availability of human resources. For example, 

flooding and earthquake will result in fewer nurses, technicians and doctors. Allen (2018) 

found that 25% (150 out of 600) of hospital workers did not attend work during flooding 

arising from Hurricane Irma in 2017 due to impassable roadway conditions. Thus, a 

reduction in personnel by 25% over the simulation run associated with flooding for affected 

hospitals was presumed. Similarly, a reduction in personnel was noted during an avian flu 

outbreak, as 38% of hospital workers chose not to attend work (Martinese et al. 2009). 

Thus, a 38% reduction in personnel in all hospitals in the region was presumed in the 

pandemic scenario. Cone and Cummings (2006) found that 79% of hospital workers were 

willing to work after an earthquake; thus, for the earthquake scenario runs were made under 

the assumption that 21% fewer personnel, including Emergency Department (ED) doctors 

and nurses and operating room (OR) doctors, at affected hospitals would attend work as a 

result of damage to roadways, schools or homes. An earthquake scenario involving 
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moderate damage, considered Grade-2 in (Achour et al., 2011), was modeled. Consistent 

with this grade level, the scenario runs involved a reduction in functionality by 20% of 

physical resources, including OR, Operation Preparation Unit (PreOp) and general ward 

beds, lab equipment, excluding Computed Tomography (CT) scan and magnetic resonance 

imaging (MRI) machines, at affected hospitals. 

Effects on unit capacities/capabilities: Earthquake and flooding scenarios involve 

physical damage to part of the affected hospital building in several scenarios, and this 

damage results in loss of functionality of some units. Unit capacities depend on the disaster 

scenario type. Pandemic and MCI events are non-physical type hazards and, thus, it is 

presumed that building structures and supporting lifelines are undamaged and units work 

at their full capacities or reduced capacity due to personnel shortages in the case of a 

pandemic. In earthquake and flooding scenarios, the building will also be impacted and 

loss of functionality of some units is expected. In the runs, it was assumed that the service 

rates of the OR units of any affected hospital decrease by 30% in these scenarios. 

 Lifelines: A power outage at an affected hospital is modeled in the earthquake scenario, 

reflecting the impact of disaster events on lifeline support of a hospital building. The 

hospital relies, thus, on back-up generators. The generators can only support limited 

functions, and are usually reserved to maintain power to critical units. In the runs, thus, the 

OR units and ED continue to run as normal, but other units are presumed to have reduced 

functionality. This reduction is modeled by a decrease of 20% in service rates. It is assumed 

that the generators can be refueled throughout the simulation runs; however, one might test 

scenarios where the generators run out of fuel in only 24-48 hours.  

Numerical experiments designed and run to assess the potential benefits of 

considered capacity enhancement strategies under the disaster scenarios with these impacts 

on physical structures, supporting lifelines and resources are described next.
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RESULTS AND ANALYSIS 

 20 different sets of numerical runs (each set with 50 replications) were conducted with the 

aim of evaluating potential benefits of capacity enhancement (modified operations and 

alternative standards of care) and collaboration strategies. All reported results are averages 

of the 50 runs. Patient arrivals at the ED were assumed to follow an exponential distribution 

for both the baseline and surge scenarios. Service times for all services were presumed to 

follow an exponential distribution. Specific details of these distributions and their 

parameters can be found in Table 3 of (TariVerdi et al., 2018a). Four disaster scenarios 

along with four types of capacity enhancement strategies are combined to form these runs. 

For each hazard event, average queue waiting times number who Leave Without Being 

Seen (LWBS) and expired patients (i.e. patients who enter a hospital through the OR and 

whose wait times exceed a given acceptable threshold, thus failing to receive adequate 

care) were collected and compared considering the implementation of resource sharing, 

patient transfers and capacity enhancement strategies. These are depicted pictorially in 

Table 1. Unless stated otherwise, runs studying transfers were made assuming 40% of 

LWBS and 60% of expired patients are transferred. A smaller portion of LWBS are 

assumed to be transferred, because LWBS patients walk in and, thus, are likely to be able 

to wait longer (up to 8 hours in the model), than expired patients who are in need of 

immediate care.  Each run is over 27 days of which the first 20 days serve as the warm-up 

period. Thus, all results, including number of LWBS and expired patients (together referred 

to as the unmet demand) and average waiting times are computed over 7 days. The 

experiments were designed to answer a number of questions pertaining to disaster impact 

performance effects and the potential of various strategies to address these impacts. Runs 

were also completed to evaluate hospital system resilience to multiple hazard event 

scenarios for the case study. 

 

Results and analysis 

Results and analyses provided next are organized according to the questions that are 

investigated. 

 

What are the impacts of disasters on hospital system performance? Results of the runs 
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show that physical damage to the hospitals themselves and/or supporting lifelines can cause 

an increase in unmet demand. Reductions in personnel had less, but also significant, 

impact. Figure 3 shows a case where physical damage causes a 50% decrease in the 

functionality of PreOp, Post Anesthetic Care Unit (PACU) and OR units. This reduction 

led to an increase in system-wide unmet demand by 9%. Additionally, reductions in 

personnel alone for the same units, specifically a 50% decrease in the number of PreOp, 

PACU and OR doctors and nurses, led to 7% system-wide increase in unmet demand.  
Table 1- Effects of Different Hazard Events 
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Pandemic-

Baseline 
 

    
    

Pandemic 1         

Pandemic 2         

Pandemic 3         

Pandemic 4         

Pandemic 5         

Earthquake- 

Baseline 
 

        

Earthquake 1         

Earthquake 2         

Earthquake 3         

Earthquake 4         

Earthquake 5         

Flooding- 

Baseline 
 

        

Flooding 1         

Flooding 2         

Flooding 3         

Flooding 4         

Flooding 5         

MCI- 

Baseline 

         

MCI 1         
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MCI 2         

MCI 3         

MCI 4         

MCI 5         

 

   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Which policy is most effective: no coordination, EMS-only coordination, health care 

coalition or centralized processing? Results of the numerical experiments indicate that all 

three policies involving some form of coordination (EMS-only coordination, health care 

coalition and centralized processing) significantly decrease daily, system-wide unmet 

demand as compared to a baseline of no coordination. Results from the implementation of 

Policy 1 in the pandemic scenario, wherein the surge demand is evenly split across the five 

hospitals, are given in Figure 4. The savings ranged from 27 (EMS-only) to 59 (health care 

coalition) additional patients who receive help, for an improvement by as much as nearly 

24%. Thus, 32 additional patients were treated by allowing transfers (using the health care 

coalition policy) compared to EMS delivering patients to hospitals with available capacity 

but forbidding the transfer of patients once entering a hospital. Assigning patients to 

hospitals in proportion to the number of available beds (a proxy for wait time) resulted in 

five additional treated patients as compared to delivering patients to hospitals with any 

remaining capacity. Similar results were found for other scenarios. 

Figure 3- Effects of Physical Damage and Personnel Reduction on Total, System-wide Daily Unmet Demand 
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Figure 4- Effects of Physical Damage or Personnel Reduction on Total, System-Wide Daily Unmet Demand 

 

Are collaboration and capacity enhancement strategies useful in times of disaster? The 

results also indicate that patients entering a damaged hospital or a hospital handling a 

comparatively significant increase in demand will have a greater chance of surviving due 

to reduced average waiting times when the damaged hospital collaborates with other 

hospitals. Further, when the hazard event causes damage to the structure, forming a 

coalition that permits patient transfers and resource sharing, and simultaneously 

implementing capacity enhancement strategies, will cause a reduction in system-wide 

unmet demand (LWBS and Expired patients) by up to 13% (the earthquake scenario) 

compared to a baseline without similar collaboration. When there is no damage to any 

structure, i.e. the disaster event affects only resources and demand, implementation of 

capacity enhancement strategies and coalition formation led to a reduction in unmet 

demand by as high as 27%, which occurred in the earthquake scenario. Also, when there 

is a surge in demand, collaboration decreases system-wide unmet demand by up to 14% 

(earthquake scenario). Figure 5 provides further insights into the effectiveness of 

collaboration on reducing unmet demand in cases with (earthquake scenario) and without 

(pandemic scenario) damage.  
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Which collaboration strategy (patient transfer vs. resource sharing) works best under 

which scenarios? In the pandemic scenario, implementing capacity enhancement 

strategies creates a 23% system-wide decrease in unmet demand. In the earthquake, 

flooding and MCI scenarios, resource sharing is most effective, creating a decrease of 39, 

45 and 23% in system-wide unmet demand, respectively. Yet, in all scenarios, a 

combination of patient transfers and resource sharing along with the implementation of 

capacity enhancement strategies resulted in additive benefits, leading to significant 

decreases in unmet demand. Figures 6-9 shows these results by disaster scenario. 

 

 
Figure 6- Daily System-Wide Unmet Demand in Pandemic 
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Figure 7- Daily System-Wide Unmet Demand in Earthquake 

 
Figure 8-Daily System-Wide Unmet Demand in Flooding 
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Figure 9-Daily System-Wide Unmet Demand in MCI 
 

Figure 6 provides system-wide effects by permitted response strategy. While the system 

performance is improved by all actions, some hospitals fair better than others. For example, 

a hospital transferring out patients will have less unmet demand than a hospital receiving 

the transfers. Changes in daily system-wide unmet demand for the pandemic scenario for 

each of three affected hospitals are shown in Table 2. Here, Bayview Medical Center and 

John Hopkins Hospital incur a surge in demand as a result of a pandemic. Simultaneously, 

they experience a shortage in personnel. Howard County General Hospital, on the other 

hand, receives patients from these two hospitals. The results indicate reductions in unmet 

demand at the affected hospitals by up to 88% for 106 people at Johns Hopkins Hospital 

and Bayview Medical Center combined. Simultaneously Howard County General Hospital 

incurs an increase by 47% (or 40 people). Thus, system-wide, total unmet demand is 

reduced by 66 people when all capacity enhancement and collaboration strategies are 

permitted. 

 
Table 2- Changes in Daily, Unmet Demand for Different Hospitals inside Coalition 
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Where within a hospital should patients be sent when transferring between hospitals? 

Runs were conducted to assess the effectiveness of allowing transfer patients to enter a 

second receiving hospital post-triage. Results of these runs show (Figure 10) that patients 

with less severe care needs (ESI-4, 5) should enter the second hospital before triage and 

more urgent patients (ESI-2, 3) should enter the second hospital after triage to reduce unmet 

demand. These runs were made for a baseline with no surge in demand or physical damage. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

What portion of patients can be sent to other hospitals from an affected hospital? 

Consistent with expectations, results reveal that the greater the number of patients 

transferred from a damaged hospital as in the pandemic scenario, the less the unmet 

demand in the originating hospital, but the greater the unmet demand in the receiving 

hospital(s). When deciding what percent of patients to transfer between hospitals, the 

capacity of the receiving hospital and whether or not it is in close proximity to the hazard 

event play important roles. Figure 11 depicts the impact on unmet demand of the number 

of patients transferred for the earthquake scenario where there is surge demand, reduced 

personnel and damage both to the structure itself and its supporting lifelines. When only 

10% of LWBS and expired patients are transferred out of a hospital, total system-wide 

unmet demand decreased by 22%. However, if 90% of LWBS and expired patients are 

transferred out, a 41% decrease in total system-wide unmet demand can be expected. 

210

215

220

225

230

235

240

245

Baseline ESI-4,5 Pre-Triage ESI-2,3 Post-Triage

D
ai

ly
 S

y
st

em
-W

id
e 

U
n
m

et
 D

em
an

d

Different Transfer Points

Daily System-Wide Unmet Demand for Different Transfer Points

Baseline

ESI-4,5 Pre-Triage

ESI-2,3 Post-Triage

Figure 10-Transferring ESI-4,5 pre Triage and ESI-2,3 post Triage – No Damage or Demand Surge 



11 

 

Transferring nearly all LWBS and expired patients from the originating to a receiving 

hospital can be difficult in reality. Transfer is thus critical to these patients if they cannot 

be seen in a timely manner. In the runs, time for completing a transfer between hospitals 

ranged between 1 and 2 hours as a function of distance and patient ESI level. Longer 

transfer times were assumed for transfers involving more severe injury to account for 

special equipment and staff needs. 

 

 

 

 
Figure 11-Effect of Transfer-Out Percentage Changes on Daily Unmet Demand in Earthquake Scenario 

 

How much benefit are modified operations and alternative standards of care strategies 

when implemented alongside collaboration strategies? Results suggest that the best 

outcome is achieved when capacity enhancement strategies are combined with both 

resource sharing and patient transfer. In pandemic, earthquake, flooding and MCI 

scenarios, there was a decrease of 30%, 48%, 53% and 23%, respectively, in system-wide 

daily unmet demand when collaboration strategies, including patient transfer and resource 

sharing, are combined with capacity enhancement strategies. Alone, patient transfer 

resulted in a decrease of only 7%, 15%, 42% and 8% in pandemic, earthquake, flooding 

and MCI, respectively, in daily unmet demand. Correspondingly, resource sharing 

produced a decrease of 7%, 39%, 42%, and 23% in daily unmet demand. Likewise, 

combining patient transfer along with resource sharing caused a decrease of 7%, 45%, 

54%, 24% and capacity enhancement strategies alone produced a decrease of 23%, 26%, 

35%, and 19% in system-wide unmet demand. Thus, patient transfer was most effective in 

the pandemic scenario, while resource sharing was most critical in earthquake and flooding 
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scenarios.  

The benefits of combining these collaboration options and including capacity enhancement 

strategies produced very significant gains over their independent implementations. Figure 

12 shows the results in a single diagram.  Note from the figure that combining all strategies 

may not always be worth the cost of doing so. For example, in the flooding scenario, patient 

transfer and resource sharing resulted in a 53% decrease in daily unmet demand while all 

strategies combined led to only 0.4% additional improvement. These results indicate that 

specifying the strategy combination for a given circumstance can provide nearly the same 

benefits as gained from applying all strategies, but with significant savings.  

 

 
Figure 12-Percent of Decrease in Unmet Demand for Different Collaboration and Capacity Enhancement Strategies 

 

How can resiliency be measured and what are the effects of collaboration and capacity 

enhancement strategies on resiliency? Resiliency of any system can be described in terms 

of the system’s ability to maintain continued operations post-disruption. A health care 

system is resilient under different hazard scenarios if it can serve patients with a 

performance level near to that of routine conditions. The performance of the JHHS can be 

measured using unmet in the system. Unmet demand can serve as a surrogate for fatalities 

and is the basis herein for measuring the resilience of the hospital system.  

Let 𝑍𝑗 represent hospital system performance under scenario j and 𝑍𝐵 be the 

baseline for which capacity enhancement or collaboration strategies are implemented and 

no damage is incurred. Resilience is measured as in equations 2-4 for Udemandj the unmet 

demand, or LWBS and expired patients, for hospital j. The closer this resilience measure 

is to 1, the more resilient the health care system is to hazard event j. Table 3 provides 
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Zj =  ∑ Udemandj|𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

j

 (Eq 2) 

ZB =  ∑ Udemandj

j

 (Eq 3) 

(
Zj

ZB
)−1 

(Eq 4) 

 

 

 

 
 

Table 3- Resilience Values for Hospital System under Varying Hazard Events for Baseline B 

Adaptive Strategy Pandemic Earthquake Flooding MCI 

Patient transfer 0.98 1.15 1.22 1.04 

Resource sharing 1.06 1.34 1.04 0.93 

Resource sharing and patient transfer 1.03 1.34 1.17 1.02 

Capacity enhancement 1.13 1.09 1.17 1.05 

All strategies combined 1.15 1.27 1.34 1.04 

 

 

 

Note that some of the values are greater than 1. This is because the capacity 

enhancement and collaboration strategies, Table 3 provides even greater service rates than 

are needed to address the event. However, even in routine conditions, there can be unmet 

demand at the hospitals and enabling these adaptive strategies can mitigate the unmet 

demand. Let 𝑍𝐵′ be the baseline in which all capacity enhancement and collaboration 

strategies are implemented, but no damage is incurred. Resilience estimates for this second 

baseline are shown in Table 4. In this case, no value exceeds 1 as the adaptations are 

identical.  

 
Table 4- Resilience Values for Hospital System under Varying Hazard Events for Baseline B’ 

Adaptive Strategy Pandemic Earthquake Flooding MCI 

Patient transfer 0.96 0.89 0.72 0.88 

Resource sharing 0.61 0.64 0.61 0.58 

Resource sharing and patient transfer 0.85 0.91 0.53 0.86 

Capacity enhancement 0.94 0.83 0.79 0.89 

All strategies combined 0.85 0.74 0.50 0.85 
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Taking the expectation over all hazard events, assuming an equal probability of 

each scenario occurring and that all adaptive strategies are identically enabled under the 

different scenarios as appropriate to the hospital, results in an overall expected resilience 

level of 1.12 (for baseline B) or .78 (for baseline B’) for the hospital system. If the JHHS 

does not prepare to enable any of the considered adaptive strategies, the overall expected 

resilience level is 0.48. This latter measurement is a measure of the system’s inherent 

coping capacity and provides a baseline for understanding the importance of taking 

adaptive measures. 

Inconsistencies in the resilience values in these two tables were noted, as the 

resilience value for combined strategies is not always higher than one used in isolation. 

This is appears to be due to the effects of aggregation over the five hospitals. Results for 

individual hospitals are provided in the Appendix. 
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CONCLUSION 

Few works that quantify hospital preparedness for disaster seek to quantify the benefits of 

inter-hospital collaboration, or evaluate hospital performance where a hospital system is 

faced with a surge in demand and simultaneously a loss in system functionality. This paper 

seeks to fill these gaps. To achieve this, the impacts of disaster events were modeled 

through the effects on physical space and resources in terms of unit functionality. In 

addition to capacity enhancement strategies that were previously modeled for a specific 

hospital (TariVerdi et al., 2018a), patient transfers, resource sharing and various coalition 

strategies, such as centralized processing, were implemented through joint resource pools 

and flows across inter-hospital linkages. 

Results from systematically designed numerical experiments replicating five hospitals 

in a metropolitan region with characteristics that are based on those of the JHHS revealed 

a number of important insights that may have general utility in actual post-disaster 

response. For example, physical damage was noted to have greater effect on hospital 

operations compared to reductions in personnel. Collaboration can be effective in cases 

with such physical damage or reduced staff. It can be concluded from the results that in a 

pandemic or earthquake, patient transfer is the most effective strategy of those tested; while 

in a flood, resource sharing will likely create the largest decrease in daily unmet demand. 

In the former, the strain on the hospitals is more likely to come from patients with high 

care needs; whereas, in the latter, greater damage to the facilities is expected. This 

difference in patient arrival patterns and damage scale across scenarios is a likely cause of 

this finding. Additionally, in a MCI, capacity enhancement strategies tended to have the 

best outcomes among tested approaches. Results also suggest transfers based on ESI level 

is an effective strategy. Specifically, ESI-4 or 5 patients should enter the second hospital 

before triage while ESI-2 or 3 patients should be permitted to skip triage in the second 

hospital, accelerating their service rates. Among the four tested policies, the health care 

coalition policy led to the greatest decrease in daily unmet demand followed by centralized 

processing and EMS-only coordination and no coordination. Centralized processing, 

wherein a hospital’s distance from the scene and its proportion of remaining capacity is 

accounted for in patient allocation among hospitals, can be effective in reducing unmet 

demand while avoiding patient transfers. Such an approach may have significant utility in 
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real operations, and would be well-supported by entering into a coalition. It can also be 

concluded that while combining all possible strategies will lead to the greatest decrease in 

daily unmet demand, the benefits of taking every such action may not be worth the cost in 

time, training or money.  

This paper also presented a resilience measure for assessing hospital system 

preparedness. The measure takes a weighted sum of average waiting time and unmet 

demand and compares this value to a baseline where there is no damage and no 

collaboration between hospitals. Results indicate, for example, improved resilience under 

a patient transfer strategy for post-event adaptation for the studied pandemic and 

earthquake scenarios, but improved resilience in flood and MCI events through 

implementing capacity enhancement strategies. More generally, preparing to enable the 

implementation of the studied adaptive strategies is crucial in maintaining a resilient 

hospital system. 

The specific numerical results obtained in this study are limited by the specific 

details of the case study hospital system, chosen hazard event scenarios and set of potential 

strategies for post-event adaptation. Future studies might consider a wider range of 

scenarios and strategies. 
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APPENDIX 

Appendix 
Table A1- Resilience Values for Hospitals in Hospital System under Varying Hazard Events for Baseline B 

under the Patient Transfer Action 
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Pandemic 0.13 1.51 1.11 1.02 1.13 0.98 

Earthquake 1.06 1.06 1.38 1.09 1.18 1.15 

Flooding 0.99 1.47 1.14 1.49 1.20 1.22 

MCI 7.78 0.99 0.91 0.57 0.98 1.04 

 
Table A2- Resilience Values for Hospitals in Hospital System under Varying Hazard Events for Baseline B 

under the Resource Sharing Action 
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Table A3- Resilience Values for Hospitals in Hospital System under Varying Hazard Events for Baseline B 
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Table A4- Resilience Values for Hospitals in Hospital System under Varying Hazard Events for Baseline B 

under Patient Transfer and Resource Sharing Action 
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Table A5- Resilience Values for Hospitals in Hospital System under Varying Hazard Events for Baseline B 

under All Actions 
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MCI 7.78 0.99 0.91 0.57 0.98 1.04 
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