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ABSTRACT 

A MODEL-BASED APPROACH FOR SELF-HEALING AND SELF-

CONFIGURATION IN COMPONENT-BASED SOFTWARE SYSTEMS 

Emad Yousif Albassam, Ph.D. 

George Mason University, 2017 

Dissertation Director: Dr. Hassan Gomaa 

 

Component-based software architectures (CBSAs) are a well-known approach for 

building increasingly complex software systems from components that are intended to be 

distributed and autonomic. However, CBSAs often run in environments that are evolving 

and subject to failures. As a result, it is highly desirable to design CBSAs with self-

configuration and self-healing capabilities so that they can dynamically adapt and recover 

in response to changing environments and failures, where the goal is to minimize manual 

intervention involved in managing and evolving these architectures. However, the 

systematic integration of the self-healing and self-configuration properties remains a 

challenge. Furthermore, although there exist a large body of literature in the areas of self-

healing and self-configuration, most of them use a centralized approach. The main 

challenge with decentralized approaches is carrying out dynamic adaptation and recovery 

using partial knowledge of the system. 
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This dissertation describes the design of Recovery and Adaptation Connectors. A 

Recovery and Adaptation Connector (RAC) extends communication connectors in 

CBSAs so that in addition to managing communications between application 

components, a RAC also manages adaptation and recovery concerns of these 

components. Each RAC encapsulates an Adaptation and Recovery State Machine that 

defines the behavior of the RAC during (1) normal execution when there are no 

adaptation or failures, (2) recovery so that the RAC ensures that any transactions 

that were interrupted due to a run-time failure are recovered and restarted at the recovered 

component, and (3) dynamic adaptation so that a component is only adapted after it has 

completed all transactions that it is currently engaged in and has become quiescent.  

 In addition, this dissertation describes the design of a decentralized framework 

called DARE for providing CBSAs with both self-healing and self-configuration 

properties. DARE integrates architecture discovery mechanisms with recovery and 

adaptation connectors, and its design is based on a decentralized MAPE-K loop model in 

which DARE carries out recovery and dynamic adaptation when only partial knowledge 

of the software system is known to each node.  
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1 INTRODUCTION 

This dissertation investigates a reuse, model-based approach for self-

configuration and self-healing in component-based software architectures (CBSAs) that 

enables software systems to dynamically adapt and recover in response to changing 

environments and failures. The goal is to minimize manual intervention involved in 

managing and evolving these architectures. A CBSA with the self-configuration property 

has the capability of automatically adding, removing, and replacing components 

seamlessly at run-time. On the other hand, a CBSA with the self-healing property is 

capable of detecting and recovering from failures by dynamically relocating failed 

components to different nodes and establishing a consistent state in order to resume 

normal execution. 

This chapter is organized as follows. Section 1.1 discusses the motivation of this 

dissertation. Section 1.2 provides a glossary of terms that are used throughout this 

dissertation. Sections 1.3 and 1.4 contain the problem statement and research hypothesis, 

respectively. Section 1.5 enumerates the main objectives of this dissertation. Section 1.6 

lists the assumptions of this dissertation. Section 1.7 contains the organization of the 

remainder of this dissertation. 
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 Motivation 1.1
Manual management of large and highly dynamic CBSAs is becoming 

increasingly difficult as the size and complexity of these systems increase. For instance, 

studies showed that the mean time to failure in high-performance computing systems that 

consist of thousands of computational nodes is a few hours (Cappello et al., 2014; 

Schroeder and Gibson, 2007).  As a result, approaches based on autonomic computing 

have gained attention for developing systems that are capable of self-configuration, self-

healing, self-optimization, and self-protection, i.e., exhibit self-* properties. However, the 

systematic integration of these self-* properties is one of the main challenges of 

autonomic computing (Kephart and Chess, 2003).  

In addition, although software adaptation and recovery techniques are widely used 

to evolve CBSAs at run-time and to cope with failures in distributed software systems, it 

would be beneficial to apply reuse concepts to these techniques since reuse is a desirable 

feature in software development. Several reuse concepts and approaches have been 

successfully applied, such as reusing existing components or entire software 

architectures, to speed up development time and increase dependability in software 

systems (Sommerville, 2010).  

Two means that are widely used to achieve software reuse are software patterns 

and software product line (SPL) technology. Software patterns define solutions to 

recurring problems in software design. Several kinds of patterns addressing different 

kinds of problems were developed over the last decades such as design patterns (Gamma 

et al., 1994), architectural patterns (Taylor et al., 2009), and adaptation patterns (Gomaa 

and Hussein, 2004). On the other hand, the goal of SPL technology is to design a family 
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of software systems that share some commonality by designing a reusable software 

architecture that can be tailored to derive each member of the SPL family (Clements and 

Northrop, 2001).   

This dissertation investigates the design of a decentralized framework that applies 

reuse concepts, including software patterns and SPL technology, to software adaptation 

and recovery and integrates both self-healing and self-configuration in order to minimize 

manual intervention involved in managing CBSAs. 

 Glossary of Relevant Terms 1.2
This section provides a glossary of recurring terms that are used throughout this 

dissertation: 

 Adaptation Pattern. A software adaptation pattern defines how a set of components that 

make up an architectural pattern dynamically cooperate to change the software 

configuration to a new configuration (Gomaa and Hussein, 2004).  

 Architectural Pattern. A recurring software architecture that can be used in a variety of 

software applications (Gomaa, 2011). 

 Autonomic Controller. A control component used to automate management of 

distributed software systems by providing the following autonomic properties: self-

healing, self-configuration, self-optimization, and self-protection (Kephart and Chess, 

2003). 

 Configuration Map. A software artifact that describes deployment of the software 

systems in terms of components, nodes, and mapping between components to nodes  

(Taylor et al., 2009). 
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 MAPE-K Loop Model. A widely used model to implement autonomic controllers that 

consists of four activities (monitoring, analysis, planning, and execution) that operate on 

a knowledge-base of the system (Kephart and Chess, 2003).  

 Message-Based Transactions. A transaction in CBSAs is defined as an information 

exchange between multiple components through messages (Kramer and Magee, 1990) 

while a transaction in transactional processing systems is defined as an atomic unit of 

work (Bernstein and Newcomer, 2009). This dissertation combines these two definitions 

as: a transaction is an information exchange between two or more components through 

messages such that either all messages in a transaction are eventually exchanged or none 

of them are. 

 Recovery and Adaptation Connector (RAC). RACs extend connectors in CBSAs with 

recovery and adaptation capabilities to assist in self-healing and self-configuration. 

 Recovery Pattern. A recovery pattern defines how components in an architectural 

pattern can be dynamically relocated and recovered to a consistent state after a 

component has failed. 

 Self-Configuration. The ability of the software system to automatically adapt its 

architecture by adding, removing, or replacing components seamlessly at run-time in 

response to changes in operational environment or user requirements (Kephart and Chess, 

2003). 

 Self-Healing. The ability of the software system to automatically detect failures and then 

recover to a consistent state so that it can resume normal execution (Kephart and Chess, 

2003). 
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 Software Architecture. A software artifact that describes the overall structure of the 

software system in terms of components and their interconnections using connectors 

(Taylor et al., 2009). 

 Software Product Line. A family of software systems whose members share some 

commonality but also have variable functionality (Clements and Northrop, 2001). 

 Problem Statement 1.3
There are no existing approaches for self-configuration and self-healing for 

handling recovery and dynamic adaptation of component-based software architectures 

that take into consideration the architectural structure patterns used in a system and the 

architectural communication patterns between the system’s components. 

 Research Hypothesis 1.4
It is possible to design a decentralized approach that integrates both self-

configuration and self-healing in component-based software systems such that reusable 

adaptation and recovery patterns can be used to dynamically adapt the software 

architecture as well as determine the precise recovery actions to restore the system back 

to a consistent state after a run-time failure so that it can resume normal execution.  

 Research Objectives 1.5
 

The main objectives of this dissertation are to describe the design of: 

1. Recovery and adaptation patterns. This dissertation investigates the design of 

adaptation and recovery patterns that define how components in an architectural 

pattern can be dynamically adapted or recovered to a consistent state after a run-

time failure.  
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2. Recovery and adaptation connectors. This dissertation shows how connectors in 

component-based software architectures can be extended with adaptation and 

recovery capabilities to assist in self-healing and self-configuration, where the 

goal is to separate adaptation and recovery concerns from the business logic 

carried out by application components.    

3. A decentralized, self-healing and self-configuration framework. This research 

describes the design of an architecture-based, decentralized framework for self-

healing and self-configuration that is responsible for carrying out dynamic 

adaptation and recovery of components after a run-time failure. 

4. A reusable recovery and adaptation connector. This dissertation shows how 

variability in architectural patterns can be managed by designing a reusable 

recovery and adaptation connector using software product line technology. 

 Assumptions 1.6
This dissertation makes the following assumptions: 

 Only one node fails at a time. 

 Failures are not caused by malicious attacks or buffer overflows and follow a fail-

stop model. 

 Failure does not occur during recovery or adaptation. 

 Assistant Recovery and Adaptation Connectors do not fail. 

 Message delivery uses a reliable network transport protocol. 



7 

 

 Dissertation Organization  1.7
The remainder of this dissertation is organized as follows. Chapter 2 discusses the 

related works to this dissertation. Chapter 3 describes recovery and adaptation patterns in 

service-oriented architectures (SOAs) and the design of the recovery and adaptation 

connector that can be used to separate recovery and adaptation concerns from service and 

coordination concerns. Chapter 4 discuss recovery and adaptation patterns for various 

asynchronous patterns and the corresponding design of the recovery and adaptation 

connector for these patterns. Chapters 5 describes the DARE framework, which is an 

architecture-based, decentralized framework for providing both self-healing and self-

configuration properties to large and highly dynamic CBSAs. Chapter 6 describes the 

design of an assistant recovery and adaptation connector for handling recovery and 

adaptation concerns of clients and producers. Chapter 7 describes the approach of 

recovering the recovery and adaptation connector after a run-time failure. Chapter 8 

describes how a reusable recovery and adaptation connector can be designed using 

Software Product Line technology. Chapter 9 defines formal properties of the approach. 

Chapter 10 describes the experimental validation and results. Chapter 11 concludes this 

dissertation and discusses the future work.    
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2 RELATED WORK 

This chapter discusses previous research efforts that relate to this dissertation. 

Section 2.1 provides a description of autonomic software systems and the self-* 

properties. Section 2.2 discusses related surveys on autonomic software systems and 

describes how some of the open challenges in this area are tackled by this dissertation. 

Section 2.3 describes related dynamic software adaptation techniques and self-

configuration frameworks. Section 2.4 provides an overview of software recovery and 

fault-tolerance techniques, and describes related self-healing frameworks. Section 2.5 

describes related works in the area of software product lines. 

 Autonomic Software Systems 2.1
Autonomic software systems are software systems that exhibit the following 

properties (Kephart and Chess, 2003): 

 Self-configuration: the ability for the software system to automatically change its 

configuration based on high-level policies.    

 Self-healing: the ability for the software system to automatically detect failures, 

diagnose the cause of the failure, and install the necessary repairs to recover from 

the failure.   
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 Self-optimization: the ability for the software system to automatically select the 

optimal operational parameters to improve the quality of its services based on the 

current context.  

 Self- protection: the ability for the software system to automatically react to 

malicious attacks by executing defensive and prevention actions.  

In autonomic software systems, an autonomic manager is configured with one or 

more high-level objectives and is attached to one or more managed elements (e.g. a 

hardware or software component) to provide them with autonomic behavior. An 

autonomic manager executes a MAPE-K control loop that consists of the following 

activities (1) Monitoring the managed elements and collecting various relevant 

information (e.g. response time or CPU utilization), (2) Analyzing the collected 

information and asserting that no high-level objectives are violated, (3) Planning for 

behavioral or structural changes if one or more high-level objectives are violated, (4) 

Executing the required changes in order to restore the system back to a state that satisfies 

all high-level objectives. Additionally, autonomic managers are embedded with the 

necessary Knowledge about the managed elements required by the MAPE activities.  

 Autonomic Software Systems Challenges and Surveys 2.2
Although there exists a large body of literature in the area of autonomic and self-

adaptive systems, the second road map of self-adaptive systems stated that the focus of 

the majority of  the works in this area is on centralized approaches (Lemos et al., 2013). 

The main challenge with decentralized approaches is carrying out dynamic adaptation 

and recovery using partial knowledge of the software system (Krupitzer et al., 2015). 
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This dissertation focuses on a decentralized approach for self-healing and self-

configuration by assuming that none of the nodes has the complete knowledge of the 

software system.  

Weyns et al. stated that there is a need to further study possible decentralization 

patterns for the MAPE-K control loop (Weyns et al., 2013). With that respect, this 

dissertation investigates the design of a self-healing and self-configuration framework 

that is based on a decentralized version of the MAPE-K loop model and shows how 

coordination can be achieved between the various managers that realize the decentralized 

MAPE-K loop model. 

Schneider et al. (Schneider et al., 2015) concluded in their survey on self-healing 

frameworks that the systematic integration of the self-* properties is one of the main 

challenges in this area. This dissertation investigates this problem by describing the 

design of a decentralized framework that provides large and highly dynamic CBSAs with 

both self-healing and self-configuration properties. 

Psaier and Dustdar surveyed self-healing approaches and showed that these 

approaches are dependent on the application domain (Psaier and Dustdar, 2010). This 

dissertation considers how a self-healing and self-configuration approach can be designed 

independently of the application domain by considering the architectural patterns 

involved in the application. Similarly, Salehie and Tahvildari (Salehie and Tahvildari, 

2009) surveyed approaches to self-adaptive systems and proposed a taxonomy for the 

major design considerations that are often associated with these systems. They stated that 

isolating problematic components and recovering components correctly after a failure is a 
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challenge. This dissertation tackles these issues by considering extending connectors in 

CBSAs with adaptation and recovery capabilities so that adaptation and recovery 

concerns of a component are localized to the connector of that component. Neti and 

Muller (Neti and Muller, 2007) identified the main challenge in self-healing systems as 

the ability for a system to determine the cause of failure and then recover correctly. This 

dissertation investigates the design of recovery patterns that enable CBSAs to determine 

failed transactions and the precise actions to recover the system to a consistent state after 

a run-time failure. 

 Kramer and Magee (Kramer and Magee, 2007) identified several challenges 

involved in dynamic software adaptation including (1) preserving the consistency of a 

software system and (2) ensuring that no state information is lost during reconfiguration. 

Similarly, a survey by Huebscher and Mccann (Huebscher and McCann, 2008) stated that 

adapting software systems correctly at run-time without causing undesirable behavior 

remains a challenge in this area. This dissertation tackles these problem by considering 

how adaptation patterns can be used to adapt CBSAs seamlessly at run-time without 

losing any state information.   

 Self-Configuration  2.3
In the area of self-configuration, Garlan et al. described Rainbow, a reusable, 

architectural-based framework for self-adaptive software systems that is based on the 

MAPE-K control loop (Garlan et al., 2004). Rainbow maintains runtime information 

about a system’s structure and attaches various attributes to components and connectors 

that are used at runtime as constraints for triggering adaptation. Whenever a constraint is 
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violated, Rainbow executes an adaptation strategy (Cheng and Garlan, 2007) to restore 

the application back to a state that satisfies all constraints.  

Menasce, Gomaa, Malek, and Sousa described SASSY, an architectural-based 

adaptation framework for service-oriented architectures (SOAs) that realizes the MAPE-

K control loop, and showed how it can re-architect SOAs at runtime by finding a near-

optimal software configuration using quality of service (QoS) architectural patterns 

whenever the utility of the system falls below a threshold (Menasce et al., 2011, 2010). 

MOSES (Cardellini et al., 2012) is a framework aimed to improve the QoS attributes of 

SOAs in which an optimization engine is used to compute policies for manipulating 

response time, availability, and cost attributes of SOAs at run-time.   

Kramer and Magee (Kramer and Magee, 2007) investigated a decentralized 

change manager that maintains a complete view of the software system by relying on 

reliable broadcasting and totally ordered message delivery. MUSIC (Hallsteinsen et al., 

2012) is a framework for developing context-aware, self-adaptive software systems. 

However, recovery of the application state after a failure is assumed to be done at the 

application level. Bisadi and Sharifi (Bisadi and Sharifi, 2009) discussed an architecture 

that is inspired by cellular adaptation in which connectors forward incoming requests to a 

healer component for further analysis. The healer component then uses application-

specific policies to determine the need for adaptation. However, their approach considers 

adaptation caused by (1) increased number of messages (i.e. load) at connectors which 

requires increasing number of components to handle these messages and (2) incompatible 

message types which require searching for and installing compatible components.  
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Kramer and Magee investigated how components must transition to a quiescent 

state to safely reconfigure a software system while it is operational (Kramer and Magee, 

1990). Vandewoude et al. investigated relaxing the quiescence requirement (Vandewoude 

et al., 2007). Ramirez and Cheng describe patterns for self-adaptive systems including 

patterns for inserting and removing components, reconfiguring service components, and 

reconfiguring decentralized architectures (Ramirez and Cheng, 2010). Li et al. (Li et al., 

2006) showed how connectors can be used to dynamically compose services in service-

oriented architectures (SOAs).  

Gomaa et al. investigated dynamic software adaptation patterns that define how 

components in an architectural pattern can dynamically collaborate at run time to change 

the current configuration of the system to a new configuration (Gomaa, Hashimoto, Kim, 

Malek, and Menasce, 2010; Gomaa and Hashimoto, 2012; Gomaa and Hussein, 2004). In 

their approach, adaption state machines are embedded inside adaptation connectors 

(rather than application components) in order to increase the reusability of adaptation and 

to allow connectors to queue incoming messages while components are being adapted so 

that normal operation can be resumed after dynamic adaptation has completed.  

Although several reference architectures and reusable frameworks have been 

proposed to achieve self-configuration (Dashofy et al., 2002; Garlan and Schmerl, 2002; 

Oreizy et al., 1999), these approaches do not consider the self-healing property. 
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 Self-Healing and Software Recovery Techniques 2.4

2.4.1 Frameworks 
Prior works on self-healing approaches vary based on the kind of problems 

assumed to occur in the software system. For instance, several approaches have been 

prescribed for handling software aging and transient faults (Silva et al., 2009), 

performance degradation (Magalhães and Silva, 2015), and software faults (Bruning et 

al., 2007). We focus here on related works that are capable of handling failures under the 

fail-stop model in which components do not behave erroneously but simply cease 

functioning when they fail (Avizienis et al., 2004).  

Stojnic and Schuldt described OSIRIS-SR, a decentralized, scalable safety ring to 

achieve self-healing data management in service-oriented architectures (Stojnic and 

Schuldt, 2012).  However, their approach does not handle dynamic deployment of 

components. Danilecki et al. (Danilecki et al., 2011) described the use of ReServE to 

recover services in SOAs to a consistent state after a run-time failure. However, their 

approach does not consider dynamic adaptation of the software architecture. Prior works 

showed how BPEL can be extended with self-healing capabilities (Modafferi and 

Conforti, 2006; Subramanian et al., 2008) and considered multiple recovery strategies for 

recovering web services (Angarita et al., 2016). Salatge et al. suggested the use of fault-

tolerance connectors to increase service dependability in SOAs (Salatge and Fabre, 

2007). However, none of these works considered integrating self-configuration, by 

driving the state of components to a quiescent state, with self-healing capabilities. 

Although it is possible to design platform-dependent self-healing approaches (e.g. 

Candea et al. showed how JBoss can be extended with self-healing capabilities (Candea 
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et al., 2003)), this dissertation considers a platform-independent self-healing approach to 

increase reuse.  

2.4.2 Software Recovery  
Software recovery is concerned with techniques that enable the restoration of 

software state to a consistent state after an error has occurred. This section discusses 

software recovery techniques that relate to this dissertation including recovery in 

transactional processing systems, transactional queues, and roll-back recovery 

techniques.   

Recovery in transactional processing systems depends on the notion of 

transactions. A transaction (Bernstein and Newcomer, 2009) is defined as a logical unit 

of work that consists of two or more operations such that either all operations execute to 

their entirety (in which case the transaction is committed) or none of them do (in which 

case the transaction is aborted). To facilitate recovery, transactional processing systems 

maintain log files to keep track of transaction statuses and the changes made by each 

transaction to the system state. Recovery in these systems involves reconstructing a 

consistent state (Bernstein and Newcomer, 2009; Lomet and Tuttle, 2003; Mohan et al., 

1992) such that this state includes only the effect of transactions that committed before 

the failure. That is, the system recovers by aborting all active transactions that did not 

complete before the failure and storing the results of all transactions that have been 

logged as committed before failure.  

Transactional queues (Bernstein et al., 1990) are a widely used recovery approach 

in distributed environments where the goal is to ensure that every request from a client to 
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a service is processed by the service exactly once.  In this approach, a client queues a 

request into a server’s transactional queue using a transaction. The server then dequeues 

the request from its transactional queue, processes the request, and queues the response 

into the client’s transactional queue using a second transaction. Finally, the client 

dequeues the response from its transactional queue and processes the response using a 

third transaction. Thus, transactional queues ensure that the state of the queues can be 

restored in case of failure.  

In roll-back recovery (Elnozahy et al., 2002), distributed software processes write 

messages they receive or send in log files, so that these messages can be replayed during 

recovery after a process has failed in order to restore that process to the closest state to 

the failure point.  Three types of message logging protocols exist in the literature (Alvisi 

and Marzullo, 1998; Elnozahy et al., 2002). In the pessimistic message logging protocols, 

messages are synchronously logged before they are processed, imposing some overhead 

during normal execution due to logging but in favor of avoiding orphan processes (i.e. 

processes whose state depends on a message that has been lost due to failure). In 

optimistic message logging protocols (Strom and Yemini, 1985), messages are 

asynchronously logged while they are being processed, which minimizes logging 

overhead during normal execution but may require rolling back the state of multiple 

processes, which complicates recovery. Finally, in causal message logging protocols 

(Lee et al., 1998), each process piggybacks the messages that affected its state when 

sending messages to other processes, so that these messages are logged by the recipient 

processes. A combination of these protocols is also possible. For instance, Wang et al. 
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(Wang et al., 2007) discussed combining the pessimistic and optimistic message logging 

in service components. In their approach, logging of messages between services from the 

same service provider is optimistic while logging of messages between services from 

different service providers is pessimistic.  

This dissertation considers how messages exchanged between components in an 

architectural pattern can be treated as atomic transactions such that these transactions can 

be recovered by recovery and adaptation connectors after a run-time failure. Furthermore, 

this dissertation considers how these connectors can be recovered after a run-time failure 

use message logging and replaying. 

2.4.3 Fault Tolerance  
To gain better understanding in fault tolerance concepts and techniques, several 

surveys and references are used as follows. Work by Avizienis et al. (Avizienis et al., 

2004) discussed important concepts related to dependable systems including faults, 

errors, and failures and their classifications as well as fault tolerance techniques. 

Guerraoui and Schiper (Guerraoui and Schiper, 1997) described techniques related to 

replication of software components. Freiling et al. (Freiling et al., 2011) surveyed failure 

detection techniques. Raynal (Raynal, 1992) surveyed techniques for logical clock 

synchronization. Holman and Lee (David M Holman, 2008) discussed algorithms to 

achieve network fault tolerance including the store-and-forward technique.  Fault Tree 

Analysis (FTA) is a top-down approach introduced by Bell Laboratories in 1962 to 

evaluate safety and reliability properties in computer systems (Ericson, 1999). In FTA, a 

fault tree model is used to depict the relationship between a high-level, undesirable 
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system event (located at the top of the tree) and the basic cause events (located at the 

leaves of the tree) that could trigger the undesirable event (Leveson and Harvey, 1983). 

The relationship between cause events in fault trees is defined using logical gates. 

Furthermore, an event at one level in a fault tree is resolved by identifying its immediate 

cause events in the next level until the basic cause events are identified or no further 

resolution is necessary. Once a fault tree is defined, a qualitative evaluation is possible 

through Boolean algebra to find the combinations of minimum basic cause events (called 

minimum cut sets) that can cause the top event (Rauzy, 1993).        

In order to support failure recovery and dynamic adaptation, this dissertation 

considers how a recovery and adaptation connector can be designed so that its stores the 

messages it receives in queues before forwarding them to their destination so that these 

messages can be recovered in case of failure.  

 Software Product Lines and Dynamic Software Product Lines 2.5
A software product line (SPL) is a family of software systems that share some 

commonalities and have some differences (Clements and Northrop, 2001). SPL design 

methods and techniques deal with developing reusable software assets, including a 

feature model and a software architecture, that can be tailored at deployment time to 

generate a particular member of the SPL.  A common approach in these methods is to 

design a feature model that captures the commonality and variability, in terms of 

functional and non-functional requirements, among the SPL members as well as any 

constraints. An example of a SPL design method is the Product Line UML-based 

Software Engineering (PLUS) (Gomaa, 2004). In PLUS, variability among members of a 
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SPL is captured by a feature model. During deployment, a member of a SPL is derived 

from a reusable software architecture by selecting the required features from the feature 

model and the corresponding components that implement those features. 

Dynamic software product lines (DSPL) are SPLs that are capable of changing 

one member of the SPL to another while the system is operational (Hinchey et al., 2012). 

The feature model itself may evolve at runtime due to unanticipated variability occurring 

at run-time (Bencomo et al., 2012). Work by Bosch and Capilla (Bosch and Capilla, 

2012) discusses the use of types and supertypes in feature models to handle dynamic 

evolution of these models as well as possible rebinding mechanisms in DSPL. Baresi, 

Guinea, and Pasquale (Baresi et al., 2012) investigated applying DSPL to service-

oriented systems. In their approach, a CVL (Common Variability Language) library is 

used to define core and additional process elements. During execution, services are 

intercepted using aspect-oriented programming and required changes are applied based 

on dynamic feature selection and the placement or replacement of process elements. 

Sawyer, Mazo, Diaz, Salinesi, and Hughes (Sawyer et al., 2012) investigated generating a 

SPL variant based on the current operational context by combining goal-modeling and 

constraint programming. Gomaa and Hashimoto (Gomaa and Hashimoto, 2011) 

discussed extending the PLUS method to handle dynamic adaptation for service-oriented 

product lines. In their approach, a member of a service-oriented product line can be 

adapted at run-time by 1) dynamically activating/deactivating features using a run-time 

feature model 2) determining how the target architecture needs to be adapted as a result 
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of dynamic feature selection by using a run-time feature/component dependency table 

and 3) dynamically adapting the architecture using service-oriented adaptation patterns.  
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3 DESIGN OF RECOVERY AND ADAPTATION CONNECTORS FOR 

SERVICE-ORIENTED ARCHITECTURES  

This chapter describes the design of the basic structure of a recovery and 

adaptation connector (RAC) for service-oriented architectures (SOAs).  We assume that 

there are multiple clients and a single service that processes multiple client requests 

concurrently. The service responds to each request from the client. The RAC manages 

transactions between a client and a service that comprise either single request/response 

messages or a dialog. This chapter also shows how the same RAC design can handle 

adaptation and recovery in other, more complex architectural patterns.  

This section is organized as follows. Section 3.1 describes the design of the RAC 

for handling adaptation and recovery of stateless services. Section 3.2 shows how this 

design of the RAC can be extended to handle stateful services. Section 3.3 shows how the 

RAC design can be used to handle adaptation and recovery in different SOA patterns. 

This chapter also discusses how the RAC can use the Two-Phase Commit protocol to 

handle services with non-idempotent operations (section 3.2), SOA (section 3.3.4), and 

distributed transactions (3.3.5). 

3.1 Design of the Service Recovery Connector 
The RAC (Figure 3.1) behaves as a proxy for the service by receiving requests 

from clients and then forwarding these requests to the service. The RAC also receives 

responses from the service, which are then forwarded to requesting clients. 
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To ensure safe adaptation at run-time and recoverability of service failures, the 

RAC must keep track of the transactions that the service is currently engaged in and must 

maintain messages (i.e., requests and responses) that pass through it so that these 

messages can be held during adaptation and can be recovered when the service fails.  

The RAC has a control object (Connector Control in Figure 3.1) that handles 

sending messages to and receiving responses from application components, and also 

handles adaptation and recovery concerns of the service. To facilitate maintenance of 

application messages, requests and responses are stored by the RAC in queues located at 

the Service Request Manager and the Service Response Manager (Figure 3.1), 

respectively. Each manager is provided with a coordinator component for controlling the 

queues it manages. The goal of these coordinators is to separate the concerns of queue 

management from adaptation and recovery concerns handled by Connector Control. 
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<<connector>>
:Service Recovery Connector

<<control>>
:Service Response Manager

<<control>>
:Service Request Manager

:Response Recovery Queue 
(RRQ)

:Response Forwarding Queue 
(RFQ)

:Service Pending Queue 
(SPQ)

<<state-dependent- 
control>>

:Connector Control

N1* : Request
N7: ACK

N2: Request
N8: ACK

N4: Response

N6: Forward Response

N5: Response

<<service>>
:Service

<<coordinator>>
:Coordinator

<<client>>
:Client

N3: Forward Request

N2a : Queue Request
N3a.1: Dequeue Request

N3a.2: Queue Request 
N6a.1: Dequeue Request

N5a: Queue Response
N6b.1: Dequeue Response

N3a: Forward Request
N6a: Forward Response
N9a: Transaction Completed

N6b: Forward Response
N9b: Transaction Completed

N6b.2: Queue Response
N9b.1: Remove Transaction 
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<<coordinator>>
:Service Request  

Coordinator

<<coordinator>>
:Service Response 

Coordinator

:Service Recovery Queue 
(SRQ)

N6a.2 : Queue Request, 
N9a.1: Remove Transaction 
                             Requests

:Service Active Queue 
(SAQ)

:Active Transactions 
Count

N3a: Increment
N6a: Decrement

 

Figure 3.1 Design of service recovery connector showing messages during normal execution 

 

3.1.1 Service Request Manager  
Every request sent by a client to a service passes through the Service Request 

Coordinator (Figure 3.1). The Service Request Coordinator maintains the following three 

queues for storing client requests based on the status of these requests:     

Service Pending Queue (SPQ). The SPQ stores client requests received by the 

RAC but that have not yet been forwarded to the service. The purpose of this queue is to 

buffer requests for the service so that any requests received by the RAC while the service 

is being dynamically adapted or is in the failed state are preserved until the service 

becomes active again. Thus, the SPQ ensures that no requests to the service are lost due 

to dynamic adaptation or recovery. 
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Service Active Queue (SAQ). This queue stores client requests that have been 

forwarded to the service but do not have corresponding service responses at the RAC, 

either because the service is still processing the request and has not generated the 

corresponding response yet or because the service response was lost due to service 

failure. 

The RAC uses this queue to determine pending requests that must be processed 

by the service first before the service can be dynamically adapted. Furthermore, the RAC 

uses this queue to recover requests that were lost by the service (due to service failure) 

before the corresponding responses of these requests are received by the RAC.   

Service Recovery Queue (SRQ). This queue stores client requests that have 

corresponding service responses at the RAC. This queue ensures that previous requests of 

each dialog that the service is currently engaged in are preserved so that these dialogs can 

also be recovered in case they were interrupted due to service failure. 

3.1.2 Service Response Manager  
Responses sent by the service are received by the Service Response Coordinator 

(Figure 3.1). The Service Response Coordinator maintains two queues for storing 

responses:   

Response Forwarding Queue (RFQ). This queue stores service responses that 

have been received by the RAC but have not yet been forwarded to the requesting client.  

Response Recovery Queue (RRQ). This queue stores service responses after they 

have been forwarded to the requesting clients. This queue ensures that a service response 

that has been forwarded by the RAC to the requesting client cannot be lost due to client 
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failure. In this case, when the RAC receives a duplicate request from a recovered client, 

the corresponding response is obtained from the RRQ and forwarded to the recovered 

client, without requiring the service to process the request again. 

3.1.3 Connector Control State Machine 
Connector Control (Figure 3.1) is a state-dependent control component that 

handles recovery and adaptation of the service by tracking its current state.  While the 

service is active, Connector Control keeps track of whether the service is currently 

engaged in any transactions with its clients so that it can base its adaptation and recovery 

decisions accordingly.    

The Connector Control state machine (Figure 3.2) consists of two orthogonal state 

machines (STMs). Integrated Adaptation and Recovery is the orthogonal STM that 

handles service adaption and recovery. The Message Queue Management STM is 

responsible for notifying the Service Request Coordinator and the Service Response 

Coordinator when a client acknowledges the completion of a transaction to enable these 

coordinators to remove the messages of this transaction from their queues. 

The orthogonal integrated adaptation and recovery state machine (Figure 3.3) 

consists of three composite states: (1) Active, which defines behaviour during normal 

service execution, (2) Adapting, which defines behaviour during dynamic service 

adaptation, and (3) Recovering, which defines behaviour during recovery. 
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Connector Control STM

Message Queue 
Management STM

Integrated 
Adaptation and 
Recovery STM

ACK/
Transaction

Completed {to coordinators}

 

Figure 3.2 State machine executed by Connector Control 

 

3.1.4 Normal Service Execution 
Initially, Connector Control is in the Waiting for Request state (Figure 3.3) 

indicating that the service is currently not engaged in any transactions with its clients. 

When Connector Control receives a client request, it forwards the request to the service, 

increments the number of active transactions that the service is currently engaged in, and 

transitions to the Processing state. While in the Processing state, Connector Control 

forwards requests to the service and forwards responses to requesting clients. Connector 

Control remains in the Processing state as long as the service is engaged in one or more 

transactions. Furthermore, Connector Control increments the number of active 

transactions when it forwards a request that initiates a new transaction with the service 

and decrements this number when it receives the final response of a transaction from the 

service. At this time, Connector Control forwards that final response of the final 

transaction to the requesting client and transitions back to the Waiting for Request state. 

3.1.5 Dynamic Service Adaptation 
In order to safely adapt the service at run-time, the service must be in a quiescent 

state (Kramer and Magee, 1990) in which it is not involved in any transactions and will 
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not receive any new transactions from its clients. At this point, the service can be 

removed or replaced at run-time after it has sent the final response of every transaction it 

is currently engaged in. In the Passivating state, Connector Control must not forward any 

requests that initiate new transactions with the service, so that the service can eventually 

transition to the quiescent state where it can be safely adapted. 

If Connector Control receives the Passivate command from Change Management 

(Kramer and Magee, 1990) while it is in the Waiting for Request state (Figure 3.3), then 

the service is not engaged in any transactions with its clients. It thus transitions 

immediately to the Quiescent state, and notifies the Service Request Coordinator that the 

service is quiescent so that it holds all requests it receives from clients in the SPQ. On the 

other hand, if Connector Control receives the Passivate command while it is in the 

Processing state, then the service is engaged in one or more transactions with its clients. 

In this case, Connector Control transitions to the Passivating state, where the service 

completes existing transactions. While in the Passivating state, Connector Control 

forwards intermediate requests it receives to the service and forwards service responses it 

receives to requesting clients. Eventually, when all active transactions are completed, 

Connector Control notifies the Service Request Coordinator that the service is 

transitioning to the Quiescent State where the service can be safely adapted. 
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Figure 3.3 Integrated adaptation and recovery state machine executed by Connector Control 

 

3.1.6 Service Recovery 
While the service is in the recovering state, Connector Control must not forward 

any requests and must ensure that all failed transactions are restarted when the service is 

recovered.  

Recovering a service from failure is handled by the connector using the MAPE-K 

loop model for self-healing and self-configuration, as explained next. The monitoring 
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activity of MAPE-K notifies the RAC of the service failure. When Connector Control 

receives a failure notification, it notifies the Service Request Coordinator of the failure 

and then transitions to the Analyzing Failure Events state (Figure 3.3).  

The Analyzing Failure Events state corresponds to the analysis activity of MAPE-

K where the RAC identifies all transactions that were interrupted due to service failure. 

The RAC determines that a transaction has failed if either the SAQ or SRQ contain a 

request that initiates a transaction with the service but neither the RFQ nor the RRQ 

contains a response that completes that transaction. When failure analysis is completed, 

Connector Control transitions to the Planning for Recovery state. 

The Planning for Recovery state corresponds to the planning activity of MAPE-K 

where the RAC determines the recovery plan for the failed transactions. The plan 

identifies which requests must be resent to the recovered service so that failed 

transactions are restarted at the recovered service. The recovery plan is determined by 

executing the following recovery policy: 

 First, the RAC forwards previous requests of every failed dialog that the service 

was engaged in before it failed. These requests are recovered from the SRQ and 

are forwarded sequentially in the same order they were processed before service 

failure to ensure that the recovered service also processes these requests in that 

order. 

 Second, the RAC forwards the requests of failed transactions queued in the SAQ, 

which contains pending requests that were lost by the failed service before the 

RAC received the responses to these requests. Note that at this step, if a request 
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that is being forwarded is of a dialog, then (from the previous step) the service 

must have already received all previous requests of this dialog.    

 Third, the RAC forwards all requests in the SPQ, which are new requests that 

have been received while the service is in the recovering state, to the recovered 

service. 

The Executing Recovery Plan state corresponds to the execution activity of 

MAPE-K where the RAC restores all requests that must be resent to the recovered service 

by moving these requests from the SRQ and SAQ to the SPQ, as specified in the recovery 

plan. When all requests are restored, Connector Control transitions to the Component 

Recovering state in which the connector waits until the service is relocated and 

instantiated by the Recovery and Adaptation Manager (this manager will be discussed in 

detail in chapter 5), and then has its connection with the recovered service established. 

Eventually, when Connector Control receives the Reactive command, Connector Control 

transitions to the Active state and notifies the Service Request Coordinator that the 

service is active so that the Service Request Coordinator resumes sending requests 

queued in the SPQ to Connector Control. 

3.1.7 Service Request Coordinator State Machine 
Based on the discussion in the previous section, the Service Request Coordinator 

must forward to Connector Control certain types of client requests based on the current 

state of the service, as shown in Figure 3.4. While the service is active (Figure 3.4), the 

Service Request Coordinator forwards all client requests it receives to Connector Control 

and also queues these requests in the SPQ.  
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When the Service Request Coordinator is notified that the service is passivating, it 

transitions to the Passivating state. The behavior of the Service Requests Coordinator 

while in this state is similar to its behavior in the Active state with one exception: in the 

Passivating state, the Service Request Coordinator does not forward to Connector Control 

any requests that initiate a new transaction with the service, and instead, queues such 

requests in the SPQ. Eventually, the Service Request Coordinator is notified that the 

service has become quiescent, causing the Service Request Coordinator to transition to 

the Quiescent state. While in the Quiescent state, the Service Request Coordinator does 

not forward any requests to Connector Control and instead queues them in the SPQ. 

Finally, when service adaptation is completed, the Service Request Coordinator receives 

a notification that the service is active, causing the Service Request Coordinator to 

transition to the Active state and to forward all requests queued in the SPQ to Connector 

Control.  

When service failures occur, the Service Request Coordinator transitions to the 

Failed state. While in the Failed state, the Service Request Coordinator holds all client 

requests it receives in the SPQ. The Service Request Coordinator may also receive 

messages from the execution activity of MAPE-K to restore any client requests that were 

lost due to service failure. As a result, the Service Request Coordinator moves these 

requests from the SRQ and the SAQ to the head of the SPQ so that these requests are 

resent to the recovered service. Finally, when the service is recovered, the Service 

Request Coordinator forwards all requests stored in the SPQ and then transitions back to 

the Active state. 
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Figure 3.4 State machine executed by Service Request Coordinator 

 

3.2 Handling Non-Idempotent Operations 
This section discusses extending the design of the RAC in section 3.1 to handle 

recovery and adaptation of stateful services with both idempotent and non-idempotent 

operations. It is assumed that the state of the stateful service is maintained by a 

transactional processing system that supports committing, aborting, and preparing 

transactions (Bernstein and Newcomer, 2009). The transactional processing system 

handles recovery of the service’s state to a consistent state by using a transactional log to: 

 Undo all transactions that have either been aborted or did not complete before 

service failure. 

 Redo transactions that have been committed before service failure.  
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 Restore the state of prepared transactions until these transactions are either 

committed or aborted. 

Since the service is a stateful component with non-idempotent operations, then the 

RAC must ensure that (1) committing the client’s transaction at the service side and (2) 

updating the queues at the Service Request Manager are performed as an atomic 

operation. To achieve this behavior, the RAC forwards each client request to the service 

by initiating a transaction using the Two-Phase Commit (2PC) protocol (Bernstein and 

Newcomer, 2009).  In this approach, Connector Control of the RAC acts as the 

coordinator of the 2PC transaction while the service and the Service Request Coordinator 

act as participants of this transaction, as explained next.  

During normal execution, when there are no failures, the interaction between the 

RAC and the service is as follows (Figure 3.5): 

1. When Connector Control of the service RAC (not shown in Figure 3.5) receives a 

client request, it forwards the client request to the service in a 2PC transaction. 

This request corresponds to the Prepare To Commit message in the 2PC protocol. 

Connector Control also forwards this request to the Service Request Coordinator, 

which is a second participant of this 2PC transaction. As a result, the Service 

Request Coordinator prepares to commit the client request by moving this request 

from the Service Pending Queue to the Service Active Queue and then 

acknowledges preparing the transaction to Connector Control.  
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2. The service prepares to commit the client request and then sends the response to 

the RAC. The service response corresponds to the Ready To Commit message in 

the 2PC protocol. 

3. Connector Control then sends the Commit message to both the service and the 

Service Request Coordinator. The Service Request Coordinator then commits the 

transaction by moving the client request from the Service Active Queue to the 

Service Recovery Queue and then acknowledges committing the transaction to 

Connector Control. 

4. The service commits the prepared transaction and then sends the Committed 

message to the RAC which completes this 2PC transaction. 

5. The RAC forwards the service response to the requesting client. 

 

 

Figure 3.5 Handling stateful services using two-phase commit 
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To satisfy this behavior, Connector Control (CC) executes the state machine 

shown in Figure 3.6. In this STM, CC is initially in the Waiting for Request state 

(Figure 3.6). During this state, If CC receives a client request, then there are two cases to 

consider: whether this request initiates a dialog with the service or not. If the request 

initiates a dialog, then the actions are to (1) increment the transaction count, (2) forward 

the request to the service, and then (3) transition to the Processing state. On the other 

hand, if the request is of a single request/response transaction, then the actions are to (1) 

increment the transaction count, (2) request the service to prepare to commit this request 

since this is the only request in this transaction, and then (3) transition to the Processing 

state. 

 While in the Processing state, CC reacts to the various events as follows: 

 If CC receives a request that initiates a new transaction with the service, then CC 

(1) increments the transaction count and (2) either forwards the request to the 

service (if this request initiates a new dialog as determined by the message 

header) or requests the service to prepare to commit this request (if the message 

header indicates that the transaction comprises a single request/response 

messages).  

 If CC receives an intermediate request of a dialog, then CC forwards this request 

to the service.  

 If CC receives a final request of a dialog, then CC requests the service to prepare 

to commit this transaction, since this is the last request of this transaction. 
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 If the event is the first response or is an intermediate response of a dialog, then 

CC forwards the response to the requesting client. 

 If CC receives a Read Only response from the service (Bernstein and Newcomer, 

2009), then this transaction is a read-only transaction that does not update the 

service’s state. As a result, the actions are to decrement the transaction count and 

forward the service response to the requesting client. If this is the last transaction 

that that service is currently engaged in, then CC transitions to the Waiting for 

Request state. 

 If CC receives a Ready To Commit response, the action is to send the Commit 

request to the service.  

 If CC receives a Refuse To Commit response, the action is to send the Abort 

message to the service.  

 If CC receives a Committed response, the action is to forward the service 

response, which was held by the RAC until the completion of this transaction, to 

the requesting client. This event also causes CC to decrement the transaction 

count. If this is the last transaction that the service is engaged in, then CC 

transitions to the Waiting for Request state. 

 If CC receives an Aborted response, the action is to forward the service response, 

which was held by the RAC until the completion of this transaction, to the 

requesting client. This event also causes CC to decrement the transaction count. If 

this is the last transaction that the service is engaged in, then CC transitions to the 

Waiting for Request state. 
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Figure 3.6 State machine executed by Connector Control for handling services with non-idempotent operations 

 

In this pattern, the service can be dynamically removed or replaced after it has 

completed all 2PC transactions that it is currently engaged in. In case of a service failure, 

when the RAC is notified of the service failure, the RAC determines a recovery action for 

each 2PC transaction it has initiated with the service as follows:  
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1. If the RAC has forwarded a client request to the service but the service failure 

occurred during phase 1 of the 2PC transaction, the RAC recovers the client 

request by moving it from the Service Active Queue to the Service Pending 

Queue. When the service is recovered, the RAC instructs the recovered service to 

abort this transaction so that the recovered service aborts the transaction if it has 

previously been prepared to commit. Note that if the service failed before 

preparing to commit the transaction, it ignores the Abort message from the RAC. 

Since the client request is saved in the Service Pending Queue, then the RAC 

eventually restarts this transaction with the recovered service.  

2. If the RAC has received a service response from the service but has not yet 

forwarded the Commit message to the service (i.e., service failure occurred before 

initiating phase 2 of the 2PC transaction), then the service must have prepared to 

commit this transaction before it failed. As a result, the RAC sends the Commit 

message to the service after it has recovered so that it commits this transaction. 

When the recovered service commits the transaction, it sends the Committed 

message to RAC which completes this transaction. 

3. If the RAC has forwarded the Commit message to the service but the service 

failure occurred during phase 2 of the 2PC transaction, the RAC resends the 

Commit message to the service after it has recovered. As a result, the recovered 

service commits the prepared transaction and sends the Committed message to the 

RAC. Note that the Commit message itself is idempotent. That is, if the service 

has committed the transaction before failure, then receiving a duplicate Commit 
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message causes the recovered service to send the Committed message to the 

RAC.  

3.3 Recovery and Adaptation Patterns in SOA Patterns 
This section describes how the RAC design discussed in the previous section can 

be used to handle adaptation and recovery of components in other more complex 

architectural patterns (Gomaa, 2011). 

3.3.1 Asynchronous Message Communication with Callback Pattern 
Typical client/service communication uses the Synchronous Message 

Communication with Reply pattern, in which the client sends a message to the service 

and waits for a response. In the Asynchronous Message Communication with Callback 

pattern (Figure 3.7), a client sends an asynchronous request to the service but can 

continue executing and receive the service response later. The request sent by the client 

contains a callback handle that the service uses when it finishes processing the client 

request so that it can send the response back to the client. A client in this pattern does not 

send another request to the service until it receives a response to the previous request. 

Since in this pattern a client sends one request at a time to the service, the RAC 

(shown in Figure 3.1) handles requests and responses for this pattern in the same way as 

for synchronous communication with reply. Thus, although the client behaviour is 

different, the service behaviour is not. For this reason, the adaptation and recovery for the 

Asynchronous Message Communication with Callback pattern is handled in the same 

way as described in sections 3.1 and 3.2. 
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3: Response4: Forward Response

:Service RAC

1: Request w/Callback Handle 
5: ACK

2: Forward Request w/Callback Handle

: Service: Client: Client

 

Figure 3.7 Asynchronous message communication with callback handle pattern 

 

3.3.2 Service Registration Pattern 
In service-oriented architectures, a service registers its name, location and service 

description with a broker, which acts as an intermediary between the clients and the 

service. In the Service Registration pattern (Figure 3.8), the service initiates a transaction 

with the broker by sending it a registration request containing the service information. 

The broker then registers the service and sends an acknowledgement to the service. The 

service can also re-register with the broker if it moves its location, which requires another 

transaction between the service and the broker.  

From the adaptation and recovery point of view, this pattern can be treated as a 

client that communicates with a service using the Synchronous Message Communication 

with Reply pattern. Thus, the adaptation and recovery patterns for this architectural 

pattern are exactly the same as described in sections 3.1 and 3.2. 
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3: Register ACK4: Forward Register ACK

:Broker RAC

1: Register Service 
5: ACK

2: Forward Register Service

: Broker: Client:Service

 

Figure 3.8 Service registration pattern 

 

3.3.3 Broker Handle Pattern 
After the service has registered with the broker, clients use the broker to locate the 

service. In the Broker Handle pattern (Figure 3.9), a client sends a request to the broker to 

obtain the service’s handle. The broker then sends a response to the client containing the 

service’s handle as a parameter. The client then uses the service’s handle to interact with 

the service.  

In this pattern, a client initiates two sequential transactions by first initiating a 

transaction with the broker to obtain the service’s handle and then by initiating a 

transaction with the service using the service’s callback handle. As a result, these 

transactions can fail and be recovered independently of each other.  

A broker is adapted after it has completed all the requests it has received, 

including brokering requests from clients requesting a handle and service requests for 

registration. New requests are held up until the broker has been relocated. In the case of a 

broker failure, all requests it is dealing with are aborted and only restarted when the 

broker has been relocated and instantiated. Both adaptation and recovery are carried out 

as described in Sections 3.1 and 3.2.  
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:Broker RAC :Broker
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1: Service Handle Request
5a: ACK

2: Forward Service Handle Request

3: Service Handle4: Forward Service Handle

5: Service Request
9: ACK

6: Forward Service Request

7: Service Response8: Forward Service Response

:Client :Service RAC

 

Figure 3.9 Broker handle pattern 

 

3.3.4 Service-Oriented Architectures 
In service-oriented architectures (SOAs), the goal is to increase loose coupling 

between services so that instead of services depending on each other, coordinators are 

provided for situations where multiple services need to be accessed, and access to them 

needs to be coordinated and/or sequenced (see Figure 3.10). We consider that the 

coordinator may interact with the services sequentially and/or concurrently and that the 

interaction between the coordinator and the multiple services involves a compound 

transaction that can be broken down into an atomic, independent transaction between the 

coordinator and each service, as described in the next subsection. 

In this pattern, when any of the services fail, the service’s RAC restarts each 

failed transaction with the service without affecting other transactions that the 

coordinator is currently engaged in with other services. Thus, the recovery and adaptation 

patterns for services in this pattern are exactly the same as discussed in sections 3.1 and 

3.2. The remainder of this section describes recovery and adaptation of the coordinator. 
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Figure 3.10 SOA architectural pattern 

 

For coordinators, we assume the general case in which the coordinator is a stateful 

component. Therefore, the Coordinator RAC must forward client requests to the 

Coordinator in 2PC transactions using the same approach described section 3.2 so that 

updating the Coordinator RAC’s queues and updating the Coordinator’s internal state is 

an atomic operation. Therefore, the Coordinator RAC coordinates the 2PC transaction it 

initiates with the Coordinator while the Coordinator coordinates access to the services. 

The behavior of the Coordinator RAC and the Coordinator is as follows: 

1. When the Coordinator RAC receives a client request (message 1 (m1) in 

Figure 3.10), it forwards this client request to the coordinator in a 2PC transaction 

(m2). This message corresponds to the Prepare to Commit message in the 2PC 

protocol. 



44 

 

2. When the Coordinator receives the client request, it initiates a compound 

transaction, which consists of initiating a constituent atomic transaction with each 

service. 

3. When the Coordinator receives responses from all services (m8 and m14), it 

prepares to commit the compound transaction it has initiated in the previous step 

and then sends its response (m15) to the Coordinator RAC. This response 

corresponds to the Ready To Commit message for the 2PC transaction initiated in 

step 1. 

4. The Coordinator RAC then sends the Commit message (m16) to the Coordinator. 

5. The Coordinator then commits the previously prepared compound transaction, 

sends ACK messages to the service RACs so that these connectors can safely 

remove messages for this transaction from their queues, and then sends 

Committed (m17) to the Coordinator RAC. At this point, the 2PC transaction 

between the Coordinator’s RAC and the Coordinator is completed.  

6. The Coordinator’s RAC sends the Coordinator’s response to the client (m18). 

Adaptation and Recovery of Coordinators.  

In the case of a client interacting with a coordinator, if the coordinator needs to be 

adapted, then the client request needs to be completed before adaptation. This means that 

the entire 2PC transaction between the Coordinator RAC and the Coordinator must 

complete before adaptation can take place, since completion of this 2PC transaction 

ensures that the last compound transaction initiated by the coordinator is also completed.  
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In the case of coordinator failure, when the coordinator is recovered, the 

recovered coordinator must abort the last compound transaction it initiated, if this 

compound transaction has not been prepared to commit before failure. Since the 

interaction between the coordinator’s RAC and the coordinator involves a 2PC 

transaction, then the coordinator’s RAC executes similar recovery actions to those 

described in section 3.2 to recover this 2PC transaction in case it failed, as follows: 

1. If the Coordinator RAC has forwarded a client request to the Coordinator but the 

coordinator failure occurred during phase 1 of the 2PC transaction, the 

coordinator RAC saves the client request by moving it from the Coordinator 

Active Queue to the Coordinator Pending Queue. When the coordinator is 

recovered, the coordinator RAC instructs the recovered coordinator to abort this 

transaction so that the recovered coordinator aborts the compound transaction, 

even if it has been prepared to commit. Since the client request is stored in the 

Coordinator Pending Queue, then eventually the coordinator’s RAC restarts this 

transaction with the recovered coordinator. Since transactions to coordinators can 

be restarted, a recovered coordinator may send duplicate requests to Service 

RACs. These Service RACs detect and discard duplicate requests by comparing 

message sequence numbers of incoming messages with previously received 

messages. Furthermore, if responses of duplicate requests are queued in the 

Response Recovery Queue (RRQ), then these service RACs resend these 

responses to the recovered coordinator. Note that from Figure 3.10, a service 

RAC does not discard a service response for any transaction until it receives an 
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ACK message from the coordinator that initiated this transaction. Because a 

coordinator sends ACK messages to service RACs only after it has committed the 

compound transaction it initiated, this ensures that a service RAC can always 

recover responses of the duplicate requests it receives from recovered 

coordinators. Note that if a Service RAC does not maintain in its RRQ the 

response of a duplicate request, the service RAC forwards the response to the 

coordinator after it receives this response from the service. 

2. If the coordinator RAC has received a ready to commit response from the 

coordinator but has not yet sent the Commit message to the coordinator (i.e., a 

coordinator failure occurred before initiating phase 2 of the 2PC transaction), the 

coordinator must have prepared to commit this transaction before it failed. As a 

result, the coordinator’s RAC sends the Commit message to the recovered 

coordinator for this transaction so that it commits this transaction. When the 

recovered coordinator commits the transaction, it sends the Committed message 

to the coordinator RAC, which completes this transaction. 

3. If the coordinator RAC has forwarded the Commit message to the coordinator but 

has not yet received the Committed message (i.e., a coordinator failure occurred 

during phase 2 of the 2PC transaction), the coordinator’s RAC resends the 

Commit message to the recovered coordinator. As a result, the recovered 

coordinator commits the prepared transaction, sends ACK messages to the service 

RACs, and then sends the Committed message to the coordinator’s RAC.  
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3.3.5 Distributed Transaction Pattern 
This section considers the recovery and adaptation patterns for the distributed 

transaction pattern in which there is a requirement that an atomic (i.e. indivisible) 

distributed transaction involving updates at multiple services must be either committed 

by all the services (see Figure 3.11) or aborted by all the services (see Figure 3.12). In 

this pattern, we consider the general case in which coordinators and services are both 

stateful components. Therefore, there is a 2PC transaction between each coordinator 

RAC and its coordinator and each service RAC and its service. Since the coordinators in 

this pattern also initiate 2PC transactions with the multiple services, then this result in a 

tree of 2PC transactions (Vossen and Weikum, 2001). The tree of the 2PC transactions is 

needed to ensure that the 2PC transactions between the coordinator RAC, the coordinator, 

the service RACs, and the services are atomic (i.e. indivisible) such that either all 2PC 

transactions in this tree are committed or none of them are. In this tree of 2PC 

transactions, the overall decision as to whether to commit or abort this tree is controlled 

by the coordinator RAC since this RAC is the root of this tree, as shown in Figure 3.13.  

In this tree of 2PC transactions: 

1. The coordinator RAC coordinates the 2PC transaction it initiates with the 

coordinator.  

2. The coordinator (1) participates in the 2PC transaction initiated by the coordinator 

RAC and (2) coordinates the distributed transaction it initiates with the multiple 

services via the service RACs. 

3. A service RAC (1) participates in the 2PC transaction initiated by the coordinator 

and (2) coordinates the distributed transaction it initiates with it service. 
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Since service RACs are participants of the transactions initiated by coordinators, 

then a service RAC does not commit the transaction it initiates with its service until it has 

received the coordinator’s decision on whether to commit or abort this transaction. 

Furthermore, since coordinators are participants of the transactions initiated by 

coordinator RACs, then a coordinator does not commit the distributed transaction it 

initiates with the multiple services until it has received the coordinator RAC’s decision 

on whether to commit or abort this transaction. 
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Figure 3.11 Two phase commit pattern – transaction commit case 
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Figure 3.12 Two phase commit pattern – transaction abort case 
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Figure 3.13 Tree of 2PC transactions 

 

Recovery and Adaptation of Coordinators 
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In this pattern, the interaction between the coordinator RAC and the coordinator is 

exactly the same as the interaction between the coordinator RAC and the coordinator in 

the SOA pattern (see section 3.3.4). Therefore, the recovery and adaptation pattern for 

coordinators is exactly the same as the one described in section 3.3.4. 

Recovery of Services 

Unlike the SOA pattern in which a service RAC can determine independently the 

decision of the 2PC transactions it initiates with its service (see section 3.3.4), the service 

RACs involved in the Distributed Transaction pattern act as participants to the distributed 

transactions initiated by the transaction coordinators, and therefore these RACs must 

ensure that the decision message they send to their services must always agree with the 

decision determined by these coordinators so that the atomicity of the entire distributed 

transaction that involves the multiple services is preserved. 

In order for the service RAC to satisfy this requirement, Connector Control (CC) 

executes the state machine shown in Figure 3.14. In this STM, CC is initially in the 

Waiting for Request state. During this state, If CC receives a Prepare To Commit request 

from the distributed transaction coordinator, then the actions are to (1) increment the 

transaction count, (2) forward the Prepare To Commit message to the service, and then 

(3) transition to the Processing state.  

 While in the Processing state, CC reacts to the various events as follows: 

 If CC receives a Prepare To Commit request, then CC (1) increments the active 

transaction count and (2) forwards the Prepare To Commit message to the service. 
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 If CC receives a Ready To Commit response, then this RAC must not make a 

decision for this transaction and must instead wait for this decision from the 

transaction coordinator. Therefore, the action is to forward Ready To Commit to 

the transaction coordinator.  

 If CC receives a Refuse To Commit response, then this service is unable to 

commit this transaction. Thus, the action is to forward Refuse To Commit to the 

transaction coordinator. 

 If CC receives a Commit request for a distributed transaction, then the action is to 

forward the Commit request to the service. 

 If CC receives an Abort request for a distributed transaction, then the action is to 

forward the Abort request to the service. 

 If CC receives a Committed response, then the action is to forward the Committed 

response to the transaction coordinator. This event also causes CC to decrement 

the transaction count. If this counter indicates that the service is not engaged in 

any other transactions, then CC transitions to the Waiting for Request state. 

 If CC receives an Aborted response, then the action is to forward the Aborted 

response to the transaction coordinator. This event also causes CC to decrement 

the transaction count. If this counter indicates that the service is not engaged in 

any other transactions, then CC transitions to the Waiting for Request state. 

In this pattern, the service can be dynamically removed or replaced after it has 

completed all distributed transactions that it is currently engaged in. In case of a service 
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failure, when the service RAC is notified of service failure, the service RAC determines a 

recovery action for each distributed transaction as follows:  

 If the service RAC has forwarded the Prepare To Commit to the service but the 

service failure occurred during phase 1 of the 2PC transaction, the RAC moves 

this transaction from the Service Active Queue to the Service Pending Queue. 

When the service is recovered, to avoid sending duplicate requests to the 

recovered service, the RAC instructs the recovered service to abort this 

transaction. Note that if the service failed before preparing to commit the 

transaction, it ignores the Abort message from the RAC. Since the transaction is 

saved in the Service Pending Queue, then the RAC will eventually restart this 

transaction with the recovered service.  

 If the RAC has received Ready To Commit from the service but has not yet 

forwarded the decision message (i.e. Commit or Abort messages) to the service, 

then the action is to send the Ready to Commit message to the transaction 

coordinator.  

 If the RAC has received Refuse To Commit from the service but has not yet 

forwarded the Abort message to the service, then the action is to send the Refuse 

to Commit message to the transaction coordinator. 

 If the RAC has forwarded either the Commit or Abort message to the service but 

the service failure occurred during phase 2 of the 2PC transaction, the RAC 

resends the Commit or Abort message to the service after it has recovered. As a 
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result, the recovered service will either commit or aborts the transaction and then 

send the Committed or Aborted message to the RAC.  
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Figure 3.14: State machine executed by Connector Control for handling distributed transactions 
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4 DESIGN OF RECOVERY AND ADAPTATION CONNECTORS IN 

ASYNCHRONOUS ARCHITECTURAL PATTERNS 

The previous chapter discussed the design of the service RAC that receives both 

input requests to a service and output responses from the service for several SOA-related 

patterns. This chapter discusses the design of a different type of the RAC that is used in 

various asynchronous architectural patterns. Unlike the service RAC, a RAC in an 

asynchronous pattern does not receive output responses from its component, and as a 

result, handles only input messages to its component. 

This chapter is organized is follows. Section 4.1 discusses the design of the 

consumer RAC for the unidirectional asynchronous message communication pattern 

when consumers are stateless. Section 4.2 shows how the approach can be extended to 

handle state-dependent consumers. Section 4.3 discusses how the same RAC is also 

applicable for other asynchronous patterns including the bidirectional asynchronous 

message communication pattern, the subscription/notification communication pattern, the 

master/slave architectural pattern, and various control patterns. 

 Design of the Consumer RAC in the Unidirectional Asynchronous 4.1

Message Communication  
In the unidirectional asynchronous message communication (Figure 4.1), one or 

more producers send one or more asynchronous messages to the consumer. The messages 

from a producer to the consumer do not require any responses from the consumer to the 
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producer. As a result, producers continue execution immediately after sending messages 

to the consumer. It is assumed that no dialogs are involved between producers and the 

consumer, since the consumer does not send any responses to producers. Furthermore, it 

is assumed that each message from the producer initiates a new transaction with the 

consumer. A transaction in this pattern consists of (1) the producer sending an 

asynchronous message to the consumer, (2) the consumer consuming the producer’s 

message, and (3) the consumer sending an acknowledgement message back to the 

consumer RAC. The remainder of this section discusses the design of the consumer RAC 

and how it handles adaptation and recovery concerns of the consumer with the 

assumption that the consumer is a stateless component. Section 4.2 discusses handling 

state-dependent consumers.     

 

: Consumer:Producer :Consumer RAC

Asynchronous Message Forward Asynchronous Message

ACK

 

Figure 4.1 Unidirectional asynchronous message communication between a producer and a consumer 

 

4.1.1 Design of the Consumer RAC 
 If the consumer is a stateless component, then the message sequencing between 

the consumer RAC and the consumer is as follows (Figure 4.1): 

1. When the consumer RAC receives a message from the producer, it forwards the 

message to the consumer. 
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2. When the consumer is finished with the producer’s message, it sends the ACK 

message to the consumer RAC. This message serves as an acknowledgement to 

the consumer RAC that the producer’s message is not needed anymore and thus 

can be removed from the connector’s queues. Note that although it is not 

necessary for asynchronous communication, the ACK message is needed for 

recovery and adaptation of the consumer. Furthermore, the consumer RAC does 

not wait for the consumer’s acknowledgement before forwarding the next 

message to the consumer. Thus, communication between the consumer RAC and 

the consumer is asynchronous in both directions.  

Based on this behavior of the consumer, the design of the consumer RAC is 

explained next. Every asynchronous message sent from a producer to the consumer 

passes through the Queue Coordinator of the Consumer RAC (Figure 4.2).  When the 

Queue Coordinator receives a message from the producer, it queues the message into the 

Pending Queue (message 2a) and sends it to Connector Control (message 2). Connector 

Control then forwards the message to the consumer (message 3) and also forwards the 

message back to the Queue Coordinator (3a). As a result, the Queue Coordinator moves 

the message from the Pending Queue (3a.1a) to the Active Queue (3a.1b) which indicates 

that this message is currently being processed by the consumer. When the consumer 

finishes processing the producer’s message, it sends the ACK message (message 4) to the 

Connector Control of the consumer RAC. After Connector Control has received the ACK 

message from the consumer, it sends the Transaction Completed message (message 5) to 
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the Queue Coordinator so that it removes the message from the Active Queue, which 

completes this transaction between the producer and the consumer. 
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Figure 4.2 Design of the consumer RAC for the unidirectional asynchronous message communication 

 

4.1.2 Connector Control State Machine and Normal Consumer Execution 
The integrated adaptation and recovery state machine executed by connector 

control of the consumer RAC is shown in Figure 4.3. This state machine handles 

adaptation and recovery concerns for the consumer component. Initially, Connector 

Control is in the Waiting for Input Messages state. When Connector Control receives a 

producer’s message, it (1) increments the transaction count, (2) forwards the message to 

the consumer, and then (3) transitions to the Processing state. When Connector Control 

receives a producer’s message while in the Processing state, the actions are also to 
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forward these messages to the consumer and to increment the transaction count. When 

Connector Control receives an ACK message from the consumer, it decrements the 

transaction count. Connector Control remains in the Processing state until it receives an 

acknowledgment from the consumer for every message it has forwarded so far and then 

transitions back to the Waiting for Input Messages state.  

4.1.3 Dynamic Consumer Adaptation 
In order to safely adapt the consumer at run-time, the consumer must be in the 

quiescent state in which it is not involved in any transactions and will not receive any 

new transactions from the producers. Thus, if Connector Control receives the Passivate 

command from Change Management (Kramer and Magee, 1990) while it is in the 

Waiting for Input Messages state (Figure 4.3), then the consumer is not engaged in any 

transactions with the producer. In this case, the consumer transitions immediately to the 

Quiescent state and notifies the Queue Coordinator of consumer quiescence so that it 

holds all messages it receives from the producer in the Pending Queue. On the other 

hand, if Connector Control receives the Passivate command while it is in the Processing 

state, then the consumer is engaged in one or more transactions with the producer. In this 

case, Connector Control must transition to the Passivating state in which the consumer is 

allowed to complete all transactions that it is currently engaged in with the producers. 

During the Passivating state, the consumer RAC does not forward any messages to the 

consumer. Thus, Connector Control notifies the Queue Coordinator so that it holds all 

message in the Pending Queue. Eventually, when Connector Control has received an 

ACK for every message that it has forwarded to the consumer, Connector Control 
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transitions to the Quiescent state and notifies Change Management and Queue 

Coordinator that the consumer has become quiescent. When Connector Control is 

notified of consumer activation, then Connector Control notifies the Queue Coordinator 

to resume forwarding messages to Connector Control and then transitions to the Waiting 

for Input Messages. 
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Figure 4.3 Integrated adaptation and recovery STM executed by connector control of the consumer recovery 

connector 
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4.1.4 Consumer Recovery 
In the case of consumer failure, the recovery pattern is as follows: 

1. When the consumer RAC is notified by the Recovery and Adaptation Manager 

(this manager will be discussed in chapter 5) of consumer failure, the consumer 

RAC transitions to the Analyzing Failure Events state (Figure 4.3) where it 

identifies any failed transactions and lost messages due to consumer failure. In 

this pattern, all messages queued in the Active Queue are considered lost 

messages since these messages are messages that have been forwarded to the 

consumer for which the consumer RAC has not received corresponding ACK 

messages from the consumer. 

2. When all failed transactions have been identified, Connector Control transitions to 

the Planning for Recovery state where it determines the recovery plan for 

recovering failed transactions. In this pattern, Connector Control simply 

determines that every message queued in the Active Queue must be recovered and 

restored to the Pending Queue.   

3. After the recovery plan is determined, Connector Control transitions to the 

Executing Recovery Plan state in which it executes the recovery plan by restoring 

all lost messages queued in the Active Queue to the head of Pending Queue.  

When the consumer RAC is reactivated after it has been connected with the 

recovered consumer, the consumer RAC forwards the messages queued in the Pending 

Queue to the recovered consumer. This includes any held messages and lost messages 

that have been recovered according to steps 1-3.  
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4.1.5 Queue Coordinator State Machine 
Figure 4.4 depicts the state machine executed by the Queue Coordinator. While in 

the Active state, the Queue Coordinator forwards all messages it receives from producers 

to Connector Control. When Queue Coordinator receives a notification that the Consumer 

is passivating, it transitions to the Passivating state, where it holds all producer messages 

in the Pending Queue. When the Consumer becomes quiescent, the Queue Coordinator 

receives the Notify Quiescent message from Connector Control and then transitions to the 

Quiescent state in which the action is to also hold all input messages in the Pending 

Queue until the consumer adaptation is completed.  

In case of consumer failure, the Queue Coordinator eventually receives a 

consumer failure notification from Connector Control. As a result, the Queue Coordinator 

transitions to the Failed state in which it holds all producer messages in the Pending 

Queue. While in the Failed state, the Queue Coordinator may receive the Restore Request 

message from the Execution Activity of MAPE-K (as discussed in the previous section) 

to restore any lost messages. As a result, the Queue Coordinator restores these lost 

messages by moving these messages from Active Queue to Pending Queue. (Note that in 

order to ensure that all messages sent by the consumer before it failed are received by the 

consumer RAC, recovery of the failed consumer takes place only after pinging the node 

hosting the consumer component and then waiting for a certain time interval for receiving 

a heartbeat response. This issue of asserting failure of nodes using pinging is discussed in 

detail in chapter 5).  
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When the Queue Coordinator is notified that the consumer is activated again 

while in the Quiescent or Failed state, it forwards all messages held in the Pending Queue 

to Connector Control and then transitions to the Active state again. 
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Figure 4.4 State machine executed by Queue Coordinator of the consumer RAC 

 

4.1.6 Comparing the Designs of Consumer and Service RACs 
Based on this communication pattern, the design of the consumer RAC described 

in this section is different from the service RAC for SOA patterns (chapter 3) as follows. 

First, since the consumer RAC does not receive any responses from the consumer, the 

consumer RAC (1) does not forward responses to the producer and (2) does not require 

the Service Response Manager that is used by the service RAC in SOA patterns to 

maintain responses from the service. Second, since the unidirectional asynchronous 

message communication pattern does not involve dialogs between the producer and 

consumer, the consumer RAC does not require the Service Recovery Queue, which is 



63 

 

used by the service RAC to maintain previous requests for active dialogs between clients 

and the service. 

 Recovery of State-Dependent Consumers 4.2
In cases where the consumer is state-dependent, then the consumer must process 

every input message exactly once, even in the presence of failures. For instance, if the 

consumer is a component that handles the motor of a train and provides an interface to 

increase the speed of the train by a certain acceleration rate, then forwarding a message 

more than once to the consumer could cause a significant increase in the train speed 

beyond the intended speed, which could lead to catastrophic events. 

It is assumed that the consumer maintains a log of the events it has executed 

(Elnozahy et al., 2002). Since the consumer is a state-dependent component, then the log 

is needed so that the consumer can recover its state after a run-time failure by replaying 

events from its log as well as to detect and discard duplicate messages (Elnozahy et al., 

2002). The use of logs for state-dependent consumers instead of the two-phase commit 

(2PC) protocol (which is used in chapter 3 for a stateful service) is justified since (1) 

asynchronous patterns are widely used in real-time systems and (2) logging is more 

lightweight compared to the 2PC protocol and is thus more applicable to real-time 

systems. The consumer maintains this log as follows: 

1. When the consumer receives a producer’s message that initiates a new 

transaction between the producer and the consumer, then the consumer logs 

the initiation of the transaction. 
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2. When the consumer is done with the producer’s message it adds a transaction 

completion record in its log and then sends the ACK message to the consumer 

RAC. 

Recovery Pattern of State-Dependent Consumers 

When the consumer recovers after a run-time failure, it uses its logs to guide its 

recovery as follows. First, during initialization, the recovered consumer replays messages 

from its log to recover its state (Elnozahy et al., 2002). Then, after reactivation, the 

consumer RAC forwards all lost messages to the recovered consumer, as explained 

previously in section 4.1.4. In case the consumer RAC sends duplicate messages to the 

recovered consumer, the recovered consumer detects and discards these duplicate 

messages by comparing the sequence number of input messages to the sequence number 

of messages maintained in the consumer log. 

 Recovery and Adaptation Patterns in Other Asynchronous Patterns 4.3
This section describes how the consumer RAC discussed in the previous section 

can also be used to handle adaptation and recovery of components in other asynchronous 

patterns. 

4.3.1 Bidirectional Asynchronous Message Communication 
In the bidirectional asynchronous message communication (Figure 4.5), the 

producer sends one or more asynchronous requests to the consumer via the consumer 

RAC. The consumer then processes each of these requests and sends a response to each 

request to the producer via the producer RAC. Furthermore, the producer can send a 

request to the consumer before it has received responses to the previous requests it has 
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sent. This pattern is different from the asynchronous message communication with 

callback handle discussed in the previous chapter in that there can be more than one 

outstanding request at a time between the producer and consumer.  

 

: Consumer:Producer :Consumer RAC

Asynchronous Request Forward Asynchronous Request

ACK

:Producer RAC

Asynchronous ResponseForward Asynchronous Response

ACK

 

Figure 4.5 Bidirectional asynchronous message communication 

 

This pattern is essentially a composition of two unidirectional asynchronous 

message communication patterns, since the producer sends asynchronous messages to the 

consumer in one direction without waiting for the consumer’s responses and the 

consumer also sends asynchronous messages to the producer in another direction without 

waiting for the producer’s messages. As a result, the adaptation and recovery patterns 

discussed in sections 4.1 and 4.2 apply equally to both the producer and the consumer 

engaged in bidirectional asynchronous message communication. 

4.3.2 Subscription/Notification Pattern 
The subscription/notification pattern (Figure 4.6) is a selective form of group 

communication in which consumers subscribe to a notification service to receive events 

of a certain type. To facilitate this type of communication, a notification service is 
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provided to handle tracking of consumers and the type of events that each consumer is 

interested in. Consumers can subscribe (or unsubscribe) to the notification service and 

specify the type of events they need to receive. When the notification service receives an 

event, it multicasts this event to the consumers that have subscribed to receive this type of 

event. This pattern consists of two type of transactions:  

 subscription (or unsubscription) of consumers with the notification service. 

 multicast of events by the notification service to consumers.  
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Figure 4.6 Subscription/notification pattern 

 

Transactions involving subscription (or unsubscription) of consumers use the 

synchronous message communication with reply pattern between each consumer and the 

notification service. Therefore, the recovery and adaptation pattern for this type of 

transaction is exactly the same as the one discussed previously in chapter 3. 
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Recovery of Consumers 

Since the communication between the notification service and each consumer is 

unidirectional, then each consumer is associated with a consumer RAC that handles 

receiving the multicast message from the notification service and then forwarding this 

message to the consumer. As a result, the adaptation and recovery patterns for consumers 

in this pattern are exactly the same as shown previously in section 4.1 for unidirectional 

asynchronous message communication. 

Recovery of Notification Service 

In this pattern, events to the notification service are forwarded by the service’s 

RAC as follows. During normal execution, the Notification RAC forwards the events it 

receives to the notification service. When the notification service receives an event from 

its connector, it determines which consumers have registered to receive this type of event 

and then notifies these consumers of the event. When the notification service sends the 

event to all such consumers, it sends the ACK message (Figure 4.6) to its connector so 

that the connector removes the event from its queues. Note that this pattern ensures that 

the notification is not lost by the notification service, but does not guarantee that the 

notification reaches the consumer or is processed by the consumer, because this is a 

lightweight protocol and hence does not use transactions. 

Based on this behavior, the Notification RAC recovers all lost unidirectional 

messages to the notification service using the recovery pattern for the consumer in the 

unidirectional asynchronous message communication discussed in section 4.1.  
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4.3.3 Master/Slave Pattern 
In the master/slave pattern (Figure 4.7), the master component is responsible for 

serving requests it receives from clients by dividing up the task to be performed among 

multiple slaves. The master sends a command to each slave via the slave’s RAC 

specifying the part to be executed by the slave. The slaves then process the master’s 

commands in parallel. When a slave finishes processing the master’s command, it sends a 

response to the master via the master RAC. Finally, the master integrates the slave 

responses.  
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Figure 4.7 Master/slave pattern 

 

Recovery and Adaptation of Slaves 

 In this pattern, the behavior of slaves is similar to the behavior of the consumer in 

the bidirectional asynchronous message communication (c.f. Figure 4.5). As a result, the 
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recovery and adaptation pattern for slaves is exactly the same as the recovery and 

adaptation pattern for consumers in the bidirectional asynchronous message 

communication discussed in section 4.2. 

Recovery and Adaptation of Master 

 In this pattern, we consider that the master interacts with its slaves as a compound 

transaction (Gomaa, 2011) that can be broken down into multiple atomic transactions 

between the master and each slave. The master first initiates a compound transaction and 

then sends a command to each slave within this compound transaction (Figure 4.8). 

When the master RAC receives a slave response, it forwards the response to the master. 

The master then (1) integrates all slave responses and sends an ACK message to the 

master RAC so that it removes the slave responses from its queue. 
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Figure 4.8 Message sequencing between master and slaves 

 

To facilitate the recovery of the master after a run-time failure, it is assumed that 

the master maintains a log to keep track of the compound transactions it initiates. The log 

is used to ensure that if the master fails after initiating a compound transaction but before 

this transaction is completed, then the recovered master can restart this compound 

transaction using its log. However, the use of the log alone does not ensure recovery of 

lost messages that were forwarded to the master either before or after it failed. Therefore, 

the master RAC is used to recover and resend any such lost messages to the recovered 

master, as explained next. 

For each compound transaction, the master logs two records as follows: 
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1. Before initiating any transaction with the slaves, the master first logs the initiation 

of the compound transaction. 

2. Before sending the ACK message to the master RAC, the master logs the 

completion of the compound transaction. The master also includes in this log 

record the result of integrating all of the slave responses it has received. Thus, 

after this record has been added to the log, the master RAC can safely remove all 

slave responses from its queues.   

When the master recovers from a run-time failure, it can be in two states, as follows: 

1. The master’s log indicates the initiation of an incomplete compound transaction. 

In this situation, the master must have failed before integrating the slave 

responses for the compound transaction it has initiated. Thus, the recovered 

master restarts this compound transaction. Due to this, a slave RAC may receive a 

duplicate command from the recovered master. Thus, slave RACs detect and 

discard these duplicate commands using message sequence numbers. Finally, the 

master RAC restores any slave responses it has forwarded to the master by 

moving these responses from the Active Queue to the head of the Pending Queue, 

as discussed previously in section 4.1. Note that the master RAC could not have 

removed any slave responses for this transaction from its queues since the master 

failed before sending the ACK message to the master RAC. 

2. The master’s log indicates that the last compound transaction has been completed. 

In this situation, there are two cases to consider: the master could have failed 

either before or after sending the ACK message to the master RAC. If the master 
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failed after it has sent the ACK message to the master RAC, then no recovery 

actions are required from the recovered master or the master RAC. Otherwise if 

the master failed before sending the ACK message to the master RAC, then the 

master RAC will recover and resend the slave responses of this transaction to the 

recovered master. Since the master maintains a log of the transactions it initiates, 

then the master can use this log to (1) detect and discard duplicate slave responses 

from the master RAC by comparing the transaction identifier of these responses to 

the transaction identifier of previously completed compound transactions and (2) 

send the ACK message to the master RAC so that it removes the slave responses 

from its queue.  

4.3.4 Centralized Control Pattern 
The centralized control pattern is widely used in real-time, embedded systems in 

which there is a centralized control component that handles control of other components 

in a software system (or a subsystem). This centralized control component (Figure 4.9) is 

responsible for receiving input events from multiple input components and sending 

output commands to output components. The centralized control component is state-

dependent and encapsulates a state machine that specifies the output commands (known 

as actions) that must be sent to output devices based on (1) the current state of the control 

component and (2) the received input event. 
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Figure 4.9 Centralized control pattern 

 

In this pattern, communication between the centralized control component and 

each output component uses the unidirectional asynchronous message communication 

pattern. Thus, each output component is associated with a consumer RAC that handles 

the recovery of its component as discussed previously in section 4.1. 

Since the communication between each input component and the centralized 

control component is also based on the unidirectional asynchronous message 

communication pattern, then the centralized control component is associated with a 
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consumer RAC (control RAC in Figure 4.9) that executes the state machine shown 

previously in Figure 4.3.    

Since the centralized control component is state-dependent, it is assumed that the 

state-dependent control component maintains an execution trace log that can be used by 

the component to guide its recovery after a run-time failure. Since the control component 

is a state-dependent component, then the log is needed to ensure that the control 

component can reconstruct its state after recovering from a run-time failure by replaying 

logged events (Elnozahy et al., 2002).  The log is updated by the centralized control 

component during normal execution each time the component receives an input event 

from its connector by logging:  

1. the input event. 

2. the state transition (source and destination states of the transition) caused by this 

input event.  

3. the actions performed by the state-dependent control component as a result of the 

state transition. 

4. A Completed record indicating that this state transition and all actions associated 

with this state transition have been performed. 

After the centralized control component logs completion of the transaction, it sends 

ACK message to its RAC so that it removes the input event from its queues. 

 When the centralized control component recovers from a run-time failure, it 

reconstructs the state of the state machine by replaying input events in its log. During this 

process, the recovered centralized control component may send duplicate commands to 
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output components. These duplicate commands are detected and discarded by the RACs 

of these output components using message sequence number.  

Note that the centralized control component could have failed before logging 

some input events that have been forwarded by the central control RAC. In this case, the 

control RAC ensures that these events (which have been lost by the control component 

due to failure) are resent to the recovered control component along with any events held 

while the component is in the failed state, as discussed in section 4.1. Since the 

centralized control component maintains a log of the events it has received, the 

component can use its log to detect and discard any duplicate input events it may receive 

from its connector.  

4.3.5 Distributed Control Pattern 
The distributed control pattern (Figure 4.10) is used in more complex distributed 

systems in which there are multiple state-dependent control components (instead of one 

centralized control component as done in the centralized control pattern) such that each 

control component manages a different part of the software system than other control 

components. Furthermore, one control component can interact with other control 

components. In this pattern, there is no single control component that has an overall 

control of the system.   

In this pattern, a control component M interacts with its predecessor control 

component M-1 and successor control component M+1 as follows (Figure 4.10): 
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1. Control component M initiates a transaction with its predecessor M-1 by sending 

it an asynchronous request and then receiving the corresponding asynchronous 

response later. 

2. Control component M receives a transaction from its successor M+1 by receiving 

an asynchronous request from its successor and then sending the corresponding 

asynchronous response later. 

As there are many variations to this pattern, we consider in this research that a 

control component M can initiate a transaction with its predecessor M-1 only after 

control component M has received a response for the last request it sent to control 

component M-1. Thus, a control component in this pattern is involved in different 

communication patterns and roles as follows:  

1. A control component M can act as a consumer in the unidirectional asynchronous 

message communication by receiving input events from input components. 

2. A control component M can act as a producer in the unidirectional asynchronous 

message communication by sending output events to output components. 

3. A control component M can act as a consumer in the asynchronous message 

communication with callback pattern (see section 3.3.1 in chapter 3) by receiving 

an asynchronous request from another control component and then sending an 

asynchronous response to this component. 

4. A control component M can act as a producer in the asynchronous message 

communication with callback pattern (see section 3.3.1 in chapter 3) by sending 
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an asynchronous request to another control component and then receiving the 

corresponding asynchronous response from this component. 

In this research, we consider that receiving an input message from an input 

component causes a distributed control component to initiate a transaction with another 

control component as follows: 

1. When the RAC of a control component M receives a message from an input 

component, this RAC forwards the input message to control component M. 

2. Control component M then sends an asynchronous request to another control 

component M-1 using the asynchronous message communication with callback 

pattern.  

3. Eventually, control component M-1 sends an asynchronous response to control 

component M.  

4. When control M is done with the response, control M sends an ACK message to 

its RAC, which serves as an indication to the control RAC that the control 

component is done with the input message sent in step 1.   

Based on this behavior of control components, a control component can be 

adapted after it has sent (1) an ACK message for each unidirectional asynchronous 

message it received from its RAC and (2) an asynchronous response for each 

asynchronous request it received from its RAC. In case of the failure of a control 

component, then the RAC of this control component resends all (1) unacknowledged 

unidirectional asynchronous messages and (2) any asynchronous requests for which there 

is no corresponding response received at the RAC to the recovered control component. 
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Therefore, the RAC of each control component in this pattern must be able to handle 

integration of unidirectional asynchronous message communication and asynchronous 

message communication with callback. This problem of patterns integration at the RAC 

will be discussed in detail in chapter 8.   
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Figure 4.10 Distributed control pattern 

 

4.3.6 Hierarchical Control Pattern 
In the hierarchical control pattern (Figure 4.11), there are multiple distributed 

control components, each controlling a different part of the software system. However, 

unlike the distributed control pattern, the distributed control components in this pattern 
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are controlled by a higher-level control component (Hierarchical Control in Figure 4.11) 

which decides the next job for each low-level control component. As there are many 

variations of this pattern, we assume that the hierarchical control component receives 

new job messages from one or more job generator components (e.g. producers or external 

systems). For each new job, the hierarchical control component assigns the job to one of 

the low-level control components by sending it a command. When a low-level control 

component finishes the current job assigned to it, it sends a response to the hierarchical 

control component. As a result, the hierarchical control component can send this low-

level control component the next command. It is assumed that the hierarchical control 

component does not send a command to a low-level control component unless the 

hierarchical control component has received a response for the previous request it has 

sent to the low-level control component.  

In this pattern, since the hierarchical control component receives asynchronous 

messages from generator components using the unidirectional asynchronous message 

communication, then the adaptation and recovery patterns of the hierarchical control 

component are the same as the ones shown previously in section 4.2.  

On the other hand, every low-level distributed control component participates in 

two patterns:  

 The unidirectional asynchronous message communication since a low-level 

control component may receive asynchronous messages from input components 

and sends asynchronous messages to output components. 
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 The asynchronous message communication with callback pattern since a 

distributed control component receives asynchronous commands from the 

hierarchical control and sends the corresponding responses of these commands to 

the hierarchical control component. 

Therefore, similar to the distributed control components in the distributed control 

pattern (see the previous section), the RAC of each low-level control component in the 

hierarchical control pattern must be able to handle integration of unidirectional 

asynchronous message communication and asynchronous message communication with 

callback. This problem of patterns integration at the RAC will be discussed in detail in 

chapter 8. 
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Figure 4.11 Hierarchical control pattern 
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5 DESIGN OF DECENTRALIZED ARCHITECTURE FOR SELF-HEALING 

AND SELF-CONFIGURATION  

The focus of the previous chapters was recovering failed transactions using 

recovery and adaptation connectors (RACs) in various architectural patterns. An equally 

important problem is recovering components automatically after a run-time node failure, 

which is the focus of this chapter.  

When a node fails, the system must recover to a consistent configuration in which 

every failed component is relocated and instantiated on a healthy (i.e. non-failed) node 

and that the connections between a recovered component and its neighbor components 

are re-established.  

This chapter is organized as follows. Section 5.1 discusses DARE, a 

decentralized, architecture-based framework for self-healing and self-configuration, 

which is based on a decentralized MAPE-K loop model. Sections 5.2 and 5.3 describe the 

design of the various components in the DARE architecture. Section 5.4 describes the 

mapping of recovery functionality to MAPE-K activities. Section 5.5 describes how 

DARE can be used to recover failed components.  

 DARE Overview  5.1
This section provides an overview of the DARE (Distributed Adaptation and 

REcovery) framework, which is a decentralized, integrated adaptation and recovery 

framework for providing both self-healing and self-configuration properties to complex 
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and highly dynamic CBSAs. In this dissertation, every node in the system hosts an 

identical instance of the DARE middleware whose architecture is shown in Figure 5.1. 

This architecture consists of three layers as follows. 

The Configuration Maintenance Layer (CML) is responsible for keeping track of 

the current configuration map of the software system, which includes the mapping of 

components to nodes, and providing services to higher layers for retrieving and 

modifying this map. 

The Architecture Discovery Layer (ADL) is responsible for automatically 

discovering the current architecture of the software system. It relies on gossiping and 

message tracing techniques for discovering and disseminating the current software 

architecture between nodes in a decentralized fashion (Porter et al., 2016). Furthermore, 

the ADL is responsible for notifying the CML, when it suspects a node failure due to 

absence of gossip messages from that node, and providing the discovered architecture to 

the top layer when dynamic adaptation and failure recovery are required. The design and 

implementation of DeSARM is beyond the scope of this dissertation. 

The Application Recovery Layer (ARL) is responsible for adapting and 

recovering components after a run-time component failure. The Recovery and Adaptation 

Manager in this layer determines plans for dynamically adapting the architecture and 

recovering failed nodes. Additionally, this manager executes a reconfiguration template 

consisting of reconfiguration commands that handle instantiating components on healthy 

nodes and establishing the connections between application components. This layer also 

includes recovery and adaptation connectors (not shown in Figure 5.1) that handle 
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recovery of failed transactions and steer application components to a quiescent state in 

order to carry out dynamic adaptation as shown previously in chapters 3 and 4. 

The next two sections describe the design of the CML and ARL. Interested 

readers can refer to (Porter et al., 2016) for more details on the design of the ADL.  
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Figure 5.1 The DARE architecture 

  

 Configuration Maintenance Layer 5.2
The Configuration Maintenance Layer (CML) consists of the Configuration 

Manager and the Failure Analysis Manager, which are described next. 
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5.2.1 Configuration Manager 
The Configuration Manager (CM) is responsible for maintaining the current 

configuration map of the software system, which includes: 

 The IP and subnet address of every node in the current configuration of the 

software system, and 

 The set of identifiers of components and RACs hosted by every node in the 

configuration. 

In order to tolerate failures and enable distribution of the configuration map, the 

configuration map is stored in a distributed hash table (DHT) that supports replication of 

its entries (Stoica et al., 2003). The DHT contains entries (see Table 5.1) that map (1) the 

IP address of a node to the set of identifiers of components and RACs hosted by the node 

with this IP address, (2) the identifier of a component or RAC to the IP address of the 

node that is currently hosting this component or RAC, and (3) a subnet address to the IP 

addresses of the nodes that are currently in this subnet. 

 

Table 5.1 Key and value pairs of the distributed hash table used by configuration manager to store the 

configuration map 

Key (hash of) Value 

Node IP Address Set of identifiers of the components and connectors 

hosted by the node with this IP address.  

Component/Connector ID The address of the node hosting the component or 

connector with this identifier. 

Subnet Address Set of the IP addresses of the nodes in this subnet 
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address.  

 

5.2.2 Failure Analysis Manager 
At any one moment, the recovery of a failed component must be handled by 

exactly one Recovery and Adaptation Manager. Otherwise, if multiple managers 

attempted to recover the same failed component, the system’s configuration may become 

inconsistent with, for example, duplicate components and broken connections between 

components. To ensure consistent recovery, our approach involves electing the node with 

the lowest IP address to become the recovery coordination node in charge of 

coordinating recovery of other failed nodes. To ensure scalability of the approach in case 

of large systems that span multiple subnets, it is possible to have a recovery node for each 

subnet such that this recovery node handles recovery of other nodes in the same subnet. 

The Failure Analysis Manager (FAM) module in the recovery node is the only FAM that 

proceeds with the recovery process by analyzing the failure, as described next. 

The state machine executed by the FAM is shown in Figure 5.2. Initially, the 

FAM is in the Idle state. When the FAM receives a notification message from DeSARM 

that a node failure is suspected, the FAM first retrieves from the Configuration Manager 

(CM) the IP addresses of all nodes that are in the same subnet as the node hosting this 

FAM and then transitions to the Determining Recovery Node state. The FAM then 

checks whether the suspected node belongs to this subnet. If the suspected failed node is 

not in the same subnet as the node hosting this FAM, then the FAM transitions back to 

the Idle state. Otherwise, if both nodes belong to the same subnet, then the FAM 
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determines the lowest IP address in this subnet using the set of IP addresses it obtained 

from the CM and then checks whether it is hosted by the node with this IP address. At 

this point, the recovery node has been determined and only the FAM hosted by the node 

with the lowest IP address proceeds with the recovery process by pinging the suspected 

failed node and then transitioning to the Waiting for Heartbeat Message state 

(Figure 5.2). If a heartbeat message is received from the suspected node, then this node is 

running normally. In this case, the FAM transitions to the Idle state. Otherwise, if no 

heartbeat message is received within a certain time interval, then the FAM at the recovery 

node (1) notifies the peer Recovery and Adaptation Manager (which is located at the 

same recovery node as this FAM) of a node failure so that it handles recovery of 

components deployed to that node and then (2) transitions to Idle state. 

This approach ensures that a recovery node is always elected, even if the node 

that failed has the lowest IP address in the subnet, for two reasons. First, DeSARM 

always ensures that the FAM on every healthy node will receive a notification that a node 

failure is suspected. Second, when a FAM determines the lowest IP address of a subnet, it 

always removes the IP address of the suspected failed node from the set of addresses it 

obtained from the CM (as shown in Figure 5.2), so that if the failed node has the lowest 

IP address in the subnet, then the node with the next lowest IP address can be selected to 

become the recovery node. 
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Figure 5.2 FAM STM 

 

 Application Recovery Layer 5.3
The Application Recovery Layer (ARL) is responsible for overseeing dynamic 

adaptation of the CBSA. Furthermore, when one or more nodes fail, the ARL ensures that 

the software system recovers to a consistent configuration in which every failed 

component is relocated and instantiated on a healthy (i.e., non-failed) node and that the 

connections between a recovered component and its neighbor components are re-

established. The ARL consists of Recovery and Adaptation Connectors (see chapters 3 

and 4) and Recovery and Adaptation Managers. This section describes the design of the 

Recovery and Adaptation Manager. 

The Recovery and Adaptation Manager (RAM) is responsible for planning and 

executing dynamic adaptation and failure recovery. The RAM executes the state machine 

shown in Figure 5.3, which defines behavior during (1) failure recovery and (2) dynamic 

adaptation, as explained next. 

5.3.1 Behavior of Recovery and Adaptation Manager During Failure Recovery 
When the RAM at the recovery node receives a failure notification from the FAM 

while in the Idle state (Figure 5.3), it requests the current architecture from DeSARM 



89 

 

located at the same node and then transitions to the Requesting Architecture state. When 

the RAM receives the architecture, it transitions to the Determining Recovery Plan state 

in which it determines the recovery plan as explained next. 

First, the RAM retrieves from the CM the set of component identifiers deployed 

to the failed node. The RAM then uses the information it obtained from DeSARM and 

the CM to determine a recovery plan for each component hosted by the failed node as 

follows: 

  The RAM first determines the RAC of the failed component by looking up the 

architecture it obtained from DeSARM for any RAC that sends input messages, 

e.g., synchronous requests or asynchronous messages, to the failed component. 

The RAM then notifies this input RAC of component failure. As a result, each 

affected input RAC ceases forwarding messages to its component and begins 

recovering failed transactions. 

 The RAM determines the RACs of other application components that receive 

input messages from the failed component so that the recovered component can 

also be connected with these recipient RACs. The RAM determines these 

recipient RACs by looking up the architecture it obtained from DeSARM for any 

component that receives either synchronous requests or asynchronous messages 

from the failed component. 

 The RAM determines the node to host the recovered component. In our current 

design, the RAM selects any random node for this purpose. Alternatively, a self-
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optimization approach (Menasce et al., 2011) could be used to select the optimal 

node for hosting this component. 

After the recovery plan is determined, the RAM transitions to the Performing 

Recovery state (Figure 5.3) in which it proceeds with recovery by executing a 

reconfiguration template to recover each component according to the recovery plan. The 

recovery template consists of reconfiguration commands (Kramer and Magee, 1990) for 

restoring the system to a consistent configuration through the following RAM actions: 

 Instantiate another instance of each failed component on a different node 

according to the recovery plan. 

 Connect the RACs that communicate with the recovered component by sending 

them the Connect command along with the address of the recovered component. 

 Update the configuration map so that it reflects the new location of the recovered 

component. The RAM also updates the configuration map by removing the failed 

node from the configuration and by adding the new node to the configuration. 

 Activate the recovered component by sending it the Activate command. 

 Send a Reactivate command to the input RAC of the recovered component so that 

it resumes normal communication with the recovered component. As a result, the 

input RAC resumes forwarding messages to the recovered component, including 

any messages that have been lost due to component failure. 

Once recovery is complete, the RAM transitions back to the Idle state. The 

recovery process is distributed among the RAM and the RAC (Figure 5.4). While in the 

Determining Recovery Plan state, the RAM at the recovery coordination node (node R) 
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notifies the RAC of component failure and continues execution. This RAC is hosted at a 

different node (node X). As a result, this RAC starts recovering failed transactions 

concurrently while the RAM recovers the failed component. While in the Performing 

Recovery state, the RAM at node R then coordinates component recovery by sending the 

Create command to the RAM at node Y that will host the recovered component. 

Eventually, the RAM at node R receives an acknowledgement that the application 

component is created. The RAM then requests the RAC to connect with the recovered 

component at Node Y. Finally, the RAM activates the recovered component and 

reactivates the RAC so that it forwards any lost messages to the recovered component. 
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Figure 5.3 RAM state machine 
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Figure 5.4 Fragment of the distributed recovery process 

 

5.3.2 Behavior of Recovery and Adaptation Manager During Dynamic 
Adaptation  
While in the Idle state, the RAM can receive an external adaptation request 

(Menasce et al., 2011) to add a new application component to the architecture, remove an 

application component from the architecture or, replace one component with another.  

To carry out dynamic adaptation, the RAM needs the current software 

architecture, which it requests from DeSARM before transitioning to the Requesting 

Architecture state. When the RAM receives the architecture, it transitions to the 

Determining Adaptation Plan state in which the RAM determines the (1) input RAC of 

the application component affected by the adaptation, (2) the recipient RACs that receive 

input messages from the application component affected by the adaptation, and (3) the 
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node that will host the new component (in case of adding a new application component to 

the architecture), similarly to how it is done during recovery. 

Once planning is complete, the RAM establishes a region of quiescence (Kramer 

and Magee, 1990) by sending the Passivate command to the input RAC of the application 

component affected by dynamic adaptation so that this RAC drives the application 

component to a quiescent state, in which this component is not engaged in any 

transactions and will not receive any new transactions from other application 

components. When the application component is quiescent, the component’s RAC sends 

the quiescence notification to the RAM. As a result, the RAM starts adapting the 

architecture and transitions to the Performing Adaptation state. 

While in the Performing Adaptation state, the RAM executes an adaptation 

template that consists of reconfiguration commands to (1) create any new application 

component that needs to be added to the architecture, (2) disconnect and remove 

application components that need to be removed from the architecture, (3) connect new 

application components with the RACs, (4) update the configuration map to reflect the 

new configuration of the software architecture, (5) notify DeSARM of architecture 

adaptation so that it can start the process of discovering the new architecture, and (6) 

activate application components and input RACs. After dynamic adaptation is complete, 

the RAM transitions back to the Idle state. 

 

 Mapping Recovery Functionality to MAPE Activities 5.4
The recovery process described in the previous section is based to the MAPE-K 

loop model (Kephart and Chess, 2003). This section shows how the DARE functionalities 
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performed by the various components in Figure 5.1 are mapped to MAPE activities (see 

Table 5.2).  

In this research, the knowledge (K) in MAPE-K in the DARE framework is 

completely decentralized as indicated below: 

 Software architecture. We assume that the software system starts with the 

software architecture not known at any node. DeSARM on every node then 

handles discovery of the current software architecture using gossiping techniques 

in a decentralized fashion. 

 Configuration Map. None of the nodes have a complete view of the configuration 

of the software system. Instead, the configuration map is distributed using a 

distributed hash table. 

 Message-Based Transactions. None of the nodes have a complete view of the 

transactions exchanged between application components. Instead, knowledge of 

these transactions is distributed among multiple RACs such that each RAC 

maintains only transactions to its component, as shown previously in chapters 3 

and 4. 

MAPE’s monitoring activity is carried out by DeSARM, which is responsible for 

monitoring and suspecting node failures as part of the gossip exchanges between nodes. 

When DeSARM suspects a node failure, it notifies the FAM.  

The analysis phase of the MAPE loop is performed by the FAM, which localizes 

recovery to the subnet that contains the suspected node and appoints one of the nodes in 

this subnet to coordinate recovery of the failed node. The FAM hosted by the recovery 
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coordination node then proceeds with the analysis activity by pinging the suspected node 

to confirm the failure of this node. If this FAM does not receive a heartbeat reply from 

the suspected node within a certain time interval, it notifies the RAM at the same node of 

the failure. The analysis phase is also executed by the RACs, since RACs are responsible 

for analyzing transactions that were interrupted by failure. 

MAPE’s planning phase is executed by the RAM since it is responsible for 

determining the plan for adapting the current architecture and recovering every 

component deployed to a failed node. The RAM relies on (1) DeSARM for obtaining an 

up-to-date view of the software architecture and (2) the CM for obtaining the current 

configuration map. By using information from these two services, the RAM can proceed 

with planning adaptation or recovery as discussed in section 5.3. The planning phase is 

also executed by the RACs, since RACs are responsible for determining recovery actions 

required to recover any transactions that were interrupted due to failures. 

The execution activity of the MAPE loop is performed by the RAM, which 

executes a reconfiguration template for creating failed components on a different node, 

connecting the recovered component with other components (as defined in the 

architecture obtained from DeSARM), and then activating the recovered component and 

its RAC so that they resume normal execution. The execution phase is also executed by 

the RACs, which are responsible for executing recovery actions required to recover any 

transactions that were interrupted due to failures. 
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Table 5.2 Mapping DARE functionalities to MAPE activities. 

M
o
n

it
o
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n
g

  DeSARM monitors and suspects node failure through lack of gossip 

messages from these nodes. 

 DeSARM activates FAM when it suspects a node failure. 

A
n

a
ly

si
s 

 FAM localizes recovery to a particular subnet and then appoints the 

recovery node to be the node with lowest IP address in the subnet. 

 FAM at the recovery node asserts failure of suspected node by pinging 

suspected node and then notifying RAM if no heartbeat message is 

received from the suspected node. 

 RAC stops sending messages to failed component and analyzes failed 

transactions. 

P
la

n
n

in
g
 

 RAM determines components hosted by failed node. 

 RAM determines input and recipient RACs of each failed component. 

 RAM activates transaction recovery at input RACs of failed 

components. 

 RAM determines the recovery plan to recover each failed component. 

 RAC plans to recover failed transactions. 

E
x
ec

u
ti

o
n

 

 RAM executes recovery template to: 

o instantiate the failed component at a healthy node 

o connect recovered component with neighbor components 

o activate recovered component and recovery connectors to 

resume execution 
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 RAC resumes sending messages, including recovered messages, to 

recovered component. 

 

 Component Failure Recovery 5.5
The previous sections described node failure recovery in which every component 

hosted by a failed node are recovered on a healthy node. This section describes how 

DARE can be extended to recover components that fail independently of the node that 

host them.  

To address component failure recovery, the DARE framework is extended as 

follows: 

1. In this research, every application component establishes a connection with 

DeSARM (located at the same node as the application component) in order for the 

component to exchange messages with other application components. Thus, when 

an application component fails, DeSARM detects that a connection is terminated 

unexpectedly and then sends Component Failed message (and supplies the 

identifier of the failed component) to the peer FAM on the same node. 

2. When FAM receives a Component Failed message from DeSARM, it activates 

the peer RAM also on the same node. Note that component recovery does not 

require electing a recovery coordination node, since the failed component can 

simply be restarted on the same node.  

3. When RAM is activated, it recovers the failed component as shown previously in 

section 5.3.1 but with two exceptions. First, the RAM selects the same node for 
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hosting the recovered component. Second, the RAM does not remove or add 

nodes to the configuration map simply because the system can recover to the 

same configuration it had before component failure. 
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6 DESIGN OF AN ASSISTANT RECOVERY AND ADAPTATION 

CONNECTOR FOR CLIENTS AND PRODUCERS  

The previous chapters focused on the design of Recovery and Adaptation 

Connectors (RACs) that handle recovery and adaptation concerns of components that are 

coordinators, services, and consumers. However, these RACs do not handle recovery and 

adaptation of clients and producers. This chapter discusses the design of an Assistant 

Recovery and Adaptation Connector (ARAC) that can be used to handle adaptation and 

recovery concerns of clients and producers. The goal of the ARAC is to ensure that (1) 

responses to clients and requests and asynchronous messages sent by clients and 

producers can be recovered in case they are lost due to failure so that they are eventually 

received by the RAC and (2) clients and producers can be driven to a quiescent state in 

which they completed all transactions that they initiated and will not initiate any new 

transactions with other components. To increase its usability, the ARAC is designed so 

that it is applicable for both clients and producers in the following patterns: 

 Clients in the synchronous message communication with reply, asynchronous 

message communication with callback, brokered communication, and SOA 

pattern. 

 Producers in the unidirectional asynchronous message communication and the 

bidirectional asynchronous message communication.     
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To facilitate recovery of clients and producers, the ARAC maintains a log of the 

messages it sends and receives so that these messages can be recovered in case of failure. 

Recovery of connectors using message logs is described in the next chapter. This chapter 

discusses the design of the ARAC.    

Each client or producer is associated with an ARAC as follows: 

 When the ARAC receives a request from the client (Figure 6.1), it logs the request 

and then forwards the request to the service RAC. When the ARAC receives a 

service response, it logs the response, forwards the response to the client, and then 

sends an ACK message to the service RAC, so that the service RAC removes 

messages of this transaction from its queues.  

 When the ARAC receives a unidirectional message from the producer 

(Figure 6.2), it logs the message and then forwards it to the consumer RAC. 

Eventually, the ARAC receives an ACK message from the consumer RAC 

indicating receipt of the producer message. 

Since the ARAC is designed so that it is applicable for both clients and producers, 

the remainder of this chapter uses the term sender to refer to both clients and producers 

(i.e. a sender can send synchronous requests, asynchronous messages, or both type of 

messages). Furthermore, it is assumed that the ARAC does not fail. The remainder of this 

chapter describes the design of the ARAC and how it handles adaptation and recovery 

concerns of senders. 

 



101 

 

: Client : ARAC : Service RAC : Service

Request

Forward Request
Forward Request

Response

Forward Response

Forward Response

Log Request

Log Response

ACK

 
Figure 6.1 Behavior of ARAC during normal execution for transactions that comprise both request and 

response messages 

 

: Producer : ARAC : Consumer RAC : Consumer

Message

Forward Message

Forward Message

ACK

Log Message

ACK

Log ACK

 
Figure 6.2 Behavior of ARAC during normal execution for transactions that comprise unidirectional messages 
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 Design of the ARAC State Machine 6.1
The ARAC has the same structure as the RAC shown previously in Figure 3.1. 

However, the ARAC executes the state machine shown in Figure 6.3. This state machine 

is similar to the state machines shown previously in chapters 3 and 4 for handling 

services (c.f. Figure 3.3) and consumers (c.f. fig. 4.3). The differences are described in 

this chapter. 

6.1.1 Normal Execution 

During normal execution, when the ARAC receives a unidirectional message or a 

request while it is in the Waiting for Message state (Figure 6.3), the ARAC increments 

the transaction count, forwards this message to its destination, and then transitions to the 

Processing state.  

While in the Processing state, the ARAC reacts to the various events as follows: 

 If the ARAC receives an intermediate or final request, then the ARAC forwards 

this request to the service RAC. 

 If the ARAC receives an asynchronous message, then the ARAC increments the 

transaction count and forwards the message to the service RAC. 

 If the ARAC receives the first or an intermediate response, the ARAC forwards 

the response to the sender. 

 If the ARAC receives a final response, the ARAC forwards the response to the 

sender, decrements the transaction count, and sends ACK to the service RAC. If 

the sender is not engaged in anymore transactions, the ARAC transitions to the 

Waiting for Message state. 
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 If the ARAC receives an ACK event from the service RAC indicating receipt of a 

previously sent asynchronous message, the ARAC decrements the transaction 

count. Furthermore, if the sender is not engaged in anymore transactions the 

ARAC transitions to the Waiting for Message state. 

6.1.2 Adaptation of Sender 

A sender can be adapted after it has received a response to every transaction it has 

initiated and must cease sending any asynchronous messages to the consumer while it is 

being dynamically adapted. The sender can resume sending messages only after it has 

been activated. Based on this, when the ARAC receives the Passivate command while it 

is in the Waiting for Message state (Figure 6.3), then the ARAC transitions immediately 

to the Quiescent state. Otherwise, if the ARAC receives the Passivate command while it 

is in the Processing state, then the ARAC transitions to the Passivating state and remains 

in this state until all currently active transactions are completed.  While in the Passivating 

state, the ARAC holds all messages that initiate new transactions with the service in the 

Service Pending Queue. When all active transactions are completed, the ARAC 

transitions to the Quiescent state in which the ARAC also holds any new messages it 

receives from the sender in the Service Pending Queue. When the ARAC is reactivated 

after dynamic adaptation is completed, it resumes processing all held messages in the 

Service Pending Queue.  

6.1.3 Recovery of Sender 

Consider the case of the sender failure. It is assumed that when the sender 

recovers, the recovered sender must process the last response available at the ARAC to 

recover its state (Danilecki et al., 2013). Thus, when the sender fails, the Recovery and 
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Adaptation Manager (RAM) must recover another instance of the sender and notify the 

ARAC of sender failure as follows:  

 The Recovery and Adaptation Manager (RAM) determines the RAC of the failed 

component as described in chapter 5. If no RAC is found for the failed 

component, then the RAM determines the ARAC of this component by looking 

up the architecture for any component that receives input messages (i.e. 

synchronous requests or asynchronous messages) from the failed component. 

 The RAM notifies the ARAC of sender failure. 

 The RAM recovers another instance of the sender and then connects the recovered 

sender with the ARAC. 

 The RAM activates the sender and reactivates the ARAC. 

As a result of notifying the ARAC of sender failure, the ARAC transitions to the 

Recovering state in which it recovers the last response it receives from the service using 

the following recovery actions: 

 If the Response Forwarding Queue contains a service response, then the sender 

failed before the ARAC has forwarded this response to the sender. Therefore, the 

ARAC forwards this service response to the sender when it is recovered. 

 If the Response Forwarding Queue is empty, then the ARAC recovers the last 

response it forwarded to the sender by moving this response from the Response 

Recovery Queue to the Response Forwarding Queue. 

After the sender is recovered and the ARAC is reactivated, the ARAC forwards 

the response queued in the Response Forwarding Queue to the recovered sender. 
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Figure 6.3 State machine executed by the ARAC 
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7 CONNECTOR RECOVERY  

The previous chapters assumed that the recovery and adaptation connector (RAC) 

does not fail. As a preliminary research effort, this chapter investigates relaxing this 

assumption by considering how the RAC can be recovered after a run-time failure. To 

handle recovery of the RAC, the approach involves storing the messages that the RAC 

receives into a log so that the RAC can reconstruct the state of its queues by replaying 

messages from the log (Tanenbaum and Steen, 2006). To ensure recoverability of the 

RAC’s log, the log is replicated such that each replica of the log is stored in a different 

node than other replicas of the same log.  

This chapter discusses the approach for recovering RACs using logs. Section 7.1 

describes the message logging approach used by the RAC. Section 7.2 discusses how 

messages are logged during normal execution. Section 7.3 discusses how messages can 

be replayed to reconstruct the state of the RAC queues after a runtime failure. Section 7.4 

discusses how messages that were lost while the RAC in the failed state can be recovered. 

 Message Logging Approach   7.1
As there exists many approaches for message logging, this research considers 

using the pessimistic message logging in which the RAC synchronously logs every 

incoming application message to stable storage before it processes the message. 
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Pessimistic message logging is used in this research for the following reasons (Elnozahy 

et al., 2002): 

 Recovery using pessimistic message logging is simple and confined to the 

recovered component (i.e. RAC).  

 A RAC that recovers from a failure does not require any application 

component to rollback its state to a previous state due to the failure of the 

RAC. This is a highly desirable property since components in some 

application domains, such as SOAs, are highly autonomous and cannot be 

forced to rollback their states. 

In pessimistic message logging, a component must log information about every 

application message it receives before processing that message. Thus in this research, all 

input and output messages received by the RAC from application components must be 

logged by the RAC. When the RAC recovers from a run-time failure, the recovered RAC 

replays messages from its log so that it can reconstruct the state of its queues, as will be 

explained in the next sections.  

 Behavior During Normal Execution    7.2
As explained in the previous section, the RAC must store the messages it receives 

in a log so that these messages can be replayed during recovery time in order to 

reconstruct the state of the RAC queues. To accomplish this, an input and an output stubs 

are used to facilitate message logging at the RAC (see Figure 7.1). The goal of these 

stubs is to separate message logging and replaying concerns from recovery and 

adaptation concerns carried out by the RAC. The input stub handles requests from clients 
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to the RAC and responses from the RAC to clients . On the other hand, the output stub 

handles requests sent from the RAC to the service and also responses from the service to 

the RAC. When it receives an input message, the input stub logs and then forwards the 

input message to the RAC. Similarly, when the output stub receives an output response, it 

logs and then forwards the response to the RAC.  

This section discusses the behavior of the stubs during normal execution for 

message logging. The next section describes how these stubs replay messages after a 

RAC run-time failure to recover the state of the RAC queues. 

During normal execution, the input and output stubs update the RAC log as 

follows: 

1. When the input stub of the RAC receives a client request (message 2 (referred to 

as m2)), it logs the client request (m3) and then forwards this request to the RAC 

(m5). In this research, the RAC log is stored in a distributed hash table (DHT) that 

supports replication of its entries to ensure recoverability of the RAC log in case 

of failure. 

2. The RAC processes the client request and then forwards this request to the service 

via the output stub (m6). 

3. The output stub forwards the client request to the service (m7). 

4. The service sends the service response to the RAC via the output stub (m8). 

5. The output stub logs the service response (m9) and then forwards the service 

response to the RAC (m11). 
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6. The RAC processes the service response and then forwards this response to the 

requesting client via the input stub (m12). 

7. The input stub forwards the service response to the client (m13). 

Thus, this approach ensures that all application messages that the RAC processes 

are maintained in a message log.  

 

: Client : ARAC

: Primary RAC

: ServiceRAC: Input Stub : Output Stub

1: Client Request 2: Forward Client Request 5: Client Request 6: Forward Client Request 7: Forward Client Request

8: Service Response

11: Service Response12: Forward Service Response13: Forward Service Response14: Forward Service  Response

: Message Log (DHT)

3: Log Message 4: Logged 9: Log Message 10: Logged

 

Figure 7.1 Message logging during normal execution. 

 

 Reconstructing the RAC State After a Runtime Failure 7.3
When the RAC fails, the Recovery and Adaptation Manager (RAM) recovers 

another instance of the RAC and notifies the ARAC of the new location of the RAC. As a 

result, the input and output stubs of this newly recovered instance of the RAC must first 

recover the state of the RAC’s queues by replaying messages from the log as follows: 

1. The input and output stubs retrieve the RAC’s log from the DHT. Note the access 

to the log by these stubs is synchronized. 
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2. The input stub iterates over the messages in the log. For each client request in the 

log, the input stub marks the request as replayed and then forwards this request to 

the RAC. 

3. The RAC processes the client request and eventually forwards this request to the 

output stub. 

4. When the output stub receives (from the RAC) a client request that is marked as 

replayed, it checks the log to see whether it contains a corresponding response to 

this request by using the message identifier. If the log contains such a response, 

then the output stub marks the response as replayed and sends this response to the 

RAC. This ensures that a service response is not replayed by the output stub to the 

RAC unless the RAC has first processed the client request. Note that the output 

stub does not forward to the service any requests that are marked as replayed to 

avoid sending duplicate requests to the service. 

5. The RAC processes the service response and eventually forwards this response to 

the input stub. 

6. When the input stub receives (from the RAC) a service response that is marked as 

replayed, it discards this response to avoid sending duplicate responses to clients. 

At the end of this process, the RAC has processed all replayed client requests and 

service responses. As a result, the state of the RAC queues are reconstructed.  

 Recovery of Lost Messages 7.4
Failure of the RAC can cause some transactions to be interrupted at different 

statuses. Thus, after the RAC reconstructs its state by replaying messages from its log, 
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the recovered RAC must execute certain recovery actions to recover any interrupted 

transactions based on the status of the transaction. Note that the recovery actions 

executed by the recovered RAC for a transaction are based on the pattern of that 

transaction (see chapters 3 and 4). The reminder of this section shows an example of a 

non-distributed transaction (see section 3.1 in chapter 3) that fails due to failure of the 

RAC. Figure 7.2 depicts an example of a fault-tree model (Ericson, 1999) with the 

possible interruption points of a non-distributed transaction. A description of each 

interruption point in this tree and the corresponding recovery action are provided as 

follows:  
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Transaction Failure

Client Request Not Logged Client Request Logged

OR

S01

S02 S03

Prepare To Commit 
Not Sent to Service

S04

Prepare To Commit 
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Logged

Ready/Refuse To Commit
Not Logged

S06

OR

OR

S07

Commit/Abort 
Sent to Service

Commit/Abort 
Not Sent to Service

S08

OR

S09

Committed/Aborted 
Logged

Committed/Aborted 
Not Logged

S10

OR

S11

 
Figure 7.2 Transaction interruption points depicted in a fault-tree model. 

 

1. The RAC could have failed after receiving a client request but before logging this 

request (i.e. interruption point S02 in Figure 7.2). This case results in a lost client 

request that is not forwarded to service. To solve this issue, the ARAC is notified of 

the RAC failure by the Recovery and Adaptation Manager (RAM). As a result, the 
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ARAC resends the client request to the RAC when the RAC is recovered, since the 

ARAC has not received a response for the request it forwarded to the RAC. 

2. The RAC could have failed after logging the client request but before sending the 

Prepare To Commit message to the service (i.e. interruption point S04). This case 

results in the recovered RAC waiting indefinitely for a service response to this 

request, since the transaction has not been initiated with the service. To recover from 

this case, the recovered RAC (1) instructs the service to abort all transactions that are 

in the preparing state and then (2) restarts these transactions with the service. The 

rationale for these recovery actions is that the recovered RAC is uncertain whether 

the service has received these transactions or these transactions were lost due to 

failure. To avoid sending duplicate requests to the service, the recovered RAC 

instructs the service to abort these transactions and then restarts them with the service. 

3. The RAC could have failed after receiving the Ready To Commit (or Refuse To 

Commit) message from the service but before logging this response (i.e. interruption 

point S06 in Figure 7.2). This case results in a transaction that stays indefinitely in the 

prepared (or refused) state. Although this case is indistinguishable from case 2 from 

the point of view of the recovered RAC, the recovered RAC can recover this 

transaction using the same recovery actions used in the previous case (i.e. instructing 

the service to abort the transaction and then restarting this transaction with the 

service). 

4. The RAC could have failed before sending the Commit (or Abort) message to the 

service (interruption point S08). To recover from this case, the recovered RAC 
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instructs the service to either commit or abort the transaction according to the service 

response that this RAC has received from the service before it failed.   

5. The RAC could have failed after receiving the Committed (or Aborted) message from 

the service but before logging this response (i.e. interruption point S10 in fig. 7.3).To 

recover from this case, the RAC resends the Commit (or abort) message to the 

service.  
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8 DESIGN OF A REUSABLE RECOVERY AND ADAPTATION CONNECTOR  

Chapters 3 and 4 discussed the design of different types of the Recovery and 

Adaptation Connector (RAC) for different architectural patterns. For instance, the design 

of the RAC for handling adaptation and recovery concerns of stateless services in 

service-oriented architectures (SOAs) is different from the design of the RAC used to 

handle stateful services which are both different from the design of the RAC for handling 

consumers in asynchronous patterns. Given these variations in the RACs, it would be 

beneficial to apply reuse concepts to unify the RAC design in order to increase its 

usability.  

This chapter investigates this problem by showing how the software product line 

(SPL) technology can be used to design a reusable RAC that can be tailored to (1) 

generate different types of RAC as well as (2) generate RACs that can handle integration 

of multiple patterns such as a RAC that can handle both synchronous message 

communication with reply and asynchronous message communication. 

This chapter is organized as follows. Section 8.1 discusses how variability in the 

different types of the RAC can be captured using a feature model. Section 8.2 discusses 

the impact of features in the feature model on the RAC design. Section 8.3 describes the 

feature-based state machine executed by Connector Control of the reusable RAC.  



116 

 

 Capturing Variability in the RAC using a Feature Model 8.1

Before a reusable RAC can be designed, commonality and variability among the 

different RAC types must be captured using a feature model. In SPL technology, feature 

models are used to depict (1) deviations, in terms of features, between different products 

of the same product line and (2) the dependency relationships between these features 

(Clements and Northrop, 2001).  

In this research, the different RAC types are considered products of the same 

product line, and the feature model describes how the different types of the RAC vary 

among each other. The approach used in this research for designing the feature model and 

the reusable RAC is based on the PLUS method (Gomaa, 2004), which has been used 

previously in conjunction with adaptation connectors to adapt from one member of a SPL 

to another (Gomaa and Hashimoto, 2011). 

The PLUS method uses the Unified Modeling Language (UML) metaclass 

notation for representing features and UML stereotypes for categorizing features. 

Furthermore, features can be grouped together based on constraints on their selection for 

a given RAC type, and one feature may require another feature for its existence.  

Figure 8.1 shows the feature model for the reusable RAC that is constructed by 

analyzing the various RAC designs shown previously in chapters 3, 4, and 6. The 

description of these features is given next. 

 



117 

 

 

<<common feature>>
Connector Kernel

<<common feature>>
Connector Kernel

<<at-least-one-of feature 
group>>

Communication Pattern

<<at-least-one-of feature 
group>>

Communication Pattern

<<zero-or-more-of feature 
group>>

Bidirectional

<<zero-or-more-of feature 
group>>

Bidirectional

<<optional feature>>
Unidirectional Asynchronous 

<<optional feature>>
Unidirectional Asynchronous 

requiresrequires

<<at-least-one-of feature 
group>>
Stateful

<<at-least-one-of feature 
group>>
Stateful

<<alternative feature>>
Stateless

<<alternative feature>>
Stateless

<<exactly-one-of feature 
group>>

Component Statefulness

<<exactly-one-of feature 
group>>

Component Statefulness

requiresrequires

{mutually exclusive}{mutually exclusive}

<<optional feature>>
Dialog Interactions
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Figure 8.1 Feature model for the reusable RAC. 

 

Common features. Common features are features that must be supported by all types of 

RAC, such as the ability for a RAC to receive input messages and then to forward these 

messages to its component. 

 

Exactly-one-of feature groups. Exactly-one-of feature groups represent mutually 

exclusive features that cannot coexist in a single RAC. In Figure 8.1, the connector type 

feature group represents the type of the connector which can be either a RAC (see 

chapters 3 and 4) or an ARAC (see chapter 6). Another example of an exactly-one-of 
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feature group is the Component Statefulness. In particular, the component handled by a 

RAC can be either Stateless or Stateful. The design of the RAC for stateless components 

is described in section 3.1. However, as described previously in the design of the RAC 

for stateful components (see section 3.2), the RAC must forward messages to a stateful 

component using the Two-Phase Commit (2PC) protocol. Since using the 2PC protocol 

with stateless components is unnecessary, because it increases complexity and is less 

efficient, the RAC must not use the 2PC protocol with stateless components. As a result, 

the stateless and stateful features are treated as mutually exclusive features in Figure 8.1.  

 

At-least-one-of feature groups. At-least-one-of feature groups represent groups from 

which at least one feature must be selected. In Figure 8.1, the stateful feature group 

represents the type of stateful transactions that the reusable RAC can manage. In 

particular, a transaction can be non-distributed (c.f. section 3.2) or distributed (c.f. section 

3.3.5). Another example of the at-least-one-of feature group is the Communication 

Pattern feature group which represents the communication patterns that the RAC 

participates in. In particular, a RAC can manage either Unidirectional Asynchronous 

communication (c.f. section 4.1), Bidirectional communication (c.f. sections 3.1, 3.3, and 

4.3.1), Subscription/Notification (c.f. section 4.3.2) or any combinations of these types of 

communication.  

 

Zero-or-more-of feature groups. Zero-or-more-of feature groups represent groups from 

which zero or more features can be selected. In Figure 8.1, the Bidirectional feature 
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group represents possible bidirectional communication patterns that the reusable RAC 

can manage. In particular, the reusable RAC can handle bidirectional communications 

that involve Synchronous with Reply (c.f. section 3.1), Asynchronous with Callback (c.f. 

section 3.3.1), Bidirectional Asynchronous (c.f. 4.3.1), or any combinations of these types 

of bidirectional communications. The Synchronous with Reply feature itself is a zero-or-

more-of group since this type of communication can involve several communication 

patterns including Broker Handle (c.f. section 3.3.3), Service Registration (c.f. section 

3.3.2), or the Synchronous Message Communication with Reply (c.f. section 3.1). 

 

Optional features. Optional features represent features that are supported by some (but 

not all) types of RAC. In Figure 8.1, in case of Synchronous Communication with Reply, 

transactions can optionally comprise Dialog Interactions between components. Note that 

in the synchronous communication with reply, a client sends a request to the service and 

then blocks waiting for the service response. On the other hand, dialog interactions are 

used when the client needs to send multiple requests synchronously to the service such 

that the next request in the dialog depends on the response of the previous request. As a 

result, the entire dialog is considered as a compound transaction. Another example of an 

optional feature is the Message Logging feature which enables the RAC to log the 

messages it receives (see chapter 7).  

Given the feature model in Figure 8.1, the goal is to design a product line reusable 

RAC that satisfies this model, such that this reusable RAC can be tailored based on 

feature selection to generate different types of the RAC. 
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 Feature/Component Table 8.2

In order to understand the impact of each feature in Figure 8.1 on the design of 

the reusable RAC, the reuse category of each component in the RAC must be analyzed. 

Based on this analysis, a feature/component table is constructed (see Table 8.1) to map 

the impact of each feature on each component of the reusable RAC. Then from this table, 

a reuse stereotype is assigned to components (see Figure 8.2). The remainder of this 

section discusses the impact of features on each RAC component.  

 

<<connector>>
<<kernel-param-vp>>
:Service Recovery Connector

<<control>>
<<optional>>
:Response Manager

<<control>>
<<kernel>>
:Request Manager

<<optional>>
:Response Recovery Queue (RRQ)

<<optional>>
:Response Forwarding Queue (RFQ)

<<kernel>>
:Service Pending Queue (SPQ)

<<service>>
:Service

<<client>>
:Client

<<coordinator>>
<<kernel>>

:Request  Coordinator

<<coordinator>>
<<optional>>

:Response Coordinator

<<optional>>
:Service Recovery Queue (SRQ)

<<kernel>>
:Service Active Queue (SAQ)

<<kernel>>
:Active Transactions Count

<<state-dependent- control>>
<<kernel-param-vp>>

:Connector Control

<<stub>>
<<optional>>
:Output Stub

<<stub>>
<<optional>>
:Input Stub

 
Figure 8.2 Design of the reusable RAC with reuse stereotypes. 

 

Request Manager. The Request Manager is responsible for managing input messages, 

including synchronous requests and asynchronous messages, to the RAC. Since every 



121 

 

RAC must receive input messages to its component, the Request Manager is a kernel 

composite component (see Figure 8.2) that must always be supported by all RAC types. 

 

Request Coordinator. The Request Coordinator is responsible for (1) sending input 

messages to Connector Control for further processing as well as (2) managing the various 

queues in the Request Manager. Since a RAC must have an input message queue and 

input messages must always be forwarded to Connector Control, then the Request 

Coordinator is a kernel component.  

 

Connector Control. Connector Control is responsible for forwarding messages to its 

application component and handling adaptation and recovery concerns of this component. 

Since forwarding messages must be supported by all RAC types, then Connector Control 

is a kernel component. However, as described previously in chapters 3 and 4, the 

behavior of Connector Control for handling adaptation and recovery concerns differs 

based on the Statefulness of the component, the selected Communication Patterns, and 

whether Dialog Interactions and Distributed Transactions features are supported. 

Therefore, Connector Control is a parameterized component whose behavior can change 

based on the selection of these features (see Table 8.1). Thus, these feature conditions are 

used to tailor the reusable state machine executed by Connector Control, as will be 

discussed in section 8.3.  
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Response Manager. The Response Manager is responsible for receiving and maintaining 

output responses. As shown previously in chapter 4, RACs in asynchronous patterns do 

not receive responses from their components. Therefore, the Response Manager is an 

optional composite component that is only selected for Synchronous with Reply 

communication and/or Asynchronous Communication with Callback Handle.  

 

Response Coordinator. The Response Coordinator is responsible for managing queues 

that maintain service responses. As shown previously in chapter 4, RACs in 

asynchronous patterns do not receive responses from their components. Therefore, the 

Response Coordinator is an optional component that is only selected for Synchronous 

with Reply communication and/or Asynchronous Communication with Callback Handle.  

 

Input and Output Stubs. The Input and Output Stubs are responsible for message logging 

and message replaying as described previously in chapter 7. These stubs are optional 

objects that are only selected if the Message Logging feature is selected. 

 

Table 8.1 Feature/component table. 

Feature Name Feature 

Category 

Component Name Reuse 

Category 

Feature 

Condition  

RAC Kernel Common Request Manager 

Request 

Coordinator 

Kernel 

Kernel 
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Connector Control Kernel, 

Parameterized 

Stateless Alternative Connector Control 

 

Response Manager 

Response 

Coordinator 

Kernel, 

Parameterized 

Optional 

Optional 

stateless 

 

 

 

 Synchronous 

with Reply 

 Async. Comm. 

with Callback 

Optional Connector Control 

 

Response Manager 

Response 

Coordinator 

 

Kernel, 

Parameterized 

Optional 

Optional 

 

sync request 

 

 

 Unidirectional 

Asynchronous 

 Bi-directional 

Asynchronous  

Optional Connector Control Kernel, 

Parameterized 

async  

Dialogs Optional Connector Control 

 

Response Manager 

Response 

Coordinator 

Kernel, 

Parameterized 

Optional 

Optional 

dlg  
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Distributed 

Transactions 

Alternative Connector Control Kernel, 

Parameterized 

 

distributed 

tr  

 

Non Distributed 

Transactions 

Alternative Connector Control Kernel, 

Parameterized 

Non-

distributed 

tr 

RAC Alternative Connector Control Kernel,  

Parameterized 

RAC 

ARAC Alternative Connector Control Kernel, 

Parameterized 

ARAC 

Message Logging Optional Input Stub 

Output Stub 

Optional 

Optional 

 

 

 Feature-Based Connector Control State Machine  8.3

As described in section 8.2, Connector Control (CC) is a kernel, parameterized 

component whose behavior changes based on feature selection. The goal of CC is to 

handle adaptation and recovery concerns of its component. In order to manage the 

complexity of integrating multiple adaptation and recovery state machines into CC, a 

reusable state machine is constructed from which different types of RAC can be 

generated. The approach involves mapping patterns to features, and then augmenting 
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transitions in the reusable state machine with feature conditions such that transitions can 

be enabled or disabled based on feature selection as follows:  

 The design of the RAC for handling adaptation and recovery concerns of stateless 

services (c.f. fig. 3.3 in chapter 3) is mapped to the stateless feature. As a result, 

transitions with pattern-based events in this state machine are augmented with the 

feature conditions RAC and stateless.  

 The design of the RAC for handling adaptation and recovery concerns of stateful 

services that are involved in non-distributed transactions (c.f. fig. 3.6 in chapter 3) is 

mapped to the non-distributed transactions feature. As a result, transitions with 

pattern-based events in this state machine are augmented with the feature condition 

RAC AND non-distributed tr. Note that this pattern may also involve transactions that 

involve synchronous request with replay and/or dialog interactions. Therefore, the 

state machine in fig. 3.6 in chapter 3 is augmented with the RAC, sync request and dlg 

conditions as well. 

 The design of the RAC for handling adaptation and recovery concerns of stateful 

services that are involved in distributed transactions (c.f. fig. 3.14 in chapter 3) is 

mapped to the distributed transactions feature. As a result, transitions with pattern-

based events in this state machine are augmented with the feature condition RAC and 

distributed tr. 

 The design of the RAC for handling adaptation and recovery concerns of consumers 

in asynchronous patterns (c.f. fig. 3.3 in chapter 3) is mapped to the Unidirectional 
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and Bidirectional Asynchronous features. As a result, transitions with pattern-based 

events in this state machine are augmented with the feature condition RAC and async. 

 The design of the Assistant Recovery and Adaptation Connector (c.f. chapter 6) is 

mapped to the ARAC feature. As a result, transitions with pattern-based events in this 

state machine are augmented with the feature condition ARAC. 

At this point, a reusable state machine is constructed for CC by integrating the 

pattern-based state machines such that every pattern-based transition in this reusable state 

machine has a guard with a feature condition. Thus, these transitions can be enabled or 

disabled using feature selection as follows: 

 If the stateless feature is selected, then the stateless feature condition must be set for 

CC (see table 8.1), which enables all transitions of the integrated adaptation and 

recovery state machine used to handle stateless services. 

 If the distributed transaction feature is selected, then the distributed tr feature 

condition must be set for CC (see table 8.1), which enables all transitions of the 

integrated adaptation and recovery state machine used to handle services involved in 

distributed transactions. 

 If the non-distributed transaction feature is selected, then the non-distributed tr 

feature condition must be set for CC (see table 8.1), which enables all transitions of 

the integrated adaptation and recovery state machine used to handle services involved 

in non-distributed transactions. 
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 If either the Unidirectional or Bidirectional Asynchronous features is selected, then 

the async feature condition must be set for CC (see table 8.1), which enables all 

transitions of the integrated adaptation and recovery state machine used to handle 

consumers involved in asynchronous patterns. 

 If the ARAC feature is selected, then the ARAC feature condition must be set for CC 

(see table 8.1), which enables all transitions of the integrated adaptation and recovery 

state machine executed by the ARAC. 

In this research, every message contains metadata that is used by the reusable 

RAC to identify the pattern involved, including the communication type (e.g. 

asynchronous or synchronous with reply) as well as whether the transaction is distributed 

and whether it involves a dialog. Therefore, the reusable RAC is capable of setting 

feature conditions based on metadata of the messages it receives. However, the stateless 

and ARAC feature conditions must be set at deployment time of each RAC. Note that if 

the ARAC feature condition for ARAC is selected, then the reusable RAC is configured 

as an ARAC. 

8.3.1 Example of RAC Generation  

This section shows an example of tailoring CC based on feature selection to 

support multiple patterns as shown in section 8.3. In this example a RAC must be tailored 

for handling a stateful service that participates in both distributed and non-distributed 

transactions.   
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In this example, since the service is stateful and participates in both distributed 

and non-distributed transactions, then the RAC, non-distributed transactions and 

distributed transactions features must be selected. As a result of selecting these features, 

CC executes the state machine shown in Figure 8.3 which enables the transitions of the 

state machines of the two corresponding patterns for handling non-distributed 

transactions (c.f. fig. 3.6 in chapter 3) and for handling distributed transactions (see fig. 

3.14 in chapter 3).  
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Integrated Adaptation and Recovery STM

Active

Request [sync request]/
Prepare To Commit (Request), 
Increment {Transaction Count}

First Request [dlg]/
Forward Request,

Increment {Transaction Count}

Prepare To Commit [distributed tr]/
Forward Prepare To Commit, 

Increment {Transaction Count}
Passivate/

Notify Passivating

Failed/Notify Failed

Reactivate/Notify Active

Processing

Passivate/Notify Quiescent

Failed/Notify Failed
Transactions Aborted/
Commit {committing transactions},
Abort {aborting transactions},
Notify Active

Reactivate [Active Transactions Count == 0]/Notify Active

Request [sync request]/
Prepare To Commit (Request), 
Increment {Transaction Count}

First Request [dlg]/
Forward Request,

Increment {Transaction Count}
 

Intermediate Request [dlg]/
Forward Request

Final Request [dlg]/
Prepare To Commit (Request)

Prepare To Commit [distributed tr]/
Forward Prepare To Commit, 

Increment {Trans. Count}

First Response, Intermediate Response [dlg]/
Forward Response

Ready To Commit (Final Response) [non-distributed tr]/
Commit 

Refuse To Commit [non-distributed tr]/
Abort 

Ready Read Only(Response) 
[non-distributed tr AND Transaction Count > 1]/

Forward Response
Decrement {Transaction Count}

Committed [non-distributed tr AND Trans Count > 1]/
Retrieve and Forward Response,
Decrement {Transaction Count}

Aborted [non-distributed tr AND Trans Count > 1]/
Retrieve and Forward Response,
Decrement {Transaction Count}

Ready To Commit (Final Response)[distributed tr]/
Forward Ready To Commit 

Refuse To Commit [distributed tr]/
Forward Refuse To Commit 

Commit [distributed tr]/
Forward Commit

Abort [distributed tr]/
Forward Abort

Committed [distributed tr AND Transaction Count > 1]/
Forward Committed,

Decrement {Transaction Count}

Aborted [distributed tr AND Transaction Count > 1]/
Forward Aborted,

Decrement {Transaction Count}

Committed 
[non-distributed tr AND Trans Count = 1]/

Retrieve and Forward Response ,
Decrement {Transaction Count},

Aborted 
[non-distributed tr AND Trans Count = 1]/

Retrieve and Forward Response , 
Decrement {Transaction Count}

Ready Read Only(Response) 
[non-distributed tr AND Trans Count = 1]/

Forward Response,
Decrement {Transaction Count}

Committed 
[distributed tr AND Transaction Count = 1]/

Forward Committed,
Decrement {Transaction Count},

Aborted 
[distributed tr AND Transaction Count = 1]/

Forward Aborted, 
Decrement {Transaction Count}

Adapting

Recovering

Waiting For 
Request

 

Figure 8.3 CC state machine for handling integration of distributed and non-distributed transactions. 

 

 Possible Optimizations  8.4

Chapters 3 and 4 described how the RAC requires additional ACK messages for 

various patterns so that it can remove transaction messages from its queues. This section 

describes the number of additional messages required for each different type of RAC and 

possible optimizations to reduce this number (see Table 8.2). For all types of RACs, an 

additional ACK message is required at the end of the transaction so that the RAC can 
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remove the transaction messages from its queues. In SOA-related patterns, these ACK 

messages can be piggybacked into the next transaction that the client initiates with the 

service. In the unidirectional asynchronous message communication, the consumer can 

periodically send a single ACK message to the consumer RAC for acknowledging 

multiple transactions. In case of the synchronous message communication with reply 

when the service has non-idempotent operations, there are two additional messages for 

each transaction that correspond to the second phase of the 2PC protocol. The 

committed/aborted response from the service to the service RAC can be piggybacked into 

the next response of another transaction (e.g. ready To Commit) that the service sends to 

the RAC. Note that in case the service does not receive any transactions from the RAC 

within a certain time interval, then the service has to send explicit committed/aborted 

messages to the RAC.  

Table 8.2 Number of additional messages required by each type of RAC and possible optimizations 

Pattern Number of Additional 

Messages Per 

Transaction 

Possible Optimizations 

Synchronous Message 

Communication with 

reply (stateless service) 

One additional ACK 

message is needed when 

transaction is completed so 

that the service RAC can 

remove transaction 

messages from its queues.   

The ACK message can be 

piggybacked into the next 

transaction that the client 

initiates with the service. 
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Synchronous Message 

Communication with 

reply (stateful service 

with non-idempotent 

operations) 

There are two cases to 

consider: 

 If the operation is read- 

only, then similar to the 

previous pattern, only 

one ACK is needed to 

indicate completion of 

transaction. 

 If the operation is 

write, then in addition 

to the ACK message, 

there are two extra 

messages needed for 

the second phase of 

2PC. 

ACK messages can be 

handled in the same way as 

the previous pattern. In 

case of write operations, 

the committed or aborted 

confirmation message from 

the service to the RAC can 

be piggybacked into the 

next response (e.g. 

readyToCommit) that the 

service sends to the service 

RAC. Thus, only one extra 

message is needed from the 

RAC to the service for 

instructing the service to 

either commit or abort the 

transaction. Note that if the 

service does not receive a 

new transaction from the 

RAC within a certain time 

interval, then the service 

must send explicit 
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committed/aborted 

messages to the service 

RAC.  

Distributed Transaction 1+n additional ACK 

messages are needed when 

transaction is completed 

where n is the number of 

services in the pattern.   

ACK message can be 

piggybacked into the next 

transaction, similar to the 

previous two patterns. 

Unidirectional 

Asynchronous Message 

Communication 

One additional ACK 

message from consumer to 

consumer RAC is needed 

to indicate that the 

consumer is done with the 

producer message. 

The consumer can 

periodically send one 

message to consumer RAC 

to acknowledge completion 

of multiple transactions 

(instead of a single 

transaction).  
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9 FORMAL PROPERTIES 

This section defines formal recovery and adaptation properties and proofs that are 

ensured by both the DARE framework and Recovery and Adaptation Connectors 

(RACs). Section 9.1 defines several concepts formally, including software architecture, 

configuration map, architectural pattern and transactions which are used throughout this 

chapter. Section 9.2 defines properties related to the DARE framework. Section 9.3 

defines properties related to the RACs in SOA patterns when services are stateless. 

Section 9.4 defines properties related to the RACs in SOA patterns when services are 

stateful. Section 9.5 defines properties related to the RACs in asynchronous patterns. 

9.1 Definitions 
This section formally defines several concepts that are used throughout this 

chapter, including software architectures, configuration maps, and architectural patterns 

and transactions.  

9.1.1 Software Architecture 

In this dissertation, a software architecture    is defined as the set    *   + 

where: 

   is the set of objects in the architecture such that an object can be either an 

application component or a Recovery and Adaptation Connector (RAC). 
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Formally,    {  |        +  such that    {         } is a set of   

application components and R = {         } is a set of   RACs in     

   is the set of interactions between objects such that 

    {(         )               *        +      *     +}. Here,    

identifies the interaction type between objects   and   which can be either 

    for synchronous message communication or      for asynchronous 

message communication. Additionally,    identifies the destination type for 

messages which can be either    for a multicast message that is intended to 

multiple destinations or    for a unicast message that is intended to a single 

destination. 

9.1.1 Configuration Map 

A configuration map defines the mapping between every object      in a 

software architecture    to the node that is currently hosting this object (and vice versa). 

Formally, the configuration map    
 

 of an architecture    at time   is defined as 

   
   *      ( )   ( )+  where: 

     *       + is a set of   nodes in the software system  

          is the set of objects in the software system 

   ( )       is a function that maps a node     to the set      of 

objects hosted by node   

   ( )      is a function that maps an object     to the node     that 

is hosting object    
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9.1.2 Architectural Patterns and Message-Based Transactions 

In this dissertation, an architectural pattern    in a software architecture    is 

defined as     *     + where:   

        is the set of objects in    

         is the set of interactions between the set of objects      

     *        + is a set of   transactions such that a transaction     is 

defined as    *(     )      (     ) +  of   dependencies between 

events executed by components              where dependencies are 

defined based on Lamport’s happened-before relationship (Lamport, 1978).  

In this research, an event   can be one of the following message passing events: 

     (    
     ) denotes an event executed by component   to send a 

message   of a transaction   to component  .   

        (    
     ) denotes the corresponding receive event executed by 

component   to receive     
   that was sent by component  .   

Additionally, an event   can be one of the following three events for manipulating 

the queues maintained by a RAC: 

      (    
        ) denotes an event executed by      to queue the 

message     
  in a queue  . 

     (    
            ) denotes an event executed by      to move the 

message     
  from a queue    to queue   . 

        (    
        ) denotes an event executed by      to dequeue the 

message     
  from a queue  . 



136 

 

9.2 DARE Properties 
This section describes several properties that the DARE framework ensures 

during failure recovery and dynamic adaptation. In particular, DARE ensures that when 

there is a failure, the system eventually recovers a configuration in which every failed 

component is recovered to a healthy node. For dynamic adaptation, DARE ensures that 

components are not adapted unless a region of quiescence has been established.    

9.2.1 Failure Recovery 

Let     where      
    denotes the current state of node  . Initially,      

        indicating that   is running normally. When a failure event occurs at  , then 

             indicating that   has failed. 

The goal is to show that when a failure occurs to  node       
   , then the 

software system eventually transitions from the configuration    
   to configuration    

    

which has the following three properties: 

 A1:                   
    ( )(        

      ( 
 ))             

   
                                   

 A2:                      
      

 A3:                         
                  (  )    (  )  

  

The first property indicates that for every component   that was previously hosted 

by the failed node   according to the configuration map    
  , eventually   is recovered 

to another node    such that       and    is in the        state. Property A2 indicates 

that the failed node   is not part of the new configuration map    
   . Property A3 ensures 
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a consistent configuration in which there are no duplicate application components in the 

configuration (i.e. a component cannot be hosted by more than one node). We assume 

that these three properties are satisfied during the initial deployment of the software 

systems. Thus, we show how our approach satisfies these properties at run-time in spite 

of failures.   

We now show how these properties are satisfied. 

Property A4: By assumption if a node n has failed, then every healthy node eventually 

receives a notification message that node n has failed. Formally, 

         
                   , the following property holds: 

  (                    (                          ))  

This property indicates that when a failure event occurs at node  , then the Failure 

Analysis Manager (FAM) hosted by node    whose current state is normal will eventually 

receive a notification message indicating failure of node   is suspected.  

This property is provided by assumption, since it is assumed that DeSARM on 

every healthy handles sending notification messages to the peer FAM (located on the 

same node) when it suspects node failures. 

 

Property A5: By design, if the FAM on multiple nodes receive a notification message 

from DeSARM that the failure of a node is suspected, then only the node with the lowest 

IP address proceeds with recovery. Let         (           ) be an event denoting 

FAM at node   activating RAM at node   to recover node  . Property A5 is defined based 

on property A4 as follows: 
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 A5:  (       (                          )     (   
   )       

        (             ))   

Proof. Property A5 indicates that a FAM on node    always eventually activates the 

RAM on node    to recover the failed node   only if (1) FAM on node    has received a 

notification message from DeSARM of failure of node   according to property A4 and 

node    has the lowest identifier according to configuration    
  (in this dissertation 

nodes are identified through their IP addresses). This property ensures that only one FAM 

is activated at any one moment to recover a failed node   and is achieved by design, 

since the state machine executed by the FAM (see fig. 5.2 in chapter 5): 

 First retrieves the IP addresses of all nodes from the configuration manager 

 Checks whether it is hosted by the node with the lowest IP address, and 

 Activates the peer RAM if no heartbeat message is received from the 

suspected node.  

 

Proof of properties A1-A3. From property A5, we can show that properties A1-A3 are 

satisfied as follows. By design, the RAM at node    that satisfies property A5 proceeds 

with the recovery process by determining a recovery plan   to recover each failed 

component deployed to the failed node   according to the algorithm shown in fig 9.1. 

First, the RAM retrieves the software architecture    from DeSARM and determines the 

failed components hosted by the failed node by looking up    
    (                 ) 

using the configuration manager. For each failed component  , the RAM determines the 
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    ( ) to recover  , including notifying the RAC of the failed component and selecting 

the node that will host the recovered  . 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 

2 

3 

4 

5 

6 

Input:  Failed_IP_Address the IP address of the failed node 

Effect: determines the recovery plan for recovering a component hosted by the failed 

node. 

Definitions:  

 failed_components: the set of components hosted by the failed node. 

 plan(x): the recovery plan for recovering a failed component x. plan(x) consists of 

  the tuple (i, r, n) where:   

  i is the input RAC that forward input messages, including synchronous  

                             requests and asynchronous messages, to component x.   

  r is the set of recipient RACs for component x that receive   

     output messages from component x. 

  n is the IP address of the node to which component x must be recovered. 

architecture ← SA  /* retrieved from DeSARM */ 

failed_components ←    
    (                  )  /* retrieved from local CM */ 

foreach c   failed_components do 

 plan(c).i ← t.u s.t. t   SA AND t.v = c  

 send        ( ) to     ( )    

 plan(c).r ← t.v s.t. t   architecture AND t.u = c 

 plan(c).n ←                     (   
   )                  
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7 

8 

end 

Figure 9.1 algorithm executed by the RAM to determine a recovery plan 

 

After determining the recovery plan, the RAM on node    requests the RAM on node     

to create an instance of failed component   and then connects   with the RACs that 

interact with it (see fig 9.2). Thus, this sequence of events satisfies property A1. The 

RAM on node    then updates the configuration map by removing the failed node from 

the configuration and adding the new node to the configuration, which satisfies property 

A2. From property A5, only a single RAM is activated to recover a failed node  . Thus, a 

failed component   cannot be recovered by more than one RAM which ensures that   

cannot be recovered on multiple nodes. As a result, property A3 is satisfied. 

 

 

 

 

 

1 

2 

3 

4 

Input:  Failed_IP_Address the IP address of the failed node  

 plan(c) the recovery plan to recover the failed component c 

Effect: recovers the failed component c according to plan(c) by instantiating component c 

on node     ( )  , connecting c with plan(c).i and plan(c).r, updating the configuration, 

and finally reactivating plan(c).i. 

/* Create component c */ 

send       ( ) to RAM at node     ( )   

/* Connect c */  

send        (      ( )  ) to     ( )    
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5 

6 

7 

8 

9 

10 

foreach i   plan(c).r do 

        (     
    

( )) to    

end 

//Update configuration map 

    
       

     *                  + 

    
         

      *     ( )  + 

/* Activate c and input RAC */ 

send activate() to c 

send reactivate() to     ( )    

Figure 9.2 algorithm executed by the RAM to recover a failed component 

 

9.2.2 Dynamic Adaptation 

The adaptation capability of DARE is based on the change management rules 

described by Kramer and Magee (Kramer and Magee, 1990).  Let      ( )  

*            + be a set of   adaptation commands to adapt a component   such that 

an adaptation command     can be either: 

    (   ) for adding component   to the architecture at node  . 

       ( ) for removing component   from the architecture. 

        (     ) for connecting component    with component   . 

           (     ) for disconnecting component    from component   . 

DARE ensures before adapting component  , the recovery and adaptation 

connector of component  , denoted as     , steers component   to the quiescent state in 
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which   is not engaged in any transactions and will not receive any new transactions 

from other components according to the following property: 

 

Property A6: When the Recovery and Adaptation Manager (RAM) receives an 

adaptation command to adapt component k, the RAM instructs      to passivate 

component k according to the following property: 

 (       (     ( )    )        (                   ))  

Proof. This property is satisfied by the state machine executed by the RAM (see 

Figure 5.3) since when the RAM receives an adaptation command, it sends the Passivate 

command to      and transitions to the Establishing Region of Quiescence state until it 

receives a response from      that component   has become quiescent. Therefore, no 

adaptation takes place unless   is in the quiescent state. 

Once   has become quiescent, the RAM then proceeds with modifying 

architecture according to the following RAM commands:  

1.     (   )       ( )  DARE creates component   on node   

2.            (     )       ( ), DARE disconnects component    from 

   

3.        ( )       ( )  DARE removes component   from the architecture 

4.         (     )       ( ), DARE connects    to component    

When all adaptation commands are performed, DARE sends the Activate 

command to every component that has been added in step 1 and then sends the Reactive 

command to      so that it resumes normal execution.  
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9.3 Recovery and Adaptation Properties of RAC for Stateless 
Components 

This section describes several properties achieved by the Recovery and 

Adaptation Connector (RAC) for recovering and adapting stateless services during 

normal execution, failure recovery, and dynamic adaptation. The goal of a      that 

handles recovery and adaptation concerns of a stateless service   is to ensure the 

following property: 

Property P1: if      receives a client request, then eventually      sends the 

corresponding response of this request to the requesting client. Formally: 

 (       (        
              )         (         

              )) 

9.3.1 Normal Execution 

This section defines several properties of      during normal operation (i.e. 

assuming that there are no failures or adaptation).  

 

Property P2: any request received by      from a client is queued by      into the 

Service Pending Queue (SPQ). Formally: 

 (       (        
              )       (        

          ))  

Proof. This property is satisfied by design of the state machine executed by the Request 

Coordinator of       since the first action executed by the Request Coordinator of      

whenever it receives a request from a client is to queue that request in the SPQ (c.f. fig. 

3.4 in chapter 3). Formally,        (        
                            )  

     (        
                         ) . 
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Property P3: if      queued         
  into the SPQ, then       will eventually forward 

this request to the service  . Formally: 

  (     (        
          )         (        

        ))  

Proof. By design, when the Request Coordinator of      receives         
 , then in 

addition to queueing the request into the SPQ (as defined in property P2), the action is to 

also forward this request to Connector Control of      (c.f. fig. 3.4 in chapter 3). 

Formally,         (        
                             )      (        

  

                                     ). From the state machine executed by the 

Connector Control (c.f. fig. 3.3 in chapter 3), when Connector Control receives 

        
  then the actions are to (1) forward the request to   and (2) instruct the Request 

Coordinator to move this request from the SPQ to the SAQ, i.e.,         (        
  

                                     )  

    (        
                    

 )      (        
                             ).  

 

Property P4: when      forwards          
  to service  , then      moves this request 

from the SPQ to the Service Active Queue (SAQ), indicating that this request is currently 

being processed by  . Formally: 

  (    (        
        )       (        

              )) 

Proof. By design: 
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        (        
                                       )      (        

  

                  

 )       (        
                                       ) 

 That is, receiving a client request causes Connector Control to send the request to 

the service   (as shown in property P3) and also to send this request to the Request 

Coordinator. By design, sending the request back to the Request Coordinator causes the 

Request Coordinator to move the request from the SPQ to the SAQ. I.e.  

       (        
                                )      (        

       

       ). 

 

Property P5: when      receives          
  from service  , then this response is 

queued in the Response Forwarding Queue (RFQ). Formally: 

 (       (         
        )        (         

          )) 

Proof. From property P3,      eventually forwards the requests it receives to service  . 

Since by assumption the service   is running normally, then   eventually sends to      

the responses of the requests it receives from this connector. By design in the message 

sequence executed by      (see fig. 3.1 in chapter 3), the first action executed the 

Response Coordinator when it receives a service response is to queue that response in the 

Response Forwarding Queue (RFQ). Formally, 

       (         
                          )  

     (         
                          ) .Thus, this message sequence 

satisfies property P5. 
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Property P6: when      queues          
  into RFQ, then this response is eventually 

forwarded by       to the requesting client. Formally: 

  (     (         
          )         (         

                 )) 

Proof. By design, when the Response Coordinator of      receives a response, it 

forwards this response to Connector Control. In other words,        (         
  

                      )  

    (         
                                            ). This sequence of 

events causes the following message sequence to execute (see fig. 3.3 in chapter 3): 

       (         
                                        )  

    (         
                           )   

    (         
                                       )   

    (         
                                        ) 

This sequence of events indicates that when Connector Control receives 

         
 , it triggers actions to forward this response to (1)        , (2) to the Request 

Coordinator, and (3) to the Response Coordinator.  

 

Properties P7: when      forwards          
  to the requesting client, then this 

response is moved from the RFQ to the RRQ and the corresponding request of this 

response is moved from the SAQ to the SRQ. Formally: 
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 (    (         
                 )  

      (         
              )       (        

              )) 

Proof. By design and from the proof of the previous property: 

 

       (         
                                        )  

    (         
                    

       )       (         
                    

                   )       (         
                    

                    )  

 That is, receiving a service response causes Connector Control to send the 

response to the requesting client and also sending this response to the Request and 

Response Coordinators. Sending the response back to the Request Coordinator causes the 

Request Coordinator to move the request from the SAQ to the SRQ. I.e.  

       (         
                                )      (        

  

                           ). Similarly, sending the response to the Response 

Coordinator causes this coordinator to move the response from the RFQ to the RRQ 

according to the sequence:          (         
                       

                   )      (         
                              ). 
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Properties P9:      does not remove any transaction messages from the SRQ or the 

RRQ unless it receives an acknowledgement message from the client that initiated this 

transaction, indicating completion of the transaction. Formally: 

 

 ((        (        
           )    

       (         
           ))         (                    )) 

 

Proof. This property is satisfied by the message sequence of the RAC design shown in 

fig. 3.1 in chapter 3, since the actions of dequeuing messages from these queues are 

dependent on receiving the ACK message from the client. In other words, 

       (                                          )  

    (                                        

                   )       (                                        

                    ). Receiving the                       message causes the 

Request and Response Coordinators to remove all messages of   from the SRQ and the 

RRQ. 

9.3.2 Failure Recovery 

This section defines several properties that are provided by      during failure 

recovery of service  . These properties ensure that any transaction that failed due to 

failure of   is eventually recovered and restarted when   is recovered. Furthermore, these 
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properties ensure that all transactions received by the RAC while   is in the failed state 

are queued until   recovers from failure. 

Properties P10: Let     ( ) indicates a failure event occurring to service  .  

when service   fails, then eventually      is notified of   failure by the Recovery and 

Adaptation Manager. Formally: 

  (    ( )           (                 )) 

Proof. This property is satisfied by design as shown previously in section 9.2 since while 

determining the recovery plan,      always notifies the input RAC of the failed 

component of failure. 

 

Property P11: when      is notified by      of   failure, then      ceases forwarding 

messages to   and holds all requests to   in the SPQ. Formally: 

  (                                         (        
              )  

     (        
                         )   

    (        
                                       )) 

 

Proof. This property is satisfied by the design of the Request Coordinator as can be 

clearly seen from the state machine executed by this coordinator (c.f. fig. 3.4 in chapter 

3). In this state machine, when the Request Coordinator is notified of   failure according 

to property P10, then the Request Coordinator transitions to the Failed state in which the 

action for receiving client requests is to hold these requests into the SPQ.  Formally, 
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       (                                            )  

                                  

While the Request Coordinator is in the Failed state, then it holds all requests in the SPQ 

as follows: 

                                          (        
                      

       )  

     (        
                         )   

    (        
                                       ) 

 

Property P12: Let      ( ) denote a failure event occurring to transaction  .      is 

capable of identifying a transaction   as failed according to the following property: 

  (     ( )      (        
           )          (             

          

 )) 

Proof. This property indicates that a transaction   is considered failed if      forwarded 

the first request of   to   but did not receive the final response of this transaction from   

(due to   failure). We now show how      is capable of determining failed transactions.  

From property P2 in section 9.3.1, a         
  is first queued in the SPQ until it is 

forwarded to  . From property P4, a forwarded request is moved from the SPQ to the 

SAQ. From property P8 a forwarded request is moved from the SAQ to the SRQ when 

the corresponding response of this request is forwarded to the client. From property P9,  
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     does not remove any requests from SRQ until the transaction containing this 

request is completed.  

Similarly, from property P5,      queues service responses in the RFQ until 

     forwards these responses to the requesting client. From property P7,      moves 

the responses it forwards from the RFQ to the RRQ. From property P9,      does not 

remove any responses from the SRQ until the transaction containing this response is 

completed. 

Therefore, all requests and responses of active transactions are maintained by 

     in its queues. Given these properties, then      is able to determine failed 

transactions by analyzing transactions maintained in the SAQ and SRQ and determining 

whether the final response of each transaction is queued in either the RFQ or RRQ 

according to the algorithm shown in fig. 9.3. In this algorithm,      iterates over 

transactions queued in the SAQ and the SRQ. For every transaction  , if the final 

response of this transaction is not queued in either the RFQ or RRQ, then   is considered 

failed, which satisfies property P12.  

 

       * + 

                 
            

 If              
            then  

  failed ← failed   { t } 

 end 
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end 

Figure 9.3 algorithm executed by the RAC to determine failed transactions 

 

Properties P13      is capable of recovering all identified failed transactions 

according to the property: 

           
        

                 (         
                  )   

Proof. Property P13 indicates that      moves the requests of every failed transaction 

from the SRQ and the SAQ to the head of the SPQ.   

To ensure this property,      recovers failed transactions according to the 

algorithm shown in fig 9.4. First,       iterate over the requests queued in the SAQ. For 

each request of a failed transaction in the SAQ,      moves the request from the SAQ to 

the head of the SPQ. Then      iterate over the requests queued in the SRQ. For each 

request in the SRQ of a failed transaction,      moves the request from the SRQ to the 

head of the SPQ.  
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 If           then  

            (        
         ) 

 end 

end 

                 
      

 If           then  

            (        
         ) 

 end 

end 

Figure 9.4 algorithm executed by the RAC to recover failed transactions 

 

Properties P15: let          (   ) indicate recovery of component   to node  . When 

component   is recovered,       is eventually reactivated. Formally: 

  (         (   )            (                    ) ) 

 

Proof. This property is satisfied by design since while executing the recovery plan, the 

Recovery and Adaptation Manager      always notifies the input RAC of the recovered 

component of component recovery as shown previously in section 9.2 (see fig. 9.2 ). 

 

Properties P16: when      is reactivated after   is recovered, then      resumes 

sending messages, including held and lost messages, to  . Formally,          
      : 
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 (       (                    )        (        
  

                                         )) 

This property indicates that when      is reactivated, then eventually 

                    forwards all requests queued in its SPQ to                  , 

including all requests held by                     (according to property P10) and 

recovered requests (according to property P13). This property is ensured by design as 

shown in the state machine executed by the Request Coordinator (see fig. 3.4 in chapter 

3) since when this coordinator is reactivated, it sends all messages queued in the SPQ to 

the Connector Control. Connector Control then forwards these requests to   normally 

according to property P3. 

9.3.3 Dynamic Adaptation 

This section defines several properties that are provided by      during 

adaptation of service  . These properties ensure that   can be adapted only if   has 

completed all transactions that it is currently engaged and will not receive any new 

transactions from other components. Furthermore, these properties ensure that any new 

transactions received by the RAC while the component is being adapted are queued until 

dynamic adaptation is completed. 

Properties P17, P18: when      receives the Passivate command from     , then 

     eventually transitions to the Quiescent state. Furthermore,      does not 

transition to the Quiescent state unless the service is not engaged in any transactions:  

  (       (                   )                        ) 

  ((                    )                                  )) 
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Proof. From the design of the state machine executed by Connector Control of      (see 

figure 3.3 in chapter 3), Connector Control maintains the number of active transactions 

that   is currently engaged according to the following rules: 

      (        
        )            (                      ) 

        (             
        )  

          (                      )  

By design, if Connector Control of      receives the Passivate command while 

                        , then Connector Control transitions immediately to the 

          state (see fig. 3.3 in chapter 3). Otherwise, Connector Control transitions to 

the intermediate             state in which it allows existing transactions to terminate 

normally but does not forward any new transactions to   according to the following 

property: 

 P19:   (                           

                    (        
              )  

     (        
                         )   

    (        
                                       )) 

This property is ensured by the state machine executed by                     

since the action for receiving requests that initiate new transaction with   is to hold the 

request in the SPQ. Thus, this property ensures that eventually 

                         and that      transitions from the             to the 

          state.  
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Properties P20: while in the Quiescent state,      ceases forwarding all requests it 

receives from clients to   and holds these requests in the SPQ.  Formally:  

  (       (        
              )               

                   (        
                         )    

     (        
        )  ) 

Proof. This property is satisfied by the design of the Request Coordinator as can be 

clearly seen from the state machine executed by this coordinator (c.f. fig. 3.4 in chapter 

3). In this state machine, when the Request Coordinator transitions eventually to the 

Quiescent state according to property P18, then the action while in the Quiescent state for 

receiving client requests is to hold these requests into the SPQ. Formally, 

       (                                                     )  

                                    

When the Request Coordinator receives a request while it is in the Quiescent 

state, the action is to hold that request in the SPQ (c.f. fig. 3.4 in chapter 3) 

 

Properties P21: let        ( ) denotes completion of service   adaptation. When   

adaptation is completed, then      is eventually reactivated. Formally: 

   (       ( )            (                    ) ) 

Proof. This property is satisfied by design since when the Recovery and Adaptation 

Manager      finishes adapting  , the RAM always reactive the input RAC of the 

component affected by adaptation (see section 9.2). 
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Properties P22: when      is reactivated after   is adapted to s’, then      resumes 

sending messages, including held messages, to s’. Formally,          
      : 

 (       (                    )        (        
  

                                         )) 

This property indicates that when      is reactivated, then eventually 

                    forwards all requests queued in its SPQ to                  , 

including all requests held by                     (according to properties 19 and 

20). This property is ensured by design as shown in the state machine executed by the 

Request Coordinator (see fig. 3.4 in chapter 3) since when this coordinator is reactivated, 

it sends all messages queued in the SPQ to the Connector Control. Connector Control 

then forwards these requests to    normally according to property P3. 

9.4 Recovery and Adaptation Properties of RAC for Stateful 
Components 

This section discusses several properties ensured by the RAC for handling 

adaptation and recovery concerns of stateful components in SOA patterns. In this 

dissertation, the state of a stateful component   at time   is viewed as the set   
  

*       + of   transactions executed by  . Furthermore, every transaction       
  has a 

status     such that      *                                 + where: 

        indicates that   is currently being executed by   and has not yet been 

completed. 

           indicates that   has executed to its entirety. 
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         indicates that   has been aborted and must be rolled back, as defined 

below. 

          indicates that t has committed provisionally. A prepared 

transaction remains in the          status until the RAC of component   

sends either the Commit or Abort message to   so that   either commits or 

aborts  , respectively.  

We assume that the state of the stateful component   is maintained by a 

transactional processing system    that ensures atomicity of every transaction executed 

by  . Formally,    ensures during normal execution that   always transitions from a state 

  
  to state   

    with the following properties: 

 AS1:       
                                              

     

 AS2:       
                         

    

Assumption AS1 indicates that    ensures the durability of committed 

transactions. Furthermore, AS1 ensures that prepared and active transactions are 

maintained until they are either committed or aborted. Assumption AS2 ensures that 

aborted transactions are rolled back from the state of component  .  

Furthermore, we assume that when   fails at time    and then subsequently 

recovers at time    (as defined in section 9.2),     recovers the state, denoted   
  as 

follows: 

 AS3:       
 
                                    

   

 AS4:       
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These assumptions indicate that    is capable of reconstructing the state of   by 

recovering committed and prepared transactions (AS3) and rolling back transactions that 

were in the aborted or active statuses when the failure occurred (AS4). 

Given these assumptions of   , the goal of      that handles adaptation and 

recovery concerns of the stateful component   is to ensure the following properties:  

 

Property S1: if      receives a client request, then eventually      sends the 

corresponding response of this request to the requesting client. Formally: 

  (       (        
              )         (         

              )) 

This property is similar to property P1 in section 9.3.1. However, in addition to 

this property,       must also ensure the following property: 

 

Property S2: eventually, all transactions that were rolled back by    due to   failure are 

restarted by     . Formally,       
 
: 

  ((                    )    (                      ))     

The goal is to ensure these properties during normal execution, failure recovery, 

and adaptation, as will be explained in the next subsections. 

9.4.1 Normal Execution 

The Two-Phase Protocol  (Bernstein and Newcomer, 2009) defines the following 

control message: 

                  denotes a request for the stateful component to prepare 

to commit the transaction  . We assume that                  piggybacks 
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a request, denoted as                         , which contains the 

update operation to be performed by  . 

                denotes the corresponding response of the 

                 request indicating that the stateful component has 

prepared to commit transaction  . We assume that the                

message piggybacks a response, denoted as                        , 

which contains the result of performing the update operation. 

                 denotes an alternative response to the 

                 request indicating that the stateful component is unable 

to prepare to commit transaction t.  

         denotes a request for the stateful component to commit the 

transaction  .  

            denotes a response for a         request that transaction   is 

committed. 

        denotes a request for the stateful component to abort the transaction  . 

          denotes a response for an       request that transaction   is 

aborted. 

 

Formally, these control messages manipulate the status of a transaction t     
  as follows: 
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 AS5:  (       (                          )             

((                  (                     )   (    

             (                      ))) 

 AS6:  (       (                 )               (    

                (                 ))) 

 AS7:  (       (                )      (                 )  

(                  (               ))) 

Assumption AS5 indicates that if component   receives a                   

message for a transaction   that is in the        state, then eventually either (1) the status 

of   at component   becomes          and   sends back the                 

message or (2) the status of   at component   becomes         and   sends the 

                 message. AS6 defines behavior when   receives a        request 

for a transaction   that is in the          status in which the status of this transaction 

becomes           and   sends the          message. AS7 defines behavior when   

receives a       request for a transaction   that is in the          status in which the 

status of this transaction becomes         and   sends the         message. 

 

Property S3: any request received by      from a client is queued by      into the 

Service Pending Queue (SPQ). Formally: 
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 (       (        
              )       (        

          ))  

Proof. This property is satisfied by design of the state machine executed by the Request 

Coordinator of       since the first action executed by the Request Coordinator 

whenever it receives a request from a client is to queue that request in the SPQ (c.f. fig. 

3.4 in chapter 3). Formally,        (        
                            )  

     (        
                         ) . 

 

Property S4: if      queued          into the SPQ, then       will eventually request 

c to prepare to commit t. Formally: 

  (     (                 )         (                      

 ))  

Proof. By design, when the Request Coordinator of      receives         , then in 

addition to queueing the request into the SPQ, the action is to also forward this request to 

Connector Control of      (c.f. fig. 3.4 in chapter 3). Formally,         (         

                           )      (                             

                 ). From the state machine executed by the Connector Control (c.f. 

fig. 3.6 in chapter 3), when Connector Control receives          then the actions are to 

(1) instruct   to prepare to commit this transaction and (2) instruct the Request 

Coordinator to also prepare to commit this transaction, i.e.,         (         

                                     )      (                 
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                   )      (                                   

                   )  

 

Property S5: For each transaction that is being prepared to commit at c,      queues 

the Prepare To Commit message of the transaction into the SAQ. Formally: 

  (    (                      )         (              

   )       (                         )) 

 

Proof. By design and as shown in the previous property: 

 

       (                                              )  

    (                                   

 )       (                                                      ) 

 That is, receiving a client request causes Connector Control to send the Prepare 

To Commit message to the   and also to send this message to the Request Coordinator. 

By design, sending the Prepare To Commit message to the Request Coordinator causes 

the Request Coordinator to dequeue the request of this transaction from the SPQ and 

queue the Prepare To Commit message into the SAQ. I.e. 

       (                                                      )  

       (                                )       (                 

                       ) 
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Properties S6 and S7: when      receives                or 

               from c, then this response is queued in the Response Forwarding 

Queue (RFQ). Formally: 

   

 (       (                     )  

     (                       ))  

  (       (                      )  

      (                        ))  

 

Proof. From property S4,      eventually forwards a Prepare To Commit message to  . 

By assumption AS5,   eventually sends either the Prepare To Commit or Refuse To 

Commit message back to     . By design in the message sequence executed by      

(see fig. 3.1 in chapter 3), the first action executed the Response Coordinator when it 

receives a service response is to queue that response in the Response Forwarding Queue 

(RFQ). Formally, 

       (                               )       (          

                   
 
    ) .Thus, this message sequence satisfies property S6 

and S7. 
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A transaction   involving a stateful component   can be either distributed or not 

distributed (see chapter 3). Let          be any 2PC control message and 

                       be a flag indicating whether   is a distributed transaction.  

 

Properties S8: when      queues a Ready To Commit (or Refuse To Commit) into RFQ 

for a non-distributed transaction, then      eventually sends the Commit (or Abort) 

message to c. Formally: 

  

 (     (                    

   )                                       (        

         )) 

  

 (     (                        )   

                                    (                )) 

 

Proof. By design, when the Response Coordinator of      receives a Ready To Commit 

or Refuse To Commit response for a non-distributed transaction, it forwards this response 

to Connector Control. In other words, 

       (                                     )  

    (                                                         ) and 
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       (                                      )  

    (                                                          ). This 

sequence causes the following message sequences to execute (see fig. 3.6 in chapter 3): 

       (                                                     )    

                                 (                           )  

     (                                             ) and 

       (                                                      )    

                                 (                          )  

     (                                            ) 

 

Properties S9-S12: when      queues a Ready To Commit or Refuse To Commit into 

RFQ for a distributed transaction, then      eventually sends this response to the 

coordinator of the distributed transaction. Additionally, when       receives the 

decision of the coordinator of the distributed transaction, it forwards this decision to c. 

Formally: 

  (     (                    

   )                                 

      (                                )) 

  

 (     (                     
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   )                                

      (                                 )) 

  (       (                         )         (             

 ))  

  (       (                        )         (             ))  

 

Proof.  By design, the state machine executed by Connector Control of      (see fig. 

3.14 in chapter 3) forwards responses of distributed transactions to the coordinator of the 

distributed transaction and does not forward a decision to   unless it has received this 

decision from the coordinator of the distributed transaction. As a result, by the 2PC 

protocol, the coordinator of the distributed transaction eventually sends either the 

Commit or Abort decision to     . By design, when      receives this decision 

message from the coordinator, it forwards this decision to  . Formally, 

       (                                             )  

    (                               ) and 

       (                                            )  

    (                              ) 

 

Property S13-S14: when      requests c to commit a transaction during the second 

phase of 2PC protocol, then      queues the Commit message into the SRQ. Similarly, 
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when      requests c to abort a transaction during the second phase of 2PC protocol, 

then      queues the Abort message into the SRQ. Formally: 

  (    (              )                            

       (                         )       (             

   )) 

  (    (             )   (               

                 )                   (                 

        )       (               ))  

 

Proof. By design when Connector Control forwards the Commit or Abort message to   

(as shown in properties S8-12), the action is to also request the Request Coordinator to 

either Commit or Abort this transaction. By design, receiving the Commit or Abort 

message from Connector Control causes the following sequence of events at the Request 

Coordinator: 

        (                                             )  

        (                                     

   )       (                               ) 

        (                                            )  

        (                                     

   )       (                              ) 
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Properties S15 and S16: when      receives            or         from c for a 

transaction that is in the second phase of 2PC protocol, then this response is queued in 

the Response Forwarding Queue (RFQ). Formally: 

  (       (                 )                           

     (                   ))  

 

 (       (               )  (                               )  

              (                 ))  

Proof. From the previous properties,      eventually forwards a Commit or Abort 

message to   for each prepared transaction at  . By assumptions AS6 and AS7,   

eventually sends either the Committed or Aborted response back to     . By design in 

the message sequence executed by      (see fig. 3.1 in chapter 3), the first action 

executed the Response Coordinator when it receives a response for a transaction that is 

currently in the second phase of 2PC is to queue that response in the Response 

Forwarding Queue (RFQ).  

 

Properties S17: for non-distributed transactions,      eventually sends the final 

response of transactions to the requesting client. Formally: 

   (     (                   )                              

      (                                       )) 
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  (     (                 )                              

    (                                        )) 

Proof. By design, when the Response Coordinator of      receives Committed or 

aborted response for a non-distributed transaction from  , it forwards this response to 

Connector Control. In other words,        (                                

 )      (                                                     ) and 

       (                               )  

    (                                                   ). These sequence of 

events causes the following message sequence to execute (see fig. 3.6 in chapter 3): 

       (                                                 )  

    (                                                   ) and 

       (                                               )  

    (                                                  ) 

 

Properties S18 and S19: for distributed transactions,      eventually sends the 

Committed or Aborted response of committed or aborted transactions to the coordinator 

of the distributed transaction. Formally: 

  (     (                   )                               

    (                               )) 
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  (     (                 )                                 (         

                    )) 

 

Proof. By design, when the Response Coordinator of      receives either a Committed 

or Aborted response, it forwards this response to Connector Control. In other words, 

       (                                 )  

    (                                                     ) and 

       (                               )  

    (                                                   ). For a Committed or 

Aborted response such that this response is of a distributed transaction, this sequence of 

events causes the following message sequence to execute (see fig. 3.14 in chapter 3): 

       (                                                 )  

    (                                         )  and        (         

                                      )  

    (                                       )  

These two sequence of events indicates that when Connector Control receives 

either            or          response, it triggers actions to forward this response to 

the coordinator of the distributed transaction. 

9.4.2 Failure Recovery 

This section defines several properties that are provided by      during failure 

recovery of service  . These properties ensure that any transaction that failed due to 
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failure of   is eventually recovered when   is recovered. Furthermore, these properties 

ensure that all transactions received by the RAC while   is in the failed state are queued 

until   recovers from failure. 

 

Property S25: Let      ( ) denotes a failure event occurring to transaction  .      is 

capable of identifying a transaction   as failed according to the following property: 

   (     ( )      (        
           )   (       (                    )   

        (                  ))) 

This property indicates that a transaction   is considered failed if      forwarded 

the first request of   to   and      did receive either the committed or aborted response 

of this transaction during phase 2 of the 2PC protocol from   (due to   failure). We now 

show how      is capable of determining all failed transactions. From property P10, 

     does not remove transaction messages from its queues unless it receives an 

    from the component that initiated   indicating that   has completed. 

Given that      does not discard any message of a transaction   unless   has 

completed, then      is able to determine failed transactions, according to property S25 

by analyzing transactions maintained in the SAQ and SRQ and determining whether a 

committed or aborted response for each transaction at the second phase of 2PC is queued 

in either the RFQ or RRQ (see fig. 9.5).  
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       * + 

             
            

 if                                           then  

  failed ← failed   { t } 

 else if                                then  

  failed ← failed   { t } 

 end 

end 

Figure 9.5 algorithm executed by the RAC to determine failed 2PC transactions 

 

Properties S26 and S27:      is capable of recovering all failed 2PC transactions such 

that             (        )                 : 

 S26:   (                       (               

                 )                   (              )) 

 S27:   (                                         

    (               )) 

 S28:  

 (                                  

      (              )) 

In addition, distributed transactions require the following properties: 
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 S29:  

 (                

                                     (                )   

           (                                   )) 

 S30:  

 (                 

                                                      

    (                                    )) 

 S31:   (                                            

    (                               )) 

 S32:  

 (                                       

      (                             )) 

Proof. Property S26 indicates that if the SAQ queues a Prepare To Commit message for 

which there is no corresponding Ready To Commit or Refuse To Commit response in 

either the RFQ or the RRQ, then       eventually sends          to   when it is 

recovered (see chapter 3). Furthermore, all such transactions must be recovered and 

restarted at   according to properties P13-P16. Property S27 indicates that if the SRQ 

queues a Commit message for which there is no corresponding Committed response in 
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either the RFQ or the RRQ, then       eventually sends Commit to the recovered  . 

Property S28 indicates that if the SRQ queues an Abort message for which there is no 

corresponding Aborted response in either the RFQ or the RRQ, then       eventually 

sends Abort to the recovered  . 

Properties 29-32 ensure that for distributed transactions, the coordinator of the 

distributed transaction receives the last response that       received from    

To ensure these properties,      determines the recovery actions for each failed 

transaction according the algorithm shown in fig 9.6. First,       determines recovery 

actions of failed transactions that reached the second phase of the 2PC protocol. To 

accomplish this,       iterates over Commit messages queued in the SRQ. For each such 

transaction such that there is no corresponding Committed response in either the RFQ or 

the RRQ, then the action is to resend the Commit message to   when it is recovered. 

Otherwise, if there is a Committed response such that this transaction is distributed, then 

     sends Committed to the coordinator of the distributed transactions. 

Similarly,        iterates over Abort messages queued in the SRQ. For each such 

transaction such that there is no corresponding Aborted response in either the RFQ or the 

RRQ, then the action is to resend the Abort message to   when it is recovered. Otherwise, 

if there is an Aborted response such that this transaction is distributed, then      sends 

Aborted to the coordinator of the distributed transactions. 

Finally,       determines recovery actions for transactions that failed during the 

first phase of 2PC. To accomplish this,      iterate over the Prepare To Commit requests 

queued in the SAQ. For each failed transaction in the SAQ, if there is no Ready To 
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Commit or Refuse To Commit response queued in either the RFQ or the RRQ, then      

must sends the Abort message to   when it is recovered and then restart this transaction at 

   Otherwise if a response is found, then the action is to send this response to the 

coordinator of the distributed transaction if this transaction is distributed or send Commit 

or Abort to   if this transaction is non-distributed. 

 

        * + 

                     then 

 If                                  then  

                     *       + 

 Else if                                    

                          then 

                     *          + 

 end 

end 

                    then 

 If                                then  

                     *      + 

 Else if                                                            

              then  
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                     *        + 

 end 

end 

                                (               )       then 

 If             (                              )              

              then  

                     *               + 

 Else If 

   

         (              )  

                                       then  

                     *       + 

 Else If 

   

         (               )                                            

then  

                     *      + 

 Else If 

   

         (              )                                        

then  
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                     *              + 

 Else If 

   

         (               )                                           

then  

                     *               + 

 end 

end 

Figure 9.6 algorithm executed by the RAC to recover failed 2PC transactions 

 

9.4.3 Dynamic Adaptation 

This section defines several properties that are provided by      during 

adaptation of  . 

Properties S33, S34: when      receives the Passivate command from     , then 

     eventually transitions to the Quiescent state. Furthermore,      does not 

transition to the Quiescent state unless the service is not engaged in any transactions:  

  (       (                   )                         ) 

  ((               )                                  )) 

 

Proof. From the design of the state machine executed by Connector Control of      (see 

figure 3.6 in chapter 3), Connector Control maintains the number of active transactions 

that   is currently engaged according to the following rules: 

      (        
        )            (                      ) 
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        (                          )  

          (                      )  

By design, if Connector Control of      receives the Passivate command while 

                        , then Connector Control transitions immediately to the 

Quiescent state (see fig. 3.6 in chapter 3). Otherwise, Connector Control transitions to the 

intermediate             state in which it allows existing transactions to terminate 

normally but does not forward any new transactions to   according to the following 

property: 

 S35:   (                           

                    (        
              )  

     (        
                         )   

    (        
                                       )) 

This property is ensured by the state machine executed by                     

since the action for receiving requests that initiate new transactions with   is to hold the 

request in the SPQ. Thus, this property ensures that eventually 

                         and that      transitions from the             to the 

Quiescent state.  

 

Properties S36: while in the Quiescent state,      ceases forwarding all requests it 

receives from clients to   and holds these requests in the SPQ.  Formally:  



180 

 

  (       (        
              )                             

     (        
        )         (        

                      

   )) 

Proof. This property is satisfied by the design of the Request Coordinator as can be 

clearly seen from the state machine executed by this coordinator (c.f. fig. 3.4 in chapter 

3). In this state machine, when the Request Coordinator transitions eventually to the 

Quiescent state according to property P34, then the action while in the Quiescent state for 

receiving client requests is to hold these requests into the SPQ.  

  

Properties S37: let        ( ) denotes completion of adaptation of stateful component 

c. When   adaptation is completed, then      is eventually reactivated. Formally: 

   (       ( )            (                    ) ) 

Proof. This property is satisfied by design since when the Recovery and Adaptation 

Manager      finishes adapting  , the RAM always reactive the input RAC of the 

component affected by adaptation (see section 9.2). 

 

Properties S38: when      is reactivated after   is adapted to   , then      resumes 

sending messages, including held message, to   . Formally,          
      : 

 (       (                    )        (        
  

                                         )) 
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This property indicates that when      is reactivated, then eventually 

                    forwards all requests queued in its SPQ to                  , 

including all requests held by                     (according to properties S35 and 

S36). This property is ensured by design as shown in the state machine executed by the 

Request Coordinator (see fig. 3.4 in chapter 3) since when this coordinator is reactivated, 

it sends all messages queued in the SPQ to the Connector Control. Connector Control 

then forwards these requests to    normally according to property S4. 

 

9.5 Recovery and Adaptation Properties of RAC for Asynchronous 
Patterns 

This section describes several properties achieved by the Recovery and 

Adaptation Connector (RAC) for recovering and adapting consumers in asynchronous 

patterns during normal execution, failure recovery, and dynamic adaptation.  The goal of 

a      that handles recovery and adaptation concerns of a consumer   is to ensure the 

following property: 

Property C1: if      receives a producer message, then eventually      receives an 

acknowledgement from the consumer indicating that it is done with the producer’s 

message. Formally: 

 (       (                       )            (           ))    

9.5.1 Normal Execution 

This section defines several properties of      during normal operation (i.e. 

assuming that there are no failures or adaptation) which ensure that all asynchronous 
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transactions received by the RAC are maintained in queues until the consumer 

acknowledges completion of these transactions. 

Property C2: any received message by      from a producer is always queued by      

into the Service Pending Queue (SPQ). Formally: 

  (       (                       )       (              

   ))  

Proof. This property is satisfied by design of the state machine executed by the Queue 

Coordinator of       since the first action executed by this coordinator whenever it 

receives a message from a producer is to queue that request in the SPQ (c.f. fig. 4.4 in 

chapter 4).  

 

Property C3: if      queued          into the SPQ, then       will eventually 

forward this message to consumer c. Formally: 

  (     (                 )         (               ))  

 

Proof. By design, when the Queue Coordinator of      receives         , then in 

addition to queueing the message into the SPQ, the action is to also forward this message 

to Connector Control of      (c.f. fig. 4.4 in chapter 4). Formally,         (         

                         )      (                           

                 ). From the state machine executed by the Connector Control (c.f. 

fig. 4.3 in chapter 4), when Connector Control receives          then the actions are to 
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(1) forward the message to   and (2) instruct the Queue Coordinator to move this 

message from the SPQ to the Service Active Queue (SAQ), i.e.,         (         

                                   )  

    (                           

 )      (                                  ).  

 

Property C4: when      forwards           to consumer  , then      moves this 

message from the SPQ to the Service Active Queue (SAQ), indicating that this message is 

currently being processed by  . Formally: 

  (    (               )       (                     )) 

Proof. By design:        (                                            )  

    (                           

 )       (                                            ). 

 That is, receiving a producer message causes Connector Control to send the 

message to the consumer   (as shown in property C3) and also to send this message to the 

Queue Coordinator. By design, sending the producer’s message back to the Queue 

Coordinator causes the coordinator to move the producer’s message from the SPQ to the 

SAQ. I.e.         (                                              )  

    (                                  ). 
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Properties C5:      does not remove any messages from the SAQ unless it receives an 

acknowledgement from the consumer indicating that it is done with the producer’s 

message. Formally: 

               (        (                  )         (              )) 

Proof. From properties C4,      eventually forwards the messages it receives from 

producers to consumer  . Since by assumption the consumer   is running normally, then 

  eventually sends to      an ACK for each producer message it receives from      

according to the following sequence of events:  

 Sequence 1:     (               )         (           

    )      (           )          (           ).  

By design in the message sequence executed by Connector Control of      (see fig. 4.3 

in chapter 4), receiving an ACK from the consumer causes Connector Control to instruct 

the Queue Coordinator to remove the message of this transaction from the SAQ. 

9.5.2 Failure Recovery 

This section defines several properties that are provided by      during failure 

recovery of consumer  . These properties ensure that any asynchronous transaction that 

failed due to failure of   is eventually recovered and forwarded when   is recovered. 

Furthermore, these properties ensure that all transactions received by the RAC while   is 

in the failed state are queued until   is recovers from failure. 

 

Properties C6: Let     ( ) indicates a failure event occurring at consumer  .  
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when consumer   fails, then eventually      is notified of   failure by the Recovery and 

Adaptation Manager     . Formally: 

  (    ( )           (                 )) 

Proof. This property is satisfied by design since while determining the recovery plan, 

     always notifies the input RAC of component failure as shown previously in section 

9.2. 

 

Property C7: when      is notified by      of   failure, then eventually      ceases 

forwarding messages to   and holds all messages to   in the SPQ. Formally: 

  (                                       (                       )  

      (                              )   

    (                                            )) 

 

Proof. This property is satisfied by the design of the Queue Coordinator as can be clearly 

seen from the state machine executed by this coordinator (c.f. fig. 4.4 in chapter 4). In 

this state machine, when the coordinator is notified of   failure according to property C6, 

then the Queue Coordinator transitions into the Failed state in which the action for 

receiving producer messages is to hold these requests into the SPQ.  Therefore, all 

messages received by      after it has been notified of   failure are held in the SPQ. 

 

Property C8: Let      ( ) denotes a failure event occurring to transaction  .      is 

capable of identifying a transaction   as failed according to the following property: 
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  (     ( )      (                  )          (              )) 

 

Proof. This property indicates that a transaction   is considered failed if      forwarded 

a producer message of a transaction   to   but did not receive an ACK for this transaction 

from   (due to   failure). By design,      is capable of determining all failed 

transactions as follows. From Property C4,      moves all asynchronous messages it 

forwards to   from the SPQ to the SAQ. From property C5,      does not remove any 

asynchronous messages from the SAQ unless it receives an ACK from the consumer that 

it is done with the producer’s message. Therefore, all asynchronous messages queued in 

the SAQ are of failed transactions, which satisfies property C8. 

 

Property C9:      recovers all identified failed transactions by moving these 

transactions from the SAQ to the SPQ according to the following property. 

                                : 

  (     (                      )) 

Proof. Property C9 indicates that      always eventually move messages of every failed 

asynchronous transaction from the SAQ to the head of the SPQ. To ensure these 

properties,      recovers failed asynchronous transactions by iterating over the 

asynchronous messages queued in the SAQ. For each message,      moves the message 

from the SAQ to the SPQ.  
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Property C10: let          (   ) indicate recovery of consumer   to node  . When 

component   is recovered,       is eventually reactivated. Formally: 

  (         (   )            (                    ) ) 

Proof. This property is satisfied by design since while executing the recovery plan, the 

Recovery and Adaptation Manager      always notifies the input RAC of the failed 

component of component recovery as shown previously in section 9.2. 

 

Properties C11: when      is reactivated after   is recovered (as explained in section 

9.2), then      resumes sending messages, including held and lost message, to  . 

Formally,               : 

 (       (                    )        (         

                                       )) 

Proof. This property indicates that when      is reactivated, then eventually 

                  forwards all messages queued in its SPQ to                  , 

including all messages held by                   (according to property C7) and 

recovered messages (according to property C9). This property is ensured by design as 

shown in the state machine executed by this coordinator (see fig. 4.4 in chapter 4) since 

when this coordinator is reactivated, it sends all messages queued in the SPQ to the 

Connector Control. Connector Control then forwards these requests to   normally 

according to property C3. 
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9.5.3 Dynamic Adaptation 

This section defines several properties that are provided by      during 

adaptation of consumer  . These properties ensure that   can be adapted only if   has 

completed all transactions that it is currently engaged in and will not receive any new 

transactions from other components. Furthermore, these properties ensure that any new 

transactions received by the RAC while the component is being adapted are queued until 

dynamic adaptation is completed. 

 

Properties C12: when      receives the Passivate command from     , then      

eventually transitions to the Quiescent state. Furthermore,      does not transition to the 

quiescent state unless the consumer is not engaged in any transactions. Formally:  

  (       (                   )                        ) 

  ((                     )                                  )) 

 

Proof. From the design of the state machine executed by Connector Control of      (see 

figure 4.3 in chapter 4), Connector Control maintains the number of active transactions 

that   is currently engaged according to the following rules: 

      (               )            (                      ) 

        (           )            (                      )  

By design, if Connector Control of      receives the           command while 

                        , then Connector Control transitions immediately to the 

          state (see fig. 4.3 in chapter 4). Otherwise, Connector Control transitions to 

the intermediate             state in which it allows existing transactions to terminate 
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normally but does not forward any new transactions to   according to the following 

property: 

 P20:   (                         

                    (                       )  

     (                              )   

    (                                            )) 

This property is ensured by the state machine executed by                   

since the action for receiving asynchronous messages that initiate new transaction with   

is to hold the message in the SPQ. This property ensures that eventually 

                         and that      transitions from the             to the 

          state.  

 

Properties C13: while in the Quiescent state,      ceases forwarding all asynchronous 

messages it receives from producers to   and holds these message in the SPQ.  Formally:  

  (       (                       )                           

     (               )         (                              )) 

Proof. This property is satisfied by the design of the Queue Coordinator as can be clearly 

seen from the state machine executed by this coordinator (c.f. fig. 4.4 in chapter 4). In 

this state machine, when the Queue Coordinator transitions eventually to the Quiescent 

state according to property C12, then the action while in the Quiescent state for receiving 

asynchronous message is to hold these messages into the SPQ.   
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Properties P22: let        ( ) denotes completion of consumer   adaptation. When   

adaptation is completed, then      eventually is reactivated. Formally: 

   (       ( )            (                    ) ) 

 

Proof. This property is satisfied by design since when the Recovery and Adaptation 

Manager      finishes adapting  , the RAM always reactive the input RAC of the 

component affected by adaptation (see section 9.2). 

 

Properties P23: when      is reactivated after   is adapted to   , then      resumes 

sending asynchronous messages, including held asynchronous message, to   . Formally, 

              : 

 (       (                    )        (         

                                       )) 

This property indicates that when      is reactivated, then eventually 

                  forwards all requests queued in its SPQ to                  , 

including all requests held by                   (according to properties C20 and 

C21). This property is ensured by design as shown in the state machine executed by the 

Queue Coordinator (see fig. 4.4 in chapter 4) since when this coordinator is reactivated, it 

sends all messages queued in the SPQ to the Connector Control. Connector Control then 

forwards these requests to    normally according to property C3. 
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10 EXPERIMENTAL DESIGN AND VALIDATION 

I conducted detailed experiments of self-healing and self-configuration scenarios 

to evaluate the approach described in this dissertation. To carry out the experiments, I 

implemented the DARE framework as well as the architectures of two case studies: an 

Online Shopping System and an Emergency Monitoring System (Gomaa, 2011). In these 

experiments, each component and RAC was implemented in Java and has a separate 

thread of control. In addition, Java Sockets were used for message delivery. The 

implemented architecture runs on a cluster consisting of 30 nodes. Thus, components and 

RACs are both concurrent and distributed in these experiments. Section 10.1 describes 

the various experiments in this chapter. Sections 10.2-10.7 provide the details of each 

experiment. 

 Experimental Design 10.1
In order to validate the approach in this dissertation, I conducted several 

experiments as follows: 

 Experiment 1: this experiment validates the design of the service RAC used for 

stateless services which does not maintain state information about its clients (c.f. 

section 3.1).  This experiment is described in section 10.2.1. 
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 Experiment 2: this experiment validates the design of the service RAC used for 

stateful services with non-idempotent operations (c.f. section 3.2). This 

experiment is described in section 10.2.2. 

 Experiment 3: this experiment validates the design of the service RAC used for 

stateful services that participate in distributed transactions (c.f. section 3.3.5).  

This experiment is described in section 10.2.3. 

 Experiment 4: this experiment validates the design of the coordinator RAC used 

for coordinators in service-oriented architectures (c.f. section 3.3.4). This 

experiment is described in section 10.2.4. 

 Experiment 5: this experiment validates the design of the consumer RAC used for 

consumers in asynchronous patterns (c.f. chapter 4). This experiment is described 

in section 10.3. 

 Experiment 6: this experiment validates the design of the DARE framework (c.f. 

chapter 5). This experiment is described in section 10.4. 

 Experiment 7: this experiment validates the design of the Assistant Recovery and 

Adaptation Connector (c.f. chapter 6). This experiment is described in section 

10.5. 

 Experiment 8: this experiment validates the capability of the RAC to recover from 

run-time failures using message logging (c.f. chapter 7). This experiment is 

described in section 10.6. 
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 Experiment 9: this experiment validates the design of the reusable RAC which is 

capable of integrating multiple patterns (c.f. chapter 8). This experiment is 

described in section 10.7. 

 Experimentation with RAC in SOA Patterns  10.2
This section describes the experimental design and results of the RAC used in 

SOA patterns (c.f. chapter 3). This RAC contains the following queues for maintaining 

client requests and service responses: 

 Service Pending Queue (SPQ): this queue stores client requests received by the 

RAC but that have not yet been forwarded to the service.  

 Service Active Queue (SAQ): this queue stores client requests that have been 

forwarded to the service but do not have corresponding service responses at the 

RAC. 

 Service Recovery Queue (SRQ): this queue stores client requests that have 

corresponding service responses at the RAC.  

 Response Forwarding Queue (RRQ): this queue stores responses that are not 

forwarded to the requesting clients. 

 Response Recovery Queue (RFQ): this queue stores responses that have been 

forwarded to requesting clients.  

The goal of the experiments is to validate recovery and adaptation capability of 

the RAC without losing state information. In order to carry out experimentation, I 

implemented the architecture of the Online Shopping System case study (Gomaa, 2011), 

which is an example of a service-oriented architecture. In this case study, customers can 
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request to purchase items from suppliers (see Figure 10.1). Several services are involved 

to carry out purchase requests such as the Customer Account Service, Delivery Order 

Service, Catalog Service, and Credit Card Service. Therefore, coordinators are used to 

facilitate integration of these services. Thus, this case study helps with experimenting 

with the service RAC as it involves the SOA pattern described previously in chapter 3.  

 

<<user interaction>>
: Customer Interaction

<<coordinator>>
: Customer Coordinator

<<connector>>
: Service RAC

<<connector>>
: Service RAC

<<connector>>
: Service RAC

<<connector>>
: Service RAC

<<service>>
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Figure 10.1 Fragment of Online Shopping System case study (Gomaa, 2011) 
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10.2.1 Experimentation with RAC for Stateless Services 
This section describes the validation of the RAC that handles adaptation and 

recovery concerns of stateless services which do not maintain state information about 

their clients (see section 3.1 in chapter 3). 

Self-Healing Scenario 
The service failure scenario demonstrates the ability of the service RAC to 

recover failed transactions. In this scenario, the Catalog Service (CS) is concurrently 

processing three active transactions (t1-t3) at the time of failure. As a result, the expected 

behavior in this scenario includes: 

1. The CS RAC receives a failure notification from the Recovery and Adaptation 

Manager (RAM). 

2. The CS RAC determines a recovery action to recover the failed transactions t1-t3. 

3. The CS RAC receives the Reactivate command from the Recovery and 

Adaptation Manager to resume sending messages to the recovered CS. As a result, 

CS RAC resends transactions t1-t3 to the recovered CS.  

In this scenario, the execution trace (Figure 10.2) indicates that the content of the 

RAC’s queues is as follows: 

 The SPQ holds one request due to service failure: 

o Request1(t4, CC1, CS), where t4 is the identifier of the transaction, CC1 is 

the identifier of the message sender, and CS is the identifier of the 

message recipient. 

 The SAQ contains three requests that have been forwarded to the service as 

follows: 
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o Request2(t1, CC2, CS) 

o Request2(t2, CC3, CS) 

o Request2(t3, CC4, CS) 

 The SRQ contains three requests: 

o Request1(t1, CC2, CS) 

o Request1(t2, CC3, CS) 

o Request1(t3, CC4, CS) 

 The RFQ does not contain any queued responses. 

 The RRQ contains three forwarded responses: 

o Response1(t1, CS, CC2) 

o Response1(t2, CS, CC3) 

o Response1(t3, CS, CC4) 

 

 

Figure 10.2 Fragment of the execution trace of the stateless service RAC during planned failure scenario 

 

RAC restarted failed 
transactions t1-t3 

when service is 
recovered 

RAC is notified of service 
failure after initiating 3 

transaction with service 

RAC sends held 

transaction t4 
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During the analysis activity which is handled in the Analyzing Failure Events 

state, the execution trace indicates that the service RAC determined that transactions t1, 

t2, and t3 have failed, since these transactions have been initiated with the service before 

failure but service failure occurred before the service RAC received the responses that 

complete these transactions from the service. As a result, the execution trace indicates 

that the service RAC recovered requests of these transactions from the SAQ and the SRQ 

to the SPQ. The execution trace indicates that the state of the SPQ after moving these 

transactions are as follows: 

o Request1(t1, CC2, CS) 

o Request1(t2, CC3, CS) 

o Request1(t3, CC4, CS) 

o Request2(t1, CC2, CS),  

o Request2(t2, CC3, CS) 

o Request2(t3, CC4, CS) 

o Request1(t4, CC1, CS) 

When the RAC is reactivated after the CS has recovered, the execution trace 

indicates that the CS RAC restarted failed transactions t1-t3 with the recovered service 

and that these transactions eventually terminated normally. Furthermore, the trace 

indicates that the CS RAC forwarded transaction t4, which was held in the SPQ due to 

service failure, to the recovered service. Thus, the outcome of this experiment 

corresponds to what it is expected for this scenario.  



198 

 

Self-Configuration Scenario 
To illustrate the behavior of the service RAC during adaptation of a stateless 

service, I use an adaptation scenario that involves adapting the Catalog Service (CS). In 

this scenario, the service is concurrently processing three transactions (t1-t3). As a result, 

the expected behavior in this scenario includes: 

1. When the CS RAC receives the Passivate command from the RAM, the RAC 

transitions to the Passivating state in order to allow transactions t1-t3 to complete. 

Furthermore, the CS RAC holds any new transactions in the SPQ until dynamic 

adaptation is completed.  

2. When transactions t1-t3 complete, the CS RAC transitions to the Quiescent state 

in which the CS can be safely adapted. 

3. When dynamic service adaptation is completed, the CS RAC receives the 

Reactivate command. As a result, the RAC resumes sending messages, including 

held transactions in the SPQ to the adapted CS.  

In this scenario, the contents of the various queues when the service RAC 

received the Passivate command are as follows:  

 The SPQ does not contain requests. 

 The SAQ contains three requests that have been forwarded to the service as 

follows: 

o Request2(t1, CC3, CS),  

o Request2(t2, CC1, CS) 

o Request2(t3, CC4, CS) 

 The SRQ contains three requests: 
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o Request1(t1, CC3, CS) 

o Request1(t2, CC1, CS) 

o Request1(t3, CC4, CS) 

 The RFQ does not contain any queued responses. 

 The RRQ contains three forwarded responses: 

o Response1(t1, CS, CC3) 

o Response1(t2, CS, CC1) 

o Response1(t3, CS, CC4) 

As a result of passivation, the execution trace indicates that the service RAC 

transitioned into the Passivating state (Figure 10.3) where it permitted these three active 

transactions to terminate normally. During this state, the trace indicates that the RAC 

received a new transaction t4. As a result, the RAC held this transaction in the SPQ. After 

the service completed all active transactions, the execution trace indicates that the CS 

RAC transitioned to the Quiescent state at which time the service was dynamically 

replaced. After adaptation is completed, the service RAC received the reactivate 

command. As a result, the RAC transitioned to the Active state and forwarded the queued 

transaction t4 in the SPQ to the Catalog Service, which corresponds to the expected 

behavior for this scenario. 
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Figure 10.3 Fragment of the execution trace of stateless service RAC during planned adaptation scenario 

 

10.2.2 Experimentation with RAC for Stateful Services with Non-Idempotent 
Operations 
This section describes the validation of the RAC that handles adaptation and 

recovery concerns of stateful services which maintains persistent information about their 

clients (see section 3.2 in chapter 3). 

Self-Healing Scenario 
The service failure scenario demonstrates the ability of the service RAC to 

recover failed transactions (see section 3.2 in chapter 3). In this scenario, the Delivery 
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after sending Ready To Commit to the RAC such that this response was lost due 

to service failure. Although these three cases are not distinguishable from the 

RAC’s point of view, the RAC executes the same recovery actions to recover 

these cases.   

 Transaction t2: this transaction fails after the DOS RAC receives the Ready To 

Commit message from the service but before this RAC forwards Commit to the 

service. 

 Transaction t3: this transaction fails after the DOS RAC sends Commit to the 

service but before the RAC receives Committed from the service. Therefore, the 

service can fail either (1) before committing this transaction, (2) after committing 

the transaction but before sending Committed to the RAC, or (3) after sending 

Committed to the RAC such that this response was lost due to service failure. 

Although these three cases are not distinguishable from the RAC’s point of view, 

the RAC executes the same recovery actions to recover these cases.  

 Transaction t4: this transaction fails after the DOS RAC receives the Committed 

message from the service. 

 As a result, the expected behavior in this scenario includes: 

1. The DOS RAC receives a failure notification from the Recovery and Adaptation 

Manager. 

2. The DOS RAC determines the appropriate recovery actions to recover the failed 

transactions t1-t4 as follows: (1) send Abort for transaction t1 and then restart this 
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transaction with the service when it is recovered, (2) send Commit for transaction 

t2, and (3) resend Commit for transaction t3. 

3. The DOS RAC receives the Reactivate command from the Recovery and 

Adaptation Manager to resume sending messages to the recovered DOS. As a 

result, the DOS RAC sends the appropriate recovery actions to the recovered 

DOS as shown in (2).  

 

 
Figure 10.4 Fragment of the execution trace of stateful service RAC during planned failure scenario 
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o Request(t2, CC1, DOS) 

o Request(t1, CC4, DOS) 

 The SRQ contains two commit requests as follows: 

o Request(t4, CC2, DOS) 

o Request(t3, CC3, DOS) 

 The RFQ contains four received responses: 

o ReadyToCommit(t2, DOS, CC1) 

o ReadyToCommit(t4, DOS, CC2) 

o Committed(t4, DOS, ConnectorControl) 

o ReadyToCommit(t3, DOS, CC3)  

 RRQ does not indicate any responses that have been forwarded to clients. 

During the analysis activity which is handled by the Analyzing Failure Events 

state, the execution trace indicates that the RAC determined a status for each of these 

active transactions as follows: 

 For transaction t1, the RAC determined the status of this transaction as Preparing, 

since the SAQ contains the Prepare To Commit request to the service but neither 

the RFQ nor the RRQ contain the Ready To Commit response for this transaction. 

 For transaction t2, the RAC determined the status of this transaction as Prepared, 

since the SAQ contains the Prepare To Commit request to the service and the 

RFQ contains the Ready To Commit response for this transaction. 

 For transaction t3, the RAC determined the status of this transaction as 

Committing, since the SRQ contains the Commit request for this transaction but 
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neither the RFQ nor the RRQ queues contain the Committed response for this 

transaction. 

 For transaction t4, the RAC determined the status of this transaction as 

Committed, since the SRQ contains the Commit request to the service for this 

transaction and the RFQ contains a Committed response for this transaction. 

During the planning activity which is handled in the Planning for Recovery state, 

the RAC determined recovery actions for each active transaction as follows: 

 For transaction t1, since this transaction failed while being prepared to commit by 

the service during the first phase of 2PC, the recovery actions determined by the 

RAC for this transaction after service recovery were (1) to abort this transaction 

with the service and then (2) to restart this transaction with the recovered service.  

 For transaction t2, since this transaction failed after being prepared to commit by 

the service, the RAC determined a recovery action to send the Commit message 

for this transaction when the service has recovered.   

 For transaction t3, since the service failed while committing this transaction, the 

recovery action determined by the RAC for this transaction was to resend the 

Commit message to the recovered service. 

 Transaction t4 does not require any recovery actions since it was completed 

before service failure. 

During the execution phase which is handled in the Executing Recovery Plan 

state, the service RAC recovered the requests of the transactions that must be restarted 

with the recovered service by moving these requests from the SAQ to the SPQ. In this 
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scenario, only transaction t1 needs to be restarted with the recovered service. Therefore, 

the execution trace indicates that this message is moved from the SAQ to the SPQ. The 

content of SPQ after recovery is: 

 Prepare(t1, CC4, DOS) // request that was recovered from the SAQ 

 Prepare(t5, CC5, DOS) //request held in the SPQ due to service failure 

When the DOS RAC is reactivated after the service has recovered, the execution 

trace indicates that the RAC aborted and then restarted transaction t1 with the recovered 

service, (2) requested the recovered service to commit transactions t2 and t3, and (3) 

forwarded transaction t5 which was previously held in the SPQ due to service failure. 

The execution trace indicates that service execution resumed normally and that all active 

transactions were eventually committed. Thus, the outcome of this experiment 

corresponds to what is expected for this scenario. 

Self-Configuration Scenario 
To illustrate the behavior of the service RAC during adaptation, I use an 

adaptation scenario that involves adapting the DOS. In this scenario, the DOS is 

concurrently processing four transactions, which are in different states at the time of 

adaptation, as described below:  

 Transactions t1 and t2: the RAC receives the Passivate command after the Service 

RAC sends the Prepare To Commit messages for these transactions to the DOS 

but before the RAC receives the Ready To Commit responses from the service.  
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 Transactions t3 and t4: the RAC receives the Passivate command after the service 

RAC sends the Commit messages for these transactions to the DOS but before the 

RAC receives the Committed responses from the service for these transactions. 

As a result, the expected behavior in this scenario includes: 

1. When the DOS RAC receives the Passivate command, the RAC transitions to the 

Passivating state in order to allow transactions t1-t4 to complete. Furthermore, the 

DOS RAC holds any new transactions in the SPQ until dynamic adaptation is 

completed. 

2. When transactions t1-t4 complete, the DOS RAC transitions to the Quiescent 

state. 

3. When dynamic service adaptation is completed, the DOS RAC receives the 

Reactivate command from the Recovery and Adaptation Manager. As a result, the 

RAC resumes sending messages to the adapted DOS including the transactions 

held in the SPQ.  

When service adaptation is requested, the content of the RAC queues are as 

follows: 

 The SPQ does not contain any requests held by the service RAC. 

 The SAQ contains two prepare to commit requests sent to the service: 

o Request(t1, CC3, DOS) 

o Request(t2, CC2, DOS) 

 The SRQ contains two commit requests sent to the service: 

o Request(t3, CC4, DOS) 
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o Request(t4, CC1, DOS) 

 The RFQ contains two service responses as follows: 

o ReadyToCommit(t3, DOS, CC4) 

o ReadyToCommit(t4, DOS, CC1) 

 The RRQ does not indicate any responses that have been forwarded to clients. 

As a result of passivation, the execution trace indicates that the service RAC 

transitioned into the Passivating state (Figure 10.5) where it permitted these four active 

transactions to gradually terminate. While in Passivating state, new transactions were 

received and queued by the Service RAC into the SPQ. After the service completed all 

active transactions, the execution trace indicates that the Service RAC transitioned to the 

Quiescent state at which time the service was dynamically replaced. During the adapting 

state, further requests are received and queued by RAC. After adaptation is completed, 

the service RAC received the reactivate command. As a result, the RAC transitioned to 

the Active state and forwarded all queued transactions in its SPQ to the service. At this 

point, normal execution is resumed between RAC and the service. 
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Figure 10.5 Fragment of the execution trace of stateful service RAC during planned adaptation scenario 

 

10.2.3 Experimentation with RAC for Distributed Transactions 
This section describes the validation of the RAC that handle adaptation and 

recovery of services in the distributed transactions patterns. 

Self-Healing Scenario 
The service failure scenario demonstrates the ability of the service RAC to 

recover failed transactions. In this scenario, the Inventory Service (IS) is concurrently 

processing four transactions, which are in different states at the time of failure, as 

follows: 

 Transaction t1: this transaction fails after the IS RAC sends the Prepare to 

Commit message to the service but before this RAC receives the Ready To 

Commit message from the service. Note that in this case, the service can fail 

either (1) before preparing to commit this transaction, (2) after preparing to 
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commit the transaction but before sending Ready To Commit to the RAC, or (3) 

after sending Ready To Commit to the RAC such that this response was lost due 

to service failure. Although these three cases are not distinguishable from the 

RAC’s point of view, the RAC executes the same recovery actions to recover 

these cases.   

 Transaction t2: this transaction fails after the IS RAC receives the Ready To 

Commit message from the service but before this RAC forwards this response to 

the coordinator of the distributed transaction. 

 Transaction t3: this transaction fails after IS RAC sends Commit to the service but 

before the RAC receives Committed from the service. Therefore, the service can 

fail either (1) before committing this transaction, (2) after committing the 

transaction but before sending Committed to the RAC, or (3) after sending 

Committed to the RAC such that this response was lost due to service failure. 

Although these three cases are not distinguishable from the RAC’s point of view, 

the RAC executes the same recovery actions to recover these cases.  

 Transaction t4: this transaction fails after the service RAC receives the 

Committed message from the service but before the RAC forwards this response 

to the coordinator of the distributed transaction. 

 As a result, the expected behavior in this scenario includes: 

1. The IS RAC receives a failure notification from the Recovery and Adaptation 

Manager. 



210 

 

2. The IS RAC determines the appropriate recovery actions to recover the failed 

transactions t1-t4 as follows: (1) send Abort for transaction t1 and then restart this 

transaction with the service when it is recovered, (2) send Ready To Commit for 

transaction t2 to the coordinator of the distributed transaction, (3) resend Commit 

for transaction t3, and (4) send Committed for transaction t4 to the coordinator of 

this distributed transaction. 

3. The IS RAC receives the Reactivate command from the Recovery and Adaptation 

Manager to resume sending messages to the recovered IS. As a result, IS RAC 

sends the appropriate recovery actions to the recovered IS as shown in (2).  

 

 
Figure 10.6 Fragment of the execution trace of service RAC for distributed transactions during planned failure 

scenario 
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The execution trace (Figure 10.6) shows that after the RAC received a failure 

notification from the RAM, the RAC received a fifth transaction (t5) which was held in 

the SPQ. The content of the RAC’s queues at this point is as follows: 

 The SPQ contains one request that was held due to service failure: 

o PrepareToCommit(t5, SIC4, IS)  

 The SAQ contains two prepare to commit requests that have been forwarded to 

the service: 

o PrepareToCommit (t1, SIC1, IS) 

o PrepareToCommit (t2, SIC3, IS) 

 The SRQ contains four requests as follows: 

o PrepareToCommit(t3, SIC2, IS) 

o PrepareToCommit (t4, SIC5, IS) 

o Commit(t3, SIC2, IS) 

o Commit(t4, ISC5, IS) 

 The RFQ contains two received responses: 

o ReadyToCommit(t2, IS, SIC3) 

o Committed(t4, IS, SIC5) 

 RRQ contains two forwarded responses: 

o ReadyToCommit(t3, IS, SIC2) 

o ReadyToCommit(t4, IS, SIC5)  
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During the analysis activity which is handled in the Analyzing Failure Events 

state, the execution trace indicates that the RAC determined a status for each of these 

active transactions as follows: 

 For transaction t1, the RAC determined the status of this transaction as Preparing, 

since the SAQ contains the Prepare To Commit request to the service but neither 

the RFQ nor the RRQ contain the Ready To Commit response for this transaction. 

 For transaction t2, the RAC determined the status of this transaction as Prepared, 

since the SAQ contains the Prepare To Commit request to the service and the 

RFQ contains the Ready To Commit response for this transaction. 

 For transaction t3, the RAC determined the status of this transaction as 

Committing, since the SRQ contains the Commit request for this transaction but 

neither the RFQ nor the RRQ queues contain the Committed response for this 

transaction. 

 For transaction t4, the RAC determined the status of this transaction as 

Committed, since the SRQ contains the Commit request to the service for this 

transaction and the RFQ contains a Committed response for this transaction. 

During the planning activity which is handled in the Planning for Recovery state, 

the RAC determined recovery actions for each active transaction as follows: 

 For transaction t1, since this transaction failed while being prepared to commit by 

the service during the first phase of 2PC, the recovery actions determined by the 

RAC for this transaction after service recovery were (1) to abort this transaction 

with the service and then (2) to restart this transaction with the recovered service.  
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 For transaction t2, since this transaction failed after being prepared to commit by 

the service, the RAC determined a recovery action to send the Ready To Commit 

for this distributed transaction to the coordinator of this transaction.   

 For transaction t3, since the service failed while committing this transaction, the 

recovery action determined by the RAC for this transaction was to resend the 

Commit message to the recovered service. 

 For transaction t4, the RAC determined a recovery action to send Committed for 

this distributed transaction to the coordinator of this transaction.   

During the execution phase which is handled in the Executing Recovery Plan 

state, the service RAC recovered the requests of the transactions that must be restarted 

with the recovered service by moving these requests from the SAQ to the SPQ. In this 

scenario, only transaction t1 needs to be restarted with the recovered service. Therefore, 

the execution trace indicates that this message is moved from the SAQ to the SPQ. The 

content of SPQ after recovery is: 

 Prepare(t1, SIC1, IS) // request which was recovered from the SAQ 

 Prepare(t5, SIC4, IS) //request held in the SPQ due to service failure 

When the RAC is reactivated after the service has recovered, the execution trace 

indicates that the RAC aborted and then restarted transaction t1 with the recovered 

service, (2) sent Ready To Commit for transaction t2 to the coordinator of this 

transaction, (3) requested the recovered service to commit transactions t3, (4) sent 

Committed for transaction t4 to the coordinator of this distributed transaction, and  (5) 

forwarded transaction t5 which was previously held in the SPQ due to service failure. 
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The execution trace indicates that service execution resumed normally and that all active 

transactions were eventually committed. 

Self-Configuration Scenario 
To illustrate the behavior of the service RAC during adaptation, I use an 

adaptation scenario that involves adapting the IS. In this scenario, the IS is concurrently 

processing four distributed transactions (t1-t4). As a result, the expected behavior in this 

scenario includes: 

1. When the IS RAC receives the Passivate command, the RAC transitions to the 

Passivating state in order to allow transactions t1-t4 to complete. Furthermore, the 

IS RAC holds any new transactions in the SPQ until dynamic adaptation is 

completed. 

2. When transactions t1-t4 complete, the IS RAC transitions to the Quiescent state. 

3. When dynamic service adaptation is completed, the IS RAC receives the 

Reactivate command from the Recovery and Adaptation Manager. As a result, the 

RAC resumes sending messages to the adapted IS including the transactions held 

in the SPQ.  

When service adaptation is requested, the content of the RAC queues are as 

follows: 

 The SPQ does not contain any request. 

 The SAQ contains four prepare to commit requests sent to the service: 

o PrepareToCommit(t1, SIC3, IS) 

o PrepareToCommit (t2, SIC2, IS) 

o PrepareToCommit (t3, SIC5, IS) 
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o PrepareToCommit (t4, SIC4, IS) 

 The SRQ does not contain any requests.  

 The RFQ contains three service responses as follows: 

o ReadyToCommit(t1, IS, SIC3) 

o ReadyToCommit(t2, IS, SIC2) 

o ReadyToCommit(t3, IS, SIC5) 

 The RRQ does not indicate any responses that have been forwarded to clients. 

As a result of passivation, the execution trace indicates that the service RAC 

transitioned into the Passivating state (Figure 10.7) where it permitted these four 

distributed transactions to gradually terminate. While in Passivating state, a new 

transaction t5 was received and queued by the Service RAC into the SPQ. After the 

service completed all distributed transactions, the execution trace indicates that the 

Service RAC transitioned to the Quiescent state at which time the service was 

dynamically replaced. After adaptation is completed, the service RAC received the 

reactivate command. As a result, the RAC transitioned to the Active state and forwarded 

the distributed transaction t5 queued in its SPQ to the service. At this point, normal 

execution is resumed between RAC and the service. 
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Figure 10.7 Fragment of the execution trace of service RAC for distributed transactions during planned 

adaptation scenario 
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Self-Healing Scenario 
The coordinator failure scenario demonstrates the ability of the coordinator RAC 

to recover failed transactions (see section 3.3.4 in chapter 3). In this scenario, the 

Customer Coordinator (CC) fails while processing one transaction (t1) from Customer 

Interaction (CI). Therefore, the expected behavior in this scenario includes: 

1. The coordinator RAC receives a failure notification from the Recovery and 

Adaptation Manager. 
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t4 committed 
 

RAC quiescent 

RAC resumed sending new 

transactions held in SPQ 

t3 committed 

t2 committed 

 

t1 committed 
 

RAC passivating 

t1, t2, t3, t4 are active 



217 

 

3. The coordinator RAC receives the Reactivate command from the Recovery and 

Adaptation Manager to resume sending messages to the recovered CC. As a 

result, the RAC sends the appropriate recovery actions to the recovered CC as 

shown in (2). 

In this scenario, failure of CC occurred after the CC has initiated the following 

three sequential transactions: 

 Before failure, the CC initiated a transaction with the Customer Account Service 

(CAS) and received the response of this transaction from this service. 

 Before failure, the CC initiated a transaction with the Credit Card Service (CCS) 

and received the response of this transaction from this service. 

 Before failure, the CC initiated a transaction with the DOS. However, the CC 

failed before receiving the response of this transaction from this service. 

In this recovery scenario, the execution trace (Figure 10.8) indicates that when the 

CC has recovered, the coordinator RAC (1) instructed the recovered CC to abort the CI 

transaction and then (2) restarted this transaction with the recovered CC. Furthermore, the 

execution traces of the CAS RAC, CCS RAC, and DOS RAC indicate that these RACs 

received duplicate requests from the recovered CC since the recovered coordinator 

restarted the same transactions with these services. The RAC of each of these services 

reacted to these duplicate requests as follows: 

 The execution trace of the CAS RAC indicates that this RAC discarded the 

duplicate request and sent back to the recovered CC the response of this request 

using its Response Recovery Queue (RRQ). 
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 The execution trace of the CCS RAC indicates that this RAC discarded this 

duplicate request and sent back to the recovered CC the response of this request 

using its Response Recovery Queue (RRQ). 

 The execution trace of the DOS RAC indicates that this RAC discarded the 

duplicate request. The execution trace also showed that this RAC has not yet 

received the response of the original request from the DOS (i.e., DOS is still 

processing the original request). Therefore, when this RAC received the response 

of this request from DOS, it forwarded that response to the recovered CC. 

After receiving the response from the DOS RAC, the execution trace showed that 

the recovered CC continued working on this transaction until it has completed. 

 

 
Figure 10.8 Fragment of the execution trace of coordinator RAC during planned failure scenario 
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1. When the CC RAC receives the Passivate command, the RAC transitions to the 

Passivating state in order to allow the active transaction to complete.  

2. When this transaction completes, the CC RAC transition to the Quiescent state. 

Furthermore, the CC RAC holds any new transactions in the SPQ until dynamic 

adaptation is completed. 

3. When the CC RAC receives the Reactivate command from the Recovery and 

Adaptation Manager, it resumes sending messages to the adapted CC including 

the transaction held in the SPQ.  

The execution trace (Figure 10.9) of the CC RAC shows that when the RAC 

received the Passivate command, the CC RAC transitioned to Passivating state. When the 

transaction ended with the sending of the coordinator response to the client, the state 

machine transitioned to the Quiescent state. While the CC RAC is in quiescent state, it 

received and queued a new transaction from the CI in the Coordinator Pending Queue.  

After replacing CC, the CC RAC received the reactivate message from the 

external RAM and then transitioned from the Quiescent to the Waiting for Request state. 

As a result, the RAC forwarded the queued transaction t2 to CC.  
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Figure 10.9 Fragment of the execution trace of coordinator RAC during planned adaptation scenario 

 

 Experimentation with RAC in asynchronous patterns 10.3
This section describes the experimental design and results of the consumer RAC 

used in asynchronous patterns described in chapter 4. In order to carry out 

experimentation, I implemented the architecture of the Emergency Monitoring System 

(EMS) case study (Gomaa, 2011) (Figure 10.10) in which an operator can view various 

alarm events generated by sensor components and also can request the status of these 

sensors. This case study is chosen to experiment with the consumer RAC since it consists 

of several asynchronous patterns including the unidirectional asynchronous message 

communication and the subscription/notification patterns. 
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Figure 10.10 The Emergency Monitoring System (EMS) architecture 

 

Self-Healing Scenario 
The consumer failure scenario demonstrates the ability of the consumer RAC to 

recover failed transactions. In this scenario, the Operator Presentation (OP) component is 

concurrently processing three active transactions (t1-t3) at the time of failure. As 

described previously in chapter 4, an asynchronous transaction is considered failed if (1) 

the consumer RAC forwarded an asynchronous message to the consumer and (2) the 

consumer RAC did not receive a corresponding ACK message for this transaction from 

the consumer. Therefore, the OP RAC in this scenario must recover all failed transactions 

with the OP consumer when it is recovered. The expected behavior in this scenario 

includes: 
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1. The OP RAC receives a failure notification from the Recovery and Adaptation 

Manager. 

2. The OP RAC determines recovery actions to recover the failed transactions t1-t3. 

3. The OP RAC receives the Reactivate command from the Recovery and 

Adaptation Manager to resume sending messages to the recovered OP. As a 

result, OP RAC sends transactions t1-t3 to the recovered OP.  

 

 

Figure 10.11 Fragment of the execution trace of the consumer RAC during planned failure scenario 
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 The SAQ contains three messages that have been forwarded to the OP as follows: 

o Message(t1, AS, OP1) 

o Message(t2, MDS, OP1) 

o Message(t3, AS, OP1) 

During the analysis activity which is handled in the Analyzing Failure Events 

state, the execution trace indicates that the OP RAC determined that transactions t1-t3 

had failed, since these asynchronous transactions have been forwarded by the OP RAC to 

the OP consumer but consumer failure occurred before the OP RAC received the 

corresponding ACK messages for these transactions. As a result, the execution trace 

indicates that the OP RAC moved these transactions from the SAQ to the SPQ. The 

execution trace indicates that the states of the SPQ and SAQ after recovery are as 

follows: 

 The SPQ contains three recovered messages as follows: 

o Message(t1, AS, OP1) 

o Message(t2, MDS, OP1) 

o Message(t3, AS, OP1) 

 The SAQ is empty. 

When the RAC is reactivated after the OP has recovered, the execution trace 

indicates that the RAC sent lost transactions t1-t3 to the recovered OP consumer and that 

the recovered OP sent corresponding ACK messages for these transactions to the RAC 

indicating that it is done with these transactions. At this point consumer execution 

resumed normally. 
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Self-Configuration Scenario 
To illustrate the behavior of the consumer RAC during adaptation (see section 4.1 

in chapter 4) , I use an adaptation scenario that involves adapting the OP component. In 

this scenario, the OP is concurrently processing four transactions (t1-t4). As a result, the 

expected behavior in this scenario includes: 

1. When the OP RAC receives the Passivate command, the RAC transitions to the 

Passivating state until it receives ACK messages from the OP for transactions t1-

t4. Furthermore, the OP RAC holds any new transactions to the OP in the SPQ 

until dynamic adaptation is completed.  

2. When the OP RAC receives ACKs for transactions t1-t4, the RAC transitions to 

the Quiescent state in which the OP can be safely adapted. 

3. The OP RAC receives a Reactivate command from the Recovery and Adaptation 

Manager so that the RAC resumes sending messages to the adapted OP. As a 

result, OP RAC sends any held transactions in the SPQ to the adapted OP.  

In this scenario, the contents of the various queues when the consumer RAC 

received the Passivate command are as follows:  

 The SPQ does not contain any pending messages. 

 The SAQ contains four active messages that have been forwarded to the 

consumer: 

o Message(t1, MDS, OP1) 

o Message(t2, AS, OP1) 

o Message(t3, MDS, OP1) 
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o Message(t4, AS, OP1) 

As a result of passivation, the execution trace indicates that the OP RAC 

transitioned into the Passivating state (Figure 10.12) until the consumer sends ACK 

messages to the RAC indicating that it is done with these transactions. While in the 

passivating state, the OP RAC received new transactions. As a result, the RAC queued 

these transactions into the Pending Queue.  After the OP has acknowledged all four 

active transactions to the OP RAC, the execution trace indicates that the OP RAC 

transitioned to the Quiescent state at which time the OP was dynamically replaced. After 

adaptation is completed, the OP RAC received the reactivate command. At this point, 

normal execution is resumed between RAC and the consumer. The execution trace 

indicates that the OP RAC forwarded all transactions held previously in the pending 

queue due to dynamic adaptation to the OP.  

 

 

Figure 10.12 Fragment of the execution trace of the consumer RAC during planned adaptation scenario 
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 Experimental Analysis of the DARE framework 10.4
Chapter 5 described the design of the DARE framework and showed how it can 

handle failure recovery and dynamic adaptation of components in CBSAs. In order to 

validate the design of the DARE framework, I conducted two types of experiments using 

the Emergency Monitoring System (see Figure 10.10) case study: a self-healing scenario 

and a self-configuration scenario. The self-healing scenario illustrates DARE’s capability 

of recovering from node failures. This scenario consists of taking down the node that 

hosts the Monitoring Data Service (MDS) and then inspecting the execution trace to 

determine that DARE was able to detect and dynamically recover this component on a 

different node. The self-configuration scenario illustrates DARE’s capability of 

dynamically adapting the EMS architecture.  

10.4.1 Self-Healing Scenario  
In the self-healing scenario, node 5, which hosts the MDS component, has failed. 

As a result, the expected behavior of DARE during this experiment include (1) DeSARM 

detects failure of node 5, (2) FAM pings node 5 to confirm failure of node 5 and then 

activates the RAM to recover components hosted by node 5, (3) the Recovery and 

Adaptation Manager (RAM) plans and executes the recovery actions to recover the failed 

MDS component by notifying the MDS RAC of failure, recovering another instance of 

the MDS on a different node, and then activating the recovered MDS and the MDS RAC. 

  A fragment of the execution trace illustrating major events of this scenario is 

shown in Figure 10.13. The trace indicates that DeSARM (Figure 10.14) on every healthy 

node suspected the failure of node 5 due to absence of gossip messages from that node. 

As a result, each DeSARM sent a node 5 failure notification to the peer FAM 
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(Figure 10.14). Although FAMs on multiple nodes have been activated, the execution 

trace indicates that only the FAM hosted by the node with the lowest IP address (node 1 

in Figure 10.13), and thus the recovery node, proceeded with the recovery process by 

pinging node 5. Since node 5 failed, the FAM on node 1 did not receive a heartbeat reply 

from this failed node. As a result, the FAM on node 1 notified the RAM on node 1 of the 

failed node. 

 

 

Figure 10.13 Fragment of execution trace during the self-healing scenario 
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Figure 10.14 The DARE architecture 

 

The execution trace indicates that the RAM on node 1 first requested the 

architecture from DeSARM and then proceeded with the recovery process by retrieving 

from the Configuration Manager the set of identifiers of components hosted by the failed 

node 5. The execution trace indicates that node 5 hosted only one component, namely the 

MDS. Inspection of the detailed execution trace also indicates that the RAM proceeded to 

determine the recovery plan as follows: 

 From the architecture obtained from DeSARM and from the configuration 

map, the RAM determined that node 4 hosts the input RAC of the MDS 

component because this RAC forwards synchronous requests and 

asynchronous messages to the failed MDS. 
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 The RAM on node 1 notified the MDS RAC on node 4 of component failure 

so that this RAC ceases forwarding messages to the MDS and starts 

recovering any failed transactions. 

 From the DeSARM architecture, the RAM determined the recipient RACs 

that receive messages from the failed MDS, which in this scenario were two 

instances of the Operator Presentation (OP) RAC. These recipient RACs are 

determined by the RAM so that the recovered MDS can be connected with 

these RACs. 

 The RAM selected node 11 to host the recovered MDS. 

When planning is complete, the execution trace indicates that the RAM on node 1 

requested the RAM on node 11 to create the MDS component. When the component is 

created, the execution trace indicates that the RAM on node 1 requested the MDS RAC to 

connect to the recovered MDS and requested the recovered MDS to connect to the OP 

RACs. Finally, the execution trace indicates that the RAM on node 1 activated the 

recovered MDS and then reactivated the MDS RAC. As a result, the MDS RAC resumed 

sending messages to the recovered MDS, including any lost messages due to failure. 

In order to assess the effect of DARE’s decentralization on recovery time, I 

measured the average recovery time that the DARE framework takes to recover the MDS 

component, starting from the time that DeSARM at the recovery node sent a notification 

message to the FAM indicating that a node failure is suspected to the time that the MDS 

RAC is reactivated indicating that normal communication with the recovered MDS is 

resumed. In order to do this, I ran 5 experiments sets such that in each set I varied the 
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number of nodes in the system. I experimented with recovery when the number of nodes 

is 11, 16, 21, 26, and 30 nodes, with the corresponding increase in component instances 

and RACs. Each experiment consisted of one backup node for hosting the recovered 

component. 

 

 

Figure 10.15 Average recovery time during the self-healing scenario 

 

In each experiment set, I ran the self-healing scenario 30 times. The results in 

Figure 10.15 show the 99% confidence intervals of the measured recovery times for the 5 

experiment sets. When the system size is 11 nodes, the average recovery time is 20.4 

seconds. Doubling the system size from 11 nodes to 21 nodes caused the average 

recovery time to increase by approximately 47%. However, increasing the system size 

from 21 to 30 nodes caused the recovery time to drop slightly by 8%, which shows 
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DARE’s capability to scale up as the system size increases. These results can be 

attributed to the use of a Distributed Hash Table (DHT) to store the distributed 

configuration map since DHTs scale logarithmically (Stoica et al., 2003) with the system 

size. 

10.4.2 Self-Configuration Scenario  
In the self-configuration scenario, the RAM on node 1 received an external 

adaptation request to adapt the Alarm Service (AS). In this scenario, I applied the load 

balancing pattern to the Alarm Service (AS), as shown in Figure 10.16. This pattern 

involves replacing the AS with a load balancer component and two instances, AS1 and 

AS2, of the AS. The load balancer is responsible for forwarding messages to the AS 

instances in a simple round-robin fashion. 
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Figure 10.16 EMS architecture after dynamic adaptation 

 

The expected behavior of DARE during this experiment include (1) the RAM 

sends the Passivate command to the AS RAC so that the RAC steers the AS to the 

quiescent state, (2) the RAM create the load balancer component, and two instances of 

AS (AS1 and AS2)  (3) the RAM disconnects and removes the previous AS from the 

architecture, (4) the RAM connects components affected by adaptation (5) the RAM 

updates the configuration and requests DeSARM to initiate discovery of the adapted 

architecture, and finally (6) the RAM activates the new components and the AS RAC. 

The execution trace (Figure 10.17) shows the major events executed during this 

scenario. After receiving the external adaptation request, the RAM requested the current 

software architecture (see chapter 5) from DeSARM (Porter et al., 2016), also located on 
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node 1. The RAM then used the architecture to determine the input RAC of the AS (i.e., 

the Alarm Service RAC in Figure 10.10). As a result, the detailed execution trace 

indicates that the RAM on node 1 retrieved the location of the AS RAC from the CM and 

then sent the Passivate command to the AS RAC hosted by node 2. As a result, the AS 

RAC steered the AS to a quiescent state, held any input messages to the AS in its queues 

until dynamic adaptation was complete, and then notified the RAM on node 1 of AS 

quiescence. The execution trace also indicates that the RAM planned to create the load 

balancer on node 11, the AS1 on node 12, and the AS2 on node 13. 

The RAM on node 1 then proceeded with the dynamic adaptation process by (1) 

requesting the RAMs on nodes 11, 12, and 13 to create the load balancer component, the 

AS1, and the AS2, respectively (2) disconnecting and removing the AS from the 

architecture, (3) connecting the AS1 with the OP1 RAC and the OP2 RAC, (4) 

connecting the AS2 with the OP1 RAC and the OP2 RAC, (5) connecting the AS RAC 

with the load balancer, (6) connecting the load balancer with the AS1 and AS2, (7) 

updating the configuration and requesting DeSARM to initiate discovery of the adapted 

architecture, and finally (5) activating the new components on nodes 11-13 and the AS 

RAC on node 2. 
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Figure 10.17 Fragment of execution trace during the self-configuration scenario 

 

 Experimentation with the Assistant RAC 10.5
This section describes the validation of the Assistant RAC (ARAC) which 

handles adaptation and recovery concerns of senders (see chapter 6).  This experiment 

involves adapting and recovering the Customer Interaction component in the Online 

Shopping System (see Figure 10.1 in section 10.2). 

Self-Healing Scenario 
The sender failure scenario demonstrates the ability of the Assistant RAC 

(ARAC) to recover failed responses to the sender. In this scenario, the Customer 

Interaction (CI) failed after it has initiated a transaction with the Customer Coordinator 

(CC). As described previously in chapter 6, when the CI recovers from failure, the CI 
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ARAC must resend the last response in its response queues to the recovered CI. 

Therefore, the expected behavior of the CI ARAC in this scenario includes: 

1. The CI ARAC receives a failure notification from the Recovery and Adaptation 

Manager indicating failure of the CI. 

2. The CI ARAC determines the recovery action to recover the last response it 

received from the coordinator. 

3. The CI ARAC receives the Reactivate command from the Recovery and 

Adaptation Manager. As a result, the CI RAC sends the last response to the 

recovered CI.  

 

 

Figure 10.18 Fragment of the execution trace of the ARAC during planned failure scenario 

 

In this scenario, the execution trace (Figure 10.18) indicates that the content of the 

ARAC’s queues at the time of failure is as follows: 

 The SPQ and the SAQ do not contain any pending or active requests. 

 The SRQ contains one request as follows: 

o request(t1, CC1, CC1Connector) 

 The RFQ does not contain any responses. 

 The RRQ contains one forwarded response: 

ARAC notified of CI 

failure 

ARAC recovers and  

response using its 

RRQ 
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o response(t1, CC1Connector, CI1) 

During the analysis activity which is handled in the Analyzing Failure Events 

state, the execution trace indicates that the CI ARAC determined that the response in its 

RRQ for transaction t1 must be recovered and sent to the CI1 when it recovers. 

Therefore, CI ARAC proceeded with recovery by moving this response from the RRQ to 

the RFQ. The content of the RRQ after recovery is as follows: 

 The RFQ contains one recovered response as follows: 

o response(t1, CC1Connector, CI1) 

When the ARAC is reactivated after the CI has recovered, the execution trace 

indicates that the ARAC sent the recovered response to the recovered CI, as expected for 

this scenario. 

Self-Configuration Scenario 
To illustrate the behavior of the ARAC during adaptation, I use an adaptation 

scenario that involves adapting the CI component. In this scenario, the CI initiated one 

transaction (t1) with its coordinator. As a result, the expected behavior in this scenario 

includes: 

1. When the CI ARAC receives the Passivate command, the ARAC transitions to the 

Passivating state until t1 is completed. 

2. When t1 is completed, the CI ARAC transitions to the Quiescent state. 

Furthermore, the CI ARAC holds any new transactions until dynamic adaptation 

is completed. 

3. The CI ARAC receives a Reactivate command from the Recovery and Adaptation 

Manager. As a result, CI ARAC resumes sending held transactions in the SPQ.  
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In this scenario, the contents of the various queues when the ARAC received the 

Passivate command are as follows:  

 The SPQ does not contain any transactions. 

 The SAQ contains one active request: 

o Request2(t1, CI1, CC1Connector) 

 The SRQ contains one request: 

o Request1(t1, CI1, CC1Connector) 

 The RFQ does not contain any responses. 

 The RRQ contains one response: 

o Response1(t1, CC1Connector, CI1) 

As a result of passivation, the execution trace indicates that the ARAC 

transitioned into the Passivating state (Figure 10.19) until transaction t1 has completed. 

When t1 is completed, the ARAC transitioned to the Quiescent state. While in the 

Quiescent state, the ARAC received and held a new transaction t2 in the SPQ.  After 

adaptation is completed, the ARAC received the reactivate command. At this point, 

normal execution is resumed between ARAC and the CI. The execution trace indicates 

that when adaptation was completed, the ARAC forwarded transaction t2, which was 

previously held in the pending queue, to the CC1 Connector.  
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Figure 10.19 Fragment of the execution trace of the ARAC during planned adaptation scenario 

 

 Experimentation with RAC Recovery 10.6
This section describes recovery of the RAC after a run-time failure occurring 

during normal execution. In this experiment, the Customer Coordinator RAC fails after 

forwarding a transaction t1 to the Customer Coordinator (CC). At the time of RAC 

failure, t1 is a non-distributed transaction that is in the Preparing To Commit state, since 

the RAC sent the Prepare To Commit message to the CC but the RAC failed before 

receiving Ready To Commit from the CC.  The expected behavior in this experiment is as 

follows: 

1. The RAM recovers another instance of CC RAC. 

2. The recovered CC RAC reconstructs its state by replaying messages from its 

log. 

3. The recovered CC RAC recovers transaction t1 by instructing CC to abort this 

transaction and then restart this transaction with the CC.  

The execution trace (Figure 10.20) indicates that after the RAC recovered its state 

by replaying messages from its log, the SAQ queues one Prepare To Commit message for 

transaction t1, which corresponds to the same state that RAC had before failure. 

Furthermore, based on the content of the queues, the RAC determined that transaction t1 

ARAC receives passivate 

while transaction t1 is 

active 

ARAC becomes 

quiescent  

RAC sends held transaction after 

dynamic adaptation is completed 
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must be aborted and then restarted with the CC, since this transaction is in the Preparing 

to Commit state. As a result, the recovered RAC instructed the CC to abort transaction 

t1and then restarted this transaction with CC. The execution trace indicates that 

transaction t1 eventually completed, which is the expected outcome for this experiment.  

 

 

Figure 10.20 Execution trace during recovery of RAC after a run-time failure 

 

 Experimentation with the Reusable RAC 10.7
This section describes the validation of the reusable RAC described in chapter 8. 

In this experiment, the Delivery Order Service (DOS) may receive both distributed and 

non-distributed transactions. Thus, these experiments are example of concurrent patterns 

integration of the general SOA pattern (see chapter 3 section 3.3.4) and the distributed 

transaction pattern (see chapter 3 section 3.3.5). As a result, the reusable RAC is needed 

to manage these different patterns as explained in chapter 8.  

10.7.1 Self-Healing Scenario in the Online Shopping System 
The failure scenario demonstrates the ability of the reusable RAC to recover 

failed transactions. In this scenario, the Delivery Order Service (DOS) is concurrently 

processing four transactions, which are in different states at the time of failure, as 
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described below. Furthermore, two of these transactions are distributed while two of 

these transactions are non-distributed as follows:  

 Transaction t4: this transaction is non-distributed initiated by a Customer 

Coordinator (CC) that failed after the reusable RAC has received the Ready To 

Commit message from the DOS but before the RAC forwarded Commit to the 

DOS.  

 Transaction t3: this transaction is distributed initiated by a Supplier Interaction 

Coordinator (SIC) that failed after the reusable RAC has sent the Prepare to 

Commit message to the service but before this RAC has received the Ready To 

Commit message from the service. 

 Transactions t2: this transaction is non-distributed that failed after the reusable 

RAC has forwarded the Commit message to the service but before the reusable 

RAC received the Committed response.  

 Transaction t1: this transaction is distributed that failed after the reusable RAC 

has received the Committed message from the service but before the RAC 

forwarded this response to the Supplier Interaction Coordinator (SIC) that 

initiated this distributed transaction. 

As a result, the expected behavior in this scenario includes: 

1. The reusable RAC receives a failure notification from the Recovery and 

Adaptation Manager. 

2. The reusable RAC determines the appropriate recovery actions to recover the 

failed transactions t1-t4 as follows: (1) send Abort for transaction t3 and then 
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restart this transaction with the service when it is recovered, (2) send Commit for 

transaction t4, (3) resend Commit for transaction t2, and (4) send Committed for 

transaction t1 to the coordinator of this distributed transaction. 

3. The reusable RAC receives the Reactivate command from the Recovery and 

Adaptation Manager to resume sending messages to the recovered DOS. As a 

result, DOS RAC sends the appropriate recovery actions to the recovered DOS as 

shown in (2).  

 

 

Figure 10.21 Fragment of the execution trace of reusable RAC during planned failure scenario 

 

When the reusable RAC received a failure notification indicating service failure, the 

contents of the various queues maintained by the RAC are as follows: 

For distributed transactions t1 and 
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 The SPQ does not contain any request. 

 The SAQ queues two Prepare To Commit requests that have been forwarded to 

the service: 

o PrepareToCommit(t3, SIC1, DOS, distributed) 

o PrepareToCommit(t4, CC3, DOS, non-distributed) 

 The SRQ queues 3 messages of active transactions for which a response has been 

received by the RAC: 

o Commit(t2, DOSConnector, DOS, non-distributed) 

o PrepareToCommit(t1, SIC3, DOS, distributed) 

o Commit(t1, SIC3, DOS, distributed) 

 The RFQ contains the following responses: 

o ReadyToCommit(t4,  DOS, DOSConnector, non-distributed) 

o ReadyToCommit(t2,  DOS, DOSConnector, non-distributed) 

o Committed(t1, DOS, SIC3, distributed) 

 The RRQ queues one response as follows: 

o ReadyToCommit(t1, DOS, SIC3, distributed) 

The trace also indicates that while the DOS is in the failed state, the DOS RAC 

received and held a new transaction t5 in the SPQ. During the analysis activity which is 

handled in the Analyzing Failure Events state (see Figure 3.6), the execution trace 

indicates that the RAC determined a status for each of these active transactions as 

follows: 
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 For transaction t3, the RAC determined the status of this transaction as Preparing, 

since the SAQ contains the Prepare To Commit request to the service but neither 

the RFQ nor the RRQ contain the Ready To Commit or Refuse To Commit 

response for this transaction. 

 For transaction t4, the RAC determined the status of this transaction as Prepared, 

since the SAQ contains the Prepare To Commit request to the service and the 

RFQ contains the Ready To Commit response for this transaction. 

 For transactions t2, the RAC determined the status of this transaction as 

Committing, since the SRQ contains the Commit request for this transaction but 

neither the RFQ nor the RRQ queues contain the Committed response for this 

transaction. 

 For transaction t1, the RAC determined the status of this transaction as 

Committed, since the SRQ contains the Commit request to the service for this 

transaction and the RFQ contains a Committed response for this transaction. 

During the planning activity which is handled in the Planning for Recovery state 

(Figure 3.6), the RAC determined recovery actions for each active transaction as follows: 

 For transactions t3, since this transaction failed while being preparing to commit 

by the service during the first phase of 2PC, the recovery actions determined by 

the RAC for this transaction after service recovery were (1) to abort this 

transaction with the service and then (2) to restart this transaction with the 

recovered service.  
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 For transactions t4, since the service failed after preparing to commit this 

transaction, the recovery action determined by the RAC for this transaction was to 

send the Commit message to the recovered service. 

 For transactions t2, since the service failed while committing this transaction, the 

recovery action determined by the RAC for this transaction was to resend the 

Commit message to the recovered service. 

 For transaction t1, the action is to forward the Committed response queued in the 

RFQ of this transaction to the coordinator of this distributed transaction. 

During the execution phase which is handled in the Executing Recovery Plan 

state, the reusable RAC recovered the requests of the transactions that must be restarted 

with the recovered service by moving these requests from the SAQ to the SPQ. In this 

scenario, only transaction t3 need to be restarted with the recovered service, since these 

transactions failed during phase 1 of the 2PC protocol. Therefore, the execution trace 

indicates that this message is moved from the SAQ to the SPQ. The content of SPQ after 

recovery of this transaction is: 

 PrepareToCommit(t3, SIC1, DOS, distributed)  

 PrepareToCommit(t5, SIC2, DOS, distributed)  

When the RAC is reactivated after the service has recovered, the execution trace 

indicates that the RAC aborted and then restarted transaction t3 with the recovered 

service, (2) requested the recovered service to commit transactions t2 and t4, and (3) 

forwarded the Committed response of transaction t1 to the coordinator of the distributed 
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transaction. The execution trace shows that transactions t1-t4 as well as held transaction 

t5 terminated normally. 

10.7.2 Self-Configuration Scenario in the Online Shopping System 
To illustrate the behavior of the reusable RAC during adaptation, I use an 

adaptation scenario that involves adapting the DOS service while it is concurrently 

engaged in transactions of different types. In this scenario, the DOS service is 

concurrently processing 4 transactions, two of which are distributed while the other two 

are non-distributed. As a result, the expected behavior in this scenario includes: 

1. When the reusable RAC receives the Passivate command, the RAC transitions to 

the Passivating state in order to allow transactions t1-t4 to complete. Furthermore, 

the reusable RAC holds any new transactions in the SPQ until dynamic adaptation 

is completed. 

2. When transactions t1-t4 complete, the reusable RAC transitions to the Quiescent 

state. 

3. When dynamic service adaptation is completed, the reusable RAC receives the 

Reactivate command from the Recovery and Adaptation Manager. As a result, the 

RAC resumes sending messages to the adapted DOS including the transactions 

held in the SPQ.  

In this scenario, the execution trace (Figure 10.22) indicates that when reusable 

RAC received the Passivate command, the content of the RAC’s queues is as follows:  

 The SPQ contains one transaction that was held due to dynamic service 

adaptation: 

o PrepareToCommit(t5, SIC1, DOS, distributed) 
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 The SAQ contains two prepare to commit requests sent to the service: 

o PrepareToCommit(t4, CC1, DOS, non-distributed) 

o PrepareToCommit(t2, SIC3, DOS, distributed) 

 The SRQ contains two messages: 

o Commit(t1, DOSConnector, DOS, non-distributed) 

o PrepareToCommit(t3, SIC2, DOS, distributed) 

 The RFQ contains one response that is not forwarded: 

o ReadyToCommit(t1, DOS, CC1, non-distributed) 

  The RRQ contains one forwarded response: 

o ReadyToCommit(t3, DOS, SIC2, distributed) 

As a result of passivation, the execution trace indicates that the reusable RAC 

transitioned into the Passivating state (Figure 10.22) where it permitted the four active 

transactions (t1-t4) to gradually terminate. After the DOS completed all active 

transactions, the execution trace indicates that the reusable RAC transitioned to the 

Quiescent state at which time the DOS was dynamically replaced by an updated version 

of the service. After adaptation is completed, the service RAC received the reactivate 

command. As a result, the RAC transitioned to the Active state and forwarded the held 

transaction t5 queued in its SPQ to the DOS. At this point, normal execution is resumed 

between RAC and the DOS, which corresponds to the expected outcome of this scenario. 
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Figure 10.22 Fragment of the execution trace of reusable RAC during planned adaptation scenario 

 

10.7.3 Self-Healing Scenario in the Emergency Monitoring System 
This failure scenario demonstrates the ability of the reusable RAC to recover 

failed transactions of different patterns in the EMS. In this scenario, the Alarm Service 

(AS) is concurrently processing three transactions. Two of these transactions (t1 and t2) 

are asynchronous while one transaction (t3) is synchronous. The expected behavior in 

this scenario includes: 

1. The AS RAC receives a failure notification from the Recovery and Adaptation 

Manager (RAM). 

2. The AS RAC determines a recovery action to recover the failed transactions t1-t3. 

3. The AS RAC receives the Reactivate command from the Recovery and 

Adaptation Manager to resume sending messages to the recovered AS. As a 

result, AS RAC resends transactions t1-t3 to the recovered AS.  
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 In this scenario, the execution trace (Figure 10.23) indicates that the SAQ 

contains three messages that have been forwarded to the AS: 

o Message(t1, MSC1, AS) 

o Message(t2, RSP1, AS) 

o Request(t3, OP1, AS) 

During the analysis activity which is handled in the Analyzing Failure Events 

state, the execution trace indicates that the AS RAC determined that transactions t1-t3 as 

failed since AS failure occurred before the AS RAC received the corresponding ACK 

messages for transactions t1-t2 and the response for transaction t3. The execution trace 

indicates that the AS RAC moved these transactions from the SAQ to the SPQ. When the 

RAC is reactivated after the AS has recovered, the execution trace indicates that the RAC 

sent lost transactions t1-t3 to the recovered AS. Furthermore, the execution trace 

indicates that the RAC eventually received ACK messages for transactions t1-t2 and a 

response for transaction t3 from the recovered AS, which corresponds to what is expected 

in this experiment.  

 

 
Figure 10.23 Fragment of the execution trace of reusable RAC during planned failure scenario in the EMS 
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10.7.4 Self-Configuration Scenario in the Emergency Monitoring System 
To illustrate the behavior of the reusable RAC during adaptation of a component 

that integrates multiple patterns, I use an adaptation scenario that involves adapting the 

Alarm Service (AS) component. In this scenario, the AS is concurrently processing two 

transactions. Transaction t1 is synchronous while transaction t2 is asynchronous. The 

expected behavior in this scenario includes: 

1. When the AS RAC receives the Passivate command, the RAC transitions to the 

Passivating state until it receives a response from AS for transaction t1 and an 

ACK for transaction t2. Furthermore, the AS RAC holds any new transactions to 

the AS in the SPQ until dynamic adaptation is completed.  

2. The AS RAC transitions to the Quiescent state in which the AS can be safely 

adapted. 

3. The AS RAC receives a Reactivate command from the Recovery and Adaptation 

Manager so that the RAC resumes sending messages to the adapted AS. As a 

result, the AS RAC sends any held transactions in the SPQ to the adapted AS.  

In this scenario, the execution trace indicates that when the AS RAC received the 

Passivate command, the RAC transitioned into the Passivating state (Figure 10.24) until 

the AS sends a response for transaction t1 and an ACK message for transaction t2. After 

the AS has completed all transactions that it is currently engaged in, the execution trace 

indicates that the AS RAC transitioned to the Quiescent state during which the AS was 

dynamically replaced. While in the Quiescent state, the AS RAC received three new 

asynchronous transactions and one synchronous transaction. The execution trace 

indicates that the RAC queued these new transactions into the Service Pending Queue. 
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After adaptation is completed, the AS RAC received the reactivate command. At this 

point, normal execution is resumed between RAC and the adapted AS. The execution 

trace indicates that the AS RAC forwarded all transactions held previously in the pending 

queue due to dynamic adaptation to the adapted AS. Furthermore, the execution trace 

indicates that the RAC eventually received from the adapted AS an ACK message for 

each forwarded asynchronous transaction and a response for the forwarded synchronous 

transaction, which corresponds to what is expected in this experiment. 

 

 
Figure 10.24 Fragment of the execution trace of reusable RAC during planned adaptation scenario in the EMS 
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11 CONCLUSION AND FUTURE WORK 

This dissertation has investigated a reuse, model-based approach for self-healing 

and self-configuration in component-based software architectures. This dissertation 

described how connectors in component-based software architectures (CBSAs) can be 

extended with recovery and adaptation capabilities to assist in self-healing and self-

configuration. Furthermore, this dissertation described the design of DARE, an 

architecture-based, decentralized framework that provides both self-healing and self-

configuration properties to CBSAs. The design of DARE is based on a decentralized 

MAPE-K loop model in which DARE carries out recovery and dynamic adaptation when 

only partial knowledge of the software system is known to each node.  

The contributions of this dissertation are as follows: 

1. Design of recovery and adaptation connectors for various SOA patterns. This 

dissertation described the design of recovery and adaptation connectors that 

handle recovery and adaptation concerns of clients, coordinators and services in 

SOA patterns. 

2. Design of recovery and adaptation connectors for various asynchronous patterns. 

This dissertation described the design of recovery and adaptation connectors that 

handle recovery and adaptation concerns of producers and consumers in 

asynchronous patterns. 
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3. Design of a decentralized, self-healing, and self-configuration framework. This 

dissertation described the design of DARE, an architecture-based and 

decentralized framework for providing large and highly dynamic CBSAs with 

self-healing and self-configuration properties. 

4. Design of a reusable recovery and adaptation connector that supports integration 

of patterns. This dissertation described how variability in recovery and adaptation 

connectors can be managed using the software product line technology in which a 

reusable connector can handle integration of multiple architectural patterns. 

5. Formal properties of the approach. This dissertation defined several properties 

that are ensured by the DARE framework and RACs during normal execution, 

failure recovery, and dynamic adaptation.  

6. Experimental Validation of the approach. This dissertation contains experimental 

validation and results of both the DARE framework and RACs which show their 

capabilities during failure recovery and dynamic adaptation.  

There are several directions for future work. In this dissertation, DARE integrates 

two of the MAPE-K self-* properties: self-healing and self-configuration properties. One 

open challenge is to consider how two other MAPE-K self-* properties, self-optimization 

and self-protection properties, can be integrated into DARE as well. For instance, the 

DARE framework currently selects any random healthy node to host recovered 

components and connectors. Another alternative is to incorporate self-optimization 

techniques so that DARE can select the most optimal node for hosting these components 

and connectors. With respect to self-protection, DARE currently assumes that failures are 
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not caused by malicious attacks. However, a self-protection approach can be considered 

to relax this assumption. 

This research has considered nodes that fail according to the fail-stop assumption 

in which components do not behave erroneously but simply cease functioning when they 

fail. Future work includes expanding the approach to handle network link failures that 

may cause the network to partition into several disjoint networks. Other future works 

include: investigating failure recovery of the DARE framework during dynamic 

adaptation or recovery, investigating recovery and adaptation patterns of more 

architectural patterns, analyzing the performance of DARE, considering real-time issues, 

and scaling up to large distributed software systems. 
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