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Abstract

RECURSIVE PARAMETER ESTIMATION FOR CONTINUOUS-TIME BIVARIATE MARKOV
CHAINS

Zhuxuan Li

George Mason University, 2014

Thesis Director: Dr. Yariv Ephraim

A continuous-time bivariate Markov chain comprises a pair of continuous-time random

processes which are jointly Markov. One of the two processes is an underlying process while

the other is assumed observable. An important special bivariate Markov chain is given by

the continuous-time Markov modulated Poisson process (MMPP). The underlying process of

an MMPP is a Markov chain, and the observable process is conditionally Poisson. Discrete-

time bivariate Markov chains may also be defined, but they shall not be studied in this

thesis. Bivariate Markov chains are useful in modeling ion-channel currents in living cells,

Internet traffic, and in other problems in queuing theory. In this thesis we focus on recursive

estimation of the parameter of a bivariate Markov chain which comprises its infinitesimal

generator. We study a stochastic approximation approach using a newly developed recursion

for the gradient of the log-likelihood function of the observed signal. The recursive algorithm

is compared with a batch expectation-maximization (EM) algorithm developed earlier. The

bias and mean squared error obtained in estimating each component of the parameter using

each algorithm are evaluated and compared. The recursive algorithm requires far more

data to provide an estimate comparable to that obtained by the EM algorithm, but the

EM algorithm iterates over the entire data multiple times. The main advantage of the



recursive estimator is its ability to adapt to slow changes in the underlying statistics of the

model. The EM algorithm is a batch approach which must be re-applied whenever new

data becomes available or there is a change in the underlying statistics of the model.
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Chapter 1: Introduction

1.1 Overview of bivariate Markov chains

A bivariate Markov chain is composed of two random processes, one of which is observable

and the other is an underlying process. The pair of random processes is jointly Markov,

but neither of them is required to be a Markov process.

There are several important examples of bivariate Markov chains. The most familiar

one might be the hidden Markov model (HMM), which is detailed in [2], [3], [4]. A hidden

Markov model is a discrete-time random process where its underlying process is a discrete-

time finite Markov chain, and its observable process is a sequence of random variables such

that each only depends on the state of the underlying Markov process at that time. For

example, suppose that there are two kinds of weather conditions, sunny or rainy, and I

have two choices, to go to the lab or stay home. The two kinds of weather conditions

may be represented by two states of a Markov chain. As an example, suppose that the

transition probabilities of the Markov chain are specified as follows: Given that today is

sunny, the probability of tomorrow being sunny is 0.7 and the probability of tomorrow

being rainy is 0.3. Given that today is rainy, the probability of tomorrow being sunny is

0.5 and the probability of tomorrow being rainy is 0.5. To complete the model, we specify

the probabilities of my choices given the current state of the Markov chain. Given that

today is rainy, the probability that I go to the lab is 0.1 and the probability that I stay

home is 0.9. Given that today is sunny, the probability that I go to the lab is 0.8 and the

probability that I stay home is 0.2. The hidden Markov model is illustrated in Figure 1.1.

Suppose that the observer is my friend who lives in another city, and have no idea of the

weather condition of my city nor the probabilities mentioned above, i.e. the parameters of

the hidden Markov model, but each day I will tell the observer either I go to the lab or stay

1



Figure 1.1: Example of hidden Markov model

home. In the view of the observer, this is a hidden Markov model. After a long time, e.g.

one year, the observer could estimate the parameters only based on the data of what I did

everyday.

As demonstrated before, there is no special limit on the two processes except that the

two together should be jointly Markov. Each of them could be a continuous-time process

or discrete-time process, have finite states, countably infinite states or uncountably infinite

states. The kind of bivariate Markov chains we are going to talk about in this thesis

are composed of a pair of continuous-time processes with finite states. We just refer to

them as continuous-time bivariate Markov chains or just as bivariate Markov chains. A

familiar bivariate Markov chain is the Markov modulated Poisson process (MMPP) which

is illustrated in [5], [6] and [7]. For the MMPP, the underlying process is a continuous-time

finite state Markov chain, and the observable process is a conditionally Poisson process with

the rate of each event depends only on the current state of the underlying Markov chain.

Figure 1.2 shows an example of MMPP. There are many other kinds of continuous-time

2



Figure 1.2: An example model of Markov modulated Poisson process

bivariate Markov chains like aggregated Markov chains, Markov modulated Markov process

(MMMP), etc. We are going to further expound the MMPP and general continuous-time

bivariate Markov chains in the following chapters.

1.2 Overview of the algorithms

The two algorithms we use in this thesis is expectation-maximization (EM) algorithm and a

recursive parameter algorithm which is based on a stochastic approximation. The EM algo-

rithm was first applied to the MMPP by Rydén [8], and first applied to general continuous-

time bivariate Markov chains in [1]. The EM algorithm is an off-line iterative estimation

algorithm. After each iteration, the EM algorithm obtains a new estimate with the same

3



or a higher likelihood than the previous estimate.

A recursive parameter algorithm, which we refer to it as recursive algorithm in the

following, was first developed for the MMPP by Lindgren and Holst in [9] and [10, Eq.

16], and first developed for general continuous-time bivariate Markov chains in [11]. The

recursive algorithm is an on-line estimation algorithm. We do not estimate based on all the

data like what we did in the EM algorithm, we rather receive part of the data at each time,

let us call it a block of data. The estimation is only based on the current block of data and

previous estimates.

If we use the former hidden Markov model example to explain the basic idea of the two

algorithms, then the EM algorithm would be based on the entire data record of what I did

each day and send the records to the observer after a year, while the recursive algorithm

would be based on what I tell the observer I did every day or every few days, and the

observer revises his or her estimates based on the new record I told him or her each time.

Comparing the EM algorithm with the recursive algorithm, the EM algorithm requires

much larger memory but could get a more accurate estimate, while the recursive algorithm

requires smaller amount of memory and could perform real-time estimation.

1.3 Organization

The reminder of this thesis is organized as follows. In chapter 2, we present a literature

review of the two random processes, i.e. the MMPP and the bivariate Markov chain. In the

first section of chapter 2, we discuss the MMPP, define the associated notations and specify

its parameter. We present an example of an MMPP to help demonstrate these notations.

In the second section, we discuss the bivariate Markov chain, and its parameter.

In chapter 3, we show how to apply the EM algorithm and recursive algorithm to the

MMPP. In the first section of chapter 3, we introduce the likelihood function of the MMPP

which plays an important role in the two algorithms. And we introduce a detailed MMPP

example. In the second section, we elaborate on the estimation procedure of the EM

algorithm for the MMPP. We introduce the forward-backward recursions and show how to

4



implement the EM algorithm using the forward-backward recursions. In the third section,

we present the recursive algorithm for the MMPP. In the fourth section, we provide some

numerical results for the two algorithms.

In chapter 4, we present the EM algorithm and the recursive algorithm for the bivariate

Markov chain, as well as numerical results. In the first section of chapter 4, we introduce

the likelihood function of the bivariate Markov chain. In the second section, we present

the EM algorithm with forward-backward recursions. In the third section, we talk about

the estimation procedure of the recursive algorithm for the bivariate Markov chain with

forward recursion. Numerical results of the EM algorithm and the recursive algorithm are

provided in the fourth section.

In chapter 5, we summarize the contribution of this thesis and point to possible future

research directions.
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Chapter 2: Literature Review

In this chapter, we review the definition and basic theories of Markov modulated Poisson

process and bivariate Markov chains.

2.1 Continuous-Time Markov Modulated Poisson Process

Markov modulated Poisson process (MMPP) has a hidden Markov model representation.

It is composed of two random processes, one is a Markov chain which is the underlying

process, and the other is a conditionally Poisson process which is the observable process.

The parameter of this conditionally Poisson process is determined by the Markov process.

Suppose Z = {Z(t), t > 0} is a continuous-time Markov modulated Poisson process, and

it is composed of a underlying process S and a observable process X, i.e. Z = {X,S}.

Suppose the continuous time Markov chain {S(t), t > 0} has r states, {1, ..., r}, and Q =

{qij , i, j = 1, ..., r} is the generator of S. Let’s denote qii by −qi, which represents the total

transition rate from state i [12, p. 306], [13, p. 362]. Suppose the rates of the conditionally

Poisson process corresponding to the r states {X(t), t > 0} are Λ = diag {λ1, ..., λr}. The

parameter space is composed of Q and Λ, φ = {(Q,Λ)}.

Suppose Tk, k = 1, 2, ... is the time of the kth Poisson event, and assume T0 = 0. Let

Yk denote the dwell time between two Poisson events, i.e. Yk = Tk − Tk−1, for k = 1, 2, ....

Figure 2.1 gives an example of a MMPP whose underlying Markov chain has three states,

i.e. r = 3. Here, yk denotes a realization of Yk, and tk denotes a realization of Tk.

To simplify the problem, let the zeroth event happens at time t = 0, and the first event

comes after that time. At this time, if we consider the underlying process and observable

process together, we can get a Markov renewal process [14, Proposition 1.11] {S(Tk), Yk}∞k=1,

which applies to the Markov modulated Poisson process. Its transition probability matrix,

6



Figure 2.1: Example of Markov modulated Poisson process

as shown in [15], is F (y) = {Fij(y)}, where

Fij(y) = P (Yk 6 y, S(tk−1 + y) = j | S(tk−1) = i).

With this transition probability matrix, we can find the transition density matrix f(y)

which is the derivative of Fij(y) with respect to y. This is given by [16].

f(y) = e(Q−Λ)yΛ. (2.1)

2.2 Continuous-Time Bivariate Markov Chains

A bivariate Markov chain is composed of two processes which are jointly Markov, one is the

underlying process, and the other is the observable process. Suppose Z = {Z(t), t > 0} is a

continuous-time bivariate Markov chain, and it is composed of X and S, X is the observable

7



process, and S is the underlying process, i.e. Z = {X,S} = {(X(t), S(t)), t > 0}. Each

process alone, i.e., X or S, is not necessarily Markov, but together (X,S) is Markov. Let

the process X = {X(t), t > 0} have d states such that the state space is X = {1, ..., d}.

Suppose S = {S(t), t > 0} has r states, the state space is S = {1, ..., r}. We could consider

a bivariate Markov process as a rd-state Markov chain with part of its parameters hidden.

Then the state space of the bivariate Markov chain Z is Z = X × S. The process Z is a

continuous-time process that could jump from one state to another with finite number of

jumps in any finite interval [1]. We can assume that the transition matrix Pt at time 0 is

P0 = I. I is the identity matrix, and Pt is continuous at t = 0.

lim
t→0

Pt = I. (2.2)

Pt is differentiable at t = 0 [17, Propositions 8.3.2-8.3.3]. The generator matrix G is the

derivative of the transition matrix Pt at t = 0.

G = lim
t→0

1

t
(Pt − I). (2.3)

So we could use the generator matrix G to represents the rates of those jumps to interpret

this bivariate Markov chain Z. Let

G = {gab(ij), a, b ∈ X; i, j ∈ S}. (2.4)

8



Suppose that at time t = 0, Z could be at a joint state {(a, i)}, i.e. Z(0) = (a, i). The

probability of Z(t) = (b, j) for a sufficiently small t is [18, p. 333]

P (Z(t) = (b, j) | Z(0) = (a, i))

=

 gab(ij)t+ o(t), (a, i) 6= (b, j)

1 + gaa(ii)t+ o(t), (a, i) = (b, j),

(2.5)

where gaa(ii) = −
∑

(b,j)6=(a,i) gab(ij). The properties of the generator matrix are as follows:

[11]

(i) −∞ 6 gaa(ii) 6 0,

(ii) 0 6 gab(ij) <∞ whenever (a, i) 6= (b, j),

(iii)
∑

b,j gab(ij) 6 0forall(a, i) ∈ Z with equality if

sup
(a,i)
{−gaa(ii)} 6∞. (2.6)

From [11], [19, p. 267]

Pt = eGt. (2.7)

For general bivariate Markov chain, define for any (a, i), (b, j) ∈ X, the transition prob-

ability function is

F abij (t) = P (Z1 = (b, j),∆T1 6 t|Z0 = (a, i)). (2.8)

Because bivariate Markov chain is homogeneous, then for all k,

F abij (t) = P (Zk+1 = (b, j),∆Tk+1 6 t|Zk = (a, i)). (2.9)

The transition density function fabij (t) is the derivative of F abij (t) with respect to t. Define

9



the transition density matrix of the transition of X from a to b that composed by fabij (t) is

fab(t) = {fabij (t), i ∈ Sa, j ∈ Sb}. (2.10)

Then define the transition probability as

F̄ aij(t) = P (S(t) = j,∆T1 > t|X(0) = a, S(0) = i). (2.11)

Its transition matrix is

F̄ a(t) = {F̄ aij(t), i, j ∈ Sa}. (2.12)

Their relationships with generator matrix G are as follows. For t > 0, from [20], [21], [1]

fab(t) = eGaatGab, a 6= b, (2.13)

F̄ a(t) = eGaat. (2.14)

The MMPP introduced earlier is a special kind of bivariate Markov chain. Its generator

is given by

G =



Q− Λ Λ

Q− Λ Λ

Q− Λ Λ

Q− Λ Λ

...


(2.15)

The generator matrix above is a infinite block Toeplitz matrix [11]. For example, the

10



generator of a MMPP with modulo-2 counting of events is [22]

G =

 Q− Λ Λ

Λ Q− Λ

 (2.16)

G12 = G21 is because the transition rate of X from 1 to 2 and from 2 to 1 are symmetric.

And from the above we know that G11 = G22.
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Chapter 3: Estimation Algorithms for Markov Modulated

Poisson Process

In this chapter, we illustrate the EM algorithm and recursive algorithm for the MMPP.

Numerical results are also provided.

3.1 Likelihood Function

The likelihood function is the most important part in any of the two following algorithms.

We are going to maximize the likelihood function to find the parameters. Using the terms

introduced in chapter 2, the inter-arrival time of the observable sequence is y1, ..., yn, a

realization of Y1, ..., Yn. Suppose the observable process has n jumps during [0, T ]. The

likelihood function with parameter φ is

pY1,...,Yn(y1, ..., yn;φ) = π(Q,Λ)

{
n∏
i=1

f(yi;φ)

}
1, (3.1)

where 1 is an r× 1 column vector of ones, π is the distribution of S0 that makes {Sk−1, Yk}

stationary with parameter (Q,Λ) [8]. To simplify the notation, let p(yn;φ) denote the

likelihood function above. The likelihood function (3.1) is the one of the observable process

y1, ..., yn. We also need the likelihood function of the complete statistics s1, ..., sn, y1, ..., yn,

which is denoted by p(y, s; Φ). To further extend the likelihood function introduced above,

we need to define more terms. Like we introduced before, tk is a realization of the time

of kth jump of the observable process. Assume t0 = 0, and that the time of last jump is

T = tn. Let the jump times of the underlying process S be denoted by uk, i.e. 0 < u1 <

u2 < · · · < um < T . And to simplify the problem, suppose u0 = 0, um+1 = T , and let
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Figure 3.1: Example of Markov modulated Poisson process with notations

Ik = [uk−1, uk) for 1 6 k 6 m + 1. The length of Ik is denoted by ∆uk = uk − uk−1. The

state of S during time Ik, S(uk−1), is denoted by sk. Let zk denote the number of jumps of

the observable process X during Ik. N(t) is the number of jumps of the observable process

until time t, not counting the one at time t0 = 0, i.e. N(t) = #{k : 0 < k 6 n, tk 6 t}. If

we put these notations on Figure 2.1, it will become Figure 3.1.

The complete likelihood function p(y, s;φ) is given by [8]

p(y, s; Φ) = πs1

{
m∏
k=1

qske
−qsk∆uk ×

qsk,sk+1

qsk

}
e−qsm+1∆um+1

×

{
m+1∏
k=1

(λsk∆uk)
zk

zk!
e−λsk∆uk × zk!

(∆uk)zk

}
.

(3.2)
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3.2 EM Algorithm

The EM (expectation-maximization) algorithm we are using here was introduced in [15], [11]

and [8]. This algorithm is also used in parameter estimation for hidden Markov models.

We are going to use this algorithm to maximize the likelihood function to estimate the

parameter of the MMPP.

The above likelihood function is very complex and hard to deal with, so we need to

simplify it. Before we present the simplified form, we need to define some notations. Let

mij denotes the number of jumps of the process S from state i to state j during [0, T ] when

i 6= j, i.e.

mij = #{k : 1 6 k 6 m, sk = i, sk+1 = j}

= #{t : 0 < t 6 T, S(t−) = i, S(t) = j}.
(3.3)

Let Ti be the total dwell time of {St = i} during time [0, T ], i.e.

Ti =
∑

{k:16k6m+1,sk=i}

∆uk =

∫ T

0
I{S(t) = i}dt, (3.4)

where I is indicator function. Let ni be the number of jumps of the process X when {St}

remains on state i, i.e.

ni =
∑

{k:16k6m+1,sk=i}

zk =
n∑
k=1

I{S(tk) = i}. (3.5)

If we take logarithm of the likelihood function and simplify it using the above terms, we
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obtain [8]

log p(y, s;φ) =
r∑
i=1

I{S(0) = i} log πi −
r∑
i=1

Tiqi

+
r∑
i=1

r∑
j=1
j 6=i

mij log qij +
r∑
i=1

(ni log λi − λiTi).
(3.6)

Assuming we have an estimate φ̂l = (Ql,Λl) at the lth iteration, we will get new esti-

mates π̂i, m̂ij , T̂i and n̂i corresponding to πi,mij , Ti and ni under the given φ̂l as follows:

π̂i = Pφ̂l{S(0) = i|N(u), 0 6 u 6 T}, (3.7)

m̂ij = Eφ̂l [mij |N(u), 0 6 u 6 T ]

=

∫ T

0
Pφ̂l{S(t−) = i, S(t) = j|N(u), 0 6 u 6 T}dt,

(3.8)

T̂i = Eφ̂l [Ti|N(u), 0 6 u 6 T ] =

∫ T

0
Pφ̂l{S(t) = i|N(u), 0 6 u 6 T}dt, (3.9)

n̂i = Eφ̂l [ni|N(u), 0 6 u 6 T ] =
T∑
0

Pφ̂l{S(tk) = i|N(u), 0 6 u 6 T}. (3.10)

As explained in [8], m̂ij , T̂i and n̂i are calculated as follows:

m̂ij = Eφ̂l [mij |N(u), 0 6 u 6 T ] =
q0
ij

Pφ̂l{N(u), 0 6 u 6 T}

×
∫ T

0
Pφ̂l{N(u), 0 6 u < t, S(t−) = i}Pφ̂l{N(u), t 6 u 6 T |S(t) = j}dt,

(3.11)

15



T̂i = Eφ̂l [Ti|N(u), 0 6 u 6 T ] =
1

Pφ̂l{N(u), 0 6 u 6 T}

×
∫ T

0
Pφ̂l{N(u), 0 6 u < t, S(t) = i}Pφ̂l{N(u), t 6 u 6 T |S(t) = i}dt,

(3.12)

n̂i = Eφ̂l [ni|N(u), 0 6 u 6 T ] =
1

Pφ̂l{N(u), 0 6 u 6 T}

×
T∑
0

Pφ̂l{N(u), 0 6 u < tk, S(tk) = i}Pφ̂l{N(u), tk 6 u 6 T |S(tk) = i}.

(3.13)

From the above three new estimates, we see that they all contain forward-backward

densities. The forward density under φ̂l is

Pφ̂l{N(u), 0 6 u < t, S(t−) = i} = π


N(t)∏
k=1

f(yk)

 F̄ (t− tN(t))1i (3.14)

and the backward density under φ̂l is

Pφ̂l{N(u), t 6 u 6 T |S(t−) = j} = 1′if(tN(t)+1 − t)


n∏

k=N(t)+2

f(yk)1i

 , (3.15)

where 1i denotes an r × 1 column vector of zeros except the ith element is one, f(y) is

as defined in chapter 2, F̄ (t) is a r × r matrix whose (i, j) element denotes the transition

probability of S from state i at time zero, to state j at time t, where during this period

[0, t] no jumps of process S occurred. The matrix F̄ (t) is given as

F̄ (t) = e(Q−Λ)t. (3.16)

Note that both f(t) and F̄ (t) should be calculated under the newest parameters φ̂l.
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With the new estimates m̂ij , T̂i and n̂i, the new parameter {(q̂ij , λ̂i), i, j = 1, . . . , r}

would be given by

q̂ij =
m̂ij

T̂i
, i 6= j

λ̂i =
n̂i

T̂i
.

(3.17)

Then we could calculate new m̂ij , T̂i and n̂i under new parameters, etc. As we calculate

these estimates iteratively, the likelihood values corresponding to these estimates will form

an increasing sequence.

3.2.1 Forward-Backward recursions

The forward-backward densities, can be calculated recursively which simplifies their calcu-

lation greatly. Make L(0) = π and R(n + 1) = 1. The products part in forward density

π
∏N(t)
k=1 f(yk) could be written as L(k) = L(k−1)f(yk), for k = 1, . . . , n. The products part

in backward density
∏n
k=N(t)+2 f(yk)1i could be similarly written as R(k) = f(yk)R(k+ 1),

for k = n, . . . , 1.

But we should not use L(k) and R(k) to calculate directly, because the forward-backward

densities will approach to zero or infinity exponentially as n → ∞. So we need to scale

the forward-backward densities [15], [23], [24]. Let ck = p(yk|yk−1), for k = 1, . . . , n.

Let Pφ̂l{N(u), t 6 u 6 T} be denoted by p(yn) = p(y1, . . . , yn) =
∏n
i=1 p(yi|yi−1), let

p(y1|y0) = p(y1). Therefore, we could rewrite m̂ij in terms of the ck as follows:

m̂ij =
n∑
k=1

qij
ck

(
π
k−1∏
l=1

f(yl)

cl

)
×
∫ tk−

tk−1

F̄ (t− tk−1)1i1
′
jf(tk − t)dt

(
n∏

l=k+1

f(yl)

cl
1

)
. (3.18)

17



The scaled forward recursion is redefined as

L̃(0) = π

L̃(k) =
L̃(k − 1)f(yk)

ck
, k = 1, . . . , n,

(3.19)

where ck is defined by

ck = π

k−1∏
l=1

f(yl)

cl
f(yk)1 = L̃(k − 1)f(yk)1, k = 1, . . . , n. (3.20)

And the scaled backward recursion is defined as

R̃(n+ 1) = 1

R̃(k) =
f(yk)R̃(k + 1)

ck
, k = n, . . . , 1,

(3.21)

We could also get the scaled forward-backward densities directly,

L̃(k) = π

k∏
l=1

f(yl)

cl
, k = 1, . . . , n,

R̃(k) =
n∏
l=k

f(yl)

cl
1, k = n, . . . , 1,

(3.22)

In terms of ck, the log-likelihood function could be rewritten as follow:

log p(yn) =

n∑
k=1

log(yk|yk−1) =

n∑
k=1

log ck. (3.23)
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3.2.2 Implementation of EM Algorithm

To make the implementation easier, we need to rewrite the m̂ij , T̂i and n̂i. Let m̂ denotes

an r×r matrix where its (i, j) element is m̂ij , let n̂ denote a r×1 matrix whose ith element

is n̂i. As shown in [15], [25]

m̂ = Q�
n∑
k=1

I′k
ck
, (3.24)

where � denotes the Schur-Hadamard product of two matrices. and Ik is the upper right

r× r matrix of eCkyk . We could use the function expm in MATLAB to calculate the matrix

exponential [26]. Ck is a 2r × 2r matrix

Ck =

 Q− Λ ΛR(k + 1)L(k − 1)

0 Q− Λ

 , (3.25)

where 0 is an r × r matrix that all of its elements are zero.

n̂ =

n∑
k=1

L(k)′ �R(k + 1), (3.26)

and T̂i = m̂ii/qii. The likelihood function of the observable process under parameter φ

could be rewritten in terms of the ck as follow:

p(y1, ..., yn; Φ) = π

{
n∏
k=1

f(yi; Φ)

}
1 =

n∏
k=1

ck. (3.27)

3.3 Recursive Algorithm

The recursive algorithm we use here was introduced in [27]. The advantage of the recursive

algorithm is on-line and does not require a large memory to save all the data. Instead of
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estimating the parameters after we have got all the data as in the EM algorithm, we receive

a small block of data and then obtain a new parameter estimate based on the latest block

and previous estimate. Suppose we have made l estimations and got the parameter φ̂l and

the l+ 1th block of data yl+1, yl+1 = (yln, . . . , y(l+1)n), where n is the block size. But since

we do not need the former l blocks of data, we could simply number the data of l + 1th

block yl+1 = (y0, . . . , yn) = yn. The l + 1th estimate φ̂l+1 would be

φ̂l+1 = PΦ(φ̂l + γlΨ(yl+1; φ̂l)), (3.28)

where γl is convergence factor γl = γ0l
−α, for some γ0 > 0, α ∈ (0.5, 1], Ψ(yl+1; φ̂l) is

the derivative of the log-likelihood function, i.e. score function of yl+1 with respect to the

parameters φ̂l. PΦ is a projection that confines the parameter estimate within a feasible

set.

After we obtain the l+1th estimate, we could average it in case to improve its statistical

properties

φ̄l+1 =
1

l + 1

l+1∑
k=1

φ̂k. (3.29)

To simplify the derivative, define a new parameter matrix θ as follows:

θij =

 qij i 6= j

λii i = j.
(3.30)

Reshape matrix θ into an r2 × 1 vector whose elements are taken column-wise from θ. The

vector is denoted by vec θ, vec is known as standard vectorization function. Define a new

vector ξk which is a 1× r row vector such that ξk(j) = p(Sk = j|yk). It could be written in

recursive form as

ξk = ξk−1f(yk; θ)c
−1
k . (3.31)
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Then ck could be written as

ck = ξk−1f(yk; θ)1. (3.32)

As shown in [27], the score vector of an MMPP given the observed process S is

Ψ(yk; θ) =
∂

∂(vec θ)′
log p(yk)

=
1

p(yk)

∂

∂(vec θ)′
p(yk)

=

r∑
i=1

1

p(yk)

∂

∂(vec θ)′
p(yk, Sk = i).

(3.33)

which is a 1 × r2 vector. To get rid of the sum, define a new r × r2 matrix ψ(yk; θ) such

that its (i, j) element is

ψ(yk; θ)ij =
1

p(yk)

∂

∂(vec θ)j
p(yk, Sk = i). (3.34)

The relationship between ψ(yk; θ) and the score vector Ψ(yk; θ) is given by

Ψ(yk; θ) = 1′ψ(yk; θ). (3.35)

Expanding the ψ(yk; θ)ij , as was done in [27], we obtain

ψ(yk; θ)ij = c−1
k

r∑
α=1

{
ψ(yk−1; θ)αjfαi(yk; θ) + ξk−1(α)

∂

∂(vec θ)j
fαi(yk; θ)

}
. (3.36)

The matrix ψ(yk; θ) would be

ψ(yk; θ) = c−1
k

{
f(yk; θ)

′ψ(yk−1; θ) + (Ir ⊗ ξk−1)
∂vec f(yk; θ)

∂(vec θ)′

}
, (3.37)
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where Ir is an r × r identity matrix and ⊗ is the Kronecker product. From this equation,

we can see that we have already got all the terms except the last term which is also given

by [27]

∂vec f(y; θ)

∂(vec θ)′
= (Λ⊗ Ir)Hr2e

NyM ′r2I + (Ir ⊗ eQ−Λy)J , (3.38)

where Hr2 is an r2× 2r2 matrix whose left r2 columns are Ir2 and the right r2 columns are

zeros, i.e. zero matrix 0. Mr2 is also an r2 × 2r2 matrix, but its left r2 columns are zero

matrix 0 and the right r2 columns are Ir2 . N is a 2r2 × 2r2 matrix

N =

 Ir ⊗ (Q− Λ) Ir ⊗ Ir

0 (Q− Λ)′ ⊗ Ir

 . (3.39)

I is an r2 × r2 matrix I = ∂vec(Q − Λ)/∂(vec θ)′. Its kth column Ik is given by

Ii+r(j−1) = vec V (i, j). V is a r × r matrix whose (i, j) element is

V (i, j) =
∂(Q− Λ)

∂(θij)′
=

 −1ii i = j

1ij − 1ii i 6= j
, (3.40)

where 1ij denotes an r × r matrix of zeros except for its (i, j) element is equal to one.

Similarly, J is an r2 × r2 matrix J = ∂vec(Λ)/∂(vec θ)′. Its kth column Jk is given by

Ji+r(j−1) = vec U(i, j). U is a r × r matrix whose (i, j) element is

U(i, j) =
∂(Λ)

∂(θij)′
=

 −1ii i = j

0 i 6= j
. (3.41)
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3.4 Numerical Results

3.4.1 Numerical Results of EM Algorithm

In this estimation, we choose r = 2, hence we have r2 = 4 parameters. Denote the true

parameters by φ0 and denote the initial value by φ̂0. The true value of case A and B are

the same, it is given by

φ0 = (q12, q21, λ1, λ2) = (10, 1, 100, 10) . (3.42)

The true value of case C and D are the same, it is given by

φ0 = (q12, q21, λ1, λ2) = (5, 2, 100, 50) . (3.43)

The initial values of the four cases are as follows:

1. Case A

φ̂0 = (q12, q21, λ1, λ2) = (7.36, 0.88, 81.7, 9.48) (3.44)

2. Case B

φ̂0 = (q12, q21, λ1, λ2) = (1, 10, 500, 1) (3.45)

3. Case C

φ̂0 = (q12, q21, λ1, λ2) = (10.12, 1.9, 128, 53.9) (3.46)

4. Case D

φ̂0 = (q12, q21, λ1, λ2) = (10, 1, 150, 1) (3.47)

Tables 3.1-3.4 show the numerical results of four cases EM algorithm estimation. The

bias in the tables represents the difference between the mean of the estimates and the

true parameters, i.e.,
∑n

k=1(φ̂k − φ0)/n. σ2 is the mean squared error in this estimation,∑n
k=1(φ̂k − φ0)2/n, where n is the number of observations. From the given initial value
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Table 3.1: Bias and MSE in EM estimating an MMPP of case A

Case A q12 q21 λ1 λ2

True Values 10 1 100 10

Initial Values 7.36 0.88 81.7 9.48

Mean Estimation Results 9.20 0.92 101.48 10.13

Bias -0.80 -0.08 1.48 0.13

σ2 0.92 0.01 29.98 0.40

Table 3.2: Bias and MSE in EM estimating an MMPP of case B

Case B q12 q21 λ1 λ2

True Values 10 1 100 10

Initial Values 1 10 500 1

Mean Estimation Results 10.50 1.16 95.2 9.93

Bias 0.50 0.16 -4.80 -0.07

σ2 1.74 0.10 35.58 0.21

and true values above, we could see that in cases A and C, the initial values are closer to

the true values than in cases B and D, and hence the parameter is easier to estimate. In

cases C and D, the differences between q12 and q21, and between λ1 and λ2, are smaller

than in cases A and B, and are harder to estimate. From the results we can see that these

differences do not affect the performance of EM algorithm much.

Table 3.3: Bias and MSE in EM estimating an MMPP of case C

Case C q12 q21 λ1 λ2

True Values 5 2 100 50

Initial Values 10.12 1.9 128 53.9

Mean Estimation Results 4.90 2.01 98.00 51.35

Bias -0.10 0.01 -2.00 1.35

σ2 0.77 0.93 19.23 7.64
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Table 3.4: Bias and MSE in EM estimating an MMPP of case D

Case D q12 q21 λ1 λ2

True Values 5 2 100 50

Initial Values 10 1 150 1

Mean Estimation Results 5.92 2.91 96.42 50.01

Bias 0.92 0.91 -3.58 0.01

σ2 1.38 2.03 52.22 5.23

3.4.2 Numerical Results of Recursive Algorithm

Similar to the EM algorithm, we also choose r = 2, thus we need to estimate r2 = 4

parameters. The true value and initial value for the recursive algorithm are shown as

follows. Recall the parameter matrix in 3.30, when r = 2, the θ is

θ =

 λ1 q12

q21 λ2

 . (3.48)

The true value of case A and B are the same, it is given by

θ0 =

 100 10

1 10

 . (3.49)

The true value of case C and D are the same, it is given by

θ0 =

 100 5

2 50

 . (3.50)

The initial values of the four cases are as follows:
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1. Case A

θ̂0 =

 97.7 9.36

0.98 9.88

 (3.51)

2. Case B

θ̂0 =

 81.7 7.36

0.88 9.48

 (3.52)

3. Case C

θ̂0 =

 98 4.5

1.9 49

 (3.53)

4. Case D

θ̂0 =

 80 3

1 45

 (3.54)

Similarly to the result of the EM algorithm, in cases A and C, the initial values are closer

to the true values than in cases B and D, and hence the parameter is easier to estimate.

In cases C and D, the differences between q12 and q21, and between λ1 and λ2, are smaller

than in cases A and B, and hence are harder to estimate.

Except for the initial value of the parameter, there are some other factors that may affect

the estimation results. These are the convergence factors γ0 and α. In this estimation, we

choose γ0 = 0.5, 0.1, 0.07, 0.05, and α = 1, 0.7. For different initial parameter values, I

use different parameters. If the initial value is close to the true value, I use smaller γ0, and if

the initial value is far from the true value, I use larger γ0. Tables 3.5-3.8 show the numerical

results of the four cases. The bias and σ2 in the tables are defined the same way as before.

Let θ̂l denotes the kth estimate, the bias equals
∑n

l=1(θ̂l − θ0)/n, σ2 =
∑n

l=1(θ̂l − θ0)2/n.
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Table 3.5: Bias and MSE in recursive estimating an MMPP of case A

Case A q12 q21 λ1 λ2

True value 10 1 100 10

Initial value 9.36 0.98 97.7 9.88

γ0 α Estimation results

0.1 1
mean 10.112 0.998 98.428 9.918
Bias 0.112 -0.002 -1.572 -0.082
σ2
s 0.083 0.067 2.477 0.114

0.07 1
mean 10.707 1.085 98.343 9.567
Bias 0.707 0.085 -1.657 -0.433
σ2
s 0.610 0.037 2.902 4.271

0.05 1
mean 9.740 1.098 98.084 9.930
Bias -0.260 0.098 -1.916 -0.070
σ2
s 0.074 0.025 3.675 0.096

From the results we can see that the initial values affect the performance a lot, but with

closer initial values, we could get better results. And if given initial values that are far away

from the true values like in cases B and D in the EM algorithm, sometimes the produce

does not converge. Table 3.9-3.12 show the averaged estimation result, after averaged, the

mean squared error σ2 is decreased. The boundary here is θl ∈ [0,∞), for l = 1, . . . , r2.

3.4.3 Summary of Numerical Results

From the results we could see that the estimations of Λ are always better than Q. This is

because the Λ is the rate of the observable process X, hence the components of Λ are easier

to estimate, while Q is the parameter of the underlying process S, hence its components

are harder to estimate.

We could also see that given the same amount of data, the EM algorithm performs better

than the recursive algorithm. The performance of the EM algorithm does not depend on

the initial values much for the examples given here, while the performance of the recursive

algorithm is affected by the initial values much more. If the initial value is closer to the

true value, the recursive algorithm performs better. The estimation results of the recursive

algorithm are also affected by the other factors γ0 and α, in γl = γ0l
−α in equation 3.28.
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Table 3.6: Bias and MSE in recursive estimating an MMPP of case B

Case B q12 q21 λ1 λ2

True value 10 1 100 10

Initial value 7.36 0.88 81.7 9.48

γ0 α Estimation results

0.5 1
mean 11.702 1.103 88.103 9.778
Bias 1.702 0.103 -11.897 -0.222
σ2
s 3.944 0.205 141.775 0.154

0.1 1
mean 8.628 1.018 83.170 9.595
Bias -1.372 0.018 -16.830 -0.405
σ2
s 1.949 0.067 283.260 0.326

0.1 0.7
mean 11.822 1.234 88.437 9.839
Bias 1.822 0.234 -11.563 -0.161
σ2
s 3.928 0.114 153.314 0.430

Table 3.7: Bias and MSE in recursive estimating an MMPP of case C

Case C q12 q21 λ1 λ2

True value 5 2 100 50

Initial value 4.5 1.9 98 49

γ0 α Estimation results

0.1 1
mean 5.395 2.061 98.907 49.745
Bias 0.395 0.061 -1.093 -0.255
σ2
s 0.292 0.064 1.196 0.090

0.07 1
mean 5.369 1.990 98.515 49.647
Bias 0.369 -0.010 -1.485 -0.353
σ2
s 0.184 0.082 2.211 0.166

0.05 1
mean 4.964 2.030 98.424 49.420
Bias -0.036 0.030 -1.576 -0.580
σ2
s 0.049 0.022 2.485 0.361
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Table 3.8: Bias and MSE in recursive estimating an MMPP of case D

Case D q12 q21 λ1 λ2

True value 5 2 100 50

Initial value 3 1 80 45

γ0 α Estimation results

0.5 1
mean 4.777 2.749 89.547 46.431
Bias -0.223 0.749 -10.453 -3.569
σ2
s 0.934 0.971 109.424 13.347

0.1 1
mean 3.792 3.022 82.192 46.109
Bias -1.208 1.022 -17.808 -3.891
σ2
s 1.589 1.156 317.149 15.178

0.1 0.7
mean 4.869 1.889 93.292 47.395
Bias -0.131 -0.111 -6.708 -2.605
σ2
s 1.086 0.485 46.955 7.378

Table 3.9: Averaged result of bias and MSE in recursive estimating an MMPP of case A

Case A q12 q21 λ1 λ2

True value 10 1 100 10

Initial value 9.36 0.98 97.7 9.88

γ0 α Estimation results

0.1 1
mean 9.990 1.063 98.226 10.077
Bias -0.010 0.063 -1.774 0.077
σ2
s 0.032 0.008 3.149 0.035

0.07 1
mean 10.672 1.290 98.062 9.922
Bias 0.672 0.290 -1.938 -0.078
σ2
s 0.471 0.086 3.765 0.010

0.05 1
mean 9.655 1.079 97.934 10.001
Bias -0.345 0.079 -2.066 0.001
σ2
s 0.121 0.007 4.268 0.030
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Table 3.10: Averaged result of bias and MSE in recursive estimating an MMPP of case B

Case B q12 q21 λ1 λ2

True value 10 1 100 10

Initial value 7.36 0.88 81.7 9.48

γ0 α Estimation results

0.5 1
mean 11.060 1.361 86.116 9.968
Bias 1.060 0.361 -13.884 -0.032
σ2
s 1.378 0.151 182.819 0.067

0.1 1
mean 8.231 1.148 82.608 9.697
Bias -1.769 0.148 -17.392 -0.303
σ2
s 3.165 0.043 602.480 0.170

0.1 0.7
mean 10.348 1.281 85.426 9.825
Bias 0.348 0.281 -14.574 -0.175
σ2
s 0.351 0.082 212.575 0.056

Table 3.11: Averaged result of bias and MSE in recursive estimating an MMPP of case C

Case C q12 q21 λ1 λ2

True value 5 2 100 50

Initial value 4.5 1.9 98 49

γ0 α Estimation results

0.1 1
mean 5.348 2.188 98.726 49.693
Bias 0.348 0.188 -1.274 -0.307
σ2
s 0.176 0.037 1.623 0.110

0.07 1
mean 5.155 2.087 98.441 49.599
Bias 0.155 0.087 -1.559 -0.401
σ2
s 0.078 0.015 2.436 0.173

0.05 1
mean 4.901 2.069 98.328 49.407
Bias -0.099 0.069 -1.672 -0.593
σ2
s 0.041 0.021 2.798 0.361
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Table 3.12: Averaged result of bias and MSE in recursive estimating an MMPP of case D

Case D q12 q21 λ1 λ2

True value 5 2 100 50

Initial value 3 1 80 45

γ0 α Estimation results

0.5 1
mean 5.294 3.330 86.313 47.289
Bias 0.294 1.330 -13.687 -2.711
σ2
s 0.747 1.902 187.433 7.557

0.1 1
mean 3.317 2.957 81.445 45.946
Bias -1.683 0.957 -18.555 -4.054
σ2
s 2.839 0.949 344.296 16.443

0.1 0.7
mean 4.565 3.131 87.255 47.093
Bias -0.435 1.131 -12.745 -2.907
σ2
s 0.415 1.552 163.515 8.562

These factors should be chosen based on the distance from initial value to the true value.

If the distance is small and we choose a large factor γl, the estimation procedure may not

converge, and if the distance is large and we choose a smaller factor, the estimation results

would be close to the initial value and still be far away from the true value. As illustrated

before, the distance between q12 and q21, and between λ1 and λ2, also have large effects on

the performance of the recursive algorithm. In addition, the performance of the recursive

algorithm is not as stable as the EM algorithm, thus the mean squared error is always larger

than the EM algorithm.

For the recursive algorithm, comparing the original estimation results with the averaged

results, the bias of the original estimation is always smaller than that of the averaged ones,

but sometimes, the mean squared error is greater than that of the averaged ones. This is

because by averaging the estimation results, we force the l+1th estimate to converge by the

factor 1/l + 1 in equation 3.29. So the results obtained through averaging may not always

be better than the original ones, but are more stable.
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Chapter 4: Estimation Algorithms for Bivariate Markov

Chains

In this chapter, we discuss the estimation procedure of the EM algorithm and recursive

algorithm for the bivariate Markov chain. Numerical results are provided.

4.1 Likelihood Function [1]

The likelihood function of the bivariate Markov chain is similar to that of the MMPP,

and it is also very important in the following discussion. Suppose that at t = 0, both

processes X and S jump. Firstly, let’s define some terms. Suppose the k + 1th jump

of process X happens at t = Tk, and denote the state of X at time Tk by Xk = XTk .

Denote the state of S at time Tk, by Sk = STk , for k = 1, 2, . . . . The realization of

Tk would be tk. So the state of Z = (X,S) at time Tk would be Zk = (Xk, Sk), its

realization would be zk = (xk, sk). And denote the dwell time of X at state Xk−1 by Yk,

i.e. Yk = Tk−Tk−1, and its realization would be yk. The complete form likelihood function

is pX0,S0,Y1,X1,S1,...,Yn,Xn,Sn(x0, s0, y1, x1, s1, . . . , yn, xn, sn;φ), and it could be written as

pφ(x0, s0, y1, x1, s1, . . . , yn, xn, sn) = pφ(z0, y1, z1, . . . , yn, zn)

= pΦ(z0)
n∏
k=1

pφ(yk, zk|zk−1),

(4.1)

because of the chain rule. And it is easy to see that

pφ(x0, y1, x1, . . . , yn, xn) =
∑

s0,...,sn

pφ(x0, s0, y1, x1, s1, . . . , yn, xn, sn). (4.2)
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The likelihood function of the observable process is

p(X(t), 0 6 t 6 T ;φ) = pX0,Y1,X1,...,Yn,Xn(x0, y1, x1, . . . , yn, xn;φ)

= pφ(x0, y1, x1, . . . , yn, xn) =
∑

s0,...,sn

pφ(z0)

n∏
k=1

pφ(yk, zk|zk−1).

(4.3)

In chapter 2 we defined the transition density function fabij (t). It denotes the transition

density of X when it starts from state a at time 0 while S is in state i, then jumps at time t

to state b while S is in state j, which is pφ(yk = t, zk = (b, j)|zk−1 = (a, i)), for k = 1, . . . , n.

Note that S does not need to jump to state j from state i directly, it could jump to any

states during time t, but at time t, it should be at state j. And S does not need to jump at

time t though it could. Conversely, X does not jump until time t. With given parameter

φ, the transition density function will change, so let’s denote the one under parameter φ by

fabij (t;φ), and so does F abij (t;φ), fab(t;φ), F̄ aij(t;φ) and F̄ a(t;φ). Now we could rewrite the

likelihood function of the observable process as product of transition density matrices, [20],

[28]

p(X(t), 0 6 t 6 T ;φ) = νx0(φ)

{
n∏
l=1

fxl−1xl(yl)

}
1 (4.4)

where νx0(φ) is the x0th element of row vector ν(φ). This is the initial distribution of the

bivariate Markov chain with parameter φ when X starts at state x0, which corresponds

with pφ(z0). And 1 is a column vector of ones as defined before, which correspond with the

sum of s0, . . . , sn. Similarly to the MMPP, we are looking for the likelihood function from

t = 0 to t = T , not tn. Suppose the n + 1th jumps happens after time T , which means

there is no jump of X during (tn, T ). The density of X(0) = a and there is no jump during

(0, t) is also defined before as matrix F̄ a(t). With the parameter φ, the likelihood function
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of observable process X during time t ∈ [0, T ] would be

p(X(t), 0 6 t 6 T ;φ) = νx0(φ)

{
n∏
l=1

fxl−1xl(yl)

}
F̄ xn(T − tn;φ)1. (4.5)

The complete form likelihood function under parameter φ is p(Z(t), 0 6 t 6 T ;φ).

4.2 EM Algorithm

The EM algorithm we are using here is introduced in [1] and [8]. In the EM algorithm, we

need to find the parameter φ̂ that maximizes the log-likelihood function given the observable

process. Denote the lth iteration parameter estimate by φ̂l [1],

φ̂l+1 = arg max
φ̂∈Φ

E{log p({Z(t), 0 6 t 6 T}; φ̂)|X(t), 0 6 t 6 T ; φ̂l}. (4.6)

Similarly to the MMPP, let mab
ij denotes the number of jumps of Z from (a, i) to (b, j)

during [0, T ]. Note that there is no special requirement that i 6= j and a 6= b simultaneously

in MMPP case, and we are going to discuss those cases later.

mab
ij = #{t : 0 < t 6 T,Z(t−) = (a, i), Z(t) = (b, j)}. (4.7)

Let T ai denote the total dwell time of Z in state (a, i) during [0, T ], i.e.

T ai =

∫ T

0
I{Z(t) = (a, i)}dt. (4.8)
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For each estimate φ̂, for example, in lth iteration, we have got a new estimation φ̂l, we can

get new m̂ab
ij and T̂ ai corresponding with mab

ij and T ai by

m̂ab
ij = E{mab

ij |X(t), 0 6 t 6 T ; φ̂l}

=
∑
t∈[0,T ]

p(Z(t−) = (a, i), Z(t) = (b, j)|X(τ), 0 6 τ 6 T ; φ̂l),
(4.9)

T̂ ai = E{T ai |X(t), 0 6 t 6 T ; φ̂l}. (4.10)

There are two conditions of m̂ab
ij

1. a = b, i 6= j m̂ab
ij becomes m̂aa

ij under this condition.

m̂aa
ij =

∫ T

0
p(Z(t−) = (a, i), Z(t) = (a, j)|X(τ), 0 6 τ 6 T )dt. (4.11)

2. a 6= b

m̂ab
ij =

∑
k:xk=a,
xk+1=b

p(Z(tk−) = (a, i), Z(tk) = (a, j)|X(τ), 0 6 τ 6 T )dt. (4.12)

By these parameters, we could get the l + 1th estimation of φ̂, i.e. φ̂l+1 by

φ̂l+1 =

{
m̂ab
ij

T̂ ai
, (a, i) 6= (b, j)

}
. (4.13)

4.2.1 Forward-Backward Recursions

Similarly to the MMPP, we need to find the forward-backward recursions of the bivari-

ate Markov chains. Let L(0) = νx0 and R(n + 1) = F̄ xn(T − tn)1. Then we could

35



write the forward density L(k) = {p(X(t), 0 6 t 6 tk, Sk = i), i ∈ Sxk} recursively

as L(k) = L(k − 1)fxk−1xk(yk), for k = 1, . . . , n. And similarly, the backward density

R(k) = {p(X(t), tk−1 < t 6 T |Xk−1 = xk−1, Sk−1 = i), i ∈ Sxk−1
}′ could be written recur-

sively as R(k) = fxk−1xk(yk)R(k + 1), for k = n, . . . , 1. We could rewrite the likelihood

function of the observable process by forward-backward recursions as follow:

p(X(t), 0 6 t 6 T ) = L(k)R(k + 1), k = 0, . . . , n. (4.14)

We also need to scale the forward-backward recursions. The scaled forward recursion is

defined as

L̃(0) = L(0) = νx0

L̃(k) =
L̃(k − 1)fxk−1xk(yk)

ck
, k = 1, . . . , n,

(4.15)

where ck is defined by

ck = L̃(k − 1)fxk−1xk(yk)1, k = 1, . . . , n. (4.16)

the scaled backward recursion is defined as

R̃(n+ 1) = R(n+ 1)F̄ xn(T − tn)1

R̃(k) =
fxk−1xk(yk)R̃(k + 1)

ck
, k = n, . . . , 1,

(4.17)

The relationship between the scaled and unscaled forward-backward recursions are

L̃(k) =
L(k)∏k
l=1 cl

, k = 1, . . . , n

R̃(k) =
R(k)∏n
l=k cl

, k = n, . . . , 1,

(4.18)
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Now we could rewrite the likelihood function with ck

p(X(t), 0 6 t 6 T ) =

n∏
k=1

ck. (4.19)

Then the log-likelihood function would be

log p(X(t), 0 6 t 6 T ) =

n∑
k=1

log ck. (4.20)

4.2.2 Implementation of EM algorithm

With these forward-backward recursions, we could rewrite m̂ab
ij and T̂ ai which are given by

[1]. The m̂ab
ij under the first condition (a = b, i 6= j), i.e. m̂aa

ij is

m̂aa
ij =

Gaa � ∑
k:xk=a

I′k
ck+1


ij

, (4.21)

where Ik is the upper right rxk × rxk matrix of the matrix eCkyk+1 . Ck is a 2rxk × 2rxk

matrix Define a 2rxk × 2rxk matrix

Ck =

 Gxkxk Gxkxk+1
R̃(k + 2)L̃(k)

0 Gxkxk

 , fork = 0, . . . , n− 1 (4.22)

Under the second condition (a 6= b)

m̂ab
ij =

Gab � ∑
k:xk=a,
xk+1=b

J′k
ck+1


ij

, (4.23)
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where

Jk = R̃(k + 2)L̃(k)eGxkxk
yk+1 , k = 0, . . . , n− 1. (4.24)

And

T̂ ai =

 ∑
k:xk=a

I′k
ck+1


ii

. (4.25)

4.3 Recursive Algorithm

The recursive algorithm for estimating the parameter of a bivariate Markov chain was in-

troduced in [11, Chap. 7]. We use a similar algorithm as in the MMPP which is a special

case of a bivariate Markov chain. Unlike the batch EM algorithm which uses the entire data

iteratively, here we estimate the parameter recursively from the current estimate of the pa-

rameter and the newly acquired data {Xk, Yk}. The algorithm works in a block mode. Re-

call that Xk represent the state and Yk represent inter-event time of the observable process.

Suppose that we have received the l + 1th block of data yl = (x(l−1)n, y(l−1)n, . . . , xln, yln),

where n + 1 is the block size, and after we have done l estimations, the lth estimate is φ̂l.

Then the l + 1th estimate is given by

φ̂l+1 = PΦ(φ̂l + γlΨ(yl+1; φ̂l)). (4.26)

All the terms are defined similarly to the MMPP; Ψ(yl+1; φ̂l) is the derivative of the log-

likelihood function, i.e. the score function evaluated for the data yl+1 and parameters φ̂l, γl

is the convergence factor γl = γ0l
−α, for some γ0 > 0, α ∈ (0.5, 1], and PΦ is a projection

onto the parameter space.

To simplify the calculation, we need to vectorize the parameter matrix φ, and we de-

note the lth parameter estimate by φ̂l. The relationship between generator matrix G and

parameter φ is illustrated as follows. G is composed of the elements of the parameter φ.

For example for a r = 2 and d = 2 bivariate Markov chain, the generator matrix G would
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be a 4× 4 matrix, and the dimension of parameters φ would be (r + d)2 − (d+ r) = 12.

G =



−φ4 − φ7 − φ10 φ4 φ7 φ10

φ1 −φ1 − φ8 − φ11 φ8 φ11

φ2 φ5 −φ2 − φ5 − φ12 φ12

φ3 φ6 φ9 −φ3 − φ6 − φ9


(4.27)

Then we could get the score vector given the observed process X as follow:

Ψ(yk;φ) =
∂

∂(φ′)
log p(yk). (4.28)

After we have got the l+1th estimate, we need to average it in case to improve its statistical

properties

φ̄l+1 =
1

l + 1

l+1∑
k=1

φ̂k. (4.29)

4.3.1 Forward recursion

The likelihood function of the observable process under parameter φ is given before

p(X(t), 0 6 t 6 T ;φ) = νx0(φ)

{
n∏
l=1

fxl−1xl(yl)

}
1 (4.30)

Denote the forward density of the 1st block of observable and underlying data Y 1, Sn under

parameter φ by p(y1, sn;φ). Its forward recursion is give by [11]

p(y1, sn;φ) = pφ(yn0 , x
n
0 , sn) =

∑
sn−1

pφ(yn−1
0 , xn−1

0 , sn−1)pφ(yn, zn|zn−1), (4.31)
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where yn0 , x
n
0 = (x0, y0, x1, y1, . . . , xn, yn), and pφ(y0, x0, s0) = pφ(z0) since y0 = 0. Also, we

need to define the forward recursion L. L(k) is an r × 1 vector for k = 1, . . . , n, where r is

the number of states of the underlying process S as defined in chapter 2. Under parameter

φ, L(k) is given by [9]

L(k;φ) = (pφ(yk0 , x
k
0, 1), . . . , pφ(yk0 , x

k
0, r)). (4.32)

From equation (4.30), its recursive form is given by

L(k;φ) = L(k − 1;φ)fxk−1xk(yk;φ), (4.33)

where fab(t;φ) is the transition density under parameter φ as defined before in equation

(2.10) and (2.13). And L(0;φ) corresponds with the νx0(φ) in equation (4.29). Also we

need to find the scaled forward recursion L̃ with scale factor c, which is defined as follows:

c0 = νx0(φ)1,

ck = L̃(k − 1;φ)fxk−1xk(yk;φ)1, k = 1, . . . , n.

(4.34)

Then we could scale the forward recursion

L̃(0;φ) =
νx0(φ)

c0
,

L̃(k;φ) =
L̃(k − 1;φ)fxk−1xk(yk;φ)

ck
, k = 1, . . . , n.

(4.35)
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The relationship between the unscaled forward recursion L(k;φ) and the scaled forward

recursion L̃(k;φ) is given by

L̃(k;φ) =
L(k;φ)∏k
l=0 cl

, k = 0, . . . , n. (4.36)

Note that ck could also be written as

ck = pφ(xk, yk|xk−1, yk−1, . . . , x1, y1, x0). (4.37)

In terms of ck, the likelihood function of the observable process X(t) could be rewritten as

p(X(t), 0 6 t 6 T ;φ) =

n∏
k=0

ck. (4.38)

The log-likelihood function would be

log p(X(t), 0 6 t 6 T ;φ) =

n∑
k=0

log ck. (4.39)

4.3.2 Implementation of Recursive Algorithm

To calculate the score function Ψ(yk;φ), we need to define a new r̃× r matrix δn(φ), where

r̃ is the number of unknown parameters, i.e. the dimension of φ.

δn(φ) =
1∏n

k=0 ck

{
∂pφ(yn0 , x

n
0 , sn)

∂φl
, l = 1, . . . , r̃; sn = 1, . . . , r

}

=
1∏n

k=0 ck
[Dφpφ(yn0 , x

n
0 , 1), Dφpφ(yn0 , x

n
0 , 2), . . . , Dφpφ(yn0 , x

n
0 , r)] .

(4.40)
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Denote the derivative of a function f(x;φ), with respect to the lth element of φ, i.e.

φl by ∂lf(x;φ). Define an r̃ × r matrix X (n − 1;φ) whose lth row is given by L̃(n −

1;φ)∂lf
xn−1xn(yn;φ). Now δn(φ) could be rewritten as [11]

δn(φ) =
1

ck
[δn−1(φ)fxn−1xn(yn;φ) + X (n− 1;φ)] . (4.41)

Recall that fab(yn;φ) is given in chapter 2 that fab(y;φ) = eGaayGab. The score function

could be rewritten as [11]

Ψ(y1;φ) = Ψ(yn0 , x
n
0 ;φ)

=
∂

∂(φ′)
log p(yn0 , x

n
0 ) = δn(φ)1.

(4.42)

In order to calculate the score function Ψ(y1;φ), we need to find the derivative of matrix

fab(y;φ) with respect to parameter φl, ∂lf
ab(y;φ), in the matrix X (n−1;φ), which is given

in [29].

∂lf
ab(y;φ) = ∂le

GaayGab = (∂le
Gaay)Gab + eGaay(∂lGab). (4.43)

The calculation of ∂lGab involves taking the derivative of each element of matrix Gab with

respect to φl, i.e. ∂lGab = {∂l[(Gab)ij ]/∂lφl}. Then we need to calculate the matrix deriva-

tive ∂le
Gaay which is given by [30]. Suppose we are going to find the derivative of the

exponential of an r × r matrix A. In our case, A = Gaay. Its derivative with respect to φl

is ∂lA = {∂laij/∂lφl}, where aij is the (i, j) element of matrix A. Note that ∂lA is also an

r × r matrix. Define an r̃ × r Jacobian matrix

5A = [vec(∂1A, . . . , ∂r̃A)]. (4.44)
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Recall that vec is the standard vectorization function and r̃ is the dimension of φ. The

derivative of the exponential of A is given by [11]

5eA = [eC ]12 5A, (4.45)

where C is given by

C =

 A′
⊗
Ir Ir2

1 Ir
⊗
A

 . (4.46)

Recall that
⊗

denotes the Kronecker product, Ir denotes an r × r identity matrix, and

[eC ]12 is the upper right r2 × r2 block of the matrix eC .

4.4 Numerical Results

4.4.1 Numerical Results for EM Algorithm

If an MMPP and a bivariate Markov chain have the same number of underlying states r,

then the estimation of the parameter of a bivariate Markov chain is usually much harder

than the estimation of the parameter of an MMPP. Since even if d = r, the number of

unknown parameters in the bivariate Markov chain is (r + d)2 − (d+ r) = (2r)2 − 2r while

for the MMPP that number is only r2.

Tables 4.1-4.4 show the numerical results of four bivariate Markov chains, all of them

have the same true parameter, but different initials. The example we present is for a

bivariate Markov chain with r = 2, d = 2. Its generator matrix is

G =



−70 10 50 10

20 −55 25 10

50 0 −60 10

0 10 20 −30


(4.47)

43



Let θi denotes the diagonal parameter on the ith row. Because −θi is the sum of the other

elements at the same row, its value could represent the estimation accuracy of the other

elements in that row. Instead of showing the estimation results of all sixteen parameters,

we present the estimation results of the four diagonal parameters. The initial values of the

four cases are

1. Case A

G =



−55 5 45 5

15 −40 20 5

45 0 −50 5

0 5 25 −30


(4.48)

2. Case B

G =



−80 20 40 20

10 −65 35 20

60 0 −80 20

0 20 30 −50


(4.49)

3. Case C

G =



−120 30 70 20

2 −8 5 1

70 0 −100 3

0 1 2 −3


(4.50)

4. Case D

G =



−36 3 30 3

2 −48 45 1

70 0 −100 30

0 30 40 −70


(4.51)
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Table 4.1: Bias and MSE in EM estimating a bivariate Markov chain of case A

Case A θ1 θ2 θ3 θ4

True Values -70 -55 -60 -30

Initial Values -55 -40 -50 -30

Bias 7.95 7.52 6.40 1.46

σ2 64.19 68.16 42.92 3.46

Table 4.2: Bias and MSE in EM estimating a bivariate Markov chain of case B

Case B θ1 θ2 θ3 θ4

True Values -70 -55 -60 -30

Initial Values -80 -65 -80 -50

Bias -11.26 1.97 -16.25 -4.79

σ2 129.13 6.75 266.62 23.91

Similarly to the MMPP, denote the true parameters by φ0, the bias shown in the tables

represents the difference between the mean of the estimates and the true parameters, i.e.,∑n
l=1(φ̂l−φ0)/n. σ2 is the mean squared error in this estimation,

∑n
l=1(φ̂l−φ0)2/n, where

n is the number of observations.

Figures 4.1-4.8 show the estimation result versus the number of iterations. Note that

the initials for these two parameters, φ3 = 0 and φ5 = 0, are the same as the true value, and

their estimates are always the same as the true values too. So in the figures, the estimated

value and true value coincide, so the blue line which denotes the estimated value is covered

by the green line which denotes the true value. Thus we could only see a green line in the

figures of parameters φ3 and φ5.

Table 4.3: Bias and MSE in EM estimating a bivariate Markov chain of case C

Case C θ1 θ2 θ3 θ4

True Values -70 -55 -60 -30

Initial Values -120 -8 -100 -3

Bias -4.04 4.30 1.60 0.54

σ2 18.69 21.72 5.21 1.72
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Figure 4.1: Estimation result versus number of iterations in EM estimating of case A part
one
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Figure 4.2: Estimation result versus number of iterations in EM estimating of case A part
two
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Figure 4.3: Estimation result versus number of iterations in EM estimating of case B part
one
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Figure 4.4: Estimation result versus number of iterations in EM estimating of case B part
two
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Figure 4.5: Estimation result versus number of iterations in EM estimating of case C part
one
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Figure 4.6: Estimation result versus number of iterations in EM estimating of case C part
two
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Figure 4.7: Estimation result versus number of iterations in EM estimating of case D part
one
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Figure 4.8: Estimation result versus number of iterations in EM estimating of case D part
two
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Table 4.4: Bias and MSE in EM estimating a bivariate Markov chain of case D

Case D θ1 θ2 θ3 θ4

True Values -70 -55 -60 -30

Initial Values -36 -48 -100 -70

Bias 7.53 10.93 -17.12 -14.03

σ2 59.11 125.61 295.10 200.20

4.4.2 Numerical Results for Recursive Algorithm

In this algorithm, we use the same true values and initial values as we used in the EM

algorithm. Similarly to the EM algorithm, we just present the parameters that are located

on the diagonal of the generator matrixG, which are θ1 = −φ4−φ7−φ10, θ2 = −φ1−φ8−φ11,

θ3 = −φ2 − φ5 − φ12 and θ4 = −φ3 − φ6 − φ9. The performance of recursive algorithm is

affected by some factors other than initial values. Those factors are the block size of the

data n+ 1, and the two parameters of convergence factor γ0 and α. We present the results

for n+1 = 5, 10, 20, γ0 = 1, 0.1, and α = 1, 0.7 with the four cases of different initial values.

Tables 4.5-4.8 show the numerical results for the four cases and different factors. Similarly to

the EM algorithm, the bias shown in the tables represents the difference between the mean

of the estimates and the true parameters, i.e.,
∑n

l=1(φ̂l−φ0)/n. σ2 is the mean squared error

in this estimation,
∑n

l=1(φ̂l−φ0)2/n, where n is the number of observations. Table 4.9-4.12

show the averaged results, after averaging, the mean square error σ2 is decreased. The

boundary here is φl ∈ [0,∞), for l = 1, . . . , r̃. Figures 4.9-4.16 show the estimation result

versus the number of blocks of one replication. We could see the trend of the estimations

from these figures.

4.4.3 Summary of Numerical Results

From the figures of the performance of each parameter, we could see that some parameters

are always estimated better than others. This is because some of the parameters are related

to the observable process, and the others are related to the underlying process. The figures
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Table 4.5: Bias and MSE in recursive estimating a bivariate Markov chain of case A

Case A θ1 θ2 θ3 θ4

True value -70 -55 -60 -30

Initial value -55 -40 -50 -30

γ0 n+ 1 α Estimation results

1 10 1
Bias 8.07 12.14 3.25 0.91
σ2
s 68.10 148.38 13.21 2.84

1 10 0.7
Bias -3.11 -0.58 -8.62 -9.72
σ2
s 47.56 39.74 97.85 127.45

0.1 10 0.7
Bias 7.29 11.85 4.98 0.41
σ2
s 54.99 141.07 26.71 1.88

1 20 1
Bias 8.07 12.11 3.25 0.87
σ2
s 68.14 147.85 13.21 2.78

1 20 0.7
Bias -2.14 1.53 -5.61 -9.08
σ2
s 33.15 29.20 48.04 113.60

0.1 20 0.7
Bias 7.37 11.95 6.23 0.84
σ2
s 55.64 143.15 40.15 1.85

1 5 1
Bias 8.07 12.14 3.25 0.91
σ2
s 68.13 148.39 13.22 2.84

1 5 0.7
Bias -3.91 -2.45 -13.07 -10.55
σ2
s 61.14 55.37 207.17 147.16

0.1 5 0.7
Bias 7.28 11.82 3.49 0.25
σ2
s 55.59 140.70 14.71 2.39
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Table 4.6: Bias and MSE in recursive estimating a bivariate Markov chain of case B

Case B θ1 θ2 θ3 θ4

True value -70 -55 -60 -30

Initial value -80 -65 -80 -50

γ0 n+ 1 α Estimation results

1 10 1
Bias -5.12 -2.13 -21.77 -8.40
σ2
s 27.81 6.70 474.61 73.09

1 10 0.7
Bias -14.71 5.69 -19.44 -6.10
σ2
s 225.38 51.57 393.11 58.99

0.1 10 0.7
Bias -4.83 -2.88 -20.44 -4.85
σ2
s 24.54 9.66 418.00 24.48

1 20 1
Bias -5.12 -2.12 -21.76 -8.40
σ2
s 27.81 6.68 474.59 73.14

1 20 0.7
Bias -15.26 4.28 -21.51 -10.37
σ2
s 241.49 34.12 471.65 132.44

0.1 20 0.7
Bias -5.35 -3.83 -20.06 -4.68
σ2
s 29.62 15.74 402.67 23.02

1 5 1
Bias -5.13 -2.13 -21.76 -8.40
σ2
s 27.85 6.72 474.54 73.05

1 5 0.7
Bias -14.03 4.90 -17.41 -5.79
σ2
s 208.57 48.54 326.15 48.09

0.1 5 0.7
Bias -4.46 -1.91 -21.09 -6.34
σ2
s 21.33 5.45 445.54 41.99
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Table 4.7: Bias and MSE in recursive estimating a bivariate Markov chain of case C

Case C θ1 θ2 θ3 θ4

True value -70 -55 -60 -30

Initial value -120 -8 -100 -3

γ0 n+ 1 α Estimation results

1 10 1
Bias -23.86 -9.54 -31.55 -0.83
σ2
s 575.39 96.82 996.63 3.75

1 10 0.7
Bias -9.53 -67.41 -18.50 -39.16
σ2
s 194.53 4715.32 458.74 1963.67

0.1 10 0.7
Bias -26.38 -26.49 -29.36 -1.00
σ2
s 697.62 706.27 863.48 5.73

1 20 1
Bias -23.62 -9.65 -31.56 -1.15
σ2
s 564.43 98.97 997.65 4.74

1 20 0.7
Bias -16.24 -66.11 -14.83 -29.83
σ2
s 305.94 4531.60 284.98 976.49

0.1 20 0.7
Bias -31.13 -23.29 -31.03 -5.29
σ2
s 970.07 544.93 963.80 34.53

1 5 1
Bias -23.49 -9.57 -30.98 -0.26
σ2
s 557.51 97.59 960.75 2.82

1 5 0.7
Bias 0.41 -67.15 -19.13 -40.13
σ2
s 99.15 4800.22 654.16 2482.94

0.1 5 0.7
Bias -20.59 -28.70 -28.27 2.36
σ2
s 427.09 829.78 800.66 9.67
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Table 4.8: Bias and MSE in recursive estimating a bivariate Markov chain of case D

Case D θ1 θ2 θ3 θ4

True value -70 -55 -60 -30

Initial value -36 -48 -100 -70

γ0 n+ 1 α Estimation results

1 10 1
Bias 1.32 1.74 -32.60 -15.74
σ2
s 5.93 4.29 1063.56 250.63

1 10 0.7
Bias -11.82 -2.82 -38.21 -25.00
σ2
s 152.35 33.13 1479.19 654.31

0.1 10 0.7
Bias -6.45 -1.24 -30.56 -8.78
σ2
s 44.54 2.03 934.30 77.82

1 20 1
Bias 1.28 1.76 -32.60 -15.74
σ2
s 5.84 4.35 1063.73 250.76

1 20 0.7
Bias -10.48 -2.67 -35.04 -26.11
σ2
s 120.80 41.63 1237.32 706.05

0.1 20 0.7
Bias -4.37 -1.85 -30.90 -9.42
σ2
s 20.45 3.86 955.00 89.48

1 5 1
Bias 1.35 1.73 -32.59 -15.73
σ2
s 6.06 4.26 1063.14 250.34

1 5 0.7
Bias -6.62 -4.13 -39.55 -15.66
σ2
s 6.06 4.26 1063.14 250.34

0.1 5 0.7
Bias -6.92 0.61 -30.70 -11.81
σ2
s 95.79 80.05 1599.73 269.61
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Table 4.9: Averaged result of bias and MSE in recursive estimating a bivariate Markov
chain of case A

Case A θ1 θ2 θ3 θ4

True value -70 -55 -60 -30

Initial value -55 -40 -50 -30

γ0 n+ 1 α Averaged estimation results

1 10 1
Bias 8.68 12.53 6.40 1.05
σ2
s 77.16 157.74 42.61 1.93

1 10 0.7
Bias 1.61 6.45 -4.07 -4.46
σ2
s 18.83 48.32 25.75 26.29

0.1 10 0.7
Bias 9.07 12.77 7.82 1.34
σ2
s 83.08 163.32 61.94 2.20

1 20 1
Bias 8.36 12.37 6.10 0.98
σ2
s 71.95 153.73 38.96 1.90

1 20 0.7
Bias 2.44 7.63 -3.66 -3.71
σ2
s 20.67 63.74 21.97 20.37

0.1 20 0.7
Bias 9.04 12.79 8.13 1.55
σ2
s 82.45 163.75 66.82 2.83

1 5 1
Bias 8.89 12.62 6.56 1.04
σ2
s 80.76 159.97 44.56 1.81

1 5 0.7
Bias 0.67 5.03 -5.39 -5.35
σ2
s 19.36 34.18 40.59 35.23

0.1 5 0.7
Bias 8.96 12.70 7.32 1.14
σ2
s 81.30 161.54 54.50 1.76
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Table 4.10: Averaged result of bias and MSE in recursive estimating a bivariate Markov
chain of case B

Case B θ1 θ2 θ3 θ4

True value -70 -55 -60 -30

Initial value -80 -65 -80 -50

γ0 n+ 1 α Averaged estimation results

1 10 1
Bias -6.25 -4.75 -20.42 -8.05
σ2
s 40.23 23.91 417.35 65.78

1 10 0.7
Bias -11.40 0.92 -21.99 -8.27
σ2
s 133.83 7.00 488.05 72.20

0.1 10 0.7
Bias -6.98 -6.09 -19.92 -9.11
σ2
s 49.40 37.77 396.91 84.00

1 20 1
Bias -5.99 -4.34 -20.49 -7.35
σ2
s 37.17 20.32 420.16 55.04

1 20 0.7
Bias -11.20 0.50 -22.48 -8.48
σ2
s 129.76 6.82 509.44 75.14

0.1 20 0.7
Bias -7.15 -6.38 -19.84 -9.23
σ2
s 51.75 41.21 393.80 86.40

1 5 1
Bias -6.40 -4.97 -20.39 -8.50
σ2
s 42.03 25.94 416.17 73.11

1 5 0.7
Bias -11.73 1.35 -21.38 -7.97
σ2
s 141.73 7.19 462.66 68.31

0.1 5 0.7
Bias -6.71 -5.64 -20.06 -8.88
σ2
s 45.81 32.54 402.45 79.72
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Table 4.11: Averaged result of bias and MSE in recursive estimating a bivariate Markov
chain of case C

Case C θ1 θ2 θ3 θ4

True value -70 -55 -60 -30

Initial value -120 -8 -100 -3

γ0 n+ 1 α Averaged estimation results

1 10 1
Bias -34.79 -5.25 -34.22 -1.71
σ2
s 1212.91 30.63 1171.66 4.37

1 10 0.7
Bias -9.76 -48.14 -16.78 -24.02
σ2
s 114.63 2388.84 320.25 670.12

0.1 10 0.7
Bias -37.95 -8.30 -33.78 -13.24
σ2
s 1441.17 70.48 1141.50 179.24

1 20 1
Bias -33.51 -7.28 -33.86 -0.85
σ2
s 1125.79 56.40 1147.37 2.20

1 20 0.7
Bias -6.92 -47.41 -18.17 -21.25
σ2
s 58.88 2348.26 348.94 480.05

0.1 20 0.7
Bias -39.16 -7.77 -34.32 -15.11
σ2
s 1533.88 61.62 1177.99 233.10

1 5 1
Bias -35.19 -3.94 -33.95 -1.94
σ2
s 1240.66 18.26 1153.46 4.44

1 5 0.7
Bias -10.13 -49.46 -17.51 -27.33
σ2
s 129.44 2536.49 361.58 923.68

0.1 5 0.7
Bias -36.20 -9.47 -33.37 -9.68
σ2
s 1311.43 91.79 1114.36 98.71
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Table 4.12: Averaged result of bias and MSE in recursive estimating a bivariate Markov
chain of case D

Case D θ1 θ2 θ3 θ4

True value -70 -55 -60 -30

Initial value -36 -48 -100 -70

γ0 n+ 1 α Averaged estimation results

1 10 1
Bias 4.21 0.04 -33.06 -15.88
σ2
s 20.16 0.36 1093.59 252.99

1 10 0.7
Bias -5.69 6.18 -31.25 -23.02
σ2
s 42.10 39.91 984.23 539.94

0.1 10 0.7
Bias 5.12 0.06 -33.95 -19.28
σ2
s 27.44 0.13 1153.04 372.80

1 20 1
Bias 2.73 -0.25 -32.60 -14.23
σ2
s 10.26 0.50 1063.20 203.43

1 20 0.7
Bias -5.95 8.40 -31.39 -22.05
σ2
s 55.34 72.81 995.03 498.50

0.1 20 0.7
Bias 5.68 -0.03 -34.05 -20.16
σ2
s 32.91 0.11 1159.27 407.02

1 5 1
Bias 5.22 0.27 -33.34 -16.85
σ2
s 29.41 0.41 1111.73 284.69

1 5 0.7
Bias -5.53 3.23 -32.87 -22.27
σ2
s 40.15 18.29 1087.59 507.98

0.1 5 0.7
Bias 4.35 0.32 -33.51 -18.77
σ2
s 19.88 0.28 1122.86 352.77
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Figure 4.9: Estimation result versus number of blocks in recursive estimating of case A part
one
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Figure 4.10: Estimation result versus number of blocks in recursive estimating of case A
part two
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Figure 4.11: Estimation result versus number of blocks in recursive estimating of case B
part one
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Figure 4.12: Estimation result versus number of blocks in recursive estimating of case B
part two
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Figure 4.13: Estimation result versus number of blocks in recursive estimating of case C
part one
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Figure 4.14: Estimation result versus number of blocks in recursive estimating of case C
part two
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Figure 4.15: Estimation result versus number of blocks in recursive estimating of case D
part one
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Figure 4.16: Estimation result versus number of blocks in recursive estimating of case D
part two
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show the estimation procedure for one replica while the tables show the numerical results

of 50 replicas, so the results in the figures are not as good as the ones in the tables. But

from the figures, we could see the trend of each algorithm, the EM algorithm convergences

faster while the recursive algorithm converges slower. In these figures, there are only 51

iterations in the EM algorithm but there are 40,000 iterations in the recursive algorithm.

Comparing the EM algorithm with the recursive algorithm, under similar conditions to

those used in the analysis of the MMPP, with the same amount of data, the EM algorithm

also performs better than the recursive algorithm. The performance of the EM algorithm is

weakly dependent on the initial values while the recursive algorithm is much more sensitive

to the initial value. The performance of the recursive algorithm also depends on the chosen

convergence factors γ0 and α, and the block size n + 1. Note that the block size of the

recursive algorithm for the MMPP is one.

For the recursive algorithm, we presented two kinds of estimation results, original esti-

mation result φ̂ and averaged result φ̄. We could see that most of the variance figures for

the original estimation results are larger than that for the averaged results. The reason is

the same as that discussed in chapter 3.
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Chapter 5: Conclusion and Future Directions

The main contribution of this thesis is to provide a numerical evaluation of a recursive

algorithm for bivariate Markov chain, and to compare that algorithm with the batch EM

algorithm. The recursive and batch EM algorithms were applied for estimating the param-

eter of an MMPP and a general bivariate Markov chain. In this chapter, we will summarize

our main findings and point to possible future research directions.

5.1 Conclusion

We elucidated the estimation procedures of the EM algorithm and the stochastic approxi-

mation recursive algorithm for the MMPP and the bivariate Markov chain, and provided a

numerical comparison of the performances of the two approaches. Comparing the results,

we found that the EM algorithm achieves relatively accurate estimates for both the MMPP

and the bivariate Markov chains which is its advantage. The EM algorithm is not as sensi-

tive to the initial parameter value, while the performance of the recursive algorithm is highly

dependent on the choice of the initial parameter value assumed for the model. There is no

other factors like convergence factor or the block size that could affect the estimation result

of the EM algorithm while these factors affect the performance of the recursive algorithm

greatly. The EM algorithm also provides a reasonable estimate using a smaller amount of

data, but that data is iterated upon many times so the effective size of the data is somewhat

equivalent to the number of data points times the number of iterations. In our experiments,

we used 25,000 data points and 51 EM iterations, while the recursive algorithm was applied

to 200,000 data points. The main advantage of the recursive algorithm is that it does not

require storage of a training data, and the parameter is updated online as data becomes

available.
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A hybrid approach could be used in which the EM algorithm is initially applied to

some data, to provide a reasonable initial estimate of the parameter, and then estimation

is switched to the recursive algorithm.

For the EM algorithm and the recursive algorithm, the parameter of the observable

process is easier to estimate while the parameter of the underlying process is harder to

estimate. For example, parameter φ1 of the bivariate Markov chain is harder to estimate

than φ2, regardless of the algorithm used.

5.2 Future Directions

5.2.1 Increase Number of States

We could compare with other recursive algorithms such as an algorithm which performs

alternate maximization over the parameter and sufficient statistics [31]. In my research,

Markov chains with only two states were studied. In the MMPP, I chose r = 2, and the

number of parameters is r2 = 4. In the bivariate Markov chain, I chose r = d = 2, and

the number of parameters is (r + d)2 − (r + d) = 12. Both of them are the simplest

cases. If we increase the number of states, the number of parameters will increase greatly,

and estimation would become much harder. To further test the performance of the EM

algorithm and recursive algorithm for the MMPP and the general bivariate Markov chain,

we should increase the number of states.

We could also increase the length of the data. For the MMPP, I used between 5,000 and

50,000 data points, each representing a jump of the observable process of the MMPP. For the

bivariate Markov chain, I used between 20,000 and 200,000 data points, each representing

a jump of the observable process of the bivariate Markov chain. The convergence speed

of the EM algorithm is much faster than that of the recursive algorithm. Increasing the

length of the data will improve the accuracy of the parameter estimate obtained by the

recursive algorithm, and to a lesser extent, the accuracy of the estimate obtained by the

EM algorithm. The number of iterations affect the performance of the EM algorithm a
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lot which we can see from Figures 4.1-4.8. Asymptotic analysis of the performance of the

algorithm when the number of observations goes to infinity. Such analysis was done for the

HMM and MMPP by Rydén [4].

The main problem I have encountered is the computation time. To test the performance

of the algorithms, I always had to increase the length of data, but this also increased the

computation time. If we would like to further increase the length of data, we need to take

the computation time into our consideration.

5.2.2 Estimation with Actual Data

In my research, the data was generated by a computer simulation, and the parameter values

were either determined arbitrarily or taken from [8] and [1]. It would be interesting to apply

and compare these algorithms on real data obtained in a specific application such as network

traffic modeling or ion-channel characterization [32], [20].
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