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Abstract

OPTIMAL CONTROL PROBLEMS CONSTRAINED BY FRACTIONAL PDES
AND APPLICATION TO DEEP NEURAL NETWORKS

Deepanshu Verma, PhD

George Mason University, 2021

Dissertation Director: Dr. Harbir Antil

Motivated by several applications in geophysics, imaging, machine learning, elasticity,

finance, anomalous diffusion, etc., this thesis develops algorithms to solve optimal control

problems constrained by fractional partial differential equations (FPDEs). It also introduces

a novel fractional derivative based Deep Neural Networks (DNNs) to efficiently tackle inverse

problems. Fractional operators have recently emerged as an excellent modeling alternative

to their classical counterparts. This success can be attributed to the facts that these op-

erators allow long range interactions (nonlocal), they can account for memory information

and finally they enforce less smoothness than their classical counterparts. By exploiting all

these features, the thesis develops several novel mathematical tools and algorithms which

are of wider interest. For example, the notions of weak and very-weak solutions to fractional

elliptic and parabolic problems have been introduced. Existence, and higher regularity, of

solutions to fractional Dirichlet problems with measure-valued datum has been established.

Moreau-Yosida regularization based algorithms have been introduced to solve fractional

state constrained optimal control problems.

The thesis begins by introducing, a new notion of optimal control. In particular, in the

parabolic setting, we establish that it is possible to have an external optimal control. Recall



that the classical models only allow control placement either on the boundary or inside the

domain. A complete analysis of the Dirichlet and Robin optimal control problems, with

constraints on the control, has been provided and the presented numerical results confirms

the theoretical findings.

In addition to the control constraints, obstacle type constraints on the PDE solution

naturally arise in many different applications. To tackle this, the thesis introduces novel

state constrained optimal control problems with fractional PDEs as constraints. One of the

key challenges here is that the Lagrange multiplier corresponding to the state constraints is

a signed Radon measure, this results in a low regularity for the adjoint solution. A complete

analysis for this problem has been provided. This is followed by a Moreau-Yosida regular-

ization based algorithm to solve both the elliptic and parabolic optimal control problems.

Here convergence analysis (with rates) of the regularized solutions to the original one is

established. Next, a finite element method is introduced and discretization error estimates

are established in the elliptic setting. Theoretical results are substantiated by numerical

experiments.

Finally, in recent years, deep learning has emerged as the method of choice for classi-

fication problems. However, its role in physics based modeling and inverse problems has

been limited. Some of the key challenges include, vanishing and exploding gradients. The

thesis introduces a new DNN which allows connectivity between different layers. The main

novelty is the modeling of DNN using fractional time derivatives instead of the standard

one. The resulting fractional-DNN is then applied to learn the parameter-to-solution map

in parameterized PDEs. Subsequently, this approximation is employed to solve Bayesian

inverse problems. A speedup of over 100 times is observed in comparison to the existing

approaches.



Chapter 1: Introduction

Optimal control of fractional PDEs has recently received a lot of attention. We refer to [18]

for the optimal control of fractional semilinear PDEs involving both spectral and integral

fractional Laplacians with distributed control, see also [48] for such a control of an integral

operator. We refer to [11] for the boundary control with the spectral fractional Laplacian

and [6] for the exterior optimal control of fractional elliptic PDEs. See [14] for the optimal

control of quasi-linear fractional PDEs where the control is in the coefficients. We also refer

to [4] for a multigrid method for optimal control problems with linear fractional PDEs (with

spectral fractional Laplacian) as constraints.

Fractional operators have recently emerged as an excellent modeling alternative to their

classical counterparts. This success can be attributed to the facts that these operators allow

long range interactions (nonlocal), they can account for memory information and finally they

enforce less smoothness than their classical counterparts. For example, article [135] derives

a fractional Helmholtz equation using the first principle arguments. The authors also show

a direct qualitative match between the numerical simulations and real data for a problem in

Geophysical Electromagnetics. Other examples include dislocations in crystals [51], Lévy

process in finance [122, 136], image segmentation and denoising [3, 13, 16, 66], phase field

modeling [3], fractional diffusion maps (data analysis) [15], fractional deep neural networks

[17], porous media flow [127], etc.

There are various ways to define fractional Laplacian, we refer to [98] where several of

these definitions have been shown to be equivalent in unbounded domains. In this thesis,

we will operate in bounded domains Ω ⊂ RN with boundary ∂Ω. We shall focus on two

fractional operators. The first one is the integral fractional Laplacian defined, for 0 < s < 1,

1



as,

(−∆)su(x) = CN,s P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy (1.1)

where P.V. denotes the Cauchy principal value. The article [126] establishes that the frac-

tional Laplacian in (1.1) arise due to the continuum limit of discrete long-jump random

walks.

The second fractional operator is the Caputo fractional derivative defined for 0 < γ < 1

as

∂γt u(t) =
1

Γ(1− γ)

∫ t

0

u′(r)

(t− r)γ
dr. (1.2)

Indeed both (−∆)s and ∂γ are nonlocal operators. For the first operator, we need informa-

tion about the underlying function in the entire RN and for the latter we need information

about the function from the beginning of time, to compute the derivative at a given time.

1.1 Outline

The thesis is divided into several interconnected chapters. In Chapter 2, we introduce the

notations and provide some preliminary results. Chapter 3 discusses the well-posedness

results for elliptic and parabolic fractional PDEs. The focus of Chapter 4 is on external

optimal control of fractional parabolic PDEs with control constraints. Chapter 5 provides

a complete analysis of optimal control problems constrained by fractional elliptic PDEs

with both control and state constraints. In Chapter 6, we extend these results to the

parabolic case and introduce Moreau-Yosida regularization based algorithms to handle state

constraints. Finally, Chapter 7 introduces novel fractional time derivative based Deep

Neural Networks to efficiently solve parameterized PDEs and Bayesian inverse problems.

2



Ω

Ω̂

Figure 1.1: External Source identification of a diffusion process in Ω with control supported

in Ω̂, disjoint from Ω.

1.2 External Optimal Control Problems

Many realistic applications require a source or control to be placed outside the observation

domain Ω, where the PDE is solved. This situation can arise, for example in (i) Magnetotel-

lurics [135], which is a method for inferring the earth’s subsurface electrical conductivity

from the measurements at the Earth’s surface; (ii) Magnetic Drug Targeting [9, 10], where

chemotherapeutic agents are delivered to their desired targets like tumors, by using mag-

netic nanoparticles and an external magnetic field.

This is in contrast to the traditional approaches, which require the source/control to be

placed either inside of the domain Ω or at the boundary, ∂Ω. For instance, consider the

source/control identification problem for the Poisson equation

−∆u = f in Ω, u = z on ∂Ω, (1.3)

in the scenario illustrated in Figure 1.1. The above equation prohibits the placement of

control/source in Ω̂ because the Laplacian, ∆, is a local operator. In other words, in order

to compute ∆ at a point it suffices to know the values of the function in an arbitrarily small

3



neighborhood. But for the scenario in Figure 1.1 we want the opposite to happen. That is,

an operator of non-local nature like the fractional Laplacian, (−∆)s, in (1.1) is required.

Non-local counterpart of (1.3) corresponding to (−∆)s is the non-local diffusion equa-

tion, for 0 < s < 1,

(−∆)su = f in Ω, u = z on RN \ Ω. (1.4)

Notice that in addition to placing the source f inside Ω, (1.4) allows us to place the

source/control z in the exterior of Ω and hence the optimal control problems with PDE

constraint of type (1.4) is known as the exterior optimal problem. The article [6] intro-

duced the notion of exterior optimal control problem with elliptic fractional PDEs of type

(1.4), as constraints.

In Chapter 4, we extend the elliptic case in [6] to the parabolic setting. We begin

this chapter by defining the fractional parabolic exterior optimal control problem for the

Dirichlet, Robin and Neumann exterior conditions. These problems require dealing with

the nonlocal normal derivative. We create a functional analytic framework to show well-

posedness and derive the first order optimality conditions for these problems. We present an

approach on how to approximate, with convergence rates, the fractional parabolic exterior

Dirichlet problem by the fractional parabolic Robin problem.

1.3 Fractional Optimal Control Problems with State Con-

straints

Next, we consider the optimal control problems where the solution to the state equation

(1.4) fulfills obstacle type constraints. These problems occur naturally in several real life ap-

plications. For example, in financial mathematics the obstacle problem involving fractional

Laplacian arises as a pricing model for American style options, see [46]. In elasticity, the

Signorini problem of finding the configuration of an elastic membrane in equilibrium that

stays above some rigid surface can be rewritten as an obstacle problem which also involves

4



fractional Laplacian, see [61,118]. Our list of applications is not complete, there are several

other problems where fractional operators appear, see for example, [107,119,123].

Motivated by the above applications, we introduce the notion of optimal control prob-

lems governed by fractional elliptic PDEs with both state and control constraints in Chap-

ter 5. We establish well-posedness of the optimal control problem and derive the first order

optimality conditions. We emphasize that the classical case was considered by E. Casas

[38] but almost none of the existing results are applicable to our fractional case. It turns

out that the adjoint equation obtained in the optimality conditions is a fractional partial

differential equation with a measure as the right-hand side datum. We study the Sobolev

regularity of solutions to such equations. As an application of the regularity result of the

adjoint equation, we establish the Sobolev regularity of the optimal control. In addition,

even weaker controls can be used under this setup.

1.4 Moreau-Yosida Regularization for Optimal Control of

Fractional PDEs

Chapter 6 focuses on the analysis and implementation of optimal control of both fractional

elliptic and parabolic PDEs with state as well as control constraints. The key challenge

again is handling of the state constraints. We use the Moreau-Yosida regularization to

implement the state constraint optimal control problem in both elliptic and parabolic cases.

We establish convergence, along with rate, of the regularized optimal control problems to

the original ones. The spatial discretization is carried out using a finite element method

and the discretization error estimates are provided in the elliptic setting. Several illustrative

numerical examples in both elliptic and parabolic setting have been provided.
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1.5 Fractional Operators in Deep Learning and Bayesian In-

verse Problems

In the final chapter, we plan to focus on the novel DNNs to approximate parameterized

PDEs and Bayesian inverse problems. Deep learning has recently shown remarkable impact

in classification problems such as, in healthcare to detect cancer and classification of images.

Deep learning is a subset of machine learning where the goal is to identify (learn) an

approximate map

Φ̂(ξ;θ) = u, (1.5)

where θ denotes the parameters that needs to be identified. Moreover, (ξ,u) denotes the

input-output pairs. The above mentioned learning process aims at transforming the given

input ξ through multiple layers. This includes affine transformations and application of

nonlinear activation functions. A popular class of DNNs is the Residual Neural Networks

(ResNets) [79, 82]. Here the learning (training) problem can itself be understood as an

optimal control problem where one needs to minimize a loss (cost) functional, subject to

the ResNet as constraints. The ultimate goal is to identify parameters θ.

In [77,79], authors show that a ResNet can be thought of as a forward Euler discretization

of a continuous ODE,

dtΦ̂(t) = σ(W (t)Φ̂(t) + b(t)), t ∈ (0, T ],

Φ̂(0) = ξ,

(1.6)

where the trainable parameters are θ = (W, b) and σ is a nonlinear activation function.

Therefore, the training problem can be cast as an optimal control problem of the dynamical

system (1.6). We will revisit and discuss this in section 7.3.1. DNNs suffer from the so-

called vanishing gradient issue [128], which means losing relevant gradient information while

propagating through the layers. While ResNets help to some extent, DenseNets introduced
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in [90] are better in overcoming this issue. However, DenseNet is an adhoc method and

lacks mathematical rigor. In our recent work [17], we introduced a rigorous mathematical

framework which enable connectivity between all the layers for classification problems. This

is achieved by replacing the standard time derivative in (1.6) by the Caputo fractional time

derivative as defined in (1.2). In Chapter 7, we introduce a novel fractional derivative

based DNN to approximate parameterized PDEs. Subsequently, we extend our approach

to Bayesian inverse problems. We observe a speedup of over 100 times over the existing

approaches.
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The content of this thesis has appeared in the following four publications where I led the en-

tire discussion. However, I received guidance from Dr. Harbir Antil, Dr. Thomas S. Brown,

Dr. Howard C. Elman, Dr. Akwum Onwunta and Dr. Mahamadi Warma.

1. H. Antil, D. Verma, and M. Warma, External optimal control of fractional parabolic

PDEs, ESAIM Control Optim. Calc. Var. 26 (2020).

2. H. Antil, D. Verma, and M. Warma, Optimal control of fractional elliptic PDEs with

state constraints and characterization of the dual of fractional-order Sobolev spaces, J.

Optim. Theory Appl. 186 (2020), no. 1, 1–23.

3. H. Antil, T. S. Brown, D. Verma and M. Warma, Optimal control of fractional PDEs

with state and control constraints, (Submitted 2020).

4. H. Antil, H. C. Elman, A. Onwunta, and D. Verma, Novel deep neural networks for

solving Bayesian statistical inverse, (Submitted to SIAM Data Science 2021).

I also co-led article five with Dr. Thomas S. Brown (George Mason University) and ar-

ticle six with Rafael Arndt (George Mason University). Here we received guidance from

Dr. Harbir Antil, Dr. Rainald Löhner, Dr. Carlos R. Rautenberg and Dr. Fumiya Togashi.
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6. H. Antil, R. Arndt, C. N. Rautenberg and D. Verma, Non-diffusive variational problems

with distributional and weak gradient constraints, (Submitted 2021).
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Chapter 2: Notation and Preliminaries

The purpose of this chapter is to introduce the notations and some preliminary results.

Unless otherwise stated, Ω ⊂ RN (N ≥ 1) is an arbitrary bounded open set, 0 < s < 1

and 1 ≤ p < ∞. For a function u defined in RN (or in Ω), we shall denote by Ds,pu, the

function defined in RN × RN (or in Ω× Ω) by Ds,pu[x, y] :=
u(x)− u(y)

|x− y|
N
p

+s
. Then, we define

the Sobolev space

W s,p(Ω) :=
{
u ∈ Lp(Ω) : Ds,pu ∈ Lp(Ω× Ω)

}

and we endow it with the norm ‖u‖W s,p(Ω) :=
(∫

Ω |u|
p dx+ ‖Ds,pu‖pLp(Ω×Ω)

) 1
p
. We let

W s,p
0 (Ω) := D(Ω)

W s,p(Ω)
, where D(Ω) is the space of test functions.

If s = 1 and p = 2, then we shall denote W 1,2(Ω) := {u ∈ L2(Ω) : |∇u| ∈ L2(Ω)} and

W 1,2
0 (Ω) := D(Ω)

W 1,2(Ω)
by H1(Ω) and H1

0 (Ω), respectively.

Since Ω is assumed to be bounded, we have the following continuous embeddings:

W s,2
0 (Ω) ↪→


Lp(Ω), if N ≥ 2s,

C0,s−N
2 (Ω), if N < 2s,

(2.1)

with p = 2? :=
2N

N − 2s
if N > 2s, and p ∈ [1,∞[ arbitrary if N = 2s.

A complete characterization of W s,p
0 (Ω) for arbitrary bounded open sets is given in [133].

By [73, Theorem 1.4.2.4, p.25] (see also, [29,133]) if Ω has a Lipschitz continuous boundary
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and 1
p < s < 1, then

‖u‖W s,p
0 (Ω) = ‖Ds,pu‖Lp(Ω×Ω) (2.2)

defines an equivalent norm on W s,p
0 (Ω). In that case, we shall use this norm for W s,p

0 (Ω).

To study the Fractional Dirichlet problems, we need to consider the following function

space:

W̃ s,p
0 (Ω) :=

{
u ∈W s,p(RN ) : u = 0 on RN \ Ω

}
.

Let Ω ⊂ RN be a bounded open set with a Lipschitz continuous boundary. By [62, Theorem

6], D(Ω) is dense in W̃ s,p
0 (Ω). Moreover, for every 0 < s < 1, we have the following norm

on W̃ s,p
0 (Ω),

‖u‖p
W̃ s,p

0 (Ω)
:=

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy = ‖Ds,pu‖pLp(Ω×Ω) +

∫
Ω
|u|pϑ(x) dx, (2.3)

where ϑ(x) := 2

∫
RN\Ω

1

|x− y|N+sp
dy, x ∈ Ω.

Remark 2.1. The following conditions hold.

1. The embeddings (2.1) hold with W s,2
0 (Ω) replaced by W̃ s,2

0 (Ω).

2. Let p satisfy

p >
N

2s
if N > 2s, p > 1 if N = 2s, p = 1 if N < 2s, (2.4)

and p′ := p
p−1 . Then it is easy to see that W̃ s,2

0 (Ω) ↪→ Lp
′
(Ω).

We next state an important result for W̃ s,p
0 (Ω) taken from [73, Chapter 1].

Theorem 2.1. Let Ω ⊂ RN be a bounded open set with a Lipschitz continuous boundary

and 1 < p <∞. If 1
p < s < 1, then W̃ s,p

0 (Ω) = W s,p
0 (Ω) with equivalent norms.
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Under the hypotheses of Theorem 2.1, we have that if 1
p < s < 1, then

‖u‖
W̃ s,p

0 (Ω)
= ‖Ds,pu‖Lp(Ω×Ω). (2.5)

In other words, the integral involving the function ϑ(x) in (2.3) is not relevant.

If 0 < s < 1, p ∈]1,∞[ and p′ := p
p−1 , then the spaces W−s,p

′
(RN ) and W̃−s,p

′
(Ω) is

defined as the dual of W s,p(RN ) and W̃ s,p
0 (Ω), respectively. Moreover, 〈·, ·〉 shall denote

their duality pairing whenever it is clear from the context.

To study the fractional Robin problem we shall need the following Sobolev space intro-

duced in [50]. For κ ∈ L1(RN \ Ω) fixed, we let

W s,2
Ω,κ :=

{
u : RN → R measurable and ‖u‖

W s,2
Ω,κ

<∞
}
,

where

‖u‖
W s,2

Ω,κ
:=

(
‖u‖2L2(Ω) + ‖|κ|

1
2u‖2L2(RN\Ω) +

∫ ∫
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

. (2.6)

Let µ be the measure on RN \ Ω given by dµ = |κ|dx. With this setting, the norm in (2.6)

can be rewritten as

‖u‖
W s,2

Ω,κ
:=

(
‖u‖2L2(Ω) + ‖u‖2L2(RN\Ω,µ) +

∫ ∫
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

. (2.7)

If κ = 0, then we shall let W s,2
Ω,0 = W s,2

Ω . The following result has been proved in [50,

Proposition 3.1].

Proposition 2.1. Let κ ∈ L1(RN \ Ω). Then W s,2
Ω,κ is a Hilbert space.
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Next, for a Banach space X, we shall denote the vector-valued Banach spaces

H1
0,0((0, T );X) :=

{
u ∈ H1((0, T );X) : u(0, ·) = 0

}
,

H1
0,T ((0, T );X) :=

{
u ∈ H1((0, T );X) : u(T, ·) = 0

}
,

and

H1
0 ((0, T );X) :=

{
u ∈ H1((0, T );X) : u(0, ·) = u(T, ·) = 0

}
.

We notice that the continuous embedding H1((0, T );X) ↪→ C([0, T ];X) holds, so that, for

u ∈ H1((0, T );X), the values u(0, ·) and u(T, ·) make sense.

We now define the fractional Laplacian. Consider the space

L1
s(RN ) :=

{
u : RN → R measurable and

∫
RN

|u(x)|
(1 + |x|)N+2s

dx <∞
}
.

Then, for a function u ∈ L1
s(RN ) and ε > 0 we let

(−∆)sεu(x) := CN,s

∫
{y∈RN ,|y−x|>ε}

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN ,

where the normalization constant CN,s is given by

CN,s :=
s22sΓ

(
2s+N

2

)
π
N
2 Γ(1− s)

, (2.8)

and Γ is the usual Euler Gamma function (see e.g. [28, 31, 34–36, 49, 132, 133]). The frac-

tional Laplacian (−∆)s is then defined for u ∈ L1
s(RN ) by the formula
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(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy = lim

ε↓0
(−∆)sεu(x), x ∈ RN , (2.9)

provided that the limit exists for a.e. x ∈ RN . It has been shown in [32, Proposition 2.2]

that for u ∈ D(Ω), we have

lim
s↑1−

∫
RN

u(−∆)su dx =

∫
RN
|∇u|2dx = −

∫
RN

u∆u dx = −
∫

Ω
u∆u dx.

This is where the constant CN,s plays a crucial role.

Next, we define the operator (−∆)sD on L2(Ω) as follows.

D((−∆)sD) :=
{
u|Ω : u ∈ W̃ s,p

0 (Ω) and (−∆)su ∈ L2(Ω)
}
, (−∆)sD(u|Ω) := ((−∆)su)|Ω,

(2.10)

where D((−∆)sD) denotes the domain of (−∆)sD. Then (−∆)sD is the realization in L2(Ω)

of (−∆)s with the Dirichlet exterior condition u = 0 in RN \ Ω. The following result is

well-known (see e.g. [27, 45,116]).

Proposition 2.2. The operator (−∆)sD has a compact resolvent and −(−∆)sD generates a

strongly continuous submarkovian semigroup (e−t(−∆)sD)t≥0 on L2(Ω). The operator (−∆)sD

can be also viewed as a bounded operator from W̃ s,p
0 (Ω) into W̃−s,2(Ω). In this case−(−∆)sD

also generates a strongly continuous semigroup (e−t(−∆)sD)t≥0 on W̃−s,2(Ω).

Next, for u ∈W s,2
Ω we define the nonlocal normal derivative Ns as follows:

Nsu(x) := CN,s

∫
Ω

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN \ Ω. (2.11)

We shall call Ns the interaction operator. Notice that the origin of the term “interaction”
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goes back to [53]. Clearly Ns is a nonlocal operator and it is well defined as shown in the

following result (see e.g. [68, Lemma 3.2]).

Lemma 2.1. The interaction operator Ns maps W s,2(RN ) into W s,2
loc (RN \ Ω).

Despite the fact that Ns is defined in RN \Ω, it is still known as the “normal” derivative.

This is due to its similarity with the classical normal derivative (see e.g. [6, Proposition 2.2]).

We conclude this chapter by stating the integration by parts formula for the fractional

Laplacian.

Proposition 2.3 (The integration by parts formula for (−∆)s). Assume that Ω

has a Lipschitz continuous boundary. Let u ∈ W s,2
Ω be such that (−∆)su ∈ L2(Ω) and

Nsu ∈ L2(RN \ Ω). Then, for every v ∈W s,2
Ω ∩ L2(RN \ Ω), we have

CN,s
2

∫∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy =

∫
Ω
v(−∆)su dx+

∫
RN\Ω

vNsu dx,

(2.12)

where R2N \ (RN \ Ω)2 = (Ω× Ω) ∪ (Ω× (RN \ Ω)) ∪ ((RN \ Ω)× Ω).

The proof of the preceding proposition is included in [50, Lemma 3.2] for smooth func-

tions. The version given here is obtained by using an approximation argument (see e.g.

[103, Proposition 3.7]).

Remark 2.2. If u, v ∈ W̃ s,2
0 (Ω) in Proposition 2.3, then the integration by parts formula

is given by

CN,s
2

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy =

∫
Ω
v(−∆)su dx.
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Chapter 3: Fractional Partial Differential Equations

The purpose of this chapter is to introduce various notions of solutions to fractional ellip-

tic and parabolic PDEs. Fractional order operators have recently emerged as a modeling

alternative in various branches of science and technology. These are non-local operators

that allow long-range interactions and are known to capture multi-scale behavior. Among

different non-local operators, many studies are available for fractional Laplacian (−∆)s with

s ∈ (0, 1). The article [126], for instance shows that (−∆)s arise from the continuum limit of

discrete long-jump random walks. Besides nonlocality, another key feature of (−∆)s is that

it is less strict in terms of regularity requirements, see for instance [113, Remark 7.2]. This

latter feature further makes (−∆)s attractive for modeling problems with sharp transitions

across interfaces such as phase field models, imaging etc.

The focus of this chapter is on showing the well-posedness of fractional PDEs with

exterior data (Dirichlet, Robin or Neumann) or with non-smooth interior source (Radon

measure). In all these cases, the notion of very-weak solutions will be established for both

elliptic and parabolic PDEs. In addition, we provide conditions under which the very-weak

solutions turn into weak solutions. Finally, we provide sharp conditions on the data under

which the solution is shown to be continuous.

3.1 Fractional Elliptic PDEs

This section is dedicated to study the solutions to fractional elliptic PDEs. We consider

Dirichlet and Robin problems in Sections 3.1.1 and 3.1.2, respectively. The results also hold

for Neumann problem after minor modifications.

The non-homogeneous exterior value problem in the elliptic setting has been studied in

[6]. For completeness, we only mention the statement of results in this section and refer
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the reader to [6] for details. Our main work starts from Theorem 3.2 where we establish

the continuity of weak solutions to the Dirichlet problem with Lp-datum followed by well-

posedness with measure valued datum.

3.1.1 Fractional Elliptic Problem with Dirichlet Conditions

We begin by writing the general form of fractional Dirichlet exterior value problem:


(−∆)su = f in Ω,

u = g in RN \ Ω.

(3.1)

Next, we state the notion of weak solutions.

Definition 3.1 (Weak solution to (non-homogeneous) elliptic Dirichlet problem).

Let f ∈ W̃−s,2(Ω), g ∈ W s,2(RN \ Ω) and Z ∈ W s,2(RN ) be such that Z|RN\Ω = g. A

function u ∈W s,2(RN ) is said to be a weak solution to (3.1) if u−Z ∈ W̃ s,2
0 (Ω) and

CN,s
2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy = 〈f, v〉,

for every v ∈ W̃ s,2
0 (Ω).

The existence and uniqueness of a weak solution u to (3.1) and the continuous depen-

dence of u on the data f and g have been considered in [75], see also [68,130]. More precisely

we have the following result.

Proposition 3.1. Let f ∈ W̃−s,2(Ω) and g ∈ W s,2(RN \ Ω). Then there exists a unique

weak solution u to (3.1) in the sense of Definition 3.1. In addition there is a constant C > 0

such that

‖u‖W s,2(RN ) ≤ C
(
‖f‖

W̃−s,2(Ω)
+ ‖g‖W s,2(RN\Ω)

)
. (3.2)
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Remark 3.1. For the homogeneous exterior value problem, that is, when g = 0, the weak

solution u to (3.1) lies in W̃ s,2
0 (Ω) and Proposition 3.1 holds.

Even though Proposition 3.1 is typically sufficient, we need the existence of solutions

(in some notion) to the fractional Dirichlet problem (3.1) when datum in the exterior or

interior is less regular, that is, when g ∈ L2(RN \ Ω) or f ∈ M(Ω), where M(Ω) is the

space of Radon measures on Ω. In order to tackle this situation the notion of very-weak

solutions for (3.1) is needed, see for instance [6].

Definition 3.2 (Very-weak solution to elliptic (non-homogeneous) Dirichlet prob-

lem). Let g ∈ L2(RN \ Ω) and f ∈ W̃−s,2(Ω). A function u ∈ L2(RN ) is said to be a

very-weak solution to (3.1) if the identity

∫
Ω
u(−∆)sv dx = 〈f, v〉 −

∫
RN\Ω

zNsv dx, (3.3)

holds for every v ∈ V := {v ∈ W̃ s,2
0 (Ω) : (−∆)sv ∈ L2(Ω)}.

We now state the result [6, Theorem 3.5] which yields the existence and uniqueness of

a very-weak solution u to (3.1) and the continuous dependence of u on the data f and g.

Theorem 3.1. Let f ∈ W̃−s,2(Ω) and g ∈ L2(RN \ Ω). Then there exists a unique very-

weak solution u to (3.1) according to Definition 3.2 that fulfills

‖u‖L2(Ω) ≤ C
(
‖f‖

W̃−s,2(Ω)
+ ‖g‖L2(RN\Ω)

)
, (3.4)

for a constant C > 0. In addition, if g ∈W s,2(RN \ Ω), then the following assertions hold.

1. Every weak solution of (3.1) is also a very-weak solution.

2. Every very-weak solution of (3.1) that belongs to W s,2(RN ) is also a weak solution.
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Next, we shift our focus on the fractional Dirichlet (homogeneous) exterior problem.

Throughout the remainder of this subsection, we consider the problem:


(−∆)su = f in Ω,

u = 0 in RN \ Ω.

(3.5)

The purpose is to establish continuity, up to the boundary of Ω, of weak solutions to

(3.5) when f ∈ Lp(Ω) and to study the well-posedness of (3.5) with f ∈M(Ω) = (C0(Ω))?.

The latter space C0(Ω) denotes the space of all continuous functions on Ω. Note that a

function u ∈ C0(Ω) can be extended to function in C0(Rn) by taking u = 0 outside of Ω.

Recall that M(Ω) is the space of all Radon measures and we have

〈µ, v〉(C0(Ω))?,C0(Ω) =

∫
Ω
v dµ, µ ∈M(Ω), v ∈ C(Q).

In addition, we have the following norm on the space M(Ω):

‖µ‖M(Ω = sup
v∈C0(Ω), |v|≤1

∫
Ω
v dµ.

We first show the continuity of weak solutions to (3.5). We recall that the paper [112]

proves the optimal Hölder Cs-regularity of u under the condition that the datum f ∈ L∞(Ω).

However, in our setting we only assume f ∈ Lp(Ω).

Theorem 3.2. Let Ω be a bounded Lipschitz domain satisfying the exterior cone condition.

Assume that f ∈ Lp(Ω) with p as in (2.4). Then, every weak solution u of (3.5) belongs to

C0(Ω) and there is a constant C = C(N, s, p,Ω) > 0 such that

‖u‖C0(Ω) ≤ C‖f‖Lp(Ω). (3.6)
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Proof. Let f ∈ Lp(Ω) and let {fn}n∈N ⊂ L∞(Ω) be a sequence such that ‖fn− f‖Lp(Ω) → 0

as n→∞. For each n ∈ N, let un solve the following Dirichlet problem:

(−∆)sun = fn in Ω, un = 0 in RN \ Ω. (3.7)

By [112, Proposition 1.1], un ∈ Cs(RN ). Next, subtracting (3.5) from (3.7), we obtain

(−∆)s(un − u) = fn − f in Ω, (un − u) = 0 in RN \ Ω.

Since (fn − f) ∈ Lp(Ω), applying [18, Theorem 3.7], we get that ‖un − u‖L∞(Ω) ≤ C‖fn −

f‖Lp(Ω) → 0 as n→∞ . Thus, ‖un− u‖L∞(Ω) → 0 as n→∞. Since un ∈ C0(Ω), it follows

that u ∈ C0(Ω).

In Corollary 5.2, we shall reduce the assumed Lp(Ω)-regularity requirement on f in

Theorem 3.2.

Next, we study the well-posedness of the elliptic PDE (3.5) when the right-hand side is

given by a Radon measure, that is, when f ∈M(Ω).

Definition 3.3 (Very-weak solutions: Dirichlet problem with measure data). Let

p be as in (2.4) and 1
p + 1

p′ = 1. Let f ∈ M(Ω). A function u ∈ Lp
′
(Ω) is said to be a

very-weak solution to (3.5), if for every v ∈ V := {v ∈ C0(Ω)∩ W̃ s,2
0 (Ω) : (−∆)sv ∈ Lp(Ω)}

we have ∫
Ω
u(−∆)sv dx =

∫
Ω
v df. (3.8)

The following theorem proves the existence and uniqueness of the very-weak solution to

(3.5) in the sense of Definition 3.3.

Theorem 3.3. Let Ω be a bounded Lipschitz domain satisfying the exterior cone condition.

Let f ∈ M(Ω) be a measure, p as in (2.4) and p′ := p
p−1 . Then, there exists a unique

u ∈ Lp
′
(Ω) that solves (3.5) according to Definition 3.3, and there is a constant C =
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C(N, s, p,Ω) > 0 such that

‖u‖Lp′ (Ω) ≤ C‖f‖M(Ω). (3.9)

Proof. For a given ξ ∈ Lp(Ω), we begin by considering the following auxiliary problem:

(−∆)sv = ξ in Ω, v = 0 in RN \ Ω. (3.10)

Since Lp(Ω) ↪→ Lp
′
(Ω) ↪→ W̃−s,2(Ω) (by Remark 2.1), it follows that there is a unique

v ∈ W̃ s,2
0 (Ω) satisfying (3.10). By Theorem 3.2, v ∈ C0(Ω).

Consider a mapping Ξ : Lp(Ω) → C0(Ω), ξ 7→ Ξξ := v. Notice that, Ξ is linear and

continuous (by Theorem 3.2). Let us define u := Ξ∗f . Then, u ∈ Lp′(Ω). We show that u

solves (3.5). Notice that,

∫
Ω
uξ dx =

∫
Ω
u(−∆)sv dx =

∫
Ω

(Ξ∗f)ξ dx =

∫
Ω
v df, (3.11)

for every v ∈ V . Thus, we have constructed a function u ∈ Lp
′
(Ω) that solves (3.5),

according to Definition 3.7. Next, we show uniqueness of solutions. Assume that (3.5) has

two solutions u1 and u2 with the same right hand side datum f . Then, it follows from (3.8)

that ∫
Ω

(u1 − u2)(−∆)sv dx = 0,

for every v ∈ V . It follows from the fundamental lemma of the calculus of variations that

u1 = u2 a.e. in Ω and we have shown the uniqueness of solutions. It remains to prove the

required estimate (3.9). From (3.11), we have that

∣∣∣∣∫
Ω
uξ dx

∣∣∣∣ ≤ ‖µ‖M(Ω)‖v‖C0(Ω) ≤ C‖µ‖M(Ω)‖ξ‖Lp(Ω), (3.12)
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where in the last estimate we have used Theorem 3.2. Then, dividing both sides of (3.12)

by ‖ξ‖Lp(Ω) and taking the supremum over ξ ∈ Lp(Ω), we obtain (3.9).

The regularity of solutions to (3.5) given in Theorem 3.3 will be improved in Corol-

lary 5.3.

3.1.2 Fractional Elliptic Problem with Robin Conditions

In this section, we consider the fractional elliptic Robin exterior value problem given by


(−∆)su = f in Ω,

Nsu+ κu = κg in RN \ Ω,

(3.13)

where Ns is the interaction operator defined in (2.11) and κ ∈ L1(RN \Ω)∩L∞(RN \Ω) is

non-negative. We mention that the result in this subsection is taken from [6, Section 3.2].

Therefore we only state the result here and refer the reader to [6] for details. Next, we

introduce the notion of weak solutions to the fractional elliptic Robin problem.

Definition 3.4. Let g ∈ L2(RN \ Ω, µ) and f ∈ (W s,2
Ω,κ)?. A function u ∈ W s,2

Ω,κ is said to

be a weak solution of (3.13) if the identity

∫∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

∫
RN\Ω

κuv dx

= 〈f, v〉
(W s,2

Ω,κ)?,W s,2
Ω,κ

+

∫
RN\Ω

κgv dx, (3.14)

holds for every v ∈W s,2
Ω,κ.

We next state the result [6, Proposition 3.9] concerning the existence and uniqueness

(upto a constant) of the weak solution to Robin problem.
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Theorem 3.4. Let κ ∈ L1(RN \Ω) ∩ L∞(RN \Ω). Then, for every g ∈ L2(RN \Ω, µ) and

f ∈ (W s,2
Ω,κ)?, there exists a weak solution u ∈W s,2

Ω,κ of (3.13).

3.2 Fractional Parabolic PDEs

In this section, we investigate fractional parabolic PDEs and extend the results from elliptic

case to the parabolic case. The elliptic and parabolic problems are fundamentally different

and the results presented here are novel in the context of parabolic (non-stationary) prob-

lems. In many situations, the techniques used in the elliptic case either cannot be directly

used or they must be carefully adapted to the parabolic case. Definition 3.6 introduces

the notion of weak-solution to the non-homogeneous fractional parabolic Dirichlet problem.

Notice that we need an additional regularity (H1-in time) to establish the notion of weak

solution which is different to the elliptic case. In Definition 3.7, we introduce the notion of

very-weak solutions to the fractional parabolic problem which requires integration-by-parts

in both space and time. The duality argument proving the existence and uniqueness of

solutions in the parabolic case is more involved (cf. Theorem 3.6) when compared to the

elliptic case. In Definition 3.9, we introduce the notion of weak solutions to the Robin

problem whose existence and uniqueness is shown in Theorem 3.9 by using the notion of

integrated semigroups. Note that the concept of integrated semigroups is not needed in the

elliptic case.

Theorem 3.7 involves boundedness of weak solutions to parabolic PDEs yielding conti-

nuity as a corollary. Such a result for the parabolic problem is new and is not an obvious

consequence of the elliptic case (see Section 3.1.1) and cannot be obtained using classical

properties of parabolic problems. In Definition 3.8, we introduce the notion of very-weak

solutions to the parabolic problem with measure valued right-hand side and initial data

followed by existence and uniqueness of such solutions in Theorem 3.8.
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3.2.1 Fractional Parabolic Problem with Dirichlet Conditions

We begin by discussing the following fractional parabolic Dirichlet (non-homogeneous) ex-

terior value problem:


∂tu+ (−∆)su = 0 in Q := (0, T )× Ω,

u = z in Σ := [0, T )× (RN \ Ω),

u(0, ·) = 0 in Ω.

(3.15)

Let us consider first the following auxiliary problem:


∂tw + (−∆)sw = f in Q,

w = 0 in Σ,

w(0, ·) = 0 in Ω,

(3.16)

that is, a fractional parabolic equation with a nonzero right-hand side but a zero exterior

condition. Notice that (3.16) can be rewritten as the following Cauchy problem:


∂tw + (−∆)sDw = f in Q,

w(0, ·) = 0 in Ω,

(3.17)

where we recall that (−∆)sD is the operator defined in (2.10). Throughout this subsection

〈·, ·〉 will denote the duality pairing between W̃ s,2
0 (Ω) and W̃−s,2(Ω).

We now introduce our notion of weak solutions to (3.16).

Definition 3.5 (Weak solution to (homogeneous) parabolic Dirichlet problem).

Let f ∈ L2((0, T ); W̃−s,2(Ω)). A function
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w ∈ U0 := L2((0, T ); W̃ s,2
0 (Ω)) ∩ H1

0,0((0, T ); W̃−s,2(Ω)) is said to be a weak solution to

(3.16) if

〈∂tw(t, ·), v〉+
CN,s

2

∫
RN

∫
RN

(w(t, x)− w(t, y))(v(x)− v(y))

|x− y|N+2s
dxdy = 〈f(t, ·), v〉,

for every v ∈ W̃−s,2(Ω) and almost every t ∈ (0, T ).

Remark 3.2. We state the following facts.

1. A weak solution to (3.16) belongs to C([0, T ], L2(Ω)) (see e.g. [99, Remark 9]).

2. If f ∈ L2((0, T );L2(Ω)), then it has been shown in [27] (by using semigroup theory)

that a weak solution to (3.16) enjoys the following regularity:

u ∈ C([0, T ];D((−∆)sD)) ∩H1
0,0((0, T );L2(Ω)).

The existence and uniqueness of weak solutions to (3.16) were shown in [99, Theorem 26].

Proposition 3.2 (Weak solutions to (3.16)). Let f ∈ L2((0, T ); W̃ s,2
0 (Ω)). Then there

exists a unique weak solution w ∈ U0 to (3.16) in the sense of Definition 3.5 and is given by

w(t, x) =

∫ t

0
e−(t−τ)(−∆)sDf(τ, x) dτ, (3.18)

where (e−t(−∆)sD)t≥0 is the semigroup mentioned in Proposition 2.2. In addition, there is a

constant C > 0 such that

‖w‖U0 ≤ C‖f‖L2((0,T );W̃−s,2(Ω))
. (3.19)

We introduce next our notion of weak solutions to the non-homogeneous problem (3.15).

Notice the higher regularity requirement on the datum z.
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Definition 3.6 (Weak solution to (non-homogeneous) parabolic Dirichlet prob-

lem). Let z ∈ H1
0,0((0, T );W s,2(RN \ Ω)) and z̃ ∈ H1

0,0((0, T );W s,2(RN )) be such that

z̃|Σ = z. Then a function u ∈ U := L2((0, T );W s,2(RN )) ∩H1
0,0((0, T ); W̃−s,2(Ω)) is said to

be a weak solution to (3.15) if u− z̃ ∈ U0 and

〈∂tu(t, ·), v〉+
CN,s

2

∫
RN

∫
RN

(u(t, x)− u(t, y))(v(x)− v(y))

|x− y|N+2s
dxdy = 0,

for every v ∈ W̃−s,2(Ω) and almost every t ∈ (0, T ).

Next, we show the well-posedness of (3.15).

Theorem 3.5 (Weak solutions to (3.15)). Let z ∈ H1
0,0((0, T );W s,2(RN \ Ω)). Then

there exists a unique weak solution u ∈ U to (3.15). In addition, there is a constant C > 0

such that

‖u‖U ≤ C‖z‖H1((0,T );W s,2(RN\Ω)). (3.20)

Proof. Before we proceed with the proof, we need some preparation. Let us first assume

that z depends only on the spatial variable x. Now consider the s-Harmonic extension

z̃ ∈W s,2(RN ) of z ∈W s,2(RN \ Ω) that solves the following Dirichlet problem:


(−∆)sz̃ = 0 in Ω,

z̃ = z in RN \ Ω,

(3.21)

in a weak sense. That is, given z ∈W s,2(RN \Ω), there exists a unique z̃ ∈W s,2(RN ) such

that z̃|RN\Ω = z and z̃ solves (3.21) in the sense that

CN,s
2

∫
RN

∫
RN

(z̃(x)− z̃(y))(v(x)− v(y))

|x− y|N+2s
dxdy = 0 for all v ∈ W̃ s,2

0 (Ω),

25



and there is a constant C > 0 such that

‖z̃‖W s,2(RN ) ≤ C‖z‖W s,2(RN\Ω). (3.22)

The existence of a weak solution to (3.21) and the continuous dependence on the datum z

have been shown in [75] (see also, [68, 130]) under the assumption that Ω has a Lipschitz

continuous boundary. If z is a function of (x, t) and belongs to H1
0,0((0, T );W s,2(RN \ Ω)),

then it follows from the above arguments that z̃ ∈ H1
0,0((0, T );W s,2(RN )).

Next, we show the existence of a unique solution to (3.15) by using a lifting argument.

We define w := u− z̃. Then w|Σ = 0. Moreover, a simple calculation shows that w fulfills


∂tw + (−∆)sw = −∂tz̃ in Q,

w = 0 in Σ,

w(0, ·) = 0 in Ω.

(3.23)

Since ∂tz ∈ L2((0, T );W s,2(RN \ Ω)), it follows from the above discussion that ∂tz̃ ∈

L2((0, T );W s,2(RN )). Hence, using Proposition 3.2 we get that there exists a unique w ∈ U0

solving (3.23). Thus, the unique solution u ∈ U is given by u = w + z̃. It remains to show

the estimate (3.20). Firstly, since w = 0 in Σ, it follows from (3.19) that there is a constant

C > 0 such that

‖w‖U = ‖w‖U0 ≤ C‖∂tz̃‖L2((0,T );W̃−s,2(Ω))
. (3.24)

Secondly, it follows from (3.22) that there is a constant C > 0 such that

‖z̃‖L2((0,T );W s,2(RN )) ≤ C‖z‖L2((0,T );W s,2(RN\Ω)). (3.25)
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Thirdly, using (3.24) and (3.25) we get that there is a constant C > 0 such that

‖u‖U = ‖w + z̃‖U ≤ ‖w‖U + ‖z̃‖U

≤ C
(
‖∂tz̃‖L2((0,T );W̃−s,2(Ω))

+ ‖z‖L2((0,T );W s,2(RN\Ω)) + ‖z̃‖
H1((0,T );W̃−s,2(Ω))

)
≤ C

(
‖∂tz̃‖L2((0,T );W̃−s,2(Ω))

+ ‖z‖L2((0,T );W s,2(RN\Ω)) + ‖z̃‖
L2((0,T );W̃−s,2(Ω))

)
, (3.26)

where in the last estimate we have used the fact that

‖z̃‖2
H1((0,T );W̃−s,2(Ω))

= ‖z̃‖2
L2((0,T );W̃−s,2(Ω))

+ ‖∂tz̃‖2L2((0,T );W̃−s,2(Ω))
.

Since z̃ ∈ L2((0, T );W s,2(RN )), it follows from (3.22) that

‖z̃‖
L2((0,T );W̃−s,2(Ω))

≤C‖z̃‖L2((0,T );W−s,2(RN )) ≤ C‖z̃‖L2((0,T );W s,2(RN ))

≤C‖z‖L2((0,T );W s,2(RN\Ω)). (3.27)

Note that ∂tz̃ is a solution of the Dirichlet problem (3.21) with z replaced with ∂tz.

This shows that ∂tz̃ ∈ L2((0, T );W s,2(RN )). Hence, using (3.22) again, we obtain that

‖∂tz̃‖L2((0,T );W̃−s,2(Ω))
≤C‖∂tz̃‖L2((0,T );W−s,2(RN )) ≤ C‖∂tz̃‖L2((0,T );W s,2(RN ))

≤C‖∂tz‖L2((0,T );W s,2(RN\Ω)). (3.28)

Combining (3.27) and (3.28) we get from (3.26) that

‖u‖U ≤ C
(
‖z‖L2((0,T );W s,2(RN\Ω)) + ‖∂tz‖L2((0,T );W s,2(RN\Ω))

)
.

That is, we have shown (3.20).

Remark 3.3. Let (ϕn)n∈N be the orthonormal basis of eigenfunctions of (−∆)sD associated
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with the eigenvalues (λn)n∈N. If in Theorem 3.5 one assumes that z ∈ H1
0 ((0, T );W s,2(RN \

Ω)), then it has been shown in [134, Theorem 18] that the unique weak solution u of (3.15)

is given by

u(t, x) = −
∞∑
n=1

(∫ t

0
(z(t− τ, ·),Nsϕn)L2(RN\Ω) e

−λnτ dτ

)
ϕn(x).

Our next goal is to reduce the regularity requirements on the datum z in both space

and time. We shall call the resulting solution u to be a very-weak solution.

Definition 3.7 (Very-weak solution to (non-homogeneous) parabolic Dirichlet

problem). Let z ∈ L2((0, T );L2(RN \ Ω)). A function u ∈ L2((0, T );L2(RN )) is said to

be a very-weak solution to (3.15) if the identity

∫
Q
u (−∂tv + (−∆)sv) dxdt = −

∫
Σ
zNsv dxdt, (3.29)

holds for every v ∈ L2((0, T );V ) ∩ H1
0,T ((0, T );L2(Ω)), where V := {v ∈ W̃ s,2

0 (Ω) :

(−∆)sv ∈ L2(Ω)}.

Throughout the remainder of the thesis, without any mention we shall let

V := {v ∈ W̃ s,2
0 (Ω) : (−∆)sv ∈ L2(Ω)}.

The following result shows the existence and uniqueness of a very-weak solution to (3.15)

in the sense of Definition 3.7. We will prove this result using a duality argument (see e.g.

[70] for the case s = 1).

Theorem 3.6. Let z ∈ L2((0, T );L2(RN \ Ω)). Then there exists a unique very-weak

solution u to (3.15) according to Definition 3.7 that fulfills

‖u‖L2((0,T );L2(Ω)) ≤ C‖z‖L2((0,T );L2(RN\Ω)), (3.30)
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for a constant C > 0. In addition, if z ∈ H1
0,0((0, T );W s,2(RN \ Ω)), then the following

assertions hold.

1. Every weak solution of (3.15) is also a very-weak solution.

2. Every very-weak solution of (3.15) that belongs to U is also a weak solution.

Proof. For a given ζ ∈ L2((0, T );L2(Ω)), we begin by considering the following “dual”

problem: 
−∂tv + (−∆)sv = ζ in Q,

v = 0 in Σ,

v(T, ·) = 0 in Ω.

(3.31)

We notice that in (3.31), it is not required that ζ(T, ·) = 0 in Ω. Using semigroup theory as

in Proposition 3.2 (see also Remark 3.2), we have that the problem (3.31) has a unique weak

solution v ∈ L2((0, T );V ) ∩H1
0,T ((0, T );L2(Ω)). Hence, ∂tv ∈ L2(Q) and (−∆)sv ∈ L2(Q).

Since v ∈ L2((0, T );V )∩H1
0,T ((0, T );L2(Ω)), we have that Nsv ∈ L2((0, T );L2(RN \Ω)).

We define the mapping

M : L2((0, T );L2(Ω))→ L2((0, T );L2(RN \ Ω)), ζ 7→ Mζ := −Nsv.

We notice that M is linear and continuous because there is a constant C > 0 such that

‖Mζ‖L2((0,T );L2(RN\Ω)) = ‖Nsv‖L2((0,T );L2(RN\Ω)) ≤ C‖v‖L2((0,T );W̃ s,2
0 (Ω))

≤ C‖ζ‖L2((0,T );L2(Ω)).

Let u :=M∗z. Then we have

∫
Q
uζ dxdt =

∫
Q
u (−∂tv + (−∆)sv) dxdt =

∫
Q

(M∗z)ζ dxdt = −
∫

Σ
zNsv dxdt.
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We have constructed a function u ∈ L2((0, T );L2(RN )) that solves (3.29). Next, we show

the uniqueness of very-weak solutions. Assume that the system (3.15) has two very weak-

solutions u1 and u2 with the same exterior value z. Then, it follows from (3.29) that

∫
Q

(u1 − u2) (−∂tv + (−∆)sv) dxdt = 0,

for every v ∈ L2((0, T );V ) ∩ H1
0,T ((0, T );L2(Ω)). Using the fundamental lemma of the

calculus of variations, we can deduce from the preceding identity that u1 = u2 a.e. in Q.

Since u1 = u2 a.e in Σ, we can conclude that u1 = u2 a.e. in (0, T ) × RN . Thus, we have

shown the uniqueness of solutions.

Finally, we notice that there is a constant C > 0 such that

∣∣∣∣∫
Q
uζ dxdt

∣∣∣∣ ≤ ‖z‖L2((0,T );L2(RN\Ω))‖Nsv‖L2((0,T );L2(RN\Ω))

≤ C‖z‖L2((0,T );L2(RN\Ω))‖ζ‖L2((0,T );L2(Ω)).

Dividing both sides of the preceding estimate by ‖ζ‖L2((0,T );L2(Ω)) and taking the supremum

over ζ ∈ L2((0, T );L2(Ω)), we obtain (3.30).

Next, we prove the last two assertions of the theorem.

Assume that z ∈ H1
0,0((0, T );W s,2(RN \ Ω)).

(a) Let u ∈ U ↪→ L2((0, T );L2(RN )) be a weak solution to (3.15). It follows from the

definition that u = z on Σ and in particular, we have that

〈∂tu(t, ·), v〉+
CN,s

2

∫
RN

∫
RN

(u(t, x)− u(t, y))(v(t, x)− v(t, y))

|x− y|N+2s
dxdy = 0, (3.32)

for every v ∈ L2((0, T );V )∩H1
0,T ((0, T );L2(Ω)) and almost every t ∈ (0, T ). Since v(t, ·) = 0
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in RN \ Ω, we have that

∫
RN

∫
RN

(u(t, x)− u(y, y))(v(t, x)− v(t, y))

|x− y|N+2s
dxdy

=

∫ ∫
R2N\(RN\Ω)2

(u(t, x)− u(t, y))(v(t, x)− v(t, y))

|x− y|N+2s
dxdy. (3.33)

Using (3.32), (3.33), the integration by parts formula (2.12) together with the fact that

u = z in RN \ Ω, we get that

0 = 〈∂tu(t, ·), v〉+
CN,s

2

∫
RN

∫
RN

(u(t, x)− u(t, y))(v(t, x)− v(t, y))

|x− y|N+2s
dxdy

= 〈∂tu(t, ·), v(t, ·)〉+

∫
Ω
u(t, x)(−∆)sv(t, x) dx+

∫
RN\Ω

u(t, x)Nsv(t, x) dx

= 〈∂tu(t, ·), v(t, ·)〉+

∫
Ω
u(t, x)(−∆)sv(t, x) dx+

∫
RN\Ω

z(t, x)Nsv(t, x) dx.

Integrating the previous identity by parts over (0, T ), we get that

−
∫ T

0
〈u(t, ·), ∂tv(t, ·)〉 dt+

∫
Q
u(−∆)sv dxdt+

∫
Σ
zNsv dxdt = 0.

Since u(t, ·), ∂tv(t, ·) ∈ L2(Ω), it follows from the preceding identity that

∫
Q
u
(
− ∂tv + (−∆)sv

)
dxdt = −

∫
Σ
zNsv dxdt

for every v ∈ L2((0, T );V ) ∩H1
0,T ((0, T );L2(Ω)). Thus, u is a very-weak solution of (3.15).

(b) Let u be a very-weak solution to (3.15) and assume that u ∈ U. Then u = z in

Σ. Moreover, z ∈ H1
0,0((0, T );W s,2(RN \ Ω)) and if z̃ ∈ H1

0,0((0, T );W s,2(RN )) is such that

z̃|Σ = z, then clearly u− z̃ ∈ U0. Since u is a very-weak solution to (3.15), it follows from
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Definition 3.7 that for every v ∈ L2((0, T );V ) ∩H1
0,T ((0, T );L2(Ω)), we have

∫
Q
u(−∂tv + (−∆)sv) dx = −

∫
Σ
zNsv dx. (3.34)

Since u ∈ U and v = 0 on Σ, using the integration by parts formula (2.12), we get that

∫ T

0
〈∂tu(t, ·), (t, ·)v〉 dt+

∫ T

0

∫
RN

∫
RN

(u(t, x)− u(t, y))(v(t, x)− v(t, y))

|x− y|N+2s
dxdydt

=

∫ T

0
〈∂tu(t, ·), v(t, ·)〉 dt+

∫ T

0

∫ ∫
R2N\(RN\Ω)2

(u(t, x)− u(t, y))(v(t, x)− v(t, y))

|x− y|N+2s
dxdydt

=

∫
Q
u
(
∂tv + (−∆)sv

)
dxdt+

∫
Σ
uNsv dxdt

=

∫
Q
u
(
∂tv + (−∆)sv

)
dxdt+

∫
Σ
zNsv dxdt. (3.35)

It follows form (3.34) and (3.35) that for every v ∈ L2((0, T );V ) ∩H1
0,T ((0, T );L2(Ω)) we

have the identity

∫ T

0
〈∂tu(t, ·), v(t, ·)〉 dt+

∫ T

0

∫
RN

∫
RN

(u(t, x)− u(t, y))(v(t, x)− v(t, y))

|x− y|N+2s
dxdydt = 0.

(3.36)

Since V is dense in W̃ s,2
0 (Ω) and L2(Ω) is dense in W̃−s,2(Ω), it follows that (3.36) re-

mains true for every v ∈ L2((0, T ); W̃ s,2
0 (Ω)) ∩H1

0,T ((0, T ); W̃−s,2(Ω)). Notice that v(t, ·) ∈

W̃ s,2
0 (Ω) for a.e. t ∈ (0, T ]. As a result, we have that the following pointwise formulation

〈∂tu(t, ·), v〉 +

∫
RN

∫
RN

(u(t, x)− u(t, y))(v(x)− v(y))

|x− y|N+2s
dxdy = 0, (3.37)

holds for every v ∈ W̃ s,2
0 (Ω) and a.e. t ∈ (0, T ). We have shown that u is the unique weak
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solution to (3.15) according to Definition 3.6.

Let us now shift our focus to the problem (3.16) with non-zero source and zero exterior

conditions : For source z ∈ Lr((0, T );Lp(Ω)) with p and r satisfying

1 >
N

2ps
+

1

r
, (3.38)

find u such that 
∂tu+ (−∆)sDu = z in Q,

u(0, ·) = 0 in Ω.

(3.39)

The goal is to establish the continuity of solutions to (3.39) when the datum z belongs

to Lr((0, T );Lp(Ω)) with p, r fulfilling (3.38) and to study the well-posedness of (3.39) with

z ∈ (C(Q))? =M(Q). The latter space M(Q) denotes the space of all Radon measures on

Q such that

〈µ, v〉(C(Q))?,C(Q) =

∫
Q
v dµ, µ ∈M(Q), v ∈ C(Q).

In addition, we have the following norm on this space:

‖µ‖M(Q) = sup
v∈C(Q), |v|≤1

∫
Q
v dµ.

We begin by proving a boundedness result for solutions to problem (3.39). We remark

that a similar result has been recently shown in [99, Theorem 29 and Corollary 3] with a

technical proof. Here, we will provide a much simpler proof which follows directly using

semigroup arguments.

Theorem 3.7 (u is bounded). Let Ω ⊂ RN (N ≥ 1) be an arbitrary bounded open set.

Let z ∈ Lr((0, T );Lp(Ω)) with p and r fulfilling (3.38). Then every weak solution u ∈ U0

33



to (3.39) belongs to L∞(Q) and there is a constant C > 0 such that

‖u‖L∞(Q) ≤ C‖z‖Lr((0,T );Lp(Ω)). (3.40)

Proof. Let p and r fulfill (3.38). We remark that using the embedding (2.1), the repre-

sentation (3.18), and semigroup theory, the result is trivial if p = ∞ or r = ∞. Thus,

without any restriction we may assume that 1 ≤ r, p <∞ satisfy (3.38). We mention that if

1 ≤ r, p <∞ satisfy (3.38), then necessarily 1 < r <∞. Notice also that (3.38) implies that

p > N
2s + p

r >
N
2s . Thus, it follows from the embedding (2.1) that the submarkovian semi-

group (e−t(−∆)sD)t≥0 is ultracontractive in the sense that it maps L1(Ω) into L∞(Ω). More

precisely, following line by line the proof of [65, Theorem 2.16] or the proof of the abstract

result in [108, Lemma 6.5] (see also [47, Chapter 2]), we get that for all 1 ≤ p ≤ q ≤ ∞,

there exists a constant C > 0 such that for every f ∈ Lp(Ω) and t > 0 we have the estimate:

‖e−t(−∆)sDf‖Lq(Ω) ≤ Ce
−λ1

(
1
p
− 1
q

)
t
t
−N

2s

(
1
p
− 1
q

)
‖f‖Lp(Ω), (3.41)

where λ1 > 0 denotes the first eigenvalue of the operator (−∆)sD.

Next, applying (3.41) with q =∞ and using the representation (3.18) of the solution u,

we get that

‖u(t, ·)‖L∞(Ω) ≤ C
∫ t

0
e
−λ1

(t−τ)
p (t− τ)

− N
2sp ‖z(τ, ·)‖Lp(Ω)dτ. (3.42)

Using Young’s convolution inequality, we get from (3.42) that

‖u‖L∞(Q) ≤ C‖z‖Lr((0,T ),Lp(Ω))

(∫ T

0
e
−λ1

rt
p(r−1) t

− Nr
2sp(r−1) dt

) r−1
r

. (3.43)

If 1 > N
2sp

r
r−1 , that is, if p and r fulfill (3.38), then the integral in the right-hand side of

(3.43) is convergent.
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Under the assumption that Ω has the exterior ball condition, we obtain Corollary 3.1

as a direct consequence of Theorem 3.7. As remarked earlier, the following result for

the parabolic problem (3.39) is new and cannot be obtained by using classical proper-

ties of parabolic problems. In fact, using maximal regularity results for abstract Cauchy

problems (see e.g. [52]), we get that for z ∈ Lr((0, T );Lp(Ω)), the weak solution u to

(3.39) belongs to W 1,r((0, T );Lp(Ω)) ∩ Lr((0, T );D((−∆)sD)). This result only shows that

u ∈ C([0, T ];Lp(Ω))∩Lr((0, T );D(−∆)sD)). The global continuity of solutions on Q cannot

be derived from the above maximal regularity result.

Corollary 3.1 (u is continuous). Let Ω ⊂ RN (N ≥ 1) be a bounded open set with a Lips-

chitz continuous boundary and satisfies the exterior ball condition. Let z ∈ Lr((0, T );Lp(Ω))

with p and r fulfilling (3.38) and p, r < ∞. Then every weak solution u ∈ U0 to (3.39)

belongs to C(Q) and there is a constant C > 0 such that

‖u‖C(Q) ≤ C‖z‖Lr((0,T );Lp(Ω)). (3.44)

Proof. We prove the result in two steps.

Step 1: Let λ ≥ 0 be real number, f ∈ L2(Ω) and consider the following elliptic

Dirichlet problem: 
(−∆)sw + λw = f in Ω

w = 0 in RN \ Ω.

(3.45)

By a weak solution of (3.45) we mean a function w ∈ W̃ s,2
0 (Ω) such that the equality

CN,s
2

∫
RN

∫
RN

(w(x)− w(y))(v(x)− v(y))

|x− y|N+2s
dxdy + λ

∫
Ω
wv dx =

∫
Ω
fv dx,

holds for every v ∈ W̃ s,2
0 (Ω).
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The existence and uniqueness of weak solutions to the Dirichlet problem (3.45) are a

direct consequence of the classical Lax-Milgram theorem.

In Theorem 3.2, we have shown that, if f ∈ Lp(Ω) with p > N
2s (see also [113] for

the case p = ∞), then every weak solution w of the Dirichlet problem (3.45) belongs to

C0(Ω) := {w ∈ C(Ω) : w = 0 on ∂Ω}. Thus, the resolvent operator R(λ, (−∆)sD) maps

Lp(Ω) into C0(Ω) for every λ ≥ 0. In particular, this shows that for every t > 0, the operator

e−t(−∆)sD maps Lp(Ω) (p > N
2s) into the space C0(Ω), that is, the semigroup (e−t(−∆)sD)t≥0

has the strong Feller property. In addition, we have the following result which is interesting

in its own, independently of the application given in this proof.

Let (−∆)sD,c be the part of the operator (−∆)sD in C0(Ω), that is,


D((−∆)sD,c) :=

{
v ∈ D((−∆)sD) ∩ C0(Ω) : ((−∆)sDv)|Ω ∈ C0(Ω)

}
,

(−∆)sD,cv = ((−∆)sDv)|Ω.

From the above properties of the resolvent operator and the semigroup, together with

the fact that D((−∆)sD,c) is dense in C0(Ω), we can deduce that the operator −(−∆)sD,c

generates a strongly continuous semigroup (e−t(−∆)sD,c)t≥0 on C0(Ω). Thus, for every f ∈

C0(Ω) we have that the function

v(t, x) :=

∫ t

0
e−(t−τ)(−∆)sD,cf(x) dτ

belongs to C([0,∞), C0(Ω)). We can then deduce that for every z ∈ C([0, T ];C0(Ω)), the

unique weak solution u ∈ U0 to (3.39) given by

u(t, x) :=

∫ t

0
e−(t−τ)(−∆)sD,cz(τ, x) dτ

belongs to C(Q).
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Step 2: Now, let p and r satisfy (3.38). Since the space C([0, T ];C0(Ω)) is dense in

Lr((0, T );Lp(Ω)), we can construct a sequence {zn}n∈N such that

{zn}n∈N ⊂ C([0, T ];C0(Ω)) and zn → z in Lr((0, T );Lp(Ω)) as n→∞.

Let un ∈ U0 be the weak solution to (3.39) with datum zn. It follows from Step 1 that

un ∈ C(Q). Whence, subtracting the equations satisfied by (u, z) and (un, zn) and using

the estimate (3.40) from Theorem 3.7 we obtain that there is a constant C > 0 such that

for every n ∈ N we have

‖u− un‖L∞(Q) ≤ C‖z − zn‖Lr((0,T );Lp(Ω)).

As a result, we have that un → u in L∞(Q) as n → ∞. Since u is the uniform limit on Q

of a sequence of continuous functions {un}n∈N on Q, it follows that u is also continuous on

Q.

Our next result shows the well-posedness of the parabolic PDE when the right-hand

side and initial conditions are given by a Radon measure as can be seen in the following:

For z ∈M(Q), let zQ := z|Q and z0 := z|{0}×Ω, and consider


∂tu+ (−∆)s)Du = zQ in Q,

u(0, ·) = z0 in Ω.

(3.46)

However, prior to this result, we need to introduce the notion of very-weak solutions similar

to the fractional elliptic problems, cf. Definition 3.3.

Definition 3.8 (Very-weak solutions). Let z ∈M(Q) and p, r satisfy (3.38). A function
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u ∈
(
Lr((0, T );Lp(Ω))

)?
is said to be a very-weak solution to (3.46) if the identity

∫
Q
u (−∂tv + (−∆)sv) dxdt =

∫
Q
vdz

=

∫
Q
vdzQ(t, x) +

∫
Ω
v(0, x)dz0(x),

holds for every v ∈
{
C(Q) ∩ U0 : v(T, ·) = 0 in Ω, (−∂t + (−∆)s) v ∈ Lr((0, T );Lp(Ω))

}
.

Now, we prove the existence and uniqueness of very-weak solutions to (3.46).

Theorem 3.8. Let 1 ≤ p, r <∞ fulfill (3.38) and z ∈M(Q). Then there is a unique very

weak solution u ∈ (Lr((0, T );Lp(Ω)))? of (3.46). Moreover, there is a constant C > 0 such

that

‖u‖Lr((0,T );Lp(Ω))? ≤ C‖z‖M(Q). (3.47)

Proof. We prove the theorem in three steps.

Step 1: Given ζ ∈ Lr((0, T );Lp(Ω)) where p, r fulfill (3.38), we begin by considering

the following “dual” problem


−∂tw + (−∆)sw = ζ in Q,

w = 0 in Σ,

w(T, ·) = 0 in Ω.

(3.48)

After using semigroup theory as in Proposition 3.2, we can deduce that (3.48) has a

unique weak solution w ∈ U0. In addition, from (3.48) we have that (−∂t + (−∆)s)w ∈

Lr((0, T );Lp(Ω)). It follows from Corollary 3.1 that w ∈ C(Q). Thus w is a valid “test

function” according to Definition 3.8.
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Step 2: Towards this end, we define the map

Ξ : Lr((0, T );Lp(Ω))→ C(Q)

ζ 7→ Ξζ =: w.

Due to Corollary 3.1, Ξ is linear and continuous.

We are now ready to construct a unique u. We set u := Ξ∗z, then u ∈ (Lr((0, T );Lp(Ω)))?,

moreover u solves (3.46) according to Definition 3.8. Indeed

∫
Q
uζ dxdt =

∫
Q
u (−∂tw + (−∆)sw) dxdt =

∫
Q

(Ξ∗z)ζ dxdt =

∫
Q
wdz, (3.49)

that is, u is a solution of (3.46) according to Definition 3.8 and we have shown the existence.

Next, we prove the uniqueness of very-weak solution. Assume that (3.46) has two very

weak solutions u1 and u2 with the same right hand side datum z. Then it follows from

(3.49) that ∫
Q

(u1 − u2) (−∂tv + (−∆)sv) dxdt = 0, (3.50)

for every v ∈
{
C(Q) ∩ U0 : v(T, ·) = 0 in Ω, (−∂t + (−∆)s) v ∈ Lr((0, T );Lp(Ω))

}
. It

follows from Step 1 that the mapping

U0 ∩ C(Q)→ Lr((0, T );Lp(Ω)) : v 7→ (−∂tv + (−∆)sv)

is surjective. Thus, we can deduce from (3.50) that

∫
Q

(u1 − u2)w dxdt = 0,

for every w ∈ Lr((0, T );Lp(Ω)). Exploiting the fundamental lemma of the calculus of
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variations we can conclude from the preceding identity that u1 − u2 = 0 a.e. in Ω and we

have shown the uniqueness.

Step 3: It then remains to show the bound (3.47). It follows from (3.49) that

∣∣∣∣∫
Q
uζ dxdt

∣∣∣∣ ≤ ‖z‖M(Q)‖w‖C(Q) ≤ C‖z‖M(Q)‖ζ‖Lr((0,T );Lp(Ω)), (3.51)

where in the last step we have used Corollary 3.1. Finally dividing both sides of the estimate

(3.51) by ‖ζ‖Lr((0,T );Lp(Ω)) and taking the supremum over all functions ζ ∈ Lr((0, T );Lp(Ω))

we obtain the desired result.

3.2.2 Fractional Parabolic Problem with Robin Conditions

This section considers the parabolic Robin exterior value problem


∂tu+ (−∆)su = 0 in Q,

Nsu+ κu = κz in Σ,

u(0, ·) = 0 in Ω,

(3.52)

where Ns denotes the interaction operator given in (2.11) and κ ∈ L1(RN \Ω)∩L∞(RN \Ω)

is non-negative.

Let W s,2
Ω,κ be the Banach space introduced in (2.6) and µ be the measure on RN \Ω given

by dµ = |κ|dx = κdx, since we have assumed that κ is non-negative. In this subsection 〈·, ·〉

shall denote the duality pairing between (W s,2
Ω,κ)? and W s,2

Ω,κ. Next, we introduce our notion

of weak solutions to the Robin problem.

Definition 3.9. Let z ∈ L2((0, T );L2(RN \ Ω, µ)). A function u ∈ L2((0, T );W s,2
Ω,κ) ∩
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H1
0,0((0, T ); (W s,2

Ω,κ)?) is said to be a weak solution of (3.52) if the identity

〈∂tu(t, ·), v〉+

∫ ∫
R2N\(RN\Ω)2

(u(t, x)− u(t, y))(v(x)− v(y))

|x− y|N+2s
dxdy

+

∫
RN\Ω

κ(x)u(t, x)v(x) dx =

∫
RN\Ω

κ(x)z(t, x)v(x) dx,

(3.53)

holds for every v ∈W s,2
Ω,κ and almost every t ∈ (0, T ).

Throughout the following subsection, for u, v ∈W s,2
Ω,κ we shall denote

E(u, v) :=
CN,s

2

∫ ∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

∫
RN\Ω

κuv dx.

Next, we show the existence and uniqueness of weak solutions to (3.52).

Theorem 3.9. Let κ ∈ L1(RN \ Ω) ∩ L∞(RN \ Ω) be non-negative. Then for every

z ∈ L2((0, T );L2(RN \ Ω, µ)), there exists a unique weak solution u ∈ L2((0, T );W s,2
Ω,κ) ∩

H1
0,0((0, T ); (W s,2

Ω,κ)?) of (3.52).

Proof. We prove the result in several steps.

Step 1. Define the operator A in L2(Ω)× L2(RN \ Ω, µ) as follows:


D(A) :=

{
(u, 0) : u ∈W s,2

Ω,κ, (−∆)su ∈ L2(Ω), Nsu ∈ L2(RN \ Ω, µ)
}
,

A(u, 0) = (−(−∆)su,−Nsu− κu) .

Let (f, g) ∈ L2(Ω)× L2(RN \ Ω, µ). We claim that (u, 0) ∈ D(A) with −A(u, 0) = (f, g) if

and only if

E(u, v) =

∫
Ω
fv dx+

∫
RN\Ω

gv dµ, (3.54)
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for all v ∈ W s,2
Ω,κ. Indeed, we have that (u, 0) ∈ D(A) with −A(u, 0) = (f, g) if and only if

u is a weak solution of the following elliptic problem:


(−∆)su = f in Ω,

Nsu+ κu = κg in RN \ Ω.

(3.55)

It has been shown in [6] (see also [103]) that u solves (3.55) if and only if (3.54) holds and

the claim is proved.

Step 2. Firstly, let λ > 0 be a real number. We show that the operator λ−A : D(A)→

L2(Ω)×L2(RN \Ω, µ) is invertible. It is clear that for every λ > 0 there is a constant α > 0

such that

λ

∫
Ω
|u|2 dx+ E(u, u) ≥ α‖u‖2

W s,2
Ω,κ

(3.56)

for all u ∈W s,2
Ω,κ. Hence, by Lax-Milgram’s Theorem, for every (f, g) ∈ L2(Ω)×L2(RN \Ω, µ)

there exists a unique u ∈W s,2
Ω,κ such that

λ

∫
Ω
uv dx+ E(u, v) =

∫
Ω
fv dx+

∫
RN\Ω

gv dµ, (3.57)

for all v ∈W s,2
Ω,κ. By Step 1, this means that there is a unique u ∈W s,2

Ω,κ with (u, 0) ∈ D(A)

and

(λ−A)(u, 0) = (λu, 0)−A(u, 0) = (f, g).

We have shown that λ−A : D(A)→ L2(Ω)× L2(RN \ Ω, µ) is a bijection for every λ > 0.

Secondly, assume now that f ≤ 0 a.e. in Ω and g ≤ 0 µ-a.e. in RN \ Ω. Let the

function (u, 0) := (λ− A)−1(f, g) and set v := u+ := max{u, 0}. It follows from [133] that
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u+ ∈W s,2
Ω,κ. Let u− := max{−u, 0}. Since

(
u−(x)− u−(y)

)(
u+(x)− u+(y)

)
=u−(x)u+(x)− u−(x)u+(y)− u−(y)u+(x) + u−(y)u+(y)

=− u−(x)u+(y)− u−(y)u+(x) ≤ 0,

we have that E(u−, u+) ≤ 0. Hence,

E(u, v) = E(u+ − u−, u+) = E(u+, u+)− E(u−, u+) ≥ 0.

Then by (3.57), we have that

0 ≤ λ
∫

Ω
|u|2 dx+ E(u, u+) =

∫
Ω
fu+ dx+

∫
RN\Ω

gu+ dµ ≤ 0.

By (3.56) this implies that u+ = 0, that is, u ≤ 0 almost everywhere. We have shown

that the resolvent (λ − A)−1 is a positive operator. Since every positive linear operator is

continuous (see e.g., [20]), we can deduce that (λ−A) is in fact invertible.

Thirdly, we have in particular shown that the operator A is closed since −A is the op-

erator associated with the closed form E . Hence, D(A) endowed with the graph norm is

a Banach space and by definition of A, we have that D(A) ⊂ W s,2
Ω,κ × {0}. Since both of

these spaces are continuously embedded into L2(Ω) × L2(RN \ Ω, µ), we can deduce from

the closed graph theorem that D(A) is continuously embedded into W s,2
Ω,κ × {0}.

Step 3. Now since L2(Ω)×L2(RN \Ω, µ) is a Banach lattice with an order continuous

norm and by Step 2 the operator A is resolvent positive, it follows from [19, Theorem

3.11.7] that −A generates a once integrated semigroup on L2(Ω) × L2(RN \ Ω, µ). Hence,

using the theory of integrated semigroups and abstract Cauchy problems studied in [19,

Section 3.11] and proceeding as in [106, Section 2], we can deduce that for every z ∈
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L2((0, T );L2(RN \ Ω, µ)), the problem (3.52) has a unique weak solution.

We conclude this section by showing that if z is more regular in the time variable, then

the existence of weak solutions to (3.52) can easily be proved without using the theory of

integrated semigroups.

Proposition 3.3. Let κ ∈ L1(RN\Ω)∩L∞(RN\Ω). Then for every z ∈ H1
0,0((0, T );L2(RN\

Ω, µ)), there exists a unique weak solution u ∈ L2((0, T );W s,2
Ω,κ) ∩ H1

0,0((0, T ); (W s,2
Ω,κ)?) of

(3.52).

Proof. We proceed as in the proof of Theorem 3.5. Firstly, assume that z ∈ L2(RN \ Ω, µ)

does not depend on the time variable. Let z̃ be the solution of the following elliptic Robin

problem: 
(−∆)sz̃ = 0 in Ω,

Nsz̃ + κz̃ = κz in RN \ Ω,

(3.58)

in the sense that z̃ ∈W s,2
Ω,κ and

∫ ∫
R2N\(RN\Ω)2

(z̃(x)− z̃(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

∫
RN\Ω

κz̃v dx =

∫
RN\Ω

κzv dx, (3.59)

for every v ∈ W s,2
Ω,κ. Under our assumptions, it has been shown in [6] that (3.58) has a

unique solution z̃.

Secondly, assume that z ∈ H1
0,0((0, T );L2(RN \ Ω, µ)). Since in this case ∂tz̃ will be a

solution of (3.58) with z replaced by ∂tz, we can deduce that (3.58) has a unique solution

z̃ ∈ H1
0,0((0, T );W s,2

Ω,κ).
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Consider the following parabolic problem with w := u− z̃:


∂tw + (−∆)sw = −∂tz̃ in Q,

Nsw + κw = 0 in Σ,

w(0, ·) = 0 in Ω.

(3.60)

Let (−∆)sR be the realization in L2(Ω) of (−∆)s with the zero Robin exterior condition

Nsw + κw = 0 in RN \ Ω. We refer to [45] for a precise description of this operator. Then

the parabolic problem (3.60) can be rewritten as the following Cauchy problem


∂tw + (−∆)sRw = −∂tz̃ in Q,

w(0, ·) = 0 in Ω.

It has been shown in [45] (see also [103]) that the operator −(−∆)sR generates a strongly con-

tinuous submarkovian semigroup (e−t(−∆)sR)t≥0 in L2(Ω). Hence, using semigroup theory,

we can deduce that (3.60) has a unique weak solution w that belongs to L2((0, T );W s,2
Ω,κ)∩

H1
0,0((0, T ); (W s,2

Ω,κ)?) and is given by

w(t, x) = −
∫ t

0
e−(t−τ)(−∆)sR∂τ z̃(τ, x) dx.

It is clear that u := w + z̃ is the unique weak solution of (3.52).
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Chapter 4: External Optimal Control of Fractional Parabolic

PDEs

In this chapter, we extend the work in [6] on the elliptic (stationary) case to the parabolic

(non-stationary) case. The previous chapters have laid the foundation to study this novel

parabolic optimal control problem where the control lies in the exterior. As mentioned

earlier, the need for these novel optimal control concepts stems from the fact that the

classical PDE models only allow placing the control/source either on the boundary or in

the interior where the PDE is satisfied. However, the nonlocal behavior of the fractional

operator now allows placing the control/source in the exterior.

Let Ω ⊂ RN , N ≥ 1, be a bounded open set with boundary ∂Ω. Consider the Banach

spaces (ZD, UD) and (ZR, UR), where the subscripts D and R denote Dirichlet and Robin,

respectively. The goal of this chapter is to study the following parabolic external optimal

control (or source identification) problems:

• Fractional parabolic Dirichlet exterior control (source identification) prob-

lem: Given ξ ≥ 0 a constant penalty parameter we consider the following minimiza-

tion problem:

min
(u,z)∈(UD,ZD)

(
J(u) +

ξ

2
‖z‖2ZD

)
, (4.1a)

subject to the fractional parabolic Dirichlet exterior value problem: Find u ∈ UD

solving 
∂tu+ (−∆)su = 0 in Q := (0, T )× Ω,

u = z in Σ := [0, T )× (RN \ Ω),

u(0, ·) = 0 in Ω,

(4.1b)
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and the control constraints

z ∈ Zad,D, (4.1c)

with Zad,D ⊂ ZD being a closed and convex subset. Here, ZD := L2((0, T );L2(RN \

Ω)), UD := L2((0, T );L2(Ω)) and the functional J is assumed to be weakly lower-

semicontinuous and satisfies suitable conditions. We refer to Section 4.1.1 for more

details.

• Fractional parabolic Robin exterior control (source identification) problem:

Given ξ ≥ 0 a constant penalty parameter we consider the minimization problem

min
(u,z)∈(UR,ZR)

(
J(u) +

ξ

2
‖z‖2ZR

)
, (4.2a)

subject to the fractional parabolic Robin exterior value problem: Find u ∈ UR solving


∂tu+ (−∆)su = 0 in Q,

Nsu+ κu = κz in Σ,

u(0, ·) = 0 in Ω,

(4.2b)

and the control constraints

z ∈ Zad,R, (4.2c)

with Zad,R ⊂ ZR being a closed and convex subset. Recall, Ns denotes the interaction

operator as is given in (2.11), κ ∈ L1(RN \Ω)∩L∞(RN \Ω) and is non-negative. The

Banach spaces ZR := L2((0, T );L2(RN \ Ω, µ)),
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UR := L2((0, T );W s,2
Ω,κ)∩H1((0, T ); (W s,2

Ω,κ)?) and the functional J is also weakly lower-

semicontinuous and satisfies suitable conditions. We refer to Chapter 2 for the defi-

nition of the spaces involved and to Section 4.1.2 for further details on the functional

J .

A widely used example of a functional J is as follows. Let ud ∈ L2((0, T );L2(Ω)) be given

and consider the functional J defined by

J(u) :=
1

2
‖u− ud‖2L2((0,T );L2(Ω)).

A typical example of a control constraint set, for instance, in the case of the Robin problem

is as follows: given za, zb with za ≤ zb, we can take

Zad,R := {z ∈ ZR : za(t, x) ≤ z(t, x) ≤ zb(t, x), a.e. in Σ}.

Nevertheless, our approach is not limited to these choices.

Notice that (4.2b) is a generalized exterior value problem and all the details (with

minor modifications) transfer to the case when instead of Nsu+ κu = κz in Σ we consider

Nsu = κz in Σ, where z denotes the control/source. The resulting optimal control problem

is the parabolic Neumann exterior control problem.

The classical parabolic models, such as diffusion equations (with s = 1), are too restric-

tive. They only allow a source or a control placement either inside the domain Ω or on the

boundary ∂Ω. Notice that in both (4.1b) and (4.2b) the source/control z is placed in the

exterior domain RN \ Ω, disjoint from Ω. This is not possible for the classical models.

The key difficulties and novelties of this chapter are as follows:

(i) Nonlocal normal derivative. Nsu is the nonlocal normal derivative of u. This

can be thought of as a restricted fractional Laplacian in RN \ Ω. It is a very difficult

object to handle both at the continuous and discrete levels. Indeed, the best known
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regularity result for Ns is given in Lemma 2.1 which says that Nsu ∈ W s,2
loc (RN \ Ω)

whenever u ∈W s,2(RN ). Higher regularity results are currently unknown.

(ii) Approximation of the Dirichlet problem by a Robin problem. In the case

of the parabolic Dirichlet problem (4.1), it is imperative to deal with Ns. Indeed, we

need to approximate the very-weak solution to the parabolic Dirichlet problem (4.1b)

which requires computing Ns of the test functions (see (3.29)).

(iii) Optimal control problems. We establish the well-posedness of solutions to both

parabolic Dirichlet and Robin control problems.

We remark that the parabolic case considered in this chapter is fundamentally different

than the elliptic case considered in [6]. Section 4.1 deals with the Dirichlet and Robin

fractional parabolic optimal control problems. The proofs in this section use standard

calculus of variations technique, this is similar to the elliptic case, however one has to deal

with both the space and time variables and the notion of solutions to the parabolic problems.

Notice that in addition, now one has to solve the adjoint equation backward in time.

Section 4.2 deals with the approximation of the parabolic Dirichlet problem and the

parabolic Dirichlet control problem by the parabolic Robin ones. In Theorem 4.5 we ap-

proximate the Dirichlet solutions by the Robin solutions. A similar result in the elliptic

case was considered in [6]. The proof in the parabolic case to some extent is motivated by

the elliptic case but one has to deal with both the space and time variables which requires

a careful analysis and several changes in the previous arguments, for instance, the duality

arguments are different. In Theorem 4.6 we present the approximation of the Dirichlet

control/inverse problem by the Robin control/source problem. The arguments in this case

are similar to the elliptic case after adapting it to the parabolic case (the proof has been

omitted).

Finally, in Section 4.3 we present a numerical scheme to approximate the fractional

parabolic state equation and the control/inverse problems. All the results presented here

are completely new as such parabolic problems have not been considered before in the
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literature. The experiments illustrate the strength of the nonlocal approach over the local

ones.

4.1 Exterior Optimal Control Problems

The purpose of this section is to study the Dirichlet and Robin optimal control problems

(4.1) and (4.2), respectively. These are the subjects investigated in Sections 4.1.1 and 4.1.2,

respectively.

4.1.1 Fractional Parabolic Dirichlet Exterior Optimal Control Problem

Due to Theorem 3.6, the control-to-state (solution) map

S : ZD → UD, z 7→ Sz =: u,

is well-defined, linear and continuous. Furthermore, for z ∈ ZD, we have u := Sz ∈

L2((0, T );L2(RN )). Let J : UD → R and consider the reduced functional

J : ZD → R, z 7→ J (z) :=
(
J(Sz) +

ξ

2
‖z‖2ZD

)
.

Then we can write the reduced Dirichlet exterior parabolic optimal control problem as

follows:

min
z∈Zad,D

J (z). (4.3)

Next, we state the well-posedness result for (4.1) and equivalently for (4.3).

Theorem 4.1. Let Zad,D be a closed and convex subset of ZD. Let either ξ > 0 with

J ≥ 0 or Zad,D bounded and J : UD → R weakly lower-semicontinuous. Then there exists a

solution z̄ to (4.3) and equivalently to (4.1). If either J is convex and ξ > 0 or J is strictly

convex and ξ ≥ 0, then z̄ is unique.
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Proof. The proof is based on the direct method or the Weierstrass theorem [21, Theo-

rem 3.2.1]. We sketch the proof here for completeness. For the functional J : Zad,D → R,

it is possible to construct a minimizing sequence {zn}n∈N (see [21, Theorem 3.2.1]) such

that infz∈Zad,D J (z) = limn→∞ J (zn). If ξ > 0 with J ≥ 0 or Zad,D ⊂ ZD is bounded,

then {zn}n∈N is a bounded sequence in ZD which is a Hilbert space. As a result, we have

that (up to a subsequence if necessary) zn ⇀ z̄ (weak convergence) in ZD as n→∞. Since

Zad,D is closed and convex, hence, is weakly closed, we have that z̄ ∈ Zad,D.

It remains to show that (Sz̄, z̄) fulfills the state equation according to Definition 3.7 and

z̄ is a minimizer to (4.3). In order to show that (Sz̄, z̄) fulfills the state equation, we need

to focus on the identity

∫
Q
un (−∂tv + (−∆)sv) dxdt = −

∫
Σ
znNsv dxdt (4.4)

for all v ∈ L2((0, T );V ) ∩H1
0,T ((0, T );L2(Ω)), as n → ∞. Since (passing to a subsequence

if necessary) un := Szn ⇀ Sz̄ =: ū in UD as n → ∞, and zn ⇀ z̄ in ZD as n → ∞, we

can immediately take the limit in (4.4) as n → ∞, and conclude that (ū, z̄) ∈ UD × Zad,D

fulfills the state equation according to Definition 3.7.

Next, that z̄ is the minimizer of (4.3) follows from the fact that J is weakly lower

semicontinuous. Indeed, J is the sum of two weakly lower semicontinuous functions (recall

that the norm is continuous and convex therefore weakly lower semicontinuous).

Finally, the uniqueness of z̄ follows from the stated assumptions on J and ξ which leads

to the strict convexity of the functional J .

In order to derive the first order necessary optimality conditions, we need an expression

of the adjoint operator S∗. We discuss this next. We notice that for every measurable set

E ⊂ RN , we have that L2((0, T );L2(E)) = L2((0, T )× E) with equivalent norms.
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Lemma 4.1. The adjoint operator S∗ : UD → ZD for the state equation (4.1b) is given by

S∗w = −Nsp ∈ ZD,

where w ∈ UD and p ∈ L2((0, T ); W̃ s,2
0 (Ω))∩H1

0,T ((0, T ); W̃−s,2(Ω)) is the weak solution to

the following adjoint problem:


−∂tp+ (−∆)sp = w in Q,

p = 0 in Σ,

p(T, ·) = 0 in Ω.

(4.5)

Proof. First of all, since S is linear and bounded, it follows that S∗ is well-defined. Now for

every w ∈ UD and z ∈ ZD, we have that

(w, Sz)L2((0,T );L2(Ω)) = (S∗w, z)L2((0,T );L2(RN\Ω)).

We notice that using semigroup theory (see e.g. Remark 3.2 and [27]) we have that p ∈

L2((0, T );V )∩H1
0,T ((0, T );L2(Ω)). Thus, ∂tp, (−∆)sp ∈ L2(Q). Next, testing the equation

(4.5) with Sz which solves the state equation in the very-weak sense (cf. Definition 3.29)

we get that

(w, Sz)L2((0,T );L2(Ω)) = (−∂tp+ (−∆)sp, Sz)L2((0,T );L2(Ω))

= −(z,Nsp)L2((0,T );L2(RN\Ω)) = (z, S∗w)L2((0,T );L2(RN\Ω)).

For the remainder of this section, we will assume that ξ > 0.

Theorem 4.2. Let Z ⊂ ZD be open such that Zad,D ⊂ Z and let the assumptions of
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Theorem 4.1 hold. Moreover, let u 7→ J(u) : UD → R be continuously Fréchet differentiable

with J ′(u) ∈ UD. If z̄ is a minimizer of (4.3) over Zad,D, then the first order necessary

optimality conditions are given by

(−Nsp̄+ ξz̄, z − z̄)L2((0,T );L2(RN\Ω)) ≥ 0, ∀z ∈ Zad,D, (4.6)

where p̄ ∈ L2((0, T ); W̃ s,2
0 (Ω)) ∩H1

0,T ((0, T ); W̃−s,2(Ω)) solves the adjoint equation


−∂tp̄+ (−∆)sp̄ = J ′(ū) in Q,

p̄ = 0 in Σ,

p̄(T, ·) = 0 in Ω,

(4.7)

with ū := Sz̄. Finally, (4.6) is equivalent to

z̄ = PZad,D
(
ξ−1Nsp̄

)
, (4.8)

where PZad,D is the projection onto the set Zad,D. Moreover, if J is convex, then (4.6) is a

sufficient condition.

Proof. The statements are a direct consequence of the differentiability properties of J and

the chain rule, combined with Lemma 4.1. Notice that, we have introduced the open set Z

to properly define the derivative of J . Let h ∈ Z be given. Then the directional derivative

of J is given by

J ′(z̄)h = (J ′(Sz̄), Sh)L2((0,T );L2(Ω)) + ξ(z̄, h)L2((0,T );L2(RN\Ω))

= (S∗J ′(Sz̄) + ξz̄, h)L2((0,T );L2(Ω)), (4.9)

where we have used that J ′(Sz̄) ∈ L(L2((0, T );L2(Ω)),R) = L2((0, T );L2(Ω)). Next from
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Lemma 4.1, we have that

S∗J ′(Sz̄) = −Nsp̄,

where p̄ solves (4.7). Recall that p̄ ∈ L2((0, T ); W̃ s,2
0 (Ω)) ∩ H1

0,T ((0, T ); W̃−s,2(Ω)) solv-

ing (4.7) also has the following regularity: ∂tp̄ ∈ L2((0, T );L2(Ω)) and this implies that

(−∆)sp̄ ∈ L2((0, T );L2(Ω)). This implies that Nsp̄ ∈ L2((0, T );L2(RN \ Ω)). Substituting

this expression of S∗J ′(Sz̄) in (4.9), we obtain that

J ′(z̄)h = (−Nsp̄+ ξz̄, h)L2((0,T );L2(Ω)).

The remainder of the steps to obtain (4.6) are standard, see for instance [8, 88].

Finally, (4.8) follows by using [21, Theorem 3.3.5].

4.1.2 Fractional Parabolic Robin Optimal Control Problem

Next, we shall focus on the Robin optimal control problem (4.2). Recall that

ZR := L2((0, T );L2(RN \ Ω, µ)), UR := L2((0, T );W s,2
Ω,κ) ∩H1

0,0((0, T ); (W s,2
Ω,κ)?).

Recall also that dµ = κdx with κ ∈ L1(RN \Ω) ∩L∞(RN \Ω) and is non-negative. Due to

Theorem 3.9, the following control-to-state (solution) map

S : ZR → UR, z 7→ Sz =: u,

is well-defined. In addition, S is linear and continuous. Owing to the continuous embedding

UR ↪→ L2((0, T );L2(Ω)), we can instead define

S : ZR → L2((0, T );L2(Ω)).
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Letting

J (z) : ZR → R, z 7→ J (z) :=
(
J(Sz) +

ξ

2
‖z‖2ZR

)
,

then the reduced Robin exterior parabolic optimal control problem is given by

min
z∈Zad,R

J (z). (4.10)

Throughout the following chapter, for u, v ∈W s,2
Ω,κ we shall denote

E(u, v) :=
CN,s

2

∫ ∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

∫
RN\Ω

κuv dx.

The following well-posedness result holds.

Theorem 4.3. Let Zad,R be a convex and closed subset of ZR and let either ξ > 0 with

J ≥ 0 or Zad,R ⊂ ZR bounded. If J : L2((0, T );L2(Ω))→ R is weakly lower-semicontinuous,

then there exists a solution z̄ to (4.10) and equivalently to (4.2). If either J is convex and

ξ > 0 or J is strictly convex and ξ ≥ 0, then z̄ is unique.

Proof. The proof is similar to the proof of Theorem 4.1. We only discuss the part where

{zn}n∈N is a minimizing sequence such that, passing to a subsequence if necessary, zn ⇀ z̄

in L2((0, T );L2(RN \Ω, µ)) as n→∞. Let (Szn, zn), n ∈ N, be the solution of (4.2b). We

need to show that there is a subsequence which converges to (Sz̄, z̄) in L2((0, T );W s,2
Ω,κ) ∩

H1
0,0((0, T ); (W s,2

Ω,κ)?) as n → ∞ and (Sz̄, z̄) solves (4.2b) in the weak sense (cf. Defini-

tion 3.9). Since un := Szn ∈ L2((0, T );W s,2
Ω,κ) ∩H1

0,0((0, T ); (W s,2
Ω,κ)?) solves (4.2b), we have

that the identity

〈∂tun(t, ·), v〉+ E(un(t, ·), v) =

∫
RN\Ω

zn(t, x)v(x) dµ, (4.11)
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holds for every v ∈ W s,2
Ω,κ and a.e. t ∈ (0, T ), where E is as defined before the beginning of

this theorem. We note that the mapping S is bounded due to Theorem 3.9. As a result,

passing to a subsequence if necessary, we have that Szn = un ⇀ Sz̄ = ū in L2((0, T );W s,2
Ω,κ)∩

H1
0,0((0, T ); (W s,2

Ω,κ)?) as n→∞. Then, taking the limit as n→∞ in (4.11) we get that

〈∂tū(t, ·), v〉+ E(ū(t, ·), v) =

∫
RN\Ω

z̄(t, x)v(x) dµ.

That is, (Sz̄, z̄) solves (4.2b) in the weak sense (cf. Definition 3.9).

As in the previous section, before we state the first order optimality conditions, we shall

derive the expression of the adjoint operator S∗.

Lemma 4.2. The adjoint operator S∗ : L2((0, T );L2(Ω))→ ZR is given by

(S∗w, z)ZR =

∫
Σ
pz dµdt ∀z ∈ ZR,

where w ∈ L2((0, T );L2(Ω)) and p ∈ L2((0, T );W s,2
Ω,κ) ∩ H1

0,T ((0, T ); (W s,2
Ω,κ)?) is the weak

solution to 
−∂tp+ (−∆)sp = w in Q,

Nsp+ κp = 0 in Σ,

p(T, ·) = 0 in Ω.

(4.12)

Proof. Let w ∈ L2((0, T );L2(Ω)) and z ∈ ZR.

Since Sz ∈ L2((0, T );W s,2
Ω,κ) ∩H1((0, T ); (W s,2

Ω,κ)?) ⊂ L2((0, T );L2(Ω)), we can write

(w, Sz)L2((0,T );L2(Ω)) = (S∗w, z)ZR .
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Furthermore, testing (4.12) with Sz = u we obtain that

(w, Sz)L2((0,T );L2(Ω)) = (−∂tp+ (−∆)sp, Sz)L2((0,T );L2(Ω))

=

∫
Σ
zp dµdt = (S∗w, z)ZR ,

where we have used the integration-by-parts in both space and time and the fact that

Sz = u solves the state equation according to Definition 3.9.

We conclude this section with the following first order optimality conditions result whose

proof is similar to the Dirichlet case and is omitted for brevity. We shall assume that ξ > 0.

Theorem 4.4. Let Z ⊂ ZR be open such that Zad,R ⊂ Z and let the assumptions of The-

orem 4.3 hold. Let u 7→ J(u) : L2((0, T );L2(Ω))→ R be continuously Fréchet differentiable

with J ′(u) ∈ L2((0, T );L2(Ω)). If z̄ is a minimizer of (4.10), then the first order necessary

optimality conditions are given by

∫
Σ

(p̄+ ξz̄)(z − z̄) dµdt ≥ 0, z ∈ Zad,R (4.13)

where p̄ ∈ L2((0, T );W s,2
Ω,κ) ∩H1

0,T ((0, T ); (W s,2
Ω,κ)?) solves the following adjoint equation:


−∂tp̄+ (−∆)sp̄ = J ′(ū) in Q,

Nsp̄+ κp̄ = 0 in Σ,

p̄(T, ·) = 0 in Ω.

(4.14)

Moreover, (4.13) is equivalent to

z̄ = PZad,R(−ξ−1p̄)
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where PZad,R is the projection onto the set Zad,R. If J is convex, then (4.13) is also sufficient.

4.2 Approximation of the Dirichlet Exterior Value and Op-

timal Control Problems

Recall that the Dirichlet control problem requires approximations of the nonlocal normal

derivative of the test functions (cf. (3.29)) and the solutions of the adjoint system (cf. (4.6)).

The Nonlocal normal derivative Ns is a delicate object to handle both at the continuous

level and at the discrete level. Indeed, the best known regularity result for Nsu is as given

in Lemma 2.1. Moreover, a numerical approximation of this object is a daunting task. In

order to circumvent the approximations of Nsu both in (3.29) and (4.6), in this section we

propose to approximate the parabolic Dirichlet problem by the following parabolic Robin

problem.

Let n ∈ N. In this section we are interested in solutions un to the following parabolic

Robin problem: 
∂tun + (−∆)sun = 0 in Q,

Nsun + nκun = nκz in Σ,

un(0, ·) = 0 in Ω,

(4.15)

that belong to the space L2((0, T );W s,2
Ω,κ∩L2(RN \Ω))∩H1

0,0((0, T ); (W s,2
Ω,κ∩L2(RN \Ω))?).

Notice that W s,2
Ω,κ ∩ L2(RN \ Ω) is endowed with the norm

‖u‖
W s,2

Ω,κ∩L2(RN\Ω)
:=

(
‖u‖2

W s,2
Ω,κ

+ ‖u‖2L2(RN\Ω)

) 1
2

, u ∈W s,2
Ω,κ ∩ L

2(RN \ Ω). (4.16)

Moreover, in our application we shall take κ such that its support supp[κ] has a positive

Lebesgue measure. Thus, we make the following assumption.

Assumption 1. We assume that κ ∈ L1(RN \Ω)∩L∞(RN \Ω) and κ > 0 almost everywhere
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in K := supp[κ] ⊂ RN \ Ω, and the Lebesgue measure |K| > 0.

It follows from Assumption 1 that

∫
RN\Ω

κ dx > 0.

We recall that a solution to (4.15) belongs to L2((0, T );W s,2
Ω,κ) ∩ H1

0,0((0, T ); (W s,2
Ω,κ)?)

(this follows from Proposition 3.3). In order to show that this solution also belongs to

L2((0, T );W s,2
Ω,κ ∩ L2(RN \Ω)) ∩H1

0,0((0, T ); (W s,2
Ω,κ ∩ L2(RN \Ω))?), we recall a result from

[6, Lemma 6.2].

Lemma 4.3 ([6, Lemma 6.2]). Assume that Assumption 1 holds. Then

‖u‖W :=

(∫ ∫
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x− y|N+2s
dxdy +

∫
RN\Ω

|u|2 dx

) 1
2

(4.17)

defines an equivalent norm on W s,2
Ω,κ ∩ L2(RN \ Ω).

We are now ready to state the main result of this section whose proof is motivated by

the elliptic case studied by the authors in [6].

Theorem 4.5 (Approximation of weak solutions to the Dirichlet problem). Let

Assumption 1 hold. Then the following assertions hold.

1. Let z ∈ H1
0,0((0, T );W s,2(RN \ Ω)) and

un ∈ L2((0, T );W s,2
Ω,κ ∩ L2(RN \Ω)) ∩H1

0,0((0, T ); (W s,2
Ω,κ ∩ L2(RN \Ω))?) be the weak

solution of (4.15). Let u ∈ U be the weak solution to the state equation (4.1b). Then

there is a constant C > 0 (independent of n) such that

‖u− un‖L2((0,T );L2(RN )) ≤
C

n
‖u‖L2((0,T );W s,2(RN )). (4.18)

In particular, un converges strongly to u in L2((0, T );L2(Ω)) as n→∞.
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2. Let z ∈ L2((0, T );L2(RN \ Ω)) and

un ∈ L2((0, T );W s,2
Ω,κ ∩ L2(RN \Ω)) ∩H1

0,0((0, T ); (W s,2
Ω,κ ∩ L2(RN \Ω))?) be the weak

solution of (4.15). Then there is a subsequence that we still denote by {un}n∈N and

a ũ ∈ L2((0, T );L2(RN )) such that un ⇀ ũ in L2((0, T );L2(RN )) as n → ∞, and ũ

satisfies ∫
Q
ũ
(
− ∂tv + (−∆)sv

)
dxdt = −

∫
Σ
ũNsv dxdt, (4.19)

for all v ∈ L2((0, T );V ) ∩H1
0,T ((0, T );L2(Ω)).

Proof. (a) We begin by discussing the well-posedness of (4.15). We first notice that under

our assumption, we have that W s,2(RN \Ω) ↪→ L2(RN \Ω) ↪→ L2(RN \Ω, µ). Now a weak

solution un ∈ L2((0, T );W s,2
Ω,κ ∩ L2(RN \ Ω)) ∩H1

0,0((0, T ); (W s,2
Ω,κ ∩ L2(RN \ Ω))?) to (4.15)

fulfills the identity

〈∂tun(t, ·), v〉+
CN,s

2

∫ ∫
R2N\(RN\Ω)2

(un(t, x)− un(t, y))(v(x)− v(y))

|x− y|N+2s
dxdy

+ n

∫
RN\Ω

un(t, x)v(x) dµ = n

∫
RN\Ω

z(t, x)v(x) dµ,

(4.20)

for every v ∈W s,2
Ω,κ∩L2(RN \Ω) and almost every t ∈ (0, T ). For every n ∈ N, the existence

of a unique solution un to (4.15) follows by using the arguments of Proposition 3.3.

Next, we prove the estimate (4.18). For v, w ∈W s,2
Ω,κ ∩ L2(RN \ Ω), we shall let

En(v, w) :=
CN,s

2

∫ ∫
R2N\(RN\Ω)2

(v(x)− v(y))(w(x)− w(y))

|x− y|N+2s
dxdy + n

∫
RN\Ω

vw dµ.

(4.21)

It is not difficult to see (cf. [6, Eq. (6.17)]) that there is a constant C > 0 (independent of
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n) such that

CN,s
2

∫ ∫
R2N\(RN\Ω)2

|un(t, x)− un(t, y)|2

|x− y|N+2s
dxdy + n

∫
RN\Ω

|un(t, x)|2 dx

≤ CEn(un(t, ·), un(t, ·)). (4.22)

Next, let u ∈ U be the weak solution to the Dirichlet problem (4.1b) according to

Definition 3.6 and let v ∈W s,2
Ω,κ∩L2(RN \Ω). Using the integration by parts formula (2.12)

we get that

〈∂t(u− un)(t, ·), v〉+ En((u− un)(t, ·), v)

=

∫
Ω

(
∂t(u− un)(t, x) + (−∆)s(u− un)(t, x)

)
v dx+

∫
RN\Ω

Ns(u− un)(t, x)v(x) dx

+ n

∫
RN\Ω

(u− un) (t, x)v(x) dµ

=

∫
Ω

(∂t(u− un)(t, x) + (−∆)s(u− un)(t, x)) v(x) dx+

∫
RN\Ω

v(x)Nsu(t, x) dx

−
∫
RN\Ω

(Nsun(t, x) + nκ(x)(un − z)) (t, x)v(x) dx

=

∫
RN\Ω

v(x)Nsu(t, x) dx, (4.23)

where we have used that

∂t(u− un) + (−∆)s(u− un) = 0 in Q and Nsun + nκ(un − z) = 0 in Σ,

which follows from the fact that u is a solution to the Dirichlet problem (4.1b) and un a

solution of (4.15). Letting v := (u − un)(t, ·) in (4.23) and using (4.22), we can conclude
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that there is a constant C > 0 (independent of n) such that

C〈∂t(u− un)(t, ·), (u− un)(t, ·)〉+ n‖(u− un)(t, ·)‖2L2(RN\Ω)

≤ C
(
〈∂t(u− un)(t, ·), (u− un)(t, ·)〉+ En((u− un)(t, ·), (u− un)(t, ·))

)
= C

∫
RN\Ω

(u− un)(t, x)Nsu(t, x) dx

≤ C‖(u− un)(t, ·)‖L2(RN\Ω)‖Nsu(t, ·)‖L2(RN\Ω)

≤ C‖(u− un)(t, ·)‖L2(RN\Ω)‖u(t, ·)‖W s,2(RN )

≤ n

2
‖(u− un)(t, ·)‖2L2(RN\Ω) +

C2

2n
‖u(t, ·)‖2W s,2(RN ).

Hence,

C〈∂t(u− un)(t, ·), (u− un)(t, ·)〉+
n

2
‖(u− un)(t, ·)‖2L2(RN\Ω) ≤

C

n
‖u(t, ·)‖2W s,2(RN ),

where we have replaced the constant C2 by C. Since

〈∂t(u− un)(t, ·), (u− un)(t, ·)〉 =
1

2
∂t‖(u− un)(t, ·)‖2L2(RN\Ω),

it follows that

C

2
∂t‖(u− un)(t, ·)‖2L2(RN\Ω) +

n

2
‖(u− un)(t, ·)‖2L2(RN\Ω) ≤

C

n
‖u(t, ·)‖2W s,2(RN ).
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Thus,

C

2
‖(u− un)(t, ·)‖2L2(RN\Ω) +

n

2

∫ t

0
‖(u− un)(τ, ·)‖2L2(RN\Ω) dτ

≤ C

n

∫ t

0
‖u(τ, ·)‖2W s,2(RN ) dτ

which implies that


‖u− un‖L∞((0,T );L2(RN\Ω)) ≤ C√

n
‖u‖L2((0,T );W s,2(RN ))

‖u− un‖L2((0,T );L2(RN\Ω)) ≤ C
n ‖u‖L2((0,T );W s,2(RN )).

(4.24)

In order to obtain (4.18), it remains to estimate ‖u− un‖L2((0,T );L2(Ω)).

We notice that L2((0, T );L2(Ω)) = L2((0, T )× Ω) with equivalent norms and

‖u− un‖L2((0,T );L2(Ω)) = sup
η∈L2((0,T );L2(Ω))

∣∣∣∣∫ T

0

∫
Ω

(u− un)η dxdt

∣∣∣∣
‖η‖L2((0,T );L2(Ω))

. (4.25)

For any η ∈ L2((0, T );L2(Ω)), let w ∈ L2((0, T ); W̃ s,2
0 (Ω)) ∩ H1

0,T ((0, T ); W̃−s,2(Ω)) solve

the following dual problem:


−∂tw + (−∆)sw = η in Q,

w = 0 in Σ,

w(T, ·) = 0 in Ω.

(4.26)

It follows from Proposition 3.2 that there is a unique solution w to (4.26) that fulfills

‖w‖L2((0,T );W s,2(RN )) ≤ C‖η‖L2((0,T );L2(Ω)). (4.27)
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Notice that w ∈ L2((0, T ); W̃ s,2
0 (Ω)) and using (4.23) we obtain that

∫ T

0

∫
Ω

(u− un)(−∂tw + (−∆)sw) dxdt

=

∫ T

0
〈∂t(u− un), w〉 dt−

∫ T

0

∫
RN\Ω

(u− un)Nsw dxdt

+
CN,s

2

∫ T

0

∫ ∫
R2N\(RN\Ω)2

((u− un)(t, x)− (u− un)(t, y))(w(t, x)− w(t, y))

|x− y|N+2s
dxdydt

=

∫ T

0
〈∂t(u− un), w〉 dt+

∫ T

0
En(u− un, w) dt−

∫ T

0

∫
RN\Ω

(u− un)Nsw dxdt

=

∫ T

0

∫
RN\Ω

wNsu dxdt−
∫ T

0

∫
RN\Ω

(u− un)Nsw dxdt

=−
∫ T

0

∫
RN\Ω

(u− un)Nsw dxdt.

Using the preceding identity, (4.24) and (4.27), we obtain that

∣∣∣∣∫ T

0

∫
Ω

(u− un)(−∂tw + (−∆)sw) dxdt| =

∣∣∣∣∣
∫ T

0

∫
RN\Ω

(u− un)Nsw dxdt

∣∣∣∣∣
≤‖u− un‖L2((0,T );L2(RN\Ω))‖Nsw‖L2((0,T );L2(RN\Ω))

≤C
n
‖u‖L2((0,T );W s,2(RN ))‖w‖L2((0,T );W s,2(RN ))

≤C
n
‖u‖L2((0,T );W s,2(RN ))‖η‖L2((0,T );L2(Ω)). (4.28)

Using (4.25) and (4.28) we get that

‖u− un‖L2((0,T );L2(Ω)) ≤
C

n
‖u‖L2((0,T );W s,2(RN )). (4.29)

Now the estimate (4.18) follows from (4.24) and (4.29). The proof of Part (a) is complete.
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(b) Let z ∈ L2((0, T );L2(RN \ Ω)). Using our assumption, we immediately notice that

we have the continuous embedding L2(RN \ Ω) ↪→ L2(RN \ Ω, µ). In addition, {un}n∈N

satisfies (4.20). Then proceeding similarly as in (4.22) we can deduce that

C〈∂tun(t, ·), un(t, ·)〉+ n‖un(t, ·)‖2L2(RN\Ω) ≤ C
(
〈∂tun(t, ·), un(t, ·)〉+ En(un, un)

)
≤nC‖κ‖L∞(RN\Ω)‖z(t, ·)‖L2(RN\Ω)‖un(t, ·)‖L2(RN\Ω),

for almost every t ∈ (0, T ). Since 〈∂tun(t, ·), un(t, ·)〉 = 1
2∂t‖un(t, ·)‖2

L2(RN\Ω)
, we have that

‖un‖L2((0,T );L2(RN\Ω)) ≤ C‖z‖L2((0,T );L2(RN\Ω)). (4.30)

In order to show that ‖un‖L2((0,T );L2(Ω)) is uniformly bounded, we can proceed as in (4.29),

i.e., by using a duality argument. Let η ∈ L2((0, T );L2(Ω)) and w ∈ U0 be the weak

solution of (4.26). Then using (4.20) and taking w ∈ L2((0, T );V ) ∩ H1
0,T ((0, T );L2(Ω)),

we get that

∫
Q
unη dxdt =

∫
Q
un(−∂tw + (−∆)sw) dxdt

=

∫ T

0
〈∂tun, w〉 dt−

∫ T

0

∫
RN\Ω

unNsw dxdt

+
CN,s

2

∫ T

0

∫ ∫
R2N\(RN\Ω)2

(un(t, x)− un(t, y))(w(t, x)− w(t, y))

|x− y|N+2s
dxdydt

=−
∫ T

0

∫
RN\Ω

unNsw dxdt.
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Using the above identity, (4.30) and (4.27) we obtain that

∣∣∣∣∫ T

0

∫
Ω
unη dxdt

∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
RN\Ω

unNsw dxdt

∣∣∣∣∣
≤‖un‖L2((0,T );L2(RN\Ω))‖Nsw‖L2((0,T );L2(RN\Ω))

≤C‖z‖L2((0,T );L2(RN\Ω))‖w‖L2((0,T );W s,2(RN ))

≤C‖z‖L2((0,T );L2(RN\Ω))‖η‖L2((0,T );L2(Ω)). (4.31)

Thus,

‖un‖L2((0,T );L2(Ω)) ≤ C‖z‖L2((0,T );L2(RN\Ω)). (4.32)

Combining (4.30)-(4.32) we get that

‖un‖L2((0,T );L2(RN )) ≤ C‖z‖L2((0,T );L2(RN\Ω)). (4.33)

Therefore, the sequence {un}n∈N is bounded in L2((0, T );L2(RN )) = L2((0, T ) × RN ).

Thus, passing to a subsequence if necessary, we have that un converges weakly to some ũ

in L2((0, T );L2(RN )) as n→∞.

It remains to show (4.19). Notice that W s,2
0 (Ω) ↪→W s,2

Ω,κ ∩L2(RN \Ω). Thus, by (4.20)

we have that

∫ T

0
〈∂tun(t, ·), v(t, ·)〉 dt

+
CN,s

2

∫ T

0

∫ ∫
R2N\(RN\Ω)2

(un(t, x)− un(t, y))(v(t, x)− v(t, y))

|x− y|N+2s
dxdydt = 0,

(4.34)

for every v ∈ L2((0, T );V ) ∩ H1
0,T ((0, T );L2(Ω)). Next, applying the integration by parts
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formula (2.12) we can deduce that

∫ T

0
〈∂tun(t, ·), v(t, ·)〉 dt

+
CN,s

2

∫ T

0

∫ ∫
R2N\(RN\Ω)2

(un(t, x)− un(t, y))(v(t, x)− v(t, y))

|x− y|N+2s
dxdydt

=

∫
Q
un(−∂tv + (−∆)sv) dxdt+

∫
Σ
unNsv dxdt. (4.35)

Combining (4.34)-(4.35) we get the identity

∫
Q
un(−∂tv + (−∆)sv) dxdt+

∫
Σ
unNsv dxdt = 0. (4.36)

Taking the limit as n→∞ in (4.36), we obtain that

∫
Q
ũ(−∂tv + (−∆)sv) dxdt+

∫
Σ
ũNsv dxdt = 0,

for every v ∈ L2((0, T );V ) ∩H1
0,T ((0, T );L2(Ω)). Thus, we have shown (4.19).

Next, we show the approximation of the parabolic Dirichlet control problem (4.1).

Let ZR := L2((0, T );L2(RN \ Ω)) and consider the following minimization problem:

min
(u,z)∈(UR,ZR)

(
J(u) +

ξ

2
‖z‖2ZR

)
, (4.37a)

subject to the fractional parabolic Robin exterior value problem: Find u ∈ UR solving


∂tu+ (−∆)su = 0 in Q,

Nsu+ nκu = nκz in Σ,

u(0, ·) = 0 in Ω,

(4.37b)
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and the control constraints

z ∈ Zad,R. (4.37c)

Theorem 4.6 (Approximation of the parabolic Dirichlet control problem). The

problem (4.37) admits a minimizer (zn, u(zn)) ∈ Zad,R × L2((0, T );W s,2
Ω,κ ∩ L2(RN \ Ω)) ∩

H1
0,0((0, T ); (W s,2

Ω,κ ∩ L2(RN \ Ω))?). If ZR = H1
0,0((0, T );W s,2(RN \ Ω)) and Zad,R ⊂ ZR

is bounded, then for any sequence {n`}∞`=1 with n` → ∞, there exists a subsequence still

denoted by {n`}∞`=1, such that zn` ⇀ z̃ in H1
0,0((0, T );W s,2(RN \ Ω)) and u(zn`) → u(z̃)

in L2((0, T );L2(RN )) as n` → ∞, with (z̃, u(z̃)) solving the parabolic Dirichlet control

problem (4.1) with Zad,D replaced by Zad,R.

Proof. The proof is similar to the elliptic case studied in [6] with the obvious modifications

and is omitted for brevity.

We conclude this section by writing the stationarity system corresponding to (4.37):

Find

(z, u, p) ∈ Zad,R ×
(
L2((0, T );W s,2

Ω,κ ∩ L2(RN \ Ω)) ∩H1((0, T ); (W s,2
Ω,κ ∩ L2(RN \ Ω))?)

)2

with u(0, ·) = p(T, ·) = 0 in Ω such that



〈∂tu(t, ·), v〉+ En(u(t, ·), v) =

∫
RN\Ω

nκ(x)z(t, x)v(x) dx, a.e. t ∈ (0, T ),

〈−∂tp(t, ·), w〉+ En(w, p(t, ·)) =

∫
Ω
J ′(u(t, x))w(x) dx, a.e. t ∈ (0, T ),∫

Σ
(nκ(x)p(t, x) + ξz(t, x))(z̃ − z)(t, x) dx ≥ 0,

(4.38)

for all (z̃, v, w) ∈ Zad,R × (W s,2
Ω,κ ∩ L2(RN \ Ω)) × (W s,2

Ω,κ ∩ L2(RN \ Ω)). Here En is as in

(4.21).
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4.3 Numerical Approximations

In this section, we shall introduce the numerical approximation of all the problems we have

considered so far. We remark that solving parabolic fractional PDEs is a delicate issue. One

has to assemble the integrals with singular kernels and the resulting system matrices are

dense. On the top of that, the optimal control problem requires solving the state equation

forward in time and adjoint equation backward in time. This can be prohibitively expensive.

The purpose of this section is simply to illustrate that the numerical results are in agreement

with the theory and to show the benefits of the fractional optimal control problem.

The rest of the section is organized as follows: In subsection 4.3.1 we first focus on the

approximations of the Robin problem (4.15). With the help of a numerical example, we

illustrate the sharpness of Theorem 4.5. This is followed by a source identification problem

in subsection 4.3.2. The numerical example presented in subsection 4.3.2 clearly indicates

the strength and flexibility of nonlocal problems over the local ones.

4.3.1 Approximation of Parabolic Dirichlet Problems by Parabolic Robin

Problems

We begin by introducing a discrete scheme for the parabolic Robin problem (4.15) and recall

that we can approximate the parabolic Dirichlet problem by the parabolic Robin problem.

Let Ω̃ be an open bounded set that contains Ω, the support of z, and the support of κ.

We consider a conforming simplicial triangulation of Ω and Ω̃ \ Ω such that the resulting

partition remains admissible. Throughout the following, we will assume that the support

of z and κ are contained in Ω̃ \Ω. Let Vh (on Ω̃) be the finite element space of continuous

piecewise linear functions. We use the backward-Euler to carry out the time discretization:

Let K denote the number of time intervals, we set the time-step to be τ = T/K. Then for

k = 1, . . . ,K, the fully discrete approximation of (4.15) with nonzero right-hand side f and

initial datum u(0) = u(0, ·) is given by: find u
(k)
h ∈ Vh such that
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∫
Ω
u

(k)
h v dx+ τEn(u

(k)
h , v) = τ〈f (k), v〉+ τ

∫
Ω̃\Ω

nκz(k)v dx

+

∫
Ω
u

(k−1)
h v dx ∀v ∈ Vh,

(4.39)

where En is as in (4.21). The approximation of the double integral over R2N \ (RN \

Ω)2 is carried out using the approach of [1]. The remaining integrals are computed using

quadrature which is accurate for polynomials of degree less than and equal to 4. All the

implementations are carried in Matlab and we use the direct solver to solve the linear

systems. We emphasize that all our spatial meshes are generated using Gmsh [67].

We next consider an example of a parabolic Dirichlet problem with nonzero exterior

conditions. Let Ω = B0(1/2) ⊂ R2 and T = 1. We aim to find u solving


∂tu+ (−∆)su = uexact + et in Q,

u(t, ·) = uexact(t, ·) in Σ,

u(0, ·) = uexact(0, ·) in Ω.

(4.40)

The exact solution for this problem is given by

uexact(t, x) =
2−2set

Γ(1 + s)2

(
1− |x|2

)s
+
.

We set Ω̃ = B0(1.5) and approximate (4.40) by using (4.39). Moreover, we set κ = 1

on its support. We divide the time interval (0, 1) into 1800 subintervals. For a fixed

s = 0.6 and spatial Degrees of Freedom (DoFs) = 6017, we study the L2((0, T );L2(Ω)) error

‖uexact − uh‖L2((0,T );L2(Ω)) with respect to n in Figure 4.1 (left). We obtain a convergence

rate of 1/n, as predicted by Theorem 4.5(a).
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Figure 4.1: Left panel: Fix s = 0.6, Degrees of Freedom (DoFs) = 6017. The number of
time intervals is 1800. The solid line denotes the reference line and the dotted line is the
actual error. We observe that the error ‖uexact − uh‖L2((0,T );L2(Ω)) with respect to n decays

at the rate of 1/n as predicted by the estimate (4.18) in Theorem 4.5(a). Right panel: Let
s = 0.6 and number of time intervals = 1800, be fixed. We have shown that the error with

respect to spatial DoFs, for n = 104, n = 105, n = 106, and n = 107, behaves as (DoFs)−
1
2 .
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Figure 4.2: Behavior of ‖uexact−uh‖L2(0,T ;L2(Ω)) as s→ 1. We notice that the error remains

stable.

In the right panel, in Figure 4.1, we have shown the error ‖uexact−uh‖L2(0,T ;L2(Ω)) for a

fixed s = 0.6, but n = 1e4, 1e5, 1e6, 1e7, as a function of DoFs. We observe that the error

remains stable with respect to n as we refine the spatial mesh. Moreover, the observed rate

of convergence is (DoFs)−
1
2 .

For the same example, next we study the behavior of ‖uexact−uh‖L2((0,T );L2(Ω)) as s→ 1

in Figure 4.2. We observe that the error remains stable. We conclude this section, with
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Figure 4.3: We use the non-smooth data given in (4.41) and show the error ‖uexact −
uh‖L2((0,T );L2(Ω)) with respect to n. We observe a rate of convergence less than predicted in

Theorem 4.5 (a). This seems to indicate that the result of Theorem 4.5 (a) is sharp, since

in this example we expect u 6∈ L2((0, T );W s,2(RN )).

another example where f and z are less regular than in the above example. We set

f(t, x) :=
(
|0.1− x2|0.01 + | − 0.1− x2|0.01

)
et and (4.41)

z(t, x) :=
(
|0.6− x2|0.01 + | − 0.6− x2|0.01

)
et. (4.42)

Notice that in this case we do not have access to uexact. Instead, we set uexact to be the

solution with n = 108. The error ‖uexact − uh‖L2((0,T );L2(Ω)) with respect to n is shown

in Figure 4.3. The example seems to give a convergence rate of n−0.7473 which is lower

than the rate we predicted in Theorem 4.5 (a). This appears to indicate that the result of

Theorem 4.5 (a) are sharp, as in this example we expect u 6∈ L2((0, T );W s,2(RN )).

4.3.2 Parabolic Source/Control Identification Problems

After the validation in the previous example, we are now ready to consider a source/control

identification problem where the source/control is located outside the domain Ω. The

optimality system is as given in (4.38). The spatial discretization of all the optimization

variables (u, z, p) is carried out using continuous piecewise linear finite elements and time
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Figure 4.4: Left panel: The circle denotes Ω̃ and the larger square denotes the domain

Ω. Moreover, the outer square inside Ω̃ \Ω is Ω̂, i.e., the region where the source/control is
supported. Right panel: A finite element mesh.

discretization using backward-Euler. We set the objective function to be

j(u, z) := J(u) +
ξ

2
‖z‖2L2((0,T );L2(RN\Ω)), with J(u) :=

1

2
‖u− ud‖2L2((0,T );L2(Ω)),

where ud : L2((0, T );L2(Ω))→ R is the given data (observations). Moreover, we let Zad,R :=

{z ∈ L2((0, T );L2(RN \ Ω)) : z ≥ 0, a.e. in (0, T ) × Ω̂} where Ω̂ is the support set of the

control z that is contained in Ω̃\Ω. We solve the optimization problem using the projected-

BFGS method with Armijo line search.

We consider the domain as given in Figure 4.4. The circle denotes Ω̃ = B0(3/2) and

the larger square denotes the domain Ω = [−0.4, 0.4]2. The smaller square, inside Ω̃ \ Ω,

denoted by Ω̂, is where the source/control is supported. The right panel shows a finite

element mesh with DoFs = 6103.

We generate the data ud as follows: for z = 1, we solve the state equation (first equation

in (4.38)). We then add a normally distributed noise with mean zero and standard deviation

0.005. We call the resulting expression ud. In addition, we set κ = 1 on its support and

n = 1e7.
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Next, we identify the source z̄h by solving the optimality system (4.38) using the afore-

mentioned optimization algorithm. For ξ = 1e-8, our results are shown in Figure 4.5. In

the first two rows, we have plotted z̄h (as a by-product of our optimization algorithm) for

s = 0.1 at 4 time instances t = 0.25, 0.3, 0.43, 0.58. The third row shows z̄h for s = 0.8 at

only one of these four time instances since z̄h is zero at the remaining three time instances.

The zero z̄h for all these time instances can be explained as follows: we know that when s

approaches 1, the fractional Laplacian approaches the standard Laplacian −∆. The latter

operator only imposes boundary conditions on ∂Ω, but not exterior conditions as in the

case of the fractional Laplacian.
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Figure 4.5: The first and second row show the source z̄h for exponent s = 0.1 at 4 different
time instances, t = 0.25, 0.3, 0.43, 0.58. The last row shows z̄h for exponent s = 0.8 at
t = 0.25. Notice that z̄h ≡ 0 at t = 0.25. For s = 0.8, we also obtain that z̄h ≡ 0 at
t = 0.3, 0.43, 0.58 therefore we have omitted those plots. This comparison between z̄h for
s = 0.1 and s = 0.8 clearly indicates that we can recover the sources for smaller values of s
but when s approaches 1, since the fractional Laplacian approaches the standard Laplacian,
we cannot see the external source at all times, i.e., we obtain z̄h ≡ 0. Recall that, the
standard Laplacian does not allow imposing exterior conditions.
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Chapter 5: Optimal Control of Fractional Elliptic PDEs with

State Constraints and Characterization of the Dual of

Fractional Order Sobolev Spaces

As mentioned in the introduction, many real life applications, for example in finance, elas-

ticity, etc., require constraints on the solution of the fractional PDEs. Therefore, in this

chapter, we introduce and study fractional optimal control problems with both state and

control constraints.

We remark that the case s = 1 is classical, see for instance, [38, 39, 41, 88, 125] and the

references therein. Nevertheless, none of these existing works are directly applicable to the

case of fractional state constraints as stated in (5.2b). For example, the characterization

of the dual of integer order Sobolev spaces, which is needed to establish the regularity of

solutions to the adjoint equation, was not known for fractional order Sobolev spaces. This

adjoint regularity is then used to establish a higher regularity result for the optimal control.

This chapter is organized as follows. In Section 5.1, we introduce the problem under

consideration and state the main difficulties and novelties. In Section 5.2, we show the well-

posedness of the optimal control problem and derive the optimality conditions using some

results from Section 3.1.1. In Section 5.3, we derive the characterization of the dual spaces

of the fractional order Sobolev spaces. We conclude by giving higher regularity results for

the associated adjoint and control variables in Section 5.4. In addition, we also discuss the

case where we have weaker than Lp-controls.

5.1 Problem Formulation

Let Ω ⊂ RN (N ≥ 1) be a bounded open set with boundary ∂Ω. The main goal of this

chapter is to introduce and study an optimal control problem with both control and state
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constraints:

min
(u,z)∈(U,Z)

J(u, z) (5.1)

subject to the fractional elliptic PDE: find u ∈ U solving

(−∆)su = z in Ω, u = 0 in RN \ Ω , (5.2a)

as constraints and additional state constraints

u|Ω ∈ K :=
{
w ∈ C0(Ω) : w(x) ≤ ub(x), ∀x ∈ Ω

}
, (5.2b)

where C0(Ω) is the space of all continuous functions in Ω that vanish on ∂Ω and ub ∈ C(Ω).

Moreover, we also consider the control constraints

z ∈ Zad ⊂ Lp(Ω) (5.2c)

with Zad being a non-empty, closed, and convex set. In (5.2c), the real number p satisfies

p >
N

2s
if N > 2s, p > 1 if N = 2s, p = 1 if N < 2s. (5.3)

Notice that for z ∈ Lp(Ω), with p as in (5.3), we have that u solving (5.2a) belong to

L∞(Ω) (see, Section 3.1, also [18]). We refer to Section 5.2 for more details and the precise

assumptions on the functional J .

Main Difficulties and Novelties of the work.

1. Equation with measure valued data. The adjoint equation (see, Equation (5.8b))

associated with (5.2a) is a fractional PDE with a measure-valued datum. We showed

in Theorem 3.3 the well-posedness of such PDEs in L
p
p−1 (Ω) where p is as in (5.3).

Here, we shall prove in Corollary 5.3 that solutions belong to W̃
t, p
p−1

0 (Ω) under suitable
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assumptions on p and 0 < t < 1.

2. Characterization of the dual space W̃−s,p′(Ω). Let 1 ≤ p < ∞, p′ := p
p−1

and let W̃−s,p
′
(Ω) denote the dual of W̃ s,p

0 (Ω) (see, Section 2). In Theorem 5.3, we

shall show that if 1 ≤ p < ∞ and f ∈ W̃−s,p
′
(Ω), then there is pair of functions

(f0, f1) ∈ Lp
′
(Ω) × Lp′(RN × RN ) such that for every v ∈ W̃ s,p

0 , we have: f(v) =

〈f, v〉 =
∫

Ω f
0v dx +

∫
RN
∫
RN f

1(x, y) v(x)−v(y)

|x−y|
N
p +s

dxdy. This characterization is one of

the main novelties of this work.

3. Higher regularity of solutions to the Dirichlet problem (5.2a). Using the above

characterization of the dual spaces, we shall show in Corollary 5.2 that if 0 < t < s < 1

and 2 < N
s < p ≤ ∞, or 1 ≤ p′ < 2 and 1

p′ < t < 1, and z ∈ W̃−t,p, then weak solutions

of the Dirichlet problem (5.2a) are also continuous up to the boundary of Ω. This is

the first time that such a regularity result has been proved (with very weak right-hand

side data) for the fractional Laplace operator.

4. Higher regularity of the optimal control. Using the above higher regularity

of the adjoint variable, we shall establish the W
t, p
p−1 (Ω)-regularity of the optimal

control. This higher regularity of the optimal control is crucial to establish some rates

of convergence of the numerical methods.

5.2 The Optimal Control Problem

The purpose of this section is to study the existence of solutions to the optimal control

problem (5.2) and establish the first order optimality conditions. Throughout this section,

we shall assume that Ω is a bounded Lipschitz domain satisfying the exterior cone condition.

Moreover, p is as in (5.3).

We begin by rewriting the optimal control problem (5.2). Let (−∆)sD be the operator
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defined in (2.10). Then, the problem (5.2) can be rewritten as follows:

min
(u,z)∈(U,Z)

J(u, z)

subject to the constraints:

(−∆)sDu = z in Ω, u|Ω ∈ K and z ∈ Zad.

(5.4)

Next, we introduce the relevant function spaces. We let

Z := Lp(Ω) and U :=
{
u ∈ W̃ s,2

0 (Ω) ∩ C0(Ω) : ((−∆)sD)u|Ω ∈ Lp(Ω)
}
.

Then, U is a Banach space with the graph norm

‖u‖U := ‖u‖
W̃ s,2

0 (Ω)
+ ‖u‖C0(Ω) + ‖(−∆)sDu‖Lp(Ω).

We let Zad ⊂ Z a nonempty, closed, and convex set and K as in (5.2b), i.e.,

K :=
{
w ∈ C0(Ω) : w(x) ≤ ub(x), ∀x ∈ Ω

}
. (5.5)

Notice that for every z ∈ Z, due to Theorem 3.2, there is a unique u ∈ U that solves the

state equation (5.2a).Thus, the control-to-state (solution) map, S : Z → U, z 7→ Sz =: u,

is well-defined, linear, and continuous. Since U ↪→ C0(Ω), we can consider the control-to-

state map as E ◦ S : Z → C0(Ω).

Next, we define the admissible control set as

Ẑad := {z ∈ Z : z ∈ Zad and (E ◦ S)z ∈ K} ,
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and as a result, the reduced minimization problem is given by

min
z∈Ẑad

J (z) := J((E ◦ S)z, z). (5.6)

Next, we state the well-posedness result for (5.2) and equivalently for (5.6).

Theorem 5.1. Let Zad be a bounded, closed and convex subset of Z and K a convex and

closed subset of C0(Ω) such that Ẑad 6= ∅. If J : L2(Ω)× Lp(Ω)→ R, with p as in (5.3), is

weakly lower-semicontinuous, then there is a solution to (5.6).

Proof. The proof is based on the so-called direct method or the Weierstrass theorem [21,

Theorem 3.2.1]. We provide some details for completeness. We can always construct a

minimizing sequence {zn}∞n=1 ⊂ Z such that infz∈Zad J (z) = limn→∞ J (zn). Since Zad is

bounded, it follows that {zn}∞n=1 is a bounded sequence. Since Z is reflexive, we have that

there exists a weakly convergent subsequence {zn}∞n=1 (not relabeled) such that zn ⇀ z̄ in Z

as n→∞. Next, since Zad is closed and convex, thus weakly closed, we have that z̄ ∈ Zad.

Next, we notice that C0(Ω) is non-reflexive. However, we have that un = Szn ∈ U ↪→

C0(Ω) and S ∈ L(Z,C0(Ω)). Thus, there is a subsequence {un} (not-relabeled) that con-

verges weakly? to ū in C0(Ω) as n → ∞. Since K is also weakly closed, we have that

ū ∈ K.

Owing to the uniqueness of the limit and the assumption that Ẑad is nonempty, we can

deduce that z̄ ∈ Ẑad. Finally, it remains to show that z̄ is a solution to (5.6). This follows

from the weak lower-semicontinuity assumption on J .

Before deriving the first order necessary optimality conditions, we make the following

assumption.

Assumption 2 (Compatibility condition between K and Zad). There is a pair (û, ẑ) ∈

U × Z that fulfills

(−∆)sDû = ẑ in Ω, ẑ ∈ Zad, û(x) < ub(x) ∀x ∈ Ω . (5.7)
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Notice that the last condition in Assumption 2, says that the state constraints in K

are satisfied strictly. Assumption 2 is a compatibility condition between Zad and K. For

instance, in the absence of state constraints, it is immediately fulfilled. In addition, if

Zad = Z, then again Assumption 2 is satisfied, see [88, pp. 87] for the classical case. But

having both control and state constraints require a compatibility condition between K and

Zad as otherwise the solution set might be empty. We need the state constraints to be

strictly satisfied for the existence of Lagrange multipliers, see [125, pp. 340] for the classical

case.

Using the definition of U , we have that (−∆)sD : U 7→ Z is a bounded operator and from

Theorem 3.2, it is also surjective. We have the following first order necessary optimality

conditions.

Theorem 5.2. Let J : L2(Ω) × Lp(Ω) → R, with p as in (5.3), be continuously Fréchet

differentiable and assume that (5.7) holds. Let (ū, z̄) be a solution to the optimization

problem (5.2). Then, there exist a Lagrange multiplier µ̄ ∈ (C0(Ω))? and an adjoint variable

ξ̄ ∈ Lp′(Ω) such that

(−∆)sDū = z̄ in Ω, (5.8a)

〈ξ̄, (−∆)sDv〉Lp′ (Ω),Lp(Ω) = (Ju(ū, z̄), v)L2(Ω) +

∫
Ω
v dµ̄, ∀ v ∈ U (5.8b)

〈ξ̄ + Jz(ū, z̄), z − z̄〉Lp′ (Ω),Lp(Ω) ≥ 0, ∀ z ∈ Zad (5.8c)

µ̄ ≥ 0, ū(x) ≤ ub(x) in Ω, and

∫
Ω

(ub − ū) dµ = 0. (5.8d)

Proof. We begin by checking the requirements for [88, Lemma 1.14]. We notice that (−∆)sD :

U 7→ Z is bounded and surjective. Moreover, the condition (5.7) implies that the interior

of the set K is nonempty. It remains to show the existence of a pair (û, ẑ) ∈ U × Zad such

that

(−∆)sD(û− ū)− (ẑ − z̄) = 0 in Ω. (5.9)
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Since (ū, z̄) solves the state equation, it follows from (5.9) that

(−∆)sDû = ẑ in Ω. (5.10)

Notice that for every ẑ ∈ Zad, there is a unique û that solves (5.10) and, in particular,

(û, ẑ) works. Thus, the conditions of [88, Lemma 1.14] hold. Then, [88, Theorem 1.56]

immediately implies that (5.8a)–(5.8c) hold. Instead of (5.8d), we obtain that

µ̄ ∈ K◦, u(x) ≤ ub(x), x ∈ Ω, and 〈µ̄, ū〉C0(Ω)∗,C0(Ω) = 0, (5.11)

where K◦ denotes the polar cone. Then, the equivalence between (5.11) and (5.8d) follows

from a classical result in functional analysis (see, e.g., [88, pp. 88] for more details).

5.3 Characterization of the Dual of Fractional Order Sobolev

Spaces

Given 0 < s < 1, 1 ≤ p < ∞ and p′ := p
p−1 , the aim of this section is to give a complete

characterization of the space W̃−s,p
′
(Ω). Recall that, W̃−s,p

′
(Ω) is defined as the dual of

the space W̃ s,p
0 (Ω). Some of the arguments here are motivated by the classical case s = 1.

We start by stating this abstract result taken from [2, pp. 194].

Lemma 5.1. If X and W are two Banach spaces, then X ×W endowed with the norm

‖(x, y)‖X×W := ‖x‖X + ‖y‖W is also a Banach space and the dual space (X × W )? is

isometrically isomorphic to X? ×W ?.

Let 1 ≤ p <∞ and let Y := Lp(Ω)× Lp(RN × RN ) be endowed with the norm

‖(v1, v2)‖Y :=
(
‖v1‖pLp + ‖v2‖pLp(RN×RN )

) 1
p
. For v ∈ W̃ s,p

0 (Ω), we associate the vector
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Pv ∈ Y given by

Pv := (v,Ds,pv). (5.12)

Since ‖Pv‖Y = ‖(v,Ds,pv)‖Y = ‖v‖
W̃ s,p

0 (Ω)
, we have that P is an isometry and hence,

injective. Therefore, P : W̃ s,p
0 (Ω) 7→ Y is an isometric isomorphism of W̃ s,p

0 (Ω) onto its

image Z ⊂ Y . Also, Z is a closed subspace of Y , because W̃ s,p
0 (Ω) is complete (isometries

preserve completion).

Throughout this section without any mention, we shall let Y := Lp(Ω)×Lp(RN ×RN ).

Lemma 5.2. Let 1 ≤ p < ∞. Then, for every f ∈ Y ?, there exists a unique

u = (u1, u2) ∈ Lp′(Ω)× Lp′(RN × RN ) such that for every v = (v1, v2) ∈ Y , we have

f(v) =

∫
Ω
u1v1 dx+

∫
RN×RN

u2v2 dx and

‖f‖Y ∗ = ‖u‖Lp′ (Ω)×Lp′ (RN×RN ) = ‖u1‖Lp′ (Ω) + ‖u2‖Lp′ (RN×RN ).

Proof. Let w ∈ Lp(Ω). Then, (w, 0) ∈ Y . We define f1(w) := f(w, 0). Then, f1 ∈ (Lp(Ω))?.

For arbitrary w1, w2, w ∈ Lp(Ω) and scalars α, β, we have

f1(αw1 + βw2) = f(αw1 + βw2, 0) = f(α(w1, 0) + β(w2, 0))

= αf((w1, 0)) + βf((w2, 0)) = αf1(w1) + βf1(w2),

and |f1(w)| = |f((w, 0))| ≤ ‖f‖Y ?‖(w, 0)‖Y = ‖f‖Y ?‖w‖Lp(Ω). Thus, f1 ∈ (Lp(Ω))? =

Lp
′
(Ω).

Similarly, let w ∈ Lp(RN ×RN ). Then, (0, w) ∈ Y and if we define f2(w) := f(0, w), we

have f2 ∈ (Lp(RN × RN ))? = Lp
′
(RN × RN ).

Therefore, by the Riesz Representation theorem there exist a unique u1 ∈ Lp
′
(Ω) and a
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unique u2 ∈ Lp
′
(RN × RN ) such that f(v1, 0) = f1(v1) = 〈u1, v1〉Lp′ (Ω),Lp(Ω) for every v1 ∈

Lp(Ω) and f(0, v2) = f2(v2) = 〈u2, v2〉Lp′ (RN×RN ),Lp(RN×RN ) for every v2 ∈ Lp(RN × RN ).

Now let v := (v1, v2) ∈ Y . We can write v = (v1, v2) = (v1, 0) + (0, v2). Hence,

f(v) = f(v1, 0) + f(0, v2) = f1(v1) + f2(v2) =

∫
Ω
u1v1 dx+

∫
RN×RN

u2v2 dx.

Moreover,

|f(v)| ≤ ‖u1‖Lp′ (Ω)‖v1‖Lp(Ω) + ‖u2‖Lp′ (RN×RN )‖v2‖Lp(RN×RN )

≤ ‖u‖Lp′ (Ω)×Lp′ (RN×RN )‖v‖Y .

Therefore,

‖f‖Y ? ≤ ‖u‖Lp′ (Ω)×Lp′ (RN×RN ). (5.13)

The proof of the first part is complete. It then remains to show that the norms in (5.13)

are equal.

Let us first consider the case 1 < p <∞. Define

v1(x) :=


|u1(x)|p′−2u1(x), if u1(x) 6= 0,

0, if u1(x) = 0,

and

v2(x, y) :=


|u2(x, y)|p′−2u2(x, y), if u2(x, y) 6= 0,

0, if u2(x, y) = 0.
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Then, for v = (v1, v2) we have

|f(v)| = |f(v1, v2)| = |f((v1, 0) + (0, v2))| = |f1(v1) + f2(v2)|

=
∣∣∣ 〈u1, v1〉Lp′ (Ω),Lp(Ω) + 〈u2, v2〉Lp′ (RN×RN ),Lp(RN×RN )

∣∣∣
= ‖u1‖p

′

Lp′ (Ω)
+ ‖u2‖p

′

Lp′ (RN×RN )
= ‖u‖p

′

Lp′ (Ω)×Lp′ (RN×RN )

= |〈u, v〉Y ?,Y | = ‖v‖Y ‖u‖Y ? = ‖v‖Y ‖u‖Lp′ (Ω)×Lp′ (RN×RN ),

where we have used the equality in Hölder’s inequality, the equality holds because |vi|p =

|ui|p
′
. Moreover, we have used the fact that Y ? ∼= Lp

′
(Ω) × Lp′(RN × RN ) due to Lemma

5.1.

Let us consider the case p = 1. Then, Y = L1(Ω)× L1(RN × RN ) and we can set (due

to Lemma 5.1) Y ? = L∞(Ω)× L∞(RN × RN ).

Notice that ‖u‖Y ? := max
{
‖u1‖L∞(Ω), ‖u2‖L∞(RN×RN )

}
. To get the desired result, it is

sufficient to show that ‖f‖Y ? ≥ ‖u‖Y ? . Now, for any ε > 0 and k = 1 there exists a

measurable set A ⊂ Ω (or ⊂ RN ×RN when k = 2) with finite, non zero measure such that

|uk(x)| ≥ ‖u‖Y ? − ε, for almost every x ∈ A.

Next, we define vk(x) :=


uk(x)
|uk(x)| , for x ∈ A and uk(x) 6= 0,

0, elsewhere .

Set v := (vk, 0) if k = 1, otherwise set v := (0, vk). Then,

|f(v)| =
∣∣∣〈uk, vk〉Y ?,Y ∣∣∣ =

∫
A
|uk(x)| dx ≥

(
‖u‖Y ? − ε

)
‖v‖Y

=
(
‖u‖L∞(Ω)×L∞RN×RN ) − ε

)
‖v‖Y .

Since ε is chosen arbitrarily, we have that the result follows from the definition of the
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operator norm.

Theorem 5.3. Let 1 ≤ p <∞ and f ∈ W̃−s,p′(Ω). Then, there exists (f0, f1) ∈ Lp′(Ω)×

Lp
′
(RN × RN ) such that for all v ∈ W̃ s,p

0 (Ω),

〈f, v〉
W̃−s,p′ (Ω),W̃ s,p

0 (Ω)
=

∫
Ω
f0v dx+

∫
RN

∫
RN

f1(x, y)Ds,pv[x, y] dx dy, (5.14)

‖f‖
W̃−s,p′ (Ω)

= inf
{
‖(f0, f1)‖Lp′ (Ω)×Lp′ (RN×RN )

}
, (5.15)

where the infimum is taken over all (f0, f1) ∈ Lp′(Ω)×Lp′(RN×RN ) for which (5.14) holds.

Moreover, if 1 < p <∞, then (f0, f1) is unique.

Proof. Define the linear functional L̂ : Z → R, where Z ⊂ Y is the range of P given in

(5.12), by

L̂(Pv) = f(v), v ∈ W̃ s,p
0 (Ω)

W̃ s,p
0 (Ω) Z ⊂ Y

R.

P

L̂f

Since P is an isometric isomorphism onto Z, it follows that L̂ ∈ Z? and

‖L̂‖Z? = sup
‖Pv‖Y =1

|〈L̂, Pv〉Y ?,Y | = sup
‖v‖

W̃
s,p
0

=1
|〈f, v〉

W̃−s,p′ (Ω),W̃ s,p
0 (Ω)

| = ‖f‖W−s,p′ (Ω).

By the Hahn-Banach theorem, there exists an L ∈ Y ? = Lp
′
(Ω) × Lp

′
(RN × RN ) with

‖L‖Y ? = ‖L̂‖Z? . Since L ∈ Y ?, using Lemma 5.2, we have that there exists (f0, f1) ∈

Lp
′
(Ω) × Lp′(RN × RN ) such that L(v) =

∫
Ω
f0v1 dx +

∫
RN

∫
RN

f1v2 dxdy for every v =

(v1, v2) ∈ Y . Notice that when 1 < p <∞, (f0, f1) is unique due to the uniform convexity
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of the Banach space Lp(Ω)× Lp(RN × RN ).

Thus, for v ∈ W̃ s,p
0 (Ω) we have Pv ∈ Y . Using the definition of L̂ we get

f(v) = L̂(Pv) = L(Pv) = L(v,Ds,pv) =

∫
Ω
f0v dx+

∫
RN

∫
RN

f1Ds,pv dxdy,

which is (5.14), after noticing that 〈f, v〉
W̃−s,p′ (Ω),W̃ s,p

0 (Ω)
= f(v). Moreover, we have

‖f‖
W̃−s,p′ (Ω)

= ‖L̂‖Z? = ‖L‖Y ? = ‖(f0, f1)‖Lp′ (Ω)×Lp′ (RN×RN ).

Now, for arbitrary (g0, g1) ∈ Lp
′
(Ω) × Lp

′
(RN × RN ), for which (5.14) holds for all

v ∈ W̃ s,p
0 (Ω), we can define Lg as Lg(u) = 〈g0, u1〉Lp′ (Ω),Lp(Ω)+〈g

1, u2〉Lp′ (RN×RN ),Lp(RN×RN ),

∀ u ∈ Y . Then, Lg ∈ Y ? and Lg|Z = L̂ (due to (5.14)). As a result, ‖L̂‖Z? ≤ ‖Lg‖Y ? .

Thus, ‖f‖
W̃−s,p′ (Ω)

≤ ‖g‖Lp′ (Ω)×Lp′ (RN×RN ).

In view of Theorem 2.1, we have the following result.

Corollary 5.1. Let 1 < p <∞, 1
p < s < 1 and f ∈ W̃−s,p′(Ω). Then, there exists a unique

(f0, f1) ∈ Lp′(Ω)× Lp′(Ω× Ω) such that for every v ∈ W̃ s,p
0 (Ω),

〈f, v〉
W̃−s,p′ (Ω),W̃ s,p

0 (Ω)
=

∫
Ω
f0v dx+

∫
Ω

∫
Ω
f1(x, y)Ds,pv[x, y] dx dy, (5.16)

‖f‖
W̃−s,p′ (Ω)

= inf
{
‖(f0, f1)‖Lp′ (Ω)×Lp′ (Ω×Ω)

}
, (5.17)

where the infimum is taken over all (f0, f1) ∈ Lp′(Ω)× Lp′(Ω× Ω) for which (5.16) holds.
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5.4 Improved Regularity of State and Higher Regularity of

Adjoint

In this section, we study the higher regularity properties of solutions to the Dirichlet problem

(5.2a), with a right hand side z ∈ W̃−t,p(Ω), for suitable values of p ∈]1,∞[ and 0 < t < 1.

5.4.1 Regularity of the State

Throughout the remainder of this section, for u, v ∈ W̃ s,2
0 (Ω), we shall let

E(u, v) :=
CN,s

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy. (5.18)

We start with the following theorem which can be viewed as the first main result of this

section.

Theorem 5.4. Let f0 ∈ Lp(Ω) with p > N
2s and f1 ∈ Lq(Ω×Ω) with q > N

s if N ≥ 2s and

q ≥ 2 if N < 2s. Then, there exists a unique function u ∈ W̃ s,2
0 (Ω) satisfying

E(u, v) =

∫
Ω
f0v dx+

∫
Ω

∫
Ω
f1(x, y)Ds,2v[x, y] dxdy, (5.19)

for every v ∈ W̃ s,2
0 (Ω). In addition, u ∈ L∞(Ω) and there is a constant C > 0 such that

‖u‖L∞(Ω) ≤ C
(
‖f0‖Lp(Ω) + ‖f1‖Lq(Ω×Ω)

)
. (5.20)

To prove the theorem, we need the following lemma taken from [97, Lemma B.1].

Lemma 5.3. Let Φ = Φ(t) be a nonnegative, non-increasing function on a half line t ≥

k0 ≥ 0 such that there are positive constants c, α and δ (δ > 1) with

Φ(h) ≤ c(h− k)−αΦ(k)δ for h > k ≥ k0.
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Then Φ(k0 + d) = 0 with dα = cΦ(k0)δ−12αδ/(δ−1).

Proof of Theorem 5.4. We prove the result in several steps.

Step 1: Firstly, we show that there is a unique u ∈ W̃ s,2
0 (Ω) satisfying (5.19). Indeed,

recall that W̃ s,2
0 (Ω) ↪→ Lp

′
(Ω), by Remark 2.1. Notice also that if N ≥ 2s, then q ≥ 2.

Since Ω is bounded, we have that, in all the cases, the continuous embedding Lq(Ω×Ω) ↪→

L2(Ω×Ω) holds. Hence, using the classical Hölder inequality, we get that there is a constant

C > 0 such that∣∣∣∣∫
Ω
f0v dx+

∫
Ω

∫
Ω
f1(x, y)Ds,2v[x, y] dxdy

∣∣∣∣ ≤ C (‖f0‖Lp(Ω) + ‖f1‖L2(Ω×Ω)

)
‖v‖

W̃ s,2
0 (Ω)

.

Since the bilinear form E is continuous and coercive, it follows from the classical Lax-

Milgram lemma that there is unique u ∈ W̃ s,2
0 (Ω) satisfying (5.19).

Step 2: Notice that, if N < 2s, then it follows from the embedding (2.1) that u ∈

L∞(Ω). We give the proof for the case N > 2s. The case N = 2s follows with a simple

modification of the case N > 2s.

Step 3: Let u ∈ W̃ s,2
0 (Ω) be the unique function satisfying (5.19). Let k ≥ 0 be a real

number and set uk := (|u| − k)+sgn(u). By [133, Lemma 2.7], we have that uk ∈ W̃ s,2
0 (Ω)

for every k ≥ 0. Proceeding as in the proof of [12, Theorem 2.9], (see also [18, Proposition

3.10 and Section 3.3]), we get that for every k ≥ 0,

E(uk, uk) ≤ E(uk, u) =

∫
Ω
f0uk dx+

∫
Ω

∫
Ω
f1(x, y)Ds,2uk[x, y] dxdy. (5.21)

Let Ak := {x ∈ Ω : |u(x)| ≥ k}. Then, it is clear that

uk =
[
(|u| − k)sign(u)

]
χAk . (5.22)

Let p1 ∈ [1,∞] be such that
1

p
+

1

2?
+

1

p1
= 1, where we recall that 2? := 2N

N−2s . Since by
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assumption p > N
2s = 2?

2?−2 , we have that

1

p1
= 1− 1

2?
− 1

p
=

2?

2?
− 1

2?
− 1

p
>

2?

2?
− 1

2?
− 2? − 2

2?
=

1

2?
=⇒ p1 < 2?. (5.23)

Using (5.22), the continuous embedding W̃ s,2
0 (Ω) ↪→ L2?(Ω), and the Hölder inequality, we

get that there is a constant C > 0 such that for every k ≥ 0,

∫
Ω
f0uk dx =

∫
Ak

f0uk dx ≤ ‖f0‖Lp(Ω)‖uk‖W̃ s,2
0 (Ω)

‖χAk‖Lp1 (Ω). (5.24)

Let δ1 := 2?

p1
. Then δ1 > 1 by (5.23), but this not needed here. We have that for every

k ≥ 0,

‖χAk‖Lp1 (Ω) = |Ak|
1
p1 =

(
|Ak|

1
2?

) 2?

p1 = ‖χAk‖
2?

p1

L2? (Ω)
= ‖χAk‖

δ1
L2? (Ω)

. (5.25)

Step 4: Next, let q1 ∈ [1,∞] be such that
1

q
+

1

2
+

1

q1
= 1. Since q > N

s = 2N2s = 2 2?

2?−2 ,

we have

1

q1
= 1− 1

2
− 1

q
= 2

2?

2 · 2?
− 1

2
− 1

q
>

2 · 2?

2 · 2?
− 1

2
− 2? − 2

2 · 2?
=

1

2?
=⇒ q1 < 2?. (5.26)

Using (5.22), the continuous embedding W̃ s,2
0 (Ω) ↪→ L2?(Ω), and the Hölder inequality

again, we can deduce that there is a constant C > 0 such that for every k ≥ 0,

∫
Ω

∫
Ω
f1(x, y)Ds,2uk[x, y] dxdy =

∫
Ak

∫
Ak

f1(x, y)Ds,2uk[x, y] dxdy

+

∫
Ak

∫
Ω\Ak

f1(x, y)Ds,2uk[x, y] dxdy +

∫
Ω\Ak

∫
Ak

f1(x, y)Ds,2uk[x, y] dxdy

≤ C‖f1‖Lq(Ω×Ω)‖uk‖W̃ s,2
0 (Ω)

‖χAk‖Lq1 (Ω). (5.27)
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Let δ2 := 2?

q1
. Then δ2 > 1 by (5.26), which is also not needed here. As in (5.25), for

every k ≥ 0,

‖χAk‖Lq1 (Ω) = ‖χAk‖
δ2
L2? (Ω)

. (5.28)

Step 5: Let δ := min{δ1, δ2} > 1. It follows from (5.25) that

‖χAk‖Lp1 (Ω) = ‖χAk‖
δ1
L2? (Ω)

= ‖χAk‖δL2? (Ω)
‖χAk‖

δ1−δ
L2? (Ω)

≤ ‖χΩ‖δ1−δL2? (Ω)
‖χAk‖δL2? (Ω)

for

every k ≥ 0.

Similarly, it follows from (5.28) that ‖χAk‖Lq1 (Ω) ≤ ‖χΩ‖δ2−δL2? (Ω)
‖χAk‖δL2? (Ω)

for every

k ≥ 0.

We have shown that there is a constant C > 0 such that for every k ≥ 0,

max{‖χAk‖Lp1 (Ω), ‖χAk‖Lq1 (Ω)} ≤ C‖χAk‖
δ
L2? (Ω)

. (5.29)

Using (5.21), (5.24), (5.27), (5.29) and the fact that there is a constant C > 0 such that

C‖uk‖W̃ s,2
0 (Ω)

≤ E(uk, uk), we get that there is a constant C > 0 such that for every k ≥ 0,

‖uk‖W̃ s,2
0 (Ω)

≤ C
(
‖f0‖Lp(Ω) + ‖f1‖Lq(Ω×Ω)

)
‖χAk‖

δ
L2? (Ω)

. (5.30)

Using the continuous embedding W̃ s,2
0 (Ω) ↪→ L2?(Ω) and (5.30), we get that there is a

constant C > 0 such that for every k ≥ 0,

‖uk‖L2? (Ω) ≤ C
(
‖f0‖Lp(Ω) + ‖f1‖Lq(Ω×Ω)

)
‖χAk‖

δ
L2? (Ω)

. (5.31)

Step 6: Now let h > k ≥ 0. Then, Ah ⊂ Ak and in Ah, we have that |uk| ≥ (h − k).

Thus, it follows from (5.31) that there is a constant C > 0 such that for every h > k ≥ 0,

‖χAh‖L2? (Ω) ≤ C(h− k)−1
(
‖f0‖Lp(Ω) + ‖f1‖Lq(Ω×Ω)

)
‖χAk‖

δ
L2? (Ω)

. (5.32)
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Let Φ(k) := ‖χAk‖L2? (Ω). It follows from (5.32) that for all h > k ≥ 0, we have

Φ(h) ≤ C(h− k)−1
(
‖f0‖Lp(Ω) + ‖f1‖Lq(Ω×Ω)

)
Φ(k)δ.

Applying Lemma 5.3 to the function Φ, we can deduce that there is a constant C1 > 0

such that Φ(K) = 0 with K := C1C
(
‖f0‖Lp(Ω) + ‖f1‖Lq(Ω×Ω)

)
. We have shown (5.20) as

needed.

The following theorem is the second main result of this section. Here, we reduce the

regularity of the datum z, if one compares with [18, Theorem 3.7].

Theorem 5.5. Let Ω ⊂ RN be a bounded open set with a Lipschitz continuous boundary.

Let 2 < N
s < p ≤ ∞ and 0 < p−1

p = 1
p′ < t < s < 1. Then, for every z ∈ W̃−t,p(Ω), there is

a unique solution u ∈ W̃ s,2
0 (Ω) of (5.2a). In addition, u ∈ L∞(Ω) and there is a constant

C > 0 such that

‖u‖L∞(Ω) ≤ C‖z‖W̃−t,p(Ω)
. (5.33)

Proof. We prove the result in several steps.

Step 1: Firstly, for z ∈ W̃−t,p(Ω), by a solution to (5.2a), we mean a function u ∈

W̃ s,2
0 (Ω) satisfying

E(u, v) = 〈z, v〉
W̃−t,p(Ω),W̃ t,p′ (Ω)

, ∀ v ∈ W̃ t,p′

0 (Ω), (5.34)

provided that the left and right hand side expressions make sense.

Step 2: Secondly, since 1
p′ < t < 1 and z ∈ W̃−t,p(Ω), it follows from Corollary 5.1

that there exists a pair of functions (f0, f1) ∈ Lp(Ω) × Lp(Ω × Ω) such that, for every
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v ∈ W̃ t,p′

0 (Ω), we have

〈z, v〉
W̃−t,p(Ω),W̃ t,p′ (Ω)

=

∫
Ω
f0v dx+

∫
Ω

∫
Ω
f1(x, y)Dt,p′v[x, y] dx dy. (5.35)

Choose (f0, f1) ∈ Lp(Ω)× Lp(Ω× Ω) satisfying (5.35) and are such that

‖z‖
W̃−t,p(Ω)

= ‖f0‖Lp(Ω) + ‖f1‖Lp(Ω×Ω). (5.36)

Since 0 < t < s < 1 and 2 > p′, it follows that the continuous embedding W̃ s,2
0 (Ω) ↪→

W̃ t,p′

0 (Ω) holds. More precisely, there is a constant C > 0 such that

∣∣Dt,p′v[x, y]
∣∣ =
|v(x)− v(y)|

|x− y|
p′
N

+t
=
|v(x)− v(y)|
|x− y|

2
N

+s
|x− y|s−t+

2−p′
N ≤ C |Ds,2v[x, y]| ,

where we used that s− t+ 2−p′
N > 0. Thus, ‖Dt,p′v‖Lp′ (Ω×Ω) ≤ C‖Ds,2v‖L2(Ω×Ω) for every

v ∈ W̃ s,2
0 (Ω). Hence, (5.35) also holds for every v ∈ W̃ s,2

0 (Ω) and the expressions in (5.34)

make sense.

Step 3: We claim that there is a unique u ∈ W̃ s,2
0 (Ω) satisfying (5.34). Indeed, let

v ∈ W̃ s,2
0 (Ω). Using Step 2 and Remark 2.1, we get that there is a constant C > 0 such

that for every v ∈ W̃ t,p′

0 (Ω),

∣∣∣〈z, v〉W̃−t,p(Ω),W̃ t,p′ (Ω)

∣∣∣ =

∣∣∣∣∫
Ω
f0v dx+

∫
Ω

∫
Ω
f1(x, y)Dt,p′v[x, y] dx dy

∣∣∣∣
≤‖f0‖Lp(Ω)‖v‖Lp′ (Ω) + ‖f1‖Lp(Ω×Ω)‖Dt,p′v‖Lp′ (Ω×Ω)

≤C
(
‖f0‖Lp(Ω) + ‖f1‖Lp(Ω×Ω)

)
‖v‖

W̃ s,2
0 (Ω)

.

We have shown that the right hand side of (5.35) defines a linear continuous functional on

W̃ s,2
0 (Ω). Thus, the claim follows by applying the Lax-Milgram lemma.
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Step 4: It follows from Step 3 that the unique function u ∈ W̃ s,2
0 (Ω) satisfying (5.34)

is such that for every v ∈ W̃0
t,p′

(Ω), we have

E(u, v) = 〈z, v〉
W̃−t,p(Ω),W̃ t,p′

0 (Ω)
≤ C

∫
Ω
|f0v| dx+

∫
Ω

∫
Ω

∣∣f1(x, y)Ds,2v[x, y]
∣∣ dx dy.

Therefore, proceeding exactly as in the proof of Theorem 5.4, we get that u ∈ L∞(Ω)

and there is a constant C > 0 such that ‖u‖L∞(Ω) ≤ C
(
‖f0‖Lp(Ω) + ‖f1‖Lp(Ω×Ω)

)
=

C‖z‖
W̃−t,p(Ω)

, where we have used (5.36). We have shown (5.33).

We have the following regularity result as a corollary of Theorems 5.5 and 3.2.

Corollary 5.2. Let Ω ⊂ RN be a bounded Lipschitz domain satisfying the exterior cone

condition. Let 2 < N
s < p ≤ ∞ and 0 < p−1

p = 1
p′ < t < s < 1. Let z ∈ W̃−t,p(Ω) and let

u ∈ W̃ s,2
0 (Ω) be the unique weak solution of (5.2a). Then, u ∈ C0(Ω).

Proof. Let z ∈ W̃−t,p(Ω) and {zn}n≥1 ⊂ L∞(Ω) a sequence such that zn → z in W̃−t,p(Ω)

as n → ∞. Let un ∈ W̃ s,2
0 (Ω) satisfy E(un, v) = 〈zn, v〉W̃−t,p(Ω),W̃ t,p′ (Ω)

=

∫
Ω
znv dx for

every v ∈ W̃ s,2
0 (Ω). It follows, from Theorem 3.2, that un ∈ C0(Ω). Since un−u ∈ W̃ s,2

0 (Ω)

and satisfies E(un − u, v) = 〈zn − z, v〉W̃−t,p(Ω),W̃ t,p′ (Ω)
for every v ∈ W̃ s,2

0 (Ω), it follows,

from Theorem 5.5, that (un−u) ∈ L∞(Ω) and there is a constant C > 0 (independent of n)

such that ‖un − u‖L∞(Ω) ≤ C‖zn − z‖W̃−t,p(Ω)
. Since un ∈ C0(Ω) and zn → z in W̃−t,p(Ω)

as n→∞, it follows from the preceding estimate that un → u in L∞(Ω) as n→∞. Thus,

u ∈ C0(Ω).

Next, we improve the regularity of u solving (5.2a) with a measure µ as the right-hand

side datum. Notice that such a result will immediately improve the regularity of the adjoint

variable ξ̄ solving (5.8b). Recall that the best result so far proved for solutions of (3.5) is

given in Theorem 3.3.
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Corollary 5.3. Let Ω ⊂ RN be a bounded Lipschitz domain satisfying the exterior cone

condition. Let 2 < N
s < p ≤ ∞ and 0 < p−1

p = 1
p′ < t < s < 1. Let µ ∈M(Ω). Then, there

is a unique solution u ∈ W̃ t,p′

0 (Ω) to

(−∆)su = µ in Ω, u = 0 in RN \ Ω,

and there is a constant C > 0 such that ‖u‖
W̃ t,p′

0 (Ω)
≤ C‖µ‖M(Ω).

Proof. The proof follows exactly as the proof of Theorem 3.3 with the exception that,

for the inequality (3.12), we use Corollary 5.2 to get
∣∣∫

Ω uξ dx
∣∣ ≤ ‖µ‖M(Ω)‖v‖C0(Ω) ≤

C‖µ‖M(Ω)‖ξ‖W̃−t,p(Ω)
. The preceding estimate implies that u ∈ (W̃−t,p(Ω))? = W̃ t,p′

0 (Ω).

Recall that the “strong form” of the adjoint equation (5.8b) is given by

(−∆)sξ̄ = Ju(ū, z̄) + µ̄ in Ω, ξ̄ = 0 in RN \ Ω. (5.37)

Using Corollary 5.3 and the fact that Ju(ū, z̄) ∈ L2(Ω), we obtain the following regularity

result.

Corollary 5.4 (Regularity of the adjoint variable). Let µ̄ ∈ M(Ω) and let ξ̄ be the

Lagrange multiplier given in Theorem 5.2. Then, under the conditions of Corollary 5.3, we

have that ξ̄ ∈ W̃ t,p′

0 (Ω).

5.4.2 Regularity of Control

In this section, we apply the results obtained in the previous section to the optimal control

problem. In the literature, a typical cost functional J is given by (cf. the monograph [7])

J(u, z) :=
1

2
‖u− ud‖2L2(Ω) + g(z) , (5.38)
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where ud ∈ L2(Ω) is given. When g(z) := α
2 ‖z‖

2
L2(Ω), with given parameter α > 0, then

(5.8c) becomes

z̄ = PZad
(
−α−1ξ̄

)
, (5.39)

where PZad denotes the projection onto the set Zad. Recall that, ξ̄ is the adjoint variable

solving (5.8b). We emphasize that Zad is still the same as before, and with a choice of

J(·, ·), all the assumptions in the previous results hold. Recall that the boundedness of Zad

enforces Lp(Ω) regularity on the control z, in addition with the choice of g(z) = α
2 ‖z‖

2
L2(Ω)

in (5.38), we are enforcing L2(Ω) regularity on the control z. As a result, p is always greater

than equal to 2. Finally, (5.39) can improve the regularity of the optimal control from

Lp(Ω) to W t,p′(Ω).

Theorem 5.6 (Regularity of control). Let the conditions of Corollary 5.4 hold and J be as

in (5.38) with g(z) := α
2 ‖z‖

2
L2(Ω) with α > 0. Given a, b ∈W t,p′(Ω) with a < b a.e. in Ω, let

Zad := {z ∈ Lp(Ω) : a(x) ≤ z(x) ≤ b(x), a.e. in Ω}. Then the optimal control z̄ ∈

W t,p′(Ω).

Proof. Under the assumption on Zad, the projection in (5.39) becomes

PZad(ξ̄) := max{a,min{b, ξ̄}}. Since ξ̄ in W̃ t,p′

0 (Ω), in particular, we have ξ̄|Ω ∈ W t,p′(Ω).

Next since b ∈ W t,p′(Ω), using [133, Lemma 2.7], we have that v := min{b, ξ̄} ∈ W t,p′(Ω).

Similarly, max{a, v} ∈W t,p′(Ω). Thus from (5.39), we obtain that z̄ ∈W t,p′(Ω).

Remark 5.1. We notice that since z̄ ∈ W t,p′(Ω) (by Theorem 5.6), we have that the

regularity of the corresponding solution ū to the state equation (5.2a) can also be improved.

More precisely, by [75, Theorem 7.1 and p524], we have that ū ∈ Hs(t+2s)
p′ (Ω) ∩ W̃ s,2

0 (Ω).

We refer to [74, Equation (2.9)] for the precise definition of the space H
s(t+2s)
p′ (Ω).
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5.4.3 Control in W̃−t,p(Ω) instead of Lp(Ω)

Let Ω, s, t and p be as in Corollary 5.2. Then all the results obtained in Section 5.2 for the

optimal control problem hold, with obvious modification of the proofs, if one considers the

spaces

Z := W̃−t,p(Ω) and U :=
{
u ∈ W̃ s,2

0 (Ω) ∩ C0(Ω) : ((−∆)sDu)|Ω ∈ W̃−t,p(Ω)
}
.

Notice that, in this case, Zad is a closed and convex subset of W̃−t,p(Ω) instead of Lp(Ω).

We further emphasize that even in this case, the adjoint variable still enjoys the higher

regularity as given in Corollary 5.4. Furthermore, the result given in Theorem 5.6 remains

valid if we replace Lp(Ω) by W̃−t,p(Ω).

5.5 Conclusions and Future Work

Summary. We have introduced a novel characterization of fractional order Sobolev spaces.

For domains with exterior cone condition, we have shown continuity of solutions to frac-

tional PDEs and we have established well-posedness of fractional PDEs with measure-valued

data. These results are crucial to study the state (and control) constrained optimal con-

trol problems discussed in this work. They have helped to establish the well-posedness of

the control problem, deriving the optimality conditions and the regularity of the optimal

control.

Perspectives/Open Problems. It will be of interest to relax the aforementioned exterior

cone condition to show the continuity of solutions to fractional PDEs. In Corollary 5.1,

where under the assumption 1
p < s < 1, we are able to replace the integral over RN

(cf. Theorem 5.3) by an integral over Ω, it will be interesting to extend this result to the

full range of s, i.e., also when 0 < s ≤ 1
p .
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Chapter 6: Optimal Control of Fractional PDEs with State

and Control Constraints

In the previous chapter, we analyzed the theoretical framework for optimal control of frac-

tional elliptic PDEs with state constraints. This chapter considers optimal control of both

fractional elliptic and parabolic PDEs with both state and control constraints. The key

challenge is how to handle the state constraints. We employ the Moreau-Yosida regular-

ization to handle the state constraints in both elliptic and parabolic cases and establish

convergence, with rate, of the regularized optimal control problems to the original ones.

We emphasize that the analysis of optimal control of parabolic PDEs with state con-

straints is not new, see for instance [40] for the classical case s = 1. Similarly to our

observation in the elliptic case in Chapter 5, almost none of the existing works can be

directly applied to our fractional setting.

For Ω ⊂ RN (N ≥ 1), a bounded open set with boundary ∂Ω, we wish to study the

following fractional optimal control problems:

min
(u,z)∈(U,Z)

J(u, z) (6.1a)

subject to the fractional PDE: Find u ∈ U solving


Asu = z in Q,

u = 0 in Σ̂,

(6.1b)
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with the state constraints

u|Q ∈ K :=
{
w ∈ C(Q) : w ≤ ub, in Q

}
(6.1c)

and the control constraints

z ∈ Zad. (6.1d)

• Elliptic case: As = (−∆)s, Q = Ω, Σ̂ := Σ := RN \ Ω. Moreover, C(Q) := C0(Ω)

is the space of continuous functions in Ω that vanish on ∂Ω and ub ∈ C(Ω) such that

ub ≥ 0 on ∂Ω. By extending functions by zero outside Ω, we can identify C0(Ω) with

the space {u ∈ Cc(RN ) : u = 0 in RN \ Ω}. Finally, Zad ⊂ Lp(Ω) is a non-empty,

closed and convex set and p fulfills

1 >
N

2ps
. (6.2)

• Parabolic case: As = ∂t + (−∆)s, Q = (0, T ) × Ω, Σ̂ = ((0, T ) × Σ) ∪ ({0} × Σ),

with Σ = RN \ Ω. Moreover, C(Q) := C(Q) is the space of continuous functions in

Q and ub ∈ C(Q) with ub ≥ 0 on (0, T ) × ∂Ω. Finally, Zad ⊂ Lr((0, T ), Lp(Ω)) is a

non-empty, closed and convex set, and the real numbers p and r fulfill

1 >
N

2ps
+

1

r
. (6.3)

The precise definition of the function spaces U and Z will be given in the forthcoming

sections.

We note that the control problem with nonlocal PDE constraint in (6.1b) may look

similar to Chapter 4 at first glance, however, the two problems are significantly different.

First of all, the control is taken as a source in this chapter rather than in the exterior of the

domain in Chapter 4. Secondly, here we consider both control and state constraints rather
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than just the control constraints in Chapter 4.

Due to the difficulties in solving such problems in practice, we introduce a regularized

version of the optimal control problem using the Moreau-Yosida regularization. This enables

us to create an algorithm to solve the elliptic and parabolic optimal control problems. While

this approach is well-known, see [85, 92] for the classical elliptic case, there are no works

in the literature for fractional problems. In the classical setting, we refer to [105], where

Moreau-Yosida regularization for parabolic problems has been considered, but optimality

conditions for the original problem are not discussed. In our work, we carry out the spatial

discretization using finite element method and provide discretization error estimates in a

particular elliptic setting.

The rest of the chapter is organized as follows. In Section 6.1, we study our parabolic

optimal control problem, establish its well-posedness, and derive the first order optimality

conditions. We refer to Chapter 5 for the analogous results in the elliptic case. We introduce

the Moreau-Yosida regularized problem for both elliptic and parabolic cases in Section 6.2

and show convergence (with rate) of the regularized solutions to the original solution. Sec-

tion 6.3 is devoted to finite element convergence analysis in a particular elliptic setting. We

conclude the chapter with several illustrative numerical examples in Section 6.4.

6.1 Optimal Control Problem

The main goal of this section is to establish well-posdeness of the optimal control problem

(6.1) in the parabolic setting and to derive the first order necessary optimality conditions.

We start by equivalently rewriting the optimal control problem (6.1) in terms of (−∆)sD. Re-

call that (−∆)sD is the realization of (−∆)s in L2(Ω) with zero Dirichlet exterior conditions
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and it is a self-adjoint operator. In terms of (−∆)sD, (6.1) becomes

min
(u,z)∈(U,Z)

J(u, z)

subject to

∂tu+ (−∆)sDu =z in Q, u(0, ·) = 0 in Ω

u|Q ∈ K and z ∈ Zad.

(6.4)

We next define the appropriate function spaces. Let

Z := Lr((0, T );Lp(Ω)), with p, r as in (6.3) but 1 < p <∞, 1 < r <∞,

U := {u ∈ U0 : (∂t + (−∆)sD)(u|Ω) ∈ Lr((0, T );Lp(Ω))}.

Here, U is a Banach space with the graph norm

‖u‖U := ‖u‖U0 + ‖(∂t + (−∆)sD)(u|Ω)‖Lr((0,T );Lp(Ω)).

We let Zad ⊂ Z to be a nonempty, closed, and convex set and K as in (6.1c). Notice that

the spaces U and Z are reflexive, and under the assumption that r and p satisfy (6.3), it

follows from Corollary 3.1 that U ↪→ C(Q). This is needed to show the existence of solution

to (6.1).

Next using Corollary 3.1 we have that for every z ∈ Z there is a unique u ∈ U that

solves (6.1b). As a result, the following control-to-state map

S : Z → U, z 7→ Sz =: u

is well-defined, linear, and continuous. Due to the continuous embedding of U in C(Q) we
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can in fact consider the control-to-state map as

E ◦ S : Z → C(Q),

and we can define the admissible control set as

Ẑad := {z ∈ Z : z ∈ Zad, (E ◦ S)z ∈ K} ,

and thus the reduced minimization problem is given by

min
z∈Ẑad

J (z) := J((E ◦ S)z, z). (6.5)

Towards this end, we are ready to state the well-posedness of (6.5) and equivalently

(6.1).

Theorem 6.1. Let Zad be a closed, convex, bounded subset of Z and K a closed and convex

subset of C(Q) such that Ẑad is nonempty. Moreover, let J : L2(Q)×Lr((0, T );Lp(Ω))→ R

be weakly lower-semicontinuous. Then (6.5) has a solution.

Proof. The proof follows by using similar arguments as in the elliptic case, see Theorem 5.1

in Chapter 5 and has been omitted for brevity.

Next, we derive the first order necessary conditions under the following Slater condition.

Assumption 3. There is some control ẑ ∈ Zad such that the corresponding state u fulfills

the strict state constraints

u(t, x) < ub(t, x), ∀(t, x) ∈ Q. (6.6)

Under this assumption, we have the following first order necessary optimality conditions.

Theorem 6.2. Let J : L2(Q)×Lr((0, T );Lp(Ω))→ R be continuously Fréchet differentiable

and let (6.6) hold. Let (ū, z̄) be a solution to the optimization problem (6.1). Then there
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are Lagrange multipliers µ̄ ∈M(Q) and ξ̄ ∈ (Lr((0, T );Lp(Ω)))? such that

∂tū+ (−∆)sDū = z̄, in Q, ū(0, ·) = 0, in Ω, (6.7a)


−∂tξ̄ + (−∆)sD ξ̄ = Ju(ū, z̄) + µ̄Q, in Q,

ξ̄(·, T ) = µ̄T , in Ω,

(6.7b)

〈ξ̄ + Jz(ū, z̄), z − z̄〉(Lr((0,T );Lp(Ω)))?,Lr((0,T );Lp(Ω)) ≥ 0, ∀ z ∈ Zad (6.7c)

µ̄ ≥ 0, ū(x) ≤ ub(x) in Q, and

∫
Q

(ub − ū) dµ̄ = 0, (6.7d)

where (6.7a) and (6.7b) are understood in the weak sense (see Definition 3.5) and very-weak

sense (see Definition 3.8), respectively.

Proof. We will check the requirements of [88, Lemma 1.14] to complete the proof. Notice

that ∂t + (−∆)sD : U 7→ Z is bounded and surjective. In addition, we have that the interior

of K is nonempty due to (6.6). In order to apply [88, Lemma 1.14], the only thing that

remains to be shown is the existence of (û, ẑ) ∈ U × Z such that

∂t(û− ū) + (−∆)sD(û− ū)− (ẑ − z̄) = 0 in Q, (û− ū) = 0 in Ω. (6.8)

Notice that for simplicity we have suppressed the initial condition. We recall that (ū, z̄)

solves the state equation, as a result we obtain that

∂tû+ (−∆)sDû = ẑ in Q, û = 0 in Ω (6.9)

Since for every ẑ ∈ Zad, there is a unique û that solves (6.9), in particular (û, ẑ) works.

Then using [88, Lemma 1.14] we obtain (6.7a)–(6.7c). Moreover, (6.7d) follows from [88,

Lemma 1.14] and the discussions given in [88, Page 88].
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6.2 Moreau-Yosida Regularization of Optimal Control Prob-

lem

The purpose of this section is to study the regularized optimal control problem using the

well-known Moreau-Yosida regularization and to show that the regularized problem is an

approximation to the original problem. The Moreau-Yosida regularized optimal control

problem is given by

min Jγ(u, z) := J(u, z) +
1

2γ
‖(µ̂+ γ(u− ub))+‖2L2(Q), (6.10a)

subject to the fractional PDE: Find u ∈ U solving


Asu = z in Q,

u = 0 in Σ̂,

(6.10b)

with

z ∈ Zad, (6.10c)

where 0 ≤ µ̂ ∈ L2(Q) is a shift parameter that can be taken to be zero, and γ > 0 denotes

the regularization parameter. Here, (·)+ denotes max{0, ·}. More information about this

can be found in [92]. From hereon, we will use a particular cost functional J , given by,

J(u, z) :=
1

2
‖u− ud‖2L2(Q) +

α

2
‖z‖2L2(Q),

with α > 0 and we choose the relevant function spaces as follows:
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1. Elliptic case.

Z := Lp(Ω), with p as in (6.2) but 2 ≤ p <∞,

U := {u ∈ W̃ s,2
0 (Ω) : (−∆)sD(u|Ω) ∈ Lp(Ω)}.

2. Parabolic case.

Z := Lr((0, T );Lp(Ω)), with p, r as in (6.3) but 2 ≤ p <∞, 2 ≤ r <∞,

U := {u ∈ U0 : (∂t + (−∆)sD)(u|Ω) ∈ Lr((0, T );Lp(Ω))}.

Then, again using the control-to-state mapping S, (6.10) can be reduced to

min
z∈Zad

J γ(z) := J (z) +
1

2γ
‖(µ̂+ γ((E ◦ S)z − ub))+‖2L2(Q). (6.11)

Existence and uniqueness of solution to the problem (6.10) can be done using the direct

method, see for instance Theorem 5.1 in Chapter 5. For the remainder of the section, we

shall only focus on the parabolic case as the elliptic case follows after minor modifications.

Theorem 6.3. Let (ūγ , z̄γ) be a solution to the regularized optimization problem (6.10).

Then there exists a Lagrange multiplier ξ̄γ ∈ U0 such that


∂tū

γ + (−∆)sDū
γ = z̄γ , in Q,

ūγ(0, ·) = 0, in Ω,

(6.12a)


−∂tξ̄γ + (−∆)sD ξ̄

γ = ūγ − ud + (µ̂+ γ(ūγ − ub))+, in Q,

ξ̄γ(T, ·) = 0 in Ω,

(6.12b)

〈ξ̄γ + αz̄γ , z − z̄γ〉L2(Q) ≥ 0, ∀ z ∈ Zad. (6.12c)
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Proof. The proof is similar to the proof of Theorem 5.2 in Chapter 5 and has been omitted

for brevity.

Next, let us begin the analysis to show that the regularized problem (6.10) is indeed an

approximation to the original problem (6.1). Let us start by deriving a uniform bound on

the regularization term. Observe that for γ ≥ 1,

J (z̄γ) ≤ J γ(z̄γ) ≤ J γ(z̄) ≤ J (z̄) +
1

2γ
‖µ̂‖2L2(Q)

≤ J (z̄) +
1

2
‖µ̂‖2L2(Q) =: Cz̄.

(6.13)

Using (6.13) we get that 1
2γ ‖(µ̂ + γ(ūγ − ub))+‖2L2(Q) is uniformly bounded. Also from

(6.13) we have that

‖(ūγ − ub)+‖2L2(Q) ≤
2

γ

(
J (z̄)− J (z̄γ) +

1

2γ
‖µ̂‖2L2(Q)

)
.

Thus

‖(ūγ − ub)+‖L2(Q) ≤ ω(γ−1)γ−
1
2 , (6.14)

where

ω(γ−1) := 2 max

(
1

2γ
‖µ̂‖2L2(Q), (J (z̄)− J (z̄γ))+

)1/2

.

Since z̄γ → z̄ strongly in L2(Q) as γ →∞ (by [86, Proposition 2.1]) and J is continuous, we

obtain that ω(γ−1) ↓ 0 as γ → ∞. Moreover, from (6.13) we can deduce that J (z̄γ) ≤ Cz̄

which yields

max
(
‖ūγ − ud‖2L2(Q), α‖z̄

γ‖2L2(Q)

)
≤ 2Cz̄. (6.15)
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Then from (6.12b), along with (6.14) and (6.15), we obtain that there is a constant C > 0

independent of γ such that

‖ξ̄γ‖U0 ≤ C
(
‖ūγ − ud‖L2(Q) + ‖µ̂‖L2(Q) + γ‖(ūγ − ub)+‖L2(Q)

)
≤ C

(
2 + ω(γ−1)

√
γ)
)
.

We now estimate the distance between (ū, z̄) and (ūγ , z̄γ).

Theorem 6.4. Let (ū, z̄) and (ūγ , z̄γ) denote the solutions of (6.1) and (6.10), respectively.

Then,

α‖z̄ − z̄γ‖2L2(Q) + ‖ū− ūγ‖2L2(Q) + γ‖(ūγ − ub)+‖2L2(Q)

≤ 1

γ
‖µ̂‖2L2(Q) + 〈µ̄, ūγ − ub〉M(Q),C(Q) , (6.16)

and hence,

‖(ūγ − ub)+‖L2(Q) ≤
√

2

γ
max

(
1

γ
‖µ̂‖2L2(Q), 〈µ̄, (ū

γ − ub)+〉M(Q),C(Q)

) 1
2

. (6.17)

Proof. We start by using the optimality conditions (6.7c) and (6.12c) with z = z̄γ and

z = z̄, respectively. This yields

α‖z̄ − z̄γ‖2L2(Q) ≤
∫
Q

(z̄ − z̄γ)(ξ̄γ − ξ̄) dxdt. (6.18)

Next, we use the state equations (6.7a) and (6.12a) to get that, for every

v ∈ (Lr((0, T );Lp(Ω)))?,

〈∂t(ū− ūγ)+(−∆)sD(ū− ūγ), v〉Lr((0,T );Lp(Ω)),(Lr((0,T );Lp(Ω)))?

=〈z̄ − z̄γ , v〉Lr((0,T );Lp(Ω)),(Lr((0,T );Lp(Ω)))? . (6.19)
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Recall that both ξ̄ ∈ (Lr((0, T );Lp(Ω)))? and

ξ̄γ ∈ L2((0, T ); W̃ s,2
0 (Ω)) ↪→ (Lr((0, T );Lp(Ω)))? due to the fact that (Lr((0, T );Lp(Ω)))? ∼=

Lr
′
((0, T );Lp

′
(Ω)) ([91, Theorem 1.3.10], for example) and Remark 2.1 (iii), so we can set

v := ξ̄γ − ξ̄ in (6.19). Subsequently, substituting (6.19) in (6.18), and using (6.7b) and

(6.12b), along with ū, ūγ ∈ U , we obtain

α‖z̄ − z̄γ‖2L2(Q) ≤ 〈∂t(ū− ū
γ) + (−∆)sD(ū− uγ), ξ̄γ − ξ̄〉Lr((0,T );Lp(Ω)),(Lr((0,T );Lp(Ω)))?

= −‖ū− ūγ‖2L2(Q) +

∫
Q

(µ̂+ γ(ūγ − ub))+(ū− ūγ) dxdt− 〈µ̄, ū− ūγ〉M(Q),C(Q) .

From here, we add and subtract ub to the term (ū−ūγ) and note that 〈µ̄, ub − ū〉M(Q),C(Q) =

0 from (6.7d). This yields

α‖z̄ − z̄γ‖2L2(Q) + ‖ū− ūγ‖2L2(Q) ≤〈µ̄, ū
γ − ub〉M(Q),C(Q)

+

∫
Q

(µ̂+ γ(ūγ − ub))+(ū− ūγ + ub − ub) dxdt

≤〈µ̄, ūγ − ub〉M(Q),C(Q)

+

∫
Q

(µ̂+ γ(ūγ − ub))+(ub − ūγ) dxdt, (6.20)

where we have used that
∫
Q(µ̂+ γ(ūγ − ub))+(ū− ub) dxdt ≤ 0.

Next, let

Q+
γ (µ̂) := {(t, x) ∈ Q : µ̂+ γ(ūγ − ub) > 0}. (6.21)

Then ∫
Q\Q+

γ (µ̂)
(µ̂+ γ(ūγ − ub))+(ub − ūγ) dxdt = 0.
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This allows us to write∫
Q

(µ̂+ γ(ūγ − ub))+(ub − ūγ) dxdt =

∫
Q+
γ (µ̂)

(µ̂+ γ(ūγ − ub))(ub − ūγ) dxdt

= γ

∫
Q+
γ (µ̂)

(ūγ − ub)(ub − ūγ) dxdt

+

∫
Q+
γ (µ̂)

µ̂(ub − ūγ) dxdt

= −γ
∫
Q+
γ (µ̂)

(ūγ − ub)2 dxdt+

∫
Q+
γ (µ̂)

µ̂(ub − ūγ) dxdt

≤ −γ‖(ūγ − ub)+‖2L2(Q) +
1

γ
‖µ̂‖2L2(Q), (6.22)

where the first term in the last inequality follows from the fact that

γ‖(ūγ − ub)+‖2L2(Q) = γ‖ūγ − ub‖2L2(Q+
γ (0))

≤ γ‖ūγ − ub‖2L2(Q+
γ (µ̂))

, (6.23)

because Q+
γ (0) := {(x, t) ∈ Q : ūγ − ub > 0} ⊆ Q+

γ (µ̂) and the second term follows because

ūγ − ub >
−µ̂
γ

in Q+
γ (µ̂). Finally, substituting (6.22) in (6.20), we obtain (6.16).

Next, we use that (ūγ−ub)+ ∈ C(Q). This follows from the fact that ūγ is the solution to

the state equation (6.1b), hence, it belongs to C(Q). This, together with the non negativity

of µ̄ ∈M(Q) combined with (6.16), yields (6.17).

If we take ub = 0 in Ω × [0, T ] then, under the additional assumption ud ≥ 0, we

can improve the decay of the violation of the state constraints, that is, we can show that

‖(ūγ)+‖L2(Q) = O(γ−1) as γ → ∞. The results are analogous to [85, Theorems 2.2 and

2.3].
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6.3 Finite Element Discretization and Convergence Analysis

for the Elliptic Problem

In this section we consider the discretized version of the Moreau-Yosida regularized elliptic

optimal control problem. Before we discuss the discretization, we present some preliminary

assumptions and results. The notation in this section will be similar to that of the previous

sections, but for the elliptic problem. For completeness, and so we may reference it in what

follows, we include the following analogue to Theorem 6.3.

Theorem 6.5. Let (ūγ , z̄γ) be a solution to the regularized optimization problem (6.10).

Then there exists a Lagrange multiplier ξ̄γ ∈ U0 such that

(−∆)sDū
γ = z̄γ , in Ω, (6.24a)

(−∆)sD ξ̄
γ = ūγ − ud + (µ̂+ γ(ūγ − ub))+, in Ω, (6.24b)

(ξ̄γ + αz̄γ , z − z̄γ)L2(Ω) ≥ 0, ∀ z ∈ Zad. (6.24c)

For the remainder of this work, we will require more structure on the admissible set of

controls Zad. Specifically we will use

Zad = {z ∈ Z : a ≤ z ≤ b a.e. in Ω}, (6.25)

where a < b are constants. We next state a result on the regularity of solutions to the

regularized problem in Theorem 6.5 for bounded Lipschitz domains. This result will be

used throughout the remainder of this section.

Proposition 6.1. Let Ω be a bounded Lipschitz domain and (ūγ , ξ̄γ , z̄γ) be the solution

to (6.24) for a fixed γ, then we have

ūγ ∈W σ−ε,2(Ω), ξ̄γ ∈W σ−ε,2(Ω), z̄γ ∈W τ,2(Ω),
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for every ε > 0 where σ = min{2s, s+ 1/2} and τ = min{1, 2s− ε}.

Proof. Due to ud, µ̂ ∈ L2(Ω), the right-hand-side of (6.24b) is in L2(Ω) and not better, and

therefore, for a fixed γ, we have ξ̄γ ∈W σ−ε,2(Ω) for all ε > 0, where σ = min{2s, s+ 1/2}.

The optimality condition (6.24c) is equivalent to

z̄γ = PZad
(
−α−1ξ̄γ

)
(6.26)

where PZad is the projection onto the set Zad. Then using the fact that the projection

formula (6.26) is equivalent to: z̄γ = min
{
b,max

{
a,−α−1ξ̄γ

}}
, we deduce that z̄γ ∈

Wmin{1,2s−ε},2(Ω). For this result, when min{1, 2s − ε} = 1, we refer to [97, Chapter II,

Theorem 3.1], otherwise we refer to [133, Lemma 2.9]. To obtain the regularity on ūγ , we

refer to [30, Theorem 2.1].

Remark 6.1. We note that the regularity results above in Proposition 6.1 cannot be

improved for Lipschitz domains. This can be seen by noting that, according to [30, Theorem

2.1] and the discussion that follows, we have optimal regularity for the adjoint variable ξ̄γ

based on the right-hand side. Using this we obtain the regularity for z̄γ . The only room for

improvement in the regularity is on ūγ . This requires an assumption that Ω has a smooth

boundary, and even then the improvement is limited, see [30,129].

We next discuss a partial a priori analysis of error due to spatial discretization. We

assume we have a quasi-uniform family of triangulations of Ω, where each mesh, denoted

Th, consists of triangles T such that ∪T∈Th = Ω. Given Th, we define the finite element

space for the state and adjoint variables as

Uh = {uh ∈ C0(Ω) : uh
∣∣
T
∈ P1, ∀T ∈ Th},

where P1 is the space of polynomials of degree at most one.

For a given z ∈ Z, there exists a unique solution to the the problem find uh ∈ Uh such
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that

E(uh, vh) = (z, vh)L2(Ω) ∀vh ∈ Uh,

where

E(uh, vh) :=
CN,s

2

∫
RN

∫
RN

(uh(x)− uh(y))(vh(x)− vh(y))

|x− y|N+2s
dxdy. (6.27)

We define the discrete solution operator Sh : Z → Uh whose action is given by Z 3 z 7→

Shz =: uh, where uh solves the above problem.

Next, we define the discrete control space as

Zh := {zh ∈ Z : zh
∣∣
T
∈ P0, ∀T ∈ Th},

where P0 denotes space of piecewise constants on the triangulation Th. Now the admissible

discrete control set is given by

Zad,h := Zad ∩ Zh,

where Zad is as defined in (6.25). Let Πh defined by

(Πhw)
∣∣
T

=
1

|T |

∫
T
w, ∀T ∈ Th,

denote the orthogonal projection onto Zh. Notice that for z ∈ Z we have

(z −Πhz, wh)L2(Ω) = 0, for all wh ∈ Zh. (6.28)

Moreover, notice that if z ∈ Zad, then Πhz ∈ Zad,h.

Remark 6.2 (Other Control Discretizations). In Zh, we have chosen the simplest piece-

wise constant discretization for the control. One can also choose other discretizations such

as variational discretization [87] or piecewise linear discretization [114, 115]. However, we
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emphasize that our proofs carry over to the variational discretization after minor modifica-

tions, in addition the piecewise constant case is easier to implement in higher dimensions.

Moreover, to fully take advantage of the piecewise linear discretization of control, one needs

higher regularity of adjoint and control (for instance, Lipschitz), such regularity results are

currently not known for fractional PDEs.

Now the fully discrete version of the regularized problem (6.10) in reduced form is given

by

min
zh∈Zad,h

J γh (zh) :=
1

2
‖Shzh−ud‖2L2(Ω) +

α

2
‖zh‖2L2(Ω)

+
1

2γ
‖(µ̂+ γ(Shzh − ub))+‖2L2(Ω). (6.29)

The following result is a discrete analogue of Theorem 6.5 stating the first order opti-

mality conditions for (6.29).

Theorem 6.6. Let (ūγh, z̄
γ
h) be a solution to the optimization problem (6.29). There exists

a Lagrange multiplier (adjoint variable) ξ̄γh ∈ Uh such that

E(ūγh, vh) = (z̄γh , vh)L2(Ω) ∀vh ∈ Uh,

E(ξ̄γh , vh) =
(
ūγh − ud, vh

)
L2(Ω)

+
(
(µ̂+ γ(ūγh − ub))+, vh

)
L2(Ω)

∀ vh ∈ Uh,

(
ξ̄γh + αz̄γh , zh − z̄

γ
h

)
L2(Ω)

≥ 0 ∀ zh ∈ Zad,h.

In order to discuss the convergence of our discrete approximations to the actual solution,

we assume that we have a sequence of meshes Th. The quantity we wish to study is

‖z̄ − z̄γh‖L2(Ω), which we will split as

‖z̄ − z̄γh‖L2(Ω) ≤ ‖z̄ − z̄γ‖L2(Ω) + ‖z̄γ − z̄γh‖L2(Ω), (6.30)
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where z̄ solves the continuous non-regularized optimal control problem, z̄γ solves (6.11),

and z̄γh solves (6.29). The estimate of the first term in (6.30) is provided in Theorem 6.4.

Before we obtain our first result for the convergence of ‖z̄γ − z̄γh‖L2(Ω), we introduce

some notation to make the computations in what follows more tractable. We define the

quantity

f(u) := u− ud + (µ̂+ γ(u− ub))+,

so that the adjoint equation (6.24b) becomes

(−∆)sD ξ̄
γ = f(ūγ), in Ω.

In what follows, for simplicity, whenever we write the operator S, we really mean that we

are using (E ◦ S), as defined in Section 6.1. Furthermore, we introduce the continuous and

discrete adjoint problem operators as R := S∗ and Rh := S∗h, and note that these operators

are well defined, linear, and bounded. With this we are ready to state our convergence

results.

Theorem 6.7. Let z̄γ and z̄γh denote the solution of (6.11) and (6.29) respectively. The

discretization error can be bounded as

‖z̄γ − z̄γh‖L2(Ω) ≤
C

α

(
‖(R−Rh)f(Sz̄γ)‖L2(Ω) + ‖Πhξ̄

γ − ξ̄γ‖L2(Ω)

+ (1 + γ)‖(S − Sh)z̄γ‖L2(Ω)

+ (1 + γ + α)‖Πhz̄
γ − z̄γ‖L2(Ω)

)
, (6.31)

where C is a positive constant independent of γ and h.

Proof. In what follows all of the norms and inner products used are in L2(Ω) unless noted
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otherwise. Using the notation introduced above, we begin by defining the auxiliary variables

ûγh := Shz̄
γ ,

ξ̂γh := Rhf(ūγ) = Rhf(Sz̄γ),

ξ̃γh := Rhf(ûγh) = Rhf(Shz̄
γ).

Next, we recall the continuous and discrete optimality conditions

(ξ̄γ + αz̄γ , z − z̄γ) ≥ 0 ∀ z ∈ Zad,

(ξ̄γh + αz̄γh , zh − z̄
γ
h) ≥ 0 ∀ zh ∈ Zad,h.

We then perform the following: (i) replace z with z̄γh in the first inequality and zh with

Πhz̄
γ in the second inequality; (ii) add the two inequalities; (iii) introduce and rearrange

terms appropriately to obtain

α‖z̄γ − z̄γh‖
2 ≤ (ξ̄γ − ξ̄γh , z̄

γ
h − z̄

γ) + (ξ̄γh + αz̄γh ,Πhz̄
γ − z̄γ)

= (a) + (b).

We can further separate (a) into

(ξ̄γ − ξ̄γh , z̄
γ
h − z̄

γ) = (ξ̄γ − ξ̂γh + ξ̂γh − ξ̃
γ
h + ξ̃γh − ξ̄

γ
h , z̄

γ
h − z̄

γ)

= (ξ̄γ − ξ̂γh , z̄
γ
h − z̄

γ) + (ξ̂γh − ξ̃
γ
h , z̄

γ
h − z̄

γ)

+ (ξ̃γh − ξ̄
γ
h , z̄

γ
h − z̄

γ)

= (I) + (II) + (III). (6.32)
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Before we look at these three terms, we note that we can bound

f(u)− f(v) = u− ud + (µ̂+ γ(u− ub))+ − (v − ud + (µ̂+ γ(v − ub))+)

≤ u− v + γ(u− v)+, (6.33)

since (u)+ − (v)+ ≤ (u− v)+. Now we bound

(I) = (Rf(ūγ)−Rhf(ūγ), z̄γh − z̄
γ) ≤ C‖(R−Rh)f(Sz̄γ)‖‖z̄γh − z̄

γ‖,

(II) = (Rhf(ūγ)−Rhf(ûγh), z̄γh − z̄
γ) ≤ C(1 + γ)‖Rh(S − Sh)z̄γ‖‖z̄γh − z̄

γ‖.

For (III), we use (6.33) to obtain

(III) = (Rhf(ûγh)−Rhf(ūγh), z̄γh − z̄
γ)

≤
(
Rh(Sh(z̄γ − z̄γh) + γ(Sh(z̄γ − z̄γh))+), z̄γh − z̄

γ
)
.

From here, we note that (RhSh(z̄γ − z̄γh), z̄γh − z̄
γ) ≤ 0, and so we need only consider

(III) ≤ γ(Rh(Sh(z̄γ − z̄γh)+), z̄γh − z̄
γ)

= γ((Sh(z̄γ − z̄γh))+, Sh(z̄γh − z̄
γ))

= −γ((Sh(z̄γ − z̄γh))+, Sh(z̄γ − z̄γh))

≤ 0,

and so it may be removed from the bound. Now, turning our attention to (b), we note that

it can be rewritten as (ξ̄γh ,Πhz̄
γ − z̄γ) using (6.28). Using similar techniques on (b) as we
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did on (a), we have

(b) = (ξ̄γh − ξ̃
γ
h + ξ̃γh − ξ̂

γ
h + ξ̂γh − ξ̄

γ + ξ̄γ ,Πhz̄
γ − z̄γ)

= (ξ̄γ − ξ̂γh , z̄
γ −Πhz̄

γ) + (ξ̂γh − ξ̃
γ
h , z̄

γ −Πhz̄
γ)

+ (ξ̃γh − ξ̄
γ
h , z̄

γ −Πhz̄
γ) + (Πhξ̄

γ − ξ̄γ , z̄γ −Πhz̄
γ)

= (i) + (ii) + (iii) + (iv). (6.34)

The quantities (i) and (ii) can be bounded similarly to (I) and (II) above with the substi-

tution of (z̄γ −Πhz̄
γ) for (z̄γh − z̄

γ). Focusing on the remaining terms we obtain

(iii) = (Rhf(ûγh)−Rhf(ūγh), z̄γ −Πhz̄
γ)

≤ C(1 + γ)‖RhSh(z̄γ − z̄γh)‖‖z̄γ −Πhz̄
γ‖

(iv) ≤ ‖Πhξ̄
γ − ξ̄γ‖‖z̄γ −Πhz̄

γ‖.

Before combining all of the bounds, we note that the operators Sh, Rh and RhSh are

uniformly bounded in h, that is, there exists some Ĉ independent of h such that

‖Sh‖+ ‖Rh‖+ ‖RhSh‖ ≤ Ĉ ∀h,

where the above norms are the appropriate operator norms. Now combining all of our
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bounds we have

α‖z̄γ − z̄γh‖
2 ≤ C

(
‖(R−Rh)f(Sz̄γ)‖

(
‖z̄γh − z̄

γ‖+ ‖z̄γ −Πhz̄
γ‖
)

+ (1 + γ)Ĉ‖(S − Sh)z̄γ‖
(
‖z̄γh − z̄

γ‖+ ‖z̄γ −Πhz̄
γ‖
)

+ (1 + γ)Ĉ‖z̄γ − z̄γh‖‖z̄
γ −Πhz̄

γ‖

+ ‖Πhξ̄
γ − ξ̄γ‖‖z̄γ −Πhz̄

γ‖

)
.

Next, we make use of Young’s inequality with constant α/(2C) to obtain the bound

α‖z̄γ − z̄γh‖
2 ≤ C

(
C

α
‖(R−Rh)f(Sz̄γ)‖2 +

(1 + γ)2Ĉ2C

α
‖(S − Sh)z̄γ‖2

+
C

α
‖Πhξ̄

γ − ξ̄γ‖2 +

(
3α

4C
+

(1 + γ)2Ĉ2C

α

)
‖Πhz̄

γ − z̄γ‖2

+
3α

4C
‖z̄γh − z̄

γ‖2
)
.

Grouping terms with our quantity of interest on the left and dividing by the resulting

constant leads to (6.31).

We now use the regularity results in Proposition 6.1 to get the following rate of conver-

gence for a fixed γ.

Corollary 6.1. Under the assumptions of Theorem 6.7 and for a fixed γ, we have

‖z̄γ − z̄γh‖L2(Ω) ≤
C

α

(
(h2β| log h|2(1+κ) + hβ+s−ε)(‖z̄γ‖L2(Ω) + ‖ud‖L2(Ω) + ‖µ̂‖L2(Ω))

+ h2β| log h|2(1+κ)(1 + γ)‖z̄γ‖L2(Ω) + hτ (1 + γ + α)|z̄γ |W τ,2(Ω)

)
,
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for every ε > 0, where β = min{s, 1/2}, τ = min{1, 2s − ε}, κ = 1 if s = 1/2 and zero

otherwise.

Proof. For a fixed γ, we use the regularity from Proposition 6.1, the L2 error estimates from,

[30, Proposition 3.8] and interpolation estimates (see [60, Proposition 1.135] for example)

to obtain the result.

6.4 Numerical Experiments

In this section we present numerical experiments in both the elliptic and parabolic cases.

Let Ω ⊂ R2 be a disk of radius 1/2 centered at the origin. We truncate R2\Ω and bound the

exterior of Ω with a circle of radius 3/2 centered at the origin. For these experiments, we

create a triangular mesh of Ω and the exterior. We discretize the state u and the adjoint p

using standard P1 Lagrangian finite elements and we discretize the control using piecewise

constant elements. For details on the discretization of the fractional Laplace operator using

P1, see [1]. For the parabolic problems, we set T = 1 and divide the time interval (0, T ) into

subintervals of equal length τ = 0.01. The time-stepping in fractional PDEs is carried out

using backward Euler. All the examples are solved using BFGS with line search, without

any control constraints. Notice, that control constraints can be easily incorporated, for

instance, by using projected BFGS [95].

6.4.1 Elliptic Problem

In this case, we define our desired state to be

ud(x, y) =
2−2s

Γ(1 + s)2
(1/4− (x2 + y2)+)s.

For s = 0.2, the desired state is shown in the top left panel in Figure 6.2. We take ub = 0.1

as our state constraint. For this experiment, we used a sequence of 8 meshes of Ω and

its exterior. A summary of these meshes for easy reference is included in Table 6.1. In
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Mesh Number Number of Nodes Number of Elements

1 1009 2048

2 1549 3136

3 2920 5894

4 6017 12112

5 8028 16146

6 10819 21744

7 15565 31256

8 24155 48468

Table 6.1: A description of the meshes used in the experiment described in Section 6.4.1.
The first column gives the reference number we use to refer to the mesh.
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Figure 6.1: Elliptic case. Convergence of ‖(u− ub)+‖L2(Ω) (left) and the violation of the

state constraints in the max-norm (max(u− ub)) for given fractional exponent s (right) as
γ increases.

the left panel in Figure 6.1 we show the convergence of ‖(u − ub)+‖L2(Ω) for s = 0.4 on

the finest mesh as γ increases. We observe a convergence of O(γ−1) which is better than

expected. However, this has also been documented in the literature (when s = 1) and it

can be rigorously established when ub = 0 and ud ≥ 0, see [85]. We also show the maximum

error in u− ub with respect to γ for several values of the fractional exponent s in the right

panel of Figure 6.1.

In Figure 6.2 we show the optimal state, control, and Lagrange multiplier for s = 0.2

and γ = 419430.4. We note that the control is a piecewise constant on the mesh. The
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Figure 6.2: Elliptic case. The desired state (top left) optimal state (top right), control
(bottom left) and Lagrange multiplier (bottom right) for s = 0.2 and γ = 419430.4.

optimal state in Figure 6.2 appears to be cleanly cut off at ub = 0.1, complying with the

state constraints and resulting in a cylindrical profile. Moreover, notice that the Lagrange

multiplier corresponding to the inequality constraints is a measure (bottom right panel) as

expected.

In Figure 6.3 we show some convergence results for s = 0.2 for the control and the

state as γ increases. Since we do not have an exact solution for the control problem and

the associated optimal state, obtaining error estimates for the optimal control and state is

problematic. To obtain the plots in Figure 6.3 we solve the optimal control problem on the

finest mesh (mesh 8), then project this solution to the coarse meshes. We then compute

the L2-error between solutions on the four coarsest meshes and the projected solution.
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Figure 6.3: The error ‖u − uγh‖L2(Ω) (left) and ‖z − zγh‖L2(Ω) (right) with respect to γ for

various values of h (different meshes). We recall that (u, z) are computed by solving the
optimal control problem on mesh 8.

6.4.2 Parabolic Problem

To make what follows easier to read, we define

ũ(x, y) =
2−2s

Γ(1 + s)2

(
1/4− (x2 + y2)+

)s
,

and subsequently define our desired state and state constraint respectively to be

ud(x, y, t) = 10t2ũ, ub(x, y, t) =
1

10
(1− t)4ũ.

For s = 0.8, Figure 6.4 shows the convergence of ‖(ūγ − ub)+‖L2(Q) as γ increases.

In Figure 6.5 we show some snapshots of a numerical experiment in which we keep

s = 0.8, but now use

ud(x, y, t) := 10(1 + t)ũ,
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Figure 6.4: Convergence of ‖(ūγ − ub)+‖L2(Q) as γ increases for s = 0.8.

and ub = 1, constant in space and time. For γ = 2, 097, 152, we show the desired state

optimal state, control, adjoint, and Lagrange multiplier at t = 0.75 in Figure 6.5. Note the

similarity between the desired state and the optimal state, but due to the state constraints

the values of the optimal state remain below 1. We also clearly notice that the Lagrange

multiplier is a measure. In addition, the adjoint variable is non-smooth at the bottom of

its inverted dome, as expected.

6.5 Conclusion and Open Questions

In this chapter, we have presented and analyzed optimal control problems with fractional

PDEs as constraints as well as control and state constraints. We introduced the reduced

form of the control problem and derived the first order optimality conditions. Notice that

the elliptic case was considered in the previous chapter. With a perspective towards im-

plementation, we have introduced the Moreau-Yosida regularization for the (elliptic and

parabolic) control problems and have shown convergence of these regularized approxima-

tions to the solution of the original problems. We have also derived finite element error

estimates in a specific elliptic setting.
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Figure 6.5: The desired state ud (upper left), optimal state (upper middle), optimal control
(upper right), Lagrange multiplier (lower left), and optimal adjoint (lower right) for s = 0.8
and γ = 2, 097, 153 at time t = 0.75.

The focus of the chapter is on the analysis and algorithm for the fractional optimal con-

trol problems with state constraints. But there remain several open questions, especially

on the regularity of the original state equation. It remains open to establish the continuity

of solutions to the fractional parabolic problem when the right-hand-side belongs to a dual

space. Notice that this result is known in the elliptic case, see Chapter 5. We have estab-

lished finite element error estimates for the elliptic problem, but the error bounds depends

on the Moreau-Yosida regularization parameter γ. It remains open to show error estimates

which are independent of γ. The discretization error estimates for the fully discrete problem

are completely open.
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Chapter 7: Novel Deep Neural Networks for solving

Bayesian Statistical Inverse Problems

7.1 Introduction

Large-scale statistical inverse problems governed by partial differential equations (PDEs)

are increasingly found in different areas of computational science and engineering [23, 33,

37, 63, 93]. The basic use of this class of problems is to recover certain physical quanti-

ties from limited and noisy observations. They are generally computationally demanding

and can be solved using the Bayesian framework [33, 58, 63]. In the Bayesian approach

to statistical inverse problems, one models the solution as a posterior distribution of the

unknown parameters conditioned on the observations. Such mathematical formulations are

often ill-posed and regularization is introduced in the model via prior information. The

posterior distribution completely characterizes the uncertainty in the model. Once it has

been computed, statistical quantities of interest can then be obtained from the posterior

distribution. Unfortunately, many problems of practical relevance do not admit analytic

representation of the posterior distribution. Thus, the posterior distributions are generally

sampled using Markov chain Monte Carlo (MCMC)-type schemes.

We point out here that a large number of samples are generally needed by MCMC

methods to obtain convergence. This makes MCMC methods computationally intensive

to simulate Bayesian inverse problems. Moreover, for statistical inverse problems governed

by PDEs, one needs to solve the forward problem corresponding to each MCMC sample.

This task further increases the computational complexity of the problem, especially if the

governing PDE is a large-scale nonlinear PDE [58]. Hence, it is reasonable to construct a

computationally cheap surrogate to replace the forward model solver [101]. Problems that
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involve large numbers of input parameters often lead to the so-called curse of dimension-

ality. Projection-based reduced-order models e.g., reduced basis methods and the discrete

empirical interpolation method (DEIM) are typical examples of dimensionality reduction

methods for tackling parameterized PDEs [5, 24, 43, 57, 64, 84, 110]. However, they are in-

trusive by design in the sense that they do not allow reuse of existing codes in the forward

solves, especially for nonlinear forward models. To mitigate this computational issue, the

goal of this work is to demonstrate the use of deep neural networks (DNN) to construct sur-

rogate models specifically for nonlinear parameterized PDEs governing statistical Bayesian

inverse problems. In particular, we will focus on fractional Deep Neural Networks (fDNN)

which have been recently introduced and applied to classification problems [17].

The use of DNNs for surrogate modeling in the framework of PDEs has received increas-

ing attention in recent years, see e.g., [44,76,80,102,109,111,124,137,139] and the references

therein. Some of these references also cover the type of Bayesian inverse problems considered

in this chapter. To accelerate or replace computationally-expensive PDE solves, a DNN is

trained to approximate the mapping from parameters in the PDE to observations obtained

from its solution. In a supervised learning setting, training data consisting of inputs and

outputs are available and the learning problem aims at tuning the weights of the DNN. To

obtain an effective surrogate model, it is desirable to train the DNN to a high accuracy.

We consider a different approach than the aforementioned works. We propose novel

dynamical systems based neural networks which allow connectivity among all the network

layers. Specifically, we consider a fractional DNN technique recently proposed in [17] in the

framework of classification problems. We note that [17] is motivated by [77]. Both papers

are in the spirit of the push to develop rigorous mathematical models for the analysis

and understanding of DNNs. The idea is to consider DNNs as dynamical systems. More

precisely, in [25, 77, 79], DNN is thought of as an optimization problem constrained by a

discrete ordinary differential equation (ODE). As pointed out in [17], designing the DNN

solution algorithms at the continuous level has the appealing advantage of architecture

independence; in other words, the number of optimization iterations remains the same
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even if the number of layers is increased. Moreover, [17] specifically considers continuous

fractional ODE constraint. Unlike standard DNNs, the resulting fractional DNN allows the

network to access historic information of input and gradients across all subsequent layers

since all the layers are connected to one another.

We demonstrate that our fractional DNN leads to a significant reduction in the overall

computational time used by MCMC algorithms to solve inverse problems, while maintaining

accurate evaluation of the relevant statistical quantities. We note here that, although the

papers [102,124,139] consider DNNs for inverse problems governed by PDEs, the DNNs used

in these studies do not, in general, have the optimization-based formulation considered here.

The remainder of the chapter is organized as follows: In section 7.2 we state the generic

parameterized PDEs under consideration, as well as discuss the well-known surrogate model-

ing approaches. Our main DNN algorithm to approximate parameterized PDEs is provided

in section 7.3. We first discuss a ResNet architecture to approximate parameterized PDEs,

which is followed by our fractional ResNet (or fractional DNN) approach to carry out the

same task. A brief discussion on error estimates has been provided. Next, we discuss the

application of fractional DNN to statistical Bayesian inverse problems in section 7.4. We

conclude the chapter with several illustrative numerical examples in section 7.5.

7.2 Parameterized PDEs

In this section, we present an abstract formulation of the forward problem as a discrete par-

tial differential equation (PDE) depending on parameters. We are interested in the following

model which represents (finite element, finite difference or finite volume) discretization of a

(possibly nonlinear) parameterized PDE

F (u(ξ); ξ) = 0, (7.1)

where u(ξ) ∈ U ⊂ RNx and ξ ∈ P ⊂ RNξ denote the solution of the PDE and the

parameter in the model, respectively. Here, P denotes the parameter domain and U the
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solution manifold. For a fixed parameter ξ ∈ P, we seek the solution u(ξ) ∈ U . In other

words, we have the functional relation given by the parameter-to-solution map

ξ 7→ Φ(ξ) ≡ u(ξ). (7.2)

Several processes in computational sciences and engineering are modelled via parameter-

dependent PDEs, which when discretized are of the form (7.1), for instance, in viscous flows

governed by Navier-Stokes equations, which is parameterized by the Reynolds number [59].

Similarly, in unsteady natural convection problems modelled via Boussinesq equations, the

Grashof or Prandtl numbers are important parameters [110], etc. Approximating the high-

fidelity solution of (7.1) can be done with nonlinear solvers, such as Newton or Picard

methods combined with Krylov solvers [59]. However, computing solutions to (7.1) can

become prohibitive, especially when they are required for many parameter values and Nξ is

large. Besides, a relatively large Nx (resulting from a really fine mesh in the discretization

of the PDE) yields large (nonlinear) algebraic systems which are computationally expensive

to solve and may also lead to huge storage requirements. This is, for instance, the case in

Bayesian inference problems governed by PDEs where several forward solves are required

to adequately sample posterior distributions through MCMC-type schemes [26, 104]. As a

result of the above computational challenges, it is reasonable to replace the high-fidelity

model by a surrogate model which is relatively easy to evaluate.

In what follows, we discuss two classes of surrogate models, namely: reduced-order

models and deep learning models.

7.2.1 Surrogate Modeling

Surrogate models are cheap-to-evaluate models designed to replace computationally costly

models. The major advantage of surrogate models is that approximate solution of the

models can be easily evaluated at any new parameter instance with minimal loss of accuracy,

at a cost independent of the dimension of the original high-fidelity problem.
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A popular class of surrogate models are the reduced-order models (ROMs), see e.g., [5,24,

42, 56, 57, 64, 84, 110]. Typical examples of ROMs include the reduced basis method [110],

proper orthogonal decomposition [42, 72, 84, 110] and the discrete empirical interpolation

method (DEIM) and its variants [5, 24, 42, 57, 64]. A key feature of the ROMs is that they

use the so-called offline-online paradigm. The offline step essentially constructs the low-

dimensional approximation to the solution space; this approximation is generally known as

the reduced basis. The online step uses the reduced basis to solve a smaller reduced problem.

The resulting reduced solution accurately approximates the solution of the original problem.

Deep neural network (DNN) models constitute another class of surrogate models which

are well-known for their high approximation capabilities. The basic idea of DNNs is to

approximate multivariate functions through a set of layers of increasing complexity [71].

Examples of DNNs for surrogate modeling include Residual Neural Network (ResNet) [79,

82], physics-informed neural network (PINNs) [111] and fractional DNN [17].

Note that the ROMs require system solves and they are highly intrusive especially for

nonlinear problems [5, 42, 57, 58]. In contrast, the DNN approach is fully non-intrusive,

which is essential for legacy codes. Although rigorous error estimates for ROMs under

various assumptions have been well studied [110], we like the advantage of DNN being

nonintrusive, but recognize that error analysis is not yet as strong.

In this work, we propose a surrogate model based on the combination of POD and

fractional DNN. Before we discuss our proposed model, we first review POD.

7.2.2 Proper Orthogonal Decomposition

For sufficiently large Ns ∈ N, suppose that E := {ξ1, ξ2, · · · , ξNs} is a set of parameter sam-

ples with ξi ∈ RNξ , and {u(ξ1),u(ξ2), · · · ,u(ξNs)} the corresponding snapshots (solutions

of the model (7.1), with ui ∈ RNx). Here, we assume that span{u(ξ1),u(ξ2), · · · ,u(ξNs)}

sufficiently approximates the space of all possible solutions of (7.1). Next, we denote by

S = [u1|u2| · · · |uNs ] ∈ RNx×Ns (7.3)
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the matrix whose columns are the solution snapshots. Then, the singular value decomposi-

tion (SVD) of S is given by

S = ṼΣWT , (7.4)

where Ṽ ∈ RNx×r and W ∈ RNs×r are orthogonal matrices called the left and right singular

vectors, and r ≤ min{Ns, Nx} is the rank of S. Thus, ṼT Ṽ = Ir, WTW = Ir, and

Σ = diag(ρ1, ρ2, · · · , ρr) ∈ Rr×r, where ρ1 ≥ ρ2 ≥ · · · ≥ ρr ≥ 0 are the singular values of S.

Now, denote by V ⊂ Ṽ the first k ≤ r left singular vectors of S. Then, the columns

of V ∈ RNx×k form a POD basis of dimension k. According to the Schmidt-Eckart-Young

theorem [54, 69], the POD basis V minimizes, over all possible k-dimensional orthonormal

bases Z ∈ RNx×k, the sum of the squares of the errors between each snapshot vector ui and

its projection onto the subspace spanned by Z. More precisely,

Ns∑
i=1

||ui − VVTui||22 = min
Z∈Z

Ns∑
i=1

||ui − ZZTui||22 =

r∑
i=k+1

ρi, (7.5)

where Z := {Z ∈ RNx×k : ZTZ = Ik}. Note from (7.5) that the POD basis V solves a least

squares minimization problem, which guarantees that the approximation error is controlled

by the singular values.

For every ξ, we then approximate the continuous solution u(ξ) as u(ξ) ≈ Vû(ξ), where

û(ξ) solves the reduced problem

VTF (Vû(ξ); ξ) = 0. (7.6)

Notice that, in some reduced-modeling techniques such as DEIM, additional steps are needed

to fully reduce the dimensionality of the problem (7.6). Nevertheless, one still needs to solve

a nonlinear (reduced) system like (7.6) to evaluate û.

We conclude this section by emphasizing that the above approach is “linear” because
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u(ξ) ≈ Φ̂(ξ), where Φ̂(ξ) = Vû(ξ) is an approximation of the map Φ(ξ) given in (7.2).

7.3 Deep Neural Network

The DNN approach to modeling surrogates produces a nonlinear approximation Φ̂ of the

input-output map Φ : RNξ → RNx given in (7.2), where Φ̂ depends implicitly on a set of

parameters θ ∈ RNθ configured as a layered set of latent variables that must be trained.

We represent this dependence using the notation Φ̂(ξ;θ). In the context of PDE surrogate

modeling, training a DNN requires a data set (E, S), where the parameter samples ξj ∈ E

are the inputs and the corresponding snapshots uj ∈ S are targets; training then consists

of constructing θ so that the DNN Φ̂(ξj ;θ) matches uj for each ξj . This matching is

determined by a loss functional. The learning problem therefore involves computing the

optimal parameter θ that minimizes the loss functional and satisfies Φ̂(ξj ;θ) ≈ uj . The

ultimate goal is that this approximation also holds with the same optimal parameter θ

for a different data set; in other words, for ξ /∈ E, we take Φ̂(ξ;θ) to represent a good

approximation to Φ(ξ).

Deep learning can be either supervised or unsupervised depending on the data set used

in training. In the supervised learning technique for DNN, all the input samples ξj are

available for all the corresponding samples of the targets uj . In contrast, the unsupervised

learning framework does not require all the outputs to accomplish the training phase. We

adopt the supervised learning approach to model our surrogate and apply it to Bayesian

inverse problems. In particular, we shall discuss Residual neural network (ResNet)[79, 82]

and Fractional DNN [17] in the context of PDE surrogate modeling.
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7.3.1 Residual Neural Network

The residual neural network (ResNet) model was originally proposed in [82]. For a given

input datum ξ, ResNet approximates Φ through the following recursive expression

φ1 = σ(W0ξ + b0),

φj = φj−1 + hσ(Wj−1φj−1 + bj−1), 2 ≤ j ≤ L− 1,

φL = WL−1φL−1,

(7.7)

where {Wj ,bj} are the weights and the biases, h > 0 is the stepsize and L is the number

of layers and σ is an activation function which is applied element-wise on its arguments.

Typical examples of σ include the hyperbolic tangent function, the logistic function or the

rectified linear unit (or ReLU) function. ReLU is a nonlinear function given by σ(x) =

max{x, 0}. In this work, we use a smoothed ReLU function defined, for ε > 0, as

σ(x) :=


x, x > ε

0, x < −ε

1
4εx

2 + 1
2x+ ε

4 , −ε ≤ x ≤ ε.

(7.8)

Note that as ε→ 0, smooth ReLU approaches ReLU, see Figure 7.1.

It follows from (7.7) that

Φ̂(ξ;θ) = φL(ξ) = WL−1

((
I + h(σ ◦ KL−1)

)
◦ · · · ◦

(
I + h(σ ◦ K1)

)
◦ K0

)
(ξ), (7.9)

where Kj(y) = Wj y + bj , for all j = 0, . . . , L− 1 and for any y.

To this end, the following two critical questions naturally come to mind:

(a) How well does Φ̂(ξ;θ) approximate Φ(ξ)?

132



-0.5 0 0.5

0

0.1

0.2

0.3

0.4

0.5
Smooth ReLU

-0.5 0 0.5

0

0.2

0.4

0.6

0.8

1
Derivative of Smooth ReLU

Figure 7.1: Smooth ReLU and derivative for different values of ε.

(b) How do we determine θ?

We will address (b) first and leave (a) for a discussion provided in section 7.3.3. Now,

setting θ = {Wj ,bj}, it follows that the problem of approximating Φ via ResNet is es-

sentially the problem of learning the unknown parameter θ. More specifically, the learning

problem is the solution of the minimization problem [79]:

min
θ
J (θ; ξ,u) (7.10)

subject to constraints (7.7), where J (θ, ξ,u) is suitable loss function.

In this work, we consider the mean squared error, together with a regularization term,

as our loss functional:

J (θ; ξ,u) =
1

2Ns

Ns∑
j=1

‖Φ̂(ξj ;θ)− uj‖22 +
λ

2
||θ||22, (7.11)

where λ is the regularization parameter. Due to its highly non-convex nature, this is a very

difficult optimization problem. Indeed, a search over a high dimensional parameter space

for the global minimum of a non-convex function can be intractable. The current state-of-

the-art approaches to solve these optimization problems are based on the stochastic gradient
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descent method [102,124,139].

As pointed out in, for instance, [79], the middle equation in expression (7.7) mimics the

forward Euler discretization of a nonlinear differential equation:

dtφ(t) = σ(W (t)φ(t) + b(t)), t ∈ (0, T ],

φ(0) = φ0.

It is known that standard DNNs are prone to vanishing gradient problem [128], leading

to loss of information during the training phase. ResNets do help, but more helpful is the

so-called DenseNet [90]. Notice that in a typical DenseNet, each layer takes into account

all the previous layers. However, this is an ad hoc approach with no rigorous mathemat-

ical framework. Recently in [17], a mathematically rigorous approach based on fractional

derivatives has been introduced. This ResNet is called Fractional DNN. In [17], the au-

thors numerically establish that the fractional derivative based ResNet outperforms ResNet

in overcoming the vanishing gradient problem. This is not surprising because fractional

derivatives allow connectivity among all the layers. Building rigorously on the idea of [17],

we proceed to present the fractional DNN surrogate model for the discrete PDE in (7.1).

7.3.2 Fractional Deep Neural Network

As pointed out in the previous section, the fractional DNN approach is based on the replace-

ment of the standard ODE constraint in the learning problem by a fractional differential

equation. To this end, we first introduce the definitions and concepts on which we shall rely

to discuss fractional DNN.

Let u : [0, T ] → R be an absolutely continuous function and assume γ ∈ (0, 1). Next,

consider the following fractional differential equations

dγt u(t) = f(u(t)), u(0) = u0, (7.12)
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and

dγT−tu(t) = f(u(t)), u(T ) = uT . (7.13)

Here, dγt and dγT−t denote the left and right Caputo derivatives, respectively [17].

Then, setting u(tj) = uj , and using the L1-scheme (see e.g., [17]) for the discretization

of (7.12) and (7.13) yields, respectively,

uj+1 = uj −
j−1∑
k=0

aj−k (uk+1 − uk) + hγΓ(2− γ)f(uj), j = 0, ..., L− 1, (7.14)

and

uj−1 = uj +
L−1∑
k=j

ak−j (uk+1 − uk)− hγΓ(2− γ)f(uj), j = L, ..., 1, (7.15)

where h > 0 is the step size, Γ(·) is the Euler-Gamma function, and

aj−k = (j + 1− k)1−γ − (j − k)1−γ . (7.16)

After this brief overview of the fractional derivatives, we are ready to introduce our

fractional DNN (cf. (7.7))

φ1 = σ(W0φ0 + b0); φ0 = ξ,

φj = φj−1 −
j−2∑
k=0

aj−1−k (φk+1 − φk) + hγΓ(2− γ)σ(Wj−1φj−1 + bj−1), (7.17)

2 ≤ j ≤ L− 1,

φL = WL−1φL−1.
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Our learning problem then amounts to

min
θ
J (θ; ξ,u) (7.18)

subject to constraints (7.17). Notice that the middle equation in (7.17) mimics the L1-in

time discretization of the following nonlinear fractional differential equation

dγt φ(t) = σ(W (t)φ(t) + b(t)), t ∈ (0, T ],

φ(0) = φ0.

There are two ways to approach the constrained optimization problem (7.18). The first

approach is the so-called reduced approach, where we eliminate the constraints (7.17) and

consider the minimization problem (7.18) only in terms of θ. The resulting problem can be

solved by using a gradient based method such as BFGS, see e.g., [96, Chapter 4]. During

every step of the gradient method, one needs to solve the state equation (7.17) and an

adjoint equation. These two solves enable us to derive an expression of the gradient of

the reduced loss function with respect to θ. Alternatively, one can derive the gradient and

adjoint equations by using the Lagrangian approach. It is well-known that the gradient with

respect to θ for both approaches coincides, see [8, pg. 14] for instance. We next illustrate

how to evaluate this gradient using the Lagrangian approach.

136



The Lagrangian functional associated with the discrete constrained optimization prob-

lem (7.18) is given by

L(u,θ,ψ) := J (θ; ξ,u) + 〈φ1 − σ(W0φ0 + b0), ψ1〉

+
L−1∑
j=2

〈
φj − φj−1 +

j−2∑
k=0

aj−1−k (φk+1 − φk) + hγΓ(2− γ)σ(Wj−1φj−1 + bj−1), ψj

〉

+ 〈φL −WL−1φL−1, ψL〉, (7.19)

where ψj ’s are the Lagrange multi1pliers, also called adjoint variables, corresponding to

(7.17) and 〈·, ·〉 is the inner product on RNx .

Next we write the state and adjoint equations fulfilled at a stationary point of the

Lagrangian L. In addition, we state the derivative of L with respect to the design variable

θ.

(i) State Equation.

φ1 = σ(W0ξ + b0),

φj = φj−1 −
j−2∑
k=0

aj−1−k (φk+1 − φk) + hγΓ(2− γ)σ(Wj−1φj−1 + bj−1),

2 ≤ j ≤ L− 1,

φL = WL−1φL−1.

(7.20a)

(ii) Adjoint Equation.
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ψj = ψj+1 +

L−2∑
k=j+1

ak−j (ψk+1 − ψk)− j = L− 2, ..., 1

hγΓ(2− γ)
[
−W T

j

(
ψj+1 � σ′ (Wjφj+1 + bj)

)]
,

ψL−1 = −W T
L−1ψL,

ψL = ∂φLJ (θ; ξ,u).

(7.20b)

(iii) Derivative with respect to θ.

∂WL−1
L =ψL φ

T
L−1 = ∂φLJ (θ; ξ,u) φTL−1 + ∂WL−1

J (θ; ξ,u),

∂WjL =− φj
(
ψj+1 � σ′(Wjφj + bj)

)T
+ ∂WjJ (θ; ξ,u),

j = 0, ..., L− 2,

∂bjL =− ψTj+1 σ
′(Wjφj + bj) + ∂bjJ (θ; ξ,u).

j = 0, ..., L− 2 .

(7.20c)

The right-hand-side of (7.20c) represents the gradient of L with respect to θ. We then use

a gradient-based method (BFGS in our case) to identify θ.

7.3.3 Error Analysis

In this section we briefly address the question of how well the deep neural approximation

approximates the PDE solution map Φ : RNξ → RNx . The approximation capabilities of

neural networks has received a lot of attention recently in the literature, see e.g., [55, 89,

117, 138] and the references therein. The papers [89, 117] obtain results based on general

activation functions for which the approximation rate is O(n−1/2), where n is the total
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number of hidden neurons. This implies that neural networks can overcome the curse of

dimensionality, as the approximation rate is independent of dimension Nx.

We begin by making the observation that the fractional DNN can be written as a linear

combination of activation functions evaluated at different layers. Indeed, observe from

(7.17) that if Φ(ξ) is approximated by a one-hidden layer network Φ̂(ξ,θ) := φ2 (that is,

L = 2) then it can be expressed as:

φ2 = W1σ(W0ξ + b0). (7.21)

By a one-hidden layer network, we mean a network with the input layer, one hidden layer

and the output layer [55,89,100,117]. Next, for L = 3, we obtain

φ3 = W2φ2 = W2 [α0σ(W0φ0 + b0) + α1σ(W1φ1 + b1) + α2φ0] , (7.22)

where α0 = 1− a1, α1 = τ := hγΓ(2− γ) and α2 = a1. Similarly, if we set L = 4, then we

get

φ4 = W3φ3

= W3 [α0σ(W0φ0 + b0) + α1σ(W1φ1 + b1) + α2σ(W2φ2 + b2) + α3φ0] , (7.23)

where α0 = (1− a1 + a2
1 − a2), α1 = (1− a1)τ, α2 = τ, and α3 = 2a2 − a1 − a2

1.

Proceeding in a similar fashion yields the following result regarding multilayer fractional

DNN.

Proposition 7.1 (Representation of multilayer fractional DNN). For L ≥ 3, the fractional

DNN given by (7.17) fulfills

φL = WL−1

[
αL−1φ0 +

L−2∑
i=0

αiσ(Wiφi + bi)

]
, (7.24)
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where αi are constants depending on τ and ai, as given by (7.16). Observe that a one-hidden

layer fDNN (that is, L = 2) coincides with a one-hidden layer standard DNN.

Error analysis for multilayer networks is generally challenging. Some papers that study

this include [81,138] and the references therein. The results of these two papers focus mainly

on the ReLU activation function. In particular, [81] discusses the approximation of linear

finite elements by ReLU deep and shallow networks.

In this work, we restrict the analysis discussion to one-hidden layer fDNN i.e., L = 2. In

particular, we consider a one-hidden layer network with finitely many neurons. Notice that

for L = 2, fDNN coincides with standard DNN according to Proposition 7.1. Therefore, it

is possible to extend the result from [117] to our case. To state the result from [117], we

first introduce some notation.

To this end, we make the assumption that the function Φ(ξ) is defined on a bounded

domain P ⊂ RNξ and has a bounded Barron norm

||Φ||Bm =

∫
P

(1 + ω)m|Φ̂(ω)| dω, m ≥ 0. (7.25)

Now, let m ∈ N ∪ {0} and p ∈ [1,∞]. Recall that the Sobolev space Wm,p(P) is the

space of functions in Lp(P) whose weak derivatives of order m are also in Lp(P) :

Wm,p(P) := {f ∈ Lp(P) : Dmf ∈ Lp(P), ∀m with |m| ≤ m}, (7.26)

where m = (m1, . . . ,mNξ) ∈ {0, 1, . . .}Nξ , |m| = m1 + m2 . . . + mNξ and Dmf is the

weak derivative. In particular, the space Hm(P) :=Wm,2(P) is a Hilbert space with inner

product and norm given respectively by

(f, g)Hm(P) =
∑
|m|≤m

∫
P
Dmf(x)Dmg(x) dx,
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and ||f ||Hm(P) = (f, f)
1/2
Hm(P). For p = ∞, we note that the Sobolev space Wm,∞(P) is

equipped with the norm

||f ||Wm,∞(P) = max
m:|m|≤m

ess sup
x∈P
|Dmf(x)|. (7.27)

Also, we say that f ∈ Wm,p
loc (P) if f ∈ Wm,p(P ′), ∀ compact P ′ ⊂ P.

Next, since the mapping Φ : RNξ → RNx can be computed using Nx mappings Φj :

RNξ → R, it suffices to focus on networks with one output unit. Observe from (7.21) that

Φ̂(ξ,θ) := φ2 =

n∑
i=1

ci · σ(ωi · ξ + bi), (7.28)

where n is the total number of neurons in the hidden layer, bi an element of the bias vector,

ci and ωi are rows of W1 and W0 respectively. Now, for a given activation function σ, define

the set

FnNξ
(σ) =

{
n∑
i=1

ci · σ(ωi · ξ + bi), ωi ∈ RNξ , bi ∈ R

}
. (7.29)

We can now state the following result for any non-zero activation functions satisfying

some regularity conditions [117, Corollary 1]. After this result, we will show that our

activation function in (7.8) fulfills the required assumptions.

Theorem 7.1. Let P be a bounded domain and σ ∈ Wm,∞
loc (R) be a non-zero activation

function. Suppose there exists a function ν ∈ Fq1 (σ) satisfying

|ν(k)(t)| ≤ Cp(1 + |t|)−p, 0 ≤ k ≤ m, p > 1. (7.30)
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Then, for any Φ ∈ Bm, we have

inf
Φ̂n∈FnNξ (σ)

||Φ− Φ̂n||Hm(P) ≤ C(σ,m, p, β)|P|1/2q1/2n−1/2||Φ||Bm+1 , (7.31)

where β = diam(P) and C is a constant depending on σ,m, p and β.

Note that the bound in (7.31) isO(n−1/2). Here, the function ν(x) is a linear combination

of the shifts and dilations of the activation σ(x). Moreover, the activation function itself

need not satisfy the decay (7.30). The theorem says that it suffices to find some function

ν ∈ Fq1 (σ) (cf. (7.29) with n = q, Nξ = 1) for which (7.30) holds.

In this work, we are working with smooth ReLU (see (7.8)) as the activation function

σ(x) for which m = 2. One choice of ν for which (7.30) holds is ν ∈ F3
1 (σ) given by

ν(t) = σ(t+ 1) + σ(t− 1)− 2σ(t). (7.32)

It can be shown that, ν satisfies (7.30) with Cp = 20 and p = 1.5, that is,

|ν(k)(t)| ≤ 20(1 + |t|)−1.5, 0 ≤ k ≤ 2. (7.33)

This can be verified from Figure 7.2.

In what follows, we discuss the application of our proposed fractional DNN to the

solution of two statistical Bayesian inverse problems.

7.4 Application to Bayesian Inverse Problems

The inverse problem associated with the forward problem (7.1) essentially requires estimat-

ing a parameter vector ξ ∈ RNξ given some observed noisy limited data d ∈ RNx . In the

Bayesian inference framework, the posterior probability density, π(ξ|d) : RNξ → R, solves

the statistical inverse problem. In principle, π(ξ|d) encodes the uncertainty from the set of
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Figure 7.2: Verification of the decay condition eq. (7.30) for ν in eq. (7.32), which has been
defined using the smooth ReLU in eq. (7.8).

observed data and the sought parameter vector. More formally, the posterior probability

density is given by Bayes’ rule as

πpos(ξ) := π(ξ|d) ∝ π(ξ)π(d|ξ), (7.34)

where π(·) : RNξ → R is the prior and π(d|ξ) is the likelihood function.

The standard approach to Bayesian inference uses the assumption that the observed

data are of the form (see e.g., [37, 63])

d = Φ(ξ) + η, (7.35)

where Φ is the parameter-to-observable map and η ∼ N (0,Ση). In our numerical experi-

ments, we assume that Ση = κ2I, where I is the identity matrix with appropriate dimensions

and κ denotes the variance. Now, let the log-likelihood be given by

L(ξ) =
1

2

∣∣∣∣∣∣Σ1/2
η (d− Φ(ξ))

∣∣∣∣∣∣2 ; (7.36)

143



then Bayes’ rule in (7.34) becomes

πpos(ξ) := π(ξ|d) ∝ π(ξ)π(d|ξ) =
1

Z
exp (−L(ξ))π(ξ), (7.37)

where Z =
∫
P exp(−L(ξ))π(ξ) dξ is a normalizing constant.

We note here that, in practice, the posterior density rarely admits analytic expres-

sion. Indeed, it is generally evaluated using Markov chain Monte Carlo (MCMC) sampling

techniques. In MCMC schemes one has to perform several thousands of forward model

simulations. This is a significant computational challenge, especially if the forward model

represents large-scale high fidelity discretization of a nonlinear PDE. It is therefore reason-

able to construct a cheap-to-evaluate surrogate for the forward model in the offline stage

for use in online computations in MCMC algorithms.

In what follows, we discuss MCMC schemes for sampling posterior probability distribu-

tions, as well as how our fractional DNN surrogate modeling strategy can be incorporated

in them.

7.4.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are very powerful and flexible numerical sam-

pling approaches for approximating posterior distributions, see e.g., [26,37,120]. Prominent

MCMC methods include Metropolis-Hastings algorithm (MH) [120], Gibbs algorithm [23]

and Hamiltonian Monte Carlo algorithm (HMC) [26,33], Metropolis-adjusted Langevin al-

gorithm (MALA) [26], and preconditioned Crank Nicolson algorithm (pCN) [23], and their

variants. In our numerical experiments, we will use MH, pCN, HMC, and MALA algorithms.

We will describe only MH and refer the reader to [26] for the details of the derivation and

properties of the many variants of the other three algorithms.

To this end, consider a given parameter sample ξ = ξi. The MH algorithm generates a

new sample ξi+1 as follows:
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(1) Generate a proposed sample ξ∗ from a proposal density q(ξ∗|ξ), and compute q(ξ|ξ∗).

(2) Compute the acceptance probability

α(ξ∗|ξ) = min

{
1,
π(ξ∗|d)q(ξ∗|ξ)

π(ξ|d)q(ξ|ξ∗)

}
. (7.38)

(3) If Uniform(0; 1] < α(ξ∗|ξ), then ξi+1 = ξ∗. Else, set ξi+1 = ξ.

Observe from (7.36) and (7.37) that each evaluation of the likelihood function, and hence,

the acceptance probability (7.38) requires the evaluation of the forward model to compute

π(ξ∗|d). In practice, one has to do tens of thousands of forward solves for the HM algorithm

to converge. We propose to replace the forward solves by the fractional DNN surrogate

model. In our numerical experiments, we follow [78] in which an adaptive Gaussian proposal

is used:

q(ξ∗|ξi) = exp

(
−1

2
(ξ∗ − ξi−1)TCi−1(ξ∗ − ξi−1)

)
, (7.39)

where C0 = I,

Ci−1 =
1

i

i−1∑
j=0

(ξj − ξ̄)(ξj − ξ̄)T + ϑI,

ξ̄ = i−1
∑i−1

j=0 ξ
j , and ϑ ≈ 10−8. When the proposal is chosen adaptively as specified above,

the HM method is referred to as an Adaptive Metropolis (AM) method [22,78].

7.5 Numerical Experiments

In this section, we consider two statistical inverse problems. The first one is a diffusion-

reaction problem in which two parameters need to be inferred [58]. The second one is a

more challenging problem – a thermal fin problem from [26], which involves one hundred

parameters to be identified. All experiments were performed using MATLAB R2020b on a
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BFGS iterations Error Time (in sec)

400 2.26× 10−2 7.99

800 1.10× 10−2 15.10

1600 4.09× 10−3 29.45

3200 3.43× 10−3 56.14

6400 2.56× 10−3 105.66

Table 7.1: Diffusion-reaction problem: Number of BFGS iterations, relative errors and
times for training the fractional DNN.

Mac desktop with RAM 32GB and CPU 3.6 GHz Quad-Core Intel Core i7.

In both of these experiments we train using a 3-hidden layer network with 15 neurons

in each hidden layer (that is, L = 4, n = 45) and k = 400 neurons in the output layer,

where k matches the dimension of POD basis as described in section 7.5.1 below. We

chose ε = 0.1 in the smooth ReLU activation function, final time T = 1 and step-size

h = 1
3 . We set the fractional exponent γ = 0.5 in the Caputo Fractional derivative and the

regularization parameter λ = 10−6. To train the network, we use the BFGS optimization

method [96, Chapter 4].

Tables 7.1 and 7.2 show the number of BFGS iterations and the CPU times required to

train the data from the diffusion-reaction problem and the thermal fin problem, respectively.

Also shown in these tables are the relative errors obtained by evaluating the trained network

at a parameter ξe not in the training set E; here,

Error =
||u(ξe)− Φ̂(ξe)||∞
||u(ξe)||∞

,

where u(ξe) and Φ̂(ξe) are the true and surrogate solutions at ξe, respectively. Note from

both tables that after 1600 BFGS iterations, the decrease in errors is not significant. Hence,

for all the experiments discussed below, we use 1600 BFGS iterations.
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BFGS iterations Error Time (in sec)

400 1.87× 10−2 10.69

800 1.15× 10−2 18.51

1600 7.39× 10−3 33.52

3200 4.80× 10−3 62.90

6400 3.73× 10−3 117.55

Table 7.2: Thermal fin problem: Number of BFGS iterations, relative errors and times for
training the fractional DNN.

7.5.1 Diffusion-Reaction Example

We consider the following nonlinear diffusion-reaction problem posed in a two-dimensional

spatial domain [42,72]

−∆u+ g(u; ξ) = f, in Ω = (0, 1)2,

u = 0, on ∂Ω,

(7.40)

where g(u; ξ) = ξ2
ξ1

[exp(ξ1u)− 1] and f = 100 sin(2πx1) sin(2πx2). Moreover, the parame-

ters are ξ = (ξ1, ξ2) ∈ [0.01, 10]2 ⊂ R2.

Equation (7.40) is discretized on a uniform mesh in Ω with 64 grid points in each

direction using centered differences resulting in 4096 degrees of freedom. We obtained the

solution of the resulting system of nonlinear equations using an inexact Newton-GMRES

method as described in [94]. The stopping tolerance was 10−6.

To train the network, we first computed Ns = 900 solution snapshots S corresponding

to a set E of 900 parameters ξ = (ξ1, ξ2) drawn from the parameter space [0.01, 10]2.

These parameters were chosen using Latin hypercube sampling. Each solution snapshot is

of dimension Nx = 4096. Next, we computed the SVD of the matrix of solution snapshots

S = ṼΣWT , and set our POD basis V = Ṽ(:, 1 : k), where k = 400. Our training set

then consisted of E as inputs and VTS ∈ Rk×Ns as our targets. As reported by Hesthaven
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and Ubbiali in [83] in the context of solving parameterized PDEs, the POD-DNN approach

accelerates the online computations for surrogate models. Thus, we follow this approach

in our numerical experiments; in particular, using k-dimensional data (where k � Nx)

confirms an overall speed up in the solution of the statistical inverse problems.

Next, in both numerical examples considered here, we solved the inverse problems using

M = 20, 000 MCMC samples. In each case, the first 10, 000 samples were discarded for

“burn-in” effects, and the remaining 10, 000 samples were used to obtain the reported

statistics. Here, we used an initial Gaussian proposal (7.39) with covariance C0 = I and

updated the covariance after every 100th sample. As in [58], we assume for this problem,

that ξ is uniformly distributed over the parameter space [0.01, 10]2. Hence, (7.37) becomes

πpos(ξ) ∝


exp

(
− 1

2κ2 (d− Φ(ξ))T (d− Φ(ξ))
)

if ξ ∈ [0.01, 10]2.

0 otherwise.

(7.41)

We generated the observations d by using (7.35) the true parameter to be identified ξe =

(1, 0.1) and a Gaussian noise vector η with κ = 10−2.

Figures 7.3, 7.4 and 7.5, represent, respectively, the histogram (which depicts the pos-

terior distribution), the Markov chains and the autocorrelation functions corresponding to

the parameters using the high fidelity model (Full) and the deep neural network surrogate

(DNN) models in the MCMC algorithm. Recall that, for a Markov chain {δj}Jj=1 generated

by the Metropolis-Hastings algorithm, with variance κ2, the autocorrelation function (ACF)

% of the δ-chain is given by

%(j) = cov(δ1, δ1+|j|)/κ
2.

and the integrated autocorrelation time, τint, (IACT) of the chain is defined as

τint(δ) :=
J−1∑

j=−J+1

%(j) ≈ 1 + 2
J−1∑
j=1

(
1− j

J

)
cov(δ1, δ1+j)/κ

2. (7.42)
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Figure 7.3: Histograms of the posterior distributions for the parameters ξ = (ξ1, ξ2). They
have been obtained from Full (left) and fDNN (right) models with M = 10, 000 MCMC
samples.

ACF decays very fast to zero as J →∞. In practice, J is often taken to be b10 log10Mc , [23].

If IACT = K, this means that the roughly every Kth sample of the δ chain is independent.

We have used the following estimators to approximate %(j) and τint in our computations

[22,121]:

%(j) := B(j)/B(0), and τint :=

Ĵ∑
j=−Ĵ

%(j),

where B(j) = 1
J−j

∑J−j
k=1(δk − δ̄)(δk+|j| − δ̄), δ̄ is the mean of the δ-chain, and Ĵ is chosen

be the smallest integer such that Ĵ ≥ 3τint.

Observe from Figs. 7.3 and 7.4 that, for both Full and fDNN models, the respective

histograms and Markov chains are centered around the parameters of interest (1, 0.1). In

fact, for the full model, the 95% confidence intervals (CIs) for ξ1 and ξ2 are [0.9496, 1.0492]
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Figure 7.4: MCMC samples for the parameters ξ = (ξ1, ξ2) using Full (first and third) and
fDNN (second and fourth) models. For the full model, the 95% confidence interval for ξ1

and ξ2 are [0.9496, 1.0492] and [0.0954, 0.1048]. For the fDNN model, the 95% confidence
interval for ξ1 and ξ2 are [0.9818, 1.0196] and [0.0995, 0.1005].

and [0.0954, 0.1048]. For the fDNN model, the CIs are [0.9818, 1.0196] and [0.0995, 0.1005].

Thus, fDNN identifies (1, 0.1) appropriately.

We also examine the impact of training accuracy in Fig 7.5. The figure shows that the

ACFs decay very fast to zero, as expected. The value of IACT is roughly 10 for all the

MCMC chains generated by the full model (left). The right of the figure shows the IACT

for fDNN model, where the red-colored curves show the results obtained with 1600 training

steps and the blue curves show those obtained with 6400 steps. In general, the IACT values

imply that roughly every 10th sample of the MCMC chains generated by both the full and

the fDNN models are independent.
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Figure 7.5: Autocorrelation functions (ACFs) for ξ1 and ξ2 chains computed with Full (left)
and DNN (right) models. The red and blue lines are ACFs obtained with 1600 and 6400
BFGS iterations, respectively.

These results indicate that the fDNN surrogate model produces results with accuracy

comparable to those obtained using the full model. The advantage of the surrogate lies in

its reduced costs. In this example, using the HM algorithm, the full model required 2347.7

seconds of CPU time to solve the inverse problem, whereas the fractional DNN model

required 29.3 seconds (the online costs for fDNN), a reduction in CPU time of a factor of

80. As always for surrogate approximations, there is overhead, the offline computations,

associated with construction of the surrogate, i.e., identification of the parameter set θ that

defines the fDNN. For this example, this entailed construction of the 900 snapshot solutions

used to produce targets for the training process, computation of the SVD of the matrix S of

snapshots giving the targets, together with the training of the network (using BFGS). The

times required for these computations were 127.8 seconds to construct the inputs/targets,

0.52 second to compute the SVD and 29.5 seconds to train the network. Thus, the offline

and online times sum to 187.1 seconds, which is a lot smaller than the time needed for

the full solution (that is, 2347.7 seconds). Of course, the offline computations represent

a one-time expense which need not be repeated if more samples are used to perform an
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MCMC simulation or if different MCMC algorithms are used.1 This is, for instance, the

case with the Differential Evolution Adaptive Metropolis (DREAM) method which runs

multiple different chains simultaneously when used to sample the posterior distributions

[131].

7.5.2 Thermal Fin Example

Next, we consider the following thermal fin problem from [26]:

−div (eξ(x)∇u) = 0, in Ω,

(eξ(x)∇u) · n + 0.1u = 0, on ∂Ω \ Γ,

(eξ(x)∇u(x)) · n = 1, on Γ = (−0.5, 0.5)× {0}.

(7.43)

These equations (7.43) represent a forward model for heat conduction over the non-convex

domain Ω as shown in Fig. 7.6. Given the heat conductivity function eξ(x), the forward

problem (7.43) is used to compute the temperature u. The goal of this inverse problem is

to infer 100 unknown parameters ξ from 262 noisy observations of u. Fig. 7.6 shows the

location of the observations on the boundary ∂Ω \ Γ, as well as the forward PDE solution

u at the true parameter ξ.

To train the network, we first computed, as in the diffusion-reaction case, Ns = 900

solution snapshots S corresponding to 900 parameters ξ ∈ R100 drawn using Latin hypercube

sampling. This problem is a lot more difficult than the previous problem in the sense that

the dimension of the parameter space in this case is 100 rather than 2. Next, we compute

the SVD of S and proceed as before.

In what follows, the infinite variants of Riemannian manifold Metropolis-adjusted

1We did not try to optimize the number of samples used for training and in particular Ns = 900 was an
essentially arbitrary choice. The results obtained here with Ns = 900 were virtually the same as those found
using 10, 000 training samples, with the smaller number of samples incurring dramatically lower offline costs.
Further reduction in computational time could be achieved using a smaller training data set. In [83], the

authors used O(400) snapshots to train the feedforward network and still achieved good results.
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Figure 7.6: The location of observations (circles) (left) and the forward PDE solution u
under the true parameter ξ (right).

Figure 7.7: The true heat conductivity field eξ(x) (upper left) and the mean estimates of the
posterior obtained by the different MCMC methods using fractional DNN as a surrogate
model.

Langevin algorithm (MALA) and Hamiltonian Monte-Carlo (HMC) algorithms as presented

in [26] are denoted, respectively, by ∞-MALA and ∞-HMC. In particular, Fig. 7.7 shows
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the true conductivity, as well as the posterior mean estimates obtained by three MCMC

methods – pCN, ∞-MALA and ∞-HMC – using the fractional DNN as a surrogate model.

As in [26], for this problem we used a Gaussian prior defined on the domain D :=

[−3, 3]× [0, 4] with covariance C of eigen-structure given by

C =
∑
i∈I

µ2
i {ϕi ⊗ ϕi},

where µ2
i = {π2((i1 + 1/2)2 + (i2 + 1/2)2)}−1.2,

ϕi(x) = 2|D|−1/2 cos(π(i1 + 1/2)x1) cos(π(i2 + 1/2)x2),

and I = {i = (i1, i2), i1 ≥ 0, i2 ≥ 0}. Moreover, the log-conductivity ξ was the true

parameter to be inferred with coordinates ξi = µi sin((i1 − 1/2)2 + (i2 − 1/2)2), i1 ≤

10, i2 ≤ 10.

Table 7.3 shows the average acceptance rates for these models and the computational

times required to perform the MCMC simulation for different variants of the MCMC al-

gorithm, using both fDNN surrogate computations and full-order discrete PDE solution.

These results indicate that the acceptance rates are comparable for the fDNN surrogate

model and the full order forward discrete PDE solver. Moreover, there is about a 90%

reduction in the computational times when fDNN surrogate solution is used, a clear ad-

vantage of the fDNN approach. The costs of the offline computations for fDNN were 63.2

seconds to generate the data used for the fractional DNN models and 33.5 seconds to train

the network (with 1600 BFGS iterations) a total of 99.7 seconds. As in the case of the

diffusion-reaction problem, the overhead required for the one-time offline computations is

offset by the short CPU time required for the online phase with the MCMC algorithms.

Note that the same offline computations were used for each of the three MCMC simulations

tested.
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Model pCN ∞-MALA ∞-HMC

Acc. Rate (fDNN) 0.67 0.67 0.79

Acc. Rate (Full) 0.66 0.70 0.75

CPU time (fDNN) 16.46 98.0 228.4

CPU time (Full) 157.8 958.9 2585.3

Table 7.3: Acceptance rates and computational times needed to solve the inverse problem
by pCN, ∞-MALA and ∞-HMC algorithms together with fDNN and full forward models.

7.6 Conclusions

This chapter has introduced a novel deep neural network (DNN) based approach to ap-

proximate nonlinear parameterized partial differential equations (PDEs). The proposed

DNN helps learn the parameter to PDE solution operator. We have used this learnt solu-

tion operator to solve two challenging Bayesian inverse problems. The proposed approach

is highly efficient without compromising on accuracy. We emphasize, that the proposed

approach shows several advantages over the traditional surrogate approaches for parame-

terized PDEs such as reduced basis methods. For instance the proposed approach is fully

non-intrusive and therefore it can be directly used in legacy codes, unlike the reduced basis

method for nonlinear PDEs which can be highly intrusive.
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