

A MODEL-BASED APPROACH FOR SELF-HEALING AND SELF-

CONFIGURATION IN COMPONENT-BASED SOFTWARE SYSTEMS

by

Emad Yousif Albassam

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

_________________________________ Dr. Hassan Gomaa, Dissertation Director

_________________________________ Dr. Daniel A. Menascé, Committee Member

_________________________________ Dr. Hakan Aydin, Committee Member

_________________________________ Dr. Brian L. Mark, Committee Member

_________________________________ Dr. Stephen Nash, Senior Associate Dean

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date:_____________________________ Spring Semester 2017

 George Mason University

 Fairfax, VA

A Model-Based Approach for Self-Healing and Self-Configuration in Component-Based

Software Systems

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Emad Yousif Albassam

Master of Science

George Mason University, 2012

Bachelor of Science

King Abdulaziz University, 2007

Director: Hassan Gomaa, Professor

Department of Computer Science

Spring Semester 2017

George Mason University

Fairfax, VA

iii

Copyright 2017 Emad Yousif Albassam

All Rights Reserved

iv

DEDICATION

To Allah for giving me the strength to carry this work

To my wife, daughter, and parents for their unwavering support and encouragement

v

ACKNOWLEDGEMENTS

First and foremost, I am deeply grateful to my dissertation director Dr. Hassan Gomaa for

his guidance, support, and encouragement throughout the dissertation process. I am also

grateful to Dr. Daniel. A. Menascé for his invaluable advice and help throughout the

course of this research. I would also like to thank Dr. Hakan Aydin and Dr. Brian L.

Mark for serving in my committee and for their guidance. I would also like to thank my

research colleague Jason Porter for his frequent help and support during this research.

I would like to express my warmest and deepest appreciation to my wife Halah Alkadi

for her unconditional love, support, and patience during this process. She managed to keep

me motivated even though she is pursuing her own doctorate. I am also deeply thankful to

my daughter Jouri who managed to keep me joyful when I needed it the most. I’m also

deeply grateful to my parents, Yousif and Wafa, who without them, I would have never

accomplished my dreams.

Finally, I am thankful to King Abdulaziz University and my country for their scholarship

to pursue this degree.

vi

TABLE OF CONTENTS

Page

List of Tables .. x

List of Figures .. xi

Abstract .. xiv

1 Introduction ... 1

 Motivation .. 2 1.1

 Glossary of Relevant Terms ... 3 1.2

 Problem Statement ... 5 1.3

 Research Hypothesis .. 5 1.4

 Research Objectives ... 5 1.5

 Assumptions ... 6 1.6

 Dissertation Organization ... 7 1.7

2 Related Work ... 8

 Autonomic Software Systems .. 8 2.1

 Autonomic Software Systems Challenges and Surveys 9 2.2

 Self-Configuration .. 11 2.3

 Self-Healing and Software Recovery Techniques ... 14 2.4

2.4.1 Frameworks... 14

2.4.2 Software Recovery .. 15

2.4.3 Fault Tolerance ... 17

 Software Product Lines and Dynamic Software Product Lines 18 2.5

3 Design of Recovery and Adaptation Connectors for Service-oriented Architectures 21

3.1 Design of the Service Recovery Connector ... 21

3.1.1 Service Request Manager ... 23

3.1.2 Service Response Manager ... 24

3.1.3 Connector Control State Machine ... 25

3.1.4 Normal Service Execution .. 26

vii

3.1.5 Dynamic Service Adaptation .. 26

3.1.6 Service Recovery .. 28

3.1.7 Service Request Coordinator State Machine .. 30

3.2 Handling Non-Idempotent Operations ... 32

3.3 Recovery and Adaptation Patterns in SOA Patterns .. 39

3.3.1 Asynchronous Message Communication with Callback Pattern 39

3.3.2 Service Registration Pattern .. 40

3.3.3 Broker Handle Pattern... 41

3.3.4 Service-Oriented Architectures ... 42

3.3.5 Distributed Transaction Pattern .. 46

4 Design of Recovery and Adaptation Connectors in Asynchronous Architectural

Patterns .. 54

 Design of the Consumer RAC in the Unidirectional Asynchronous Message 4.1

Communication ... 54

4.1.1 Design of the Consumer RAC .. 55

4.1.2 Connector Control State Machine and Normal Consumer Execution 57

4.1.3 Dynamic Consumer Adaptation .. 58

4.1.4 Consumer Recovery .. 60

4.1.5 Queue Coordinator State Machine .. 61

4.1.6 Comparing the Designs of Consumer and Service RACs 62

 Recovery of State-Dependent Consumers.. 63 4.2

 Recovery and Adaptation Patterns in Other Asynchronous Patterns 64 4.3

4.3.1 Bidirectional Asynchronous Message Communication 64

4.3.2 Subscription/Notification Pattern.. 65

4.3.3 Master/Slave Pattern ... 68

4.3.4 Centralized Control Pattern ... 72

4.3.5 Distributed Control Pattern ... 75

4.3.6 Hierarchical Control Pattern ... 78

5 Design of Decentralized Architecture for Self-Healing and Self-Configuration 82

 DARE Overview .. 82 5.1

 Configuration Maintenance Layer ... 84 5.2

5.2.1 Configuration Manager ... 85

5.2.2 Failure Analysis Manager ... 86

viii

 Application Recovery Layer .. 88 5.3

5.3.1 Behavior of Recovery and Adaptation Manager During Failure Recovery 88

5.3.2 Behavior of Recovery and Adaptation Manager During Dynamic

Adaptation ... 92

 Mapping Recovery Functionality to MAPE Activities 93 5.4

 Component Failure Recovery... 97 5.5

6 Design of an Assistant Recovery and Adaptation Connector for Clients and

Producers... 99

 Design of the ARAC State Machine .. 102 6.1

6.1.1 Normal Execution ... 102

6.1.2 Adaptation of Sender .. 103

6.1.3 Recovery of Sender ... 103

7 Connector Recovery .. 106

 Message Logging Approach... 106 7.1

 Behavior During Normal Execution .. 107 7.2

 Reconstructing the RAC State After a Runtime Failure 109 7.3

 Recovery of Lost Messages.. 110 7.4

8 Design of a Reusable Recovery And Adaptation Connector 115

 Capturing Variability in the RAC using a Feature Model 116 8.1

 Feature/Component Table .. 120 8.2

 Feature-Based Connector Control State Machine .. 124 8.3

8.3.1 Example of RAC Generation .. 127

 Possible Optimizations ... 129 8.4

9 Formal Properties .. 133

9.1 Definitions .. 133

9.1.1 Software Architecture ... 133

9.1.1 Configuration Map .. 134

9.1.2 Architectural Patterns and Message-Based Transactions 135

9.2 DARE Properties .. 136

9.2.1 Failure Recovery ... 136

9.2.2 Dynamic Adaptation ... 141

9.3 Recovery and Adaptation Properties of RAC for Stateless Components 143

9.3.1 Normal Execution ... 143

ix

9.3.2 Failure Recovery ... 148

9.3.3 Dynamic Adaptation ... 154

9.4 Recovery and Adaptation Properties of RAC for Stateful Components 157

9.4.1 Normal Execution ... 159

9.4.2 Failure Recovery ... 171

9.4.3 Dynamic Adaptation ... 178

9.5 Recovery and Adaptation Properties of RAC for Asynchronous Patterns....... 181

9.5.1 Normal Execution ... 181

9.5.2 Failure Recovery ... 184

9.5.3 Dynamic Adaptation ... 188

10 Experimental Design and Validation ... 191

 Experimental Design .. 191 10.1

 Experimentation with RAC in SOA Patterns ... 193 10.2

10.2.1 Experimentation with RAC for Stateless Services 195

10.2.2 Experimentation with RAC for Stateful Services with Non-Idempotent

Operations .. 200

10.2.3 Experimentation with RAC for Distributed Transactions 208

10.2.4 Experimentation with RAC for Coordinators ... 216

 Experimentation with RAC in asynchronous patterns 220 10.3

 Experimental Analysis of the DARE framework ... 226 10.4

 Experimentation with the Assistant RAC .. 234 10.5

 Experimentation with RAC Recovery.. 238 10.6

 Experimentation with the Reusable RAC .. 239 10.7

11 Conclusion and Future Work ... 251

References ... 254

x

LIST OF TABLES

Table Page

Table 5.1 Key and value pairs of the distributed hash table used by configuration

manager to store the configuration map .. 85

Table 5.2 Mapping DARE functionalities to MAPE activities... 96

Table 8.1 Feature/component table. .. 122

Table 8.2 Number of additional messages required by each type of RAC and possible

optimizations ... 130

xi

LIST OF FIGURES

Figure Page

Figure 3.1 Design of service recovery connector showing messages during normal

execution ... 23

Figure 3.2 State machine executed by Connector Control ... 26

Figure 3.3 Integrated adaptation and recovery state machine executed by Connector

Control .. 28
Figure 3.4 State machine executed by Service Request Coordinator 32
Figure 3.5 Handling stateful services using two-phase commit 34
Figure 3.6 State machine executed by Connector Control for handling services with non-

idempotent operations ... 37
Figure 3.7 Asynchronous message communication with callback handle pattern 40

Figure 3.8 Service registration pattern .. 41
Figure 3.9 Broker handle pattern .. 42
Figure 3.10 SOA architectural pattern .. 43

Figure 3.11 Two phase commit pattern – transaction commit case 48
Figure 3.12 Two phase commit pattern – transaction abort case 48

Figure 3.13 Tree of 2PC transactions ... 49
Figure 3.14: State machine executed by Connector Control for handling distributed

transactions ... 53
Figure 4.1 Unidirectional asynchronous message communication between a producer and

a consumer .. 55
Figure 4.2 Design of the consumer RAC for the unidirectional asynchronous message

communication .. 57
Figure 4.3 Integrated adaptation and recovery STM executed by connector control of the

consumer recovery connector ... 59
Figure 4.4 State machine executed by Queue Coordinator of the consumer RAC........... 62
Figure 4.5 Bidirectional asynchronous message communication 65

Figure 4.6 Subscription/notification pattern ... 66
Figure 4.7 Master/slave pattern... 68

Figure 4.8 Message sequencing between master and slaves ... 70
Figure 4.9 Centralized control pattern .. 73
Figure 4.10 Distributed control pattern ... 78
Figure 4.11 Hierarchical control pattern ... 81
Figure 5.1 The DARE architecture ... 84

Figure 5.2 FAM STM ... 88
Figure 5.3 RAM state machine ... 91

xii

Figure 5.4 Fragment of the distributed recovery process ... 92
Figure 6.1 Behavior of ARAC during normal execution for transactions that comprise

both request and response messages ... 101
Figure 6.2 Behavior of ARAC during normal execution for transactions that comprise

unidirectional messages .. 101
Figure 6.3 State machine executed by the ARAC .. 105
Figure 7.1 Message logging during normal execution.. 109
Figure 7.2 Transaction interruption points depicted in a fault-tree model. 112
Figure 8.1 Feature model for the reusable RAC. .. 117

Figure 8.2 Design of the reusable RAC with reuse stereotypes. 120
Figure 8.3 CC state machine for handling integration of distributed and non-distributed

transactions. .. 129

Figure 9.1 Algorithm executed by the RAM to determine a recovery plan 140
Figure 9.2 Algorithm executed by the RAM to recover a failed component 141
Figure 9.3 Algorithm executed by the RAC to determine failed transactions 152

Figure 9.4 Algorithm executed by the RAC to recover failed transactions 153
Figure 9.5 Algorithm executed by the RAC to determine failed 2PC transactions 173

Figure 9.6 Algorithm executed by the RAC to recover failed 2PC transactions 178
Figure 10.1 Online Shopping System case study (Gomaa, 2011) 194
Figure 10.2 Fragment of the execution trace of the stateless service RAC during planned

failure scenario .. 196
Figure 10.3 Fragment of the execution trace of stateless service RAC during planned

adaptation scenario.. 200
Figure 10.4 Fragment of the execution trace of stateful service RAC during planned

failure scenario .. 202
Figure 10.5 Fragment of the execution trace of stateful service RAC during planned

adaptation scenario.. 208
Figure 10.6 Fragment of the execution trace of service RAC for distributed transactions

during planned failure scenario ... 210

Figure 10.7 Fragment of the execution trace of service RAC for distributed transactions

during planned adaptation scenario .. 216

Figure 10.8 Fragment of the execution trace of coordinator RAC during planned failure

scenario ... 218

Figure 10.9 Fragment of the execution trace of coordinator RAC during planned

adaptation scenario.. 220
Figure 10.10 The Emergency Monitoring System (EMS) architecture 221
Figure 10.11 Fragment of the execution trace of the consumer RAC during planned

failure scenario .. 222
Figure 10.12 Fragment of the execution trace of the consumer RAC during planned

adaptation scenario.. 225

Figure 10.13 Fragment of execution trace during the self-healing scenario 227
Figure 10.14 The DARE architecture ... 228
Figure 10.15 Average recovery time during the self-healing scenario 230
Figure 10.16 EMS architecture after dynamic adaptation .. 232

xiii

Figure 10.17 Fragment of execution trace during the self-configuration scenario 234
Figure 10.18 Fragment of the execution trace of the ARAC during planned failure

scenario ... 235
Figure 10.19 Fragment of the execution trace of the ARAC during planned adaptation

scenario ... 238
Figure 10.20 Execution trace during recovery of RAC after a run-time failure 239
Figure 10.21 Fragment of the execution trace of reusable RAC during planned failure

scenario ... 241
Figure 10.22 Fragment of the execution trace of reusable RAC during planned adaptation

scenario ... 247
Figure 10.23 Fragment of the execution trace of reusable RAC during planned failure

scenario in the EMS .. 248

Figure 10.24 Fragment of the execution trace of reusable RAC during planned adaptation

scenario in the EMS .. 250

xiv

ABSTRACT

A MODEL-BASED APPROACH FOR SELF-HEALING AND SELF-

CONFIGURATION IN COMPONENT-BASED SOFTWARE SYSTEMS

Emad Yousif Albassam, Ph.D.

George Mason University, 2017

Dissertation Director: Dr. Hassan Gomaa

Component-based software architectures (CBSAs) are a well-known approach for

building increasingly complex software systems from components that are intended to be

distributed and autonomic. However, CBSAs often run in environments that are evolving

and subject to failures. As a result, it is highly desirable to design CBSAs with self-

configuration and self-healing capabilities so that they can dynamically adapt and recover

in response to changing environments and failures, where the goal is to minimize manual

intervention involved in managing and evolving these architectures. However, the

systematic integration of the self-healing and self-configuration properties remains a

challenge. Furthermore, although there exist a large body of literature in the areas of self-

healing and self-configuration, most of them use a centralized approach. The main

challenge with decentralized approaches is carrying out dynamic adaptation and recovery

using partial knowledge of the system.

xv

This dissertation describes the design of Recovery and Adaptation Connectors. A

Recovery and Adaptation Connector (RAC) extends communication connectors in

CBSAs so that in addition to managing communications between application

components, a RAC also manages adaptation and recovery concerns of these

components. Each RAC encapsulates an Adaptation and Recovery State Machine that

defines the behavior of the RAC during (1) normal execution when there are no

adaptation or failures, (2) recovery so that the RAC ensures that any transactions

that were interrupted due to a run-time failure are recovered and restarted at the recovered

component, and (3) dynamic adaptation so that a component is only adapted after it has

completed all transactions that it is currently engaged in and has become quiescent.

 In addition, this dissertation describes the design of a decentralized framework

called DARE for providing CBSAs with both self-healing and self-configuration

properties. DARE integrates architecture discovery mechanisms with recovery and

adaptation connectors, and its design is based on a decentralized MAPE-K loop model in

which DARE carries out recovery and dynamic adaptation when only partial knowledge

of the software system is known to each node.

1

1 INTRODUCTION

This dissertation investigates a reuse, model-based approach for self-

configuration and self-healing in component-based software architectures (CBSAs) that

enables software systems to dynamically adapt and recover in response to changing

environments and failures. The goal is to minimize manual intervention involved in

managing and evolving these architectures. A CBSA with the self-configuration property

has the capability of automatically adding, removing, and replacing components

seamlessly at run-time. On the other hand, a CBSA with the self-healing property is

capable of detecting and recovering from failures by dynamically relocating failed

components to different nodes and establishing a consistent state in order to resume

normal execution.

This chapter is organized as follows. Section 1.1 discusses the motivation of this

dissertation. Section 1.2 provides a glossary of terms that are used throughout this

dissertation. Sections 1.3 and 1.4 contain the problem statement and research hypothesis,

respectively. Section 1.5 enumerates the main objectives of this dissertation. Section 1.6

lists the assumptions of this dissertation. Section 1.7 contains the organization of the

remainder of this dissertation.

2

 Motivation 1.1
Manual management of large and highly dynamic CBSAs is becoming

increasingly difficult as the size and complexity of these systems increase. For instance,

studies showed that the mean time to failure in high-performance computing systems that

consist of thousands of computational nodes is a few hours (Cappello et al., 2014;

Schroeder and Gibson, 2007). As a result, approaches based on autonomic computing

have gained attention for developing systems that are capable of self-configuration, self-

healing, self-optimization, and self-protection, i.e., exhibit self-* properties. However, the

systematic integration of these self-* properties is one of the main challenges of

autonomic computing (Kephart and Chess, 2003).

In addition, although software adaptation and recovery techniques are widely used

to evolve CBSAs at run-time and to cope with failures in distributed software systems, it

would be beneficial to apply reuse concepts to these techniques since reuse is a desirable

feature in software development. Several reuse concepts and approaches have been

successfully applied, such as reusing existing components or entire software

architectures, to speed up development time and increase dependability in software

systems (Sommerville, 2010).

Two means that are widely used to achieve software reuse are software patterns

and software product line (SPL) technology. Software patterns define solutions to

recurring problems in software design. Several kinds of patterns addressing different

kinds of problems were developed over the last decades such as design patterns (Gamma

et al., 1994), architectural patterns (Taylor et al., 2009), and adaptation patterns (Gomaa

and Hussein, 2004). On the other hand, the goal of SPL technology is to design a family

3

of software systems that share some commonality by designing a reusable software

architecture that can be tailored to derive each member of the SPL family (Clements and

Northrop, 2001).

This dissertation investigates the design of a decentralized framework that applies

reuse concepts, including software patterns and SPL technology, to software adaptation

and recovery and integrates both self-healing and self-configuration in order to minimize

manual intervention involved in managing CBSAs.

 Glossary of Relevant Terms 1.2
This section provides a glossary of recurring terms that are used throughout this

dissertation:

 Adaptation Pattern. A software adaptation pattern defines how a set of components that

make up an architectural pattern dynamically cooperate to change the software

configuration to a new configuration (Gomaa and Hussein, 2004).

 Architectural Pattern. A recurring software architecture that can be used in a variety of

software applications (Gomaa, 2011).

 Autonomic Controller. A control component used to automate management of

distributed software systems by providing the following autonomic properties: self-

healing, self-configuration, self-optimization, and self-protection (Kephart and Chess,

2003).

 Configuration Map. A software artifact that describes deployment of the software

systems in terms of components, nodes, and mapping between components to nodes

(Taylor et al., 2009).

4

 MAPE-K Loop Model. A widely used model to implement autonomic controllers that

consists of four activities (monitoring, analysis, planning, and execution) that operate on

a knowledge-base of the system (Kephart and Chess, 2003).

 Message-Based Transactions. A transaction in CBSAs is defined as an information

exchange between multiple components through messages (Kramer and Magee, 1990)

while a transaction in transactional processing systems is defined as an atomic unit of

work (Bernstein and Newcomer, 2009). This dissertation combines these two definitions

as: a transaction is an information exchange between two or more components through

messages such that either all messages in a transaction are eventually exchanged or none

of them are.

 Recovery and Adaptation Connector (RAC). RACs extend connectors in CBSAs with

recovery and adaptation capabilities to assist in self-healing and self-configuration.

 Recovery Pattern. A recovery pattern defines how components in an architectural

pattern can be dynamically relocated and recovered to a consistent state after a

component has failed.

 Self-Configuration. The ability of the software system to automatically adapt its

architecture by adding, removing, or replacing components seamlessly at run-time in

response to changes in operational environment or user requirements (Kephart and Chess,

2003).

 Self-Healing. The ability of the software system to automatically detect failures and then

recover to a consistent state so that it can resume normal execution (Kephart and Chess,

2003).

5

 Software Architecture. A software artifact that describes the overall structure of the

software system in terms of components and their interconnections using connectors

(Taylor et al., 2009).

 Software Product Line. A family of software systems whose members share some

commonality but also have variable functionality (Clements and Northrop, 2001).

 Problem Statement 1.3
There are no existing approaches for self-configuration and self-healing for

handling recovery and dynamic adaptation of component-based software architectures

that take into consideration the architectural structure patterns used in a system and the

architectural communication patterns between the system’s components.

 Research Hypothesis 1.4
It is possible to design a decentralized approach that integrates both self-

configuration and self-healing in component-based software systems such that reusable

adaptation and recovery patterns can be used to dynamically adapt the software

architecture as well as determine the precise recovery actions to restore the system back

to a consistent state after a run-time failure so that it can resume normal execution.

 Research Objectives 1.5

The main objectives of this dissertation are to describe the design of:

1. Recovery and adaptation patterns. This dissertation investigates the design of

adaptation and recovery patterns that define how components in an architectural

pattern can be dynamically adapted or recovered to a consistent state after a run-

time failure.

6

2. Recovery and adaptation connectors. This dissertation shows how connectors in

component-based software architectures can be extended with adaptation and

recovery capabilities to assist in self-healing and self-configuration, where the

goal is to separate adaptation and recovery concerns from the business logic

carried out by application components.

3. A decentralized, self-healing and self-configuration framework. This research

describes the design of an architecture-based, decentralized framework for self-

healing and self-configuration that is responsible for carrying out dynamic

adaptation and recovery of components after a run-time failure.

4. A reusable recovery and adaptation connector. This dissertation shows how

variability in architectural patterns can be managed by designing a reusable

recovery and adaptation connector using software product line technology.

 Assumptions 1.6
This dissertation makes the following assumptions:

 Only one node fails at a time.

 Failures are not caused by malicious attacks or buffer overflows and follow a fail-

stop model.

 Failure does not occur during recovery or adaptation.

 Assistant Recovery and Adaptation Connectors do not fail.

 Message delivery uses a reliable network transport protocol.

7

 Dissertation Organization 1.7
The remainder of this dissertation is organized as follows. Chapter 2 discusses the

related works to this dissertation. Chapter 3 describes recovery and adaptation patterns in

service-oriented architectures (SOAs) and the design of the recovery and adaptation

connector that can be used to separate recovery and adaptation concerns from service and

coordination concerns. Chapter 4 discuss recovery and adaptation patterns for various

asynchronous patterns and the corresponding design of the recovery and adaptation

connector for these patterns. Chapters 5 describes the DARE framework, which is an

architecture-based, decentralized framework for providing both self-healing and self-

configuration properties to large and highly dynamic CBSAs. Chapter 6 describes the

design of an assistant recovery and adaptation connector for handling recovery and

adaptation concerns of clients and producers. Chapter 7 describes the approach of

recovering the recovery and adaptation connector after a run-time failure. Chapter 8

describes how a reusable recovery and adaptation connector can be designed using

Software Product Line technology. Chapter 9 defines formal properties of the approach.

Chapter 10 describes the experimental validation and results. Chapter 11 concludes this

dissertation and discusses the future work.

8

2 RELATED WORK

This chapter discusses previous research efforts that relate to this dissertation.

Section 2.1 provides a description of autonomic software systems and the self-*

properties. Section 2.2 discusses related surveys on autonomic software systems and

describes how some of the open challenges in this area are tackled by this dissertation.

Section 2.3 describes related dynamic software adaptation techniques and self-

configuration frameworks. Section 2.4 provides an overview of software recovery and

fault-tolerance techniques, and describes related self-healing frameworks. Section 2.5

describes related works in the area of software product lines.

 Autonomic Software Systems 2.1
Autonomic software systems are software systems that exhibit the following

properties (Kephart and Chess, 2003):

 Self-configuration: the ability for the software system to automatically change its

configuration based on high-level policies.

 Self-healing: the ability for the software system to automatically detect failures,

diagnose the cause of the failure, and install the necessary repairs to recover from

the failure.

9

 Self-optimization: the ability for the software system to automatically select the

optimal operational parameters to improve the quality of its services based on the

current context.

 Self- protection: the ability for the software system to automatically react to

malicious attacks by executing defensive and prevention actions.

In autonomic software systems, an autonomic manager is configured with one or

more high-level objectives and is attached to one or more managed elements (e.g. a

hardware or software component) to provide them with autonomic behavior. An

autonomic manager executes a MAPE-K control loop that consists of the following

activities (1) Monitoring the managed elements and collecting various relevant

information (e.g. response time or CPU utilization), (2) Analyzing the collected

information and asserting that no high-level objectives are violated, (3) Planning for

behavioral or structural changes if one or more high-level objectives are violated, (4)

Executing the required changes in order to restore the system back to a state that satisfies

all high-level objectives. Additionally, autonomic managers are embedded with the

necessary Knowledge about the managed elements required by the MAPE activities.

 Autonomic Software Systems Challenges and Surveys 2.2
Although there exists a large body of literature in the area of autonomic and self-

adaptive systems, the second road map of self-adaptive systems stated that the focus of

the majority of the works in this area is on centralized approaches (Lemos et al., 2013).

The main challenge with decentralized approaches is carrying out dynamic adaptation

and recovery using partial knowledge of the software system (Krupitzer et al., 2015).

10

This dissertation focuses on a decentralized approach for self-healing and self-

configuration by assuming that none of the nodes has the complete knowledge of the

software system.

Weyns et al. stated that there is a need to further study possible decentralization

patterns for the MAPE-K control loop (Weyns et al., 2013). With that respect, this

dissertation investigates the design of a self-healing and self-configuration framework

that is based on a decentralized version of the MAPE-K loop model and shows how

coordination can be achieved between the various managers that realize the decentralized

MAPE-K loop model.

Schneider et al. (Schneider et al., 2015) concluded in their survey on self-healing

frameworks that the systematic integration of the self-* properties is one of the main

challenges in this area. This dissertation investigates this problem by describing the

design of a decentralized framework that provides large and highly dynamic CBSAs with

both self-healing and self-configuration properties.

Psaier and Dustdar surveyed self-healing approaches and showed that these

approaches are dependent on the application domain (Psaier and Dustdar, 2010). This

dissertation considers how a self-healing and self-configuration approach can be designed

independently of the application domain by considering the architectural patterns

involved in the application. Similarly, Salehie and Tahvildari (Salehie and Tahvildari,

2009) surveyed approaches to self-adaptive systems and proposed a taxonomy for the

major design considerations that are often associated with these systems. They stated that

isolating problematic components and recovering components correctly after a failure is a

11

challenge. This dissertation tackles these issues by considering extending connectors in

CBSAs with adaptation and recovery capabilities so that adaptation and recovery

concerns of a component are localized to the connector of that component. Neti and

Muller (Neti and Muller, 2007) identified the main challenge in self-healing systems as

the ability for a system to determine the cause of failure and then recover correctly. This

dissertation investigates the design of recovery patterns that enable CBSAs to determine

failed transactions and the precise actions to recover the system to a consistent state after

a run-time failure.

 Kramer and Magee (Kramer and Magee, 2007) identified several challenges

involved in dynamic software adaptation including (1) preserving the consistency of a

software system and (2) ensuring that no state information is lost during reconfiguration.

Similarly, a survey by Huebscher and Mccann (Huebscher and McCann, 2008) stated that

adapting software systems correctly at run-time without causing undesirable behavior

remains a challenge in this area. This dissertation tackles these problem by considering

how adaptation patterns can be used to adapt CBSAs seamlessly at run-time without

losing any state information.

 Self-Configuration 2.3
In the area of self-configuration, Garlan et al. described Rainbow, a reusable,

architectural-based framework for self-adaptive software systems that is based on the

MAPE-K control loop (Garlan et al., 2004). Rainbow maintains runtime information

about a system’s structure and attaches various attributes to components and connectors

that are used at runtime as constraints for triggering adaptation. Whenever a constraint is

12

violated, Rainbow executes an adaptation strategy (Cheng and Garlan, 2007) to restore

the application back to a state that satisfies all constraints.

Menasce, Gomaa, Malek, and Sousa described SASSY, an architectural-based

adaptation framework for service-oriented architectures (SOAs) that realizes the MAPE-

K control loop, and showed how it can re-architect SOAs at runtime by finding a near-

optimal software configuration using quality of service (QoS) architectural patterns

whenever the utility of the system falls below a threshold (Menasce et al., 2011, 2010).

MOSES (Cardellini et al., 2012) is a framework aimed to improve the QoS attributes of

SOAs in which an optimization engine is used to compute policies for manipulating

response time, availability, and cost attributes of SOAs at run-time.

Kramer and Magee (Kramer and Magee, 2007) investigated a decentralized

change manager that maintains a complete view of the software system by relying on

reliable broadcasting and totally ordered message delivery. MUSIC (Hallsteinsen et al.,

2012) is a framework for developing context-aware, self-adaptive software systems.

However, recovery of the application state after a failure is assumed to be done at the

application level. Bisadi and Sharifi (Bisadi and Sharifi, 2009) discussed an architecture

that is inspired by cellular adaptation in which connectors forward incoming requests to a

healer component for further analysis. The healer component then uses application-

specific policies to determine the need for adaptation. However, their approach considers

adaptation caused by (1) increased number of messages (i.e. load) at connectors which

requires increasing number of components to handle these messages and (2) incompatible

message types which require searching for and installing compatible components.

13

Kramer and Magee investigated how components must transition to a quiescent

state to safely reconfigure a software system while it is operational (Kramer and Magee,

1990). Vandewoude et al. investigated relaxing the quiescence requirement (Vandewoude

et al., 2007). Ramirez and Cheng describe patterns for self-adaptive systems including

patterns for inserting and removing components, reconfiguring service components, and

reconfiguring decentralized architectures (Ramirez and Cheng, 2010). Li et al. (Li et al.,

2006) showed how connectors can be used to dynamically compose services in service-

oriented architectures (SOAs).

Gomaa et al. investigated dynamic software adaptation patterns that define how

components in an architectural pattern can dynamically collaborate at run time to change

the current configuration of the system to a new configuration (Gomaa, Hashimoto, Kim,

Malek, and Menasce, 2010; Gomaa and Hashimoto, 2012; Gomaa and Hussein, 2004). In

their approach, adaption state machines are embedded inside adaptation connectors

(rather than application components) in order to increase the reusability of adaptation and

to allow connectors to queue incoming messages while components are being adapted so

that normal operation can be resumed after dynamic adaptation has completed.

Although several reference architectures and reusable frameworks have been

proposed to achieve self-configuration (Dashofy et al., 2002; Garlan and Schmerl, 2002;

Oreizy et al., 1999), these approaches do not consider the self-healing property.

14

 Self-Healing and Software Recovery Techniques 2.4

2.4.1 Frameworks
Prior works on self-healing approaches vary based on the kind of problems

assumed to occur in the software system. For instance, several approaches have been

prescribed for handling software aging and transient faults (Silva et al., 2009),

performance degradation (Magalhães and Silva, 2015), and software faults (Bruning et

al., 2007). We focus here on related works that are capable of handling failures under the

fail-stop model in which components do not behave erroneously but simply cease

functioning when they fail (Avizienis et al., 2004).

Stojnic and Schuldt described OSIRIS-SR, a decentralized, scalable safety ring to

achieve self-healing data management in service-oriented architectures (Stojnic and

Schuldt, 2012). However, their approach does not handle dynamic deployment of

components. Danilecki et al. (Danilecki et al., 2011) described the use of ReServE to

recover services in SOAs to a consistent state after a run-time failure. However, their

approach does not consider dynamic adaptation of the software architecture. Prior works

showed how BPEL can be extended with self-healing capabilities (Modafferi and

Conforti, 2006; Subramanian et al., 2008) and considered multiple recovery strategies for

recovering web services (Angarita et al., 2016). Salatge et al. suggested the use of fault-

tolerance connectors to increase service dependability in SOAs (Salatge and Fabre,

2007). However, none of these works considered integrating self-configuration, by

driving the state of components to a quiescent state, with self-healing capabilities.

Although it is possible to design platform-dependent self-healing approaches (e.g.

Candea et al. showed how JBoss can be extended with self-healing capabilities (Candea

15

et al., 2003)), this dissertation considers a platform-independent self-healing approach to

increase reuse.

2.4.2 Software Recovery
Software recovery is concerned with techniques that enable the restoration of

software state to a consistent state after an error has occurred. This section discusses

software recovery techniques that relate to this dissertation including recovery in

transactional processing systems, transactional queues, and roll-back recovery

techniques.

Recovery in transactional processing systems depends on the notion of

transactions. A transaction (Bernstein and Newcomer, 2009) is defined as a logical unit

of work that consists of two or more operations such that either all operations execute to

their entirety (in which case the transaction is committed) or none of them do (in which

case the transaction is aborted). To facilitate recovery, transactional processing systems

maintain log files to keep track of transaction statuses and the changes made by each

transaction to the system state. Recovery in these systems involves reconstructing a

consistent state (Bernstein and Newcomer, 2009; Lomet and Tuttle, 2003; Mohan et al.,

1992) such that this state includes only the effect of transactions that committed before

the failure. That is, the system recovers by aborting all active transactions that did not

complete before the failure and storing the results of all transactions that have been

logged as committed before failure.

Transactional queues (Bernstein et al., 1990) are a widely used recovery approach

in distributed environments where the goal is to ensure that every request from a client to

16

a service is processed by the service exactly once. In this approach, a client queues a

request into a server’s transactional queue using a transaction. The server then dequeues

the request from its transactional queue, processes the request, and queues the response

into the client’s transactional queue using a second transaction. Finally, the client

dequeues the response from its transactional queue and processes the response using a

third transaction. Thus, transactional queues ensure that the state of the queues can be

restored in case of failure.

In roll-back recovery (Elnozahy et al., 2002), distributed software processes write

messages they receive or send in log files, so that these messages can be replayed during

recovery after a process has failed in order to restore that process to the closest state to

the failure point. Three types of message logging protocols exist in the literature (Alvisi

and Marzullo, 1998; Elnozahy et al., 2002). In the pessimistic message logging protocols,

messages are synchronously logged before they are processed, imposing some overhead

during normal execution due to logging but in favor of avoiding orphan processes (i.e.

processes whose state depends on a message that has been lost due to failure). In

optimistic message logging protocols (Strom and Yemini, 1985), messages are

asynchronously logged while they are being processed, which minimizes logging

overhead during normal execution but may require rolling back the state of multiple

processes, which complicates recovery. Finally, in causal message logging protocols

(Lee et al., 1998), each process piggybacks the messages that affected its state when

sending messages to other processes, so that these messages are logged by the recipient

processes. A combination of these protocols is also possible. For instance, Wang et al.

17

(Wang et al., 2007) discussed combining the pessimistic and optimistic message logging

in service components. In their approach, logging of messages between services from the

same service provider is optimistic while logging of messages between services from

different service providers is pessimistic.

This dissertation considers how messages exchanged between components in an

architectural pattern can be treated as atomic transactions such that these transactions can

be recovered by recovery and adaptation connectors after a run-time failure. Furthermore,

this dissertation considers how these connectors can be recovered after a run-time failure

use message logging and replaying.

2.4.3 Fault Tolerance
To gain better understanding in fault tolerance concepts and techniques, several

surveys and references are used as follows. Work by Avizienis et al. (Avizienis et al.,

2004) discussed important concepts related to dependable systems including faults,

errors, and failures and their classifications as well as fault tolerance techniques.

Guerraoui and Schiper (Guerraoui and Schiper, 1997) described techniques related to

replication of software components. Freiling et al. (Freiling et al., 2011) surveyed failure

detection techniques. Raynal (Raynal, 1992) surveyed techniques for logical clock

synchronization. Holman and Lee (David M Holman, 2008) discussed algorithms to

achieve network fault tolerance including the store-and-forward technique. Fault Tree

Analysis (FTA) is a top-down approach introduced by Bell Laboratories in 1962 to

evaluate safety and reliability properties in computer systems (Ericson, 1999). In FTA, a

fault tree model is used to depict the relationship between a high-level, undesirable

18

system event (located at the top of the tree) and the basic cause events (located at the

leaves of the tree) that could trigger the undesirable event (Leveson and Harvey, 1983).

The relationship between cause events in fault trees is defined using logical gates.

Furthermore, an event at one level in a fault tree is resolved by identifying its immediate

cause events in the next level until the basic cause events are identified or no further

resolution is necessary. Once a fault tree is defined, a qualitative evaluation is possible

through Boolean algebra to find the combinations of minimum basic cause events (called

minimum cut sets) that can cause the top event (Rauzy, 1993).

In order to support failure recovery and dynamic adaptation, this dissertation

considers how a recovery and adaptation connector can be designed so that its stores the

messages it receives in queues before forwarding them to their destination so that these

messages can be recovered in case of failure.

 Software Product Lines and Dynamic Software Product Lines 2.5
A software product line (SPL) is a family of software systems that share some

commonalities and have some differences (Clements and Northrop, 2001). SPL design

methods and techniques deal with developing reusable software assets, including a

feature model and a software architecture, that can be tailored at deployment time to

generate a particular member of the SPL. A common approach in these methods is to

design a feature model that captures the commonality and variability, in terms of

functional and non-functional requirements, among the SPL members as well as any

constraints. An example of a SPL design method is the Product Line UML-based

Software Engineering (PLUS) (Gomaa, 2004). In PLUS, variability among members of a

19

SPL is captured by a feature model. During deployment, a member of a SPL is derived

from a reusable software architecture by selecting the required features from the feature

model and the corresponding components that implement those features.

Dynamic software product lines (DSPL) are SPLs that are capable of changing

one member of the SPL to another while the system is operational (Hinchey et al., 2012).

The feature model itself may evolve at runtime due to unanticipated variability occurring

at run-time (Bencomo et al., 2012). Work by Bosch and Capilla (Bosch and Capilla,

2012) discusses the use of types and supertypes in feature models to handle dynamic

evolution of these models as well as possible rebinding mechanisms in DSPL. Baresi,

Guinea, and Pasquale (Baresi et al., 2012) investigated applying DSPL to service-

oriented systems. In their approach, a CVL (Common Variability Language) library is

used to define core and additional process elements. During execution, services are

intercepted using aspect-oriented programming and required changes are applied based

on dynamic feature selection and the placement or replacement of process elements.

Sawyer, Mazo, Diaz, Salinesi, and Hughes (Sawyer et al., 2012) investigated generating a

SPL variant based on the current operational context by combining goal-modeling and

constraint programming. Gomaa and Hashimoto (Gomaa and Hashimoto, 2011)

discussed extending the PLUS method to handle dynamic adaptation for service-oriented

product lines. In their approach, a member of a service-oriented product line can be

adapted at run-time by 1) dynamically activating/deactivating features using a run-time

feature model 2) determining how the target architecture needs to be adapted as a result

20

of dynamic feature selection by using a run-time feature/component dependency table

and 3) dynamically adapting the architecture using service-oriented adaptation patterns.

21

3 DESIGN OF RECOVERY AND ADAPTATION CONNECTORS FOR

SERVICE-ORIENTED ARCHITECTURES

This chapter describes the design of the basic structure of a recovery and

adaptation connector (RAC) for service-oriented architectures (SOAs). We assume that

there are multiple clients and a single service that processes multiple client requests

concurrently. The service responds to each request from the client. The RAC manages

transactions between a client and a service that comprise either single request/response

messages or a dialog. This chapter also shows how the same RAC design can handle

adaptation and recovery in other, more complex architectural patterns.

This section is organized as follows. Section 3.1 describes the design of the RAC

for handling adaptation and recovery of stateless services. Section 3.2 shows how this

design of the RAC can be extended to handle stateful services. Section 3.3 shows how the

RAC design can be used to handle adaptation and recovery in different SOA patterns.

This chapter also discusses how the RAC can use the Two-Phase Commit protocol to

handle services with non-idempotent operations (section 3.2), SOA (section 3.3.4), and

distributed transactions (3.3.5).

3.1 Design of the Service Recovery Connector
The RAC (Figure 3.1) behaves as a proxy for the service by receiving requests

from clients and then forwarding these requests to the service. The RAC also receives

responses from the service, which are then forwarded to requesting clients.

22

To ensure safe adaptation at run-time and recoverability of service failures, the

RAC must keep track of the transactions that the service is currently engaged in and must

maintain messages (i.e., requests and responses) that pass through it so that these

messages can be held during adaptation and can be recovered when the service fails.

The RAC has a control object (Connector Control in Figure 3.1) that handles

sending messages to and receiving responses from application components, and also

handles adaptation and recovery concerns of the service. To facilitate maintenance of

application messages, requests and responses are stored by the RAC in queues located at

the Service Request Manager and the Service Response Manager (Figure 3.1),

respectively. Each manager is provided with a coordinator component for controlling the

queues it manages. The goal of these coordinators is to separate the concerns of queue

management from adaptation and recovery concerns handled by Connector Control.

23

<<connector>>
:Service Recovery Connector

<<control>>
:Service Response Manager

<<control>>
:Service Request Manager

:Response Recovery Queue
(RRQ)

:Response Forwarding Queue
(RFQ)

:Service Pending Queue
(SPQ)

<<state-dependent-
control>>

:Connector Control

N1* : Request
N7: ACK

N2: Request
N8: ACK

N4: Response

N6: Forward Response

N5: Response

<<service>>
:Service

<<coordinator>>
:Coordinator

<<client>>
:Client

N3: Forward Request

N2a : Queue Request
N3a.1: Dequeue Request

N3a.2: Queue Request
N6a.1: Dequeue Request

N5a: Queue Response
N6b.1: Dequeue Response

N3a: Forward Request
N6a: Forward Response
N9a: Transaction Completed

N6b: Forward Response
N9b: Transaction Completed

N6b.2: Queue Response
N9b.1: Remove Transaction

 Responses

<<coordinator>>
:Service Request

Coordinator

<<coordinator>>
:Service Response

Coordinator

:Service Recovery Queue
(SRQ)

N6a.2 : Queue Request,
N9a.1: Remove Transaction
 Requests

:Service Active Queue
(SAQ)

:Active Transactions
Count

N3a: Increment
N6a: Decrement

Figure 3.1 Design of service recovery connector showing messages during normal execution

3.1.1 Service Request Manager
Every request sent by a client to a service passes through the Service Request

Coordinator (Figure 3.1). The Service Request Coordinator maintains the following three

queues for storing client requests based on the status of these requests:

Service Pending Queue (SPQ). The SPQ stores client requests received by the

RAC but that have not yet been forwarded to the service. The purpose of this queue is to

buffer requests for the service so that any requests received by the RAC while the service

is being dynamically adapted or is in the failed state are preserved until the service

becomes active again. Thus, the SPQ ensures that no requests to the service are lost due

to dynamic adaptation or recovery.

24

Service Active Queue (SAQ). This queue stores client requests that have been

forwarded to the service but do not have corresponding service responses at the RAC,

either because the service is still processing the request and has not generated the

corresponding response yet or because the service response was lost due to service

failure.

The RAC uses this queue to determine pending requests that must be processed

by the service first before the service can be dynamically adapted. Furthermore, the RAC

uses this queue to recover requests that were lost by the service (due to service failure)

before the corresponding responses of these requests are received by the RAC.

Service Recovery Queue (SRQ). This queue stores client requests that have

corresponding service responses at the RAC. This queue ensures that previous requests of

each dialog that the service is currently engaged in are preserved so that these dialogs can

also be recovered in case they were interrupted due to service failure.

3.1.2 Service Response Manager
Responses sent by the service are received by the Service Response Coordinator

(Figure 3.1). The Service Response Coordinator maintains two queues for storing

responses:

Response Forwarding Queue (RFQ). This queue stores service responses that

have been received by the RAC but have not yet been forwarded to the requesting client.

Response Recovery Queue (RRQ). This queue stores service responses after they

have been forwarded to the requesting clients. This queue ensures that a service response

that has been forwarded by the RAC to the requesting client cannot be lost due to client

25

failure. In this case, when the RAC receives a duplicate request from a recovered client,

the corresponding response is obtained from the RRQ and forwarded to the recovered

client, without requiring the service to process the request again.

3.1.3 Connector Control State Machine
Connector Control (Figure 3.1) is a state-dependent control component that

handles recovery and adaptation of the service by tracking its current state. While the

service is active, Connector Control keeps track of whether the service is currently

engaged in any transactions with its clients so that it can base its adaptation and recovery

decisions accordingly.

The Connector Control state machine (Figure 3.2) consists of two orthogonal state

machines (STMs). Integrated Adaptation and Recovery is the orthogonal STM that

handles service adaption and recovery. The Message Queue Management STM is

responsible for notifying the Service Request Coordinator and the Service Response

Coordinator when a client acknowledges the completion of a transaction to enable these

coordinators to remove the messages of this transaction from their queues.

The orthogonal integrated adaptation and recovery state machine (Figure 3.3)

consists of three composite states: (1) Active, which defines behaviour during normal

service execution, (2) Adapting, which defines behaviour during dynamic service

adaptation, and (3) Recovering, which defines behaviour during recovery.

26

Connector Control STM

Message Queue
Management STM

Integrated
Adaptation and
Recovery STM

ACK/
Transaction

Completed {to coordinators}

Figure 3.2 State machine executed by Connector Control

3.1.4 Normal Service Execution
Initially, Connector Control is in the Waiting for Request state (Figure 3.3)

indicating that the service is currently not engaged in any transactions with its clients.

When Connector Control receives a client request, it forwards the request to the service,

increments the number of active transactions that the service is currently engaged in, and

transitions to the Processing state. While in the Processing state, Connector Control

forwards requests to the service and forwards responses to requesting clients. Connector

Control remains in the Processing state as long as the service is engaged in one or more

transactions. Furthermore, Connector Control increments the number of active

transactions when it forwards a request that initiates a new transaction with the service

and decrements this number when it receives the final response of a transaction from the

service. At this time, Connector Control forwards that final response of the final

transaction to the requesting client and transitions back to the Waiting for Request state.

3.1.5 Dynamic Service Adaptation
In order to safely adapt the service at run-time, the service must be in a quiescent

state (Kramer and Magee, 1990) in which it is not involved in any transactions and will

27

not receive any new transactions from its clients. At this point, the service can be

removed or replaced at run-time after it has sent the final response of every transaction it

is currently engaged in. In the Passivating state, Connector Control must not forward any

requests that initiate new transactions with the service, so that the service can eventually

transition to the quiescent state where it can be safely adapted.

If Connector Control receives the Passivate command from Change Management

(Kramer and Magee, 1990) while it is in the Waiting for Request state (Figure 3.3), then

the service is not engaged in any transactions with its clients. It thus transitions

immediately to the Quiescent state, and notifies the Service Request Coordinator that the

service is quiescent so that it holds all requests it receives from clients in the SPQ. On the

other hand, if Connector Control receives the Passivate command while it is in the

Processing state, then the service is engaged in one or more transactions with its clients.

In this case, Connector Control transitions to the Passivating state, where the service

completes existing transactions. While in the Passivating state, Connector Control

forwards intermediate requests it receives to the service and forwards service responses it

receives to requesting clients. Eventually, when all active transactions are completed,

Connector Control notifies the Service Request Coordinator that the service is

transitioning to the Quiescent State where the service can be safely adapted.

28

Integrated Adaptation and Recovery STM

Active

Recovering

Adapting

First Request/
Forward Request

Increment {Active Transaction Count}

First Request/
Forward Request,

Increment {Active Transaction Count}

Intermediate Request, Final Request/
Forward Request

Passivate/
Notify Passivating

Analyzing Failure
Events

Planning For
Recovery

Component
Recovering

Failed/
Notify Failed

Failure Analysis Results
Recovery Plan

[Active Transactions Count > 0]

Reactivate [Active Transactions Count == 0]]/Notify Active

Executing
Recovery

Plan

Restored Lost Messages

Recovery Plan [Active Transactions Count = 0]

Reactivate/
Notify Active

Final Response
 [Active Transactions Count = 1]/

Forward Response,
Decrement {Active Transaction Count}

First Response, Intermediate Response/
Forward Response

Final Response [Active Transactions Count > 1]/
Forward Response,

Decrement {Active Transaction Count}

First Response, Intermediate Response/
Forward Response

Final Response [Active Transactions Count > 1]/
Forward Response,

Decrement {Active Transaction Count}

Waiting For
Request

Processing

Passivate/
Notify Quiescent

Final Response
[Active Transactions Count = 1]/

Forward Response,
Decrement {Active Transaction Count},

Notify Quiescent

Passivating

Intermediate Request,
Final Request/

Forward Request

Quiescent

Failed/Notify Failed

Reactivate [Active Transactions Count > 0]]/Notify Active

Figure 3.3 Integrated adaptation and recovery state machine executed by Connector Control

3.1.6 Service Recovery
While the service is in the recovering state, Connector Control must not forward

any requests and must ensure that all failed transactions are restarted when the service is

recovered.

Recovering a service from failure is handled by the connector using the MAPE-K

loop model for self-healing and self-configuration, as explained next. The monitoring

29

activity of MAPE-K notifies the RAC of the service failure. When Connector Control

receives a failure notification, it notifies the Service Request Coordinator of the failure

and then transitions to the Analyzing Failure Events state (Figure 3.3).

The Analyzing Failure Events state corresponds to the analysis activity of MAPE-

K where the RAC identifies all transactions that were interrupted due to service failure.

The RAC determines that a transaction has failed if either the SAQ or SRQ contain a

request that initiates a transaction with the service but neither the RFQ nor the RRQ

contains a response that completes that transaction. When failure analysis is completed,

Connector Control transitions to the Planning for Recovery state.

The Planning for Recovery state corresponds to the planning activity of MAPE-K

where the RAC determines the recovery plan for the failed transactions. The plan

identifies which requests must be resent to the recovered service so that failed

transactions are restarted at the recovered service. The recovery plan is determined by

executing the following recovery policy:

 First, the RAC forwards previous requests of every failed dialog that the service

was engaged in before it failed. These requests are recovered from the SRQ and

are forwarded sequentially in the same order they were processed before service

failure to ensure that the recovered service also processes these requests in that

order.

 Second, the RAC forwards the requests of failed transactions queued in the SAQ,

which contains pending requests that were lost by the failed service before the

RAC received the responses to these requests. Note that at this step, if a request

30

that is being forwarded is of a dialog, then (from the previous step) the service

must have already received all previous requests of this dialog.

 Third, the RAC forwards all requests in the SPQ, which are new requests that

have been received while the service is in the recovering state, to the recovered

service.

The Executing Recovery Plan state corresponds to the execution activity of

MAPE-K where the RAC restores all requests that must be resent to the recovered service

by moving these requests from the SRQ and SAQ to the SPQ, as specified in the recovery

plan. When all requests are restored, Connector Control transitions to the Component

Recovering state in which the connector waits until the service is relocated and

instantiated by the Recovery and Adaptation Manager (this manager will be discussed in

detail in chapter 5), and then has its connection with the recovered service established.

Eventually, when Connector Control receives the Reactive command, Connector Control

transitions to the Active state and notifies the Service Request Coordinator that the

service is active so that the Service Request Coordinator resumes sending requests

queued in the SPQ to Connector Control.

3.1.7 Service Request Coordinator State Machine
Based on the discussion in the previous section, the Service Request Coordinator

must forward to Connector Control certain types of client requests based on the current

state of the service, as shown in Figure 3.4. While the service is active (Figure 3.4), the

Service Request Coordinator forwards all client requests it receives to Connector Control

and also queues these requests in the SPQ.

31

When the Service Request Coordinator is notified that the service is passivating, it

transitions to the Passivating state. The behavior of the Service Requests Coordinator

while in this state is similar to its behavior in the Active state with one exception: in the

Passivating state, the Service Request Coordinator does not forward to Connector Control

any requests that initiate a new transaction with the service, and instead, queues such

requests in the SPQ. Eventually, the Service Request Coordinator is notified that the

service has become quiescent, causing the Service Request Coordinator to transition to

the Quiescent state. While in the Quiescent state, the Service Request Coordinator does

not forward any requests to Connector Control and instead queues them in the SPQ.

Finally, when service adaptation is completed, the Service Request Coordinator receives

a notification that the service is active, causing the Service Request Coordinator to

transition to the Active state and to forward all requests queued in the SPQ to Connector

Control.

When service failures occur, the Service Request Coordinator transitions to the

Failed state. While in the Failed state, the Service Request Coordinator holds all client

requests it receives in the SPQ. The Service Request Coordinator may also receive

messages from the execution activity of MAPE-K to restore any client requests that were

lost due to service failure. As a result, the Service Request Coordinator moves these

requests from the SRQ and the SAQ to the head of the SPQ so that these requests are

resent to the recovered service. Finally, when the service is recovered, the Service

Request Coordinator forwards all requests stored in the SPQ and then transitions back to

the Active state.

32

Service Requests Coordinator STM

Quiescent Failed

Notify Passivating Notify Quiescent

Notify Failed

Notify Active/
Forward Request {for every request in SPQ}

Active Passivating

Intermediate Request, Final Request/
Queue Request {into SPQ},

Forward Request {to Connector Control}

Request/
Queue Request {in SPQ}

First Request/
Queue Request {into SPQ}

First Request,
Intermediate Request, Final Request/

Queue Request {into SPQ},
Forward Request {to Connector Control}

Notify Failed

Request/
Queue Request {in SPQ}

Restore Request/
Dequeue Request {from SAQ or SRQ}

Queue Request {into SPQ}

Notify Quiescent

Notify Active/
Forward Request {for every request in SPQ}

Figure 3.4 State machine executed by Service Request Coordinator

3.2 Handling Non-Idempotent Operations
This section discusses extending the design of the RAC in section 3.1 to handle

recovery and adaptation of stateful services with both idempotent and non-idempotent

operations. It is assumed that the state of the stateful service is maintained by a

transactional processing system that supports committing, aborting, and preparing

transactions (Bernstein and Newcomer, 2009). The transactional processing system

handles recovery of the service’s state to a consistent state by using a transactional log to:

 Undo all transactions that have either been aborted or did not complete before

service failure.

 Redo transactions that have been committed before service failure.

33

 Restore the state of prepared transactions until these transactions are either

committed or aborted.

Since the service is a stateful component with non-idempotent operations, then the

RAC must ensure that (1) committing the client’s transaction at the service side and (2)

updating the queues at the Service Request Manager are performed as an atomic

operation. To achieve this behavior, the RAC forwards each client request to the service

by initiating a transaction using the Two-Phase Commit (2PC) protocol (Bernstein and

Newcomer, 2009). In this approach, Connector Control of the RAC acts as the

coordinator of the 2PC transaction while the service and the Service Request Coordinator

act as participants of this transaction, as explained next.

During normal execution, when there are no failures, the interaction between the

RAC and the service is as follows (Figure 3.5):

1. When Connector Control of the service RAC (not shown in Figure 3.5) receives a

client request, it forwards the client request to the service in a 2PC transaction.

This request corresponds to the Prepare To Commit message in the 2PC protocol.

Connector Control also forwards this request to the Service Request Coordinator,

which is a second participant of this 2PC transaction. As a result, the Service

Request Coordinator prepares to commit the client request by moving this request

from the Service Pending Queue to the Service Active Queue and then

acknowledges preparing the transaction to Connector Control.

34

2. The service prepares to commit the client request and then sends the response to

the RAC. The service response corresponds to the Ready To Commit message in

the 2PC protocol.

3. Connector Control then sends the Commit message to both the service and the

Service Request Coordinator. The Service Request Coordinator then commits the

transaction by moving the client request from the Service Active Queue to the

Service Recovery Queue and then acknowledges committing the transaction to

Connector Control.

4. The service commits the prepared transaction and then sends the Committed

message to the RAC which completes this 2PC transaction.

5. The RAC forwards the service response to the requesting client.

Figure 3.5 Handling stateful services using two-phase commit

35

To satisfy this behavior, Connector Control (CC) executes the state machine

shown in Figure 3.6. In this STM, CC is initially in the Waiting for Request state

(Figure 3.6). During this state, If CC receives a client request, then there are two cases to

consider: whether this request initiates a dialog with the service or not. If the request

initiates a dialog, then the actions are to (1) increment the transaction count, (2) forward

the request to the service, and then (3) transition to the Processing state. On the other

hand, if the request is of a single request/response transaction, then the actions are to (1)

increment the transaction count, (2) request the service to prepare to commit this request

since this is the only request in this transaction, and then (3) transition to the Processing

state.

 While in the Processing state, CC reacts to the various events as follows:

 If CC receives a request that initiates a new transaction with the service, then CC

(1) increments the transaction count and (2) either forwards the request to the

service (if this request initiates a new dialog as determined by the message

header) or requests the service to prepare to commit this request (if the message

header indicates that the transaction comprises a single request/response

messages).

 If CC receives an intermediate request of a dialog, then CC forwards this request

to the service.

 If CC receives a final request of a dialog, then CC requests the service to prepare

to commit this transaction, since this is the last request of this transaction.

36

 If the event is the first response or is an intermediate response of a dialog, then

CC forwards the response to the requesting client.

 If CC receives a Read Only response from the service (Bernstein and Newcomer,

2009), then this transaction is a read-only transaction that does not update the

service’s state. As a result, the actions are to decrement the transaction count and

forward the service response to the requesting client. If this is the last transaction

that that service is currently engaged in, then CC transitions to the Waiting for

Request state.

 If CC receives a Ready To Commit response, the action is to send the Commit

request to the service.

 If CC receives a Refuse To Commit response, the action is to send the Abort

message to the service.

 If CC receives a Committed response, the action is to forward the service

response, which was held by the RAC until the completion of this transaction, to

the requesting client. This event also causes CC to decrement the transaction

count. If this is the last transaction that the service is engaged in, then CC

transitions to the Waiting for Request state.

 If CC receives an Aborted response, the action is to forward the service response,

which was held by the RAC until the completion of this transaction, to the

requesting client. This event also causes CC to decrement the transaction count. If

this is the last transaction that the service is engaged in, then CC transitions to the

Waiting for Request state.

37

Integrated Adaptation and Recovery STM

Active

Recovering

Adapting

Request [sync request]/
Prepare To Commit (Request),
Increment {Transaction Count}

First Request [dlg]/
Forward Request,

Increment {Transaction Count}
Passivate/

Notify Passivating

Analyzing
Failure Events

Planning For
Recovery

Component
Recovering

Failed/
Notify Failed

Failure Analysis
Results

Recovery Plan
[Trans Count > 0]

Executing
Recovery Plan

Restored Lost
Messages

Recovery Plan [Active Transactions Count = 0]

Reactivate/Notify Active

First Response, Intermediate Response [dlg]/
Forward Response

Ready To Commit (Final Response) [non-distributed tr]/
Commit

Refuse To Commit [non-distributed tr]/
Abort

Ready Read Only(Response)
[non-distributed tr AND Transaction Count > 1]/

Forward Response
Decrement {Transaction Count}

Committed [non-distributed tr AND Transaction Count > 1]/
Retrieve and Forward Response,
Decrement {Transaction Count}

Aborted [non-distributed tr AND Transaction Count > 1]/
Retrieve and Forward Response,
Decrement {Transaction Count}

Processing

Passivate/Notify Quiescent

Committed
[non-distributed tr AND Transaction Count = 1]/

Retrieve and Forward Response ,
Decrement {Transaction Count},

Notify Quiescent

Aborted
[non-distributed tr AND Transaction Count = 1]/

Retrieve and Forward Response ,
Decrement {Transaction Count},

Notify Quiescent

Ready Ready Only(Response)
[non-distributed tr AND Transaction Count = 1]/

Forward Response,
Decrement {Transaction Count},

Notify Quiescent

Passivating

Intermediate Request [dlg]/
Forward Request

Final Request [dlg]/
Prepare To Commit (Request)

Quiescent

Failed/Notify Failed

Transactions Aborted/
Commit {committing transactions},

Abort {aborting transactions},
Notify Active

Reactivate [Active Transactions Count == 0]/
Notify Active

Request [sync request]/
Prepare To Commit (Request),
Increment {Transaction Count}

First Request [dlg]/
Forward Request,

Increment {Transaction Count}

Intermediate Request [dlg]/
Forward Request

Final Request [dlg]/
Prepare To Commit (Request)

First Response, Intermediate Response [dlg]/
Forward Response

Ready To Commit (Final Response) [non-distributed tr]/
Commit

Refuse To Commit [non-distributed tr]/
Abort

Ready Read Only(Response)
[non-distributed tr AND Transaction Count > 1]/

Forward Response
Decrement {Transaction Count}

Committed [non-distributed tr AND Trans Count > 1]/
Retrieve and Forward Response,
Decrement {Transaction Count}

Aborted [non-distributed tr AND Trans Count > 1]/
Retrieve and Forward Response,
Decrement {Transaction Count}

Aborting
Preparing to Commit

Transactions

Reactivate [Active Transactions Count > 0]/
Abort {transactions to be restarted}

Failed

Committed
[non-distributed tr AND Trans Count = 1]/

Retrieve and Forward Response ,
Decrement {Transaction Count},

Aborted
[non-distributed tr AND Trans Count = 1]/

Retrieve and Forward Response ,
Decrement {Transaction Count}

Ready Read Only(Response)
[non-distributed tr AND Trans Count = 1]/

Forward Response,
Decrement {Transaction Count}

Waiting For
Request

Figure 3.6 State machine executed by Connector Control for handling services with non-idempotent operations

In this pattern, the service can be dynamically removed or replaced after it has

completed all 2PC transactions that it is currently engaged in. In case of a service failure,

when the RAC is notified of the service failure, the RAC determines a recovery action for

each 2PC transaction it has initiated with the service as follows:

38

1. If the RAC has forwarded a client request to the service but the service failure

occurred during phase 1 of the 2PC transaction, the RAC recovers the client

request by moving it from the Service Active Queue to the Service Pending

Queue. When the service is recovered, the RAC instructs the recovered service to

abort this transaction so that the recovered service aborts the transaction if it has

previously been prepared to commit. Note that if the service failed before

preparing to commit the transaction, it ignores the Abort message from the RAC.

Since the client request is saved in the Service Pending Queue, then the RAC

eventually restarts this transaction with the recovered service.

2. If the RAC has received a service response from the service but has not yet

forwarded the Commit message to the service (i.e., service failure occurred before

initiating phase 2 of the 2PC transaction), then the service must have prepared to

commit this transaction before it failed. As a result, the RAC sends the Commit

message to the service after it has recovered so that it commits this transaction.

When the recovered service commits the transaction, it sends the Committed

message to RAC which completes this transaction.

3. If the RAC has forwarded the Commit message to the service but the service

failure occurred during phase 2 of the 2PC transaction, the RAC resends the

Commit message to the service after it has recovered. As a result, the recovered

service commits the prepared transaction and sends the Committed message to the

RAC. Note that the Commit message itself is idempotent. That is, if the service

has committed the transaction before failure, then receiving a duplicate Commit

39

message causes the recovered service to send the Committed message to the

RAC.

3.3 Recovery and Adaptation Patterns in SOA Patterns
This section describes how the RAC design discussed in the previous section can

be used to handle adaptation and recovery of components in other more complex

architectural patterns (Gomaa, 2011).

3.3.1 Asynchronous Message Communication with Callback Pattern
Typical client/service communication uses the Synchronous Message

Communication with Reply pattern, in which the client sends a message to the service

and waits for a response. In the Asynchronous Message Communication with Callback

pattern (Figure 3.7), a client sends an asynchronous request to the service but can

continue executing and receive the service response later. The request sent by the client

contains a callback handle that the service uses when it finishes processing the client

request so that it can send the response back to the client. A client in this pattern does not

send another request to the service until it receives a response to the previous request.

Since in this pattern a client sends one request at a time to the service, the RAC

(shown in Figure 3.1) handles requests and responses for this pattern in the same way as

for synchronous communication with reply. Thus, although the client behaviour is

different, the service behaviour is not. For this reason, the adaptation and recovery for the

Asynchronous Message Communication with Callback pattern is handled in the same

way as described in sections 3.1 and 3.2.

40

3: Response4: Forward Response

:Service RAC

1: Request w/Callback Handle
5: ACK

2: Forward Request w/Callback Handle

: Service: Client: Client

Figure 3.7 Asynchronous message communication with callback handle pattern

3.3.2 Service Registration Pattern
In service-oriented architectures, a service registers its name, location and service

description with a broker, which acts as an intermediary between the clients and the

service. In the Service Registration pattern (Figure 3.8), the service initiates a transaction

with the broker by sending it a registration request containing the service information.

The broker then registers the service and sends an acknowledgement to the service. The

service can also re-register with the broker if it moves its location, which requires another

transaction between the service and the broker.

From the adaptation and recovery point of view, this pattern can be treated as a

client that communicates with a service using the Synchronous Message Communication

with Reply pattern. Thus, the adaptation and recovery patterns for this architectural

pattern are exactly the same as described in sections 3.1 and 3.2.

41

3: Register ACK4: Forward Register ACK

:Broker RAC

1: Register Service
5: ACK

2: Forward Register Service

: Broker: Client:Service

Figure 3.8 Service registration pattern

3.3.3 Broker Handle Pattern
After the service has registered with the broker, clients use the broker to locate the

service. In the Broker Handle pattern (Figure 3.9), a client sends a request to the broker to

obtain the service’s handle. The broker then sends a response to the client containing the

service’s handle as a parameter. The client then uses the service’s handle to interact with

the service.

In this pattern, a client initiates two sequential transactions by first initiating a

transaction with the broker to obtain the service’s handle and then by initiating a

transaction with the service using the service’s callback handle. As a result, these

transactions can fail and be recovered independently of each other.

A broker is adapted after it has completed all the requests it has received,

including brokering requests from clients requesting a handle and service requests for

registration. New requests are held up until the broker has been relocated. In the case of a

broker failure, all requests it is dealing with are aborted and only restarted when the

broker has been relocated and instantiated. Both adaptation and recovery are carried out

as described in Sections 3.1 and 3.2.

42

:Broker RAC :Broker

:Service

1: Service Handle Request
5a: ACK

2: Forward Service Handle Request

3: Service Handle4: Forward Service Handle

5: Service Request
9: ACK

6: Forward Service Request

7: Service Response8: Forward Service Response

:Client :Service RAC

Figure 3.9 Broker handle pattern

3.3.4 Service-Oriented Architectures
In service-oriented architectures (SOAs), the goal is to increase loose coupling

between services so that instead of services depending on each other, coordinators are

provided for situations where multiple services need to be accessed, and access to them

needs to be coordinated and/or sequenced (see Figure 3.10). We consider that the

coordinator may interact with the services sequentially and/or concurrently and that the

interaction between the coordinator and the multiple services involves a compound

transaction that can be broken down into an atomic, independent transaction between the

coordinator and each service, as described in the next subsection.

In this pattern, when any of the services fail, the service’s RAC restarts each

failed transaction with the service without affecting other transactions that the

coordinator is currently engaged in with other services. Thus, the recovery and adaptation

patterns for services in this pattern are exactly the same as discussed in sections 3.1 and

3.2. The remainder of this section describes recovery and adaptation of the coordinator.

43

<<coordinator>>
:Coordinator

<<connector>>
:Service RAC

<<service>>
:Service

5: Ready To Commit(Service Response 1)
7: Committed

<<client>>
:Client

15: Ready To Commit (Coordinator
Response)

17: Committed
<<connector>>

:Service RAC

10: Prepare To Commit(Service Request N)
12: Commit

<<service>>
:Service

11: Ready To Commit (Service Response N)
13: Committed

8: Service Response 1

9: Service Request N
17b: ACK

14: Service Response N

18: Coordinator Response

<<connector>>
:Coordinator RAC

4: Prepare To Commit(Service Request 1)
6: Commit3: Service Request 1

17a: ACK

1*: Client Request
19: ACK

2: Prepare To Commit(Client Request)
16: Commit

Figure 3.10 SOA architectural pattern

For coordinators, we assume the general case in which the coordinator is a stateful

component. Therefore, the Coordinator RAC must forward client requests to the

Coordinator in 2PC transactions using the same approach described section 3.2 so that

updating the Coordinator RAC’s queues and updating the Coordinator’s internal state is

an atomic operation. Therefore, the Coordinator RAC coordinates the 2PC transaction it

initiates with the Coordinator while the Coordinator coordinates access to the services.

The behavior of the Coordinator RAC and the Coordinator is as follows:

1. When the Coordinator RAC receives a client request (message 1 (m1) in

Figure 3.10), it forwards this client request to the coordinator in a 2PC transaction

(m2). This message corresponds to the Prepare to Commit message in the 2PC

protocol.

44

2. When the Coordinator receives the client request, it initiates a compound

transaction, which consists of initiating a constituent atomic transaction with each

service.

3. When the Coordinator receives responses from all services (m8 and m14), it

prepares to commit the compound transaction it has initiated in the previous step

and then sends its response (m15) to the Coordinator RAC. This response

corresponds to the Ready To Commit message for the 2PC transaction initiated in

step 1.

4. The Coordinator RAC then sends the Commit message (m16) to the Coordinator.

5. The Coordinator then commits the previously prepared compound transaction,

sends ACK messages to the service RACs so that these connectors can safely

remove messages for this transaction from their queues, and then sends

Committed (m17) to the Coordinator RAC. At this point, the 2PC transaction

between the Coordinator’s RAC and the Coordinator is completed.

6. The Coordinator’s RAC sends the Coordinator’s response to the client (m18).

Adaptation and Recovery of Coordinators.

In the case of a client interacting with a coordinator, if the coordinator needs to be

adapted, then the client request needs to be completed before adaptation. This means that

the entire 2PC transaction between the Coordinator RAC and the Coordinator must

complete before adaptation can take place, since completion of this 2PC transaction

ensures that the last compound transaction initiated by the coordinator is also completed.

45

In the case of coordinator failure, when the coordinator is recovered, the

recovered coordinator must abort the last compound transaction it initiated, if this

compound transaction has not been prepared to commit before failure. Since the

interaction between the coordinator’s RAC and the coordinator involves a 2PC

transaction, then the coordinator’s RAC executes similar recovery actions to those

described in section 3.2 to recover this 2PC transaction in case it failed, as follows:

1. If the Coordinator RAC has forwarded a client request to the Coordinator but the

coordinator failure occurred during phase 1 of the 2PC transaction, the

coordinator RAC saves the client request by moving it from the Coordinator

Active Queue to the Coordinator Pending Queue. When the coordinator is

recovered, the coordinator RAC instructs the recovered coordinator to abort this

transaction so that the recovered coordinator aborts the compound transaction,

even if it has been prepared to commit. Since the client request is stored in the

Coordinator Pending Queue, then eventually the coordinator’s RAC restarts this

transaction with the recovered coordinator. Since transactions to coordinators can

be restarted, a recovered coordinator may send duplicate requests to Service

RACs. These Service RACs detect and discard duplicate requests by comparing

message sequence numbers of incoming messages with previously received

messages. Furthermore, if responses of duplicate requests are queued in the

Response Recovery Queue (RRQ), then these service RACs resend these

responses to the recovered coordinator. Note that from Figure 3.10, a service

RAC does not discard a service response for any transaction until it receives an

46

ACK message from the coordinator that initiated this transaction. Because a

coordinator sends ACK messages to service RACs only after it has committed the

compound transaction it initiated, this ensures that a service RAC can always

recover responses of the duplicate requests it receives from recovered

coordinators. Note that if a Service RAC does not maintain in its RRQ the

response of a duplicate request, the service RAC forwards the response to the

coordinator after it receives this response from the service.

2. If the coordinator RAC has received a ready to commit response from the

coordinator but has not yet sent the Commit message to the coordinator (i.e., a

coordinator failure occurred before initiating phase 2 of the 2PC transaction), the

coordinator must have prepared to commit this transaction before it failed. As a

result, the coordinator’s RAC sends the Commit message to the recovered

coordinator for this transaction so that it commits this transaction. When the

recovered coordinator commits the transaction, it sends the Committed message

to the coordinator RAC, which completes this transaction.

3. If the coordinator RAC has forwarded the Commit message to the coordinator but

has not yet received the Committed message (i.e., a coordinator failure occurred

during phase 2 of the 2PC transaction), the coordinator’s RAC resends the

Commit message to the recovered coordinator. As a result, the recovered

coordinator commits the prepared transaction, sends ACK messages to the service

RACs, and then sends the Committed message to the coordinator’s RAC.

47

3.3.5 Distributed Transaction Pattern
This section considers the recovery and adaptation patterns for the distributed

transaction pattern in which there is a requirement that an atomic (i.e. indivisible)

distributed transaction involving updates at multiple services must be either committed

by all the services (see Figure 3.11) or aborted by all the services (see Figure 3.12). In

this pattern, we consider the general case in which coordinators and services are both

stateful components. Therefore, there is a 2PC transaction between each coordinator

RAC and its coordinator and each service RAC and its service. Since the coordinators in

this pattern also initiate 2PC transactions with the multiple services, then this result in a

tree of 2PC transactions (Vossen and Weikum, 2001). The tree of the 2PC transactions is

needed to ensure that the 2PC transactions between the coordinator RAC, the coordinator,

the service RACs, and the services are atomic (i.e. indivisible) such that either all 2PC

transactions in this tree are committed or none of them are. In this tree of 2PC

transactions, the overall decision as to whether to commit or abort this tree is controlled

by the coordinator RAC since this RAC is the root of this tree, as shown in Figure 3.13.

In this tree of 2PC transactions:

1. The coordinator RAC coordinates the 2PC transaction it initiates with the

coordinator.

2. The coordinator (1) participates in the 2PC transaction initiated by the coordinator

RAC and (2) coordinates the distributed transaction it initiates with the multiple

services via the service RACs.

3. A service RAC (1) participates in the 2PC transaction initiated by the coordinator

and (2) coordinates the distributed transaction it initiates with it service.

48

Since service RACs are participants of the transactions initiated by coordinators,

then a service RAC does not commit the transaction it initiates with its service until it has

received the coordinator’s decision on whether to commit or abort this transaction.

Furthermore, since coordinators are participants of the transactions initiated by

coordinator RACs, then a coordinator does not commit the distributed transaction it

initiates with the multiple services until it has received the coordinator RAC’s decision

on whether to commit or abort this transaction.

1: Request

<<coordinator>>
:Coordinator:Client

:Service Recovery Connector :Service

:Service Recovery Connector :Service

3a.1: Prepare To Commit(request 1)
6a.1: Commit

3b.1: Prepare To Commit (request 2)
6b.1: Commit

3a.2: Forward Prepare To Commit(request 1)
6a.2: Forward Commit

3b.2: Forward Prepare To Commit (request 2)
6b.2: Forward Commit

: Coordinator RAC

2: Forward Prepare To Commit(Request)
5: Commit

4: Ready To Commit(Response)
7: Committed

3a.3: Ready to Commit(response 1)
6a.3: Committed

3b.3: Ready to Commit (response 2)
6b.3: Committed

8: Forward Response

3a.4: Forward Ready to Commit(response1)
6a.4: Forward Committed

3b.4: Forward Ready to Commit(response 2)
6b.4: Forward Committed

:Coordinator

Figure 3.11 Two phase commit pattern – transaction commit case

49

1: Request

<<coordinator>>
:Coordinator:Client

:Service Recovery Connector :Service

:Service Recovery Connector :Service

3a.1: Prepare To Commit(request 1)
6a.1: Abort

3b.1: Prepare To Commit (request 2)
6b.1: Abort

3a.2: Forward Prepare To Commit(request 1)
6a.2: Forward Abort

3b.2: Forward Prepare To Commit (request 2)
6b.2: Forward Aborted

: Coordinator RAC

2: Forward Prepare To Commit(Request)
5: Abort

4: Refuse To Commit(Response)
7: Aborted

3a.3: Refuse to Commit
6a.3: Aborted

3b.3: Ready to Commit (response 2)
6b.3: Aborted

8: Forward Response

3a.4: Forward Refuse to Commit
6a.4: Forward Aborted

3b.4: Forward Ready to Commit(response 2)
6b.4: Forward Aborted

:Coordinator

Figure 3.12 Two phase commit pattern – transaction abort case

:Client
:Coordinator Recovery

Connector
:Coordinator :Service Recovery Connector :Slave Recovery Connector

Client Request

Forward Client Request (Prepare)

Service Request (Prepare)

:Service

Ready To Commit (Response)

Forward Response

Forward Committed

Committed

:Service Recovery Connector

Forward Ready to Commit

Commit

Commit

Forward Service Request (Prepare)

Ready to Commit

Forward Commit

Committed

ACK

Figure 3.13 Tree of 2PC transactions

Recovery and Adaptation of Coordinators

50

In this pattern, the interaction between the coordinator RAC and the coordinator is

exactly the same as the interaction between the coordinator RAC and the coordinator in

the SOA pattern (see section 3.3.4). Therefore, the recovery and adaptation pattern for

coordinators is exactly the same as the one described in section 3.3.4.

Recovery of Services

Unlike the SOA pattern in which a service RAC can determine independently the

decision of the 2PC transactions it initiates with its service (see section 3.3.4), the service

RACs involved in the Distributed Transaction pattern act as participants to the distributed

transactions initiated by the transaction coordinators, and therefore these RACs must

ensure that the decision message they send to their services must always agree with the

decision determined by these coordinators so that the atomicity of the entire distributed

transaction that involves the multiple services is preserved.

In order for the service RAC to satisfy this requirement, Connector Control (CC)

executes the state machine shown in Figure 3.14. In this STM, CC is initially in the

Waiting for Request state. During this state, If CC receives a Prepare To Commit request

from the distributed transaction coordinator, then the actions are to (1) increment the

transaction count, (2) forward the Prepare To Commit message to the service, and then

(3) transition to the Processing state.

 While in the Processing state, CC reacts to the various events as follows:

 If CC receives a Prepare To Commit request, then CC (1) increments the active

transaction count and (2) forwards the Prepare To Commit message to the service.

51

 If CC receives a Ready To Commit response, then this RAC must not make a

decision for this transaction and must instead wait for this decision from the

transaction coordinator. Therefore, the action is to forward Ready To Commit to

the transaction coordinator.

 If CC receives a Refuse To Commit response, then this service is unable to

commit this transaction. Thus, the action is to forward Refuse To Commit to the

transaction coordinator.

 If CC receives a Commit request for a distributed transaction, then the action is to

forward the Commit request to the service.

 If CC receives an Abort request for a distributed transaction, then the action is to

forward the Abort request to the service.

 If CC receives a Committed response, then the action is to forward the Committed

response to the transaction coordinator. This event also causes CC to decrement

the transaction count. If this counter indicates that the service is not engaged in

any other transactions, then CC transitions to the Waiting for Request state.

 If CC receives an Aborted response, then the action is to forward the Aborted

response to the transaction coordinator. This event also causes CC to decrement

the transaction count. If this counter indicates that the service is not engaged in

any other transactions, then CC transitions to the Waiting for Request state.

In this pattern, the service can be dynamically removed or replaced after it has

completed all distributed transactions that it is currently engaged in. In case of a service

52

failure, when the service RAC is notified of service failure, the service RAC determines a

recovery action for each distributed transaction as follows:

 If the service RAC has forwarded the Prepare To Commit to the service but the

service failure occurred during phase 1 of the 2PC transaction, the RAC moves

this transaction from the Service Active Queue to the Service Pending Queue.

When the service is recovered, to avoid sending duplicate requests to the

recovered service, the RAC instructs the recovered service to abort this

transaction. Note that if the service failed before preparing to commit the

transaction, it ignores the Abort message from the RAC. Since the transaction is

saved in the Service Pending Queue, then the RAC will eventually restart this

transaction with the recovered service.

 If the RAC has received Ready To Commit from the service but has not yet

forwarded the decision message (i.e. Commit or Abort messages) to the service,

then the action is to send the Ready to Commit message to the transaction

coordinator.

 If the RAC has received Refuse To Commit from the service but has not yet

forwarded the Abort message to the service, then the action is to send the Refuse

to Commit message to the transaction coordinator.

 If the RAC has forwarded either the Commit or Abort message to the service but

the service failure occurred during phase 2 of the 2PC transaction, the RAC

resends the Commit or Abort message to the service after it has recovered. As a

53

result, the recovered service will either commit or aborts the transaction and then

send the Committed or Aborted message to the RAC.

Integrated Adaptation and Recovery STM

Active Adapting

Recovering

Prepare To Commit [distributed tr]/
Forward Prepare To Commit,

Increment {Transaction Count}
Passivate/

Notify Passivating

Analyzing
Failure Events

Planning For
Recovery

Component
Recovering

Failed/
Notify Failed

Failure Analysis Results
Recovery Plan

[Transaction Count > 0]

Executing
Recovery Plan

Restored Lost
Messages

Recovery Plan [Transaction Count = 0]

Reactivate/Notify Active

Ready To Commit (Final Response)[distributed tr]/
Forward Ready To Commit

Refuse To Commit [distributed tr]/
Forward Refuse To Commit

Commit [distributed tr]/
Forward Commit

Abort [distributed tr]/
Forward Abort

Committed [distributed tr AND Transaction Count > 1]/
Forward Committed,

Decrement {Transaction Count}

Aborted [distributed tr AND Transaction Count > 1]/
Forward Aborted,

Decrement {Transaction Count}

Processing

Passivate/Notify Quiescent

Committed
[distributed tr AND Transaction Count = 1]/

Forward Committed,
Decrement {Transaction Count},

Notify Quiescent

Aborted
[distributed tr AND Transaction Count = 1]/

Forward Aborted,
Decrement {Transaction Count},

Notify Quiescent

Passivating Quiescent

Failed/Notify Failed

Transactions Aborted/
Commit {committing transactions},

Abort {aborting transactions},
Ready To Commit [distributed tr] {prepared to commit distributed transactions},

Refuse to Commit [distributed tr] {refused distributed transactions},
Notify Active

Reactivate [Active Transactions Count == 0]/
Notify Active

Prepare To Commit [distributed tr]/
Forward Prepare To Commit,

Increment {Trans. Count}

Ready To Commit (Final Response)[distributed tr]/
Forward Ready To Commit

Refuse To Commit [distributed tr]/
Forward Refuse To Commit

Commit [distributed tr]/
Forward Commit

Abort [distributed tr]/
Forward Abort

Committed [distributed tr AND Transaction Count > 1]/
Forward Committed,

Decrement {Transaction Count}

Aborted [distributed tr AND Transaction Count > 1]/
Forward Aborted,

Decrement {Transaction Count}

Aborting
Preparing to Commit

Transactions

Reactivate [Active Transactions Count > 0]/
Abort {transactions to be restarted}

Failed

Committed
[distributed tr AND Transaction Count = 1]/

Forward Committed,
Decrement {Transaction Count},

Aborted
[distributed tr AND Transaction Count = 1]/

Forward Aborted,
Decrement {Transaction Count}

Waiting For
Request

Figure 3.14: State machine executed by Connector Control for handling distributed transactions

54

4 DESIGN OF RECOVERY AND ADAPTATION CONNECTORS IN

ASYNCHRONOUS ARCHITECTURAL PATTERNS

The previous chapter discussed the design of the service RAC that receives both

input requests to a service and output responses from the service for several SOA-related

patterns. This chapter discusses the design of a different type of the RAC that is used in

various asynchronous architectural patterns. Unlike the service RAC, a RAC in an

asynchronous pattern does not receive output responses from its component, and as a

result, handles only input messages to its component.

This chapter is organized is follows. Section 4.1 discusses the design of the

consumer RAC for the unidirectional asynchronous message communication pattern

when consumers are stateless. Section 4.2 shows how the approach can be extended to

handle state-dependent consumers. Section 4.3 discusses how the same RAC is also

applicable for other asynchronous patterns including the bidirectional asynchronous

message communication pattern, the subscription/notification communication pattern, the

master/slave architectural pattern, and various control patterns.

 Design of the Consumer RAC in the Unidirectional Asynchronous 4.1

Message Communication
In the unidirectional asynchronous message communication (Figure 4.1), one or

more producers send one or more asynchronous messages to the consumer. The messages

from a producer to the consumer do not require any responses from the consumer to the

55

producer. As a result, producers continue execution immediately after sending messages

to the consumer. It is assumed that no dialogs are involved between producers and the

consumer, since the consumer does not send any responses to producers. Furthermore, it

is assumed that each message from the producer initiates a new transaction with the

consumer. A transaction in this pattern consists of (1) the producer sending an

asynchronous message to the consumer, (2) the consumer consuming the producer’s

message, and (3) the consumer sending an acknowledgement message back to the

consumer RAC. The remainder of this section discusses the design of the consumer RAC

and how it handles adaptation and recovery concerns of the consumer with the

assumption that the consumer is a stateless component. Section 4.2 discusses handling

state-dependent consumers.

: Consumer:Producer :Consumer RAC

Asynchronous Message Forward Asynchronous Message

ACK

Figure 4.1 Unidirectional asynchronous message communication between a producer and a consumer

4.1.1 Design of the Consumer RAC
 If the consumer is a stateless component, then the message sequencing between

the consumer RAC and the consumer is as follows (Figure 4.1):

1. When the consumer RAC receives a message from the producer, it forwards the

message to the consumer.

56

2. When the consumer is finished with the producer’s message, it sends the ACK

message to the consumer RAC. This message serves as an acknowledgement to

the consumer RAC that the producer’s message is not needed anymore and thus

can be removed from the connector’s queues. Note that although it is not

necessary for asynchronous communication, the ACK message is needed for

recovery and adaptation of the consumer. Furthermore, the consumer RAC does

not wait for the consumer’s acknowledgement before forwarding the next

message to the consumer. Thus, communication between the consumer RAC and

the consumer is asynchronous in both directions.

Based on this behavior of the consumer, the design of the consumer RAC is

explained next. Every asynchronous message sent from a producer to the consumer

passes through the Queue Coordinator of the Consumer RAC (Figure 4.2). When the

Queue Coordinator receives a message from the producer, it queues the message into the

Pending Queue (message 2a) and sends it to Connector Control (message 2). Connector

Control then forwards the message to the consumer (message 3) and also forwards the

message back to the Queue Coordinator (3a). As a result, the Queue Coordinator moves

the message from the Pending Queue (3a.1a) to the Active Queue (3a.1b) which indicates

that this message is currently being processed by the consumer. When the consumer

finishes processing the producer’s message, it sends the ACK message (message 4) to the

Connector Control of the consumer RAC. After Connector Control has received the ACK

message from the consumer, it sends the Transaction Completed message (message 5) to

57

the Queue Coordinator so that it removes the message from the Active Queue, which

completes this transaction between the producer and the consumer.

Node Failure
Monitoring

Manager
(NFMM)

Node Failure
Analysis
Manager
(NFAM)

Node Recovery
Planning
Manager
(NRPM)

Node
Reconfiguration
Exec. Manager

(NREM)

Node Failed Components Failed Recovery Plan

Recovery
Connector

Recovery
Connector

Recovery Plan Request

Update

Read Components Read Connectors

<<connector>>
:Consumer Recovery Connector

<<control>>
:Queue Manager

:Pending Queue

<<state-dependent-
control>>

:Connector Control

1: Asynchronous Message

2: Asynchronous Message

4: ACK

: Consumer

:Producer

3: Forward Asynchronous Message

2a: Queue Message
3a.1a: Dequeue Message

3a.1b: Queue Message
6: Dequeue Message

3a: Asynchronous Message
5: Transaction Completed

<<coordinator>>
:Queue Coordinator

:Active Queue

: Active
Transaction

Count

3b: Increment
5a: Decrement

Figure 4.2 Design of the consumer RAC for the unidirectional asynchronous message communication

4.1.2 Connector Control State Machine and Normal Consumer Execution
The integrated adaptation and recovery state machine executed by connector

control of the consumer RAC is shown in Figure 4.3. This state machine handles

adaptation and recovery concerns for the consumer component. Initially, Connector

Control is in the Waiting for Input Messages state. When Connector Control receives a

producer’s message, it (1) increments the transaction count, (2) forwards the message to

the consumer, and then (3) transitions to the Processing state. When Connector Control

receives a producer’s message while in the Processing state, the actions are also to

58

forward these messages to the consumer and to increment the transaction count. When

Connector Control receives an ACK message from the consumer, it decrements the

transaction count. Connector Control remains in the Processing state until it receives an

acknowledgment from the consumer for every message it has forwarded so far and then

transitions back to the Waiting for Input Messages state.

4.1.3 Dynamic Consumer Adaptation
In order to safely adapt the consumer at run-time, the consumer must be in the

quiescent state in which it is not involved in any transactions and will not receive any

new transactions from the producers. Thus, if Connector Control receives the Passivate

command from Change Management (Kramer and Magee, 1990) while it is in the

Waiting for Input Messages state (Figure 4.3), then the consumer is not engaged in any

transactions with the producer. In this case, the consumer transitions immediately to the

Quiescent state and notifies the Queue Coordinator of consumer quiescence so that it

holds all messages it receives from the producer in the Pending Queue. On the other

hand, if Connector Control receives the Passivate command while it is in the Processing

state, then the consumer is engaged in one or more transactions with the producer. In this

case, Connector Control must transition to the Passivating state in which the consumer is

allowed to complete all transactions that it is currently engaged in with the producers.

During the Passivating state, the consumer RAC does not forward any messages to the

consumer. Thus, Connector Control notifies the Queue Coordinator so that it holds all

message in the Pending Queue. Eventually, when Connector Control has received an

ACK for every message that it has forwarded to the consumer, Connector Control

59

transitions to the Quiescent state and notifies Change Management and Queue

Coordinator that the consumer has become quiescent. When Connector Control is

notified of consumer activation, then Connector Control notifies the Queue Coordinator

to resume forwarding messages to Connector Control and then transitions to the Waiting

for Input Messages.

Integrated Adaptation and Recovery STM

Active

Recovering

Adapting

Asynchronous Message/
Forward Asynchronous Message,

Increment {Active Transaction Count}

Asynchronous Message/
Forward Asynchronous Message,

Increment {Active Transaction Count}

Passivate/
Notify Passivating

Analyzing Failure
Events

Planning For
Recovery

Component
Recovering

Failed/
Notify Failed

Failure Analysis Results
Recovery Plan

[Active Transactions Count > 0]

Reactivate [Active Transactions Count == 0]]/Notify Active

Executing
Recovery

Plan

Restored Lost Messages

Recovery Plan [Active Transactions Count = 0]

Reactivate/
Notify Active

ACK
 [Active Transactions Count = 1]/

Transaction Completed { to Queue Coordinator},
Decrement {Active Transaction Count}

ACK [Active Transactions Count > 1]/
Transaction Completed { to Queue Coordinator},

Decrement {Active Transaction Count}

ACK [Active Transactions Count > 1]/
Transaction Completed { to Queue Coordinator},

Decrement {Active Transaction Count}

Waiting For
Input Messages

Processing

Passivate/
Notify Quiescent

ACK
[Active Transactions Count = 1]/

Transaction Completed { to Queue Coordinator},
Decrement {Active Transaction Count},

Notify Quiescent

Passivating Quiescent

Failed/Notify Failed

Reactivate [Active Transactions Count > 0]]/Notify Active

Figure 4.3 Integrated adaptation and recovery STM executed by connector control of the consumer recovery

connector

60

4.1.4 Consumer Recovery
In the case of consumer failure, the recovery pattern is as follows:

1. When the consumer RAC is notified by the Recovery and Adaptation Manager

(this manager will be discussed in chapter 5) of consumer failure, the consumer

RAC transitions to the Analyzing Failure Events state (Figure 4.3) where it

identifies any failed transactions and lost messages due to consumer failure. In

this pattern, all messages queued in the Active Queue are considered lost

messages since these messages are messages that have been forwarded to the

consumer for which the consumer RAC has not received corresponding ACK

messages from the consumer.

2. When all failed transactions have been identified, Connector Control transitions to

the Planning for Recovery state where it determines the recovery plan for

recovering failed transactions. In this pattern, Connector Control simply

determines that every message queued in the Active Queue must be recovered and

restored to the Pending Queue.

3. After the recovery plan is determined, Connector Control transitions to the

Executing Recovery Plan state in which it executes the recovery plan by restoring

all lost messages queued in the Active Queue to the head of Pending Queue.

When the consumer RAC is reactivated after it has been connected with the

recovered consumer, the consumer RAC forwards the messages queued in the Pending

Queue to the recovered consumer. This includes any held messages and lost messages

that have been recovered according to steps 1-3.

61

4.1.5 Queue Coordinator State Machine
Figure 4.4 depicts the state machine executed by the Queue Coordinator. While in

the Active state, the Queue Coordinator forwards all messages it receives from producers

to Connector Control. When Queue Coordinator receives a notification that the Consumer

is passivating, it transitions to the Passivating state, where it holds all producer messages

in the Pending Queue. When the Consumer becomes quiescent, the Queue Coordinator

receives the Notify Quiescent message from Connector Control and then transitions to the

Quiescent state in which the action is to also hold all input messages in the Pending

Queue until the consumer adaptation is completed.

In case of consumer failure, the Queue Coordinator eventually receives a

consumer failure notification from Connector Control. As a result, the Queue Coordinator

transitions to the Failed state in which it holds all producer messages in the Pending

Queue. While in the Failed state, the Queue Coordinator may receive the Restore Request

message from the Execution Activity of MAPE-K (as discussed in the previous section)

to restore any lost messages. As a result, the Queue Coordinator restores these lost

messages by moving these messages from Active Queue to Pending Queue. (Note that in

order to ensure that all messages sent by the consumer before it failed are received by the

consumer RAC, recovery of the failed consumer takes place only after pinging the node

hosting the consumer component and then waiting for a certain time interval for receiving

a heartbeat response. This issue of asserting failure of nodes using pinging is discussed in

detail in chapter 5).

62

When the Queue Coordinator is notified that the consumer is activated again

while in the Quiescent or Failed state, it forwards all messages held in the Pending Queue

to Connector Control and then transitions to the Active state again.

Queue Coordinator STM

Quiescent Failed

Notify Passivating Notify Quiescent

Notify Failed

Notify Active/
Forward Asynchronous Message{for every message in PQ}

Active Passivating

Asynchronous Message/
Queue Request {in PQ}

Asynchronous Message/
Queue Request {into PQ}

Asynchronous Message/
Queue Asynchronous Message{into PQ},

Forward Asynchronous Message {to Connector Control}

Notify Failed

Asynchronous Message/
Queue Request {in PQ}

Restore Request/
Dequeue Message {from AQ}

Queue Message {into PQ}

Notify Quiescent

Notify Active/
Forward Asynchronous Message{for every message in PQ}

Figure 4.4 State machine executed by Queue Coordinator of the consumer RAC

4.1.6 Comparing the Designs of Consumer and Service RACs
Based on this communication pattern, the design of the consumer RAC described

in this section is different from the service RAC for SOA patterns (chapter 3) as follows.

First, since the consumer RAC does not receive any responses from the consumer, the

consumer RAC (1) does not forward responses to the producer and (2) does not require

the Service Response Manager that is used by the service RAC in SOA patterns to

maintain responses from the service. Second, since the unidirectional asynchronous

message communication pattern does not involve dialogs between the producer and

consumer, the consumer RAC does not require the Service Recovery Queue, which is

63

used by the service RAC to maintain previous requests for active dialogs between clients

and the service.

 Recovery of State-Dependent Consumers 4.2
In cases where the consumer is state-dependent, then the consumer must process

every input message exactly once, even in the presence of failures. For instance, if the

consumer is a component that handles the motor of a train and provides an interface to

increase the speed of the train by a certain acceleration rate, then forwarding a message

more than once to the consumer could cause a significant increase in the train speed

beyond the intended speed, which could lead to catastrophic events.

It is assumed that the consumer maintains a log of the events it has executed

(Elnozahy et al., 2002). Since the consumer is a state-dependent component, then the log

is needed so that the consumer can recover its state after a run-time failure by replaying

events from its log as well as to detect and discard duplicate messages (Elnozahy et al.,

2002). The use of logs for state-dependent consumers instead of the two-phase commit

(2PC) protocol (which is used in chapter 3 for a stateful service) is justified since (1)

asynchronous patterns are widely used in real-time systems and (2) logging is more

lightweight compared to the 2PC protocol and is thus more applicable to real-time

systems. The consumer maintains this log as follows:

1. When the consumer receives a producer’s message that initiates a new

transaction between the producer and the consumer, then the consumer logs

the initiation of the transaction.

64

2. When the consumer is done with the producer’s message it adds a transaction

completion record in its log and then sends the ACK message to the consumer

RAC.

Recovery Pattern of State-Dependent Consumers

When the consumer recovers after a run-time failure, it uses its logs to guide its

recovery as follows. First, during initialization, the recovered consumer replays messages

from its log to recover its state (Elnozahy et al., 2002). Then, after reactivation, the

consumer RAC forwards all lost messages to the recovered consumer, as explained

previously in section 4.1.4. In case the consumer RAC sends duplicate messages to the

recovered consumer, the recovered consumer detects and discards these duplicate

messages by comparing the sequence number of input messages to the sequence number

of messages maintained in the consumer log.

 Recovery and Adaptation Patterns in Other Asynchronous Patterns 4.3
This section describes how the consumer RAC discussed in the previous section

can also be used to handle adaptation and recovery of components in other asynchronous

patterns.

4.3.1 Bidirectional Asynchronous Message Communication
In the bidirectional asynchronous message communication (Figure 4.5), the

producer sends one or more asynchronous requests to the consumer via the consumer

RAC. The consumer then processes each of these requests and sends a response to each

request to the producer via the producer RAC. Furthermore, the producer can send a

request to the consumer before it has received responses to the previous requests it has

65

sent. This pattern is different from the asynchronous message communication with

callback handle discussed in the previous chapter in that there can be more than one

outstanding request at a time between the producer and consumer.

: Consumer:Producer :Consumer RAC

Asynchronous Request Forward Asynchronous Request

ACK

:Producer RAC

Asynchronous ResponseForward Asynchronous Response

ACK

Figure 4.5 Bidirectional asynchronous message communication

This pattern is essentially a composition of two unidirectional asynchronous

message communication patterns, since the producer sends asynchronous messages to the

consumer in one direction without waiting for the consumer’s responses and the

consumer also sends asynchronous messages to the producer in another direction without

waiting for the producer’s messages. As a result, the adaptation and recovery patterns

discussed in sections 4.1 and 4.2 apply equally to both the producer and the consumer

engaged in bidirectional asynchronous message communication.

4.3.2 Subscription/Notification Pattern
The subscription/notification pattern (Figure 4.6) is a selective form of group

communication in which consumers subscribe to a notification service to receive events

of a certain type. To facilitate this type of communication, a notification service is

66

provided to handle tracking of consumers and the type of events that each consumer is

interested in. Consumers can subscribe (or unsubscribe) to the notification service and

specify the type of events they need to receive. When the notification service receives an

event, it multicasts this event to the consumers that have subscribed to receive this type of

event. This pattern consists of two type of transactions:

 subscription (or unsubscription) of consumers with the notification service.

 multicast of events by the notification service to consumers.

Event

<<service>>
: Notification Service

<<coordinator>>
:Coordinator

<<input>>
:Input

<<connector>>
: Consumer RAC

<<consumer>>
: Consumer

<<connector>>
: Consumer RAC

<<consumer>>
: Consumer

Event

Event

Event

Event

<<connector>>
: Notification RAC

Forward Event

ACK

Subscription Request

Subscription Request

Forward Subscription Request

ACK

ACK

Subscription Response

Forward Subscription Response

Forward Subscription Response

Figure 4.6 Subscription/notification pattern

Transactions involving subscription (or unsubscription) of consumers use the

synchronous message communication with reply pattern between each consumer and the

notification service. Therefore, the recovery and adaptation pattern for this type of

transaction is exactly the same as the one discussed previously in chapter 3.

67

Recovery of Consumers

Since the communication between the notification service and each consumer is

unidirectional, then each consumer is associated with a consumer RAC that handles

receiving the multicast message from the notification service and then forwarding this

message to the consumer. As a result, the adaptation and recovery patterns for consumers

in this pattern are exactly the same as shown previously in section 4.1 for unidirectional

asynchronous message communication.

Recovery of Notification Service

In this pattern, events to the notification service are forwarded by the service’s

RAC as follows. During normal execution, the Notification RAC forwards the events it

receives to the notification service. When the notification service receives an event from

its connector, it determines which consumers have registered to receive this type of event

and then notifies these consumers of the event. When the notification service sends the

event to all such consumers, it sends the ACK message (Figure 4.6) to its connector so

that the connector removes the event from its queues. Note that this pattern ensures that

the notification is not lost by the notification service, but does not guarantee that the

notification reaches the consumer or is processed by the consumer, because this is a

lightweight protocol and hence does not use transactions.

Based on this behavior, the Notification RAC recovers all lost unidirectional

messages to the notification service using the recovery pattern for the consumer in the

unidirectional asynchronous message communication discussed in section 4.1.

68

4.3.3 Master/Slave Pattern
In the master/slave pattern (Figure 4.7), the master component is responsible for

serving requests it receives from clients by dividing up the task to be performed among

multiple slaves. The master sends a command to each slave via the slave’s RAC

specifying the part to be executed by the slave. The slaves then process the master’s

commands in parallel. When a slave finishes processing the master’s command, it sends a

response to the master via the master RAC. Finally, the master integrates the slave

responses.

:Master

: Slave RAC

: Slave RAC

: Master RAC

: Slave

: Slave

Master Command Forward Master Command

Master Command Forward Master Command

Slave Response

Slave ResponseForward Slave Response

ACK

ACK

ACK

Figure 4.7 Master/slave pattern

Recovery and Adaptation of Slaves

 In this pattern, the behavior of slaves is similar to the behavior of the consumer in

the bidirectional asynchronous message communication (c.f. Figure 4.5). As a result, the

69

recovery and adaptation pattern for slaves is exactly the same as the recovery and

adaptation pattern for consumers in the bidirectional asynchronous message

communication discussed in section 4.2.

Recovery and Adaptation of Master

 In this pattern, we consider that the master interacts with its slaves as a compound

transaction (Gomaa, 2011) that can be broken down into multiple atomic transactions

between the master and each slave. The master first initiates a compound transaction and

then sends a command to each slave within this compound transaction (Figure 4.8).

When the master RAC receives a slave response, it forwards the response to the master.

The master then (1) integrates all slave responses and sends an ACK message to the

master RAC so that it removes the slave responses from its queue.

70

:Master :Master RAC :Slave Recovery Connector :Slave

Master Command

Forward Master Command

Slave Response

More Slaves

:Slave RAC :Slave

Forward Slave Response

More Responses

ACK

ACK

Figure 4.8 Message sequencing between master and slaves

To facilitate the recovery of the master after a run-time failure, it is assumed that

the master maintains a log to keep track of the compound transactions it initiates. The log

is used to ensure that if the master fails after initiating a compound transaction but before

this transaction is completed, then the recovered master can restart this compound

transaction using its log. However, the use of the log alone does not ensure recovery of

lost messages that were forwarded to the master either before or after it failed. Therefore,

the master RAC is used to recover and resend any such lost messages to the recovered

master, as explained next.

For each compound transaction, the master logs two records as follows:

71

1. Before initiating any transaction with the slaves, the master first logs the initiation

of the compound transaction.

2. Before sending the ACK message to the master RAC, the master logs the

completion of the compound transaction. The master also includes in this log

record the result of integrating all of the slave responses it has received. Thus,

after this record has been added to the log, the master RAC can safely remove all

slave responses from its queues.

When the master recovers from a run-time failure, it can be in two states, as follows:

1. The master’s log indicates the initiation of an incomplete compound transaction.

In this situation, the master must have failed before integrating the slave

responses for the compound transaction it has initiated. Thus, the recovered

master restarts this compound transaction. Due to this, a slave RAC may receive a

duplicate command from the recovered master. Thus, slave RACs detect and

discard these duplicate commands using message sequence numbers. Finally, the

master RAC restores any slave responses it has forwarded to the master by

moving these responses from the Active Queue to the head of the Pending Queue,

as discussed previously in section 4.1. Note that the master RAC could not have

removed any slave responses for this transaction from its queues since the master

failed before sending the ACK message to the master RAC.

2. The master’s log indicates that the last compound transaction has been completed.

In this situation, there are two cases to consider: the master could have failed

either before or after sending the ACK message to the master RAC. If the master

72

failed after it has sent the ACK message to the master RAC, then no recovery

actions are required from the recovered master or the master RAC. Otherwise if

the master failed before sending the ACK message to the master RAC, then the

master RAC will recover and resend the slave responses of this transaction to the

recovered master. Since the master maintains a log of the transactions it initiates,

then the master can use this log to (1) detect and discard duplicate slave responses

from the master RAC by comparing the transaction identifier of these responses to

the transaction identifier of previously completed compound transactions and (2)

send the ACK message to the master RAC so that it removes the slave responses

from its queue.

4.3.4 Centralized Control Pattern
The centralized control pattern is widely used in real-time, embedded systems in

which there is a centralized control component that handles control of other components

in a software system (or a subsystem). This centralized control component (Figure 4.9) is

responsible for receiving input events from multiple input components and sending

output commands to output components. The centralized control component is state-

dependent and encapsulates a state machine that specifies the output commands (known

as actions) that must be sent to output devices based on (1) the current state of the control

component and (2) the received input event.

73

:Centralized Control

: Control RAC

: Consumer RAC : Consumer RAC

: Output Component 2 : Output Component 1

: Consumer Recovery
Connector: Input Component

Input Event

Forward Input Event

Output Command

Forward Output
Command

Forward Output
Command

Output Command

Figure 4.9 Centralized control pattern

In this pattern, communication between the centralized control component and

each output component uses the unidirectional asynchronous message communication

pattern. Thus, each output component is associated with a consumer RAC that handles

the recovery of its component as discussed previously in section 4.1.

Since the communication between each input component and the centralized

control component is also based on the unidirectional asynchronous message

communication pattern, then the centralized control component is associated with a

74

consumer RAC (control RAC in Figure 4.9) that executes the state machine shown

previously in Figure 4.3.

Since the centralized control component is state-dependent, it is assumed that the

state-dependent control component maintains an execution trace log that can be used by

the component to guide its recovery after a run-time failure. Since the control component

is a state-dependent component, then the log is needed to ensure that the control

component can reconstruct its state after recovering from a run-time failure by replaying

logged events (Elnozahy et al., 2002). The log is updated by the centralized control

component during normal execution each time the component receives an input event

from its connector by logging:

1. the input event.

2. the state transition (source and destination states of the transition) caused by this

input event.

3. the actions performed by the state-dependent control component as a result of the

state transition.

4. A Completed record indicating that this state transition and all actions associated

with this state transition have been performed.

After the centralized control component logs completion of the transaction, it sends

ACK message to its RAC so that it removes the input event from its queues.

 When the centralized control component recovers from a run-time failure, it

reconstructs the state of the state machine by replaying input events in its log. During this

process, the recovered centralized control component may send duplicate commands to

75

output components. These duplicate commands are detected and discarded by the RACs

of these output components using message sequence number.

Note that the centralized control component could have failed before logging

some input events that have been forwarded by the central control RAC. In this case, the

control RAC ensures that these events (which have been lost by the control component

due to failure) are resent to the recovered control component along with any events held

while the component is in the failed state, as discussed in section 4.1. Since the

centralized control component maintains a log of the events it has received, the

component can use its log to detect and discard any duplicate input events it may receive

from its connector.

4.3.5 Distributed Control Pattern
The distributed control pattern (Figure 4.10) is used in more complex distributed

systems in which there are multiple state-dependent control components (instead of one

centralized control component as done in the centralized control pattern) such that each

control component manages a different part of the software system than other control

components. Furthermore, one control component can interact with other control

components. In this pattern, there is no single control component that has an overall

control of the system.

In this pattern, a control component M interacts with its predecessor control

component M-1 and successor control component M+1 as follows (Figure 4.10):

76

1. Control component M initiates a transaction with its predecessor M-1 by sending

it an asynchronous request and then receiving the corresponding asynchronous

response later.

2. Control component M receives a transaction from its successor M+1 by receiving

an asynchronous request from its successor and then sending the corresponding

asynchronous response later.

As there are many variations to this pattern, we consider in this research that a

control component M can initiate a transaction with its predecessor M-1 only after

control component M has received a response for the last request it sent to control

component M-1. Thus, a control component in this pattern is involved in different

communication patterns and roles as follows:

1. A control component M can act as a consumer in the unidirectional asynchronous

message communication by receiving input events from input components.

2. A control component M can act as a producer in the unidirectional asynchronous

message communication by sending output events to output components.

3. A control component M can act as a consumer in the asynchronous message

communication with callback pattern (see section 3.3.1 in chapter 3) by receiving

an asynchronous request from another control component and then sending an

asynchronous response to this component.

4. A control component M can act as a producer in the asynchronous message

communication with callback pattern (see section 3.3.1 in chapter 3) by sending

77

an asynchronous request to another control component and then receiving the

corresponding asynchronous response from this component.

In this research, we consider that receiving an input message from an input

component causes a distributed control component to initiate a transaction with another

control component as follows:

1. When the RAC of a control component M receives a message from an input

component, this RAC forwards the input message to control component M.

2. Control component M then sends an asynchronous request to another control

component M-1 using the asynchronous message communication with callback

pattern.

3. Eventually, control component M-1 sends an asynchronous response to control

component M.

4. When control M is done with the response, control M sends an ACK message to

its RAC, which serves as an indication to the control RAC that the control

component is done with the input message sent in step 1.

Based on this behavior of control components, a control component can be

adapted after it has sent (1) an ACK message for each unidirectional asynchronous

message it received from its RAC and (2) an asynchronous response for each

asynchronous request it received from its RAC. In case of the failure of a control

component, then the RAC of this control component resends all (1) unacknowledged

unidirectional asynchronous messages and (2) any asynchronous requests for which there

is no corresponding response received at the RAC to the recovered control component.

78

Therefore, the RAC of each control component in this pattern must be able to handle

integration of unidirectional asynchronous message communication and asynchronous

message communication with callback. This problem of patterns integration at the RAC

will be discussed in detail in chapter 8.

:Distributed Control

: Control RAC

: Consumer Recovery
Connector: Consumer RAC

: Consumer Recovery
Connector:Output Component

: Consumer Recovery
Connector: Input Component

:Distributed Control

: Consumer Recovery
Connector: Consumer RAC

: Consumer Recovery
Connector:Output Component

: Consumer Recovery
Connector: Input Component

:Distributed Control

: Consumer Recovery
Connector: Consumer RAC

: Consumer Recovery
Connector:Output Component

: Consumer Recovery
Connector: Input Component

Input Input Input

Forward Input
Forward Request

Output Command

Forward Output
Command

Forward Input
Forward Request

Output Command

Forward Output
Command

Output Command

Forward Output
Command

Forward Input
Forward Request

Response
ACK

Request RequestRequest

Forward
Response

Request

Response
ACKForward

Response Forward
Response

Forward
Response

: Control RAC : Control RAC

Response
ACK

ACK ACK ACK

Figure 4.10 Distributed control pattern

4.3.6 Hierarchical Control Pattern
In the hierarchical control pattern (Figure 4.11), there are multiple distributed

control components, each controlling a different part of the software system. However,

unlike the distributed control pattern, the distributed control components in this pattern

79

are controlled by a higher-level control component (Hierarchical Control in Figure 4.11)

which decides the next job for each low-level control component. As there are many

variations of this pattern, we assume that the hierarchical control component receives

new job messages from one or more job generator components (e.g. producers or external

systems). For each new job, the hierarchical control component assigns the job to one of

the low-level control components by sending it a command. When a low-level control

component finishes the current job assigned to it, it sends a response to the hierarchical

control component. As a result, the hierarchical control component can send this low-

level control component the next command. It is assumed that the hierarchical control

component does not send a command to a low-level control component unless the

hierarchical control component has received a response for the previous request it has

sent to the low-level control component.

In this pattern, since the hierarchical control component receives asynchronous

messages from generator components using the unidirectional asynchronous message

communication, then the adaptation and recovery patterns of the hierarchical control

component are the same as the ones shown previously in section 4.2.

On the other hand, every low-level distributed control component participates in

two patterns:

 The unidirectional asynchronous message communication since a low-level

control component may receive asynchronous messages from input components

and sends asynchronous messages to output components.

80

 The asynchronous message communication with callback pattern since a

distributed control component receives asynchronous commands from the

hierarchical control and sends the corresponding responses of these commands to

the hierarchical control component.

Therefore, similar to the distributed control components in the distributed control

pattern (see the previous section), the RAC of each low-level control component in the

hierarchical control pattern must be able to handle integration of unidirectional

asynchronous message communication and asynchronous message communication with

callback. This problem of patterns integration at the RAC will be discussed in detail in

chapter 8.

81

: Distributed Control

: Control RAC

: Control RAC

: Hierarchical Control

: Input Component

Input

Forward Input
Forward Command

Output Command

Forward Output
Command

: Consumer RAC

:Output Component

: Distributed Control

: Consumer RAC

:Output Component

Input

Forward Input
Forward Command

Output Command

Forward Output
Command

: Control RAC

:Input Component

Command Command

Response Response

New Job

ACK ACK

ACKACK

: Job Generator

Forward New Job New Job

Figure 4.11 Hierarchical control pattern

82

5 DESIGN OF DECENTRALIZED ARCHITECTURE FOR SELF-HEALING

AND SELF-CONFIGURATION

The focus of the previous chapters was recovering failed transactions using

recovery and adaptation connectors (RACs) in various architectural patterns. An equally

important problem is recovering components automatically after a run-time node failure,

which is the focus of this chapter.

When a node fails, the system must recover to a consistent configuration in which

every failed component is relocated and instantiated on a healthy (i.e. non-failed) node

and that the connections between a recovered component and its neighbor components

are re-established.

This chapter is organized as follows. Section 5.1 discusses DARE, a

decentralized, architecture-based framework for self-healing and self-configuration,

which is based on a decentralized MAPE-K loop model. Sections 5.2 and 5.3 describe the

design of the various components in the DARE architecture. Section 5.4 describes the

mapping of recovery functionality to MAPE-K activities. Section 5.5 describes how

DARE can be used to recover failed components.

 DARE Overview 5.1
This section provides an overview of the DARE (Distributed Adaptation and

REcovery) framework, which is a decentralized, integrated adaptation and recovery

framework for providing both self-healing and self-configuration properties to complex

83

and highly dynamic CBSAs. In this dissertation, every node in the system hosts an

identical instance of the DARE middleware whose architecture is shown in Figure 5.1.

This architecture consists of three layers as follows.

The Configuration Maintenance Layer (CML) is responsible for keeping track of

the current configuration map of the software system, which includes the mapping of

components to nodes, and providing services to higher layers for retrieving and

modifying this map.

The Architecture Discovery Layer (ADL) is responsible for automatically

discovering the current architecture of the software system. It relies on gossiping and

message tracing techniques for discovering and disseminating the current software

architecture between nodes in a decentralized fashion (Porter et al., 2016). Furthermore,

the ADL is responsible for notifying the CML, when it suspects a node failure due to

absence of gossip messages from that node, and providing the discovered architecture to

the top layer when dynamic adaptation and failure recovery are required. The design and

implementation of DeSARM is beyond the scope of this dissertation.

The Application Recovery Layer (ARL) is responsible for adapting and

recovering components after a run-time component failure. The Recovery and Adaptation

Manager in this layer determines plans for dynamically adapting the architecture and

recovering failed nodes. Additionally, this manager executes a reconfiguration template

consisting of reconfiguration commands that handle instantiating components on healthy

nodes and establishing the connections between application components. This layer also

includes recovery and adaptation connectors (not shown in Figure 5.1) that handle

84

recovery of failed transactions and steer application components to a quiescent state in

order to carry out dynamic adaptation as shown previously in chapters 3 and 4.

The next two sections describe the design of the CML and ARL. Interested

readers can refer to (Porter et al., 2016) for more details on the design of the ADL.

Failure
Analysis Manager

(Analysis)

Configuration
Manager

(Partial Knowledge)

DeSARM
(Monitoring/Partial

Knowledge)

Recovery and
Adaptation Manager
(Planning/Execution) Application

Recovery
Layer
(ARL)

Architecture
Discovery

Layer
(ADL)

Configuration
Maintenance

Layer
(CML)

Node Failure Suspected

Failed

Retrieve

Architecture
Request

Retrieve,
Update,
Remove

Subscribe Discovered
Architecture

Figure 5.1 The DARE architecture

 Configuration Maintenance Layer 5.2
The Configuration Maintenance Layer (CML) consists of the Configuration

Manager and the Failure Analysis Manager, which are described next.

85

5.2.1 Configuration Manager
The Configuration Manager (CM) is responsible for maintaining the current

configuration map of the software system, which includes:

 The IP and subnet address of every node in the current configuration of the

software system, and

 The set of identifiers of components and RACs hosted by every node in the

configuration.

In order to tolerate failures and enable distribution of the configuration map, the

configuration map is stored in a distributed hash table (DHT) that supports replication of

its entries (Stoica et al., 2003). The DHT contains entries (see Table 5.1) that map (1) the

IP address of a node to the set of identifiers of components and RACs hosted by the node

with this IP address, (2) the identifier of a component or RAC to the IP address of the

node that is currently hosting this component or RAC, and (3) a subnet address to the IP

addresses of the nodes that are currently in this subnet.

Table 5.1 Key and value pairs of the distributed hash table used by configuration manager to store the

configuration map

Key (hash of) Value

Node IP Address Set of identifiers of the components and connectors

hosted by the node with this IP address.

Component/Connector ID The address of the node hosting the component or

connector with this identifier.

Subnet Address Set of the IP addresses of the nodes in this subnet

86

address.

5.2.2 Failure Analysis Manager
At any one moment, the recovery of a failed component must be handled by

exactly one Recovery and Adaptation Manager. Otherwise, if multiple managers

attempted to recover the same failed component, the system’s configuration may become

inconsistent with, for example, duplicate components and broken connections between

components. To ensure consistent recovery, our approach involves electing the node with

the lowest IP address to become the recovery coordination node in charge of

coordinating recovery of other failed nodes. To ensure scalability of the approach in case

of large systems that span multiple subnets, it is possible to have a recovery node for each

subnet such that this recovery node handles recovery of other nodes in the same subnet.

The Failure Analysis Manager (FAM) module in the recovery node is the only FAM that

proceeds with the recovery process by analyzing the failure, as described next.

The state machine executed by the FAM is shown in Figure 5.2. Initially, the

FAM is in the Idle state. When the FAM receives a notification message from DeSARM

that a node failure is suspected, the FAM first retrieves from the Configuration Manager

(CM) the IP addresses of all nodes that are in the same subnet as the node hosting this

FAM and then transitions to the Determining Recovery Node state. The FAM then

checks whether the suspected node belongs to this subnet. If the suspected failed node is

not in the same subnet as the node hosting this FAM, then the FAM transitions back to

the Idle state. Otherwise, if both nodes belong to the same subnet, then the FAM

87

determines the lowest IP address in this subnet using the set of IP addresses it obtained

from the CM and then checks whether it is hosted by the node with this IP address. At

this point, the recovery node has been determined and only the FAM hosted by the node

with the lowest IP address proceeds with the recovery process by pinging the suspected

failed node and then transitioning to the Waiting for Heartbeat Message state

(Figure 5.2). If a heartbeat message is received from the suspected node, then this node is

running normally. In this case, the FAM transitions to the Idle state. Otherwise, if no

heartbeat message is received within a certain time interval, then the FAM at the recovery

node (1) notifies the peer Recovery and Adaptation Manager (which is located at the

same recovery node as this FAM) of a node failure so that it handles recovery of

components deployed to that node and then (2) transitions to Idle state.

This approach ensures that a recovery node is always elected, even if the node

that failed has the lowest IP address in the subnet, for two reasons. First, DeSARM

always ensures that the FAM on every healthy node will receive a notification that a node

failure is suspected. Second, when a FAM determines the lowest IP address of a subnet, it

always removes the IP address of the suspected failed node from the set of addresses it

obtained from the CM (as shown in Figure 5.2), so that if the failed node has the lowest

IP address in the subnet, then the node with the next lowest IP address can be selected to

become the recovery node.

88

Idle

Node Failure Suspected {from DeSARM}/
Retrieve set of IP addresses in this subnet {to CM}

min(IP_Addresses – Suspected_IP)= current_IP_Address/
Ping Suspected Node

Suspected_IP IP_Addresses OR
min(IP_Addresses – Suspected_IP) current_IP_Address

Heartbeat Received

Timeout/
Failure Notification {to Recovery and Adaptation Manager}

Retrieving
IP Addresses

Waiting for
Heartbeat
Message

Determining
Recovery Node

IP_Addresses/
Compute Node with Lowest IP Address

Figure 5.2 FAM STM

 Application Recovery Layer 5.3
The Application Recovery Layer (ARL) is responsible for overseeing dynamic

adaptation of the CBSA. Furthermore, when one or more nodes fail, the ARL ensures that

the software system recovers to a consistent configuration in which every failed

component is relocated and instantiated on a healthy (i.e., non-failed) node and that the

connections between a recovered component and its neighbor components are re-

established. The ARL consists of Recovery and Adaptation Connectors (see chapters 3

and 4) and Recovery and Adaptation Managers. This section describes the design of the

Recovery and Adaptation Manager.

The Recovery and Adaptation Manager (RAM) is responsible for planning and

executing dynamic adaptation and failure recovery. The RAM executes the state machine

shown in Figure 5.3, which defines behavior during (1) failure recovery and (2) dynamic

adaptation, as explained next.

5.3.1 Behavior of Recovery and Adaptation Manager During Failure Recovery
When the RAM at the recovery node receives a failure notification from the FAM

while in the Idle state (Figure 5.3), it requests the current architecture from DeSARM

89

located at the same node and then transitions to the Requesting Architecture state. When

the RAM receives the architecture, it transitions to the Determining Recovery Plan state

in which it determines the recovery plan as explained next.

First, the RAM retrieves from the CM the set of component identifiers deployed

to the failed node. The RAM then uses the information it obtained from DeSARM and

the CM to determine a recovery plan for each component hosted by the failed node as

follows:

 The RAM first determines the RAC of the failed component by looking up the

architecture it obtained from DeSARM for any RAC that sends input messages,

e.g., synchronous requests or asynchronous messages, to the failed component.

The RAM then notifies this input RAC of component failure. As a result, each

affected input RAC ceases forwarding messages to its component and begins

recovering failed transactions.

 The RAM determines the RACs of other application components that receive

input messages from the failed component so that the recovered component can

also be connected with these recipient RACs. The RAM determines these

recipient RACs by looking up the architecture it obtained from DeSARM for any

component that receives either synchronous requests or asynchronous messages

from the failed component.

 The RAM determines the node to host the recovered component. In our current

design, the RAM selects any random node for this purpose. Alternatively, a self-

90

optimization approach (Menasce et al., 2011) could be used to select the optimal

node for hosting this component.

After the recovery plan is determined, the RAM transitions to the Performing

Recovery state (Figure 5.3) in which it proceeds with recovery by executing a

reconfiguration template to recover each component according to the recovery plan. The

recovery template consists of reconfiguration commands (Kramer and Magee, 1990) for

restoring the system to a consistent configuration through the following RAM actions:

 Instantiate another instance of each failed component on a different node

according to the recovery plan.

 Connect the RACs that communicate with the recovered component by sending

them the Connect command along with the address of the recovered component.

 Update the configuration map so that it reflects the new location of the recovered

component. The RAM also updates the configuration map by removing the failed

node from the configuration and by adding the new node to the configuration.

 Activate the recovered component by sending it the Activate command.

 Send a Reactivate command to the input RAC of the recovered component so that

it resumes normal communication with the recovered component. As a result, the

input RAC resumes forwarding messages to the recovered component, including

any messages that have been lost due to component failure.

Once recovery is complete, the RAM transitions back to the Idle state. The

recovery process is distributed among the RAM and the RAC (Figure 5.4). While in the

Determining Recovery Plan state, the RAM at the recovery coordination node (node R)

91

notifies the RAC of component failure and continues execution. This RAC is hosted at a

different node (node X). As a result, this RAC starts recovering failed transactions

concurrently while the RAM recovers the failed component. While in the Performing

Recovery state, the RAM at node R then coordinates component recovery by sending the

Create command to the RAM at node Y that will host the recovered component.

Eventually, the RAM at node R receives an acknowledgement that the application

component is created. The RAM then requests the RAC to connect with the recovered

component at Node Y. Finally, the RAM activates the recovered component and

reactivates the RAC so that it forwards any lost messages to the recovered component.

Recovering

Idle
Requesting

Architecture
Determining

Recovery Plan
Performing
Recovery

Failure Notification/
Request Architecture {to DeSARM}

Architecture Received/
Plan Recovery

Recovery Plan Completed/
Execute Recovery Plan

Recovery Completed

Adapting

Requesting
Architecture

Adaptation Request/
Request Architecture {to DeSARM}

Architecture Received/
Plan Adaptation

Region of Quiescence Established/
Execute Adaptation Plan

Establishing
Region of

Quiescence

Performing
Adaptation

Adaptation Completed

Determining
Adaptation Plan

Adaptation Plan Completed/
Passivate {to RACs}

Figure 5.3 RAM state machine

92

:RAM
 Node R

:RAC
Node X

Reactivate

Failed

: RAM

Node Y

: Recovered
Component

Node Y

create

Establish Connection

Activated

Connect

Component Created

Create Component

Activate

Activated

Figure 5.4 Fragment of the distributed recovery process

5.3.2 Behavior of Recovery and Adaptation Manager During Dynamic
Adaptation
While in the Idle state, the RAM can receive an external adaptation request

(Menasce et al., 2011) to add a new application component to the architecture, remove an

application component from the architecture or, replace one component with another.

To carry out dynamic adaptation, the RAM needs the current software

architecture, which it requests from DeSARM before transitioning to the Requesting

Architecture state. When the RAM receives the architecture, it transitions to the

Determining Adaptation Plan state in which the RAM determines the (1) input RAC of

the application component affected by the adaptation, (2) the recipient RACs that receive

input messages from the application component affected by the adaptation, and (3) the

93

node that will host the new component (in case of adding a new application component to

the architecture), similarly to how it is done during recovery.

Once planning is complete, the RAM establishes a region of quiescence (Kramer

and Magee, 1990) by sending the Passivate command to the input RAC of the application

component affected by dynamic adaptation so that this RAC drives the application

component to a quiescent state, in which this component is not engaged in any

transactions and will not receive any new transactions from other application

components. When the application component is quiescent, the component’s RAC sends

the quiescence notification to the RAM. As a result, the RAM starts adapting the

architecture and transitions to the Performing Adaptation state.

While in the Performing Adaptation state, the RAM executes an adaptation

template that consists of reconfiguration commands to (1) create any new application

component that needs to be added to the architecture, (2) disconnect and remove

application components that need to be removed from the architecture, (3) connect new

application components with the RACs, (4) update the configuration map to reflect the

new configuration of the software architecture, (5) notify DeSARM of architecture

adaptation so that it can start the process of discovering the new architecture, and (6)

activate application components and input RACs. After dynamic adaptation is complete,

the RAM transitions back to the Idle state.

 Mapping Recovery Functionality to MAPE Activities 5.4
The recovery process described in the previous section is based to the MAPE-K

loop model (Kephart and Chess, 2003). This section shows how the DARE functionalities

94

performed by the various components in Figure 5.1 are mapped to MAPE activities (see

Table 5.2).

In this research, the knowledge (K) in MAPE-K in the DARE framework is

completely decentralized as indicated below:

 Software architecture. We assume that the software system starts with the

software architecture not known at any node. DeSARM on every node then

handles discovery of the current software architecture using gossiping techniques

in a decentralized fashion.

 Configuration Map. None of the nodes have a complete view of the configuration

of the software system. Instead, the configuration map is distributed using a

distributed hash table.

 Message-Based Transactions. None of the nodes have a complete view of the

transactions exchanged between application components. Instead, knowledge of

these transactions is distributed among multiple RACs such that each RAC

maintains only transactions to its component, as shown previously in chapters 3

and 4.

MAPE’s monitoring activity is carried out by DeSARM, which is responsible for

monitoring and suspecting node failures as part of the gossip exchanges between nodes.

When DeSARM suspects a node failure, it notifies the FAM.

The analysis phase of the MAPE loop is performed by the FAM, which localizes

recovery to the subnet that contains the suspected node and appoints one of the nodes in

this subnet to coordinate recovery of the failed node. The FAM hosted by the recovery

95

coordination node then proceeds with the analysis activity by pinging the suspected node

to confirm the failure of this node. If this FAM does not receive a heartbeat reply from

the suspected node within a certain time interval, it notifies the RAM at the same node of

the failure. The analysis phase is also executed by the RACs, since RACs are responsible

for analyzing transactions that were interrupted by failure.

MAPE’s planning phase is executed by the RAM since it is responsible for

determining the plan for adapting the current architecture and recovering every

component deployed to a failed node. The RAM relies on (1) DeSARM for obtaining an

up-to-date view of the software architecture and (2) the CM for obtaining the current

configuration map. By using information from these two services, the RAM can proceed

with planning adaptation or recovery as discussed in section 5.3. The planning phase is

also executed by the RACs, since RACs are responsible for determining recovery actions

required to recover any transactions that were interrupted due to failures.

The execution activity of the MAPE loop is performed by the RAM, which

executes a reconfiguration template for creating failed components on a different node,

connecting the recovered component with other components (as defined in the

architecture obtained from DeSARM), and then activating the recovered component and

its RAC so that they resume normal execution. The execution phase is also executed by

the RACs, which are responsible for executing recovery actions required to recover any

transactions that were interrupted due to failures.

96

Table 5.2 Mapping DARE functionalities to MAPE activities.

M
o
n

it
o
ri

n
g

 DeSARM monitors and suspects node failure through lack of gossip

messages from these nodes.

 DeSARM activates FAM when it suspects a node failure.

A
n

a
ly

si
s

 FAM localizes recovery to a particular subnet and then appoints the

recovery node to be the node with lowest IP address in the subnet.

 FAM at the recovery node asserts failure of suspected node by pinging

suspected node and then notifying RAM if no heartbeat message is

received from the suspected node.

 RAC stops sending messages to failed component and analyzes failed

transactions.

P
la

n
n

in
g

 RAM determines components hosted by failed node.

 RAM determines input and recipient RACs of each failed component.

 RAM activates transaction recovery at input RACs of failed

components.

 RAM determines the recovery plan to recover each failed component.

 RAC plans to recover failed transactions.

E
x
ec

u
ti

o
n

 RAM executes recovery template to:

o instantiate the failed component at a healthy node

o connect recovered component with neighbor components

o activate recovered component and recovery connectors to

resume execution

97

 RAC resumes sending messages, including recovered messages, to

recovered component.

 Component Failure Recovery 5.5
The previous sections described node failure recovery in which every component

hosted by a failed node are recovered on a healthy node. This section describes how

DARE can be extended to recover components that fail independently of the node that

host them.

To address component failure recovery, the DARE framework is extended as

follows:

1. In this research, every application component establishes a connection with

DeSARM (located at the same node as the application component) in order for the

component to exchange messages with other application components. Thus, when

an application component fails, DeSARM detects that a connection is terminated

unexpectedly and then sends Component Failed message (and supplies the

identifier of the failed component) to the peer FAM on the same node.

2. When FAM receives a Component Failed message from DeSARM, it activates

the peer RAM also on the same node. Note that component recovery does not

require electing a recovery coordination node, since the failed component can

simply be restarted on the same node.

3. When RAM is activated, it recovers the failed component as shown previously in

section 5.3.1 but with two exceptions. First, the RAM selects the same node for

98

hosting the recovered component. Second, the RAM does not remove or add

nodes to the configuration map simply because the system can recover to the

same configuration it had before component failure.

99

6 DESIGN OF AN ASSISTANT RECOVERY AND ADAPTATION

CONNECTOR FOR CLIENTS AND PRODUCERS

The previous chapters focused on the design of Recovery and Adaptation

Connectors (RACs) that handle recovery and adaptation concerns of components that are

coordinators, services, and consumers. However, these RACs do not handle recovery and

adaptation of clients and producers. This chapter discusses the design of an Assistant

Recovery and Adaptation Connector (ARAC) that can be used to handle adaptation and

recovery concerns of clients and producers. The goal of the ARAC is to ensure that (1)

responses to clients and requests and asynchronous messages sent by clients and

producers can be recovered in case they are lost due to failure so that they are eventually

received by the RAC and (2) clients and producers can be driven to a quiescent state in

which they completed all transactions that they initiated and will not initiate any new

transactions with other components. To increase its usability, the ARAC is designed so

that it is applicable for both clients and producers in the following patterns:

 Clients in the synchronous message communication with reply, asynchronous

message communication with callback, brokered communication, and SOA

pattern.

 Producers in the unidirectional asynchronous message communication and the

bidirectional asynchronous message communication.

100

To facilitate recovery of clients and producers, the ARAC maintains a log of the

messages it sends and receives so that these messages can be recovered in case of failure.

Recovery of connectors using message logs is described in the next chapter. This chapter

discusses the design of the ARAC.

Each client or producer is associated with an ARAC as follows:

 When the ARAC receives a request from the client (Figure 6.1), it logs the request

and then forwards the request to the service RAC. When the ARAC receives a

service response, it logs the response, forwards the response to the client, and then

sends an ACK message to the service RAC, so that the service RAC removes

messages of this transaction from its queues.

 When the ARAC receives a unidirectional message from the producer

(Figure 6.2), it logs the message and then forwards it to the consumer RAC.

Eventually, the ARAC receives an ACK message from the consumer RAC

indicating receipt of the producer message.

Since the ARAC is designed so that it is applicable for both clients and producers,

the remainder of this chapter uses the term sender to refer to both clients and producers

(i.e. a sender can send synchronous requests, asynchronous messages, or both type of

messages). Furthermore, it is assumed that the ARAC does not fail. The remainder of this

chapter describes the design of the ARAC and how it handles adaptation and recovery

concerns of senders.

101

: Client : ARAC : Service RAC : Service

Request

Forward Request
Forward Request

Response

Forward Response

Forward Response

Log Request

Log Response

ACK

Figure 6.1 Behavior of ARAC during normal execution for transactions that comprise both request and

response messages

: Producer : ARAC : Consumer RAC : Consumer

Message

Forward Message

Forward Message

ACK

Log Message

ACK

Log ACK

Figure 6.2 Behavior of ARAC during normal execution for transactions that comprise unidirectional messages

102

 Design of the ARAC State Machine 6.1
The ARAC has the same structure as the RAC shown previously in Figure 3.1.

However, the ARAC executes the state machine shown in Figure 6.3. This state machine

is similar to the state machines shown previously in chapters 3 and 4 for handling

services (c.f. Figure 3.3) and consumers (c.f. fig. 4.3). The differences are described in

this chapter.

6.1.1 Normal Execution

During normal execution, when the ARAC receives a unidirectional message or a

request while it is in the Waiting for Message state (Figure 6.3), the ARAC increments

the transaction count, forwards this message to its destination, and then transitions to the

Processing state.

While in the Processing state, the ARAC reacts to the various events as follows:

 If the ARAC receives an intermediate or final request, then the ARAC forwards

this request to the service RAC.

 If the ARAC receives an asynchronous message, then the ARAC increments the

transaction count and forwards the message to the service RAC.

 If the ARAC receives the first or an intermediate response, the ARAC forwards

the response to the sender.

 If the ARAC receives a final response, the ARAC forwards the response to the

sender, decrements the transaction count, and sends ACK to the service RAC. If

the sender is not engaged in anymore transactions, the ARAC transitions to the

Waiting for Message state.

103

 If the ARAC receives an ACK event from the service RAC indicating receipt of a

previously sent asynchronous message, the ARAC decrements the transaction

count. Furthermore, if the sender is not engaged in anymore transactions the

ARAC transitions to the Waiting for Message state.

6.1.2 Adaptation of Sender

A sender can be adapted after it has received a response to every transaction it has

initiated and must cease sending any asynchronous messages to the consumer while it is

being dynamically adapted. The sender can resume sending messages only after it has

been activated. Based on this, when the ARAC receives the Passivate command while it

is in the Waiting for Message state (Figure 6.3), then the ARAC transitions immediately

to the Quiescent state. Otherwise, if the ARAC receives the Passivate command while it

is in the Processing state, then the ARAC transitions to the Passivating state and remains

in this state until all currently active transactions are completed. While in the Passivating

state, the ARAC holds all messages that initiate new transactions with the service in the

Service Pending Queue. When all active transactions are completed, the ARAC

transitions to the Quiescent state in which the ARAC also holds any new messages it

receives from the sender in the Service Pending Queue. When the ARAC is reactivated

after dynamic adaptation is completed, it resumes processing all held messages in the

Service Pending Queue.

6.1.3 Recovery of Sender

Consider the case of the sender failure. It is assumed that when the sender

recovers, the recovered sender must process the last response available at the ARAC to

recover its state (Danilecki et al., 2013). Thus, when the sender fails, the Recovery and

104

Adaptation Manager (RAM) must recover another instance of the sender and notify the

ARAC of sender failure as follows:

 The Recovery and Adaptation Manager (RAM) determines the RAC of the failed

component as described in chapter 5. If no RAC is found for the failed

component, then the RAM determines the ARAC of this component by looking

up the architecture for any component that receives input messages (i.e.

synchronous requests or asynchronous messages) from the failed component.

 The RAM notifies the ARAC of sender failure.

 The RAM recovers another instance of the sender and then connects the recovered

sender with the ARAC.

 The RAM activates the sender and reactivates the ARAC.

As a result of notifying the ARAC of sender failure, the ARAC transitions to the

Recovering state in which it recovers the last response it receives from the service using

the following recovery actions:

 If the Response Forwarding Queue contains a service response, then the sender

failed before the ARAC has forwarded this response to the sender. Therefore, the

ARAC forwards this service response to the sender when it is recovered.

 If the Response Forwarding Queue is empty, then the ARAC recovers the last

response it forwarded to the sender by moving this response from the Response

Recovery Queue to the Response Forwarding Queue.

After the sender is recovered and the ARAC is reactivated, the ARAC forwards

the response queued in the Response Forwarding Queue to the recovered sender.

105

Integrated Adaptation and Recovery STM

Active

Recovering

Adapting

Request [sync request]/
Forward Request,

Increment {Transaction Count}

First Request [dlg]/
Forward Request,

Increment {Transaction Count}

Asynchronous Message/
Forward Asynchronous Message,

Increment {Transaction Count}

Intermediate Request, Final Request [dlg]/
Forward Request

Asynchronous Message/
Forward Asynchronous Message,

Increment {Transaction Count}

Passivate/
Notify Passivating

Analyzing Failure
Events

Planning For
Recovery

Component
Recovering

Failed/
Notify Failed

Failure Analysis Results
Recovery Plan

[Transaction Count > 0]

Reactivate [Transaction Count == 0]]/Notify Active

Executing
Recovery

Plan

Restored Lost Messages

Recovery Plan [Transaction Count = 0]

Reactivate/
Notify Active

Final Response
 [Transaction Count = 1]/

Forward Response,
ACK,

Decrement {Active Transaction Count}

ACK
 [Transaction Count = 1]/

Decrement {Active Transaction Count}

First Response, Intermediate Response/
Forward Response

Final Response [Transaction Count > 1]/
Forward Response,

ACK,
Decrement {Transaction Count}

ACK [Transaction Count > 1]/
Decrement {Transaction Count}

First Response, Intermediate Response/
Forward Response

Final Response [Transactions Count > 1]/
Forward Response,

ACK,
Decrement {Transaction Count}

ACK [Transactions Count > 1]/
Decrement {Transaction Count}

Waiting For
Message

Processing

Passivate/Notify Quiescent

Final Response
[Transaction Count = 1]/

Forward Response,
ACK,

Decrement {Active Transaction Count},
Notify Quiescent

ACK
[Transaction Count = 1]/

Decrement {Active Transaction Count},
Notify Quiescent

Passivating

Intermediate Request,
Final Request/

Forward Request

Quiescent

Failed/Notify Failed

Reactivate [Active Transactions Count > 0]]/Notify Active

Figure 6.3 State machine executed by the ARAC

106

7 CONNECTOR RECOVERY

The previous chapters assumed that the recovery and adaptation connector (RAC)

does not fail. As a preliminary research effort, this chapter investigates relaxing this

assumption by considering how the RAC can be recovered after a run-time failure. To

handle recovery of the RAC, the approach involves storing the messages that the RAC

receives into a log so that the RAC can reconstruct the state of its queues by replaying

messages from the log (Tanenbaum and Steen, 2006). To ensure recoverability of the

RAC’s log, the log is replicated such that each replica of the log is stored in a different

node than other replicas of the same log.

This chapter discusses the approach for recovering RACs using logs. Section 7.1

describes the message logging approach used by the RAC. Section 7.2 discusses how

messages are logged during normal execution. Section 7.3 discusses how messages can

be replayed to reconstruct the state of the RAC queues after a runtime failure. Section 7.4

discusses how messages that were lost while the RAC in the failed state can be recovered.

 Message Logging Approach 7.1
As there exists many approaches for message logging, this research considers

using the pessimistic message logging in which the RAC synchronously logs every

incoming application message to stable storage before it processes the message.

107

Pessimistic message logging is used in this research for the following reasons (Elnozahy

et al., 2002):

 Recovery using pessimistic message logging is simple and confined to the

recovered component (i.e. RAC).

 A RAC that recovers from a failure does not require any application

component to rollback its state to a previous state due to the failure of the

RAC. This is a highly desirable property since components in some

application domains, such as SOAs, are highly autonomous and cannot be

forced to rollback their states.

In pessimistic message logging, a component must log information about every

application message it receives before processing that message. Thus in this research, all

input and output messages received by the RAC from application components must be

logged by the RAC. When the RAC recovers from a run-time failure, the recovered RAC

replays messages from its log so that it can reconstruct the state of its queues, as will be

explained in the next sections.

 Behavior During Normal Execution 7.2
As explained in the previous section, the RAC must store the messages it receives

in a log so that these messages can be replayed during recovery time in order to

reconstruct the state of the RAC queues. To accomplish this, an input and an output stubs

are used to facilitate message logging at the RAC (see Figure 7.1). The goal of these

stubs is to separate message logging and replaying concerns from recovery and

adaptation concerns carried out by the RAC. The input stub handles requests from clients

108

to the RAC and responses from the RAC to clients . On the other hand, the output stub

handles requests sent from the RAC to the service and also responses from the service to

the RAC. When it receives an input message, the input stub logs and then forwards the

input message to the RAC. Similarly, when the output stub receives an output response, it

logs and then forwards the response to the RAC.

This section discusses the behavior of the stubs during normal execution for

message logging. The next section describes how these stubs replay messages after a

RAC run-time failure to recover the state of the RAC queues.

During normal execution, the input and output stubs update the RAC log as

follows:

1. When the input stub of the RAC receives a client request (message 2 (referred to

as m2)), it logs the client request (m3) and then forwards this request to the RAC

(m5). In this research, the RAC log is stored in a distributed hash table (DHT) that

supports replication of its entries to ensure recoverability of the RAC log in case

of failure.

2. The RAC processes the client request and then forwards this request to the service

via the output stub (m6).

3. The output stub forwards the client request to the service (m7).

4. The service sends the service response to the RAC via the output stub (m8).

5. The output stub logs the service response (m9) and then forwards the service

response to the RAC (m11).

109

6. The RAC processes the service response and then forwards this response to the

requesting client via the input stub (m12).

7. The input stub forwards the service response to the client (m13).

Thus, this approach ensures that all application messages that the RAC processes

are maintained in a message log.

: Client : ARAC

: Primary RAC

: ServiceRAC: Input Stub : Output Stub

1: Client Request 2: Forward Client Request 5: Client Request 6: Forward Client Request 7: Forward Client Request

8: Service Response

11: Service Response12: Forward Service Response13: Forward Service Response14: Forward Service Response

: Message Log (DHT)

3: Log Message 4: Logged 9: Log Message 10: Logged

Figure 7.1 Message logging during normal execution.

 Reconstructing the RAC State After a Runtime Failure 7.3
When the RAC fails, the Recovery and Adaptation Manager (RAM) recovers

another instance of the RAC and notifies the ARAC of the new location of the RAC. As a

result, the input and output stubs of this newly recovered instance of the RAC must first

recover the state of the RAC’s queues by replaying messages from the log as follows:

1. The input and output stubs retrieve the RAC’s log from the DHT. Note the access

to the log by these stubs is synchronized.

110

2. The input stub iterates over the messages in the log. For each client request in the

log, the input stub marks the request as replayed and then forwards this request to

the RAC.

3. The RAC processes the client request and eventually forwards this request to the

output stub.

4. When the output stub receives (from the RAC) a client request that is marked as

replayed, it checks the log to see whether it contains a corresponding response to

this request by using the message identifier. If the log contains such a response,

then the output stub marks the response as replayed and sends this response to the

RAC. This ensures that a service response is not replayed by the output stub to the

RAC unless the RAC has first processed the client request. Note that the output

stub does not forward to the service any requests that are marked as replayed to

avoid sending duplicate requests to the service.

5. The RAC processes the service response and eventually forwards this response to

the input stub.

6. When the input stub receives (from the RAC) a service response that is marked as

replayed, it discards this response to avoid sending duplicate responses to clients.

At the end of this process, the RAC has processed all replayed client requests and

service responses. As a result, the state of the RAC queues are reconstructed.

 Recovery of Lost Messages 7.4
Failure of the RAC can cause some transactions to be interrupted at different

statuses. Thus, after the RAC reconstructs its state by replaying messages from its log,

111

the recovered RAC must execute certain recovery actions to recover any interrupted

transactions based on the status of the transaction. Note that the recovery actions

executed by the recovered RAC for a transaction are based on the pattern of that

transaction (see chapters 3 and 4). The reminder of this section shows an example of a

non-distributed transaction (see section 3.1 in chapter 3) that fails due to failure of the

RAC. Figure 7.2 depicts an example of a fault-tree model (Ericson, 1999) with the

possible interruption points of a non-distributed transaction. A description of each

interruption point in this tree and the corresponding recovery action are provided as

follows:

112

Transaction Failure

Client Request Not Logged Client Request Logged

OR

S01

S02 S03

Prepare To Commit
Not Sent to Service

S04

Prepare To Commit
Sent to Service

S05

Ready/Refuse To Commit
Logged

Ready/Refuse To Commit
Not Logged

S06

OR

OR

S07

Commit/Abort
Sent to Service

Commit/Abort
Not Sent to Service

S08

OR

S09

Committed/Aborted
Logged

Committed/Aborted
Not Logged

S10

OR

S11

Figure 7.2 Transaction interruption points depicted in a fault-tree model.

1. The RAC could have failed after receiving a client request but before logging this

request (i.e. interruption point S02 in Figure 7.2). This case results in a lost client

request that is not forwarded to service. To solve this issue, the ARAC is notified of

the RAC failure by the Recovery and Adaptation Manager (RAM). As a result, the

113

ARAC resends the client request to the RAC when the RAC is recovered, since the

ARAC has not received a response for the request it forwarded to the RAC.

2. The RAC could have failed after logging the client request but before sending the

Prepare To Commit message to the service (i.e. interruption point S04). This case

results in the recovered RAC waiting indefinitely for a service response to this

request, since the transaction has not been initiated with the service. To recover from

this case, the recovered RAC (1) instructs the service to abort all transactions that are

in the preparing state and then (2) restarts these transactions with the service. The

rationale for these recovery actions is that the recovered RAC is uncertain whether

the service has received these transactions or these transactions were lost due to

failure. To avoid sending duplicate requests to the service, the recovered RAC

instructs the service to abort these transactions and then restarts them with the service.

3. The RAC could have failed after receiving the Ready To Commit (or Refuse To

Commit) message from the service but before logging this response (i.e. interruption

point S06 in Figure 7.2). This case results in a transaction that stays indefinitely in the

prepared (or refused) state. Although this case is indistinguishable from case 2 from

the point of view of the recovered RAC, the recovered RAC can recover this

transaction using the same recovery actions used in the previous case (i.e. instructing

the service to abort the transaction and then restarting this transaction with the

service).

4. The RAC could have failed before sending the Commit (or Abort) message to the

service (interruption point S08). To recover from this case, the recovered RAC

114

instructs the service to either commit or abort the transaction according to the service

response that this RAC has received from the service before it failed.

5. The RAC could have failed after receiving the Committed (or Aborted) message from

the service but before logging this response (i.e. interruption point S10 in fig. 7.3).To

recover from this case, the RAC resends the Commit (or abort) message to the

service.

115

8 DESIGN OF A REUSABLE RECOVERY AND ADAPTATION CONNECTOR

Chapters 3 and 4 discussed the design of different types of the Recovery and

Adaptation Connector (RAC) for different architectural patterns. For instance, the design

of the RAC for handling adaptation and recovery concerns of stateless services in

service-oriented architectures (SOAs) is different from the design of the RAC used to

handle stateful services which are both different from the design of the RAC for handling

consumers in asynchronous patterns. Given these variations in the RACs, it would be

beneficial to apply reuse concepts to unify the RAC design in order to increase its

usability.

This chapter investigates this problem by showing how the software product line

(SPL) technology can be used to design a reusable RAC that can be tailored to (1)

generate different types of RAC as well as (2) generate RACs that can handle integration

of multiple patterns such as a RAC that can handle both synchronous message

communication with reply and asynchronous message communication.

This chapter is organized as follows. Section 8.1 discusses how variability in the

different types of the RAC can be captured using a feature model. Section 8.2 discusses

the impact of features in the feature model on the RAC design. Section 8.3 describes the

feature-based state machine executed by Connector Control of the reusable RAC.

116

 Capturing Variability in the RAC using a Feature Model 8.1

Before a reusable RAC can be designed, commonality and variability among the

different RAC types must be captured using a feature model. In SPL technology, feature

models are used to depict (1) deviations, in terms of features, between different products

of the same product line and (2) the dependency relationships between these features

(Clements and Northrop, 2001).

In this research, the different RAC types are considered products of the same

product line, and the feature model describes how the different types of the RAC vary

among each other. The approach used in this research for designing the feature model and

the reusable RAC is based on the PLUS method (Gomaa, 2004), which has been used

previously in conjunction with adaptation connectors to adapt from one member of a SPL

to another (Gomaa and Hashimoto, 2011).

The PLUS method uses the Unified Modeling Language (UML) metaclass

notation for representing features and UML stereotypes for categorizing features.

Furthermore, features can be grouped together based on constraints on their selection for

a given RAC type, and one feature may require another feature for its existence.

Figure 8.1 shows the feature model for the reusable RAC that is constructed by

analyzing the various RAC designs shown previously in chapters 3, 4, and 6. The

description of these features is given next.

117

<<common feature>>
Connector Kernel

<<common feature>>
Connector Kernel

<<at-least-one-of feature
group>>

Communication Pattern

<<at-least-one-of feature
group>>

Communication Pattern

<<zero-or-more-of feature
group>>

Bidirectional

<<zero-or-more-of feature
group>>

Bidirectional

<<optional feature>>
Unidirectional Asynchronous

<<optional feature>>
Unidirectional Asynchronous

requiresrequires

<<at-least-one-of feature
group>>
Stateful

<<at-least-one-of feature
group>>
Stateful

<<alternative feature>>
Stateless

<<alternative feature>>
Stateless

<<exactly-one-of feature
group>>

Component Statefulness

<<exactly-one-of feature
group>>

Component Statefulness

requiresrequires

{mutually exclusive}{mutually exclusive}

<<optional feature>>
Dialog Interactions

<<optional feature>>
Dialog Interactions

<<optional feature>>
Non-Distributed Transactions

<<optional feature>>
Non-Distributed Transactions

requiresrequires

<<optional feature>>
Bidirectional Asynchronous

<<optional feature>>
Bidirectional Asynchronous

<<zero-or-more-of feature
group>>

Synchronous with Reply

<<zero-or-more-of feature
group>>

Synchronous with Reply

<<optional feature>>
Synchronous Message

Communication with Reply

<<optional feature>>
Synchronous Message

Communication with Reply

<<optional feature>>
Broker Handle

<<optional feature>>
Broker Handle

<<optional feature>>
Service Registration

<<optional feature>>
Service Registration

<<optional feature>>
Asynchronous Message

Communication with
Callback

<<optional feature>>
Asynchronous Message

Communication with
Callback

<<zero-or-more-of feature
group>>

Subscription/Notification

<<zero-or-more-of feature
group>>

Subscription/Notification

requiresrequires

requiresrequires

<<optional feature>>
Distributed Transactions

<<optional feature>>
Distributed Transactions

<<optional feature>>
Message Logging

<<optional feature>>
Message Logging

requiresrequires

<<exactly-one-of feature
group>>

Connector Type

<<exactly-one-of feature
group>>

Connector Type

requiresrequires

<<alternative feature>>
ARAC

<<alternative feature>>
ARAC

<<alternative feature>>
RAC

<<alternative feature>>
RAC

{mutually exclusive}{mutually exclusive}

requiresrequires

Figure 8.1 Feature model for the reusable RAC.

Common features. Common features are features that must be supported by all types of

RAC, such as the ability for a RAC to receive input messages and then to forward these

messages to its component.

Exactly-one-of feature groups. Exactly-one-of feature groups represent mutually

exclusive features that cannot coexist in a single RAC. In Figure 8.1, the connector type

feature group represents the type of the connector which can be either a RAC (see

chapters 3 and 4) or an ARAC (see chapter 6). Another example of an exactly-one-of

118

feature group is the Component Statefulness. In particular, the component handled by a

RAC can be either Stateless or Stateful. The design of the RAC for stateless components

is described in section 3.1. However, as described previously in the design of the RAC

for stateful components (see section 3.2), the RAC must forward messages to a stateful

component using the Two-Phase Commit (2PC) protocol. Since using the 2PC protocol

with stateless components is unnecessary, because it increases complexity and is less

efficient, the RAC must not use the 2PC protocol with stateless components. As a result,

the stateless and stateful features are treated as mutually exclusive features in Figure 8.1.

At-least-one-of feature groups. At-least-one-of feature groups represent groups from

which at least one feature must be selected. In Figure 8.1, the stateful feature group

represents the type of stateful transactions that the reusable RAC can manage. In

particular, a transaction can be non-distributed (c.f. section 3.2) or distributed (c.f. section

3.3.5). Another example of the at-least-one-of feature group is the Communication

Pattern feature group which represents the communication patterns that the RAC

participates in. In particular, a RAC can manage either Unidirectional Asynchronous

communication (c.f. section 4.1), Bidirectional communication (c.f. sections 3.1, 3.3, and

4.3.1), Subscription/Notification (c.f. section 4.3.2) or any combinations of these types of

communication.

Zero-or-more-of feature groups. Zero-or-more-of feature groups represent groups from

which zero or more features can be selected. In Figure 8.1, the Bidirectional feature

119

group represents possible bidirectional communication patterns that the reusable RAC

can manage. In particular, the reusable RAC can handle bidirectional communications

that involve Synchronous with Reply (c.f. section 3.1), Asynchronous with Callback (c.f.

section 3.3.1), Bidirectional Asynchronous (c.f. 4.3.1), or any combinations of these types

of bidirectional communications. The Synchronous with Reply feature itself is a zero-or-

more-of group since this type of communication can involve several communication

patterns including Broker Handle (c.f. section 3.3.3), Service Registration (c.f. section

3.3.2), or the Synchronous Message Communication with Reply (c.f. section 3.1).

Optional features. Optional features represent features that are supported by some (but

not all) types of RAC. In Figure 8.1, in case of Synchronous Communication with Reply,

transactions can optionally comprise Dialog Interactions between components. Note that

in the synchronous communication with reply, a client sends a request to the service and

then blocks waiting for the service response. On the other hand, dialog interactions are

used when the client needs to send multiple requests synchronously to the service such

that the next request in the dialog depends on the response of the previous request. As a

result, the entire dialog is considered as a compound transaction. Another example of an

optional feature is the Message Logging feature which enables the RAC to log the

messages it receives (see chapter 7).

Given the feature model in Figure 8.1, the goal is to design a product line reusable

RAC that satisfies this model, such that this reusable RAC can be tailored based on

feature selection to generate different types of the RAC.

120

 Feature/Component Table 8.2

In order to understand the impact of each feature in Figure 8.1 on the design of

the reusable RAC, the reuse category of each component in the RAC must be analyzed.

Based on this analysis, a feature/component table is constructed (see Table 8.1) to map

the impact of each feature on each component of the reusable RAC. Then from this table,

a reuse stereotype is assigned to components (see Figure 8.2). The remainder of this

section discusses the impact of features on each RAC component.

<<connector>>
<<kernel-param-vp>>
:Service Recovery Connector

<<control>>
<<optional>>
:Response Manager

<<control>>
<<kernel>>
:Request Manager

<<optional>>
:Response Recovery Queue (RRQ)

<<optional>>
:Response Forwarding Queue (RFQ)

<<kernel>>
:Service Pending Queue (SPQ)

<<service>>
:Service

<<client>>
:Client

<<coordinator>>
<<kernel>>

:Request Coordinator

<<coordinator>>
<<optional>>

:Response Coordinator

<<optional>>
:Service Recovery Queue (SRQ)

<<kernel>>
:Service Active Queue (SAQ)

<<kernel>>
:Active Transactions Count

<<state-dependent- control>>
<<kernel-param-vp>>

:Connector Control

<<stub>>
<<optional>>
:Output Stub

<<stub>>
<<optional>>
:Input Stub

Figure 8.2 Design of the reusable RAC with reuse stereotypes.

Request Manager. The Request Manager is responsible for managing input messages,

including synchronous requests and asynchronous messages, to the RAC. Since every

121

RAC must receive input messages to its component, the Request Manager is a kernel

composite component (see Figure 8.2) that must always be supported by all RAC types.

Request Coordinator. The Request Coordinator is responsible for (1) sending input

messages to Connector Control for further processing as well as (2) managing the various

queues in the Request Manager. Since a RAC must have an input message queue and

input messages must always be forwarded to Connector Control, then the Request

Coordinator is a kernel component.

Connector Control. Connector Control is responsible for forwarding messages to its

application component and handling adaptation and recovery concerns of this component.

Since forwarding messages must be supported by all RAC types, then Connector Control

is a kernel component. However, as described previously in chapters 3 and 4, the

behavior of Connector Control for handling adaptation and recovery concerns differs

based on the Statefulness of the component, the selected Communication Patterns, and

whether Dialog Interactions and Distributed Transactions features are supported.

Therefore, Connector Control is a parameterized component whose behavior can change

based on the selection of these features (see Table 8.1). Thus, these feature conditions are

used to tailor the reusable state machine executed by Connector Control, as will be

discussed in section 8.3.

122

Response Manager. The Response Manager is responsible for receiving and maintaining

output responses. As shown previously in chapter 4, RACs in asynchronous patterns do

not receive responses from their components. Therefore, the Response Manager is an

optional composite component that is only selected for Synchronous with Reply

communication and/or Asynchronous Communication with Callback Handle.

Response Coordinator. The Response Coordinator is responsible for managing queues

that maintain service responses. As shown previously in chapter 4, RACs in

asynchronous patterns do not receive responses from their components. Therefore, the

Response Coordinator is an optional component that is only selected for Synchronous

with Reply communication and/or Asynchronous Communication with Callback Handle.

Input and Output Stubs. The Input and Output Stubs are responsible for message logging

and message replaying as described previously in chapter 7. These stubs are optional

objects that are only selected if the Message Logging feature is selected.

Table 8.1 Feature/component table.

Feature Name Feature

Category

Component Name Reuse

Category

Feature

Condition

RAC Kernel Common Request Manager

Request

Coordinator

Kernel

Kernel

123

Connector Control Kernel,

Parameterized

Stateless Alternative Connector Control

Response Manager

Response

Coordinator

Kernel,

Parameterized

Optional

Optional

stateless

 Synchronous

with Reply

 Async. Comm.

with Callback

Optional Connector Control

Response Manager

Response

Coordinator

Kernel,

Parameterized

Optional

Optional

sync request

 Unidirectional

Asynchronous

 Bi-directional

Asynchronous

Optional Connector Control Kernel,

Parameterized

async

Dialogs Optional Connector Control

Response Manager

Response

Coordinator

Kernel,

Parameterized

Optional

Optional

dlg

124

Distributed

Transactions

Alternative Connector Control Kernel,

Parameterized

distributed

tr

Non Distributed

Transactions

Alternative Connector Control Kernel,

Parameterized

Non-

distributed

tr

RAC Alternative Connector Control Kernel,

Parameterized

RAC

ARAC Alternative Connector Control Kernel,

Parameterized

ARAC

Message Logging Optional Input Stub

Output Stub

Optional

Optional

 Feature-Based Connector Control State Machine 8.3

As described in section 8.2, Connector Control (CC) is a kernel, parameterized

component whose behavior changes based on feature selection. The goal of CC is to

handle adaptation and recovery concerns of its component. In order to manage the

complexity of integrating multiple adaptation and recovery state machines into CC, a

reusable state machine is constructed from which different types of RAC can be

generated. The approach involves mapping patterns to features, and then augmenting

125

transitions in the reusable state machine with feature conditions such that transitions can

be enabled or disabled based on feature selection as follows:

 The design of the RAC for handling adaptation and recovery concerns of stateless

services (c.f. fig. 3.3 in chapter 3) is mapped to the stateless feature. As a result,

transitions with pattern-based events in this state machine are augmented with the

feature conditions RAC and stateless.

 The design of the RAC for handling adaptation and recovery concerns of stateful

services that are involved in non-distributed transactions (c.f. fig. 3.6 in chapter 3) is

mapped to the non-distributed transactions feature. As a result, transitions with

pattern-based events in this state machine are augmented with the feature condition

RAC AND non-distributed tr. Note that this pattern may also involve transactions that

involve synchronous request with replay and/or dialog interactions. Therefore, the

state machine in fig. 3.6 in chapter 3 is augmented with the RAC, sync request and dlg

conditions as well.

 The design of the RAC for handling adaptation and recovery concerns of stateful

services that are involved in distributed transactions (c.f. fig. 3.14 in chapter 3) is

mapped to the distributed transactions feature. As a result, transitions with pattern-

based events in this state machine are augmented with the feature condition RAC and

distributed tr.

 The design of the RAC for handling adaptation and recovery concerns of consumers

in asynchronous patterns (c.f. fig. 3.3 in chapter 3) is mapped to the Unidirectional

126

and Bidirectional Asynchronous features. As a result, transitions with pattern-based

events in this state machine are augmented with the feature condition RAC and async.

 The design of the Assistant Recovery and Adaptation Connector (c.f. chapter 6) is

mapped to the ARAC feature. As a result, transitions with pattern-based events in this

state machine are augmented with the feature condition ARAC.

At this point, a reusable state machine is constructed for CC by integrating the

pattern-based state machines such that every pattern-based transition in this reusable state

machine has a guard with a feature condition. Thus, these transitions can be enabled or

disabled using feature selection as follows:

 If the stateless feature is selected, then the stateless feature condition must be set for

CC (see table 8.1), which enables all transitions of the integrated adaptation and

recovery state machine used to handle stateless services.

 If the distributed transaction feature is selected, then the distributed tr feature

condition must be set for CC (see table 8.1), which enables all transitions of the

integrated adaptation and recovery state machine used to handle services involved in

distributed transactions.

 If the non-distributed transaction feature is selected, then the non-distributed tr

feature condition must be set for CC (see table 8.1), which enables all transitions of

the integrated adaptation and recovery state machine used to handle services involved

in non-distributed transactions.

127

 If either the Unidirectional or Bidirectional Asynchronous features is selected, then

the async feature condition must be set for CC (see table 8.1), which enables all

transitions of the integrated adaptation and recovery state machine used to handle

consumers involved in asynchronous patterns.

 If the ARAC feature is selected, then the ARAC feature condition must be set for CC

(see table 8.1), which enables all transitions of the integrated adaptation and recovery

state machine executed by the ARAC.

In this research, every message contains metadata that is used by the reusable

RAC to identify the pattern involved, including the communication type (e.g.

asynchronous or synchronous with reply) as well as whether the transaction is distributed

and whether it involves a dialog. Therefore, the reusable RAC is capable of setting

feature conditions based on metadata of the messages it receives. However, the stateless

and ARAC feature conditions must be set at deployment time of each RAC. Note that if

the ARAC feature condition for ARAC is selected, then the reusable RAC is configured

as an ARAC.

8.3.1 Example of RAC Generation

This section shows an example of tailoring CC based on feature selection to

support multiple patterns as shown in section 8.3. In this example a RAC must be tailored

for handling a stateful service that participates in both distributed and non-distributed

transactions.

128

In this example, since the service is stateful and participates in both distributed

and non-distributed transactions, then the RAC, non-distributed transactions and

distributed transactions features must be selected. As a result of selecting these features,

CC executes the state machine shown in Figure 8.3 which enables the transitions of the

state machines of the two corresponding patterns for handling non-distributed

transactions (c.f. fig. 3.6 in chapter 3) and for handling distributed transactions (see fig.

3.14 in chapter 3).

129

Integrated Adaptation and Recovery STM

Active

Request [sync request]/
Prepare To Commit (Request),
Increment {Transaction Count}

First Request [dlg]/
Forward Request,

Increment {Transaction Count}

Prepare To Commit [distributed tr]/
Forward Prepare To Commit,

Increment {Transaction Count}
Passivate/

Notify Passivating

Failed/Notify Failed

Reactivate/Notify Active

Processing

Passivate/Notify Quiescent

Failed/Notify Failed
Transactions Aborted/
Commit {committing transactions},
Abort {aborting transactions},
Notify Active

Reactivate [Active Transactions Count == 0]/Notify Active

Request [sync request]/
Prepare To Commit (Request),
Increment {Transaction Count}

First Request [dlg]/
Forward Request,

Increment {Transaction Count}

Intermediate Request [dlg]/
Forward Request

Final Request [dlg]/
Prepare To Commit (Request)

Prepare To Commit [distributed tr]/
Forward Prepare To Commit,

Increment {Trans. Count}

First Response, Intermediate Response [dlg]/
Forward Response

Ready To Commit (Final Response) [non-distributed tr]/
Commit

Refuse To Commit [non-distributed tr]/
Abort

Ready Read Only(Response)
[non-distributed tr AND Transaction Count > 1]/

Forward Response
Decrement {Transaction Count}

Committed [non-distributed tr AND Trans Count > 1]/
Retrieve and Forward Response,
Decrement {Transaction Count}

Aborted [non-distributed tr AND Trans Count > 1]/
Retrieve and Forward Response,
Decrement {Transaction Count}

Ready To Commit (Final Response)[distributed tr]/
Forward Ready To Commit

Refuse To Commit [distributed tr]/
Forward Refuse To Commit

Commit [distributed tr]/
Forward Commit

Abort [distributed tr]/
Forward Abort

Committed [distributed tr AND Transaction Count > 1]/
Forward Committed,

Decrement {Transaction Count}

Aborted [distributed tr AND Transaction Count > 1]/
Forward Aborted,

Decrement {Transaction Count}

Committed
[non-distributed tr AND Trans Count = 1]/

Retrieve and Forward Response ,
Decrement {Transaction Count},

Aborted
[non-distributed tr AND Trans Count = 1]/

Retrieve and Forward Response ,
Decrement {Transaction Count}

Ready Read Only(Response)
[non-distributed tr AND Trans Count = 1]/

Forward Response,
Decrement {Transaction Count}

Committed
[distributed tr AND Transaction Count = 1]/

Forward Committed,
Decrement {Transaction Count},

Aborted
[distributed tr AND Transaction Count = 1]/

Forward Aborted,
Decrement {Transaction Count}

Adapting

Recovering

Waiting For
Request

Figure 8.3 CC state machine for handling integration of distributed and non-distributed transactions.

 Possible Optimizations 8.4

Chapters 3 and 4 described how the RAC requires additional ACK messages for

various patterns so that it can remove transaction messages from its queues. This section

describes the number of additional messages required for each different type of RAC and

possible optimizations to reduce this number (see Table 8.2). For all types of RACs, an

additional ACK message is required at the end of the transaction so that the RAC can

130

remove the transaction messages from its queues. In SOA-related patterns, these ACK

messages can be piggybacked into the next transaction that the client initiates with the

service. In the unidirectional asynchronous message communication, the consumer can

periodically send a single ACK message to the consumer RAC for acknowledging

multiple transactions. In case of the synchronous message communication with reply

when the service has non-idempotent operations, there are two additional messages for

each transaction that correspond to the second phase of the 2PC protocol. The

committed/aborted response from the service to the service RAC can be piggybacked into

the next response of another transaction (e.g. ready To Commit) that the service sends to

the RAC. Note that in case the service does not receive any transactions from the RAC

within a certain time interval, then the service has to send explicit committed/aborted

messages to the RAC.

Table 8.2 Number of additional messages required by each type of RAC and possible optimizations

Pattern Number of Additional

Messages Per

Transaction

Possible Optimizations

Synchronous Message

Communication with

reply (stateless service)

One additional ACK

message is needed when

transaction is completed so

that the service RAC can

remove transaction

messages from its queues.

The ACK message can be

piggybacked into the next

transaction that the client

initiates with the service.

131

Synchronous Message

Communication with

reply (stateful service

with non-idempotent

operations)

There are two cases to

consider:

 If the operation is read-

only, then similar to the

previous pattern, only

one ACK is needed to

indicate completion of

transaction.

 If the operation is

write, then in addition

to the ACK message,

there are two extra

messages needed for

the second phase of

2PC.

ACK messages can be

handled in the same way as

the previous pattern. In

case of write operations,

the committed or aborted

confirmation message from

the service to the RAC can

be piggybacked into the

next response (e.g.

readyToCommit) that the

service sends to the service

RAC. Thus, only one extra

message is needed from the

RAC to the service for

instructing the service to

either commit or abort the

transaction. Note that if the

service does not receive a

new transaction from the

RAC within a certain time

interval, then the service

must send explicit

132

committed/aborted

messages to the service

RAC.

Distributed Transaction 1+n additional ACK

messages are needed when

transaction is completed

where n is the number of

services in the pattern.

ACK message can be

piggybacked into the next

transaction, similar to the

previous two patterns.

Unidirectional

Asynchronous Message

Communication

One additional ACK

message from consumer to

consumer RAC is needed

to indicate that the

consumer is done with the

producer message.

The consumer can

periodically send one

message to consumer RAC

to acknowledge completion

of multiple transactions

(instead of a single

transaction).

133

9 FORMAL PROPERTIES

This section defines formal recovery and adaptation properties and proofs that are

ensured by both the DARE framework and Recovery and Adaptation Connectors

(RACs). Section 9.1 defines several concepts formally, including software architecture,

configuration map, architectural pattern and transactions which are used throughout this

chapter. Section 9.2 defines properties related to the DARE framework. Section 9.3

defines properties related to the RACs in SOA patterns when services are stateless.

Section 9.4 defines properties related to the RACs in SOA patterns when services are

stateful. Section 9.5 defines properties related to the RACs in asynchronous patterns.

9.1 Definitions
This section formally defines several concepts that are used throughout this

chapter, including software architectures, configuration maps, and architectural patterns

and transactions.

9.1.1 Software Architecture

In this dissertation, a software architecture is defined as the set * +

where:

 is the set of objects in the architecture such that an object can be either an

application component or a Recovery and Adaptation Connector (RAC).

134

Formally, { | + such that { } is a set of

application components and R = { } is a set of RACs in

 is the set of interactions between objects such that

 {() * + * +}. Here,

identifies the interaction type between objects and which can be either

 for synchronous message communication or for asynchronous

message communication. Additionally, identifies the destination type for

messages which can be either for a multicast message that is intended to

multiple destinations or for a unicast message that is intended to a single

destination.

9.1.1 Configuration Map

A configuration map defines the mapping between every object in a

software architecture to the node that is currently hosting this object (and vice versa).

Formally, the configuration map

 of an architecture at time is defined as

 * () ()+ where:

 * + is a set of nodes in the software system

 is the set of objects in the software system

 () is a function that maps a node to the set of

objects hosted by node

 () is a function that maps an object to the node that

is hosting object

135

9.1.2 Architectural Patterns and Message-Based Transactions

In this dissertation, an architectural pattern in a software architecture is

defined as * + where:

 is the set of objects in

 is the set of interactions between the set of objects

 * + is a set of transactions such that a transaction is

defined as *() () + of dependencies between

events executed by components where dependencies are

defined based on Lamport’s happened-before relationship (Lamport, 1978).

In this research, an event can be one of the following message passing events:

 (
) denotes an event executed by component to send a

message of a transaction to component .

 (
) denotes the corresponding receive event executed by

component to receive
 that was sent by component .

Additionally, an event can be one of the following three events for manipulating

the queues maintained by a RAC:

 (
) denotes an event executed by to queue the

message
 in a queue .

 (
) denotes an event executed by to move the

message
 from a queue to queue .

 (
) denotes an event executed by to dequeue the

message
 from a queue .

136

9.2 DARE Properties
This section describes several properties that the DARE framework ensures

during failure recovery and dynamic adaptation. In particular, DARE ensures that when

there is a failure, the system eventually recovers a configuration in which every failed

component is recovered to a healthy node. For dynamic adaptation, DARE ensures that

components are not adapted unless a region of quiescence has been established.

9.2.1 Failure Recovery

Let where
 denotes the current state of node . Initially,

 indicating that is running normally. When a failure event occurs at , then

 indicating that has failed.

The goal is to show that when a failure occurs to node
 , then the

software system eventually transitions from the configuration
 to configuration

which has the following three properties:

 A1:
 ()(

 (
))

 A2:

 A3:
 () ()

The first property indicates that for every component that was previously hosted

by the failed node according to the configuration map
 , eventually is recovered

to another node such that and is in the state. Property A2 indicates

that the failed node is not part of the new configuration map
 . Property A3 ensures

137

a consistent configuration in which there are no duplicate application components in the

configuration (i.e. a component cannot be hosted by more than one node). We assume

that these three properties are satisfied during the initial deployment of the software

systems. Thus, we show how our approach satisfies these properties at run-time in spite

of failures.

We now show how these properties are satisfied.

Property A4: By assumption if a node n has failed, then every healthy node eventually

receives a notification message that node n has failed. Formally,

 , the following property holds:

 (())

This property indicates that when a failure event occurs at node , then the Failure

Analysis Manager (FAM) hosted by node whose current state is normal will eventually

receive a notification message indicating failure of node is suspected.

This property is provided by assumption, since it is assumed that DeSARM on

every healthy handles sending notification messages to the peer FAM (located on the

same node) when it suspects node failures.

Property A5: By design, if the FAM on multiple nodes receive a notification message

from DeSARM that the failure of a node is suspected, then only the node with the lowest

IP address proceeds with recovery. Let () be an event denoting

FAM at node activating RAM at node to recover node . Property A5 is defined based

on property A4 as follows:

138

 A5: (() (
)

 ())

Proof. Property A5 indicates that a FAM on node always eventually activates the

RAM on node to recover the failed node only if (1) FAM on node has received a

notification message from DeSARM of failure of node according to property A4 and

node has the lowest identifier according to configuration
 (in this dissertation

nodes are identified through their IP addresses). This property ensures that only one FAM

is activated at any one moment to recover a failed node and is achieved by design,

since the state machine executed by the FAM (see fig. 5.2 in chapter 5):

 First retrieves the IP addresses of all nodes from the configuration manager

 Checks whether it is hosted by the node with the lowest IP address, and

 Activates the peer RAM if no heartbeat message is received from the

suspected node.

Proof of properties A1-A3. From property A5, we can show that properties A1-A3 are

satisfied as follows. By design, the RAM at node that satisfies property A5 proceeds

with the recovery process by determining a recovery plan to recover each failed

component deployed to the failed node according to the algorithm shown in fig 9.1.

First, the RAM retrieves the software architecture from DeSARM and determines the

failed components hosted by the failed node by looking up
 ()

using the configuration manager. For each failed component , the RAM determines the

139

 () to recover , including notifying the RAC of the failed component and selecting

the node that will host the recovered .

 1

2

3

4

5

6

Input: Failed_IP_Address the IP address of the failed node

Effect: determines the recovery plan for recovering a component hosted by the failed

node.

Definitions:

 failed_components: the set of components hosted by the failed node.

 plan(x): the recovery plan for recovering a failed component x. plan(x) consists of

 the tuple (i, r, n) where:

 i is the input RAC that forward input messages, including synchronous

 requests and asynchronous messages, to component x.

 r is the set of recipient RACs for component x that receive

 output messages from component x.

 n is the IP address of the node to which component x must be recovered.

architecture ← SA /* retrieved from DeSARM */

failed_components ←
 () /* retrieved from local CM */

foreach c failed_components do

 plan(c).i ← t.u s.t. t SA AND t.v = c

 send () to ()

 plan(c).r ← t.v s.t. t architecture AND t.u = c

 plan(c).n ← (
)

140

7

8

end

Figure 9.1 algorithm executed by the RAM to determine a recovery plan

After determining the recovery plan, the RAM on node requests the RAM on node

to create an instance of failed component and then connects with the RACs that

interact with it (see fig 9.2). Thus, this sequence of events satisfies property A1. The

RAM on node then updates the configuration map by removing the failed node from

the configuration and adding the new node to the configuration, which satisfies property

A2. From property A5, only a single RAM is activated to recover a failed node . Thus, a

failed component cannot be recovered by more than one RAM which ensures that

cannot be recovered on multiple nodes. As a result, property A3 is satisfied.

1

2

3

4

Input: Failed_IP_Address the IP address of the failed node

 plan(c) the recovery plan to recover the failed component c

Effect: recovers the failed component c according to plan(c) by instantiating component c

on node () , connecting c with plan(c).i and plan(c).r, updating the configuration,

and finally reactivating plan(c).i.

/* Create component c */

send () to RAM at node ()

/* Connect c */

send (()) to ()

141

5

6

7

8

9

10

foreach i plan(c).r do

 (

()) to

end

//Update configuration map

 * +

 * () +

/* Activate c and input RAC */

send activate() to c

send reactivate() to ()

Figure 9.2 algorithm executed by the RAM to recover a failed component

9.2.2 Dynamic Adaptation

The adaptation capability of DARE is based on the change management rules

described by Kramer and Magee (Kramer and Magee, 1990). Let ()

* + be a set of adaptation commands to adapt a component such that

an adaptation command can be either:

 () for adding component to the architecture at node .

 () for removing component from the architecture.

 () for connecting component with component .

 () for disconnecting component from component .

DARE ensures before adapting component , the recovery and adaptation

connector of component , denoted as , steers component to the quiescent state in

142

which is not engaged in any transactions and will not receive any new transactions

from other components according to the following property:

Property A6: When the Recovery and Adaptation Manager (RAM) receives an

adaptation command to adapt component k, the RAM instructs to passivate

component k according to the following property:

 ((()) ())

Proof. This property is satisfied by the state machine executed by the RAM (see

Figure 5.3) since when the RAM receives an adaptation command, it sends the Passivate

command to and transitions to the Establishing Region of Quiescence state until it

receives a response from that component has become quiescent. Therefore, no

adaptation takes place unless is in the quiescent state.

Once has become quiescent, the RAM then proceeds with modifying

architecture according to the following RAM commands:

1. () () DARE creates component on node

2. () (), DARE disconnects component from

3. () () DARE removes component from the architecture

4. () (), DARE connects to component

When all adaptation commands are performed, DARE sends the Activate

command to every component that has been added in step 1 and then sends the Reactive

command to so that it resumes normal execution.

143

9.3 Recovery and Adaptation Properties of RAC for Stateless
Components

This section describes several properties achieved by the Recovery and

Adaptation Connector (RAC) for recovering and adapting stateless services during

normal execution, failure recovery, and dynamic adaptation. The goal of a that

handles recovery and adaptation concerns of a stateless service is to ensure the

following property:

Property P1: if receives a client request, then eventually sends the

corresponding response of this request to the requesting client. Formally:

 ((
) (

))

9.3.1 Normal Execution

This section defines several properties of during normal operation (i.e.

assuming that there are no failures or adaptation).

Property P2: any request received by from a client is queued by into the

Service Pending Queue (SPQ). Formally:

 ((
) (

))

Proof. This property is satisfied by design of the state machine executed by the Request

Coordinator of since the first action executed by the Request Coordinator of

whenever it receives a request from a client is to queue that request in the SPQ (c.f. fig.

3.4 in chapter 3). Formally, (
)

 (
) .

144

Property P3: if queued
 into the SPQ, then will eventually forward

this request to the service . Formally:

 ((
) (

))

Proof. By design, when the Request Coordinator of receives
 , then in

addition to queueing the request into the SPQ (as defined in property P2), the action is to

also forward this request to Connector Control of (c.f. fig. 3.4 in chapter 3).

Formally, (
) (

). From the state machine executed by the

Connector Control (c.f. fig. 3.3 in chapter 3), when Connector Control receives

 then the actions are to (1) forward the request to and (2) instruct the Request

Coordinator to move this request from the SPQ to the SAQ, i.e., (

)

 (

) (
).

Property P4: when forwards
 to service , then moves this request

from the SPQ to the Service Active Queue (SAQ), indicating that this request is currently

being processed by . Formally:

 ((
) (

))

Proof. By design:

145

 (
) (

) (
)

 That is, receiving a client request causes Connector Control to send the request to

the service (as shown in property P3) and also to send this request to the Request

Coordinator. By design, sending the request back to the Request Coordinator causes the

Request Coordinator to move the request from the SPQ to the SAQ. I.e.

 (
) (

).

Property P5: when receives
 from service , then this response is

queued in the Response Forwarding Queue (RFQ). Formally:

 ((
) (

))

Proof. From property P3, eventually forwards the requests it receives to service .

Since by assumption the service is running normally, then eventually sends to

the responses of the requests it receives from this connector. By design in the message

sequence executed by (see fig. 3.1 in chapter 3), the first action executed the

Response Coordinator when it receives a service response is to queue that response in the

Response Forwarding Queue (RFQ). Formally,

 (
)

 (
) .Thus, this message sequence

satisfies property P5.

146

Property P6: when queues
 into RFQ, then this response is eventually

forwarded by to the requesting client. Formally:

 ((
) (

))

Proof. By design, when the Response Coordinator of receives a response, it

forwards this response to Connector Control. In other words, (

)

 (
). This sequence of

events causes the following message sequence to execute (see fig. 3.3 in chapter 3):

 (
)

 (
)

 (
)

 (
)

This sequence of events indicates that when Connector Control receives

 , it triggers actions to forward this response to (1) , (2) to the Request

Coordinator, and (3) to the Response Coordinator.

Properties P7: when forwards
 to the requesting client, then this

response is moved from the RFQ to the RRQ and the corresponding request of this

response is moved from the SAQ to the SRQ. Formally:

147

 ((
)

 (
) (

))

Proof. By design and from the proof of the previous property:

 (
)

 (

) (

) (

)

 That is, receiving a service response causes Connector Control to send the

response to the requesting client and also sending this response to the Request and

Response Coordinators. Sending the response back to the Request Coordinator causes the

Request Coordinator to move the request from the SAQ to the SRQ. I.e.

 (
) (

). Similarly, sending the response to the Response

Coordinator causes this coordinator to move the response from the RFQ to the RRQ

according to the sequence: (

) (
).

148

Properties P9: does not remove any transaction messages from the SRQ or the

RRQ unless it receives an acknowledgement message from the client that initiated this

transaction, indicating completion of the transaction. Formally:

 (((
)

 (
)) ())

Proof. This property is satisfied by the message sequence of the RAC design shown in

fig. 3.1 in chapter 3, since the actions of dequeuing messages from these queues are

dependent on receiving the ACK message from the client. In other words,

 ()

 (

) (

). Receiving the message causes the

Request and Response Coordinators to remove all messages of from the SRQ and the

RRQ.

9.3.2 Failure Recovery

This section defines several properties that are provided by during failure

recovery of service . These properties ensure that any transaction that failed due to

failure of is eventually recovered and restarted when is recovered. Furthermore, these

149

properties ensure that all transactions received by the RAC while is in the failed state

are queued until recovers from failure.

Properties P10: Let () indicates a failure event occurring to service .

when service fails, then eventually is notified of failure by the Recovery and

Adaptation Manager. Formally:

 (() ())

Proof. This property is satisfied by design as shown previously in section 9.2 since while

determining the recovery plan, always notifies the input RAC of the failed

component of failure.

Property P11: when is notified by of failure, then ceases forwarding

messages to and holds all requests to in the SPQ. Formally:

 ((
)

 (
)

 (
))

Proof. This property is satisfied by the design of the Request Coordinator as can be

clearly seen from the state machine executed by this coordinator (c.f. fig. 3.4 in chapter

3). In this state machine, when the Request Coordinator is notified of failure according

to property P10, then the Request Coordinator transitions to the Failed state in which the

action for receiving client requests is to hold these requests into the SPQ. Formally,

150

 ()

While the Request Coordinator is in the Failed state, then it holds all requests in the SPQ

as follows:

 (

)

 (
)

 (
)

Property P12: Let () denote a failure event occurring to transaction . is

capable of identifying a transaction as failed according to the following property:

 (() (
) (

))

Proof. This property indicates that a transaction is considered failed if forwarded

the first request of to but did not receive the final response of this transaction from

(due to failure). We now show how is capable of determining failed transactions.

From property P2 in section 9.3.1, a
 is first queued in the SPQ until it is

forwarded to . From property P4, a forwarded request is moved from the SPQ to the

SAQ. From property P8 a forwarded request is moved from the SAQ to the SRQ when

the corresponding response of this request is forwarded to the client. From property P9,

151

 does not remove any requests from SRQ until the transaction containing this

request is completed.

Similarly, from property P5, queues service responses in the RFQ until

 forwards these responses to the requesting client. From property P7, moves

the responses it forwards from the RFQ to the RRQ. From property P9, does not

remove any responses from the SRQ until the transaction containing this response is

completed.

Therefore, all requests and responses of active transactions are maintained by

 in its queues. Given these properties, then is able to determine failed

transactions by analyzing transactions maintained in the SAQ and SRQ and determining

whether the final response of each transaction is queued in either the RFQ or RRQ

according to the algorithm shown in fig. 9.3. In this algorithm, iterates over

transactions queued in the SAQ and the SRQ. For every transaction , if the final

response of this transaction is not queued in either the RFQ or RRQ, then is considered

failed, which satisfies property P12.

 * +

 If
 then

 failed ← failed { t }

 end

152

end

Figure 9.3 algorithm executed by the RAC to determine failed transactions

Properties P13 is capable of recovering all identified failed transactions

according to the property:

 (
)

Proof. Property P13 indicates that moves the requests of every failed transaction

from the SRQ and the SAQ to the head of the SPQ.

To ensure this property, recovers failed transactions according to the

algorithm shown in fig 9.4. First, iterate over the requests queued in the SAQ. For

each request of a failed transaction in the SAQ, moves the request from the SAQ to

the head of the SPQ. Then iterate over the requests queued in the SRQ. For each

request in the SRQ of a failed transaction, moves the request from the SRQ to the

head of the SPQ.

153

 If then

 (
)

 end

end

 If then

 (
)

 end

end

Figure 9.4 algorithm executed by the RAC to recover failed transactions

Properties P15: let () indicate recovery of component to node . When

component is recovered, is eventually reactivated. Formally:

 (() ())

Proof. This property is satisfied by design since while executing the recovery plan, the

Recovery and Adaptation Manager always notifies the input RAC of the recovered

component of component recovery as shown previously in section 9.2 (see fig. 9.2).

Properties P16: when is reactivated after is recovered, then resumes

sending messages, including held and lost messages, to . Formally,
 :

154

 (() (

))

This property indicates that when is reactivated, then eventually

 forwards all requests queued in its SPQ to ,

including all requests held by (according to property P10) and

recovered requests (according to property P13). This property is ensured by design as

shown in the state machine executed by the Request Coordinator (see fig. 3.4 in chapter

3) since when this coordinator is reactivated, it sends all messages queued in the SPQ to

the Connector Control. Connector Control then forwards these requests to normally

according to property P3.

9.3.3 Dynamic Adaptation

This section defines several properties that are provided by during

adaptation of service . These properties ensure that can be adapted only if has

completed all transactions that it is currently engaged and will not receive any new

transactions from other components. Furthermore, these properties ensure that any new

transactions received by the RAC while the component is being adapted are queued until

dynamic adaptation is completed.

Properties P17, P18: when receives the Passivate command from , then

 eventually transitions to the Quiescent state. Furthermore, does not

transition to the Quiescent state unless the service is not engaged in any transactions:

 (())

 (()))

155

Proof. From the design of the state machine executed by Connector Control of (see

figure 3.3 in chapter 3), Connector Control maintains the number of active transactions

that is currently engaged according to the following rules:

 (
) ()

 (
)

 ()

By design, if Connector Control of receives the Passivate command while

 , then Connector Control transitions immediately to the

 state (see fig. 3.3 in chapter 3). Otherwise, Connector Control transitions to

the intermediate state in which it allows existing transactions to terminate

normally but does not forward any new transactions to according to the following

property:

 P19: (

 (
)

 (
)

 (
))

This property is ensured by the state machine executed by

since the action for receiving requests that initiate new transaction with is to hold the

request in the SPQ. Thus, this property ensures that eventually

 and that transitions from the to the

 state.

156

Properties P20: while in the Quiescent state, ceases forwarding all requests it

receives from clients to and holds these requests in the SPQ. Formally:

 ((
)

 (
)

 (
))

Proof. This property is satisfied by the design of the Request Coordinator as can be

clearly seen from the state machine executed by this coordinator (c.f. fig. 3.4 in chapter

3). In this state machine, when the Request Coordinator transitions eventually to the

Quiescent state according to property P18, then the action while in the Quiescent state for

receiving client requests is to hold these requests into the SPQ. Formally,

 ()

When the Request Coordinator receives a request while it is in the Quiescent

state, the action is to hold that request in the SPQ (c.f. fig. 3.4 in chapter 3)

Properties P21: let () denotes completion of service adaptation. When

adaptation is completed, then is eventually reactivated. Formally:

 (() ())

Proof. This property is satisfied by design since when the Recovery and Adaptation

Manager finishes adapting , the RAM always reactive the input RAC of the

component affected by adaptation (see section 9.2).

157

Properties P22: when is reactivated after is adapted to s’, then resumes

sending messages, including held messages, to s’. Formally,
 :

 (() (

))

This property indicates that when is reactivated, then eventually

 forwards all requests queued in its SPQ to ,

including all requests held by (according to properties 19 and

20). This property is ensured by design as shown in the state machine executed by the

Request Coordinator (see fig. 3.4 in chapter 3) since when this coordinator is reactivated,

it sends all messages queued in the SPQ to the Connector Control. Connector Control

then forwards these requests to normally according to property P3.

9.4 Recovery and Adaptation Properties of RAC for Stateful
Components

This section discusses several properties ensured by the RAC for handling

adaptation and recovery concerns of stateful components in SOA patterns. In this

dissertation, the state of a stateful component at time is viewed as the set

* + of transactions executed by . Furthermore, every transaction
 has a

status such that * + where:

 indicates that is currently being executed by and has not yet been

completed.

 indicates that has executed to its entirety.

158

 indicates that has been aborted and must be rolled back, as defined

below.

 indicates that t has committed provisionally. A prepared

transaction remains in the status until the RAC of component

sends either the Commit or Abort message to so that either commits or

aborts , respectively.

We assume that the state of the stateful component is maintained by a

transactional processing system that ensures atomicity of every transaction executed

by . Formally, ensures during normal execution that always transitions from a state

 to state

 with the following properties:

 AS1:

 AS2:

Assumption AS1 indicates that ensures the durability of committed

transactions. Furthermore, AS1 ensures that prepared and active transactions are

maintained until they are either committed or aborted. Assumption AS2 ensures that

aborted transactions are rolled back from the state of component .

Furthermore, we assume that when fails at time and then subsequently

recovers at time (as defined in section 9.2), recovers the state, denoted
 as

follows:

 AS3:

 AS4:

159

These assumptions indicate that is capable of reconstructing the state of by

recovering committed and prepared transactions (AS3) and rolling back transactions that

were in the aborted or active statuses when the failure occurred (AS4).

Given these assumptions of , the goal of that handles adaptation and

recovery concerns of the stateful component is to ensure the following properties:

Property S1: if receives a client request, then eventually sends the

corresponding response of this request to the requesting client. Formally:

 ((
) (

))

This property is similar to property P1 in section 9.3.1. However, in addition to

this property, must also ensure the following property:

Property S2: eventually, all transactions that were rolled back by due to failure are

restarted by . Formally,

:

 (() ())

The goal is to ensure these properties during normal execution, failure recovery,

and adaptation, as will be explained in the next subsections.

9.4.1 Normal Execution

The Two-Phase Protocol (Bernstein and Newcomer, 2009) defines the following

control message:

 denotes a request for the stateful component to prepare

to commit the transaction . We assume that piggybacks

160

a request, denoted as , which contains the

update operation to be performed by .

 denotes the corresponding response of the

 request indicating that the stateful component has

prepared to commit transaction . We assume that the

message piggybacks a response, denoted as ,

which contains the result of performing the update operation.

 denotes an alternative response to the

 request indicating that the stateful component is unable

to prepare to commit transaction t.

 denotes a request for the stateful component to commit the

transaction .

 denotes a response for a request that transaction is

committed.

 denotes a request for the stateful component to abort the transaction .

 denotes a response for an request that transaction is

aborted.

Formally, these control messages manipulate the status of a transaction t
 as follows:

161

 AS5: (()

((() (

 ()))

 AS6: (() (

 ()))

 AS7: (() ()

(()))

Assumption AS5 indicates that if component receives a

message for a transaction that is in the state, then eventually either (1) the status

of at component becomes and sends back the

message or (2) the status of at component becomes and sends the

 message. AS6 defines behavior when receives a request

for a transaction that is in the status in which the status of this transaction

becomes and sends the message. AS7 defines behavior when

receives a request for a transaction that is in the status in which the

status of this transaction becomes and sends the message.

Property S3: any request received by from a client is queued by into the

Service Pending Queue (SPQ). Formally:

162

 ((
) (

))

Proof. This property is satisfied by design of the state machine executed by the Request

Coordinator of since the first action executed by the Request Coordinator

whenever it receives a request from a client is to queue that request in the SPQ (c.f. fig.

3.4 in chapter 3). Formally, (
)

 (
) .

Property S4: if queued into the SPQ, then will eventually request

c to prepare to commit t. Formally:

 (() (

))

Proof. By design, when the Request Coordinator of receives , then in

addition to queueing the request into the SPQ, the action is to also forward this request to

Connector Control of (c.f. fig. 3.4 in chapter 3). Formally, (

) (

). From the state machine executed by the Connector Control (c.f.

fig. 3.6 in chapter 3), when Connector Control receives then the actions are to

(1) instruct to prepare to commit this transaction and (2) instruct the Request

Coordinator to also prepare to commit this transaction, i.e., (

) (

163

) (

)

Property S5: For each transaction that is being prepared to commit at c, queues

the Prepare To Commit message of the transaction into the SAQ. Formally:

 (() (

) ())

Proof. By design and as shown in the previous property:

 ()

 (

) ()

 That is, receiving a client request causes Connector Control to send the Prepare

To Commit message to the and also to send this message to the Request Coordinator.

By design, sending the Prepare To Commit message to the Request Coordinator causes

the Request Coordinator to dequeue the request of this transaction from the SPQ and

queue the Prepare To Commit message into the SAQ. I.e.

 ()

 () (

)

164

Properties S6 and S7: when receives or

 from c, then this response is queued in the Response Forwarding

Queue (RFQ). Formally:

 (()

 ())

 (()

 ())

Proof. From property S4, eventually forwards a Prepare To Commit message to .

By assumption AS5, eventually sends either the Prepare To Commit or Refuse To

Commit message back to . By design in the message sequence executed by

(see fig. 3.1 in chapter 3), the first action executed the Response Coordinator when it

receives a service response is to queue that response in the Response Forwarding Queue

(RFQ). Formally,

 () (

) .Thus, this message sequence satisfies property S6

and S7.

165

A transaction involving a stateful component can be either distributed or not

distributed (see chapter 3). Let be any 2PC control message and

 be a flag indicating whether is a distributed transaction.

Properties S8: when queues a Ready To Commit (or Refuse To Commit) into RFQ

for a non-distributed transaction, then eventually sends the Commit (or Abort)

message to c. Formally:

 ((

) (

))

 (()

 ())

Proof. By design, when the Response Coordinator of receives a Ready To Commit

or Refuse To Commit response for a non-distributed transaction, it forwards this response

to Connector Control. In other words,

 ()

 () and

166

 ()

 (). This

sequence causes the following message sequences to execute (see fig. 3.6 in chapter 3):

 ()

 ()

 () and

 ()

 ()

 ()

Properties S9-S12: when queues a Ready To Commit or Refuse To Commit into

RFQ for a distributed transaction, then eventually sends this response to the

coordinator of the distributed transaction. Additionally, when receives the

decision of the coordinator of the distributed transaction, it forwards this decision to c.

Formally:

 ((

)

 ())

 ((

167

)

 ())

 (() (

))

 (() ())

Proof. By design, the state machine executed by Connector Control of (see fig.

3.14 in chapter 3) forwards responses of distributed transactions to the coordinator of the

distributed transaction and does not forward a decision to unless it has received this

decision from the coordinator of the distributed transaction. As a result, by the 2PC

protocol, the coordinator of the distributed transaction eventually sends either the

Commit or Abort decision to . By design, when receives this decision

message from the coordinator, it forwards this decision to . Formally,

 ()

 () and

 ()

 ()

Property S13-S14: when requests c to commit a transaction during the second

phase of 2PC protocol, then queues the Commit message into the SRQ. Similarly,

168

when requests c to abort a transaction during the second phase of 2PC protocol,

then queues the Abort message into the SRQ. Formally:

 (()

 () (

))

 (() (

) (

) ())

Proof. By design when Connector Control forwards the Commit or Abort message to

(as shown in properties S8-12), the action is to also request the Request Coordinator to

either Commit or Abort this transaction. By design, receiving the Commit or Abort

message from Connector Control causes the following sequence of events at the Request

Coordinator:

 ()

 (

) ()

 ()

 (

) ()

169

Properties S15 and S16: when receives or from c for a

transaction that is in the second phase of 2PC protocol, then this response is queued in

the Response Forwarding Queue (RFQ). Formally:

 (()

 ())

 (() ()

 ())

Proof. From the previous properties, eventually forwards a Commit or Abort

message to for each prepared transaction at . By assumptions AS6 and AS7,

eventually sends either the Committed or Aborted response back to . By design in

the message sequence executed by (see fig. 3.1 in chapter 3), the first action

executed the Response Coordinator when it receives a response for a transaction that is

currently in the second phase of 2PC is to queue that response in the Response

Forwarding Queue (RFQ).

Properties S17: for non-distributed transactions, eventually sends the final

response of transactions to the requesting client. Formally:

 (()

 ())

170

 (()

 ())

Proof. By design, when the Response Coordinator of receives Committed or

aborted response for a non-distributed transaction from , it forwards this response to

Connector Control. In other words, (

) () and

 ()

 (). These sequence of

events causes the following message sequence to execute (see fig. 3.6 in chapter 3):

 ()

 () and

 ()

 ()

Properties S18 and S19: for distributed transactions, eventually sends the

Committed or Aborted response of committed or aborted transactions to the coordinator

of the distributed transaction. Formally:

 (()

 ())

171

 (() (

))

Proof. By design, when the Response Coordinator of receives either a Committed

or Aborted response, it forwards this response to Connector Control. In other words,

 ()

 () and

 ()

 (). For a Committed or

Aborted response such that this response is of a distributed transaction, this sequence of

events causes the following message sequence to execute (see fig. 3.14 in chapter 3):

 ()

 () and (

)

 ()

These two sequence of events indicates that when Connector Control receives

either or response, it triggers actions to forward this response to

the coordinator of the distributed transaction.

9.4.2 Failure Recovery

This section defines several properties that are provided by during failure

recovery of service . These properties ensure that any transaction that failed due to

172

failure of is eventually recovered when is recovered. Furthermore, these properties

ensure that all transactions received by the RAC while is in the failed state are queued

until recovers from failure.

Property S25: Let () denotes a failure event occurring to transaction . is

capable of identifying a transaction as failed according to the following property:

 (() (
) (()

 ()))

This property indicates that a transaction is considered failed if forwarded

the first request of to and did receive either the committed or aborted response

of this transaction during phase 2 of the 2PC protocol from (due to failure). We now

show how is capable of determining all failed transactions. From property P10,

 does not remove transaction messages from its queues unless it receives an

 from the component that initiated indicating that has completed.

Given that does not discard any message of a transaction unless has

completed, then is able to determine failed transactions, according to property S25

by analyzing transactions maintained in the SAQ and SRQ and determining whether a

committed or aborted response for each transaction at the second phase of 2PC is queued

in either the RFQ or RRQ (see fig. 9.5).

173

 * +

 if then

 failed ← failed { t }

 else if then

 failed ← failed { t }

 end

end

Figure 9.5 algorithm executed by the RAC to determine failed 2PC transactions

Properties S26 and S27: is capable of recovering all failed 2PC transactions such

that () :

 S26: ((

) ())

 S27: (

 ())

 S28:

 (

 ())

In addition, distributed transactions require the following properties:

174

 S29:

 (

 ()

 ())

 S30:

 (

 ())

 S31: (

 ())

 S32:

 (

 ())

Proof. Property S26 indicates that if the SAQ queues a Prepare To Commit message for

which there is no corresponding Ready To Commit or Refuse To Commit response in

either the RFQ or the RRQ, then eventually sends to when it is

recovered (see chapter 3). Furthermore, all such transactions must be recovered and

restarted at according to properties P13-P16. Property S27 indicates that if the SRQ

queues a Commit message for which there is no corresponding Committed response in

175

either the RFQ or the RRQ, then eventually sends Commit to the recovered .

Property S28 indicates that if the SRQ queues an Abort message for which there is no

corresponding Aborted response in either the RFQ or the RRQ, then eventually

sends Abort to the recovered .

Properties 29-32 ensure that for distributed transactions, the coordinator of the

distributed transaction receives the last response that received from

To ensure these properties, determines the recovery actions for each failed

transaction according the algorithm shown in fig 9.6. First, determines recovery

actions of failed transactions that reached the second phase of the 2PC protocol. To

accomplish this, iterates over Commit messages queued in the SRQ. For each such

transaction such that there is no corresponding Committed response in either the RFQ or

the RRQ, then the action is to resend the Commit message to when it is recovered.

Otherwise, if there is a Committed response such that this transaction is distributed, then

 sends Committed to the coordinator of the distributed transactions.

Similarly, iterates over Abort messages queued in the SRQ. For each such

transaction such that there is no corresponding Aborted response in either the RFQ or the

RRQ, then the action is to resend the Abort message to when it is recovered. Otherwise,

if there is an Aborted response such that this transaction is distributed, then sends

Aborted to the coordinator of the distributed transactions.

Finally, determines recovery actions for transactions that failed during the

first phase of 2PC. To accomplish this, iterate over the Prepare To Commit requests

queued in the SAQ. For each failed transaction in the SAQ, if there is no Ready To

176

Commit or Refuse To Commit response queued in either the RFQ or the RRQ, then

must sends the Abort message to when it is recovered and then restart this transaction at

 Otherwise if a response is found, then the action is to send this response to the

coordinator of the distributed transaction if this transaction is distributed or send Commit

or Abort to if this transaction is non-distributed.

 * +

 then

 If then

 * +

 Else if

 then

 * +

 end

end

 then

 If then

 * +

 Else if

 then

177

 * +

 end

end

 () then

 If ()

 then

 * +

 Else If

 ()

 then

 * +

 Else If

 ()

then

 * +

 Else If

 ()

then

178

 * +

 Else If

 ()

then

 * +

 end

end

Figure 9.6 algorithm executed by the RAC to recover failed 2PC transactions

9.4.3 Dynamic Adaptation

This section defines several properties that are provided by during

adaptation of .

Properties S33, S34: when receives the Passivate command from , then

 eventually transitions to the Quiescent state. Furthermore, does not

transition to the Quiescent state unless the service is not engaged in any transactions:

 (())

 (()))

Proof. From the design of the state machine executed by Connector Control of (see

figure 3.6 in chapter 3), Connector Control maintains the number of active transactions

that is currently engaged according to the following rules:

 (
) ()

179

 ()

 ()

By design, if Connector Control of receives the Passivate command while

 , then Connector Control transitions immediately to the

Quiescent state (see fig. 3.6 in chapter 3). Otherwise, Connector Control transitions to the

intermediate state in which it allows existing transactions to terminate

normally but does not forward any new transactions to according to the following

property:

 S35: (

 (
)

 (
)

 (
))

This property is ensured by the state machine executed by

since the action for receiving requests that initiate new transactions with is to hold the

request in the SPQ. Thus, this property ensures that eventually

 and that transitions from the to the

Quiescent state.

Properties S36: while in the Quiescent state, ceases forwarding all requests it

receives from clients to and holds these requests in the SPQ. Formally:

180

 ((
)

 (
) (

))

Proof. This property is satisfied by the design of the Request Coordinator as can be

clearly seen from the state machine executed by this coordinator (c.f. fig. 3.4 in chapter

3). In this state machine, when the Request Coordinator transitions eventually to the

Quiescent state according to property P34, then the action while in the Quiescent state for

receiving client requests is to hold these requests into the SPQ.

Properties S37: let () denotes completion of adaptation of stateful component

c. When adaptation is completed, then is eventually reactivated. Formally:

 (() ())

Proof. This property is satisfied by design since when the Recovery and Adaptation

Manager finishes adapting , the RAM always reactive the input RAC of the

component affected by adaptation (see section 9.2).

Properties S38: when is reactivated after is adapted to , then resumes

sending messages, including held message, to . Formally,
 :

 (() (

))

181

This property indicates that when is reactivated, then eventually

 forwards all requests queued in its SPQ to ,

including all requests held by (according to properties S35 and

S36). This property is ensured by design as shown in the state machine executed by the

Request Coordinator (see fig. 3.4 in chapter 3) since when this coordinator is reactivated,

it sends all messages queued in the SPQ to the Connector Control. Connector Control

then forwards these requests to normally according to property S4.

9.5 Recovery and Adaptation Properties of RAC for Asynchronous
Patterns

This section describes several properties achieved by the Recovery and

Adaptation Connector (RAC) for recovering and adapting consumers in asynchronous

patterns during normal execution, failure recovery, and dynamic adaptation. The goal of

a that handles recovery and adaptation concerns of a consumer is to ensure the

following property:

Property C1: if receives a producer message, then eventually receives an

acknowledgement from the consumer indicating that it is done with the producer’s

message. Formally:

 (() ())

9.5.1 Normal Execution

This section defines several properties of during normal operation (i.e.

assuming that there are no failures or adaptation) which ensure that all asynchronous

182

transactions received by the RAC are maintained in queues until the consumer

acknowledges completion of these transactions.

Property C2: any received message by from a producer is always queued by

into the Service Pending Queue (SPQ). Formally:

 (() (

))

Proof. This property is satisfied by design of the state machine executed by the Queue

Coordinator of since the first action executed by this coordinator whenever it

receives a message from a producer is to queue that request in the SPQ (c.f. fig. 4.4 in

chapter 4).

Property C3: if queued into the SPQ, then will eventually

forward this message to consumer c. Formally:

 (() ())

Proof. By design, when the Queue Coordinator of receives , then in

addition to queueing the message into the SPQ, the action is to also forward this message

to Connector Control of (c.f. fig. 4.4 in chapter 4). Formally, (

) (

). From the state machine executed by the Connector Control (c.f.

fig. 4.3 in chapter 4), when Connector Control receives then the actions are to

183

(1) forward the message to and (2) instruct the Queue Coordinator to move this

message from the SPQ to the Service Active Queue (SAQ), i.e., (

)

 (

) ().

Property C4: when forwards to consumer , then moves this

message from the SPQ to the Service Active Queue (SAQ), indicating that this message is

currently being processed by . Formally:

 (() ())

Proof. By design: ()

 (

) ().

 That is, receiving a producer message causes Connector Control to send the

message to the consumer (as shown in property C3) and also to send this message to the

Queue Coordinator. By design, sending the producer’s message back to the Queue

Coordinator causes the coordinator to move the producer’s message from the SPQ to the

SAQ. I.e. ()

 ().

184

Properties C5: does not remove any messages from the SAQ unless it receives an

acknowledgement from the consumer indicating that it is done with the producer’s

message. Formally:

 (() ())

Proof. From properties C4, eventually forwards the messages it receives from

producers to consumer . Since by assumption the consumer is running normally, then

 eventually sends to an ACK for each producer message it receives from

according to the following sequence of events:

 Sequence 1: () (

) () ().

By design in the message sequence executed by Connector Control of (see fig. 4.3

in chapter 4), receiving an ACK from the consumer causes Connector Control to instruct

the Queue Coordinator to remove the message of this transaction from the SAQ.

9.5.2 Failure Recovery

This section defines several properties that are provided by during failure

recovery of consumer . These properties ensure that any asynchronous transaction that

failed due to failure of is eventually recovered and forwarded when is recovered.

Furthermore, these properties ensure that all transactions received by the RAC while is

in the failed state are queued until is recovers from failure.

Properties C6: Let () indicates a failure event occurring at consumer .

185

when consumer fails, then eventually is notified of failure by the Recovery and

Adaptation Manager . Formally:

 (() ())

Proof. This property is satisfied by design since while determining the recovery plan,

 always notifies the input RAC of component failure as shown previously in section

9.2.

Property C7: when is notified by of failure, then eventually ceases

forwarding messages to and holds all messages to in the SPQ. Formally:

 (()

 ()

 ())

Proof. This property is satisfied by the design of the Queue Coordinator as can be clearly

seen from the state machine executed by this coordinator (c.f. fig. 4.4 in chapter 4). In

this state machine, when the coordinator is notified of failure according to property C6,

then the Queue Coordinator transitions into the Failed state in which the action for

receiving producer messages is to hold these requests into the SPQ. Therefore, all

messages received by after it has been notified of failure are held in the SPQ.

Property C8: Let () denotes a failure event occurring to transaction . is

capable of identifying a transaction as failed according to the following property:

186

 (() () ())

Proof. This property indicates that a transaction is considered failed if forwarded

a producer message of a transaction to but did not receive an ACK for this transaction

from (due to failure). By design, is capable of determining all failed

transactions as follows. From Property C4, moves all asynchronous messages it

forwards to from the SPQ to the SAQ. From property C5, does not remove any

asynchronous messages from the SAQ unless it receives an ACK from the consumer that

it is done with the producer’s message. Therefore, all asynchronous messages queued in

the SAQ are of failed transactions, which satisfies property C8.

Property C9: recovers all identified failed transactions by moving these

transactions from the SAQ to the SPQ according to the following property.

 :

 (())

Proof. Property C9 indicates that always eventually move messages of every failed

asynchronous transaction from the SAQ to the head of the SPQ. To ensure these

properties, recovers failed asynchronous transactions by iterating over the

asynchronous messages queued in the SAQ. For each message, moves the message

from the SAQ to the SPQ.

187

Property C10: let () indicate recovery of consumer to node . When

component is recovered, is eventually reactivated. Formally:

 (() ())

Proof. This property is satisfied by design since while executing the recovery plan, the

Recovery and Adaptation Manager always notifies the input RAC of the failed

component of component recovery as shown previously in section 9.2.

Properties C11: when is reactivated after is recovered (as explained in section

9.2), then resumes sending messages, including held and lost message, to .

Formally, :

 (() (

))

Proof. This property indicates that when is reactivated, then eventually

 forwards all messages queued in its SPQ to ,

including all messages held by (according to property C7) and

recovered messages (according to property C9). This property is ensured by design as

shown in the state machine executed by this coordinator (see fig. 4.4 in chapter 4) since

when this coordinator is reactivated, it sends all messages queued in the SPQ to the

Connector Control. Connector Control then forwards these requests to normally

according to property C3.

188

9.5.3 Dynamic Adaptation

This section defines several properties that are provided by during

adaptation of consumer . These properties ensure that can be adapted only if has

completed all transactions that it is currently engaged in and will not receive any new

transactions from other components. Furthermore, these properties ensure that any new

transactions received by the RAC while the component is being adapted are queued until

dynamic adaptation is completed.

Properties C12: when receives the Passivate command from , then

eventually transitions to the Quiescent state. Furthermore, does not transition to the

quiescent state unless the consumer is not engaged in any transactions. Formally:

 (())

 (()))

Proof. From the design of the state machine executed by Connector Control of (see

figure 4.3 in chapter 4), Connector Control maintains the number of active transactions

that is currently engaged according to the following rules:

 () ()

 () ()

By design, if Connector Control of receives the command while

 , then Connector Control transitions immediately to the

 state (see fig. 4.3 in chapter 4). Otherwise, Connector Control transitions to

the intermediate state in which it allows existing transactions to terminate

189

normally but does not forward any new transactions to according to the following

property:

 P20: (

 ()

 ()

 ())

This property is ensured by the state machine executed by

since the action for receiving asynchronous messages that initiate new transaction with

is to hold the message in the SPQ. This property ensures that eventually

 and that transitions from the to the

 state.

Properties C13: while in the Quiescent state, ceases forwarding all asynchronous

messages it receives from producers to and holds these message in the SPQ. Formally:

 (()

 () ())

Proof. This property is satisfied by the design of the Queue Coordinator as can be clearly

seen from the state machine executed by this coordinator (c.f. fig. 4.4 in chapter 4). In

this state machine, when the Queue Coordinator transitions eventually to the Quiescent

state according to property C12, then the action while in the Quiescent state for receiving

asynchronous message is to hold these messages into the SPQ.

190

Properties P22: let () denotes completion of consumer adaptation. When

adaptation is completed, then eventually is reactivated. Formally:

 (() ())

Proof. This property is satisfied by design since when the Recovery and Adaptation

Manager finishes adapting , the RAM always reactive the input RAC of the

component affected by adaptation (see section 9.2).

Properties P23: when is reactivated after is adapted to , then resumes

sending asynchronous messages, including held asynchronous message, to . Formally,

 :

 (() (

))

This property indicates that when is reactivated, then eventually

 forwards all requests queued in its SPQ to ,

including all requests held by (according to properties C20 and

C21). This property is ensured by design as shown in the state machine executed by the

Queue Coordinator (see fig. 4.4 in chapter 4) since when this coordinator is reactivated, it

sends all messages queued in the SPQ to the Connector Control. Connector Control then

forwards these requests to normally according to property C3.

191

10 EXPERIMENTAL DESIGN AND VALIDATION

I conducted detailed experiments of self-healing and self-configuration scenarios

to evaluate the approach described in this dissertation. To carry out the experiments, I

implemented the DARE framework as well as the architectures of two case studies: an

Online Shopping System and an Emergency Monitoring System (Gomaa, 2011). In these

experiments, each component and RAC was implemented in Java and has a separate

thread of control. In addition, Java Sockets were used for message delivery. The

implemented architecture runs on a cluster consisting of 30 nodes. Thus, components and

RACs are both concurrent and distributed in these experiments. Section 10.1 describes

the various experiments in this chapter. Sections 10.2-10.7 provide the details of each

experiment.

 Experimental Design 10.1
In order to validate the approach in this dissertation, I conducted several

experiments as follows:

 Experiment 1: this experiment validates the design of the service RAC used for

stateless services which does not maintain state information about its clients (c.f.

section 3.1). This experiment is described in section 10.2.1.

192

 Experiment 2: this experiment validates the design of the service RAC used for

stateful services with non-idempotent operations (c.f. section 3.2). This

experiment is described in section 10.2.2.

 Experiment 3: this experiment validates the design of the service RAC used for

stateful services that participate in distributed transactions (c.f. section 3.3.5).

This experiment is described in section 10.2.3.

 Experiment 4: this experiment validates the design of the coordinator RAC used

for coordinators in service-oriented architectures (c.f. section 3.3.4). This

experiment is described in section 10.2.4.

 Experiment 5: this experiment validates the design of the consumer RAC used for

consumers in asynchronous patterns (c.f. chapter 4). This experiment is described

in section 10.3.

 Experiment 6: this experiment validates the design of the DARE framework (c.f.

chapter 5). This experiment is described in section 10.4.

 Experiment 7: this experiment validates the design of the Assistant Recovery and

Adaptation Connector (c.f. chapter 6). This experiment is described in section

10.5.

 Experiment 8: this experiment validates the capability of the RAC to recover from

run-time failures using message logging (c.f. chapter 7). This experiment is

described in section 10.6.

193

 Experiment 9: this experiment validates the design of the reusable RAC which is

capable of integrating multiple patterns (c.f. chapter 8). This experiment is

described in section 10.7.

 Experimentation with RAC in SOA Patterns 10.2
This section describes the experimental design and results of the RAC used in

SOA patterns (c.f. chapter 3). This RAC contains the following queues for maintaining

client requests and service responses:

 Service Pending Queue (SPQ): this queue stores client requests received by the

RAC but that have not yet been forwarded to the service.

 Service Active Queue (SAQ): this queue stores client requests that have been

forwarded to the service but do not have corresponding service responses at the

RAC.

 Service Recovery Queue (SRQ): this queue stores client requests that have

corresponding service responses at the RAC.

 Response Forwarding Queue (RRQ): this queue stores responses that are not

forwarded to the requesting clients.

 Response Recovery Queue (RFQ): this queue stores responses that have been

forwarded to requesting clients.

The goal of the experiments is to validate recovery and adaptation capability of

the RAC without losing state information. In order to carry out experimentation, I

implemented the architecture of the Online Shopping System case study (Gomaa, 2011),

which is an example of a service-oriented architecture. In this case study, customers can

194

request to purchase items from suppliers (see Figure 10.1). Several services are involved

to carry out purchase requests such as the Customer Account Service, Delivery Order

Service, Catalog Service, and Credit Card Service. Therefore, coordinators are used to

facilitate integration of these services. Thus, this case study helps with experimenting

with the service RAC as it involves the SOA pattern described previously in chapter 3.

<<user interaction>>
: Customer Interaction

<<coordinator>>
: Customer Coordinator

<<connector>>
: Service RAC

<<connector>>
: Service RAC

<<connector>>
: Service RAC

<<connector>>
: Service RAC

<<service>>
: Delivery Order

Service

<<service>>
: Customer

Account Service

<<service>>
: Catalog Service

<<service>>
: Email Service

<<service>>
: Credit Card

Service

Customer Request Forward Coordinator Response

Coordinator ResponseForward Customer Request

Forward
Auth.
Request

Authorization
Response

Forward
Send

Forward Store,
Update,
 Request

Account
Info

<<connector>>
: Service RAC

Forward Store,
Update,
 Request

Delivery
Order

Forward
Query,
Select

Catalog
Info

<<connector>>
: Coordinator

RAC

<<user interaction>>
: Customer Interaction

<<connector>>
: Assistant

RAC

Forward Customer Request Forward Coordinator Response

Figure 10.1 Fragment of Online Shopping System case study (Gomaa, 2011)

195

10.2.1 Experimentation with RAC for Stateless Services
This section describes the validation of the RAC that handles adaptation and

recovery concerns of stateless services which do not maintain state information about

their clients (see section 3.1 in chapter 3).

Self-Healing Scenario
The service failure scenario demonstrates the ability of the service RAC to

recover failed transactions. In this scenario, the Catalog Service (CS) is concurrently

processing three active transactions (t1-t3) at the time of failure. As a result, the expected

behavior in this scenario includes:

1. The CS RAC receives a failure notification from the Recovery and Adaptation

Manager (RAM).

2. The CS RAC determines a recovery action to recover the failed transactions t1-t3.

3. The CS RAC receives the Reactivate command from the Recovery and

Adaptation Manager to resume sending messages to the recovered CS. As a result,

CS RAC resends transactions t1-t3 to the recovered CS.

In this scenario, the execution trace (Figure 10.2) indicates that the content of the

RAC’s queues is as follows:

 The SPQ holds one request due to service failure:

o Request1(t4, CC1, CS), where t4 is the identifier of the transaction, CC1 is

the identifier of the message sender, and CS is the identifier of the

message recipient.

 The SAQ contains three requests that have been forwarded to the service as

follows:

196

o Request2(t1, CC2, CS)

o Request2(t2, CC3, CS)

o Request2(t3, CC4, CS)

 The SRQ contains three requests:

o Request1(t1, CC2, CS)

o Request1(t2, CC3, CS)

o Request1(t3, CC4, CS)

 The RFQ does not contain any queued responses.

 The RRQ contains three forwarded responses:

o Response1(t1, CS, CC2)

o Response1(t2, CS, CC3)

o Response1(t3, CS, CC4)

Figure 10.2 Fragment of the execution trace of the stateless service RAC during planned failure scenario

RAC restarted failed
transactions t1-t3

when service is
recovered

RAC is notified of service
failure after initiating 3

transaction with service

RAC sends held

transaction t4

197

During the analysis activity which is handled in the Analyzing Failure Events

state, the execution trace indicates that the service RAC determined that transactions t1,

t2, and t3 have failed, since these transactions have been initiated with the service before

failure but service failure occurred before the service RAC received the responses that

complete these transactions from the service. As a result, the execution trace indicates

that the service RAC recovered requests of these transactions from the SAQ and the SRQ

to the SPQ. The execution trace indicates that the state of the SPQ after moving these

transactions are as follows:

o Request1(t1, CC2, CS)

o Request1(t2, CC3, CS)

o Request1(t3, CC4, CS)

o Request2(t1, CC2, CS),

o Request2(t2, CC3, CS)

o Request2(t3, CC4, CS)

o Request1(t4, CC1, CS)

When the RAC is reactivated after the CS has recovered, the execution trace

indicates that the CS RAC restarted failed transactions t1-t3 with the recovered service

and that these transactions eventually terminated normally. Furthermore, the trace

indicates that the CS RAC forwarded transaction t4, which was held in the SPQ due to

service failure, to the recovered service. Thus, the outcome of this experiment

corresponds to what it is expected for this scenario.

198

Self-Configuration Scenario
To illustrate the behavior of the service RAC during adaptation of a stateless

service, I use an adaptation scenario that involves adapting the Catalog Service (CS). In

this scenario, the service is concurrently processing three transactions (t1-t3). As a result,

the expected behavior in this scenario includes:

1. When the CS RAC receives the Passivate command from the RAM, the RAC

transitions to the Passivating state in order to allow transactions t1-t3 to complete.

Furthermore, the CS RAC holds any new transactions in the SPQ until dynamic

adaptation is completed.

2. When transactions t1-t3 complete, the CS RAC transitions to the Quiescent state

in which the CS can be safely adapted.

3. When dynamic service adaptation is completed, the CS RAC receives the

Reactivate command. As a result, the RAC resumes sending messages, including

held transactions in the SPQ to the adapted CS.

In this scenario, the contents of the various queues when the service RAC

received the Passivate command are as follows:

 The SPQ does not contain requests.

 The SAQ contains three requests that have been forwarded to the service as

follows:

o Request2(t1, CC3, CS),

o Request2(t2, CC1, CS)

o Request2(t3, CC4, CS)

 The SRQ contains three requests:

199

o Request1(t1, CC3, CS)

o Request1(t2, CC1, CS)

o Request1(t3, CC4, CS)

 The RFQ does not contain any queued responses.

 The RRQ contains three forwarded responses:

o Response1(t1, CS, CC3)

o Response1(t2, CS, CC1)

o Response1(t3, CS, CC4)

As a result of passivation, the execution trace indicates that the service RAC

transitioned into the Passivating state (Figure 10.3) where it permitted these three active

transactions to terminate normally. During this state, the trace indicates that the RAC

received a new transaction t4. As a result, the RAC held this transaction in the SPQ. After

the service completed all active transactions, the execution trace indicates that the CS

RAC transitioned to the Quiescent state at which time the service was dynamically

replaced. After adaptation is completed, the service RAC received the reactivate

command. As a result, the RAC transitioned to the Active state and forwarded the queued

transaction t4 in the SPQ to the Catalog Service, which corresponds to the expected

behavior for this scenario.

200

Figure 10.3 Fragment of the execution trace of stateless service RAC during planned adaptation scenario

10.2.2 Experimentation with RAC for Stateful Services with Non-Idempotent
Operations
This section describes the validation of the RAC that handles adaptation and

recovery concerns of stateful services which maintains persistent information about their

clients (see section 3.2 in chapter 3).

Self-Healing Scenario
The service failure scenario demonstrates the ability of the service RAC to

recover failed transactions (see section 3.2 in chapter 3). In this scenario, the Delivery

Order Service (DOS) is concurrently processing four transactions (t1-t4), which are in

different states at the time of failure, as follows:

 Transaction t1: this transaction fails after the DOS RAC sends the Prepare to

Commit message to the service but before this RAC receives the Ready To

Commit message from the service. Note that in this case, the service can fail

either (1) before preparing to commit this transaction, (2) after preparing to

commit the transaction but before sending Ready To Commit to the RAC, or (3)

RAC passivating

t1, t2, and t3 are active

t1 completed

t2 completed

t3 completed

RAC quiescent

RAC resumed sending

messages after activation

201

after sending Ready To Commit to the RAC such that this response was lost due

to service failure. Although these three cases are not distinguishable from the

RAC’s point of view, the RAC executes the same recovery actions to recover

these cases.

 Transaction t2: this transaction fails after the DOS RAC receives the Ready To

Commit message from the service but before this RAC forwards Commit to the

service.

 Transaction t3: this transaction fails after the DOS RAC sends Commit to the

service but before the RAC receives Committed from the service. Therefore, the

service can fail either (1) before committing this transaction, (2) after committing

the transaction but before sending Committed to the RAC, or (3) after sending

Committed to the RAC such that this response was lost due to service failure.

Although these three cases are not distinguishable from the RAC’s point of view,

the RAC executes the same recovery actions to recover these cases.

 Transaction t4: this transaction fails after the DOS RAC receives the Committed

message from the service.

 As a result, the expected behavior in this scenario includes:

1. The DOS RAC receives a failure notification from the Recovery and Adaptation

Manager.

2. The DOS RAC determines the appropriate recovery actions to recover the failed

transactions t1-t4 as follows: (1) send Abort for transaction t1 and then restart this

202

transaction with the service when it is recovered, (2) send Commit for transaction

t2, and (3) resend Commit for transaction t3.

3. The DOS RAC receives the Reactivate command from the Recovery and

Adaptation Manager to resume sending messages to the recovered DOS. As a

result, the DOS RAC sends the appropriate recovery actions to the recovered

DOS as shown in (2).

Figure 10.4 Fragment of the execution trace of stateful service RAC during planned failure scenario

The execution trace (Figure 10.4) shows that after the RAC received a failure

notification from the RAM, the RAC received a fifth transaction (t5) which was held in

the SPQ. The content of the RAC’s queues at this point is as follows:

 The SPQ contains one request that was held due to service failure:

o Request(t5, CC5, DOS)

 The SAQ contains two prepare to commit requests that have been forwarded to

the service:

Active transactions

completed

RAC forwarded

request held in SPQ

RAC restarted t1

RAC sent Commit for t2

RAC sent Commit for t3

RAC sent Abort for t1

203

o Request(t2, CC1, DOS)

o Request(t1, CC4, DOS)

 The SRQ contains two commit requests as follows:

o Request(t4, CC2, DOS)

o Request(t3, CC3, DOS)

 The RFQ contains four received responses:

o ReadyToCommit(t2, DOS, CC1)

o ReadyToCommit(t4, DOS, CC2)

o Committed(t4, DOS, ConnectorControl)

o ReadyToCommit(t3, DOS, CC3)

 RRQ does not indicate any responses that have been forwarded to clients.

During the analysis activity which is handled by the Analyzing Failure Events

state, the execution trace indicates that the RAC determined a status for each of these

active transactions as follows:

 For transaction t1, the RAC determined the status of this transaction as Preparing,

since the SAQ contains the Prepare To Commit request to the service but neither

the RFQ nor the RRQ contain the Ready To Commit response for this transaction.

 For transaction t2, the RAC determined the status of this transaction as Prepared,

since the SAQ contains the Prepare To Commit request to the service and the

RFQ contains the Ready To Commit response for this transaction.

 For transaction t3, the RAC determined the status of this transaction as

Committing, since the SRQ contains the Commit request for this transaction but

204

neither the RFQ nor the RRQ queues contain the Committed response for this

transaction.

 For transaction t4, the RAC determined the status of this transaction as

Committed, since the SRQ contains the Commit request to the service for this

transaction and the RFQ contains a Committed response for this transaction.

During the planning activity which is handled in the Planning for Recovery state,

the RAC determined recovery actions for each active transaction as follows:

 For transaction t1, since this transaction failed while being prepared to commit by

the service during the first phase of 2PC, the recovery actions determined by the

RAC for this transaction after service recovery were (1) to abort this transaction

with the service and then (2) to restart this transaction with the recovered service.

 For transaction t2, since this transaction failed after being prepared to commit by

the service, the RAC determined a recovery action to send the Commit message

for this transaction when the service has recovered.

 For transaction t3, since the service failed while committing this transaction, the

recovery action determined by the RAC for this transaction was to resend the

Commit message to the recovered service.

 Transaction t4 does not require any recovery actions since it was completed

before service failure.

During the execution phase which is handled in the Executing Recovery Plan

state, the service RAC recovered the requests of the transactions that must be restarted

with the recovered service by moving these requests from the SAQ to the SPQ. In this

205

scenario, only transaction t1 needs to be restarted with the recovered service. Therefore,

the execution trace indicates that this message is moved from the SAQ to the SPQ. The

content of SPQ after recovery is:

 Prepare(t1, CC4, DOS) // request that was recovered from the SAQ

 Prepare(t5, CC5, DOS) //request held in the SPQ due to service failure

When the DOS RAC is reactivated after the service has recovered, the execution

trace indicates that the RAC aborted and then restarted transaction t1 with the recovered

service, (2) requested the recovered service to commit transactions t2 and t3, and (3)

forwarded transaction t5 which was previously held in the SPQ due to service failure.

The execution trace indicates that service execution resumed normally and that all active

transactions were eventually committed. Thus, the outcome of this experiment

corresponds to what is expected for this scenario.

Self-Configuration Scenario
To illustrate the behavior of the service RAC during adaptation, I use an

adaptation scenario that involves adapting the DOS. In this scenario, the DOS is

concurrently processing four transactions, which are in different states at the time of

adaptation, as described below:

 Transactions t1 and t2: the RAC receives the Passivate command after the Service

RAC sends the Prepare To Commit messages for these transactions to the DOS

but before the RAC receives the Ready To Commit responses from the service.

206

 Transactions t3 and t4: the RAC receives the Passivate command after the service

RAC sends the Commit messages for these transactions to the DOS but before the

RAC receives the Committed responses from the service for these transactions.

As a result, the expected behavior in this scenario includes:

1. When the DOS RAC receives the Passivate command, the RAC transitions to the

Passivating state in order to allow transactions t1-t4 to complete. Furthermore, the

DOS RAC holds any new transactions in the SPQ until dynamic adaptation is

completed.

2. When transactions t1-t4 complete, the DOS RAC transitions to the Quiescent

state.

3. When dynamic service adaptation is completed, the DOS RAC receives the

Reactivate command from the Recovery and Adaptation Manager. As a result, the

RAC resumes sending messages to the adapted DOS including the transactions

held in the SPQ.

When service adaptation is requested, the content of the RAC queues are as

follows:

 The SPQ does not contain any requests held by the service RAC.

 The SAQ contains two prepare to commit requests sent to the service:

o Request(t1, CC3, DOS)

o Request(t2, CC2, DOS)

 The SRQ contains two commit requests sent to the service:

o Request(t3, CC4, DOS)

207

o Request(t4, CC1, DOS)

 The RFQ contains two service responses as follows:

o ReadyToCommit(t3, DOS, CC4)

o ReadyToCommit(t4, DOS, CC1)

 The RRQ does not indicate any responses that have been forwarded to clients.

As a result of passivation, the execution trace indicates that the service RAC

transitioned into the Passivating state (Figure 10.5) where it permitted these four active

transactions to gradually terminate. While in Passivating state, new transactions were

received and queued by the Service RAC into the SPQ. After the service completed all

active transactions, the execution trace indicates that the Service RAC transitioned to the

Quiescent state at which time the service was dynamically replaced. During the adapting

state, further requests are received and queued by RAC. After adaptation is completed,

the service RAC received the reactivate command. As a result, the RAC transitioned to

the Active state and forwarded all queued transactions in its SPQ to the service. At this

point, normal execution is resumed between RAC and the service.

208

Figure 10.5 Fragment of the execution trace of stateful service RAC during planned adaptation scenario

10.2.3 Experimentation with RAC for Distributed Transactions
This section describes the validation of the RAC that handle adaptation and

recovery of services in the distributed transactions patterns.

Self-Healing Scenario
The service failure scenario demonstrates the ability of the service RAC to

recover failed transactions. In this scenario, the Inventory Service (IS) is concurrently

processing four transactions, which are in different states at the time of failure, as

follows:

 Transaction t1: this transaction fails after the IS RAC sends the Prepare to

Commit message to the service but before this RAC receives the Ready To

Commit message from the service. Note that in this case, the service can fail

either (1) before preparing to commit this transaction, (2) after preparing to

RAC resumed sending new

transactions held in SPQ

RAC quiescent

t2 committed

t1 committed

t4 committed

t3 committed

RAC passivating

t1, t2, t3, t4 are active

209

commit the transaction but before sending Ready To Commit to the RAC, or (3)

after sending Ready To Commit to the RAC such that this response was lost due

to service failure. Although these three cases are not distinguishable from the

RAC’s point of view, the RAC executes the same recovery actions to recover

these cases.

 Transaction t2: this transaction fails after the IS RAC receives the Ready To

Commit message from the service but before this RAC forwards this response to

the coordinator of the distributed transaction.

 Transaction t3: this transaction fails after IS RAC sends Commit to the service but

before the RAC receives Committed from the service. Therefore, the service can

fail either (1) before committing this transaction, (2) after committing the

transaction but before sending Committed to the RAC, or (3) after sending

Committed to the RAC such that this response was lost due to service failure.

Although these three cases are not distinguishable from the RAC’s point of view,

the RAC executes the same recovery actions to recover these cases.

 Transaction t4: this transaction fails after the service RAC receives the

Committed message from the service but before the RAC forwards this response

to the coordinator of the distributed transaction.

 As a result, the expected behavior in this scenario includes:

1. The IS RAC receives a failure notification from the Recovery and Adaptation

Manager.

210

2. The IS RAC determines the appropriate recovery actions to recover the failed

transactions t1-t4 as follows: (1) send Abort for transaction t1 and then restart this

transaction with the service when it is recovered, (2) send Ready To Commit for

transaction t2 to the coordinator of the distributed transaction, (3) resend Commit

for transaction t3, and (4) send Committed for transaction t4 to the coordinator of

this distributed transaction.

3. The IS RAC receives the Reactivate command from the Recovery and Adaptation

Manager to resume sending messages to the recovered IS. As a result, IS RAC

sends the appropriate recovery actions to the recovered IS as shown in (2).

Figure 10.6 Fragment of the execution trace of service RAC for distributed transactions during planned failure

scenario

RAC forwarded

request held in SPQ

RAC restarted t1

RAC sent Commit for t3

RAC sent Abort for t1

RAC sent Ready To Commit for t2

RAC sent Committed for t4

211

The execution trace (Figure 10.6) shows that after the RAC received a failure

notification from the RAM, the RAC received a fifth transaction (t5) which was held in

the SPQ. The content of the RAC’s queues at this point is as follows:

 The SPQ contains one request that was held due to service failure:

o PrepareToCommit(t5, SIC4, IS)

 The SAQ contains two prepare to commit requests that have been forwarded to

the service:

o PrepareToCommit (t1, SIC1, IS)

o PrepareToCommit (t2, SIC3, IS)

 The SRQ contains four requests as follows:

o PrepareToCommit(t3, SIC2, IS)

o PrepareToCommit (t4, SIC5, IS)

o Commit(t3, SIC2, IS)

o Commit(t4, ISC5, IS)

 The RFQ contains two received responses:

o ReadyToCommit(t2, IS, SIC3)

o Committed(t4, IS, SIC5)

 RRQ contains two forwarded responses:

o ReadyToCommit(t3, IS, SIC2)

o ReadyToCommit(t4, IS, SIC5)

212

During the analysis activity which is handled in the Analyzing Failure Events

state, the execution trace indicates that the RAC determined a status for each of these

active transactions as follows:

 For transaction t1, the RAC determined the status of this transaction as Preparing,

since the SAQ contains the Prepare To Commit request to the service but neither

the RFQ nor the RRQ contain the Ready To Commit response for this transaction.

 For transaction t2, the RAC determined the status of this transaction as Prepared,

since the SAQ contains the Prepare To Commit request to the service and the

RFQ contains the Ready To Commit response for this transaction.

 For transaction t3, the RAC determined the status of this transaction as

Committing, since the SRQ contains the Commit request for this transaction but

neither the RFQ nor the RRQ queues contain the Committed response for this

transaction.

 For transaction t4, the RAC determined the status of this transaction as

Committed, since the SRQ contains the Commit request to the service for this

transaction and the RFQ contains a Committed response for this transaction.

During the planning activity which is handled in the Planning for Recovery state,

the RAC determined recovery actions for each active transaction as follows:

 For transaction t1, since this transaction failed while being prepared to commit by

the service during the first phase of 2PC, the recovery actions determined by the

RAC for this transaction after service recovery were (1) to abort this transaction

with the service and then (2) to restart this transaction with the recovered service.

213

 For transaction t2, since this transaction failed after being prepared to commit by

the service, the RAC determined a recovery action to send the Ready To Commit

for this distributed transaction to the coordinator of this transaction.

 For transaction t3, since the service failed while committing this transaction, the

recovery action determined by the RAC for this transaction was to resend the

Commit message to the recovered service.

 For transaction t4, the RAC determined a recovery action to send Committed for

this distributed transaction to the coordinator of this transaction.

During the execution phase which is handled in the Executing Recovery Plan

state, the service RAC recovered the requests of the transactions that must be restarted

with the recovered service by moving these requests from the SAQ to the SPQ. In this

scenario, only transaction t1 needs to be restarted with the recovered service. Therefore,

the execution trace indicates that this message is moved from the SAQ to the SPQ. The

content of SPQ after recovery is:

 Prepare(t1, SIC1, IS) // request which was recovered from the SAQ

 Prepare(t5, SIC4, IS) //request held in the SPQ due to service failure

When the RAC is reactivated after the service has recovered, the execution trace

indicates that the RAC aborted and then restarted transaction t1 with the recovered

service, (2) sent Ready To Commit for transaction t2 to the coordinator of this

transaction, (3) requested the recovered service to commit transactions t3, (4) sent

Committed for transaction t4 to the coordinator of this distributed transaction, and (5)

forwarded transaction t5 which was previously held in the SPQ due to service failure.

214

The execution trace indicates that service execution resumed normally and that all active

transactions were eventually committed.

Self-Configuration Scenario
To illustrate the behavior of the service RAC during adaptation, I use an

adaptation scenario that involves adapting the IS. In this scenario, the IS is concurrently

processing four distributed transactions (t1-t4). As a result, the expected behavior in this

scenario includes:

1. When the IS RAC receives the Passivate command, the RAC transitions to the

Passivating state in order to allow transactions t1-t4 to complete. Furthermore, the

IS RAC holds any new transactions in the SPQ until dynamic adaptation is

completed.

2. When transactions t1-t4 complete, the IS RAC transitions to the Quiescent state.

3. When dynamic service adaptation is completed, the IS RAC receives the

Reactivate command from the Recovery and Adaptation Manager. As a result, the

RAC resumes sending messages to the adapted IS including the transactions held

in the SPQ.

When service adaptation is requested, the content of the RAC queues are as

follows:

 The SPQ does not contain any request.

 The SAQ contains four prepare to commit requests sent to the service:

o PrepareToCommit(t1, SIC3, IS)

o PrepareToCommit (t2, SIC2, IS)

o PrepareToCommit (t3, SIC5, IS)

215

o PrepareToCommit (t4, SIC4, IS)

 The SRQ does not contain any requests.

 The RFQ contains three service responses as follows:

o ReadyToCommit(t1, IS, SIC3)

o ReadyToCommit(t2, IS, SIC2)

o ReadyToCommit(t3, IS, SIC5)

 The RRQ does not indicate any responses that have been forwarded to clients.

As a result of passivation, the execution trace indicates that the service RAC

transitioned into the Passivating state (Figure 10.7) where it permitted these four

distributed transactions to gradually terminate. While in Passivating state, a new

transaction t5 was received and queued by the Service RAC into the SPQ. After the

service completed all distributed transactions, the execution trace indicates that the

Service RAC transitioned to the Quiescent state at which time the service was

dynamically replaced. After adaptation is completed, the service RAC received the

reactivate command. As a result, the RAC transitioned to the Active state and forwarded

the distributed transaction t5 queued in its SPQ to the service. At this point, normal

execution is resumed between RAC and the service.

216

Figure 10.7 Fragment of the execution trace of service RAC for distributed transactions during planned

adaptation scenario

10.2.4 Experimentation with RAC for Coordinators

Self-Healing Scenario
The coordinator failure scenario demonstrates the ability of the coordinator RAC

to recover failed transactions (see section 3.3.4 in chapter 3). In this scenario, the

Customer Coordinator (CC) fails while processing one transaction (t1) from Customer

Interaction (CI). Therefore, the expected behavior in this scenario includes:

1. The coordinator RAC receives a failure notification from the Recovery and

Adaptation Manager.

2. The coordinator RAC determines the appropriate recovery action to recover the

failed transaction to send Abort for this transaction and then restarts this

transaction with the coordinator when it is recovered.

t4 committed

RAC quiescent

RAC resumed sending new

transactions held in SPQ

t3 committed

t2 committed

t1 committed

RAC passivating

t1, t2, t3, t4 are active

217

3. The coordinator RAC receives the Reactivate command from the Recovery and

Adaptation Manager to resume sending messages to the recovered CC. As a

result, the RAC sends the appropriate recovery actions to the recovered CC as

shown in (2).

In this scenario, failure of CC occurred after the CC has initiated the following

three sequential transactions:

 Before failure, the CC initiated a transaction with the Customer Account Service

(CAS) and received the response of this transaction from this service.

 Before failure, the CC initiated a transaction with the Credit Card Service (CCS)

and received the response of this transaction from this service.

 Before failure, the CC initiated a transaction with the DOS. However, the CC

failed before receiving the response of this transaction from this service.

In this recovery scenario, the execution trace (Figure 10.8) indicates that when the

CC has recovered, the coordinator RAC (1) instructed the recovered CC to abort the CI

transaction and then (2) restarted this transaction with the recovered CC. Furthermore, the

execution traces of the CAS RAC, CCS RAC, and DOS RAC indicate that these RACs

received duplicate requests from the recovered CC since the recovered coordinator

restarted the same transactions with these services. The RAC of each of these services

reacted to these duplicate requests as follows:

 The execution trace of the CAS RAC indicates that this RAC discarded the

duplicate request and sent back to the recovered CC the response of this request

using its Response Recovery Queue (RRQ).

218

 The execution trace of the CCS RAC indicates that this RAC discarded this

duplicate request and sent back to the recovered CC the response of this request

using its Response Recovery Queue (RRQ).

 The execution trace of the DOS RAC indicates that this RAC discarded the

duplicate request. The execution trace also showed that this RAC has not yet

received the response of the original request from the DOS (i.e., DOS is still

processing the original request). Therefore, when this RAC received the response

of this request from DOS, it forwarded that response to the recovered CC.

After receiving the response from the DOS RAC, the execution trace showed that

the recovered CC continued working on this transaction until it has completed.

Figure 10.8 Fragment of the execution trace of coordinator RAC during planned failure scenario

Self-Configuration Scenario
The coordinator adaptation scenario is an experiment to validate the adaptation of

the coordinator as described in chapter 3. In this scenario, passivation of CC is requested

while the CC is preparing to commit a transaction. As a result, the expected behavior in

this scenario includes:

RAC restarted

transaction with

recovered coordinator
t1, t2, t3, t4 are active

RAC eventually

receives transaction

committed

RAC sent abort for

transaction failed

219

1. When the CC RAC receives the Passivate command, the RAC transitions to the

Passivating state in order to allow the active transaction to complete.

2. When this transaction completes, the CC RAC transition to the Quiescent state.

Furthermore, the CC RAC holds any new transactions in the SPQ until dynamic

adaptation is completed.

3. When the CC RAC receives the Reactivate command from the Recovery and

Adaptation Manager, it resumes sending messages to the adapted CC including

the transaction held in the SPQ.

The execution trace (Figure 10.9) of the CC RAC shows that when the RAC

received the Passivate command, the CC RAC transitioned to Passivating state. When the

transaction ended with the sending of the coordinator response to the client, the state

machine transitioned to the Quiescent state. While the CC RAC is in quiescent state, it

received and queued a new transaction from the CI in the Coordinator Pending Queue.

After replacing CC, the CC RAC received the reactivate message from the

external RAM and then transitioned from the Quiescent to the Waiting for Request state.

As a result, the RAC forwarded the queued transaction t2 to CC.

220

Figure 10.9 Fragment of the execution trace of coordinator RAC during planned adaptation scenario

 Experimentation with RAC in asynchronous patterns 10.3
This section describes the experimental design and results of the consumer RAC

used in asynchronous patterns described in chapter 4. In order to carry out

experimentation, I implemented the architecture of the Emergency Monitoring System

(EMS) case study (Gomaa, 2011) (Figure 10.10) in which an operator can view various

alarm events generated by sensor components and also can request the status of these

sensors. This case study is chosen to experiment with the consumer RAC since it consists

of several asynchronous patterns including the unidirectional asynchronous message

communication and the subscription/notification patterns.

RAC passivating

t1 is active

Transaction t1

completed

RAC is quiescent

RAC held new

transaction

RAC reactivated

221

<<input>>
: Monitoring Sensor

Component

<<connector>>
: Alarm Service

RAC

<<input>>
: Monitoring Sensor

Component

<<service>>
:Alarm Service

<<connector>>
: Monitoring Data

Service RAC

<<service>>
:Monitoring Data

Service

<<input>>
: Monitoring Sensor

Component

<<user interaction>>
: Operator Presentation

<<input>>
: Monitoring Sensor

Component

<<user interaction>>
: Remote System Proxy

post alarm
post alarm post event

post event

forward post alarm forward post event

<<input>>
: Monitoring Sensor

Component

<<connector>>
: Operator Presentation

RAC

notify event
notify alarm

forward notify event
forward notify alarm

alarm request

monitor request

forward alarm request forward monitor request

Figure 10.10 The Emergency Monitoring System (EMS) architecture

Self-Healing Scenario
The consumer failure scenario demonstrates the ability of the consumer RAC to

recover failed transactions. In this scenario, the Operator Presentation (OP) component is

concurrently processing three active transactions (t1-t3) at the time of failure. As

described previously in chapter 4, an asynchronous transaction is considered failed if (1)

the consumer RAC forwarded an asynchronous message to the consumer and (2) the

consumer RAC did not receive a corresponding ACK message for this transaction from

the consumer. Therefore, the OP RAC in this scenario must recover all failed transactions

with the OP consumer when it is recovered. The expected behavior in this scenario

includes:

222

1. The OP RAC receives a failure notification from the Recovery and Adaptation

Manager.

2. The OP RAC determines recovery actions to recover the failed transactions t1-t3.

3. The OP RAC receives the Reactivate command from the Recovery and

Adaptation Manager to resume sending messages to the recovered OP. As a

result, OP RAC sends transactions t1-t3 to the recovered OP.

Figure 10.11 Fragment of the execution trace of the consumer RAC during planned failure scenario

In this scenario, the execution trace (Figure 10.11) indicates that the content of the

RAC’s queues at the time of failure is as follows:

 The SPQ does not contain any pending messages to the OP component.

RAC forwarded
recovered messages

t1-t3 to recovered OP

Eventually, RAC

receives ACK from

recovered consumer

for all transactions

223

 The SAQ contains three messages that have been forwarded to the OP as follows:

o Message(t1, AS, OP1)

o Message(t2, MDS, OP1)

o Message(t3, AS, OP1)

During the analysis activity which is handled in the Analyzing Failure Events

state, the execution trace indicates that the OP RAC determined that transactions t1-t3

had failed, since these asynchronous transactions have been forwarded by the OP RAC to

the OP consumer but consumer failure occurred before the OP RAC received the

corresponding ACK messages for these transactions. As a result, the execution trace

indicates that the OP RAC moved these transactions from the SAQ to the SPQ. The

execution trace indicates that the states of the SPQ and SAQ after recovery are as

follows:

 The SPQ contains three recovered messages as follows:

o Message(t1, AS, OP1)

o Message(t2, MDS, OP1)

o Message(t3, AS, OP1)

 The SAQ is empty.

When the RAC is reactivated after the OP has recovered, the execution trace

indicates that the RAC sent lost transactions t1-t3 to the recovered OP consumer and that

the recovered OP sent corresponding ACK messages for these transactions to the RAC

indicating that it is done with these transactions. At this point consumer execution

resumed normally.

224

Self-Configuration Scenario
To illustrate the behavior of the consumer RAC during adaptation (see section 4.1

in chapter 4) , I use an adaptation scenario that involves adapting the OP component. In

this scenario, the OP is concurrently processing four transactions (t1-t4). As a result, the

expected behavior in this scenario includes:

1. When the OP RAC receives the Passivate command, the RAC transitions to the

Passivating state until it receives ACK messages from the OP for transactions t1-

t4. Furthermore, the OP RAC holds any new transactions to the OP in the SPQ

until dynamic adaptation is completed.

2. When the OP RAC receives ACKs for transactions t1-t4, the RAC transitions to

the Quiescent state in which the OP can be safely adapted.

3. The OP RAC receives a Reactivate command from the Recovery and Adaptation

Manager so that the RAC resumes sending messages to the adapted OP. As a

result, OP RAC sends any held transactions in the SPQ to the adapted OP.

In this scenario, the contents of the various queues when the consumer RAC

received the Passivate command are as follows:

 The SPQ does not contain any pending messages.

 The SAQ contains four active messages that have been forwarded to the

consumer:

o Message(t1, MDS, OP1)

o Message(t2, AS, OP1)

o Message(t3, MDS, OP1)

225

o Message(t4, AS, OP1)

As a result of passivation, the execution trace indicates that the OP RAC

transitioned into the Passivating state (Figure 10.12) until the consumer sends ACK

messages to the RAC indicating that it is done with these transactions. While in the

passivating state, the OP RAC received new transactions. As a result, the RAC queued

these transactions into the Pending Queue. After the OP has acknowledged all four

active transactions to the OP RAC, the execution trace indicates that the OP RAC

transitioned to the Quiescent state at which time the OP was dynamically replaced. After

adaptation is completed, the OP RAC received the reactivate command. At this point,

normal execution is resumed between RAC and the consumer. The execution trace

indicates that the OP RAC forwarded all transactions held previously in the pending

queue due to dynamic adaptation to the OP.

Figure 10.12 Fragment of the execution trace of the consumer RAC during planned adaptation scenario

RAC receives passivate

while transactions t1-t4

are active

RAC becomes quiescent

after it receives ACK
from consumer for

transactions t1-t4

RAC sends held

transactions after

dynamic adaptation is

completed

226

 Experimental Analysis of the DARE framework 10.4
Chapter 5 described the design of the DARE framework and showed how it can

handle failure recovery and dynamic adaptation of components in CBSAs. In order to

validate the design of the DARE framework, I conducted two types of experiments using

the Emergency Monitoring System (see Figure 10.10) case study: a self-healing scenario

and a self-configuration scenario. The self-healing scenario illustrates DARE’s capability

of recovering from node failures. This scenario consists of taking down the node that

hosts the Monitoring Data Service (MDS) and then inspecting the execution trace to

determine that DARE was able to detect and dynamically recover this component on a

different node. The self-configuration scenario illustrates DARE’s capability of

dynamically adapting the EMS architecture.

10.4.1 Self-Healing Scenario
In the self-healing scenario, node 5, which hosts the MDS component, has failed.

As a result, the expected behavior of DARE during this experiment include (1) DeSARM

detects failure of node 5, (2) FAM pings node 5 to confirm failure of node 5 and then

activates the RAM to recover components hosted by node 5, (3) the Recovery and

Adaptation Manager (RAM) plans and executes the recovery actions to recover the failed

MDS component by notifying the MDS RAC of failure, recovering another instance of

the MDS on a different node, and then activating the recovered MDS and the MDS RAC.

 A fragment of the execution trace illustrating major events of this scenario is

shown in Figure 10.13. The trace indicates that DeSARM (Figure 10.14) on every healthy

node suspected the failure of node 5 due to absence of gossip messages from that node.

As a result, each DeSARM sent a node 5 failure notification to the peer FAM

227

(Figure 10.14). Although FAMs on multiple nodes have been activated, the execution

trace indicates that only the FAM hosted by the node with the lowest IP address (node 1

in Figure 10.13), and thus the recovery node, proceeded with the recovery process by

pinging node 5. Since node 5 failed, the FAM on node 1 did not receive a heartbeat reply

from this failed node. As a result, the FAM on node 1 notified the RAM on node 1 of the

failed node.

Figure 10.13 Fragment of execution trace during the self-healing scenario

228

Failure
Analysis Manager

(Analysis)

Configuration
Manager

(Partial Knowledge)

DeSARM
(Monitoring/Partial

Knowledge)

Recovery and
Adaptation Manager
(Planning/Execution) Application

Recovery
Layer
(ARL)

Architecture
Discovery

Layer
(ADL)

Configuration
Maintenance

Layer
(CML)

Node Failure Suspected

Failed

Retrieve

Architecture
Request

Retrieve,
Update,
Remove

Subscribe Discovered
Architecture

Figure 10.14 The DARE architecture

The execution trace indicates that the RAM on node 1 first requested the

architecture from DeSARM and then proceeded with the recovery process by retrieving

from the Configuration Manager the set of identifiers of components hosted by the failed

node 5. The execution trace indicates that node 5 hosted only one component, namely the

MDS. Inspection of the detailed execution trace also indicates that the RAM proceeded to

determine the recovery plan as follows:

 From the architecture obtained from DeSARM and from the configuration

map, the RAM determined that node 4 hosts the input RAC of the MDS

component because this RAC forwards synchronous requests and

asynchronous messages to the failed MDS.

229

 The RAM on node 1 notified the MDS RAC on node 4 of component failure

so that this RAC ceases forwarding messages to the MDS and starts

recovering any failed transactions.

 From the DeSARM architecture, the RAM determined the recipient RACs

that receive messages from the failed MDS, which in this scenario were two

instances of the Operator Presentation (OP) RAC. These recipient RACs are

determined by the RAM so that the recovered MDS can be connected with

these RACs.

 The RAM selected node 11 to host the recovered MDS.

When planning is complete, the execution trace indicates that the RAM on node 1

requested the RAM on node 11 to create the MDS component. When the component is

created, the execution trace indicates that the RAM on node 1 requested the MDS RAC to

connect to the recovered MDS and requested the recovered MDS to connect to the OP

RACs. Finally, the execution trace indicates that the RAM on node 1 activated the

recovered MDS and then reactivated the MDS RAC. As a result, the MDS RAC resumed

sending messages to the recovered MDS, including any lost messages due to failure.

In order to assess the effect of DARE’s decentralization on recovery time, I

measured the average recovery time that the DARE framework takes to recover the MDS

component, starting from the time that DeSARM at the recovery node sent a notification

message to the FAM indicating that a node failure is suspected to the time that the MDS

RAC is reactivated indicating that normal communication with the recovered MDS is

resumed. In order to do this, I ran 5 experiments sets such that in each set I varied the

230

number of nodes in the system. I experimented with recovery when the number of nodes

is 11, 16, 21, 26, and 30 nodes, with the corresponding increase in component instances

and RACs. Each experiment consisted of one backup node for hosting the recovered

component.

Figure 10.15 Average recovery time during the self-healing scenario

In each experiment set, I ran the self-healing scenario 30 times. The results in

Figure 10.15 show the 99% confidence intervals of the measured recovery times for the 5

experiment sets. When the system size is 11 nodes, the average recovery time is 20.4

seconds. Doubling the system size from 11 nodes to 21 nodes caused the average

recovery time to increase by approximately 47%. However, increasing the system size

from 21 to 30 nodes caused the recovery time to drop slightly by 8%, which shows

231

DARE’s capability to scale up as the system size increases. These results can be

attributed to the use of a Distributed Hash Table (DHT) to store the distributed

configuration map since DHTs scale logarithmically (Stoica et al., 2003) with the system

size.

10.4.2 Self-Configuration Scenario
In the self-configuration scenario, the RAM on node 1 received an external

adaptation request to adapt the Alarm Service (AS). In this scenario, I applied the load

balancing pattern to the Alarm Service (AS), as shown in Figure 10.16. This pattern

involves replacing the AS with a load balancer component and two instances, AS1 and

AS2, of the AS. The load balancer is responsible for forwarding messages to the AS

instances in a simple round-robin fashion.

232

<<input>>
: Monitoring Sensor

Component

<<connector>>
: Alarm Service

RAC

<<input>>
: Monitoring Sensor

Component

<<service>>
: Balancer

<<connector>>
: Monitoring Data

Service RAC

<<service>>
:Monitoring Data

Service

<<input>>
: Monitoring Sensor

Component

<<user interaction>>
: Operator Presentation

<<input>>
: Monitoring Sensor

Component

<<user interaction>>
: Remote System Proxy

post alarm
post alarm post event

post event

forward post alarm forward post event

<<input>>
: Monitoring Sensor

Component

<<connector>>
: Operator Presentation

RAC

notify event

notify alarm

forward notify event
forward notify alarm

alarm request

monitor request

forward alarm request forward monitor request

<<service>>
:Alarm Service 1

<<service>>
:Alarm Service 2

notify alarm

forward alarm request
forward alarm request

forward post alarm

forward post alarm

Figure 10.16 EMS architecture after dynamic adaptation

The expected behavior of DARE during this experiment include (1) the RAM

sends the Passivate command to the AS RAC so that the RAC steers the AS to the

quiescent state, (2) the RAM create the load balancer component, and two instances of

AS (AS1 and AS2) (3) the RAM disconnects and removes the previous AS from the

architecture, (4) the RAM connects components affected by adaptation (5) the RAM

updates the configuration and requests DeSARM to initiate discovery of the adapted

architecture, and finally (6) the RAM activates the new components and the AS RAC.

The execution trace (Figure 10.17) shows the major events executed during this

scenario. After receiving the external adaptation request, the RAM requested the current

software architecture (see chapter 5) from DeSARM (Porter et al., 2016), also located on

233

node 1. The RAM then used the architecture to determine the input RAC of the AS (i.e.,

the Alarm Service RAC in Figure 10.10). As a result, the detailed execution trace

indicates that the RAM on node 1 retrieved the location of the AS RAC from the CM and

then sent the Passivate command to the AS RAC hosted by node 2. As a result, the AS

RAC steered the AS to a quiescent state, held any input messages to the AS in its queues

until dynamic adaptation was complete, and then notified the RAM on node 1 of AS

quiescence. The execution trace also indicates that the RAM planned to create the load

balancer on node 11, the AS1 on node 12, and the AS2 on node 13.

The RAM on node 1 then proceeded with the dynamic adaptation process by (1)

requesting the RAMs on nodes 11, 12, and 13 to create the load balancer component, the

AS1, and the AS2, respectively (2) disconnecting and removing the AS from the

architecture, (3) connecting the AS1 with the OP1 RAC and the OP2 RAC, (4)

connecting the AS2 with the OP1 RAC and the OP2 RAC, (5) connecting the AS RAC

with the load balancer, (6) connecting the load balancer with the AS1 and AS2, (7)

updating the configuration and requesting DeSARM to initiate discovery of the adapted

architecture, and finally (5) activating the new components on nodes 11-13 and the AS

RAC on node 2.

234

Figure 10.17 Fragment of execution trace during the self-configuration scenario

 Experimentation with the Assistant RAC 10.5
This section describes the validation of the Assistant RAC (ARAC) which

handles adaptation and recovery concerns of senders (see chapter 6). This experiment

involves adapting and recovering the Customer Interaction component in the Online

Shopping System (see Figure 10.1 in section 10.2).

Self-Healing Scenario
The sender failure scenario demonstrates the ability of the Assistant RAC

(ARAC) to recover failed responses to the sender. In this scenario, the Customer

Interaction (CI) failed after it has initiated a transaction with the Customer Coordinator

(CC). As described previously in chapter 6, when the CI recovers from failure, the CI

235

ARAC must resend the last response in its response queues to the recovered CI.

Therefore, the expected behavior of the CI ARAC in this scenario includes:

1. The CI ARAC receives a failure notification from the Recovery and Adaptation

Manager indicating failure of the CI.

2. The CI ARAC determines the recovery action to recover the last response it

received from the coordinator.

3. The CI ARAC receives the Reactivate command from the Recovery and

Adaptation Manager. As a result, the CI RAC sends the last response to the

recovered CI.

Figure 10.18 Fragment of the execution trace of the ARAC during planned failure scenario

In this scenario, the execution trace (Figure 10.18) indicates that the content of the

ARAC’s queues at the time of failure is as follows:

 The SPQ and the SAQ do not contain any pending or active requests.

 The SRQ contains one request as follows:

o request(t1, CC1, CC1Connector)

 The RFQ does not contain any responses.

 The RRQ contains one forwarded response:

ARAC notified of CI

failure

ARAC recovers and

response using its

RRQ

236

o response(t1, CC1Connector, CI1)

During the analysis activity which is handled in the Analyzing Failure Events

state, the execution trace indicates that the CI ARAC determined that the response in its

RRQ for transaction t1 must be recovered and sent to the CI1 when it recovers.

Therefore, CI ARAC proceeded with recovery by moving this response from the RRQ to

the RFQ. The content of the RRQ after recovery is as follows:

 The RFQ contains one recovered response as follows:

o response(t1, CC1Connector, CI1)

When the ARAC is reactivated after the CI has recovered, the execution trace

indicates that the ARAC sent the recovered response to the recovered CI, as expected for

this scenario.

Self-Configuration Scenario
To illustrate the behavior of the ARAC during adaptation, I use an adaptation

scenario that involves adapting the CI component. In this scenario, the CI initiated one

transaction (t1) with its coordinator. As a result, the expected behavior in this scenario

includes:

1. When the CI ARAC receives the Passivate command, the ARAC transitions to the

Passivating state until t1 is completed.

2. When t1 is completed, the CI ARAC transitions to the Quiescent state.

Furthermore, the CI ARAC holds any new transactions until dynamic adaptation

is completed.

3. The CI ARAC receives a Reactivate command from the Recovery and Adaptation

Manager. As a result, CI ARAC resumes sending held transactions in the SPQ.

237

In this scenario, the contents of the various queues when the ARAC received the

Passivate command are as follows:

 The SPQ does not contain any transactions.

 The SAQ contains one active request:

o Request2(t1, CI1, CC1Connector)

 The SRQ contains one request:

o Request1(t1, CI1, CC1Connector)

 The RFQ does not contain any responses.

 The RRQ contains one response:

o Response1(t1, CC1Connector, CI1)

As a result of passivation, the execution trace indicates that the ARAC

transitioned into the Passivating state (Figure 10.19) until transaction t1 has completed.

When t1 is completed, the ARAC transitioned to the Quiescent state. While in the

Quiescent state, the ARAC received and held a new transaction t2 in the SPQ. After

adaptation is completed, the ARAC received the reactivate command. At this point,

normal execution is resumed between ARAC and the CI. The execution trace indicates

that when adaptation was completed, the ARAC forwarded transaction t2, which was

previously held in the pending queue, to the CC1 Connector.

238

Figure 10.19 Fragment of the execution trace of the ARAC during planned adaptation scenario

 Experimentation with RAC Recovery 10.6
This section describes recovery of the RAC after a run-time failure occurring

during normal execution. In this experiment, the Customer Coordinator RAC fails after

forwarding a transaction t1 to the Customer Coordinator (CC). At the time of RAC

failure, t1 is a non-distributed transaction that is in the Preparing To Commit state, since

the RAC sent the Prepare To Commit message to the CC but the RAC failed before

receiving Ready To Commit from the CC. The expected behavior in this experiment is as

follows:

1. The RAM recovers another instance of CC RAC.

2. The recovered CC RAC reconstructs its state by replaying messages from its

log.

3. The recovered CC RAC recovers transaction t1 by instructing CC to abort this

transaction and then restart this transaction with the CC.

The execution trace (Figure 10.20) indicates that after the RAC recovered its state

by replaying messages from its log, the SAQ queues one Prepare To Commit message for

transaction t1, which corresponds to the same state that RAC had before failure.

Furthermore, based on the content of the queues, the RAC determined that transaction t1

ARAC receives passivate

while transaction t1 is

active

ARAC becomes

quiescent

RAC sends held transaction after

dynamic adaptation is completed

239

must be aborted and then restarted with the CC, since this transaction is in the Preparing

to Commit state. As a result, the recovered RAC instructed the CC to abort transaction

t1and then restarted this transaction with CC. The execution trace indicates that

transaction t1 eventually completed, which is the expected outcome for this experiment.

Figure 10.20 Execution trace during recovery of RAC after a run-time failure

 Experimentation with the Reusable RAC 10.7
This section describes the validation of the reusable RAC described in chapter 8.

In this experiment, the Delivery Order Service (DOS) may receive both distributed and

non-distributed transactions. Thus, these experiments are example of concurrent patterns

integration of the general SOA pattern (see chapter 3 section 3.3.4) and the distributed

transaction pattern (see chapter 3 section 3.3.5). As a result, the reusable RAC is needed

to manage these different patterns as explained in chapter 8.

10.7.1 Self-Healing Scenario in the Online Shopping System
The failure scenario demonstrates the ability of the reusable RAC to recover

failed transactions. In this scenario, the Delivery Order Service (DOS) is concurrently

processing four transactions, which are in different states at the time of failure, as

After RAC recovery, the

RAC queues indicate that t1

is not completed

RAC aborts and then restarts

t1

t1 eventually commits

240

described below. Furthermore, two of these transactions are distributed while two of

these transactions are non-distributed as follows:

 Transaction t4: this transaction is non-distributed initiated by a Customer

Coordinator (CC) that failed after the reusable RAC has received the Ready To

Commit message from the DOS but before the RAC forwarded Commit to the

DOS.

 Transaction t3: this transaction is distributed initiated by a Supplier Interaction

Coordinator (SIC) that failed after the reusable RAC has sent the Prepare to

Commit message to the service but before this RAC has received the Ready To

Commit message from the service.

 Transactions t2: this transaction is non-distributed that failed after the reusable

RAC has forwarded the Commit message to the service but before the reusable

RAC received the Committed response.

 Transaction t1: this transaction is distributed that failed after the reusable RAC

has received the Committed message from the service but before the RAC

forwarded this response to the Supplier Interaction Coordinator (SIC) that

initiated this distributed transaction.

As a result, the expected behavior in this scenario includes:

1. The reusable RAC receives a failure notification from the Recovery and

Adaptation Manager.

2. The reusable RAC determines the appropriate recovery actions to recover the

failed transactions t1-t4 as follows: (1) send Abort for transaction t3 and then

241

restart this transaction with the service when it is recovered, (2) send Commit for

transaction t4, (3) resend Commit for transaction t2, and (4) send Committed for

transaction t1 to the coordinator of this distributed transaction.

3. The reusable RAC receives the Reactivate command from the Recovery and

Adaptation Manager to resume sending messages to the recovered DOS. As a

result, DOS RAC sends the appropriate recovery actions to the recovered DOS as

shown in (2).

Figure 10.21 Fragment of the execution trace of reusable RAC during planned failure scenario

When the reusable RAC received a failure notification indicating service failure, the

contents of the various queues maintained by the RAC are as follows:

For distributed transactions t1 and

t3, RAC eventually forwards
Committed response received from

service to coordinator

For non-distributed transactions t2

and t4, RAC eventually sends the

response of this transaction to
requesting client when transaction

is committed

RAC sent commit for

transactions t2

242

 The SPQ does not contain any request.

 The SAQ queues two Prepare To Commit requests that have been forwarded to

the service:

o PrepareToCommit(t3, SIC1, DOS, distributed)

o PrepareToCommit(t4, CC3, DOS, non-distributed)

 The SRQ queues 3 messages of active transactions for which a response has been

received by the RAC:

o Commit(t2, DOSConnector, DOS, non-distributed)

o PrepareToCommit(t1, SIC3, DOS, distributed)

o Commit(t1, SIC3, DOS, distributed)

 The RFQ contains the following responses:

o ReadyToCommit(t4, DOS, DOSConnector, non-distributed)

o ReadyToCommit(t2, DOS, DOSConnector, non-distributed)

o Committed(t1, DOS, SIC3, distributed)

 The RRQ queues one response as follows:

o ReadyToCommit(t1, DOS, SIC3, distributed)

The trace also indicates that while the DOS is in the failed state, the DOS RAC

received and held a new transaction t5 in the SPQ. During the analysis activity which is

handled in the Analyzing Failure Events state (see Figure 3.6), the execution trace

indicates that the RAC determined a status for each of these active transactions as

follows:

243

 For transaction t3, the RAC determined the status of this transaction as Preparing,

since the SAQ contains the Prepare To Commit request to the service but neither

the RFQ nor the RRQ contain the Ready To Commit or Refuse To Commit

response for this transaction.

 For transaction t4, the RAC determined the status of this transaction as Prepared,

since the SAQ contains the Prepare To Commit request to the service and the

RFQ contains the Ready To Commit response for this transaction.

 For transactions t2, the RAC determined the status of this transaction as

Committing, since the SRQ contains the Commit request for this transaction but

neither the RFQ nor the RRQ queues contain the Committed response for this

transaction.

 For transaction t1, the RAC determined the status of this transaction as

Committed, since the SRQ contains the Commit request to the service for this

transaction and the RFQ contains a Committed response for this transaction.

During the planning activity which is handled in the Planning for Recovery state

(Figure 3.6), the RAC determined recovery actions for each active transaction as follows:

 For transactions t3, since this transaction failed while being preparing to commit

by the service during the first phase of 2PC, the recovery actions determined by

the RAC for this transaction after service recovery were (1) to abort this

transaction with the service and then (2) to restart this transaction with the

recovered service.

244

 For transactions t4, since the service failed after preparing to commit this

transaction, the recovery action determined by the RAC for this transaction was to

send the Commit message to the recovered service.

 For transactions t2, since the service failed while committing this transaction, the

recovery action determined by the RAC for this transaction was to resend the

Commit message to the recovered service.

 For transaction t1, the action is to forward the Committed response queued in the

RFQ of this transaction to the coordinator of this distributed transaction.

During the execution phase which is handled in the Executing Recovery Plan

state, the reusable RAC recovered the requests of the transactions that must be restarted

with the recovered service by moving these requests from the SAQ to the SPQ. In this

scenario, only transaction t3 need to be restarted with the recovered service, since these

transactions failed during phase 1 of the 2PC protocol. Therefore, the execution trace

indicates that this message is moved from the SAQ to the SPQ. The content of SPQ after

recovery of this transaction is:

 PrepareToCommit(t3, SIC1, DOS, distributed)

 PrepareToCommit(t5, SIC2, DOS, distributed)

When the RAC is reactivated after the service has recovered, the execution trace

indicates that the RAC aborted and then restarted transaction t3 with the recovered

service, (2) requested the recovered service to commit transactions t2 and t4, and (3)

forwarded the Committed response of transaction t1 to the coordinator of the distributed

245

transaction. The execution trace shows that transactions t1-t4 as well as held transaction

t5 terminated normally.

10.7.2 Self-Configuration Scenario in the Online Shopping System
To illustrate the behavior of the reusable RAC during adaptation, I use an

adaptation scenario that involves adapting the DOS service while it is concurrently

engaged in transactions of different types. In this scenario, the DOS service is

concurrently processing 4 transactions, two of which are distributed while the other two

are non-distributed. As a result, the expected behavior in this scenario includes:

1. When the reusable RAC receives the Passivate command, the RAC transitions to

the Passivating state in order to allow transactions t1-t4 to complete. Furthermore,

the reusable RAC holds any new transactions in the SPQ until dynamic adaptation

is completed.

2. When transactions t1-t4 complete, the reusable RAC transitions to the Quiescent

state.

3. When dynamic service adaptation is completed, the reusable RAC receives the

Reactivate command from the Recovery and Adaptation Manager. As a result, the

RAC resumes sending messages to the adapted DOS including the transactions

held in the SPQ.

In this scenario, the execution trace (Figure 10.22) indicates that when reusable

RAC received the Passivate command, the content of the RAC’s queues is as follows:

 The SPQ contains one transaction that was held due to dynamic service

adaptation:

o PrepareToCommit(t5, SIC1, DOS, distributed)

246

 The SAQ contains two prepare to commit requests sent to the service:

o PrepareToCommit(t4, CC1, DOS, non-distributed)

o PrepareToCommit(t2, SIC3, DOS, distributed)

 The SRQ contains two messages:

o Commit(t1, DOSConnector, DOS, non-distributed)

o PrepareToCommit(t3, SIC2, DOS, distributed)

 The RFQ contains one response that is not forwarded:

o ReadyToCommit(t1, DOS, CC1, non-distributed)

 The RRQ contains one forwarded response:

o ReadyToCommit(t3, DOS, SIC2, distributed)

As a result of passivation, the execution trace indicates that the reusable RAC

transitioned into the Passivating state (Figure 10.22) where it permitted the four active

transactions (t1-t4) to gradually terminate. After the DOS completed all active

transactions, the execution trace indicates that the reusable RAC transitioned to the

Quiescent state at which time the DOS was dynamically replaced by an updated version

of the service. After adaptation is completed, the service RAC received the reactivate

command. As a result, the RAC transitioned to the Active state and forwarded the held

transaction t5 queued in its SPQ to the DOS. At this point, normal execution is resumed

between RAC and the DOS, which corresponds to the expected outcome of this scenario.

247

Figure 10.22 Fragment of the execution trace of reusable RAC during planned adaptation scenario

10.7.3 Self-Healing Scenario in the Emergency Monitoring System
This failure scenario demonstrates the ability of the reusable RAC to recover

failed transactions of different patterns in the EMS. In this scenario, the Alarm Service

(AS) is concurrently processing three transactions. Two of these transactions (t1 and t2)

are asynchronous while one transaction (t3) is synchronous. The expected behavior in

this scenario includes:

1. The AS RAC receives a failure notification from the Recovery and Adaptation

Manager (RAM).

2. The AS RAC determines a recovery action to recover the failed transactions t1-t3.

3. The AS RAC receives the Reactivate command from the Recovery and

Adaptation Manager to resume sending messages to the recovered AS. As a

result, AS RAC resends transactions t1-t3 to the recovered AS.

RAC resumed sending new

transactions held in SPQ

RAC quiescent

non-distributed transaction t1 committed

RAC passivating

t1, t2, t3, t4 are active

non-distributed transaction t4 committed

distributed transaction t3 committed

distributed transaction t2 committed

248

 In this scenario, the execution trace (Figure 10.23) indicates that the SAQ

contains three messages that have been forwarded to the AS:

o Message(t1, MSC1, AS)

o Message(t2, RSP1, AS)

o Request(t3, OP1, AS)

During the analysis activity which is handled in the Analyzing Failure Events

state, the execution trace indicates that the AS RAC determined that transactions t1-t3 as

failed since AS failure occurred before the AS RAC received the corresponding ACK

messages for transactions t1-t2 and the response for transaction t3. The execution trace

indicates that the AS RAC moved these transactions from the SAQ to the SPQ. When the

RAC is reactivated after the AS has recovered, the execution trace indicates that the RAC

sent lost transactions t1-t3 to the recovered AS. Furthermore, the execution trace

indicates that the RAC eventually received ACK messages for transactions t1-t2 and a

response for transaction t3 from the recovered AS, which corresponds to what is expected

in this experiment.

Figure 10.23 Fragment of the execution trace of reusable RAC during planned failure scenario in the EMS

RAC restarted asynchronous

transactions t1 and t2

RAC restarted synchronous

transaction t3

249

10.7.4 Self-Configuration Scenario in the Emergency Monitoring System
To illustrate the behavior of the reusable RAC during adaptation of a component

that integrates multiple patterns, I use an adaptation scenario that involves adapting the

Alarm Service (AS) component. In this scenario, the AS is concurrently processing two

transactions. Transaction t1 is synchronous while transaction t2 is asynchronous. The

expected behavior in this scenario includes:

1. When the AS RAC receives the Passivate command, the RAC transitions to the

Passivating state until it receives a response from AS for transaction t1 and an

ACK for transaction t2. Furthermore, the AS RAC holds any new transactions to

the AS in the SPQ until dynamic adaptation is completed.

2. The AS RAC transitions to the Quiescent state in which the AS can be safely

adapted.

3. The AS RAC receives a Reactivate command from the Recovery and Adaptation

Manager so that the RAC resumes sending messages to the adapted AS. As a

result, the AS RAC sends any held transactions in the SPQ to the adapted AS.

In this scenario, the execution trace indicates that when the AS RAC received the

Passivate command, the RAC transitioned into the Passivating state (Figure 10.24) until

the AS sends a response for transaction t1 and an ACK message for transaction t2. After

the AS has completed all transactions that it is currently engaged in, the execution trace

indicates that the AS RAC transitioned to the Quiescent state during which the AS was

dynamically replaced. While in the Quiescent state, the AS RAC received three new

asynchronous transactions and one synchronous transaction. The execution trace

indicates that the RAC queued these new transactions into the Service Pending Queue.

250

After adaptation is completed, the AS RAC received the reactivate command. At this

point, normal execution is resumed between RAC and the adapted AS. The execution

trace indicates that the AS RAC forwarded all transactions held previously in the pending

queue due to dynamic adaptation to the adapted AS. Furthermore, the execution trace

indicates that the RAC eventually received from the adapted AS an ACK message for

each forwarded asynchronous transaction and a response for the forwarded synchronous

transaction, which corresponds to what is expected in this experiment.

Figure 10.24 Fragment of the execution trace of reusable RAC during planned adaptation scenario in the EMS

RAC passivating

t1 and t2 are active

RAC is quiescent after t1 and t2 are

completed

RAC is reactivated

RAC forwards held transactions

RAC hold new transactions in SPQ

251

11 CONCLUSION AND FUTURE WORK

This dissertation has investigated a reuse, model-based approach for self-healing

and self-configuration in component-based software architectures. This dissertation

described how connectors in component-based software architectures (CBSAs) can be

extended with recovery and adaptation capabilities to assist in self-healing and self-

configuration. Furthermore, this dissertation described the design of DARE, an

architecture-based, decentralized framework that provides both self-healing and self-

configuration properties to CBSAs. The design of DARE is based on a decentralized

MAPE-K loop model in which DARE carries out recovery and dynamic adaptation when

only partial knowledge of the software system is known to each node.

The contributions of this dissertation are as follows:

1. Design of recovery and adaptation connectors for various SOA patterns. This

dissertation described the design of recovery and adaptation connectors that

handle recovery and adaptation concerns of clients, coordinators and services in

SOA patterns.

2. Design of recovery and adaptation connectors for various asynchronous patterns.

This dissertation described the design of recovery and adaptation connectors that

handle recovery and adaptation concerns of producers and consumers in

asynchronous patterns.

252

3. Design of a decentralized, self-healing, and self-configuration framework. This

dissertation described the design of DARE, an architecture-based and

decentralized framework for providing large and highly dynamic CBSAs with

self-healing and self-configuration properties.

4. Design of a reusable recovery and adaptation connector that supports integration

of patterns. This dissertation described how variability in recovery and adaptation

connectors can be managed using the software product line technology in which a

reusable connector can handle integration of multiple architectural patterns.

5. Formal properties of the approach. This dissertation defined several properties

that are ensured by the DARE framework and RACs during normal execution,

failure recovery, and dynamic adaptation.

6. Experimental Validation of the approach. This dissertation contains experimental

validation and results of both the DARE framework and RACs which show their

capabilities during failure recovery and dynamic adaptation.

There are several directions for future work. In this dissertation, DARE integrates

two of the MAPE-K self-* properties: self-healing and self-configuration properties. One

open challenge is to consider how two other MAPE-K self-* properties, self-optimization

and self-protection properties, can be integrated into DARE as well. For instance, the

DARE framework currently selects any random healthy node to host recovered

components and connectors. Another alternative is to incorporate self-optimization

techniques so that DARE can select the most optimal node for hosting these components

and connectors. With respect to self-protection, DARE currently assumes that failures are

253

not caused by malicious attacks. However, a self-protection approach can be considered

to relax this assumption.

This research has considered nodes that fail according to the fail-stop assumption

in which components do not behave erroneously but simply cease functioning when they

fail. Future work includes expanding the approach to handle network link failures that

may cause the network to partition into several disjoint networks. Other future works

include: investigating failure recovery of the DARE framework during dynamic

adaptation or recovery, investigating recovery and adaptation patterns of more

architectural patterns, analyzing the performance of DARE, considering real-time issues,

and scaling up to large distributed software systems.

254

REFERENCES

Alvisi, L., Marzullo, K., 1998. Message Logging: Pessimistic, Optimistic, Causal, and

Optimal. IEEE Trans Softw Eng 24, 149–159. doi:10.1109/32.666828

Angarita, R., Rukoz, M., Cardinale, Y., 2016. Modeling dynamic recovery strategy for

composite web services execution. World Wide Web 19, 89–109.

doi:10.1007/s11280-015-0329-1

Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C., 2004. Basic concepts and

taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure

Comput. 1, 11–33. doi:10.1109/TDSC.2004.2

Baresi, L., Guinea, S., Pasquale, L., 2012. Service-Oriented Dynamic Software Product

Lines. Computer 45, 42–48. doi:10.1109/MC.2012.289

Bencomo, N., Hallsteinsen, S., Santana de Almeida, E., 2012. A View of the Dynamic

Software Product Line Landscape. Computer 45, 36–41.

doi:10.1109/MC.2012.292

Bernstein, P.A., Hsu, M., Mann, B., 1990. Implementing Recoverable Requests Using

Queues, in: Proceedings of the 1990 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’90. ACM, New York, NY, USA, pp. 112–122.

doi:10.1145/93597.98721

Bernstein, P.A., Newcomer, E., 2009. Principles of Transaction Processing, Second

Edition, 2 edition. ed. Morgan Kaufmann, Burlington, MA.

Bisadi, M., Sharifi, M., 2009. Component-Based Self-Healing via Cellular Adaptation,

in: Autonomic and Autonomous Systems, International Conference on. IEEE

Computer Society, Los Alamitos, CA, USA, pp. 75–81.

doi:10.1109/ICAS.2009.61

Bosch, J., Capilla, R., 2012. Dynamic Variability in Software-Intensive Embedded

System Families. Computer 45, 28–35. doi:10.1109/MC.2012.287

Bruning, S., Weissleder, S., Malek, M., 2007. A Fault Taxonomy for Service-Oriented

Architecture, in: 10th IEEE High Assurance Systems Engineering Symposium,

255

2007. HASE ’07. Presented at the 10th IEEE High Assurance Systems

Engineering Symposium, 2007. HASE ’07, pp. 367–368.

doi:10.1109/HASE.2007.46

Candea, G., C, G., Kiciman, E., Zhang, S., Fox, A., Keyani, P., Fox, O., 2003. JAGR: An

Autonomous Self-Recovering Application Server.

Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M., 2014. Toward

Exascale Resilience: 2014 Update. Supercomput. Front. Innov. 1, 1–28.

Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F.L., Mirandola, R., 2012.

MOSES: A Framework for QoS Driven Runtime Adaptation of Service-Oriented

Systems. IEEE Trans. Softw. Eng. 38, 1138–1159. doi:10.1109/TSE.2011.68

Cheng, S.-W., Garlan, D., 2007. Handling Uncertainty in Autonomic Systems.

Clements, P., Northrop, L., 2001. Software Product Lines: Practices and Patterns, 3rd

edition. ed. Addison-Wesley Professional, Boston.

Danilecki, A., Hołenko, M., Kobusińska, A., Szychowiak, M., Zierhoffer, P., 2013.

Applying Message Logging to Support Fault-Tolerance of SOA Systems. Found.

Comput. Decis. Sci. 38, 145–158. doi:10.2478/fcds-2013-0006

Danilecki, A., Hołenko, M., Kobusińska, A., Szychowiak, M., Zierhoffer, P., 2011.

ReServE Service: An Approach to Increase Reliability in Service Oriented

Systems, in: Malyshkin, V. (Ed.), Parallel Computing Technologies, Lecture

Notes in Computer Science. Springer Berlin Heidelberg, pp. 244–256.

doi:10.1007/978-3-642-23178-0_22

Dashofy, E.M., van der Hoek, A., Taylor, R.N., 2002. Towards Architecture-based Self-

healing Systems, in: Proceedings of the First Workshop on Self-Healing Systems,

WOSS ’02. ACM, New York, NY, USA, pp. 21–26. doi:10.1145/582128.582133

David M Holman, D.S.L., 2008. A Survey of Routing Techniques in Store-and-Forward

and Wormhole Interconnects.

Elnozahy, E.N. (Mootaz), Alvisi, L., Wang, Y.-M., Johnson, D.B., 2002. A Survey of

Rollback-recovery Protocols in Message-passing Systems. ACM Comput Surv

34, 375–408. doi:10.1145/568522.568525

Ericson, C., 1999. Fault Tree Analysis - A History, in: Proceedings of the 17th

International Systems Safety Conference.

256

Freiling, F.C., Guerraoui, R., Kuznetsov, P., 2011. The Failure Detector Abstraction.

ACM Comput Surv 43, 9:1–9:40. doi:10.1145/1883612.1883616

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994. Design Patterns: Elements of

Reusable Object-Oriented Software, 1 edition. ed. Addison-Wesley Professional,

Reading, Mass.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P., 2004. Rainbow:

architecture-based self-adaptation with reusable infrastructure. Computer 37, 46–

54. doi:10.1109/MC.2004.175

Garlan, D., Schmerl, B., 2002. Model-based Adaptation for Self-healing Systems, in:

Proceedings of the First Workshop on Self-Healing Systems, WOSS ’02. ACM,

New York, NY, USA, pp. 27–32. doi:10.1145/582128.582134

Gomaa, H., 2011. Software Modeling and Design: UML, Use Cases, Patterns, and

Software Architectures, 1 edition. ed. Cambridge University Press, Cambridge ;

New York.

Gomaa, H., 2004. Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. Addison-Wesley Professional, Boston.

Gomaa, H., Hashimoto, K., 2012. Dynamic Self-adaptation for Distributed Service-

oriented Transactions, in: Proceedings of the 7th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’12.

IEEE Press, Piscataway, NJ, USA, pp. 11–20.

Gomaa, H., Hashimoto, K., 2011. Dynamic Software Adaptation for Service-oriented

Product Lines, in: Proceedings of the 15th International Software Product Line

Conference, Volume 2, SPLC ’11. ACM, New York, NY, USA, p. 35:1–35:8.

doi:10.1145/2019136.2019176

Gomaa, H., Hashimoto, K., Kim, M., Malek, S., Menascé, D.A., 2010. Software

Adaptation Patterns for Service-oriented Architectures, in: Proceedings of the

2010 ACM Symposium on Applied Computing, SAC ’10. ACM, New York, NY,

USA, pp. 462–469. doi:10.1145/1774088.1774185

Gomaa, H., Hussein, M., 2004. Software reconfiguration patterns for dynamic evolution

of software architectures, in: Fourth Working IEEE/IFIP Conference on Software

Architecture, 2004. WICSA 2004. Proceedings. Presented at the Fourth Working

IEEE/IFIP Conference on Software Architecture, 2004. WICSA 2004.

Proceedings, pp. 79–88. doi:10.1109/WICSA.2004.1310692

257

Guerraoui, R., Schiper, A., 1997. Software-Based Replication for Fault Tolerance.

Computer 30, 68–74. doi:10.1109/2.585156

Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J., Mamelli, A.,

Papadopoulos, G.A., 2012. A development framework and methodology for self-

adapting applications in ubiquitous computing environments. J. Syst. Softw., Self-

Adaptive Systems 85, 2840–2859. doi:10.1016/j.jss.2012.07.052

Hinchey, M., Park, S., Schmid, K., 2012. Building Dynamic Software Product Lines.

Computer 45, 22–26. doi:10.1109/MC.2012.332

Huebscher, M.C., McCann, J.A., 2008. A Survey of Autonomic Computing-Degrees,

Models, and Applications. ACM Comput Surv 40, 7:1–7:28.

doi:10.1145/1380584.1380585

Kephart, J.O., Chess, D.M., 2003. The vision of autonomic computing. Computer 36, 41–

50. doi:10.1109/MC.2003.1160055

Kramer, J., Magee, J., 2007. Self-Managed Systems: an Architectural Challenge, in:

Future of Software Engineering, 2007. FOSE ’07. Presented at the Future of

Software Engineering, 2007. FOSE ’07, pp. 259–268. doi:10.1109/FOSE.2007.19

Kramer, J., Magee, J., 1990. The evolving philosophers problem: dynamic change

management. IEEE Trans. Softw. Eng. 16, 1293–1306. doi:10.1109/32.60317

Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C., 2015. A Survey on

Engineering Approaches for Self-adaptive Systems. Pervasive Mob Comput 17,

184–206. doi:10.1016/j.pmcj.2014.09.009

Lamport, L., 1978. Time, Clocks, and the Ordering of Events in a Distributed System.

Commun ACM 21, 558–565. doi:10.1145/359545.359563

Lee, B., Park, T., Yeom, H.Y., Cho, Y., 1998. An efficient algorithm for causal message

logging, in: Seventeenth IEEE Symposium on Reliable Distributed Systems,

1998. Proceedings. Presented at the Seventeenth IEEE Symposium on Reliable

Distributed Systems, 1998. Proceedings, pp. 19–25.

doi:10.1109/RELDIS.1998.740470

Lemos, R. de, Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B.,

Tamura, G., Villegas, N.M., Vogel, T., Weyns, D., Baresi, L., Becker, B.,

Bencomo, N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs,

K., Göschka, K.M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J.,

Lopes, A., Magee, J., Malek, S., Mankovskii, S., Mirandola, R., Mylopoulos, J.,

Nierstrasz, O., Pezzè, M., Prehofer, C., Schäfer, W., Schlichting, R., Smith, D.B.,

258

Sousa, J.P., Tahvildari, L., Wong, K., Wuttke, J., 2013. Software Engineering for

Self-Adaptive Systems: A Second Research Roadmap, in: Lemos, R. de, Giese,

H., Müller, H.A., Shaw, M. (Eds.), Software Engineering for Self-Adaptive

Systems II, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp.

1–32.

Leveson, N.G., Harvey, P.R., 1983. Analyzing Software Safety. IEEE Trans. Softw. Eng.

SE-9, 569–579. doi:10.1109/TSE.1983.235116

Li, G., Han, Y., Zhao, Z., Wang, J., Wagner, R.M., 2006. Facilitating Dynamic Service

Compositions by Adaptable Service Connectors: Int. J. Web Serv. Res. 3, 68–84.

doi:10.4018/jwsr.2006010104

Lomet, D., Tuttle, M., 2003. A Theory of Redo Recovery, in: Proceedings of the 2003

ACM SIGMOD Conference on Management of Data. pp. 397–406.

Magalhães, J.P., Silva, L.M., 2015. SHÕWA: A Self-Healing Framework for Web-Based

Applications. ACM Trans Auton Adapt Syst 10, 4:1–4:28. doi:10.1145/2700325

Menasce, D., Gomaa, H., Malek, S., Sousa, J.P., 2011. SASSY: A Framework for Self-

Architecting Service-Oriented Systems. IEEE Softw. 28, 78–85.

doi:10.1109/MS.2011.22

Menasce, D.A., Sousa, J.P., Malek, S., Gomaa, H., 2010. Qos Architectural Patterns for

Self-architecting Software Systems, in: Proceedings of the 7th International

Conference on Autonomic Computing, ICAC ’10. ACM, New York, NY, USA,

pp. 195–204. doi:10.1145/1809049.1809084

Modafferi, S., Conforti, E., 2006. Methods for Enabling Recovery Actions in Ws-BPEL,

in: Proceedings of the 2006 Confederated International Conference on On the

Move to Meaningful Internet Systems: CoopIS, DOA, GADA, and ODBASE -

Volume Part I, ODBASE’06/OTM’06. Springer-Verlag, Berlin, Heidelberg, pp.

219–236. doi:10.1007/11914853_14

Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P., 1992. ARIES: A

Transaction Recovery Method Supporting Fine-granularity Locking and Partial

Rollbacks Using Write-ahead Logging. ACM Trans Database Syst 17, 94–162.

doi:10.1145/128765.128770

Neti, S., Muller, H.A., 2007. Quality Criteria and an Analysis Framework for Self-

Healing Systems, in: International Workshop on Software Engineering for

Adaptive and Self-Managing Systems, 2007. ICSE Workshops SEAMS ’07.

Presented at the International Workshop on Software Engineering for Adaptive

259

and Self-Managing Systems, 2007. ICSE Workshops SEAMS ’07, pp. 6–6.

doi:10.1109/SEAMS.2007.15

Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N.,

Quilici, A., Rosenblum, D.S., Wolf, A.L., 1999. An Architecture-Based Approach

to Self-Adaptive Software. IEEE Intell. Syst. 14, 54–62.

doi:10.1109/5254.769885

Porter, J., Menasce, D., Gomaa, H., 2016. DeSARM: A Decentralized Software

Architecture Discovery Mechanism for Distributed Systems. Presented at the 11th

International Workshop on Models@run.time (MODELS 2016), Saint-Malo,

France.

Psaier, H., Dustdar, S., 2010. A survey on self-healing systems: approaches and systems.

Computing 91, 43–73. doi:10.1007/s00607-010-0107-y

Ramirez, A.J., Cheng, B.H.C., 2010. Design Patterns for Developing Dynamically

Adaptive Systems, in: Proceedings of the 2010 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems, SEAMS ’10. ACM, New

York, NY, USA, pp. 49–58. doi:10.1145/1808984.1808990

Rauzy, A., 1993. New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40, 203–

211. doi:10.1016/0951-8320(93)90060-C

Raynal, M., 1992. About Logical Clocks for Distributed Systems. SIGOPS Oper Syst

Rev 26, 41–48. doi:10.1145/130704.130708

Salatge, N., Fabre, J.-C., 2007. Fault Tolerance Connectors for Unreliable Web Services,

in: 37th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, 2007. DSN ’07. Presented at the 37th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, 2007. DSN ’07, pp. 51–60.

doi:10.1109/DSN.2007.48

Salehie, M., Tahvildari, L., 2009. Self-adaptive Software: Landscape and Research

Challenges. ACM Trans Auton Adapt Syst 4, 14:1–14:42.

doi:10.1145/1516533.1516538

Sawyer, P., Mazo, R., Diaz, D., Salinesi, C., Hughes, D., 2012. Using Constraint

Programming to Manage Configurations in Self-Adaptive Systems. Computer 45,

56–63. doi:10.1109/MC.2012.286

Schneider, C., Barker, A., Dobson, S., 2015. A survey of self-healing systems

frameworks. Softw. Pract. Exp. 45, 1375–1398. doi:10.1002/spe.2250

260

Schroeder, B., Gibson, G.A., 2007. Understanding failures in petascale computers. J.

Phys. Conf. Ser. 78, 012022. doi:10.1088/1742-6596/78/1/012022

Silva, L.M., Alonso, J., Torres, J., 2009. Using Virtualization to Improve Software

Rejuvenation. IEEE Trans. Comput. 58, 1525–1538. doi:10.1109/TC.2009.119

Sommerville, I., 2010. Software Engineering, 9th ed. Addison-Wesley Publishing

Company, USA.

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F.,

Balakrishnan, H., 2003. Chord: a scalable peer-to-peer lookup protocol for

Internet applications. IEEEACM Trans. Netw. 11, 17–32.

doi:10.1109/TNET.2002.808407

Stojnic, N., Schuldt, H., 2012. OSIRIS-SR: A Safety Ring for self-healing distributed

composite service execution, in: 2012 ICSE Workshop on Software Engineering

for Adaptive and Self-Managing Systems (SEAMS). Presented at the 2012 ICSE

Workshop on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), pp. 21–26. doi:10.1109/SEAMS.2012.6224387

Strom, R., Yemini, S., 1985. Optimistic Recovery in Distributed Systems. ACM Trans

Comput Syst 3, 204–226. doi:10.1145/3959.3962

Subramanian, S., Thiran, P., Narendra, N.C., Mostefaoui, G.K., Maamar, Z., 2008. On

the Enhancement of BPEL Engines for Self-Healing Composite Web Services, in:

International Symposium on Applications and the Internet, 2008. SAINT 2008.

Presented at the International Symposium on Applications and the Internet, 2008.

SAINT 2008, pp. 33–39. doi:10.1109/SAINT.2008.12

Tanenbaum, A.S., Steen, M.V., 2006. Distributed Systems: Principles and Paradigms, 2

edition. ed. Prentice Hall, Upper Saddle RIiver, NJ.

Taylor, R.N., Medvidovic, N., Dashofy, E.M., 2009. Software Architecture: Foundations,

Theory, and Practice, 1 edition. ed. Wiley, Hoboken, NJ.

Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T., 2007. Tranquility: A Low

Disruptive Alternative to Quiescence for Ensuring Safe Dynamic Updates. IEEE

Trans. Softw. Eng. 33, 856–868. doi:10.1109/TSE.2007.70733

Vossen, G., Weikum, G., 2001. Transactional Information Systems. Morgan Kaufmann.

Wang, R., Salzberg, B., Lomet, D., 2007. Log-based Recovery for Middleware Servers,

in: Proceedings of the 2007 ACM SIGMOD International Conference on

261

Management of Data, SIGMOD ’07. ACM, New York, NY, USA, pp. 425–436.

doi:10.1145/1247480.1247528

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J.,

Andersson, J., Giese, H., Göschka, K.M., 2013. On Patterns for Decentralized

Control in Self-Adaptive Systems, in: Lemos, R. de, Giese, H., Müller, H.A.,

Shaw, M. (Eds.), Software Engineering for Self-Adaptive Systems II, Lecture

Notes in Computer Science. Springer Berlin Heidelberg, pp. 76–107.

doi:10.1007/978-3-642-35813-5_4

262

BIOGRAPHY

Emad Yousif Albassam received his Bachelor of Computer Science from King Abdulaziz

University, Jeddah, Saudi Arabia in 2007. In 2012, he graduated from George Mason

University, VA, USA with a Master of Science in Software Engineering. After that, he

started his Doctoral degree in Information Technology at George Mason University.

During his graduate studies, he published several research papers. Emad is also a faculty

member in the Deanship of Information Technology at King Abdulazuz University,

Jeddah, Saudi Arabia.

