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Abstract. Knowledge Visualizer (KV) uses a General Logic Diagram (GLD) to
display examples and/or various forms of knowledge learned from them in a planar
model of a multi-dimensional discrete space. Knowledge can be in different forms,
for example, decision rules, decision trees, logical expressions, clusters, classifiers,
and neural nets with discrete input variables. KV is implemented as a module of
the inductive database system VINLEN, which integrates a conventional database
system with a range of inductive inference and data mining capabilities. This pa-
per describes briefly the KV module and then focuses on the problem of arranging
attributes that span the diagram in a way that leads to the most readable rule vi-
sualization in the diagram. This problem has been solved by applying a simulated
annealing.

Keywords: knowledge visualization, GLD diagrams, diagram optimization, ma-
chine learning.

1 Introduction

Data and knowledge visualization tools are components of many commercial
data mining tools, such as Microsoft SQL Server 2000 Analysis Services,
IBM DB2 Intelligent Miner, and Oracle Data Miner. They are also present
in noncommercial software, e.g. Weka [11] and YALE [10]. The authors are
not aware, however, of any tool with capabilities of Knowledge Visualizer
(KV) described in this paper. KV is a unique knowledge visualization system
that uses a General Logic Diagram (GLD) for representing examples and
knowledge derived from them.

GLD, introduced by Michalski [6], is a planar model of a multidimensional
space spanned over discrete variables (attributes). Each variable partitions
the diagram into a set of disjoint areas corresponding to the values of the
variable. The lines separating these areas for a single attribute are called
axes of this attribute. An intersection of the areas corresponding to single
values of each variable constitutes a cell of the diagram. Every cell of the
diagram thus represents a unique combination of attribute values.



Decision rules and decision trees are represented by regular configurations
of cells. Logical operations AND,OR, and NOT correspond to intersection,
union and complement, respectively, of the groups of cells representing argu-
ments of the operations (Fig. 2).

Depending on the way the attributes are assigned to the axes of the dia-
gram, knowledge representation in a diagram may be less or more readable
and visually attractive. Therefore, a problem arises as to how to optimize
the attribute assignment for representing a given form of knowledge. In this
paper, we will be concerned with the optimization of the diagram for repre-
senting attrbutional rules learned by AQ-type learning program [8].

The KV program has been implemented as a module of inductive database
system VINLEN [3] that aims at integrating conventional databases and a
wide range of inductive inference capabilities.

The following sections review the concept of GLD, describe the KV pro-
gram for visualizing examples and/or decision rules using GLD, and present a
method for solving the above-mentioned attribute assignment problem. The
working of KV is illustrated by an example.

2 General Logic Diagrams

General Logic Diagrams were developed by Michalski and applied in many
different areas, such as the design and optimization of switching circuits, the
optimization of logic functions, conversion of decision tables into decision
trees, and, most widely, for visualizing concept examples and decision rules
induced from them [7]. A GLD can be viewed as a multivalued extension of
the Marquand’s binary diagram [5] with some additional properties. Specif-
ically, the diagram is structured by drawing axes of different variables with
different thickness. Such a structuring facilitates the readability of knowledge
represented in the diagram even when it is spanned over a relatively large
number of attributes.

The procedure for creating a GLD (Generalized Logic Diagram) for repre-
senting a space E(x1, x2, . . . , xn) spanned over n discrete attributes x1, x2, . . .,
xn, with domains D1, D2, . . . , Dn, is as follows:

1. Divide attributes x1, x2, . . . , xn into two subsets: Row-att and Coll-att.
2. Order attributes in these subsets.
3. Order values in the domains of nominal attributes.
4. Draw a rectangle, and divide it into the numer of rows equal the number

of values of the first attribute in Row-att. Draw the separating lines with
the greatest chosen thickness. These lines constitute the axes of the first
attribute. Assign to rows values of the first attribute.

5. Divide each row into the number of subrows equal the number of values
of the second attribute in Row-att. Separating lines, which are axes of
the second attribute, are drawn with the lower thickness than the axes



of the previous (first) attribute. Continue such process for the remaining
attributes in Row-att.

6. Repeat the same process for attributes in Coll-att by dividing the rec-
tangle into columns.

Individual cells in the so-created diagram correspond to single events, that
is, to distinct combinations of attribute values. To represent a function that
maps the event space (the cartesian product of attribute domains) into the
domain of output variable, the cells of the diagram are marked by function
values. Thus, every such function can represented in the diagram. Because
standard decision rules, attributional rules, decision trees, neural nets, and
other forms of knowledge involving discrete input attributes (or discrtized
continuous attributes) represent functions over an event space, they all can
be represented using GLDs.

Single decision or attributional rules correspond to regular configurations
of cells in the diagram, and thus can be easily recognized visually even in
diagrams with a relatively large number of attributes (their number depends
on the sizes of attribute domains).

When the event space is large, the diagram can be spanned only over
the attributes that are present in the rules to be represented in the diagram
(whose number if usually significantly smaller than the total number of at-
tributes).

To illustrate a GLD rule presentation, let us use the attributional rules
generated by a learning program for very simple robot domain. The rules are
listed in Fig. 1.

A robot is classified as friendly, if:

- its body is round, or

- its head is triangular.

A robot is classified as unfriendly, if:

- the shape of its head is round or square,

and its body is square or triangular,

and it is holding a balloon or a sword, or

- its body is triangular,

and the antenna is green.

A robots is unclassified, if:

- its head is pentagonal or square,

and it is holding a flag.

Fig. 1. Rules generated using AQ21 program for simple robot domain

These rules are visualized using GLD that is presented in Fig. 2. The
following shortcuts are used in the diagram:

• attribute names: holding=x0, head=x1, antenna=x2, body=x3;



Fig. 2. GLD for rules generated from robots data

• holding values: balloon=0, flag=1, sword=2;
• body and head values: pentagon=0, round=1, square=2, triangle=3;
• antenna values: blue=0, green=1, red=2, white=3, yellow=4.

As we can see, Coll-att= {x3, x2}, Row-att= {x1, x0}. Big rectangles in
the middle and on the bottom represent rules for class ”good”. Two long,
horizontal rectangles represent rule for class ”do not know”. Rectangles on
the right represent rules for class ”bad”. Circles represent events and their
identifiers used to generate rules. They are darker if more then one event are
printed is the same cell.

3 Current capabilities of the KV module

The KV program was implemented as a module of the VINLEN system.
Input data (event space definition, examples, and rules) are taken from the
VINLEN database. The module has following capabilities:

1. It can automatically draw a GLD for the given attributes.
2. The assignment of axes to attributes can be done by the user or auto-

matically by the program.
3. It can represent training and testing examples for a given learning prob-

lem.
4. User can add events by choosing cells on a diagram.
5. It can automatically visualize attributional rules learned by AQ-type

learning program and supplied to KV via VINLEN. Rules are represented
by collections of linked rounded rectangles. Rectangles corresponding to
rules of the same class are given the same color.

6. A diagram can be enlarged (to see details) or decreased (to fit the com-
puter screen).



7. A diagram can be printed or saved as a graphic file. The user can choose
the way the diagram is printed: in black-and-white or in color.

8. The assignment of axes of attributes can be automatically optimized to
improve the rule visualization. Because the number of possible assign-
ments can be very large, automatic optimization is very useful. An opti-
mization method is described in the next Section.

4 Diagram optimization algorithm

To optimize the assignment of axes to attributes two features of the diagram
are measured:

1. C(d), the number of compact regions in the diagram, d, that represent
given set of attributional rules.

2. S(d), the closeness of the ratio of the height to width of the diagram to
the golden ratio, S(d) = |width(d)/height(d)− 1.62|.

The following diagram cost function aggregating these features is used:

f(d) = C(d) + pS(d), (1)

where p is a user defined parameter (integer number) representing the im-
portance of shape.

In the current implementation, simulated annealing algorithm is used to
minimize f . This is done in a similar way as in graph optimization [2]. Details
of the algorithm can be found in [4]. Generally, it works as follows. Initial
partitioning and ordering is randomized. Next, the algorithm makes random
changes in partitioning and orderings. Probability to switch to the state with
worse diagram (higher f value) depends on a ”temperature,” which is initially
high, but reduced during simulation by multiplying by user-defined dT factor.
After user-defined number of steps, the best diagram is presented to the user.

5 Experiments

The experiments were designed to test the performance of the KV module.
In the experiment described here, the UCI’s Mushroom dataset was used [1].
Two sets of rules were generated: RS1 using AQ21 program in strong patterns
mode1 for ”cap-surface” target attribute, (see Fig. 3), and RS2 using C4.5
algorithm for ”classes” target attribute.

Diagrams were optimized for displaying RS1 and RS2. Optimization was
performed 10 times with the following parameters: 100 steps, initial tem-
perature T = 1, temperature factor dT=0.9, and shape importance p=100.
Diagrams are presented in Fig. 4, and 5. Axes descriptions are omitted be-
cause cells are very small. Average execution time on a Pentium 4 2.4GHz
machine was 143 seconds for RS1 and 81 seconds for RS2.
1 Rules generated using AQ21 in the strong pattern mode are simple but approxi-

mate.



cap-surface is FIBROUS, if:

- gill-color is BLACK,BROWN,CHOCOLATE,GRAY,PINK,PURPLE;

- classes is EDIBLE;

cap-surface is GROOVES, if:

- stalk_surface_above_ring is SMOOTH;

cap-surface is SCALY, if:

- cap-color is not WHITE;

cap-surface is SMOOTH, if:

- cap-shape is BELL,KNOBBED;

Fig. 3. RS1 rules generated using AQ21 program, with ”cap-surface” target at-
tribute and strong patterns mode

6 Conclusion and Further Research

The KV module allows one to represent graphically rules and data from a
VINLEN knowledge system. The visualization method uses the General Logic
Diagram. KV allows one to check how rules cover given training examples,
and to analyze the relationship between the rules and the examples.

The integration of the KV module in the VINLEN system facilitates ex-
perimental investigation of the rule learning process. The diagram optimiza-
tion feature improves the readability of the rules in the diagram.

Further research will concern adding more features to the KV module, in
particular, the ability to:

• display results of constructive induction;

• display results of abstraction and concretion operation on the represen-
tation space in the case of structured input attributes;

• place images in the cells, which will enable KV to visualize more complex
knowledge;

• represent decision trees and results of clustering algorithms for unsuper-
vised learning;

It is also planned to improve the current diagram optimization algorithm,
for example, by applying the Learnable Evolution Model [9]. An associated
problem is to develop and test other cost functions that take into considera-
tion other diagram features. Another important problem is how to represent
large representation spaces for which diagrams are too complex. A method
of automatic generation of subsets of attributes to span different diagrams
(views) needs to be developed.
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Fig. 4. GLD Diagrams for rules RS1: initial (a) and optimized (b)
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Fig. 5. Diagrams for rules RS2: initial (a) and optimized (b)


