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Abstract

TOOLS AND EXPERIMENTAL SETUP FOR EFFICIENT HARDWARE BENCHMARK-
ING OF CANDIDATES IN CRYPTOGRAPHIC CONTESTS

Farnoud Farahmand

George Mason University, 2016

Thesis Director: Dr. Kris Gaj

Hardware benchmarking of candidates competing in cryptographic contests, such as

SHA-3 and CAESAR, is very important for ranking of their suitability for standardization.

A huge amount of time is necessary to design the datapath and controller and convert

them to the hardware description language (HDL) code, due to an increasing number of

candidates. The other difficulty is to develop a testbench in HDL for verification purposes.

High-Level Synthesis (HLS), based on the newly developed Xilinx Vivado HLS tool, offers a

potential solution to the aforementioned problems. Therefore, in the first part of this thesis

we investigate the following hypothesis: Ranking of candidate algorithms in cryptographic

contests in terms of their performance in modern FPGAs & All-Programmable SoCs will

remain the same independently whether the HDL implementations are developed manually

or generated automatically using HLS tools. In order to verify a potential validity of this

approach, 4 Round 2 SHA-3 candidates are implemented using Vivado HLS and compared

with existing RTL implementation. Our results indicate that the ranking of the evaluated

candidates, in terms of four major performance metrics, frequency, throughput, area, and

throughput to area ratio, has remained unchanged for all tested candidates.



In addition, one of the most essential performance metrics is the throughput, which

highly depends on the algorithm, hardware implementation architecture, coding style, and

options of tools. The maximum throughput is calculated based on the maximum clock

frequency supported by each algorithm. A common way of determining the maximum clock

frequency is static timing analysis provided by the CAD toolsets, such as Xilinx ISE, Xil-

inx Vivado, and Altera Quartus Prime. Finding actual maximum clock frequency utilizing

static timing analysis is not a trivial task, especially in the Xilinx Vivado environment. It

is extremely time consuming and tedious. As a result, in the second part of this thesis,

we describe Minerva. Minerva is an automated hardware benchmarking tool which finds

maximum frequency based on static timing analysis. It can be configured to target either

Throughput or Throughput/Area as optimization criteria and to search through specific

number of optimization strategies. The tool determines the best requested clock frequency,

leading to the maximum value of the optimization target. We evaluated 20 Round 2 CAE-

SAR candidates in terms of frequency and frequency to area ratio. Minerva frequency search

is compared to binary search and results demonstrated up to 37% improvement in terms of

throughput to area ratio and up to 24% in terms of throughput.

In the third part of the thesis, we have developed a universal testbed, which is capable

of measuring the maximum clock frequency experimentally, using a prototyping board. We

are targeting cryptographic hardware cores, such as implementations of SHA-3 candidates.

Our testbed is designed using a Zynq platform and takes advantage of software/hardware

co-design and Advanced eXtensible Interface (AXI). We measured the maximum clock fre-

quency and the execution time of 12 Round 2 SHA-3 candidates experimentally on ZedBoard

and compared the results with the frequencies reported by Xilinx Vivado. Our results indi-

cate that depending on the characteristics of each algorithm, we may achieve either much

higher or the same experimental frequency than the results reported by the tools using

static timing analysis.



Chapter 1: Introduction

Cryptographic contests have emerged as a commonly accepted way of developing cryp-

tographic standards. This process has appeared to work very well in case of Advanced

Encryption Standard (AES), developed in the period 1997-2001 [1], and Secure Hash Algo-

rithm 3 (SHA-3), developed in the period 2007-2012 [2]. At the same time, the observed

increase in the number of algorithms qualified to the first round of the respective contests

(51 in case of SHA-3 and 57 for CAESAR) inevitably brings the question of the sustainabil-

ity of the current approach and its applicability to the development of future cryptographic

standards. The number of candidates submitted to the first round of SHA-3 (51) has easily

exceeded the number of submissions to any previous contest, confirming the aforementioned

trend. Similarly, the numbers of candidates qualified to the second rounds of the respective

competitions have increased from 5 in case of AES, through 14 for SHA-3, to 29 in case of

CAESAR.

In November 2007, NIST announced SHA-3 public competition to develop a new crypto-

graphic hash function standard. About four years have been spent on evaluating candidates

submitted to this contest in terms of security, software and hardware efficiency, simplicity,

and flexibility. Fifty one candidates were qualified to the first round of the contest. Their

number was reduced first to fourteen and then to five candidates, in the second and the

third round of the competition, respectively. The majority of candidates qualified to Round

2 were judged to have adequate security, and thus their performance in software and hard-

ware became a decisive factor. Traditional hardware benchmarking consists of 3 steps:

1- Translation of specification to a hardware description language (HDL) like VHDL and

Verilog, 2- Writing a testbench based on test vectors generated by reference software im-

plementation for functional verification, 3- Generating post-place and route results using

FPGA tools and performing timing verification of the obtained netlist. All of these steps
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take significant amount of time. The objective of the second section of this thesis is to use

High Level Synthesis for hardware development to decrease the time that is required for

this task. HLS lets us take advantage of high-level programing language, such as C, C++

to generate synthesizable HDL. HLS implementation of five finalists has been reported in

[3]. In this project, we implemented another four Round 2 candidates using Vivado HLS.

As a result, we can rank all of these candidates in term of performance in modern FPGAs

and compare the results with manual RTL implementation.

Throughput, area, and throughput to area ratio were the most important metrics used

for hardware evaluation. Throughput of a hash function is the number of message bits for

which a hash value (digest) can be computed per unit of time. In hardware, the maximum

throughput depends on the maximum clock frequency supported by each algorithm, the

block size, and the number of clock cycles required to process a block. Maximum clock

frequency that can be achieved by a hardware implementation can be estimated or measured

at different stages of the design process. The main stages are synthesis, placing and routing

(P&R), and actual implementation on the board. The post-synthesis and post place & route

results are determined by the FPGA tools using static timing analysis. Hardware evaluation

of 14 round 2 SHA-3 candidates, based on post-placing and routing results, is reported in [4].

There are two difficulties associated with static timing analysis of digital systems designed

and modeled using hardware description languages, and implemented using FPGAs:

1. The latest version of CAD tool provided by Xilinx (Vivado), does not have the ca-

pability to report the maximum frequency achievable for the corresponding design.

Essentially, the user requests a target frequency and the tool reports a pass or fail,

for its attempt to achieve this goal.

2. While there are 25 optimization strategies (i.e., sets of preselected option values)

predefined in the tool, applying them sequentially, especially using Graphical User

Interface, is extremely tedious and time consuming.

To overcome the aforementioned difficulties and facilitate hardware benchmarking of

2



algorithms by static timing analysis method, we introduce Minerva in the third section.

Minerva is an automated and comprehensive hardware benchmarking tool. Minerva employs

a unique searching algorithm, which is customized for frequency search using CAD toolsets,

in addition to support for other standard search techniques. It can incorporate an arbitrary

number of predefined or user defined strategies to achieve the highest possible frequency

for each design. Moreover, it takes advantage of multithreading and multi core execution

to reduce the run time significantly.

Accordingly, in this section, we will provide the Minerva frequency search results in terms

of Throughput, Area and Throughput to Area ratio for 20 Round 2 CAESAR candidates.

Then, we compare them with the results generated using binary search. Additionally, the

run time of both methods (Minerva and binary search) are reported for 11 candidates.

In the fourth section, we demonstrate that the interface of Hash Core proposed in [4]

can be easily combined with the de-facto industry standard, AMBA AXI [5], in order to

achieve the practical, industry-grade designs for hardware accelerators implemented using

reconfigurable logic of All Programmable Systems on Chip (SoC), such as Zynq. We also

investigate the communication overhead introduced by the transfer of data between these

hardware accelerators and the microprocessor core, for various sizes of data inputs. Sec-

ondly, we explore how the maximum clock frequency reported by Xilinx Vivado and the

actual frequency measured experimentally compare to each other. Thus, we are verifying

the accuracy of the worst-case values of the maximum clock frequency, reported by static

timing analysis.

Our expectation is that the experimental clock frequency should be greater or equal

than the worst-case value returned by the tools for all investigated algorithms. Finally, we

also compare the ratios of the maximum experimental clock frequency to the maximum

frequency returned by the tools. The straightforward expectation could be that these ratios

should be approximately the same for all algorithms, as any given instance of the Zynq

device is likely to operate with a frequency higher by certain specific percentage than the

worst case instance of the same integrated circuit. However, as shown in this paper, this

3



naive expectation appears to be very far from the true behavior of a particular Zynq device

observed for various investigated algorithms.

It should be stressed that we do not advocate replacing the well-established benchmark-

ing methodology based on post-place and route results with the comparison of experimental

values, as these values are more accurate only for a specific instance of the Zynq device,

and cannot be generalized to millions of similar devices operating in the field, affected to a

different extent by variations in the fabrication process.
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Chapter 2: HLS-Based Implementation of Round-2 SHA-3

Candidates

2.1 High Level Synthesis

HLS allows designers to use a high-level programming language, such as C, C++, or Java,

to generate synthesizable HDL. [6] concluded that until recently, this approach had been

impractical due to the inadequate quality and high cost of HLS tools. This situation has

changed when Xilinx acquired AutoESL Design Technologies Inc. in 2011, and incorporated

its HLS tool, AutoPilot, into its latest toolchain, Vivado, in 2012 [7]. The availability of

the industrial-quality, low-cost tool has allowed the HLS-based design approach to become

more realistic. Previous studies have demonstrated that HLS can reduce the development

time, while maintaining good performance as compared to software [8–10]. It has also

been shown that a design using HLS-based approach can compete against a hand-written

Register Transfer Level (RTL) code [11–15], at least in selected domains. [8] and [9] ex-

amined Autopilot HLS tool in three different application domains: MiBench benchmark,

computer vision (stereo matching) and cryptography (AES, TDES and SHA). Their results

demonstrated that 4x to over 126x speedup was achieved in comparison with software imple-

mentations with a five-fold reduction in design effort vs. manual design in HDL. However,

RTL results were still better than those obtained using HLS.

In [3], the authors implemented 5 SHA-3 finalists using both high level synthesis and

RTL. Throughput, area, frequency and throughput over area results for two different FPGA

families were provided for all of these algorithms. This study has demonstrated that despite

a noticeable performance penalty, caused by the use of high-level synthesis tools vs. manual

design, the ranking of the evaluated candidates, in terms of four major performance metrics,
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frequency, throughput, area, and throughput to area ratio, has remained unchanged for

Altera Stratix IV FPGAs.

2.2 Research Approach and Ideas

2.2.1 Traditional and New Hardware Benchmarking Flows

A traditional, RTL-based hardware benchmarking flow, shown in Fig. 2.1, typically starts

with the translation of an informal specification to a hardware description language (HDL)

code, e.g., the RTL code written in VHDL or Verilog. This translation involves developing

a block diagram of the Datapath and an Algorithmic State Machine (ASM) chart of the

Controller. After manual design is completed, functional verification is performed based on

test vectors generated using a reference software implementation. Then, the post-place &

route results and the final netlist are generated. In order to make this step as efficient as

possible, we can apply two approaches shown in Fig. 2.1. For Virtex 6, Spartan 6, and older

FPGA families, Xilinx ISE (an older-generation Xilinx CAD tool) and ATHENa [16] could

be used for the comprehensive optimization of FPGA tool options. Similarly, for Xilinx

7 Series FPGAs and Zynq, Xilinx Vivado (a new-generation Xilinx CAD tool) and its 25

default optimization strategies could be adopted. Finally, the obtained netlist undergoes a

timing verification as the last check.

The proposed HLS-based development and benchmarking approach is shown in Fig. 2.2.

In this methodology, a designer starts from a reference software implementation, which is

typically provided by the algorithm designers in C. This implementation is then manually

transformed into an HLS-ready C code, by the addition of HLS tool directives, provided as

pragmas, and necessary optimizations that make the C code more suitable for parallelization

and resource reuse. Once these modifications are completed, the code is verified in software

for the correct functionality. Afterward, the HLS-ready C code is processed by the HLS

tool to generate an RTL HDL code. This code is further processed using the tools and

optimization strategies described above for the RTL flow. If the obtained results are worse

6



Figure 2.1: Traditional Hardware Development and Benchmarking Flow

than expected, e.g., in terms of the number of clock cycles required to process a single

input block, the HLS-ready C code must be further optimized, and possibly extended with

additional pragmas.

2.2.2 Test Case and Its RTL Implementations

As our test case, we have selected four Round 2 SHA-3 candidates: BMW, CubeHash,

ECHO, and Luffa.

An algorithmic background on hash functions is introduced in [17]. All SHA-3 candi-

dates and their evaluation is comprehensively covered at [18]. This website contains also

useful information regarding the history of the SHA-3 competition and the standardization

effort after announcing the winner. Finally, the submission packages of all candidates, in-

cluding their detailed specification, reference and optimized software implementations in C,

and a comprehensive set of test vectors, are available as well. These submission packages

constitute a very important starting point for our study.

7



Figure 2.2: HLS-Based Development and Benchmarking Flow

In [19], [20] and [21] the results of high-speed RTL implementation of a number of SHA-3

candidates are reported. However, the main optimization target is throughput, rather than

the throughput to area ratio, as in our study. In [22] a compact implementation of ECHO,

targeting minimum resource utilization, is reported.

To provide a fair and reliable reference for comparison, the RTL designs used in our

study are based on [23] and [4].

These designs were selected for the following reasons:

1. Source code of these designs in RTL VHDL is easily accessible to the public [24]. This

availability allows everybody to easily replicate the obtained results.

8



2. Detailed diagrams of each design are also available in public domain [24]. The avail-

ability of these diagrams allows other designers to easily understand each specific

hardware architecture, without analyzing the source code, and thus saving valuable

time.

3. Uniform and realistic interface. The aforementioned studies utilized a standard FIFO-

based interface, which can be easily adapted to support any bus-based interface for a

system-on-chip, e.g., the AXI-4 Stream, interface.

4. Standalone. The reference designs are completely self-sufficient. They require the

minimum number of external control signals.

2.2.3 Design Approach

The reference C code is based on the submission packages available from the SHA-3 contest

website [27]. Each reference C implementation is modified to generate HLS-ready C code

and then verified using C-Simulation in software. In the next step, the HLS-ready C code

is given to the Vivado HLS and the tool converts it to VHDL code. This VHDL code is

then simulated for functional correctness by Vivado HLS Co-simulation. If the results are

incorrect, or the number of clock cycles and resource utilization, which is provided in the

synthesis report, are too high, the HLS-ready code needs to be modified, and the entire

process repeated. When the best results are achieved by the tool, the generated VHDL

code is verified again using the universal testbench and the interface provided in [25]. This

Interface is shown in Fig. 2.3. The simulator which is used for final verification is Xilinx

ISim. The interface and the communication protocol used in this study are based on the

designs proposed in [26]. As we are operating at full speed, the input and output units

must operate at the same time when a cryptographic core is hashing. The current HLS tool

is not yet capable of generating a design that can perform these tasks automatically. As a

result, these modules need to be connected manually at the top-level.

The top-level diagram of all crypto cores is shown in Fig. 2.2. Each crypto core is

9



Figure 2.3: Top-level diagram

comprised of three primary modules, input processor, hash core and output processor.

Each module is generated using HLS tools independently, using a separate HLS-ready C

code, in order to allow them to operate concurrently. The rectangular regions within each

module represent groups of signals that are generated by the HLS tool from the same input.

For instance, din port of input processor generates din empty and din read signals. These

generated signals are the product of the INTERFACE pragma. Communications between

modules in the critical area are registered to improve timing. Endianness of incoming

and outgoing data for the hash core are swapped for correct operation. This is because

when ARRAY RESHAPE pragma is used to create a one dimensional array from a multi-

dimensional array, a data block is formed based on the word size of the original array in the

little endian format. For instance, forming a 128-bit data block from an integer array of

size four (int A[4]) would have the following order: A[3] A[2] A[1] A[0]. As a result, when

input data arrives in the big-endian format, endianness must be adjusted accordingly.

2.2.4 HLS Optimization Methodology

This section describes our HLS optimization methodology, based on [8]. The aim of this

optimization is to infer an HLS-generated RTL code that has performance as close as possi-

ble to the manually developed RTL code. Baseline Implementation. The first step involves

10



creating an HLS-ready baseline implementation from the reference software. In this imple-

mentation, any variables and buffers that rely on dynamic allocation must be replaced by

their static versions. Functions must be clearly declared and carefully controlled via the use

of the INTERFACE pragma, in order to properly model the behavior of input and output

ports of the targeted design. In this study, the model of our top-level function, translated

to Hash Core (as defined in [27]), utilizes a previously established communication. The core

receives a single block of data at a time, as opposed to a stream of blocks. This mode allows

a more accurate report from the HLS synthesis tool (in terms of clock cycles) and a finer

control in the optimization process detailed in the later sections. Code refactoring. Func-

tion reuse can be considered as one of the most critical factors in achieving an optimized

design that has a performance comparable to RTL-based design. In software, repetition of a

function call does not drastically affect performance or memory utilization of any program.

However, unless an appropriate action is taken, a C synthesizer can treat each function call

as a separate instantiation of a hardware module. As a result, multiple function calls can

significantly increase the design area and critical path.

One of the approaches to mitigate this effect is to add a limit on the resource allocation

for a specific function, in order to limit its reuse. The RESOURCE pragma facilitates this

process. However, this approach requires further fine-tuning in order to reach a similar

performance as the performance of the RTL-based design. While this fine-tuning is not a

problem in a typical design environment, where the target clock frequency and area are

known, it can be more difficult to apply for benchmarking purposes, where the expected

clock period and resource utilization are hard to predict.

Rewriting source code in order to minimize the number of function calls is an alternative

approach to mitigate an increase in area and, consequently due to routing congestion,

a reduction in speed associated with the function call repetitions. While this approach

requires more effort, it allows a finer control of the design, which can help to produce

a more consistent results for benchmarking purposes. One of the most straightforward

examples can be observed in case of the use of the round function, as shown in Fig. 2.4(a).
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The original code includes six function calls to a round operation. While this approach is

perfectly fine in software, it replicates the round operation in hardware, resulting in a longer

critical path and higher resource utilization. A significant optimization can be accomplished

by simply calling such a function in a loop, as shown in Fig. 2.4(b), so that only one instance

of the corresponding module appears in hardware. In addition, as indicated in Fig. 2.5,

if and else statement can be used instead of multiple function calls for different inputs to

avoid multiple component instantiation in hardware.

(a) Regular C code before modification (b) HLS-compatible modification

Figure 2.4: Example of code modification for resource reduction purposes

(a) (b)

Figure 2.5: Function reuse utilizing if and else statement

Data storage. The next step is optimizing data types and sizes of arrays, and providing

the tool with directives on how these arrays should be translated into hardware. Vivado

HLS synthesis tool supports a flexible base data type, uint[size], where [size] is replaced by

12



the desired data size. Utilizing a correct size for our needs can significantly increase design

efficiency. For instance, if an integer array only uses the first four bits, it might be better

to define data type of that array as uint4 instead of integer type.

The speed at which data can be accessed, or bandwidth, is determined by its type

and/or array dimension. The operation on an array of data can be significantly hampered

if the design is not able to access different elements at the same time. This problem can be

mitigated by using the ARRAY RESHAPE directive to re-partition an array to different

dimensions without changing the underlying code. An array is synthesized into a memory

if it is not partitioned into a complete one-dimensional data. An array reshaping example

is shown in Fig. 2.6.

Figure 2.6: Example of ARRAY RESHAPE directive

Loop Optimization. In order to fully realize the potential of the design after data storage

has been optimized, all loops of the program must be optimized as well. The UNROLL

pragma is the best directive to realize this potential. As indicated in Fig. 2.7, this directive

informs the tool to unroll the operations within a loop so they can be executed in parallel,

thereby increasing the overall throughput of the loop.

A memory can either be a ROM or RAM depending on the pragma specified. A ROM

inference can be done via the RESOURCE pragma, using an asynchronous ROM (ROM 1P

13



Figure 2.7: Example of Loop Optimization directive

1S) core, which is one of many hardware types that can be specified. This type is particularly

useful when the designer does not want to the tool to implement a given storage component

using BlockRAM. The change to asynchronous ROM can significantly reduce the design

latency. The limitation for a LUT-based RAM is also an issue. While the tool is capable

of selecting a correct RAM resource, it has a problem with scheduling the right operation.

In particular, an additional clock cycle is required if there is a read from this unit. The

tool requires all RAM read operations to have one clock cycle delay. This feature can

substantially increase design latency when a main loop, which is responsible for majority

of latency, needs to access a memory element. While RESOURCE pragma, using ROM

(ROM 1P 1S), decreases latency, the tool has limitation in multiple instantiation of one

block in parallel automatically. For example, as shown in Fig. 2.8(a), the tool instantiates

1 instance of sbox in hardware and this code takes 5 clock cycles to execute. Therefore, the

only way to do this task in parallel and in one clock cycle is to use Fig. 2.8(b) tweak.

2.3 Features of the Implemented Hash Algorithms and their

Hardware Architectures

Four Round 2 SHA-3 candidates investigated in this project are BMW, CubeHash, ECHO,

and Luffa. The major features and parameter values used consistently in our RTL and

HLS implementations of these hash functions (Number of rounds, Block size, Hash size

and State size) are represented in Table 2.1. In particular, the Hash size has been set to
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256 bits for all algorithms. Our primary optimization target is the best Throughput to

Area ratio, where Throughput is defined as Throughput for long messages, and Area is

expressed in terms of the number of LUTs (Look-Up Tables) of Xilinx FPGAs. This choice

has multiple advantages. First, it is practical, as hardware cores are typically applied in

situations, where the size of the processed data is significant and the speed of processing

is essential. Otherwise, the communication overhead associated with using a hardware

accelerator dominates the total processing time, and the cost of using dedicated hardware

(FPGA) is not justified. Optimizing for the best ratio provides a good balance between the

speed and the cost of the solution, and typically leads to the most natural basic iterative

architecture. In particular, this choice leads to optimum values for the number of clock

cycles per message block, and thus determines the formulas for throughput.

The numbers of clock cycles per one block of message (#Cycles/Block) for the RTL

and HLS implementations are summarized in Table 2.2. For the majority of implemented

Hash algorithms, the automatically generated Controller (initially described in C) tends

to be sub-optimal, compared to the manual design using RTL VHDL. This is because the

HLS-generated unit is not capable of supporting an overlap between the completion of the

last round and reading the next input block. Moreover, one additional clock cycle is often

required to initiate processing of the subsequent data block. As a result, the throughput

of the HLS-based design tends to be lower than the throughput of the manual design, even

if they both operate at the same clock frequency. However, there are some exceptions, for

example, in case of ECHO #Cycles/Block in RTL-based approach and HLS-based approach

are exactly the same due to slightly different architecture. ECHO has a very high resource

utilization and long critical path compared to other algorithms due to its utilization of 16

AES rounds which are working in parallel. As a result, the RTL-approach designer tried to

reduce the critical path by registering the output in specific location with the cost of growth

in #Cycle/Block, but in our experiment this approach did not improve the HLS result and

is avoided during the design process. In addition, the synthesis process in the Vivado HLS

environment for the ECHO algorithm takes about one hour after each modification that
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inlines functions in a single scope, which avoids communication delay between separate

functions and achieves results similar to RTL implementation. The synthesis process for

high level synthesis takes about 3 to 10 minutes in case of less complicated algorithms.

Table 2.1: Parameters of Hash functions

Algorithm
Num. of
Rounds

Block
Size

Hash
size

State
Size

Luffa 8 256 256 768

CubeHash 16 256 256 1024

BMW 1 512 256 512

ECHO 8 1536 256 512

Table 2.2: HLS and RTL implementations parameters

Algorithm
Num. of
Rounds

Cycles/
Block
RTL

Cycles/
Block
HLS

Luffa 8 9 11

CubeHash 16 16 18

BMW 1 2 1

ECHO 8 26 26

2.4 Results and Discussion

The ranking of all implemented algorithms based on resource utilization (Area) for both

RTL and HLS implementation is shown on Fig. 2.9. As we can observe, the ranking of

the algorithms using HLS implementation is exactly the same as RTL implementation.

CubeHash has the smallest area and Luffa, BMW and, ECHO are on the second, third and

fourth place respectively. All candidates are ranked based on Throughput in Fig. 2.10.

The results indicate that HLS and RTL results again have exactly the same ranking in case
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of throughput. ECHO has the highest throughput and Luffa, BMW and CubeHash are in

subsequent positions, respectively.

The throughput over area results of all implemented algorithm for RTL and HLS-based

design flows are summarized in Fig. 2.11 and Fig. 2.12. Each algorithm is represented using

a different shape marker, with lines across the markers helping to compare the throughput

to area ratios. The higher the gradient of the line, the more efficient the corresponding

algorithm is. These diagrams demonstrate a very good correlation between the HLS and

RTL results and the ranking is the same in both cases. The details of all results and the

corresponding ratios are listed in Tables 2.3, 2.4 and 2.5. The throughput formulas for the

RTL and HLS-based approach is given by equation 1. All results are generated for Xilinx

Virtex 5.

Table 2.3: Results for the HLS approach

HLS

Freq. TP A TP/A

Luffa 248.76 5,789 1,283 4.51

CubeHash 247.34 3,517 1,034 3.40

BMW 10.76 5,511 5,042 1.09

ECHO 176.80 10,445 5,767 1.81

Table 2.4: Results for the RTL approach

RTL

Freq. TP A TP/A

Luffa 334.4 9,513 1,023 9.29

CubeHash 248.3 3,972 663 5.99

BMW 34.0 8,704 4,350 2.00

ECHO 203.8 12,094 4,888 2.47

Notations: Freq.: clock frequency, A: area in CLB slices, TP: Throughput in Mbits/s,

TP/A: throughput over area ratio, RTL/HLS: ratio of the RTL result to the corresponding
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Table 2.5: RTL/HLS Result Ratios

RTL/HLS

Freq. TP Area TP/A

Luffa 1.34 1.64 1.25 2.06

CubeHash 1.00 1.13 0.64 1.76

BMW 3.16 1.58 0.86 1.83

ECHO 1.15 1.16 0.85 1.36

HLS result.

2.5 Conclusions

High-level synthesis offers a potential to allow hardware benchmarking in early stages of

cryptographic contests. It can also be an effective method for gauging the hardware perfor-

mance of early variants of a cryptographic algorithm during the design process by groups

of cryptographers with limited experience in hardware design. Our case study based on

the five final SHA-3 candidates has demonstrated the correct ranking for Xilinx Virtex5

FPGAs in terms of all major performance measures: frequency, throughput, area, and the

throughput to area ratio. In order for the HLS-based design approach to be an effective

replacement for the manual design approach, there are a few problems that need to be still

overcome. These obstacles include: 1- generation of suboptimal control units by Vivado

HLS tools. 2- Efficient and reliable generation of HLS-ready C code. 3- Wide range of RTL

to HLS performance metric ratios.
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(a)

(b)

Figure 2.8: Multiple instantiation of ROM blocks in parallel automatically
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Figure 2.11: HLS Implementation: Throughput over Area

Figure 2.12: RTL Implementation: Throughput over Area
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Chapter 3: Minerva

3.1 Previous Work

In [16] an open-source environment for fair, comprehensive, automated, and collaborative

hardware benchmarking of algorithms belonging to the same class is presented. The main

part of this environment is the ATHENa tool for optimization of tool options, requested

clock frequency, and the starting point of placement. ATHENa provides similar capabilities

for designers targeting FPGA devices from two major vendors, Xilinx and Altera. However,

it works only with the previous-generation Xilinx CAD tool (ISE), which will not support

Xilinx FPGAs beyond the Series 7 families (Virtex 7, Artix 7, Kintex 7).

Moreover, FPGA vendors by themselves have their own tools for the exploration of

implementation options. One example is ExploreAhead [28] from Xilinx, which is a part

of the high-level optimization tool called PlanAhead. PlanAhead is provided as a built-

in option in Vivado Design Suite, the latest version of Xilinx CAD tools. ExploreAhead

allows executing multiple implementation runs based on predefined or user defined strategies

(understood as preselected values for a set of options). Additionally, it supports parallel

runs on multi-core CPUs. Unlike ATHENa, which supports two vendors, PlanAhead works

only with Xilinx FPGAs. Additionally, ATHENa is aimed at achieving the best possible

performance (e.g., the best throughput/area ratio), while ExploreAhead and Vivado aim

only at achieving the requested clock frequency.

[29] presents a tool called SUPERCOP, which expedites comparison of software im-

plementations of cryptographic algorithms. This open source tool supports the choice of

the best compilation options from thousands of different combinations. It also facilitates

execution time measurements on multiple computer systems.
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3.2 Environment

In this section we describe features of our new environment, called Minerva, that provides

functionality similar to ATHENa for Xilinx Series 7 FPGAs and beyond.

In order to observe the behavior of the Vivado Design Suite in static timing analysis,

synthesis and implementation were performed for 5 CAESAR Round 2 candidates. At first,

the same requested clock frequency constraint was used for each algorithm. The target clock

frequency was set to 333 MHz, and the theoretical achievable frequency was calculated based

on WNS (Worst case Negative Slack), utilizing the following formula:

Minimumclockperiod = Targetclockperiod−WNS (3.1)

In the next step, WNS results were generated for the requested clock frequency varying

in range of -64 to +64 MHz of the reference frequency, with the precision of 1 MHz. It

meant that we generated WNS results for 128 different target clock frequencies in order to

observe a trend. Fig. 3.1, Fig. 3.2, Fig. 3.3, Fig. 3.4 and Fig. 3.5 show this trend for

Joltik, AES–GCM, ICEPOLE, SCREAM and TriviA-ck, respectively. GraphGen function

provided by Minerva accommodated the aforementioned process.
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Figure 3.1: Graph generated for Joltik using results provided by GraphGen

As we can observe in Fig. 3.1, Fig. 3.3, Fig. 3.4 and Fig. 3.5, we have fluctuations
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Figure 3.2: Graph generated for AESGCM using results provided by GraphGen

around the calculated reference clock frequency. This fluctuation is much higher in case of

ICEPOLE and SCREAM. As a result, it would be very hard to find the actual maximum

clock frequency without automation. We have lower fluctuations for AES-GCM, Joltik and

TriviAck. Based on Xilinx documentation [30], the only acceptable target frequency is the

one that gives us positive slack. Therefore, based on the aforementioned graphs we cannot

rely on the above equation to calculate the actual maximum clock frequency. Instead, we

need a more complex procedure. In addition, these results are generated using only default

options of Vivado for all implementation steps, such as mapping, placing and routing. The

Vivado Design Suite ships with 25 predefined optimization strategies, which can be used to

achieve higher maximum frequency and more optimized design. Hence, incorporating all of

these strategies leads to an even more tedious process.

One way is to use binary search algorithm to find the maximum frequency in a given

frequency range. However, there are two problems associated with this method: 1- We

cannot easily cover 25 optimization strategies. 2- based on the fluctuations observed in the

generated graphs, different results will be achieved for different input ranges. Also, it is

possible that none of them will be the actual maximum clock frequency. As a result, we

equip Minerva with the heuristic algorithm aimed at addressing this problem.

Minerva is used to execute Vivado in batch mode, utilizing the Vivado batch mode Tcl
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Figure 3.3: Graph generated for ICEPOLE using results provided by GraphGen

scripts provided by Xilinx. An XML-based Python program is used to manage runs. This

program launches Vivado with Tcl scripts that are dynamically created during run-time

and later modified to perform each step of the optimization algorithm. Minerva is designed

to be used to automate the task of finding optimized results for each folder of a source code

repository, and it works with any device that Vivado supports.

3.3 Design Flow

Minerva supports multiple frequency search algorithms and it has the capability to add

new algorithms in the future. Minerva frequency search (MinervaFreqSearch) is designed

specifically to find the maximum frequency achievable by a given hardware design. Miner-

vaFreqSearch function receives the following parameters as input:

1. f0 (frequency 0) and fn (frequency n): these are the lower bound and upper bound

frequencies of the range that we span to find the maximum frequency. These values

can be updated during the run time.

2. n: indicates the number of runs to be performed in parallel. Minerva can run on

multiple CPU cores and take advantage of multithreading.
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Figure 3.4: Graph generated for SCREAM using results provided by GraphGen

3. p: represents the number of optimization strategies to be considered during the search.

4. r (precision range size): is the maximum number of frequency targets (higher than the

last achieved maximum clock frequency) to be explored. If we achieve positive slack

for a frequency in this range, we will continue the search, otherwise we will terminate

the process. The recommended value for r is 12. Using lower values is possible, but it

may cause achieving lower frequency than actual maximum frequency. On the other

hand, using higher values leads to increase in the execution time.

This function generates an output report that contains the following information:

1. WNS result for all test cases with the corresponding optimization strategy ID and

target clock frequency.

2. WNS and Area results for all target frequencies with positive slack.

3. Maximum frequency and the corresponding Area in number of LUTs and slices, and

optimization strategy ID.

4. Maximum frequency/LUTs and the actual values for frequency, number of LUTs,

number of Slices and the optimization strategy ID for this test case.
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Figure 3.5: Graph generated for Triviack using results provided by GraphGen

5. Execution time.

Fig. 3.7(a), Fig. 3.7(b), Fig. 3.7(c), Fig. 3.7(d) and Fig. 3.7(e), completely describe how

MinervaFreqSearch algorithm works. Each column illustrates one requested clock frequency

value, and square blocks in that column correspond to optimization strategies. Each square

block represents one test case with the optimization strategy ID mentioned inside it. Colors

of these blocks are green or red, indicating the positive or negative WNS, respectively. The

runs that execute in parallel at each step are represented using dotted boxes.

Fig. 3.7(a) shows the first step in MinervaFreqSearch algorithm and the legend repre-

sents input parameters related to this example (f0=50, fn=200, n=8, r=8 and p=8). In

the first step, the given frequency range (50 to 200) is divided by r+1 to have 8 frequencies

including 50 and 200, with the same distance between each other, as shown in Fig. 3.7(a)

Freq axis. Then, WNS result is generated for all of these 8 target frequencies and the default

optimization strategy. It is feasible to run all of these target frequencies at the same time,

as n is equal to 8 in this example. After WNS results are generated, if the upper bound

frequency (fn) gives us positive slack, we will update f0 and fn values using the formula 3.2

and 3.3, and will repeat the previous process (step forward).
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f0(new) = fn(old) + 1 (3.2)

fn(new) = fn(old) + 100 (3.3)

If all of the first 8 target clock frequencies give us negative slack, we will step backward

for 100 MHz frequency range. So f0 and fn will be updated using formulas 3.4 and 3.5, and

the first step will be repeated.

f0(new) = fn(old) − 100 (3.4)

fn(new) = f0(old) − 1 (3.5)

The aforementioned process leads to finding the maximum frequency less than fn that

gives us positive slack using only default optimization strategy. As we can observe in Fig.

3.7(a), in the first step, positive slack was achieved for fn (200 MHz). Hence, we step forward

and update f0 and fn to 201 and 300 MHz respectively, Fig. 3.7(b). As shown in this figure,

243.9 MHz is the highest frequency that leads to positive slack with default optimization

strategy. At this point, the optimization runs are started for the remaining frequencies

higher than 243.9 MHz in this range. In this example 258.2 MHz, with optimization strategy

number 3 has positive slack, so the maximum frequency will be updated to 258.2MHz. In

case of higher frequencies, all 8 optimization strategies failed. Therefore, 258.2MHz would

be our starting point to begin the next step of frequency search considering 8 optimization

strategies and the precision of 1MHz. Next step is illustrated in Fig. 3.7(c). In this

step we go forward by 1MHz. As soon as we find a frequency with positive slack, the lower

frequencies and the remaining optimization strategies corresponding to these frequencies are

eliminated. The aforementioned procedure will be continued until 8 (precision range size)

consecutive frequencies fail to provide positive slack for all possible optimization strategies

(8 in this example), as shown in Fig. 3.7(d) and Fig. 3.7(e). Therefore, the maximum

frequency in this example is 269MHz, with the optimization strategy number 4.

28



3.4 Result

Vivado Design Suite 2015.1 has been used for result generation. The target device has been

set to the largest and fastest Virtex 7, xc7vx485- tffg1761-3. Binary search is done by con-

sidering only the default optimization strategy and Minerva frequency search is configured

using the following values: n = 16, p = 23, r = 12 and the input range is [100, 500] for all

candidates.

Table 3.1 presents detailed values of the maximum clock frequency and area generated

using Minerva for 21 Round 2 CAESAR candidates. The second and the third columns

show frequency in MHz and area in the number of LUTs, respectively, obtained by utilizing

Minerva frequency search and targeting Throughput as optimization criteria. Fourth and

fifth columns similarly report the results, but in case of Throughput over Area ratio as the

main optimization target instead. For most of the candidates (17), the obtained result is

similar for both cases. Maximum frequency is reduced in case of AEZ, Joltik, Minalpher and

TriviA-ck to achieve better Throughput to Area ratio. However, this reduction is less 13MHz

for all aforementioned candidates. Last two columns contain maximum frequency and

number of LUTs obtained by applying the binary search algorithm with a single optimization

strategy.

Fig. 3.6 illustrates the ratio of results obtained using Minerva frequency search vs. Bi-

nary search in terms of Throughput, Area and Throughput/Area. As we can see, Through-

put/Area ratio has improved by almost 40% for ICEPOLE and more than 20% in case of

AEZ. The order of candidates is based on the decreasing improvement in terms of Through-

put/Area ratio. This metric is improved by more than 10% for the next 6 candidates. As

expected, algorithms which have more fluctuations around the reference frequency in the

previously generated graphs, such as ICEPOLE (Fig. 3.3), SCREAM (Fig. 3.4) and Trivia-

ck (Fig. 3.5), take advantage of Minerva frequency search much more than the stable ones

(8-38% vs. less than 5%).

Table 3.2 presents the execution time for the Minerva frequency search and the binary
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Table 3.1: Detailed values of the maximum clock frequency (MHz) and area (number of
LUTs) generated using Minerva for 21 Round 2 CAESAR candidates

Algorithm
Minerva

Opt. Freq.
Minerva

Opt. Freq/LUT
Binary search

Freq.
[MHz]

#LUTs
Freq.
[MHz]

#LUTs
Freq.
[MHz]

#LUTs

AESCOPA 278 7,707 278 7,707 270 7,702

AEZ 384 5,160 374 5,018 315 5,101

ASCON 444 1,557 444 1,557 427 1,542

CLOC 257 3,848 257 3,848 247 3,816

Deoxys 369 3,317 369 3,317 356 3,313

HS1-SIV 236 8,105 236 8,105 226 8,066

ICEPOLE 442 5,130 442 5,130 357 5,677

Joltik 439 1,606 427 1,558 414 1,592

Minalpher 243 7,953 237 7,635 203 7,326

NORX 206 4,474 206 4,474 198 4,371

OCB 350 4,486 350 4,486 335 4,487

OMD 297 4,628 297 4,628 259 4,586

PAEQ 322 8,373 322 8,373 280 8,334

PI-Cipher 214 3,906 214 3,906 192 3,838

POET 247 7,490 247 7,490 216 7,380

PrimatesGIBBON 214 1,892 214 1,892 185 1,827

PrimatesHANUMAN 209 1,840 209 1,840 195 1,796

SCREAM 186 2,630 186 2,630 177 2,764

STRIBOB 380 4,687 380 4,687 370 4,648

TRIVIA-ck 255 2,593 254 2,578 233 2,571

AES-GCM 277 3,114 277 3,114 272 3,097

search, respectively. As shown in this table, similarly to the Throughput/Area ratio im-

provement, Minerva frequency search run time depends on the corresponding candidate’s

graph stability. AES-GCM with the most stable graph has the lowest run time (3 hour

and 20 minutes) and ICEPOLE with the most fluctuated graph has the highest execution

time (12 hours and 20 minutes). In addition, Minerva run time has direct relation with n

(number of runs in parallel) which is 16 in this case. One the other hand, the time of the

binary search is very consistent for all 11 algorithms.
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Figure 3.6: Ratio of results obtained using Minerva frequency serach vs. binary search

Table 3.2: Minerva frequency search and binary search run time for 11 CAESAR candidate

Algorithm
Minerva
Run time
hrs:min

Binary Search
Run time
hrs:min

AES-COPA 6:10 1:00

CLOC 6:5 1:35

ICEPOLE 12:20 1:00

Joltik 5:20 0:45

NORX 6:00 1:15

OCB 5:15 1:20

OMD 5:45 0:50

SCREAM 6:30 1:10

STRIBOB 6:00 1:30

TRIVIA-ck 5:20 1:04

AES-GCM 3:20 1:04
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Chapter 4: A Zynq-based Testbed for the Experimental

Benchmarking of Algorithms Competing in Cryptographic

Contests

4.1 Previous Work

Experimental benchmarking of cryptographic algorithms has been performed previously on

different platforms other than Zynq. In [31], maximum frequency of SHA-256 has been

measured experimentally using the SLAAC-1V board based on Xilinx Virtex VCV 1000.

In [32] and [33], an experimental measurement of the hardware performance of 14 round

2 SHA-3 candidates is performed using the SASEBO-GII FPGA board. The investigated

implementations are run at their maximum clock frequency reported by the CAD tool.

Hence, no investigation of higher clock frequencies is performed.

In [34], full hardware implementations of all Round 2 candidates in hardware for all

specified message digest variants and their post-place-and-route implementation results for

a Virtex-5 FPGA is provided. The author compared the efficiency of hash functions in

terms of throughput per unit area. In addition, a universal hardware wrapper interface

was used in this work that produces the padding scheme required for a particular hash

function as well as providing the interface to the outside world. This wrapper completely

described in [35]. Area and Maximum frequency results represented for design with and

without wrapper, but no experimental measurements were performed in this work.

In [36], the experimental evaluation of SHA-2 and five Round 3 SHA-3 Candidates

was performed using a standard-cell ASIC realized using 65nm CMOS technology. The

authors combined two sets of implementations, developed using different performance tar-

gets, and implemented them on one ASIC, with a common input/output (I/O) interface.
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Area, throughput, and throughput to area ratio were generated for all of these algorithms.

Synthesis was performed using Synopsys Design Compiler, and placing & routing using Ca-

dence Encounter Digital Implementation. All cores have been demonstrated to operate at

the experimental clock frequencies from 15% to 92% higher then the worst case estimates

returned by the placing & routing tools.

In [37], the throughput and power results, from the experimental evaluation of SHA-3

finalists, using 130nm ASIC technology, are reported. SASEBO-GII FPGA board is used

as a controller. The obtained results indicated that the measured throughput was always

lower than the Post-layout results, with the difference less than 30%.

In [38], a comprehensive evaluation of all Round 2 SHA-3 candidates, based on post-

layout reports, using the 90 nm ASIC technology, is performed. The post-layout results

were reported for two target throughputs, 20 Gbps and 0.2 Gbps, and the corresponding

results compared against each other. No experimental measurements were performed as a

part of this work. Similarly, in [21], post-layout throughputs are reported for all Round

2 candidates, using the ASIC 180 nm technology, and no experimental measurements are

reported.

4.2 Design & Verification

4.2.1 System Design

The Zynq-7020 All-Programmable System on Chip (SoC) has been selected as our target

device, due to its high performance and flexibility. In particular, our testbed takes advan-

tage of software/hardware co-design and the memory management provided by the ARM

platform. For each algorithm, the optimized C implementation [18] is first run on the ARM

core and its performance recorded. As a result, after the conclusion of the hardware mea-

surements, hardware vs. software speed up can be easily and fairly evaluated. Our system,

composed of three major parts, is shown in Fig. 4.1:

36



Figure 4.1: Block Diagram of the Testbed with the division into Programmable logic (PL),
Interconnects, and Processing System (PS)

Processing System (PS)

The Processing System contains two Cortex A9 ARM Processor cores, and related logic. The

HP (High Performance) ports are used for communication between PS and Programmable

logic (PL). The input data (message) is sent to the hash core, located in PL. After the

calculations are completed, an interrupt is generated, and the hash value is transferred

back to the ARM core.

Interconnects

Two AXI Interconnect IPs take care of the data transmission between PS and PL using the

memory mapped mode, AXI Full. These IPs are added and configured automatically using

Vivado Design Suite.

Programmable Logic (PL)

Programmable Logic is used to implement the following major submodules:
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1) Input FIFO: Input FIFO can be written to using AXI Stream Slave (AXIS) interface

and read from using FWFT FIFO (First Word Fall Through FIFO) interface. It supports

independent read and write clock domains. It was designed specifically for the purpose of

this project, and its interface is shown in Fig. 4.2.

Figure 4.2: Input FIFO

2) Hash Core: Hardware implementation of a hash algorithm, compliant with the top-

level interface and communication protocol described in [4]. This module can be replaced

with any other hardware accelerator that can communicate with the FWFT FIFO interface.

3) Output FIFO: Output FIFO can be written to using the FWFT FIFO interface and

read from using AXIS interface. It is also capable of handling independent clock domains

for reading and writing. Moreover, it has an AXI Lite interface for configuring the transfer

length and start delay information. Transfer length indicates the number of output words

to be sent using the AXI Stream interface. Start delay lets the user to specify the delay, in

clock cycles, before this module starts transferring the output data back to the processor.

Delay countdown starts when the output is ready to send. Output FIFO was designed

specifically for the purpose of this project, and its interface is shown in Fig. 4.3.

4) Clocking Wizard: Clocking Wizard was added from the Xilinx IP catalog [39] and is

capable of generating a clock signal with a variable frequency, configurable from software.
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Figure 4.3: Output FIFO

This module can be controlled using the AXI Lite interface and let us change the clock

frequency on the fly.

5) AXI Direct Memory Access (DMA): AXI DMA was added to block design from the

Xilinx IP catalog [39], and converts the stream transaction protocol to the memory mapped

protocol. As a result, it allows the hardware accelerator to read from and write to the DDR

memory. The operation of this module is fully configurable from software, and frees the

ARM processor to perform other tasks.

6) AXI Timer: AXI Timer is also a standard unit, available in the Xilinx IP catalog.

It is capable of performing the execution time measurements for software and hardware

implementations of various functions, with the accuracy of a single clock cycle of a system

clock (by default: 10 ns).

7) Concat: The Concat module is used to concatenate two input signals and produce a

single output, active when any of the two inputs is active. In the circuit from Fig. 4.1,

it is used to create an interrupt to PS, active when either an input transfer or an output

transfer is completed by AXI DMA.

In case a single clock domain was used, the maximum clock frequency supported by
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Figure 4.4: Simplified block diagram of the PL side with the indication of two independent
clocks

our testbed would be limited by the maximum clock frequency of the AXI DMA and other

standard IP components. To overcome this limitation, our testbed supports two separate

clock frequencies, one for communication and auxiliary modules (AXI DMA, AXI Timer,

etc.) and the other for our dedicated hash core. The system clock frequency, used for

communication between PL and PS, is fixed. At the same time, the Clocking Wizard is

used to generate the second clock, with a variable clock frequency, set on the fly, under the

software control. Multiple frequencies of the second clock are then used during the binary

search for the maximum frequency supported by a given hash core.

A simplified diagram of our testbed, with two independent clocks, is shown in Fig. 4.4.
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In this testbed, at first AXI DMA, AXI Timer, and Interrupts are initialized. Then, Output

FIFO is configured with the desired transfer length and start delay, and Clocking Wizard is

configured with the UUT (Unit Under Test) output clock frequency. All initializations and

configurations are done through the AXI Lite interface. Afterward, a buffer is allocated

in DDR memory to store input data (message) of a certain size. Software implementation

of the corresponding hash algorithm is run on ARM core. The software execution time

is measured using AXI Timer. AXI Timer is started before the hash algorithm function

call. Next, the message is transferred from the DDR memory through AXI DMA to Input

FIFO. The Hash Core starts reading data from Input FIFO and writes the corresponding

hash value to Output FIFO. Then, Output FIFO sends back the result to another buffer in

the DDR memory through its AXI-Stream interface and AXI DMA. After the end of this

transfer, the AXI Timer is stopped.

The entire end-to-end data transfer time and the hardware execution time are measured

together using AXI Timer. The hash value received from the hardware side is compared

with the value calculated by software. If they are equal, we increase the frequency of Hash

core using Clocking Wizard, and rerun the entire process again. Otherwise, we decrease

the frequency. The aforementioned procedure is repeated multiple times using the rules of

binary search. The process ends only when we find the maximum clock frequency achiev-

able by each hash algorithm with the precision of 0.1 MHz. The maximum experimental

clock frequency, software execution time, hardware execution time at the maximum clock

frequency, and the speed up (hardware vs. software) is reported.

4.2.2 Verification methodology

A universal testbench has been developed in the Vivado environment to verify the operation

of our testbed using simulation. Apart from the circuit under test (composed of the Input

FIFO, Hash Core, and Output FIFO), this testbench includes three AXI Traffic Generators

(ATG) and one FIFO to simulate the functionality of the Zynq PS and AXI DMA. A

simplified block diagram of the testbench is shown in Fig. 4.5. The first ATG module is
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Figure 4.5: Universal testbench for Vivado environment

used in the AXI Stream mode to provide the control signals of the AXI Stream Interface to

the Input FIFO module. Data that is provided by this ATG, configured in the AXI Stream

mode, is random data. Therefore, an additional FIFO is included in the testbench to provide

a source of desired input data. The second ATG module configures the first ATG module

(AXI Stream ATG) with the desired configuration data, such as length of transaction,

programmable delay, and the number of transactions, through AXI Lite interface. The third

ATG module, configured in the AXI Lite mode, is used to configure Output FIFO. All AXI

Traffic generators are preloaded with appropriate configurations, using the configuration

COE files (address and data). At first the FIFO is filled with the input data. Then, all

AXI Traffic Generators are started. The AXI Stream ATG and FIFO provide the input
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message through the AXI Stream interface to the Input FIFO module. Hash Core reads

data from Input FIFO, calculates hash value, and transfers it to the Output FIFO module.

Eventually, we can compare the received hash value with the expected result to verify the

functionality of the design.

4.3 Result

ZedBoard and Vivado 2015.4 have been used for result generation. All options of Vivado

design suite including synthesis and implementation settings are set to default mode. On

the software side, the bare metal environment and Xilinx SDK are used for running the

C code on the ARM core of Zynq. The frequency of the primary system clock, connected

to the interface IPs, including AXI DMA, AXI Timer, etc., is set to 100 MHz. Clocking

Wizard generates the second clock, under the control of the C program, based on binary

search. The frequency of Dual Core ARM (PS) is set to 667 MHz.

4.3.1 Maximum Frequency

Fig. 4.6 illustrates the maximum clock frequency achieved using static timing analysis and

experimental testing, respectively, for each of the investigated algorithms. For all algorithms

the experimental clock frequency is higher than that returned by static timing analysis. This

result is expected, as CAD Tools alway take into account the worst case scenario, and thus

report the pessimistic estimates in terms of speed. In particular, during any particular test,

the critical path is not always triggered, even for a relatively long input. Additionally, a

particular device used for testing (i.e., a particular instance of Zynq-7020 in our case) tends

to have average rather than worst-case timing characteristics.

At the same our analysis reveals significant differences among the behavior of various

algorithms. BLAKE, CubeHash, SHAvite-3, and Skein have an experimental frequency

higher than the post-place & route frequency by 80 to 100%. In the second group, Fugue,

JH, and Luffa, have the frequency higher by 55 to 65%. The third group includes Grøstl,

Hamsi, and Keccak, and is characterized by the frequency improvement factor between 19
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and 30%. Finally, ECHO and Shabal have almost identical frequencies returned by the

static timing analyzer and the experimental test.

The algorithms belonging to the same group seem to have little in common in terms of

basic operations, area requirements, or absolute value of the post-place and route frequency.

As a result, the most likely explanation seems to be the placement of the respective designs

in different locations on the chip, affected to a different extant by parameter variations.

Table 4.1 shows detailed values of the maximum clock frequency obtained from static

timing analysis and experimental testing. Maximum experimental clock frequency was

determined as a worst case value across all investigated input sizes from 10 to 5000 kB. The

fourth column, contains the Throughput based on the formulas for the Throughput of each

algorithm, listed in Table 4.2, with T replaced by the inverse of the Maximum Experimental

Clock Frequency. The fifth column is the Throughput obtained by dividing the message

input size by the actual execution time of hashing in hardware, measured using AXI Timer

for the input size equal to 1000 kB.

Figure 4.6: Maximum clock frequencies obtained using static timing analysis and the ex-
perimental measurement, respectively
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Table 4.1: Detailed results for Maximum Frequencies and Throughputs

Algorithm

Max Freq.
Static

Timing
Analysis
[MHz]

Max Freq.
Experimental

[MHz]

Throughput
Based on
Formula
and Max

Exp. Freq.
[Gb/s]

Throughput
Based on
Exp. HW
Exe. Time

[Gb/s]

BLAKE 76.4 145.4 3.546 3.544

CubeHash 152.9 275.8 4.413 4.399

ECHO 100.1 101.1 5.999 6.000

Fugue 122.9 200.0 3.200 3.191

Grøstl 197.2 258.6 6.305 5.821

Hamsi 105.0 124.9 1.333 1.332

JH 211.6 333.3 4.740 4.726

Keccak 102.6 123.1 5.292 5.314

Luffa 152.5 247.4 7.037 7.213

Shabal 119.7 122.5 0.981 0.983

SHAvite-3 119.0 205.7 2.846 2.828

Skein 70.6 140.3 3.782 3.772

4.3.2 Data transaction overhead

Fig. 4.7(a) shows the ratio of the hardware execution time measured using AXI Timer

(including any communication overhead) over the calculated hardware execution time (using

formulas provided in [4] and in Table 4.2), determined for different input message sizes. As

we can see, for majority of investigated algorithms, such as BLAKE, CubeHash, ECHO,

etc., the trend is very similar. The overhead of the communication between the PS and

PL is between 20 and 50% for the messages of the size of 10 kB. For Shabal the respective

value is about 5%. This overhead decreases below 5% for messages greater or equal to 100

kB. For 500 kB and larger messages, the relative overhead is very small and the ratio is

almost 1. Luffa is the only exception to this trend. For this algorithm, the ratio is 2.2 for

10 kB of data and it decreases to 1.6 for 100 kB messages. For 500 kB and larger inputs,

the ratio is stable around 1.55. Thus, the overhead is very substantial. The reason for this
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unusual behavior is that Luffa is the only algorithm which has the Hash Core throughput

exceeding the throughput of AXI DMA (6.4 Gbit/s at 100 MHz clock frequency). As a

result, DMA core fails to feed the Hash Core with enough data to maintain the maximum

possible throughput. Since the maximum clock frequency supported by the DMA Core on

Zynq-7020 is 150 MHz [39], we can increase the DMA frequency to overcome this issue.

Fig. 4.7(b) depicts the updated graph with new result for Luffa obtained using AXI DMA

running at 150 MHz instead of 100 MHz. As illustrated by the graph, the DMA throughput

bottleneck was completely eliminated and the behavior of Luffa is similar to that of other

algorithms.

In addition, we repeated the same experiment using a second ZedBoard in order to

demonstrate the effect of manufactoring variations on the maximum experimental clock

frequency (and thus all other experimental timing measurements). In Table 4.3, we list the

maximum frequency achieved using the first and second board, average maximum frequency,

and standard deviation. It can be observed that the second board has slightly better results

than the first one for the majority of algorithms and the same results for the remaining ones.

4.3.3 Hardware/Software execution time speed up

Table 4.4 shows HW/SW speed up for 5 different input sizes and all evaluated algorithms.

As we can see, BLAKE and Shabal demonstrate speed up below 100. Hamsi, Luffa, Skein,

ECHO, SHAvite-3 and Fugue achieve the speed-up from 100 to about 620. For CubeHash,

Keccak and JH the speed-up exceeds 2,000, and for JH it is over 20,000. All of the afore-

mentioned algorithms have almost stable results for messages larger than 100 kB. For 10

kB, the majority of them show the decrease in the speed-up caused by the communication

overhead between software and hardware.
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Table 4.2: The I/O Data Bus Width (in bits), Hash Function Execution Time (in clock
cycles), and Throughput (in Gbits/s) for the 256-bit variant of SHA-3 candidates. T denotes
the clock period in ns and N indicates the number of input blocks.

Algorithm
I/O Bus

width
Hash Time

[cycles]
Throughput

[Gbit/s]

BLAKE 64 2 + 8 + 21 ·N + 4 512/(21 · T )

CubeHash 64 2 + 4 + 16 ·N + 160 + 4 256/(16 · T )

ECHO 64 3 + 24 + 26 ·N + 1 + 4 1536/(26 · T )

Fugue 32 2 + 2 ·N + 37 + 8 32/(2 · T )

Grøstl 64 3 + 21 ·N + 4 512/(21 · T )

Hamsi 32 3 + 1 + 3 · (N − 1) + 6 + 8 32/(3 · T )

JH 64 3 + 8 + 36 ·N + 4 512/(36 · T )

Keccak 64 3 + 17 + 24 ·N + 4 1088/(24 · T )

Luffa 64 3 + 4 + 9 ·N + 9 + 1 + 4 256/(9 · T )

Shabal 64 2 + 64 ·N + 64 · 3 + 16 512/(64 · T )

SHAvite-3 64 3 + 8 + 37 ·N + 4 512/(37 · T )

Skein 64 2 + 8 + 19 ·N + 4 512/(19 · T )

4.4 Conclusions

We have developed a novel experimental testbed, based on Zynq All Programmable System

on Chip, for evaluating hardware performance of cryptographic algorithms competing in

cryptographic contests, such as SHA-3, CAESAR, etc. This testbed allows determining the

maximum experimental clock frequency of each core, using binary search, with the accuracy

of 0.1 MHz. The operation of each hash core and surrounding FIFOs, can be first verified

through simulation, and then tested experimentally using ZedBoard. The testbed can be

used to correctly measure performance of designs with the maximum throughput of 64 bit

· 150 MHz = 9.6 Gbit/s.

The correct operation of the testbed was demonstrated using the implementations of 12

Round 2 SHA-3 Candidates. For all these hash functions, the overhead of the communi-

cation between PS and PL was below 5% for 100 kB messages and negligible for messages

above 500 kB. All algorithms have also demonstrated significant speed up vs. their execution

in software on the same chip, in spite of the substantial speed of the ARM core, operating
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at 667 MHz. Our experiments have also demonstrated that the maximum experimental

clock frequency was always higher than the post-place and layout frequency calculated by

Vivado, using static timing analysis. This fact demonstrates that the tool correctly returns

the worst-case boundries, not likely to be reached in practice. At the same time, somewhat

unexpectedly, the spread of ratios experimental to post-place and route frequency is very

large, ranging from 1 to 2. This fact can be explained by a different influence of parameter

variations, on the critical path of the each hash core, due to a different physical location

(placement) of these critical paths in the FPGA fabric.

Our future work will involve an attempt at further explanation of the observed differences

among various algorithms. We will also extend our environment to handle other types of

cryptographic transformations, such as authenticated ciphers and post-quantum public key

cryptosystems. Finally, we will also investigate at the use of other types of prototyping

boards, including the FPGA boards with the PCI Express interface.
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(a) DMA core running at 100 MHz for all algorithms

(b) DMA core running at 150 MHz in case of Luffa and 100 MHz for all other algorithms

Figure 4.7: Ratio of the Experimental (Measured) Hardware Execution Time to the The-
oretical (Calculated) Hardware Execution Time for different input sizes (expressed in kilo-
bytes)
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Table 4.3: Experimental Maximum Frequency results on two different ZedBoards

Algorithm

Max Freq.
Exp.

Board1
[MHz]

Max Freq.
Exp.

Board2
[MHz]

Avr. Max
Freq. Exp.

[MHz]

Std. Dev.
Max Freq.

Exp.
[MHz]

BLAKE 145.4 153.8 149.6 6

CubeHash 275.8 296.3 286.0 14

ECHO 101.1 101.1 101.1 0

Fugue 200.0 200.0 200 0

Grøstl 258.6 258.6 258.6 0

Hamsi 120.2 124.2 122.2 3

JH 333.3 347.8 340.5 10

Keccak 123.1 123.1 123.1 0

Luffa 247.4 262.5 254.9 11

Shabal 122.5 140.0 131.25 12

SHAvite-3 205.7 218.7 212.2 9

Skein 140.3 148.1 144.2 6

Table 4.4: HW/SW Speed Up for 5 Different Input sizes in kB

Input Size
(KB)

10 100 500 1000 5000

BLAKE 73 87 88 89 89

CubeHash 3,326 4,105 4,165 4,181 4,184

ECHO 287 384 397 399 400

Fugue 127 119 119 119 119

Hamsi 581 619 624 624 625

JH 19,155 24,109 24,639 24,712 24,776

Keccak 2,341 3,079 3,169 3,182 3,192

Luffa 302 398 410 411 412

Shabal 6 6 6 6 6

SHAvite-3 81 102 104 105 105

Skein 92 112 114 115 115
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Chapter 5: Conclusion

High-level synthesis (HLS) offers a potential to allow hardware evaluation at the early stages

of cryptographic contests, such as SHA-3 and CAESAR, when the number of candidates is

still very large (e.g., greater than 50 in Round 1 of both aforementioned contests). HLS-

based design significantly reduces hardware development time, and can be carried out by

a cryptographer with limited experience in hardware design. The designer still needs to

modify the reference code in C or C++ to meet the requirements of Vivado HLS tool and

improve the efficiency of the generated HDL code. Quite often, developing an efficient

HLS-ready C code requires some basic knowledge of hardware design and target hardware

architecture. The programmer needs to rewrite and tweak the HLS-ready C code and then

repeatedly check the estimated results, to finally achieve the desired hardware architecture.

This check can be done easily by determining the number of clock cycles per input block,

which should be close to the expected value, determined by a cryptographic algorithm

and its hardware architecture (e.g., equal to the number of cipher rounds plus a small

constant, such as 1 or 2, for the basic iterative architecture). Our results for four Round

2 SHA-3 candidates, obtained using the RTL and HLS based methodologies, respectively,

have demonstrated quite substantial correlation in terms of rankings according to the three

major hardware performance metrics: throughput, area, and throughput to area ratio.

After the RTL code is generated using either the RTL or HLS based approach, this

code must be processed by FPGA tools, such as Xilinx Vivado, in order to produce the

best possible results after logic synthesis, mapping, placing, and routing. The results are

affected by multiple tool options as well as the requested clock frequency. For older Xilinx

FPGAs (up to Virtex 6 and Spartan 6) Xilinx ISE was a primary integrated development

environment used for processing of HDL code. Starting from the Xilinx Series 7 FPGAs

(Virtex 7, Artix 7, and Kintex 7) the primary tool of choice, expected to produce better
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results in a shorter amount of time, is Xilinx Vivado. The option optimization tool developed

by the GMU group in the period 2010-2014, called ATHENa (Automated Tool for Hardware

Evaluation), is capable of working only with Xilinx ISE. Therefore, in this project we have

made the first attempt at replacing ATHENa, for the purpose of generating optimized

results using Xilinx Vivado, by a new tool, we called Minerva. Minerva searches for the

best requested clock frequency and the best set of tool options, leading to the highest

achieved clock frequency, or the highest achieved frequency to area ratio, after static timing

analysis. In addition, Minerva takes advantage of multithreading and multi core execution

to reduce the run time. It can apply an arbitrary number of preselected tool option sets

(called optimization strategies) and combine it with the frequency search in order to achieve

the best results in terms of the throughput or throughput to area ratio. The results for

21 Round 2 CAESAR candidates indicate that we can achieve up to 37% improvement in

terms of the throughput to area ratio in comparison to a simpler binary search for optimal

requested clock frequency, with default values of all tool options. The average run time

depends mostly on n (number of runs in parallel) which was 16 in our experiments. This

average run time is almost 6 times larger than in case of binary search with default values

of parameters.

After the optimized FPGA bitstream is produced, this bitstream can be tested exper-

imentally, using prototyping boards. In this project, we have decided to use ZedBoard

based on Xilinx Zynq All Programmable System on Chip. Our experimental testbed and

the associated software employs binary search to determine the maximum experimental

clock frequency of each cryptographic core. The maximum supported throughput, deter-

mined by the maximum throughput of the AXI DMA, used for communication between the

Processing System (based on ARM Cortex A9) and Programmable Logic (including a hard-

ware cryptographic unit) of Zynq is 9.6 Gbit/s. Twelve SHA-3 Round 2 candidates were

investigated in this work from the point of view of the maximum experimental clock fre-

quency and the maximum experimental throughput. The obtained results indicate that the

communication overhead is negligible for messages above 500 kB. Moreover, all algorithms
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achieved significant speed up vs. their execution in software and maximum experimental

frequency was always greater than the value reported by Xilinx Vivado after static timing

analysis.

In summary, the aforementioned HLS development methodology, option optimization

with Minerva, and the experimental setup based on Zynq provide an efficient, reliable and

comprehensive package for accelerated development and benchmarking of a large number

of algorithms competing with each other during cryptographic contests.
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