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ABSTRACT 

AN APPLICATION OF AGENT-BASED MODELLING TO MAKER-TAKER 
EXCHANGE FEE PRICING 

Charles Roe, MAIS 

George Mason University, 2019 

Thesis Director: Dr. Robert Axtell 

 

Regulating the stock market is a tremendous undertaking, and it is vital to its safety and 

success. Many new regulatory issues have arisen along with the prevalence of electronic 

trading. One of these issues is known as maker-taker fees, which are essentially a means 

for stock exchanges to incentivize traders to offer liquidity at their venue. These fees were 

initially regulated at the beginning of the rise of electronic trading, but many argue this 

regulation needs to be updated to keep up with the practices that have evolved regarding 

the use of the fees. This thesis describes an agent-based model with minimally intelligent 

traders interacting in an artificial stock market with maker-taker fees. The purpose is to 

shed light on the effects of maker-taker fees as well as provide insight into the usefulness 

of agent-based modeling as a supplemental tool for regulatory decision-making. Results 

from the study show that maker-taker fees positively affect traditional measurements of 



xiii 

 

market quality, and that minimal intelligence is a viable assumption for traders when 

modelling the stock market as long as a realistic market structure is present. This research 

aims to be a step toward incorporating agent-based models into exploratory groundwork 

for regulatory decision-makers at the Securities and Exchange Commission and other 

financial market regulatory agencies.
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CHAPTER ONE: INTRODUCTION 

1.1 History and background of maker-taker fees 

U.S. equities markets are a network of extremely complex rules and regulations, 

which give rise to even more complex behaviors among market participants competing for 

the best price, fastest trade executions, and even for the fees associated with those 

executions. In some cases, the competitive strategies developed by market participants are 

seen as detrimental or harmful to other market participants. One example of this is what 

has become known as the maker-taker fee structure, which is implemented by most equities 

exchanges in the U.S. such as the New York Stock Exchange (NYSE), Chicago Board 

Options Exchange (CBOE), Investors Exchange (IEX), and National Association of 

Securities Dealers Automated Quotations (NASDAQ) among others. The maker-taker fee 

structure is essentially an incentive system used by exchanges to encourage traders to post 

liquidity (shares) at their venue. In order to do this, they charge traders who remove 

liquidity from the exchange through the use of a market order, and rebate the trader who 

provided the liquidity for the trade through a limit order. Market orders are signals of a 

trader’s desire to buy (sell) a set number of shares for the best available price as soon as 

possible. Limit orders are signals of a trader’s desire to buy (sell) a set number of shares 

for a specified price, and are stored in orderbooks sorted by price-time priority. This means 
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the first limit order with the highest (lowest) offer to buy (sell) is prioritized for execution 

when market orders are received. Traders who provide liquidity are called market makers, 

and traders who remove liquidity are called market takers, thus the name maker-taker fee. 

Exchanges, and other trading systems, earn revenue in several ways, including 

charging traders for the services of processing their trades, posting prices, and maintaining 

order books. When maker-taker fees were first introduced, they provided a two-fold benefit 

for exchanges in that they could profit from the difference between the taker fee and the 

market maker rebate while also increasing the resting liquidity in their order books due to 

the increased economic incentive directed at market makers. Market makers are attracted 

to the rebates, and market takers are attracted to more liquid markets because they are less 

likely to have large price impact for large orders. Price impact refers to the difference 

between the price of an asset at the time of a trade, and the price of the asset at some time 

after the trade (Dixon, 2018). It can be beneficial or harmful to the trader, but it is most 

significant in reference to the uncertainty faced by traders when setting value estimates for 

assets (Lehalle & Mounjid, 2016). In general, investors prefer less uncertainty around the 

price of an asset at the time of a trade (Bouchaud, 2010). 

The practice of implementing maker-taker fees began around the same time as the 

appearance of electronic markets in the late 1990s (Harris, 2013). These early electronic 

markets are known as Electronic Communication Networks (ECNs), and liquidity rebates 

were a major part of their strategy to compete with the established exchanges like the 

NYSE and the NASDAQ (Securities and Exchange Commission, 2015c). An ECN called 

Island was one of the earliest adopters of the maker-taker fee structure (Cardella, Hao, & 
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Kalcheva, 2012), and the success of its liquidity rebates can be seen in its market share of 

NASDAQ-listed stocks which rose from around 3% in 1997 to nearly 13% in 1999 

(Securities and Exchange Commission, 2015c). As the exchanges began to lose market 

share to the ECNs and other trading venues that were also adopting maker-taker fees to 

attract order traffic, most exchanges also implemented their own maker-taker fees. By the 

mid 2000s it became virtually necessary to charge liquidity takers and rebate liquidity 

providers in order to remain competitive (Harris, 2013). As exchanges adjusted to the 

maker-taker pricing, the competition forced market maker rebates up, which also required 

market taker fees to rise in order to offset the rebate. At the peak of this competition 

between exchanges, the fees were as high as $0.015 per share. For a 100-share order, that 

is only $1.50, which sounds trivial. However, for some equities, the average number of 

shares traded daily is in the tens of millions ( U.S. Equities Market Volume Summary, 

n.d.). After a trading day of 10,000,000 shares, a fee of $0.015 per share would result in 

$150,000 in total fees for a single company’s stock (this is not for a single trader of course, 

but it is a dramatic statistic). 

In order to stop the escalation of maker-taker fees by the exchanges, the Securities 

and Exchange Commission (SEC) stepped in with regulation that capped the market taker 

fees at $0.003 per share. This cap was chosen since it was roughly equivalent to the 

predominant fee at the time the regulation was established (Regulation NMS, 2005). This 

cap was part of what is known as National Market System regulation, or Reg. NMS as it is 

commonly known in the financial industry. Only the market taker fee was regulated since 

trading venues used that to offset the rebates paid to liquidity providers. The thinking 
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behind this was that if the taker fee was capped, then that would effectively cap the rebates 

since the trading venues would not choose to lose money by paying more than they earn 

(Tabb, 2015). 

1.1.1 Criticism of Maker-Taker Fees 

 Many in the financial securities industry felt that this behavior from the exchanges 

was not beneficial for markets, and particularly misleading and sometimes indirectly 

harmful for less sophisticated traders and retail investors since maker-taker fees are not 

included in the price of an asset published by an exchange, and the rebates are not passed 

along to the investor. There are three main criticisms of the maker-taker fee model. First, 

it is commonly cited that there is at least an appearance of a conflict of interest between a 

broker’s legal obligation to seek the best execution for the orders submitted by their 

customers and the broker’s economic incentive to seek lower transaction costs or a higher 

rebate payment. It is difficult to determine how often, or even if, the conflict of interest 

leads brokers to act in opposition to their legal obligation, but many think it is inevitable, 

and therefore some market participants may be harmed and market quality is diminished 

(Battalio, Corwin, & Jennings, 2013). Limit orders routed to trading centers with the 

highest rebate typically have a lower probability of executing since those trading centers 

usually have higher fees, and therefore market order routing strategies would place those 

exchanges lower on the priority list due to the higher cost (Securities and Exchange 

Commission, 2015b). This also leaves the resting market orders on higher rebate exchanges 
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more vulnerable to adverse selection risks when the price moves against them (Angel, 

Harris, & Spatt, 2010). 

Second, many see the current market complexity and fragmentation as a problem 

that has resulted from the competition among exchanges to offer the highest market maker 

rebates (Dolgopolov, 2014). Major exchange operators, for example, sometimes operate 

multiple exchanges at which they can offer different fee structures in order to cater to 

specific interests while still capturing the revenue from the transactions. This creates a 

situation where price listings are multiplied, and order routing complexity is increased due 

to the additional searching required by brokers to find the best execution available. Further 

complicating this process is the fact that exchanges are constantly updating their pricing 

schedules for competitive reasons ( The Role of Regulation in Shaping Equity Market 

Structure and Electronic Trading, 2014). In addition to the increased market fragmentation 

caused by exchange competition, new order types have been developed to allow 

professional market makers to have a higher probability of being at the inside of the bid-

ask spread in order to increase their chances of transacting while remaining compliant with 

regulation. This is partly a result of the low-latency trading environment since orders are 

sent, cancelled, or updated thousands of times per second, but it can also be partially 

attributed to the incentives of brokers to receive the liquidity provision rebate from the 

exchanges (O’Hara, 2015). Processing and executing these complex order types requires 

even more complex execution logic in order to track and correctly match them to incoming 

marketable order flow. This complexity greatly increases the difficulty of market 

participants and regulators to understand how a particular market works and leaves the 
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door open to fraud and confusion which may create a perception that securities markets are 

unfair or inefficient (Securities and Exchange Commission, 2015c). 

The third major criticism of the current maker-taker fee model in equities markets 

is that it reduces the transparency of prices (Angel et al., 2010). This is because the actual 

price of a security differs from the displayed price when rebates and fees are factored in. 

Prices are displayed in penny increments, but maker-taker fees are at sub-penny amounts, 

causing possible confusion for market participants on the actual market valuation. The 

problem is intensified by the existence of multiple exchanges listing potentially different 

bid-ask spreads for the same security and offering different maker-taker fee pricing – 

known as market fragmentation. Only the most sophisticated traders have the ability to 

track and account for changes in maker-taker fee pricing in order to update their order 

routing procedures (Harris, 2013). The suggestions for correcting these negative aspects 

range from banning maker-taker fees completely to allowing dynamic maker-taker fees 

based on different market conditions of supply and demand and each exchange’s 

competitive needs ( The Role of Regulation in Shaping Equity Market Structure and 

Electronic Trading, 2014). 

1.1.2 Defense of Maker-Taker Fees 

In contrast to the disadvantages associated with maker-taker fees, there is also 

evidence that the practice provides important benefits to the market. A major reason to 

maintain maker-taker fees, according to proponents, is that it is a vital competitive resource 

for exchanges to use when trying to incentivize brokers to route orders to their venue 
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instead of alternative trading systems (Securities and Exchange Commission, 2010). The 

reason this is so important is that exchanges publicly display their listed equities prices 

which helps set prices at alternative venues that do not publicly display prices. The 

availability of pricing information is extremely important to the functioning of equities 

markets ( Equity Market Structure Literature Review Part II: High Frequency Trading, 

2014). Currently, most equities trading still occurs on public exchanges, but if they lost 

their position as processors of the majority of transactions, then the market would lose its 

main reference to prices. This would lead to increased uncertainty, and likely degrade 

market quality for all market participants since the public price discovery process would 

become significantly less efficient (BlackRock, 2014). 

 Another argument that maker-taker fees are beneficial to equities markets is based 

on the idea that the liquidity rebates lead to narrower bid-ask spreads because the supply 

of liquidity is essentially subsidized by the rebate. To illustrate this, consider that equities 

transaction increments are limited to a minimum of $0.01. However, differing risk profiles 

and valuations by market makers may place their ideal price quotations at a value between 

the current best bid or best ask and the next allowable price increment. For example, a 

market maker may be willing to buy a stock at $5.009 and sell it at $5.023. These valuations 

are essentially too precise for the current penny-minimum transaction increment so the 

trader would enter a bid quote at $5.00 and an ask quote at $5.03. In the presence of a 

maker-taker fee, the trader would be incentivized to narrow their bid to $5.01 and their ask 

to $5.02 because they would be compensated for the difference in their valuation and the 

quoted price, reducing the spread from $0.02 to $0.01. Bid-ask spreads are considered an 
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important indicator of market quality, and if maker-taker fees were banned some spreads 

for less liquid securities could widen and degrade investor returns (Securities and Exchange 

Commission, 2015c). 

1.2 Current Environment 

The debate surrounding maker-taker fees and their implications for a fair and 

efficiently functioning market has caused the topic to gain considerable attention from the 

SEC over the last decade (Securities and Exchange Commission, 2018). The SEC has been 

urged to collect data on the subject and investigate the impact maker-taker fees have on 

market participant routing behavior and market quality (Securities and Exchange 

Commission, 2015c). The data currently available, although vast, is not suitable for 

answering the relevant questions because it is impossible to determine the intentions behind 

broker routing behaviors and how they are tied to maker-taker fees (Securities and 

Exchange Commission, 2018). A small study conducted by NASDAQ in 2015 was 

commissioned to observe the effects of lowering maker-taker fees for a small number of 

securities listed at their exchange. They found that liquidity providers reduced their 

positions, and likely routed them to other exchanges that had higher rebates, but that 

liquidity takers did not significantly change their behavior (Hatheway, 2016). These 

results, though interesting, do not warrant any conclusions about the subject because the 

study only lasted a few months and only included 14 stocks. Also, since the study was only 

conducted with changes at a single exchange, the results are not particularly relevant to the 
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effects of maker-taker fee regulation changes that would be applied across the entire 

market. 

 For these reasons, a pilot program has been proposed by the SEC, which was 

scheduled to begin in April 2019 (although the start date has been indefinitely postponed 

due to legal challenges from the exchanges (Osipovich, 2019)), to systematically test and 

gather data on the effects of lowering the maximum allowed taker fee from $0.003 per 

share to $0.0005, with no cap on rebates. The pilot would apply to select securities that fall 

within certain thresholds for market capitalization and trading volume, and would be put 

in place for all equities exchanges regardless of their current fee structure (Securities and 

Exchange Commission, 2018). Comments from the financial industry on the proposed pilot 

range from highly supportive to vigorously opposed, with many critiques and suggestions 

in between (Bodek & Dolgopolov, 2016; Conley, 2016; Farley, 2017; Gellasch, 2016; 

King, 2016; Lazo, 2017; Steiner, 2016). Many of the major critiques and opposition to the 

pilot centered around the cost to exchanges in implementing the pilot rules in their systems, 

and the lost revenue imposed on the exchanges by the authority of the SEC without any 

fundamental justification for the specific criteria for selecting the securities to be included. 

Essentially, some market participants argued that the pilot was arbitrarily designed, and 

that there was not much confidence in it resulting in enough actionable insight to outweigh 

its costs (Bodek & Dolgopolov, 2016; Conley, 2016; Farley, 2017; Gellasch, 2016, 2016; 

King, 2016; Lazo, 2017; Steiner, 2016). 

 One potential tool for dealing with the sources of these complaints is agent-based 

modeling. Agent-based models (ABM) have been applied to financial research for decades, 
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but primarily in search of theoretical explanations for market behavior (Tesfatsion & Judd, 

2006). However, there has been a push in recent years to incorporate ABMs designed to 

answer very specific and practical questions into decision making processes (Bouchaud, 

2013). This is mainly a result of the failure of long-accepted mathematical models to 

predict the magnitude of the financial crisis of 2008 and 2009, which left many policy 

makers with a sense that the existing models were of little use if they couldn’t be relied 

upon when they were needed most (Bookstaber, 2012). An ABM of the entire financial 

system may in fact be intractable, but an ABM built to explore an isolated what-if question 

is certainly not. There would be two major advantages of such an ABM applied to the 

question of whether to reduce maker-taker fees: cost savings, and additional data for 

constructing potential pilot programs. Granted, ABMs may not replace pilot programs and 

empirical results, but they can function as test beds for deciding how to design future 

studies. The data gathered from ABM simulations could also be used to determine if a pilot 

program is even likely to be fruitful; if data from an ABM indicates that a pilot is likely to 

give either an obvious answer to a regulatory question or an answer that implies the 

regulatory change being tested would harm market quality, then the costs of a pilot program 

would be unnecessary. At the very least, ABMs could help policy-makers better understand 

the dynamics of the environment they are trying to regulate, and therefore ask better 

questions about how to design regulations. 

A recently completed pilot program was implemented by the SEC to explore the 

effects of increasing the minimum price increments for stocks with small market 

capitalization values (Hu, Hughes, Ritter, Vegella, & Zhang, 2018). An ABM was 
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developed alongside the pilot program to compare the results of the pilot to those of the 

simulation in order to demonstrate the viability of the modeling technique. Although the 

ABM results were not used in the official conclusion reached by the pilot study, they did 

align with the overall empirical results (Collver, 2017). As this approach showed promise, 

the following research will explore and analyze an ABM designed to simulate the effects 

that altering maker-taker fees would have on market quality (Collver, 2017; Hu et al., 

2018). 

1.3 Outline 

 There are two main research questions addressed by this thesis. First, how do 

maker-taker fees affect market quality for investors? Second, can agent-based modelling 

be used as a tool in developing a better understanding of regulatory issues related to stock 

markets. Chapter 2 provides a review of the literature surrounding maker-taker fees 

beginning with an overview of modern market microstructure characteristics and the 

environment in which the fees developed. It continues with a theoretical account of the 

effects of maker-taker fees on trader behavior and the extent to which minimally intelligent 

traders are able to replicate the outcomes from intelligent traders. Chapter 2 concludes with 

a description of the most viable regulatory proposals intended to address the concerns 

raised by some regarding maker-taker fees. In chapter 3, the ABM and its components are 

described, as well as the data that will be collected from it. This is followed by a section 

on the model’s validation and verification, so that the results can be replicated. Chapter 4 

informs the reader of the results of the model, and finally, chapter 5 provides concluding 
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remarks about the results and their usefulness in answering the main research questions, 

the ABM’s limitations, and potential future research. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Maker-Taker Fees 

 In this chapter maker-taker fees will be discussed in greater detail. Section 2.1.1 

begins with a description of the origin of the fees, and the current regulatory and structural 

setting in which they function. Understanding how and why the fees developed will give 

the reader a better picture of their effectiveness as well as the concerns they generate. The 

arguments against the fees are then presented, followed by the arguments in support of 

them. An overview of the theoretical background regarding market quality measurements 

and the cost of trading is provided in section 2.2.1, as well as the theoretical impact on 

trader behavior in the presence of maker-taker fees in section 2.2.2 which will inform the 

ABM in chapter 3. Section 2.2.3 explains the dynamics of market orders as well as how 

and why they are executed over time instead of all at once. The chapter continues in section 

2.2.4 with an explanation of the power of zero-intelligence and minimal intelligence in 

market models, which is another important support leading into chapter 3. The regulatory 

proposals regarding maker-taker fees are then presented in section 2.3. Finally, the chapter 

closes with section 2.4 by giving a synopsis of previous influential ABMs of the stock 

market, and transitions to the next chapter. 
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2.1.1 Current Market Microstructure and Competitive Environment 

The microstructure of equities markets has been reshaped by computers and 

algorithmic trading since the 1990s. Prior to that time, the stock market was dominated by 

manual order entries from the physical floor of the exchanges (Dean, 2013). Now, order 

messages and transactions occur daily at a rate that is 10 times faster than the human eye 

can process an image (O’Hara, 2015). The change didn’t happen overnight, but the industry 

and its regulators recognized that it was an extremely significant paradigm shift that would 

have equally extreme consequences for the functioning of markets  Equity Market 

Structure Literature Review Part II: High Frequency Trading, 2014). From a regulatory 

perspective, the rules would need to be changed in order to level the playing field in the 

new hyper-fast, computer driven environment. The main regulation that has dominated the 

formation of market microstructure characteristics for the last decade is known as National 

Market System regulation, or Reg. NMS as discussed in Section 1.1. Under this regulatory 

framework, equities markets accelerated the shift from manual human-centered order entry 

to automated computer-generated order entry (Securities and Exchange Commission, 

2015c). Much of the accelerated shift was due to the requirements in Reg. NMS that 

protected the market from itself in some sense because of the effects on quotations in a 

highly dispersed, but electronically linked exchange system that could be quoting multiple 

prices for the same security at the same time. Updates to quotations and their complexity 

required exchanges and traders to rely more and more on computers to quickly analyze and 

transmit orders (Regulation NMS, 2005). Reg. NMS also included a cap on market taker 
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fees that have had an effect on the rebates as well, but arguably leveled the playing field in 

some ways. However, the markets have significantly changed since the regulation’s 

implementation in 2005 in terms of how orders are processed, the speed at which trading 

occurs, and the broad access to electronic trading. These changes have lead to calls for 

reform or repeals of some aspects of Reg. NMS since it was designed for a different market 

environment (Steiner, 2014). Prior to Reg. NMS, though, many saw the competition 

between exchanges and alternative trading systems (ATS) to offer the highest rebates as 

out of control (U.S. Department of the Treasury, 2017). 

The existence of maker-taker fees can be traced back to Island ECN, and one of its 

founders who became convinced that market makers were essentially at an informational 

disadvantage compared to more informed traders, and therefore they were burdened with 

an inherent cost associated with providing liquidity. The idea behind the fee model was to 

incentivize traders to provide liquidity at Island ECN by reducing the cost of their 

informational disadvantage through a rebate which would be subsidized by a fee for 

accessing that liquidity (Patterson, 2013). However, many are unconvinced that this is a 

reasonable response since a transaction with an informed trader does not necessarily imply 

that there will be a detrimental outcome for the liquidity provider (Harris, 2013). The main 

concern on the part of the liquidity provider is that the price will move against them after 

the transaction, and they would either miss out on potential profit or if they still held a net 

position that their balance sheet would be directly harmed. This is often known as adverse 

selection risk, which is not exclusive to liquidity providers, but they do tend to claim a 
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higher risk since their orders are resting in the order book with the possibility of being 

matched by a “smarter” market order (Dolgopolov, 2012). 

 Maker-taker fees became more widely implemented at trading centers as high-

frequency trading increased. As trading speeds increased, traders realized that very large 

profits could be made simply by being at the front of the order book queue at the best price. 

This is because they could provide liquidity, for example, on the buy side of the order book 

and then almost instantaneously turn the position around by providing liquidity on the sell 

side of the order book while claiming a rebate twice. This commonly occurs with share 

volumes in the hundreds of millions each day (Patterson, 2013). 

 As the spreads for many high-volume stocks narrowed toward the minimum price 

increment of $0.01, maker-taker fees have become a major factor in the cost of trading, 

and therefore will naturally be a major part of a broker’s decision to send customer orders 

to one trading center over another (Foucault, 2012). The SEC even acknowledged that fee 

changes as small as $0.001 per share can have an effect on order flow from one exchange 

to another. The fact that a price change of one tenth of one penny in the cost of trading a 

share has such a large impact provides some perspective on how competitive U.S. securities 

markets are, and underlines the sensitivity of markets to the incentives provided by maker-

taker fees. 

 This influence on decision making raises serious questions regarding whether 

brokers may be overlooking their responsibility of best execution. At the very least, many 

agree that the incentives provided by maker-taker fees create a confusing, overcomplicated 

environment that is too burdensome for brokers to constantly navigate in the best interest 
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of their clients (Dolgopolov, 2014). The duty of best execution is one of the most important 

foundations for fair, transparent, and well-functioning markets (FINRA, 2014). For a 

broker to seek the best execution for their client essentially means that they are expected 

to pursue reasonable means in order to maximize the economic benefit of a transaction on 

behalf of their client according to the client’s instructions (Newton v. Merrill Lynch Pierce 

Fenner & Smith, 1998). 

 However, even after regulation was put in place to control maker-taker fees, there 

are still concerns about the effects maker-taker fees have on broker behavior related to their 

duty to seek the best execution of their customers’ orders (Securities and Exchange 

Commission, 2018). Violating this responsibility may also violate federal antifraud laws 

(Nelson II, 2015). In light of the competitive environment brokers operate in, they logically 

must seek to capture rebate payments as often as possible since their competitors are doing 

the same. With very thin profit margins, this can be the difference between staying in 

business or not (Angel, Harris, & Spatt, 2015). Brokers do not directly pass along the fee 

or rebate to their client, therefore the incentive is to route their customer’s limit orders to 

trading centers with the highest rebate while routing market orders where fees are lowest 

(Lauer, 2013). This leads to a situation where client limit orders are likely to be routed to 

exchanges with longer queues at the best price which reduces their probability of execution 

(“Conflict Inherent in the Maker-Taker Model,” 2013). Some empirical studies that have 

analyzed order routing behavior from several brokerage firms claim that routing decisions 

are clearly made based on maximizing profits for the broker by routing limit orders to the 

venues with the highest rebates (Angel et al., 2010; Bacidore, Otero, & Vasa, 2010; 
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Boehmer, Jennings, & Wei, 2007; Cardella et al., 2012; Foucault & Menkveld, 2008; 

Harris, 2013). This is despite the fact that it can be demonstrated that orders routed to 

venues with lower fees are executed faster and more frequently than orders at high rebate 

venues. If this were done intentionally, then it would be directly contradictory to what most 

industry professionals and regulators consider best execution principles (Battalio et al., 

2013). 

 Maker-taker fees have also resulted in innovative trading strategies that can be 

extremely complex, and the speed at which trading happens makes market events 

extremely difficult to understand. This also means that it is difficult to tell whether 

manipulative tactics are being used to distort the market. This is a clear problem for 

regulators and a significant concern for maintaining trust in the market system (Americas 

Market Structure Trends & Updates, 2013). Many of these strategies are referred to as 

“price agnostic” because the trader doesn’t care what the current or future price of the 

security is. This is because the goal of the strategy is to trade on both sides of the price and 

collect the rebates. Sometimes this is also referred to as “rebate arbitrage”, which is when 

a trader has a resting limit order at one venue with high rebates and enters the opposite 

market order position at another venue with lower taker fees in order to collect the 

difference. The main problem with this is that it results in displayed liquidity at exchanges 

that essentially isn’t there because it continuously moves in and out of the market mainly 

interacting with itself (Saliba, 2010). This practice has been derided as a game that has no 

resemblance to economic activity, and is criticized for deceiving market observers and 
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regulators into thinking that U.S. financial markets are healthier and more competitive than 

they actually are (Securities and Exchange Commission, 2010b).  

These strategies have also developed in conjunction with new order types offered by 

exchanges that enhance the ability of professional liquidity providers to efficiently collect 

rebates. The main function of these new order types is essentially to guarantee that the 

liquidity provider’s limit order will only transact with market orders as opposed to normal 

limit orders that can cross the bid-ask spread; liquidity provision risk is reduced and attracts 

more market makers (Angel et al., 2015). This can be confusing since these orders add to 

displayed liquidity in the orderbook, but are partially inaccessible. They also introduce 

more complexity to markets because they have to be treated differently from more common 

order types in the way they are ranked and executed. This has even led to the exchanges 

themselves being unable to adequately explain how their execution systems operate to the 

extent that they have been fined by the SEC for $14 million (Securities and Exchange 

Commission, 2015a). 

 Some have also argued that maker-taker fees are essentially distorting the true price 

of financial assets since the price can only be quoted at $0.01 increments, but the fees are 

only a fraction of that (Colliard & Foucault, 2012). This would not be as significant if fees 

and rebates remained constant, but they are frequently changed by trading centers to 

balance competitive pressures. Although any changes to fees or rebates must be filed with 

the SEC, there are no requirements for trading centers to give advance notice of the 

changes, and as soon as they are filed, they become active (Securities and Exchange 

Commission, 2015c). This means that an exchange can effectively alter the total economic 
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cost of trading completely at their discretion. It also means, in the view of many academics, 

regulators, and industry professionals, that price competition is occurring at a sub-penny 

level, which is technically prohibited by Reg. NMS (Regulation NMS, 2005). Since 

brokers do not pass along the rebates to their customers and exchanges do not post the fees 

and rebates as part of the displayed prices, the maker-taker pricing model boils down to an 

illegal market practice and an unfair advantage for some market participants that effects 

market efficiency (Dolgopolov, 2014). This is a relatively extreme view of the practice, 

but it is not too far from the perspective of many who see real problems with the existence 

of maker-taker fees. 

 Supporters of maker-taker fees do not always contradict the claims that they have 

some negative effects on the market microstructure, but rather rely on the argument that 

maker-taker fees are essential for exchanges to be able to compete with other trading 

venues in the current competitive environment (Buckley, 2014). Trading venues known as 

“dark pools” get their name from the fact that they do not publicly display the prices at 

which orders are resting in their order books, but only post prices at which transactions 

occur after they have executed (Patterson, 2013). This is in contrast to “lit” exchanges that 

display bid-ask spreads publicly, typically along with the volume associated with each 

price increment. Dark pools and other venues actually rely on the exchanges’ price quotes 

to determine the execution of their own trades (Securities and Exchange Commission, 

2010). This gives rise to the argument that public exchanges play a vital role in the national 

price discovery process since they act as a reference for most other traders (Securities and 

Exchange Commission, 2010). They are also a significant source of public information 
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transmitted through the price of a security that is then incorporated back into the market. 

This process is extremely important in an efficient market (Colliard & Foucault, 2012). 

Without a reference to aggregate price agreement in the market, significant price 

dislocations would become much more likely (Pasquariello, 2014). In the first ten years 

since the implementation of Reg. NMS, the share volume on “lit” exchanges decreased 

from 70.6% to 61.4% for NASDAQ stocks and from 87% to 65.4% for NYSE stocks. 

Meanwhile, the share volume at “dark” exchanges rose from 29% to 39% for NASDAQ 

stocks and from 13% to 35% for NYSE stocks (Securities and Exchange Commission, 

2015b). This is a significant loss in market share that many see as a danger to the public 

nature of U.S. equities markets (Securities and Exchange Commission, 2018). Exchanges 

rely on maker-taker fees to compete with dark venues because dark venues are allowed 

much more freedom to offer traders guarantees that they will only interact with specific 

types of market participants. They are also able to offer more customized fee structures to 

traders and more advantageous execution priorities that provide significant incentives to 

route orders away from public exchanges (Tuttle, 2013). If exchanges are further limited 

in their ability to utilize maker-taker fees as a means to compete with trading venues that 

do not publicly display quotation information, then they will likely continue to lose market 

share. If they lose market share to the point where they are no longer the central reference 

to price formation, then investors would have less ability to make informed decisions 

(Securities and Exchange Commission, 2015c). According to the SEC, diminished price 

visibility could cause securities prices to significantly move away from their fundamental 
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values, and would likely reduce key market quality measures of liquidity which would lead 

to increased short term market volatility (Regulation NMS, 2005). 

 Investors may also benefit from maker-taker fees due to the decrease in bid-ask 

spreads caused by the subsidizing of liquidity provision (O’Donoghue, 2015). This means 

that spreads will be artificially narrowed toward zero, which has the same effect as more 

aggressive price competition. Investors are therefore typically presented with price 

improvements resulting in better quality since the investor would pay a smaller percent of 

a trade in the spread. 

 However, there are many counter arguments challenging the idea that narrowed 

bid-ask spreads are always inherently good, no matter how they occur. These arguments 

tie into the price distortion criticisms mentioned above. According to some, the artificial 

nature of the narrowed bid-ask spread is not worth the benefit to investors because the 

maker-taker fees influence trader behavior in ways that are not based on the value of the 

underlying security (Angel et al., 2015). The same concerns about maker-taker fees are 

also rooted in the view that net spreads are actually unchanged, and the benefit of narrower 

quoted spreads is not as significant as some claim. This is because net spreads are equal to 

the quoted spreads plus the liquidity access fee. For example, if access fees are $0.003 per 

share, and the bid is $5.00 while the ask is $5.01, there is a quoted spread of $0.01 which 

is as small as legally allowed. However, the true bid is $4.997 and the true ask is $5.013 

since any market order will have to pay the access fee. The true spread is therefore $0.016, 

or 60% larger than what is displayed to the market (Angel et al., 2015). This is equivalent 

to repricing customer limit orders without the customer’s permission, and in many cases 
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without their knowledge. Consider that a customer sends a buy limit order to a broker for 

$10.00, but once it reaches the exchange it is effectively a buy limit order for $9.997 

because that is what the seller actually receives after access fees are accounted for even 

though the broker will still charge the seller $10.00 (Angel et al., 2015). 

2.2 Theoretical Background 

2.2.1 Effective Spread 

Most observers of the effects of maker-taker fees agree that the practice leads to 

narrower bid-ask spreads (Harris, 2013). The bid-ask spread is an important market quality 

indicator. When market transactions occur, the displayed price at the time of the transaction 

is the best bid price plus the best ask price divided by two, as shown in equal equation (1). 

Equation 1 Displayed Price 

𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑	𝑃𝑟𝑖𝑐𝑒. =
(𝑎𝑠𝑘. + 𝑏𝑖𝑑.)

2  
(1) 

However, as discussed in Section 1.1, the price at which the transaction will occur depends 

on whether the market order is a buy or sell order and what the corresponding best ask or 

bid price is. The difference in the displayed price and the transaction price is what is known 

as the effective spread. The effective spread is essentially the price that an active trader 

(market taker) pays to the market maker in order to execute the trade. Effective spread is 

calculated as shown in (2) (Dixon, 2018). 
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Equation 2 Effective Spread 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑆𝑝𝑟𝑒𝑎𝑑;. = 2 ∗ 𝑠; ∗
(𝑃; − 𝑀.)

𝑀.
 

(2) 

Where 𝑠; is the sign of the incoming market order, 𝑃; is the trade price (best ask/bid), and 

𝑀. is the midpoint price as calculated in (1). 

 By taking into account a time delta, the effective spread can be represented as two 

separate components; price impact (or adverse selection) and realized spread, shown in  (3) 

and (4) respectively (Dixon, 2018). 

Equation 3 Price Impact 

𝑃𝑟𝑖𝑐𝑒	𝐼𝑚𝑝𝑎𝑐𝑡 = 2 ∗ 𝑠; ∗
(𝑀.A∆. − 𝑀.)

𝑀.
 

(3) 

	  

 

Equation 4 Realized Spread 

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑	𝑆𝑝𝑟𝑒𝑎𝑑 = 2 ∗ 𝑠; ∗
(𝑃; − 𝑀.AE.)

𝑀.
	

(4) 

 

 

The effective spread of any trade can therefore be represented as the combination of (3) 

and (4), or more basically, the sum of price impact and realized spread as represented in 

(5) (Dixon, 2018). 
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Equation 5 Effective Spread (Decomposition) 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑆𝑝𝑟𝑒𝑎𝑑; = 2 ∗ 𝑠; ∗
(𝑃; − 𝑀. + 𝑀.AF. − 𝑀.AF.)

𝑀.
 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑆𝑝𝑟𝑒𝑎𝑑; = 2 ∗ 𝑠; ∗
(𝑀.AF. − 𝑀.)

𝑀.
+ 2 ∗ 𝑠; ∗

(𝑃; − 𝑀.AF.)
𝑀.

 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑆𝑝𝑟𝑒𝑎𝑑; = 𝑃𝑟𝑖𝑐𝑒	𝐼𝑚𝑝𝑎𝑐𝑡;. + 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑	𝑆𝑝𝑟𝑒𝑎𝑑;. 

(5) 

As stated above, the effective spread is the cost the market taker pays the market maker to 

trade. The realized spread is the amount of the spread that the market maker earns after the 

effects of price impact. Price impact is therefore typically seen as the cost paid by market 

makers for providing liquidity, even though the price impact may benefit the market maker. 

The effective spread and its components are important because they allow effects within 

financial markets to be analyzed in a way that can reveal the dominant source of influence 

generating those effects. In general, events that influence the price impact component of 

the effective spread are associated with the information environment within which the 

stock trades. Events that influence the realized spread are associated with market structure 

(Dixon, 2018). 

 In the presence of maker-taker fees, basic economic theory would assume that the 

bid-ask spread would be reduced by twice the access fee paid by the market taker since that 

would keep the net spread received by market makers constant (Harris, 2013). The one 

exception to this general rule is in the case of stocks that already trade at the minimum 

spread ($0.01). When this occurs, and the bid-ask spread cannot narrow anymore as the 

result of offsetting fees, market maker quotation sizes typically increase as competition to 
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trade at the best price intensifies (Harris, 2013). Once the bid-ask spread reaches $0.01, 

liquidity providers are no longer able to compete on price, and loads the information 

content of quotations almost completely onto quotation size. This can obscure the 

information contained in quotes because it collapses multidimensional information into a 

single dimension, and possibly contributes to market volatility in the presence of large 

market orders (Harris, 2013). To explain this, it is important to look at the effective spread 

in light of maker-taker fees, and then consider the effects of quotation sizes at the best bid 

and best ask prices. The effective spread, in the presence of maker-taker fees increases by 

the rebate paid to market makers since the rebate is built in as a constant, as in (6).  

Equation 6 Effective Spread with Rebate 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑆𝑝𝑟𝑒𝑎𝑑;. = 2 ∗ 𝑠; ∗
(𝑃; − 𝑀.)

𝑀.
+ 𝑟𝑒𝑏𝑎𝑡𝑒 

(6) 

According to the theory of equilibrium spreads, described in detail by Cohen, Maier, 

Schwartz, and Whitcomb (1981), traders choose to be market makers or market takers 

based on the spreads that they pay or receive at current market conditions. If spreads are 

wider, then market making is more attractive, but if spreads are narrow, market taking 

becomes more attractive. As spreads widen, market makers compete to trade at better 

prices, narrowing the spread, while narrower spreads incentivize market takers to remove 

liquidity at the improved prices. Thus the bid-ask spread is regulated, and kept in 

“equilibrium” as the name of the theory suggests. However, maker-taker fees distort this 

process by weighting the incentives toward market making, which has been suggested as 

one of the major factors in significantly smaller spreads in U.S. markets in the last decade 
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or so (Harris, 2013). The implication for spreads that have narrowed to the smallest 

allowable quotation, i.e. $0.01, is that the rebate often makes it more attractive to continue 

to provide liquidity at the narrowest spread rather than take liquidity. This can cause orders 

to pile up at the best prices on either side of the spread, with complex and sometimes 

unintended consequences for the perceived valuation of the stock (Harris, 2013). 

2.2.2 Market Maker Risk 

Two other major factors of bid-ask spread size besides the effects of rebates are 

the inventory holding premium and adverse selection risk (Bollen, Smith, & Whaley, 

2004). The inventory holding premium refers to the compensation for risk carried by 

market makers inherent in maintaining a long or short position in the market (Bollen et 

al., 2004). It is hard to quantify this risk, but the concept can be understood simply by 

imagining a market maker’s buy limit order being executed, leading to a long position in 

the stock. If the price of the stock decreases, this can be seen as a cost for the market 

maker (the inverse is true for an executed sell limit order in the sense that there is a cost 

associated with unrealized or “missed” profits). Therefore, in general, market makers 

employ strategies that tend to be inventory neutral, meaning that inventory should remain 

as close to zero as possible (Kårvik, Noss, Worlidge, & Beale, 2018). The bid-ask spread 

required by market makers, therefore, is determined in such a way as to offset the cost of 

holding inventory. Transaction rate, or the trading volume, associated with stocks also 

plays a role in the inventory risk incurred by market makers in that the higher the rate, the 

lower the risk in taking a position since it can be reversed relatively quickly. This implies 
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that there should be smaller spreads as trading volume increases (see Section 2.1.1 for 

additional discussion) because the inventory risk cost is lower (Demsetz, 1968). Adverse 

selection risk is closely related to the inventory holding risk for market makers as 

discussed in Section 2.1.1. A general proxy measurement for this risk is volatility, which 

can be directly measured using the standard deviation of price movements (typically at 

relatively short time scales) (Easley, Kiefer, O’Hara, & Paperman, 1996). As volatility 

increases, average spreads should increase due to the increased probability of an 

unfavorable price movement after trading (Bollen et al., 2004). The difference between 

inventory holding risk and adverse selection risk is that inventory holding risk increases 

as the price of the associated stock increases due to the opportunity cost of allocating 

funds. Higher prices per share require more funds to be committed, and therefore the bid 

ask spread is expected to widen to equalize the cost on a per dollar basis (Demsetz, 

1968). 

2.2.3 Market Taker Order Volume 

 Market takers have different concerns than market makers. This is because market 

makers have a set price at which they have already determined they are willing to trade, 

and market takers are vulnerable to immediate shifts in the price caused by their own 

trading activity. In other words, a market taker gives up the certainty of transacting at a 

specific price for the ability to trade immediately. This is because the market taker’s order 

removes limit orders, and if enough limit orders are removed from the best ask or bid, then 

the best ask or bid price moves, which affects the price. If a market taker enters a large 
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enough order then they could be executing that order at increasingly disadvantageous 

prices, essentially adding to the cost of their order. For example, if there are thirty limit 

orders at a best ask price of $10.00 with an average volume of 20 shares, then the share 

volume at that price is 600 shares. If a market taker wants to buy 10,000 shares, they will 

quickly deplete the 600 shares at $10.00, which will move the price. In order to avoid this, 

market takers break up large orders into smaller orders (Bouchaud, Gefen, Potters, & 

Wyart, 2004). These large orders are then executed over weeks or months as traders wait 

for beneficial market conditions (Lillo & Farmer, 2004), and have been referred to as meta-

orders due to their latent nature (i.e. only partially observable) (Benzaquen & Bouchaud, 

2018). 

2.2.4 Trader Intelligence 

Sections 2.2.1 through 2.2.3 described Standard economic and financial models 

have typically relied on the assumption of rational agents, who make decisions based on a 

well-defined utility function which they attempt to maximize in pursuit of an economic 

goal. Most standard models also assume that the rational economic agents are able to 

maximize their utility functions perfectly. There is little doubt that participants of an 

economy act strategically, but to what extent they act rationally is uncertain (Kahneman & 

Tversky, 1979). In the middle of the 20th  century, rational agent behavior began to be 

replaced in some models by random behavior. This was mainly due to the growing 

understanding that structural factors, such as budget constraints and order rates, could be 

responsible for at least some economic behavior (Becker, 1962). Gode and Sunder (1993) 
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famously showed that structural constraints on market participants with random behavior 

accounted for a substantial proportion of the dynamics of price formation. They applied 

the name “zero-intelligence” to the traders in their experiments implying that the outcome 

of economic activity, at least in some settings, is independent of the information available 

to the agents. The term zero-intelligence may be slightly misleading since the agents do 

have knowledge of their budget constraints, and some authors have subsequently used the 

term “minimally-intelligent” agents in this framework (Farmer, Patelli, & Zovko, 2005). 

 In models of financial markets with minimally-intelligent agents, the structural 

constraints within which agents operate typically involve what is known as a continuous 

double auction in a limit order market (E. Smith, Farmer, Gillemot, & Krishnamurthy, 

2003). This simply means that limit orders to buy and sell, as described in Section 1.1, are 

stored for later execution with a matching market order, and this process is not restricted 

to discrete time periods (i.e. it is continuous). This creates a constraint on prices because 

the limit order book is prioritized by price and time, so the first limit order at the best price 

is executed prior to any others (Farmer et al., 2005). 

In a continuous, double auction limit order market with random trader behavior, the 

size of the bid-ask spread is determined by the arrival rate of limit and market orders, as 

well as the cancellation rate of limit orders. If market orders are randomly determined to 

be buy or sell orders with equal probability, random size, and an arrival rate, 𝜆, according 

to a Poisson process, then limit orders placed randomly with uniform distribution anywhere 

in the interval −∞ < 𝑝 < 𝑎𝑠𝑘 for buy orders and 𝑏𝑖𝑑 < 𝑝 < 	∞ for sell orders at a rate of 
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𝛼 according to a Poisson process, where 𝑝 is the midpoint price from (1), then the average 

bid-ask spread can be accurately predicted to be 

Equation 7 Predicted Spread 

𝑠	̂ = (𝜆/𝛼) ∗ 𝑓(𝜎𝛿/𝜆) (7) 

where 𝜎 is the average market order size and 𝛿 is the cancelation rate for limit orders 

(Farmer et al., 2005). According to Farmer et al (2005), 𝑓(𝜎𝛿/𝜆) can be approximated as 

Equation 8 Order Size Cancel Rate Function 

𝑓(𝜎𝛿/𝜆) = 0.28 + 1.86 T
𝜎𝛿
𝜆 U

V
W
 

(8) 

The ratio 𝜎𝛿/𝜆 can be understood as the ratio of limit orders removed due to cancelation 

and limit orders removed due to execution. Therefore, as the ratio of market orders to limit 

orders (i.e. 𝜆/𝛼) increases, the bid-ask spread increases. The spread also increases as the 

size of the average market order increases or the cancellation rate of limit orders increases. 

Farmer et al tested this equation with empirical data, and compared the spread predicted 

by minimally-intelligent trading behavior to the actual spread of multiple stocks over 

twenty-one months. A regression of the predicted values vs. the actual values resulted in 

an 𝑅X value of 0.96 indicating that random behavior constrained by market structure 

explains a large portion of the variance in spread size in the market (Farmer et al., 2005). 

The cumulative effect of trader intentions and knowledge could even be seen to some 

degree as noise with respect to average spread size, despite the fact that individual traders 

do not, in reality, act randomly. 
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 The Farmer et al (2005) model was meant to be extremely simple for analytical 

tractability, with as little trader intelligence as possible. Trader intelligence is essentially 

limited to knowledge of the current midpoint price and whether a buy or sell order is being 

submitted to the market, but it clearly demonstrates that market structure plays a major 

factor in market behavior. Related work has shown that many other statistical properties of 

real financial markets such as volatility clustering, long-memory effects, and the non-

normal distribution of returns with excess kurtosis and long tails, can be reproduced with 

very simple trader intelligence in the presence of constraining market structure (Donier, 

Bonart, Mastromatteo, & Bouchaud, 2015). Knowledge of budget constraints, adverse 

selection, and inventory holding risk, as discussed in Section 2.1.1, are fully consistent 

with previous research related to minimally-intelligent agents in financial markets.  

However, Harris (2013) demonstrates that traders likely account for maker-taker 

fees in their decision processes, which is a key parameter in the present model that would 

be considered an exogenous factor generalized away by models solely dependent on 

random behavior and minimal intelligence. It may also be a slight deviation from 

minimal intelligence principles if trading decisions are non-random with respect to the 

choice of the exchange in which to place orders. 

2.3 Regulatory Proposals 

There are three major categories of regulatory proposals that have gained relatively 

broad support for consideration regarding maker-taker fees. The first suggested regulatory 

change would require taker fees to be substantially lowered, or maker rebates to be 
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completely banned. The second category or regulation would require taker fees to be 

displayed as part of the quoted price by exchanges. Finally, some suggest that access fees 

and rebates should be passed along to customers instead of being kept by brokers 

(Securities and Exchange Commission, 2015c). 

2.3.1 Reduced Fee Cap or Rebate Ban 

The simplest regulatory proposal would be to lower the current cap on access fees 

that exchanges could charge (see Section 1.1 for description of current and proposed fee 

levels). This proposal has the benefit of allowing exchanges to compete through the use of 

fees, but could potentially reduce the effects of maker-taker models that some have 

suggested distort market behavior (Securities and Exchange Commission, 2015c). The 

argument for this approach is that market structure and brokerage models have changed 

significantly since the implementation of Reg. NMS in 2005, but the regulation regarding 

access fee caps has not kept pace with the nuances of those changes. Particularly, the notion 

that highly liquid securities require less financial mitigation for adverse selection risk 

because intense price competition keeps market order rates high, leading to narrower 

spreads without the incentive of rebates.  (Ratterman & Concannon, 2015). 

 A tiered approach to taker fees has also been suggested that would reduce access 

fees for securities based on measurements such as trading volume (Securities and Exchange 

Commission, 2015c). This would allow exchanges to charge higher fees for stocks that 

have less natural liquidity and wider spreads to incentivize market makers to place more 

orders. By continuing to offer rebates to market makers for less liquid stocks, exchanges 
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may promote enough competition to produce narrower spreads. Brokers may be drawn to 

thinly traded stocks in an attempt to make up for reduced revenue from rebates on liquidity 

provision in high volume stocks (BlackRock, 2014). This approach, however, would 

potentially involve a contentious grouping process to decide which stocks would have 

reduced fees and how sharp the reduction would be. Also, an ongoing process to reassess 

and regroup stocks would need to be designed and implemented (Hauptman, 2014). 

 Banning rebates paid by exchanges for providing liquidity is another suggested path 

for regulation of maker-taker fees (Hope & Patterson, 2014). This approach argues that 

price competition would be more pure, and that exchanges could compete for liquidity 

more freely on the basis of execution pricing (Narang, 2010). The underlying assertion 

behind the idea of banning rebate payments is that they allow for illegal price competition 

by expanding the competitive price range beyond the $0.01 minimum allowable increments 

(Battalio et al., 2013). A ban would also completely eliminate the issues regarding 

perceptions of conflicts of interest between brokers and their customers in light of best 

execution requirements, as well as reduce market complexity, and increase price 

transparency (Dolgopolov, 2014). One negative outcome of a ban on rebates could be 

increased trading costs for retail investors since quoted spreads would likely widen. Also, 

the ability of exchanges to compete with ATSs would diminish, leading to potential further 

loss of market share and the public visibility of price formation ( The Role of Regulation 

in Shaping Equity Market Structure and Electronic Trading, 2014). 
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2.3.2 Include Access Fees in Public Prices 

Instead of eliminating or reducing access fees, some have suggested that they should 

simply be part of the price displayed to traders (Regulation NMS, 2005). This would 

effectively pass the taker fees back to the customer because the net economic impact of 

taking liquidity would be more visible and controllable at the time of market order 

placement (Regulation NMS, 2005). Displaying prices with fees included would also be 

another way to reduce market complexity and transparency issues. Brokers would also be 

able to rely on less sophisticated, and therefore more transparent, order routing systems 

since they wouldn’t need to take “hidden” fees into account. Their customers would also 

be in a better position to hold them accountable (Lazo, 2015). 

Despite the potential benefits of this proposal, it would require exchanges to post 

price quotations at sub-penny values, which is currently unallowable in Reg. NMS Rule 

612 (Staff of the U.S. SEC, 2012). The reason for prohibiting sub-penny quotations was to 

prevent what is known as “flickering” quotes that result from the semi-continuous nature 

of the sub-penny scale leading to too much price variation across exchanges and hindering 

brokers’ ability to meet their best execution obligations (Regulation NMS, 2005). For 

example, in the current environment one exchange may have a fee of $0.0025, another 

exchange may have a fee of $0.002, and a third exchange charges $0.0029. All three 

exchanges could also have a displayed bid price of $10.00 for a particular stock. The best 

available price is therefore $10.00 and trade-routing decisions are at the discretion of the 

broker. However, in a regulatory environment that required fees to be quoted as part of 
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displayed prices, the first broker would have to display a price of $9.9975, the second 

would display a price of $9.998, while the third displays a price of $9.9971. The best 

available price is at the first exchange, and therefore is likely to have its orderbook cleared 

first at the $10.00 price level (excluding fees). In this event, the new best price would move 

from $9.998 (at the first exchange) to $9.9975 (at the second exchange), but as soon as a 

limit order was placed back at the $10.00 level of the first exchange, the best price would 

jump back to $9.998 (at the first exchange). This would occur perhaps hundreds of times 

per second for high-volume stocks (O’Hara, 2015). Even though this is a very basic 

example, it quickly becomes confusing and difficult to track. This, along with a spectrum 

of increasingly complicated scenarios, would likely strain data feeds and make complex 

market events even harder to understand, which is counterproductive to the reasons behind 

calls for regulatory changes in this area. 

2.3.3 Pass Fees and Rebates Back to Customers 

The third major regulatory proposal related to maker-taker fees is to require all fees 

and rebates to be passed straight to the customer (i.e. whoever initiated the limit or market 

order) (Angel et al., 2010). Brokers’ best execution obligations would be much more 

straight forward if fees and rebates were not part of their economic calculations when 

routing orders, and therefore conflict of interest issues would be resolved (Battalio, 2014). 

However, brokers may use rebate revenue to offset the costs of trading, and if this source 

of revenue is lost, they may pass the cost on to the customer (i.e. retail investors or fund 

managers etc.) therefore raising trading costs. Another challenge would be the actual 
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implementation of this rule since the routing of a trade may be very complex, potentially 

passing through multiple brokers from inception to completion. This could make tracking 

and settling final fee and rebate destinations such a burden that it would outweigh the 

benefits (Battalio, 2014). 

2.4 Agent Based Models 

Economists have attempted to model economic systems for centuries. Despite 

observations and studies over the years, Leon Walras’s equilibrium model, developed in 

the nineteenth century, is still the benchmark paradigm in the field (Tesfatsion & Judd, 

2006). The Walrasian equilibrium model only works under the assumption of fixed 

quantities of producers, consumers, goods, and services with utility maximizing behavior 

for all participants. In addition to this, a key factor of a Walrasian economy is known as 

the Walrasian auctioneer. This auctioneer controls the interaction of all market participants 

in such a way that market conditions are independent of individual actions (Tesfatsion & 

Judd, 2006). Most economists recognize that this is not a satisfactory way of representing 

the way real transactions occur and their effects on economic variables such as prices or 

consumption levels etc (Bouchaud, 2010). However, the Walrasian paradigm is explicitly 

referenced in Federal Reserve research on policy decisions, and is seen by some as the only 

viable way to evaluate economic consequences resulting in the change in economic 

variables (Kocherlakota, 2005). The glaring weakness in Walrasian economics is that 

removing the auctioneer and allowing direct interaction of market participants and strategic 

behavior drastically interferes with the possibility of reaching analytically coherent results 
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(Tesfatsion & Judd, 2006). Economists have recognized this and the resulting need for new 

methods that can account for incomplete and asymmetric information, learning, transaction 

costs, preferences etc (Akerlof, 2003; Albin & Foley, 1992; Bowles & Gintis, 2000; 

Klemperer, 2003). Agent-based modeling is perhaps the most promising method being 

used to address these deficiencies in traditional economics. The term agent-based model 

comes from the presence of interacting, autonomous agents that populate a simulated 

environment. In the field of economics, this method is sometimes referred to as agent-based 

computational economics (ACE) (Chen, 2015). Agents in an ABM can represent any real-

world entity, and it is common for researchers to construct anything from a firm to an 

individual consumer. These entities are given resources, decision making capabilities, and 

preferences as well as any other characteristic deemed relevant by the modeler in order to 

frame an economic research question. Characteristics and structures that are external to the 

agents, such as regulations or geographical constraints, are also programmed into the 

model. Once the model is instantiated, it is usually designed to be able to develop without 

any further external action from the modeler (Tesfatsion & Judd, 2006). In this sense, the 

agents are autonomous in their interaction with each other and their environment.  

 In some ways, laboratory experiments were the forerunners of ACE. Researchers 

have been using human subject laboratory experiments to test theories and economic 

behavior under certain conditions since the middle of the 20th century (Davis & Holt, 

1993). At that time, computing power was insufficient for ACE research, but with 

advancements in computer technology the pairing of computational models and laboratory 

findings became somewhat natural (Duffy, 2006). Most early computational models were 
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attempts to encode human behavior observed in laboratory settings, or in some cases 

theoretically ideal behavior, into “robots” that act as economic counterparts for other 

humans (Brown-Kruse, 1991). This approach had several advantages, including the ability 

to precisely control the behavior of some participants without having to worry about human 

subjects forgetting the rules of the experiment or intentionally ignoring them. It also 

allowed for more accurate gathering of data, and a reliance on fewer experimenters (Duffy, 

2006). Gode and Sunder (GS) (1993) were the first to implement a completely 

computational experiment made up of only simulated agents in order to attempt to replicate 

the findings in a parallel human subject experiment. Prior to their work, other researchers 

had relied on either a hybrid computational-laboratory approach, or were not concerned 

with any attempt to replicate specific experimental findings (Mirowski, 2002). The human 

subject experimental setting that GS were interested in exploring was a double auction 

market with limited information (Gode & Sunder, 1993). Experimental double auctions 

typically involve participants divided into groups of buyers and sellers who trade one or 

more goods with only the knowledge of their own valuation or cost of the good(s), the 

current best bid and ask in the market, and their reward calculation. A buyer’s reward is 

their valuation minus the price they pay for the good, and a seller’s reward is the price they 

receive minus their cost for the good (Duffy, 2006). With these constraints, many studies 

have repeatedly shown that the market price and number of transactions quickly converges 

to the values predicted by competitive equilibrium theories (V. L. Smith, 1962). GS 

believed that the results observed in the laboratory could simply be the result of the double 

auction rules themselves, and not reliant on anything unique to individual human 
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behavioral characteristics. They cited prior work showing that some basic market functions 

could be produced through random behavior with constraints (Becker, 1962). GS designed 

an experiment with computerized traders who were divided as buyers or sellers, as in 

traditional double auction laboratory experiments. These traders were subject to the same 

informational constraints as their human equivalents, but they chose their bid and ask prices 

at random (Gode & Sunder, 1993). To test for the effects of the double auction structure 

on price and quantity efficiency, GS simulated two versions of a trading session. One 

version had traders that were not constrained by their valuation or costs, and could enter 

bid or ask prices that would result in a negative reward. The other version constrained the 

traders so that they could only enter bid or ask prices that would result in a non-negative 

reward. They termed the traders in both versions “zero-intelligence” because their behavior 

was determined randomly (Gode & Sunder, 1993). Their results showed that the 

unconstrained traders did not arrive at the predicted equilibrium price or transaction 

quantity, but the traders constrained by non-negative rewards did. They concluded that 

market structure and a budget constraint accounted for much of the efficiency observed in 

similar human experiments that had long been supported by real market behavior (Gode & 

Sunder, 1993). 

 In the GS model prices are determined by direct interaction between traders when 

a buyer or seller submits a price that meets the criteria for an exchange of goods. However, 

other price determination mechanisms have been implemented in ABMs that attempt to 

represent specific theoretical aspects unique to financial markets. One mechanism involves 

a market maker who sets a price for an asset and trader agents submit their demand to buy 
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and sell at that price. Excess demand to buy causes the price to increase, and excess demand 

to sell causes the price to decrease (Day & Huang, 1990). A very similar approach was 

used in Ghoulmie et al (2005) that numerically cleared the market with a very simple 

formula for determining price change. Essentially, the price in the next period was equal 

to demand minus supply. This led to a very concise model and that is able to reproduce 

very important statistical properties of real stock markets. Another mechanism that has 

been successful is a random field, where agents randomly encounter each other on a special 

grid and trade if they have mutually beneficial prices for supply and demand. This approach 

is promising for financial research that involves partially or completely informal markets. 

One example would be the trading floor of the NYSE prior to the nearly complete transition 

to electronically submitted orders and market making activity. Another example could be 

over the counter trading or some alternative trading systems for stocks. However, for 

mature markets which have been highly institutionalized, a less random approach for 

matching trades is viewed as more representative. Therefore, the third mechanism for price 

formation in financial market ABMs is to build an orderbook, which is the approach used 

in the research presented here. A well-defined order book is considered vital to simulating 

realistic market microstructure (LeBaron, 2006). 

 In addition to price formation mechanisms in financial ABMs, the types of traders 

to include in a model is also an important design consideration. The term “types” simply 

refers to the strategies that traders execute when participating in the market. This includes 

how and when they decide to trade, and whether they buy or sell. Financial ABMs can be 

classified into two groups in this respect; few-type models, and many-type models 
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(LeBaron, 2006). There is no set threshold for the number of trader types that determines 

which category a model is in, but models with fixed strategies are generally considered 

few-type models, and models that contain agents that can learn and adapt their strategies 

often end up as many-type models. Most early models fall into the few-type category, with 

two or three trader strategies (LeBaron, 2006). Fundamental, technical, and trend-

following are very common strategies included in few-type models, with an additional 

trader type often referred to as noise traders sometimes included in order to represent 

behavior that is unaccounted for in the other three strategies. Fundamental traders make 

trading decisions based on the current price in relation to a calculated valuation of the asset 

being traded. If the current price is overvalued (undervalued), then the fundamental trader 

will sell (buy). Technical traders choose to trade based on price signals, such as moving 

average. Trend-following traders simply buy if the price has been moving upward over a 

period of time, or sell if it has been moving downward. These three strategies have been 

shown to be sufficient to reproduce market instability, as well as volume and volatility 

levels consistent with real markets (Frankel & Froot, 1988; Kim & Markowitz, 1989). 

Many-type models developed from few-type models when researchers began 

implementing adaptive, learning traders that could dynamically change their strategies in 

search of the best outcome (LeBaron, 2006). One of the most widely used methods for 

trader adaptation is known as genetic algorithms. Genetic algorithms are based off of 

evolutionary theory. Traders start off with certain strategies, and over time these strategies 

are randomly mutated. Strategies, or the traders who employ them, are rewarded according 

to the effects they produce. Bad strategies eventually die off, and good strategies are 
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propagated (Markowska-Kaczmar, Kwasnicka, & Szczepkowski, 2008). Some genetic 

algorithm models have a predetermined ideal parameter that the traders do not know but 

are trying to reach. For instance, the ideal amount of wealth to allocate to a risky asset in 

the presence of a normally distributed, varying dividend payout can be determined by a 

simple calculation. Allocating the ideal amount of wealth would be considered the ideal 

strategy. However, agents that do not know the ideal wealth allocation or how to calculate 

it can learn it through adapting their strategy through genetic algorithms (LeBaron, 2006). 

A very simple example of this was programmed by Lettau (1996) to understand the 

behavior of mutual fund investors. In his model the adaptive agents learning through 

genetic algorithms held more risk than the optimal amount, and negative returns resulted 

in greater portfolio adjustments away from the risky assets than expected according to fully 

rational behavior. These results were similar to empirical data for actions of actual 

investors (Lettau, 1996). 

 Other models with many types of agents, instead of focusing on understanding 

observed real-world behavior through reproducing it, attempt to identify a taxonomy of 

strategies that could be observed within a financial market. The resulting ecosystem of 

trading strategies in these models is analyzed by researchers to see which strategies can 

coexist, which strategies tend to survive in the presence of others, and which strategies are 

vulnerable to other strategies. The concept of an informationally efficient market, which 

underlies much of financial theory, is also a focal point of these models in the sense that a 

strategy that develops in a way that profits from any regular inefficiency then other agents 

should either learn to copy such strategy or eliminate its advantages in some other way 



44 

 

(LeBaron, 2006). Perhaps the most famous and ambitious attempt at this type of ABM is 

the Santa Fe Artificial Stock Market (SF-ASM). Its implementation consists of competing 

agents with different, evolving strategies for predicting the future price of an asset in a 

market. One major goal for the model was to determine if, how, and when the market would 

converge to an equilibrium, and if not then how closely does the financial time series align 

with that of real markets (Arthur, Holland, LeBaron, Palmer, & Tayler, 1997; LeBaron, 

2001). As in many other financial ABMs, the SF-ASM allows traders to invest a portion 

of their wealth in a risky asset that pays a dividend and their remaining wealth in a riskless 

asset with a constant return. In each time period, agents use information from current 

market conditions as input to a predictor function that feeds into a demand function that 

computes the wealth distribution between the two assets in the next time period. At the end 

of each period, each agent, with probability 𝑝, updates its prediction strategy, and the least 

effective 15% of the rules that make up the strategy are dropped and replaced with some 

combination of the remaining rules and a random mutation component (LeBaron, 2006). 

A very important piece of the SF-ASM is what is known as the learning rate. This is simply 

the average number of periods between updates to an agent’s strategy. A slow learning rate 

of 1,000 time periods (on average) between strategy updates produces a convergence of 

agent strategies so that they eventually all process the available information the same way 

leading to equilibrium. However, a fast learning rate of 250 time periods (on average) 

between strategy updates does not result in equilibrium, and a variety of strategies remain 

in the market. Interestingly, the fast-learning results produce qualitatively similar statistical 

results to real stock market time series data (LeBaron, 2006). The project was a major 
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undertaking and therefore it gained a lot of attention and probably more scrutiny than most 

other financial ABMs. One of the major criticisms of the SF-ASM is its lack of clarity 

regarding the source of the price dynamics due to its reliance on a relatively complicated 

classifier function for processing market information (Ehrentreich, 2002). As a result it has 

become an important benchmark model and a springboard for further research, but its 

results are debated as to whether they are informative with respect to real-world market 

participant behavior (Ehrentreich, 2002). 

 The agent-based financial markets described above are all abstracted models that 

do not attempt to model market microstructure and the way actual trades are entered. They 

are also typically focused on fundamental research questions related to basic financial 

economic principles. More recent models have begun to explore microstructure influence 

on trader behavior with practical policy implications. This is an ideal research path for 

agent-based modeling because of the amount of data available on individual trading 

behavior, and the heterogeneous, adaptive strategies that make up trading activity in real-

markets (LeBaron, 2006). Although implementing realistic market structure has gained 

popularity recently, it has precedence from some of the earliest attempts at agent-based 

financial markets (LeBaron, 2006). One such model attempts to evolve trading strategies 

with minimal abstraction from real market mechanisms such as the order book (Riek, 

1994). Its results were promising in suggesting that it is not necessary to abstract from 

market structure, and therefore perhaps not desirable to do so if sufficient computing power 

is available (Riek, 1994). In this vein, Yang (2002) was able to replicate the SF-ASM 

results regarding convergence to equilibrium, and its impossibility in the presence of 
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certain trading strategies. The work even explores the principles of evolutionary trading 

strategies to the evolution of specific market microstructure institutions and their 

prevalence under certain circumstances (Yang, 2002). Yang (2002) argues that the 

microstructure aspects of markets should not be ignored when designing ABMs because 

there are important features that limit the evolution of some trading strategies that are not 

limited in more abstracted markets. 

 In the late 1990s and early 2000s, NASDAQ and a company called Bios Group 

developed an ABM that very accurately represented market structure and trader behavior 

with evolutionary strategies in an attempt to understand and anticipate the effects of a 

forthcoming regulatory change (Darley, Outkin, Plate, & Gao, 1999). Prior to the year 

2000, stock markets quoted prices in 1/16 fractions instead of in pennies (Staff of the U.S. 

SEC, 2012). The NASDAQ/Bios Group (NB) research was focused on understanding how 

market maker behavior would change during and after the shift from fractional price 

quoting to $0.01 decimal price quoting. In their model, there are two main agent types: 

market makers and investors. Traders exchange a single asset with an exogenously 

determined fundamental value. Investors have an informed view of the fundamental value 

(or true value) with a stochastically determined error term applied from a gaussian 

distribution. The fundamental value of the asset also fluctuates stochastically over time. 

Market makers are not informed of the true value but may learn it (approximately) through 

the information contained in the order flow of the investors. However, due to uncertainties 

in the fundamental value, and inventory risk, market makers set the bid-ask spread they are 

willing to trade at to a range that allows for profitable trades but hedges against adverse 
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selection and inventory risk (see Sections 2.2.1 and 2.2.2 for explanation of adverse 

selection and inventory risk)  (Darley, 2007). In this model, investors only act (trade) when 

the market price is above or below their own partially informed (fuzzy) view of the true 

fundamental value. The only determination they make is the volume of their market orders, 

which is a function of the difference between their value and the true value. Market makers 

on the other hand have much more flexibility in their choice of strategy. The most basic 

strategy available to market makers simply tracks the current market price and the market 

maker’s outstanding quotations in the limit order book. When some of the market maker’s 

orders are executed, more are entered on the same side of the book. This produces dynamics 

very similar to the zero-intelligence models described above. However, in an environment 

with competitive strategies this simple method is not very successful. For example, Darley 

(2007) implemented “parasitic” strategies that some market makers employ which attempt 

to learn from the state of the market and investor order flow. These strategies tend to jump 

in front of the market maker quotations that are placed as a result of the basic strategy and 

effectively steal profits from them (Darley, 2007). There are many other strategies 

available to market makers which coexist and coevolve as trading progresses. Market 

makers learn which strategies are effective and tend to utilize them more. However, there 

is no stable consensus as to which strategy is the most effective because as a strategy gains 

popularity its payoff decreases (Darley, 2007). This is perhaps the most sophisticated 

model of the stock market ever built in the sense that it incorporates very detailed market 

microstructure with evolutionary strategies in an attempt to address specific, practical 

policy implications while at the same time exploring theoretical questions surrounding the 
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coexistence and coevolution of highly realistic trading strategies. It is interesting then, that 

this model produces very similar results as simpler models that implement a double auction 

with market makers and market takers. It seems that something inherent in the structure of 

a limit order driven market is at least partially responsible for some of the most fascinating 

effects produced by stock markets. This could also be why stock markets around the world 

have strikingly similar statistical behavior over time. According to Darley (2007), the 

simple existence of market makers, bid-ask spreads, and the interaction of market and limit 

orders is enough to explain clustering behavior, fat-tailed return distributions, and 

persistent volatility (Darley, 2007). For example, traditional theories that attempt to explain 

the existence of fat-tailed returns in the stock market assume the necessity of herding 

behavior, or the tendency of market participants to do what everyone else is doing (i.e. 

buy/sell), which leads to an intensifying feedback loop (Lux & Marchesi, 1999). Even 

though the model from Darley (2007) does not have any mechanism for herding behavior 

to occur, the model always produced a distribution of returns that resembled a log-normal 

or Levy distribution, both of which have much higher tail probabilities than a normal 

distribution (Darley, 2007). In order for a claim to be made that herding behavior is 

necessary for events to deviate from a normal distribution, it follows that no herding 

behavior should occur in the absence of herding behavior. However, since fat-tails do occur 

in the model without herding, the conclusion is that herding behavior may play a role in 

extreme returns in real markets, but the rules of the market and the resulting constraints on 

behavior are likely part of the explanation (Darley, 2007). With the understanding that 

market structure, and particularly limit orders and market orders interacting through a 
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centralized order book, is a major contributing factor for market effects, there is now the 

possibility that minimal intelligence and accurate market mechanisms be the foundation 

for any fundamental stock market research involving ABMs.  
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CHAPTER 3: AN AGENT-BASED MODEL OF MAKER-TAKER FEES 

Combining the market microstructure, theoretical, regulatory, and ABM sections 

above, an ABM was constructed to explore the effects of changes to maker-taker fees in a 

multiple exchange environment. Section 3.1 provides a general overview of the model, 

while Sections 3.2 through 3.4 provide descriptions of agents’ attributes and behaviors. 

Section 3.5 defines how the simulation is initialized. Section 3.6 begins to segue into the 

next chapter by introducing the relevant information collected from the simulations, and 

how it is intended to inform the overall discussion about maker-taker fees and their future. 

Finally, Section 3.7 describes how a typical simulation operates. 

3.1 General Model Description 

The ABM consists of two exchanges and three types of trading agents. Both of the 

exchanges are identical in their general attributes and characteristics. They both have an 

orderbook for storing limit orders, and methods for matching incoming market orders to 

the best bid or ask price. The exchanges also track trades when they occur. Necessary 

information about the market is also made available to the trading agents by the exchanges 

such as the current best bid and ask prices and the number of shares at each. 

The three agent types in the model are referred to as market makers, liquidity 

providers, and market takers. These types are based on the market maker and market taker 
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behaviors and trading characteristics discussed in Sections 1.1, 2.1.1, and 2.2.1. The term 

“liquidity provider” is used to distinguish between large market makers and individual 

traders who choose to use limit orders instead of market orders. Both market maker and 

liquidity provider agents fall under the classification of market maker in the general sense 

that they use limit orders to trade, which add to the available liquidity in the orderbook. 

However, these two agent types differ in their specific behavior from each other as well as 

from market taker agents as described below. Each agent type has its own decision-making 

process that is influenced by the current market status which they are able to obtain from 

the exchange. Market makers enter limit orders (as described in Section 1.1) on both sides 

of the current market price in order to earn the difference between their best bid and best 

ask prices by rapidly interacting with both buy and sell market orders. The pricing of the 

limit orders they enter is determined by the inventory they currently hold (can be positive 

or negative) and recent market volatility. The size of the limit orders placed by market 

makers is randomly determined. Market makers also cancel a percentage of their 

unexecuted orders every time step (see Section 3.4.2 for further details). Liquidity 

providers enter a single limit order on either the buy or sell side of the order book. The 

decision to buy or sell is randomly determined, and the price of the limit order is chosen at 

a random distance from the current market price (see Section 3.4.1 for further details). 

Market takers are the only trader agent that enters market orders (as described in Section 

1.1). The size of a market order is randomly determined as a percentage of the prevailing 

best ask or bid depending on the direction of the order (buy or sell). 
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The last thing to mention before describing the parts of the model in more detail is 

that time is on a discrete scale represented in ℤA so that the notation 𝑡 represents the current 

positive integer of that discrete time step. Therefore, Δ𝑡 and 𝑡 ± Δ𝑡 convey, respectively, a 

discrete integer change in time and a discrete integer difference from a specific time to 

another. 

3.2 Agent Attributes and Parameters 

Each trader has a unique ID and a type to distinguish it from other traders. All of 

the traders also internally track their order IDs, which is important for matching market 

orders with limit orders in the orderbook. In addition to these, each trader type has unique 

state variables that are used in its decision-making process.  

Market makers, because their limit order pricing is a function of their current 

inventory and recent volatility, have state variables that represent how much asset they 

currently hold, and the last observed market price. They also have a wealth attribute for 

tracking how profitable they are in their trading. Market makers also have parameters for 

the number of orders they can submit at any given time step and the price range in which 

those orders can be placed. In order to determine the size of their orders, an array with 

possible order sizes is stored as an attribute from which a random size is drawn for each 

order. The final two parameters unique to market makers are the rebate they will receive 

for providing liquidity in trades and the probability that they will cancel any standing 

unexecuted limit order that originated with them. 
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Liquidity providers do not have any unique attributes, but they do have a parameter 

that influences the probability of how far from the current market price they will place a 

limit order. Liquidity providers do not require any other state variables or parameters due 

to their simplicity and almost complete reliance on stochastic decision-making. 

Market takers have only two state variables: meta-order quantity and meta-order 

direction. A meta-order is the concept that market takers want to buy or sell more quantity 

than they are willing to submit to the market in a single trade – this is to avoid large price 

impact as discussed in Section 2.2.3. Each trade they place is a fraction of the overall 

quantity which makes up the meta-order (Mastromatteo, Tóth, & Bouchaud, 2014). The 

meta-order direction determines whether the market taker is currently executing a buy or 

sell meta-order. The direction attribute of each market taker remains the same until the 

entire meta-order quantity has been executed, at which time a new meta-order quantity and 

direction are randomly determined. 

The exchanges have an order index attribute that is used to track the order sequence 

at each exchange, and a Boolean attribute that identifies whether an incoming order is a 

match for an existing limit order. There are no parameters specifically associated with the 

exchanges. 

3.3 Agent Intelligence 

The intelligence of the traders is kept to a minimum in the model in the same vein 

as several of the models described in Section 2.4 and based on the theoretical background 

in Section 2.2. This is because the key issue, maker-taker fees, is a market microstructure 
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issue, and the goal is to determine the effects of this aspect on market quality. Having 

minimally intelligent agents takes away much of the need for analyzing the effects of agent 

decision-making which could otherwise become entangled with the effects of market 

structure. 

 Essentially, individual agent intelligence is abstracted away by stochastic 

processes. The agents do not learn from their experience. Market makers and market takers 

have memory, but it is very limited. Market maker memory only includes their wealth, 

their current inventory, and the last market price they observed. Wealth could even be 

excluded from their memory since it is only used for analyzing a market maker’s 

profitability, and not for decision-making. It is possible to construe market maker order 

placement decisions as adaptation since the prices are based on changing market 

conditions, but their behavior remains the same so that any exact matching combination of 

market state and market maker state would produce the same result regardless of when it 

occurred. Market taker memory only includes the size of the meta-order they are executing 

and the direction of that meta-order. 

 The exchanges maintain records of all outstanding orders, and are able to match 

incoming orders with the appropriate existing order. They do this by tracking all 

outstanding orders’ price, time of entry, and size and make the order with the best price at 

the earliest entry time available for trading to any corresponding market order. This does 

not technically require any intelligence except for the ability to sort integers, but does 

require significant memory. 
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3.4 Agent Behavior 

Each agent type, when active, places an order in the market which is either stored 

in the orderbook or immediately executed depending on whether it is a limit or market 

order. Market makers and liquidity providers only enter limit orders and market takers only 

enter market orders (as described in Section 3.1). Market makers and liquidity providers 

also have methods to determine the pricing of their orders based on market state. Market 

takers have the ability to choose which exchange to trade at based on the best bid or ask 

price available. Individual trader behavior is described in more detail below. 

3.4.1 Liquidity Provider Behavior 

Liquidity providers are assigned an exchange when they are initialized at the 

beginning of the simulation. Half of the total liquidity providers are active on one 

exchange, while the other half are active on the other exchange. This eliminates the need 

for a behavior in this trader type that accounts for choosing an exchange. Limiting these 

traders to a single exchange should not detract from the results of the simulation because 

of the random nature of their market activity (they are the most random and unintelligent 

of the three agent types). They simply represent an active part of market microstructure 

which is essentially the presence of smaller limit orders submitted by individual traders 

(O’Hara, 2015). 

 Liquidity providers send limit orders to the market at random intervals. When they 

are active, they observe the current market state at their designated exchange. The 

information they observe is contained in what is commonly referred to as the top of book 
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(ToB). It includes the best ask and bid prices as well as the size (number of shares) at each 

in the orderbook. Liquidity providers randomly determine whether their limit order will be 

to buy or sell with equal probability. Once that is determined, they choose a price at which 

to submit the limit order according to (9) 

Equation 9 Liquidity Provider Agent Limit Prices 

𝑙𝑖𝑚𝑖𝑡	𝑝𝑟𝑖𝑐𝑒 = 	 \
⌈𝑎^_`. + 𝜆 ∗ −1 ∗ 	𝑈[0, 1) + 𝑚⌉														𝑖𝑓												𝑠𝑒𝑙𝑙
⌊𝑏^_`. − 𝜆 ∗ −1 ∗ 	𝑈[0, 1) − 𝑚⌋													𝑖𝑓												𝑏𝑢𝑦

 (9) 

where  𝑎^_`. and 𝑏^_`. are the best ask and best bid prices respectively, 𝜆 is the liquidity 

provider parameter mentioned in Section 3.1.1, and 𝑚 is the minimum allowable tick size 

on the exchange (in this case 1 since the model assumes all integer prices). The limit price 

is rounded to the nearest minimum tick size. Larger 𝜆 produces limit order prices that are 

further from the current best ask and bid prices. After randomly determining the side and 

price of their order, liquidity providers submit the order to the exchange where it is queued 

along with the other orders at that price. 

3.4.2 Market Maker Behavior 

Market makers are also assigned to a particular exchange at the beginning of the 

simulation, with one market maker per exchange. In real-world markets, this type of trader 

is typically characterized by a strategy that attempts to earn the difference between the best 

ask and bid prices by placing limit orders on either side of the orderbook (Dolgopolov, 

2012). Therefore, instead of entering limit orders as a buy or sell decision process, the 

market maker agents enter a series of limit orders on the buy and sell side of the orderbook. 
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They are also assumed to be more sophisticated than liquidity providers, and therefore able 

to take rebates into account when setting their prices. 

 When they are active in submitting limit orders, market maker agents observe the 

current ToB information. With this information they calculate the market price as defined 

in (1), and then apply adjustments to account for inventory and adverse selection risks as 

described in Section 2.2.1 based on their current inventory holding and the recent market 

volatility. Inventory risk is applied to the market midpoint price before any other 

adjustments because the adjusted midpoint price is the basis from which the other 

adjustments are made. The inventory adjustment is also key to promoting market making 

behavior that reflects an inventory neutral strategy. The adjusted midpoint is calculated 

according to (10) 

Equation 10 Market Maker Adjusted Price 

𝑝hij = 𝑝. −
𝐼
10 ∗ 𝜁 (10) 

where 𝑝. is the market price (1), 𝐼 is the trader’s current inventory, and 𝜁 is a tunable 

inventory sensitivity parameter that remains constant during the simulation. In this way, 

negative inventory results in a higher adjusted market price and vice versa for positive 

inventory. The probability of buying is increased when inventory is negative, and the 

probability of selling is increased when inventory is positive because the market maker’s 

ask and bid prices are established around this adjusted price. 

 In order to calculate the bid-ask spread at which the market maker is willing to 

trade, they also need information on the recent volatility in the market. Instead of 
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calculating the overall variance in price over a specific time period, they approximate it 

based on the relative magnitude of the change in the market price since the last time they 

were active in the market. They then use their adjusted midpoint price and approximated 

volatility to set maximum bid and a minimum ask prices, as defined in (11) and (12). The 

approximated volatility is set so that 

Equation 11 Approximate Volatility 

𝜎hllmno =
𝑝.pqE. − 𝑝.

𝑝.
 (11) 

where 𝑝. is the market mid-price (1), and 𝑝.pqE. is the mid-price observed by the agent 

during the last time step during which they placed an order in the market. Also, 𝜖 is a 

random term drawn from a geometric distribution with probability, 𝑝 = 0.95. 

 The minimum ask price and maximum bid price for the agent can now be set as 

Equation 12 Market Maker Minimum Ask and Maximum Bid Prices 

u
𝑎𝑠𝑘v;w = 	𝑝hij − 𝑅 ∗ (1 + 𝜎hllmno ∗ 𝛽)
𝑏𝑖𝑑vho = 𝑝hij + 𝑅 ∗ (1 − 𝜎hllmno ∗ 	𝛽)

	
(12) 

where 𝑝hij and 𝜎hllmno are defined in (10) and (11), 𝑅 is the rebate attribute of the market 

maker agent, and 𝛽 is a sensitivity parameter. The price values 𝑎𝑠𝑘v;w and 𝑏𝑖𝑑vho are 

subject to rule (13) which is defined as 

Equation 13 Minimum Tick Size Rule 

\𝑎𝑠𝑘v;w = 	𝑝. + 𝑚														𝑖𝑓													𝑎𝑠𝑘v;w ≤ 𝑏^_`.
𝑏𝑖𝑑vho = 𝑝. − 𝑚															𝑖𝑓													𝑏𝑖𝑑vho ≥ 𝑎^_`.

	 (13) 

where 𝑝. is defined in (1), 𝑚 is the minimum tick size for price, and 𝑎^_`. and 𝑏^_`. are the 

best ask and bid prices currently available at the exchange. 



59 

 

 Market makers also set a maximum ask price and a minimum bid price to form a 

quote range for both buy and sell prices at that time step. These are simply set according 

to (14) in which 𝛿 is the agent’s quote range parameter – a simple integer value. 

Equation 14 Market Maker Maximum Ask and Minimum Bid Prices 

\𝑎𝑠𝑘vho = 𝑎𝑠𝑘v;w + 𝛿
𝑏𝑖𝑑v;w = 𝑏𝑖𝑑vho − 𝛿

	 (14) 

With (10) – (14) established, the market maker generates 𝑁/2 ask quotes and 𝑁/2 bid 

quotes in 𝑈[𝑎𝑠𝑘v;w, 𝑎𝑠𝑘vho] and 𝑈[𝑏𝑖𝑑v;w, 𝑏𝑖𝑑vho] respectively with 𝑁 as the agent 

parameter for the number of quotes it will enter when active. The size of each quote is 

determined by a random uniform selection from their quote size array described in Section 

3.1.1. 

 When a market maker’s limit orders interact with market orders a trade occurs, and 

this impacts the market maker’s wealth by decreasing cash and increasing assets when they 

buy or increasing cash and decreasing assets when they sell. The wealth calculation over 

time is therefore represented by (15) 

Equation 15 Market Maker Wealth 
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where 𝑤� is initial wealth, 𝑝;^;i and 𝑝;h`� are the bid and ask prices of each 𝑖 limit order 

that formed a trade with a market order, 𝑞;^;i and 𝑞;h`� are the quantities of asset exchanged 

in each 𝑖 trade, 𝑅 is the agent’s rebate attribute value, and 𝑝.p� is the most recent market 

price (1) at which the currently held inventory is valued. 

 As discussed in Section 3.1, market makers cancel a portion of their outstanding 

limit orders during every time step at which they are active. The set of orders being 

cancelled by a market maker at time step 𝑡 is formed according to (16) 

Equation 16 Cancel Orders 

𝐶 = 	 {𝑜	|	𝑜	 ∈ 	𝕆	⋀	𝑈(0, 1] 	≤ 𝜋}	 (16) 

where 𝑜 is an individual order in the set of outstanding orders, 𝕆, belonging to the agent, 

and 𝜋 is the agent’s cancellation probability parameter. Each order in 𝐶 is then removed 

from the market and the agent’s internal records of its orders. 

3.4.3 Market Taker Behavior 

Unlike liquidity providers and market makers, market taker agents are not assigned 

to an exchange, and can choose the exchange to which they submit their market orders 

based on where the best price is. If a buy market order is being submitted, then the agent 

chooses the exchange with the lowest ask price. If a sell market order is being submitted, 

then the exchange with the highest bid price is chosen.  

Whether the agent is submitting a buy or sell order is determined randomly along 

with a random meta-order size as mentioned in Section 3.1.1. During the initialization of 

the simulation, each market taker agent is given an initial meta-order size and direction. 
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When submitting market orders, the agent always submits a buy or sell order of random 

size according to the current meta-order direction until the meta-order is completed. Once 

the meta-order is complete (i.e. all of the desired shares represented by the meta-order size 

have been bought or sold), a new meta-order size and direction are randomly chosen 

according to (17) and (18). 

Equation 17 Market Taker Meta-Order Quantity 

𝑄 = 𝑈{1, 20}	 (17) 

	  

 

Equation 18 Market Taker Meta-Order Direction 

𝐷 = 𝑈{0, 1}	 (18) 

 

Meta-order direction, 𝐷, with a value of 1 means that the meta-order is to buy 𝑄 shares, 

and a value of 0 means the meta-order is to sell 𝑄 shares. 

 Meta-orders may be executed over time as smaller sub-orders. From a trading 

perspective, this is done in order to avoid detrimental price impact during a trade, as in 

(Mastromatteo et al., 2014). The size of each sub-order is a function of the number of shares 

at the corresponding best ask or bid price according to (19) 

Equation 19 Market Taker Order Size 

𝑠 = 𝑚𝑎𝑥(⌊𝑈[0, 1] ∗ 𝑣^_`.⌋, 1)	 (19) 
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where 𝑣^_`. is the volume at the best price and 𝑠 is subject to the restriction that it cannot 

be greater than the remaining meta-order size. 

3.4.4 Exchange Behavior 

Although the exchanges in the model do not represent individuals, they are agents 

in the sense that they are entities that possess information about their environment and react 

to it. This information is comprised of every available limit order and every incoming 

market order. If a limit order is entered, then it is inserted into the exchange’s orderbook at 

the appropriate location. The appropriate location in the orderbook for any limit order is 

determined by the limit order’s price and time of entry (E. Smith et al., 2003). If one or 

more orders already exist at the price designated by an incoming limit order, then the new 

order will have its shares queued for execution behind the shares of the existing orders at 

that price. If there is no existing order at the price designated by the incoming limit order 

then the new order will be placed in the orderbook at that price and its shares are 

immediately accessible to any market order that reaches it (E. Smith et al., 2003). 

 When a market order is submitted to the exchange, the exchange finds the oldest 

limit order at the best corresponding ask or bid price and a trade occurs. The exchange 

ensures that the correct number of shares are transferred from the seller to the buyer and 

that the correct cash value is transferred from the buyer to the seller. If the market order 

size is greater than the size of the limit order, then the size of the limit order is reduced to 

zero, and the shares of the next oldest limit order at that price are made available to trade. 

If the market order size is less than the size of the limit order, then the size of the limit 
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order is reduced by the size of the market order, and the remaining shares are available for 

the next corresponding market order. 

 The exchanges update their ToB information every time a limit order is created or 

cancelled as well as when a trade occurs. This is so that it can report the information to the 

trader agents which for use in formulating the trader’s next order(s). 

3.5 Initialization 

At the beginning of the simulation, the separate trader types are constructed with 

their respective parameters described in Section 3.1.1. All of the traders are then combined 

into a single list, which is randomly shuffled to reduce any effects from activation order 

(the list is shuffled every time step).  

Due to the random activation of agents in the model, any trader type could be 

activated first. In the event that a market taker agent is activated first a limit order would 

need to exist with a large enough size to fulfill the supply or demand of the market order. 

Therefore, the orderbook at each exchange is seeded with ask and bid limit orders, and 

liquidity providers are the only traders active for the first twenty time steps. The exchanges 

gather their ToB information, and then market makers, liquidity providers, and market 

takers begin trading activities. 

3.6 Simulation Data 

The data collected during the simulation is primarily focused on making the 

analysis of market quality statistics possible in order to compare the data from each 

exchange to determine the effect of maker-taker fees. Most of the effects considered are 
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related to measures of transaction costs and liquidity. It is generally assumed that greater 

liquidity leads to lower transaction costs, however it is notoriously difficult to define 

liquidity (Hu et al., 2018). One reason for this is the theoretical existence of what has been 

referred to as the latent orderbook, or latent interest (Mastromatteo et al., 2014), which is 

the notion that traders are prepared to buy or sell at prices near the current market price, 

but wish to conceal their intentions from the rest of the market for as long as possible to 

avoid losing any informational advantage they may have. This, however, cannot be tested 

in the present model due to the minimal intelligence of the agents, and therefore the 

liquidity measures employed here only rely on the observable market depth at the best ask 

and bid prices. Since this is the same situation regarding liquidity that empirical data would 

provide, the assumption is made that standard representations of liquidity are sufficient. 

3.6.1 Transaction Cost Measures 

Effective spread, along with realized spread, and price impact as defined in (2), (3), 

and (4) respectively are the main measures of transaction costs for traders. Lower values 

indicate that trading is less expensive. Effective spread and realized spread are typically <

1 and depending on the price of the asset are often ≪ 1. It is important to note that these 

values are expressed as a percentage of the current market price and are therefore sensitive 

to the dollar value of the asset.  

 The quoted spread is the difference between the best ask and bid prices currently 

available. Two quoted spread measures will be observed from the simulation data. The first 

is a volume-weighted quoted spread, which is defined as (20) 
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Equation 20 Volume-Weighted Spread 

𝑆.�� =
𝑆. ∗ (𝑉.h`� + 𝑉.^;i)
(𝑉.h`� + 𝑉.^;i)

	
(20) 

where 𝑆. is the quoted spread at time 𝑡 and 𝑉.
h`�,^;i is the number of shares available at the 

best ask and bid prices at time 𝑡. Smaller values of 𝑆.�� indicate lower transaction cost for 

small orders (Hu et al., 2018). The second measure of the quoted spread is a time-weighted 

spread that takes into account the amount of time spent at a certain spread value. A lower 

value represents more time spent at smaller spreads, and therefore lower average 

transaction costs. This is a cumulative measure over the entire simulation and is defined as 

(21) 

Equation 21 Time-Weighted Spread 

𝑆.� = 	
∑ 𝑆..
.�
𝑡 	

(21) 

where 𝑆. quoted spread at time 𝑡. 

3.6.2 Liquidity Measures 

One measure of liquidity taken from the simulation is the log of the dollar value at 

the best ask and bid prices for each exchange at each time step. This is typically referred 

to as dollar depth (Hu et al., 2018). More dollar depth at the best bid and ask prices reduces 

the risk of adverse selection because it means that it would take more volume to move the 

price.  

 Related to dollar depth is the ratio of average price impact to average trade volume. 

A smaller number would indicate that it is more difficult to move the price of an asset, and 
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therefore likely more liquidity exists on either side of the orderbook. Another way to look 

at this measure is that the average price impact is partially the result of the average trade 

volume. For this model, the ratio of price impact to trade volume will be calculated as a 

single value from all time steps, but it could be useful to measure it over smaller time scales 

as well. 

3.6.3 Miscellaneous Measures 

Returns are the price change, or rather the log of the difference in price, from one 

time to the next. The behavior of asset price changes is one of the most fascinating aspects 

of stock markets. In almost every stock market in the world (Niyitegeka & Tewari, 2013), 

returns exhibit what is known as volatility clustering. Volatility clustering means that large 

changes in price tend to be found close to each other in time and small changes group 

together. So, if a large change is seen in the price of an asset at time 𝑡 then a large change 

in price is likely to be seen at time 𝑡 + 1 and the same is true for small changes. The return 

at time 𝑡 is defined as (22) 

Equation 22 Log Return 

𝑟𝑒𝑡𝑢𝑟𝑛. = 	𝑙𝑛(𝑀.) − 𝑙𝑛(𝑀.p�)	 (22) 

where 𝑀. is the market price as defined in (1). It is typically assumed that volatility 

clustering is the result of herding behavior in market participants or the arrival of news or 

new information (Joulin, Lefevre, Grunberg, & Bouchaud, 2008). However, if volatility 

clustering is observable in the results of this model, which does not include any information 

in the form of news (only information in the form of stock price), and lacks any ability for 
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traders to act in a herding manner, then the endogenous structural interactions in the market 

must explain volatility clustering to some extent. 

Market maker profitability is recorded because it is an indicator of how attractive 

an exchange is for market making activity. Even though market makers are not able to 

choose at which exchange they place their orders in this model, market makers are not 

limited from choosing in the real world. A more profitable exchange environment would 

intuitively draw in more market makers, but that is left for any potential extensions of this 

model.  

 The final value taken from the model is the volatility of the returns at each 

exchange. This is another market quality measure that simply indicates at which exchange 

a trader would most likely experience a large price change. 

3.7 Typical Simulation 

 After initialization (see Section 3.5) the orderbook contains the necessary 

preconditions for trading to begin, and the simulation is essentially a continuation of 

trading activity from some undefined, hypothetical time in the past. A conceptual view of 

the orderbook at any given time in the simulation is demonstrated in Figure 1. 
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Figure 1 Orderbook Diagram 

 

The horizontal line in Figure 1 represents the potential prices at which limit orders can be 

placed, although the actual prices have practical limits of zero at the lower end and ≪ 	∞ 

at the upper end. Each block represents an individual limit order, and its height represents 

the order’s size (or number of shares). The left-most sell limit order (red blocks) closest to 

the price line represents the price-time priority limit order for any buy market order since 

it was the oldest sell limit order entered at the best ask price. Conversely, the right-most 

buy limit order (blue blocks) closest to the price line represents the price-time priority limit 

order for any sell market order for the same reason. The spread is the difference between 

the best ask and bid prices and the market price is the midpoint as calculated in (1).  

 Each time step of the simulation, all traders’ trading decisions are taken into 

account, which can include the decision to not trade (all decisions are random). The order 

in which traders are considered is randomly determined by their position in a list. Each 

trader processes their decision in sequence, and then the list is randomly re-ordered. 
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Figure 2 Trader Processing Sequence (MM = Market Maker, MT = Market Taker, P = Provider) 

 

Figure 2 shows a hypothetical order in which each trader is selected, 1 to N, where N is the 

number of traders in the simulation, and how the list randomly re-sorts at each time step. 

The fact that traders may not trade when their position is reached in the list means that 

some traders will enter multiple orders in the same time frame (i.e. [𝑡w, 𝑡wAE]) in which 

another trader may enter only one. 

 As traders’ market orders interact with limit orders in the orderbook, the volume of 

orders available at the best ask and bid prices changes. The total depletion of limit orders 

at either the best ask or bid price will change the market price, as in (1). Alternatively, limit 

orders can be placed at prices closer to the midpoint price, which will also change the 
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market price, as in (1). At each time step, the price either remains the same as the prior 

time step because the limit order rate was high enough to refill the volume at the best ask 

and bid prices, or the price changes because the dynamics of order placement, 

cancellations, and trading caused the relative locations of the best ask and/or bid price to 

change with reference to each other. This creates a time series of price history. Most of the 

price changes are relatively very small. The reason for this can be easily seen from Figure 

1. The distribution of limit orders is greater further away from the market price because 

those orders are not interacting with market orders, and once the limit orders at the best 

price are depleted, there is a virtual wall of orders resisting further price movement. 

However, occasionally a large price change will occur due to a correlation in the order flow 

of buy or sell orders that overcomes the wall of orders and reaches the right (left) tail of 

the sell (buy) limit orders.  

 Due to the simulation’s intended purpose of investigating the effects of rebates on 

market quality, two exchanges facilitate trading of a single asset; one that offers rebates, 

and one that does not. This means that the best ask and bid prices may be different at each 

exchange, which also means the market price at each exchange may be different. For 

market makers operating at the exchange with rebates, the rebate offsets some of their 

adverse selection risk, and therefore they are able to offer narrower spreads, as defined in 

(12). However, since market takers want to trade at the best price, they put more pressure 

on the ask or bid price at the exchange with the best price, increasing the probability of 

changing the price. 
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 A typical run of the simulation will be initialized with a rebate value at the rebate 

exchange, and the market makers at that exchange offset the adverse selection risk portion 

of their bid-ask spread requirement by the rebate amount on either side of the current 

market price. The aggregate trading activity of all the traders at both exchanges leads to 

the fictional asset being traded at nearly the exact same market price at both exchanges, 

although sometimes it varies. However, any variation will be reverted to align with the 

other exchange because market orders are drawn to the best price. Figure 3 shows this 

tightly bound price with periods of deviation over time in a typical run. 

 

 

Figure 3 Simultaneous Prices at Each Exchange (Typical Run) 
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The market price does not, however, reveal anything about market quality or the bid-ask 

spread. A market price of $100 could be the result of a best bid price at $99.99 and a best 

ask price at $100.01. Or, it could be the result of a best bid at $50.00 and a best ask at 

$150.00. This is an extreme example, but it is to make a point that the two exchanges, 

although they have the same market price (what is displayed to the traders by the exchange) 

they do not necessarily have the same spread, and therefore the transaction costs and market 

quality measures at both exchanges may be different at any given time. 

3.8 Model Verification and Validation 

 In order to confidently state the results in the following chapter, it is important to 

address the verification and validation of the model. Verification simply refers to the 

exercise of ensuring the model does what it was designed to do (Crooks & Hailegiorgis, 

2014). Validation is the process of comparing the simulation results to reality to determine 

if the model is appropriately replicating empirical data (Niazi, Hussain, & Kolberg, 2017). 

Others should also be able to replicate the model results, which is why the code repository 

is provided along with the model parameters and their default values (the link to the code 

repository can be found in the Appendix). 

3.8.1 Verification 

 In order to verify that the model performs as it was designed, the exchanges were 

built first, and then manually coded orders were built to test different scenarios and how 

the exchanges would process them. Once the exchange behavior was verified, the agents 

were developed by slowly adding attributes and behaviors. The version control platform 
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GitHub was used to separate verified code from code containing new implementations of 

agent characteristics so they could be tested separately. This allowed for any errors to be 

corrected in isolation from the master working version of the code, which constantly 

preserved a baseline verified model up to the current point in development. While testing 

the model, code breakpoints were used to pause the simulation at specific points to inspect 

agent attributes and actions to make sure that there were no unexpected values. This process 

resulted in a high level of confidence that the model performs according to its design 

discussed in Sections 3.1 – 3.7. 

3.8.2 Validation 

 Validating the model, as stated above, is determining how well its results match 

expected empirical data. Axtell and Epstein (1994) define four categories, or levels (0 – 3), 

of validity in which simulation results can be classified. If a model produces results that 

loosely resemble reality in the sense that they can be recognized as a rough sketch of the 

real process, then level 0 would be the appropriate validity classification (Axtell & Epstein, 

1994). Level 1 validity indicates that the results of the model qualitatively match empirical 

data at the macro-level, while level 2 validity is the appropriate classification for results 

that quantitatively align with macro-level empirical data (Axtell & Epstein, 1994). Finally, 

level 3 validity is only achieved if the model results qualitatively match empirical data at 

the micro-level (Axtell & Epstein, 1994). Asset prices on the stock market are notoriously 

difficult to reproduce, as are most dynamic systems (Sornette & Cauwels, 2014), and 

therefore the model in this thesis aims at validation somewhere around level 1 and 2; the 



74 

 

results should quantitatively match macro-level statistical behavior, and appear 

qualitatively similar to macro-level price history according to a typical time-series analysis. 

One important factor preventing a level 3 validation is that the price of an asset on the U.S. 

stock market is in pennies, as discussed in Section 1.1, whereas the price in the model is 

represented as an integer value for the sake of computational efficiency. This necessarily 

prevents quantitative micro-level agreement between the simulation results and actual data. 

Another barrier to level 3 validation is the prohibitive cost of obtaining actual transactional 

data. The model captures data at this level, but the results must be compared with aggregate 

daily data from the stock market.  

 As shown in Section 4.5, the statistical properties of the simulation results do align 

with quantitative macro statistical properties of empirical asset prices on the stock market. 

The results also qualitatively match the assumptions of experts about the effects of maker-

taker fees on bid-ask spreads and market quality measurements as discussed in Section 

1.1.2. 

3.8.3 Model Parameters 

 For the purpose of reproducibility and potential further research based on the model 

in this thesis, it is important to provide the input parameters that are tunable and may affect 

model behavior. Table 1 provides a reference for each parameter, its default value, its 

range, and the reference from which it was drawn. Some of the parameters are estimations 

and others are based on other models with similar parameters that have influenced this 

research. 
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Table 1 Model Parameters 

Parameter Default Range Reference 
General Model    
Initialization time 
steps 

20 Constant at 20 Minimum required to 
seed orderbook 

    
Total time steps 25,000 10,000 – 100,000 Author’s estimation 
    
Number of liquidity 
providers 

40 Constant at 40 Collver, 2017 

    
Number of market 
makers 

2 Constant at 2 Collver, 2017 

    
Number of market 
takers 

50 Constant at 50 Collver, 2017 

    
Liquidity providers    
Max number of 
quotes 

1 Constant at 1 Collver, 2017 

    
Quote price range 60 Constant at 60 Collver, 2017 
    
Max order quantity 1 Constant at 1 Author’s estimation 
    
Lambda for choosing 
price from 
exponential 
distribution 

35 Constant at 35 Author’s estimation 

    
Market makers    
Max number of 
quotes 

12 Constant at 12 Kårvik et al, 2018 

    
Quote price range 60 Constant at 60 Collver, 2017 
    
Order quantity 𝑈{1, 5, 10, 25, 50} 1 – 50 Collver, 2017 
    
Order cancellation 
probability 

0.15 0.05 – 0.25 Author’s estimation 

    
Rebate 0 or 1 0 or 1 – 20  Author’s estimation 
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CHAPTER 4: RESULTS 

 The results of the model and their analysis are intended to shed some light on the 

market quality implications of a change to the regulation of fees that exchanges are allowed 

to charge for access to liquidity through market orders. Fees are currently capped (see 

Section 1.1) and there are proposed regulatory changes to the current fee structure. 

Although there are a variety of proposals (see Section 2.3) the only ones examined here are 

a fee reduction and a complete ban on rebates. In the model, these separate proposals are 

treated as one since a reduction in fees would presumably lead to a reduction in rebates, 

and therefore a rebate ban would be equivalent to a reduction of fees to $0.00. The different 

measures of market quality described in chapter 3 are observed at varying fee levels over 

100 simulations for each fee level. The average of the measures for each fee level is then 

recorded for market quality comparison between the exchange with fees and the exchange 

without fees. The other regulatory proposals are left for further research. All of the results  

presented in Sections 4.1 through 4.4 assume that all model parameters are set to their 

default values as presented in Section 3.8.3 as the rebate at one of the exchanges varies. 

4.1 Effective Spread 

 The effective spread actually decreases for both exchanges (rebate and no-rebate) 

as the rebate offered at one of the exchanges increases. This is interesting because the 
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exchange that does not offer a rebate seems to be affected in a similar manner as the 

exchange with a rebate as seen in Figure 4.  

 

 
Figure 4 Effective Spread as Rebate Increases (Avg. of 100 Simulations at Each Rebate Value) 

 

Since effective spread is a measure of transaction costs for traders, this could suggest that 

rebates are beneficial for the market as a whole in lowering the cost of doing business for 

more active traders. Some have suggested that this may even create a feedback loop where 

lower transaction costs lead to smaller spreads, which again lead to lower transaction costs 

( Equity Market Structure Literature Review Part II: High Frequency Trading, 2014).  
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4.2 Volume-Weighted Quoted Spread 

 The volume-weighted quoted spread represents the difference between the best ask 

and bid prices with the number of shares available at those prices taken into account. The 

greater the share volume at a spread value the more weight is placed on that spread value.  

 

 
Figure 5 Volume-Weighted Quoted Spread as Rebate Increases (Avg. of 100 Simulations at Each Rebate Value) 

 

Lower values for volume-weighted quoted spread indicate that the exchange has more 

volume at smaller spreads. Both exchanges appear to have a decreasing value for this 

measure as the rebate of one exchange increases. However, the exchange with a rebate has 

a much greater rate of decrease for every increase in rebate than the exchange without a 
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rebate (Figure 5). Again, this suggests that rebates may be beneficial for the market as a 

whole, but with significantly more benefit for exchanges with higher rebates. 

4.2 Time-Weighted Quoted Spread 

The time-weighted quoted spread is similar to the volume-weighted quoted spread 

except that it is a measure of how much time an exchange spent at a spread. Lower values 

indicate that an exchange spent more time with smaller spreads. This means that limit 

orders removed from the orderbook at the best ask or bid price were replaced at a higher 

rate with limit orders at or better than the best ask or bid price. 

 

 
Figure 6 Time-Weighted Quoted Spread as Rebate Increases (Avg. of 100 Simulations at Each Rebate Value) 
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As with the volume-weighted quoted spread, the rebate exchange has lower time-

weighed quoted spread, and the rate of decrease is greater as the rebate increases as well 

as shown in Figure 6. It appears from the volume-weighted and time-weighted quoted 

spreads that rebates have a significant effect on the refill rate of limit orders and volume at 

the inside prices. 

4.3 Log Dollar Depth 

 The log dollar depth at the best ask and bid prices increases significantly for the 

rebate exchange compared to the exchange without a rebate as in Figure 7. The exchange 

without a rebate remains relatively flat for this measure, which is not surprising since there 

is no additional incentive for market makers to place more orders at the best prices. 

 

 
Figure 7 Log Dollar Depth as Rebate Increases (Avg. of 100 Simulations at Each Rebate Value) 
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This is a significant indicator that rebates increase the number of shares available 

at the best prices, and therefore more shares need to be accessed by market orders or 

cancelled before a change in price occurs. A significant result of this should be more stable 

prices which may lead to another feedback loop where less volatility means market makers 

require smaller spreads to account for adverse selection risk, which leads to more stable 

prices. 

4.4 Average Price Impact to Average Trade Volume Ratio 

 The average price impact to average trade volume ratio is closely related to the 

dollar depth at the best ask and bid prices.  

 

 
Figure 8 Price Impact to Trade Volume as Rebate Increases (Avg. of 100 Simulations at Each Rebate Value) 
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Intuitively, more shares at the best ask and bid prices would require more trade volume to 

move the price, and this is exactly the relationship is seen from the simulation data in 

Figure-5. As the dollar depth at the best prices increases at the rebate exchange with each 

increase in the rebate (Figure 8), the price impact is less severe per trade volume. Also, 

while the dollar depth at the exchange without a rebate remains flat (Figure 4), the price 

impact per trade volume remains flat. 

4.5 Price and Return Characteristics 

 It is important that the model reproduces stylized facts found in real stock markets 

as this has become a benchmark in the literature (Bouchaud, 2010; Donier et al., 2015; 

Ghoulmie, Cont, & Nadal, 2005; Mastromatteo et al., 2014, 2014; Niyitegeka & Tewari, 

2013; E. Smith et al., 2003; Wyart, Bouchaud, Kockelkoren, Potters, & Vettorazzo, 2008). 

This is closely related to model validation discussed in Section 3.8.2. A stylized fact can 

be thought of as a general representation of a phenomenon (Arroyo Abad & Khalifa, 2015). 

One stylized fact is the price movement itself, and volatility clustering. Essentially, the 

price movement from the simulation should look like what is observed in real markets, and 

exhibit clustering of large and small price movements over time.  
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Figure 9 Price Time Series and Returns (Typical Run) 

 

In Figure 9, the price from the simulation (upper image) is similar to what one could expect 

to see in real financial markets. Volatility clustering (lower image) can be seen in the log 

returns derived from the price movement over time. There are “lumps” in the return signal 

that represent a cluster of higher/lower returns centered around zero – this is the stylized 

volatility clustering expected from the simulation. 

Another stylized fact is that stock prices have a fractal nature (Cristelli, 2014). That 

is, they exhibit a pattern that is reflected at every scale in proportion to the scale 

(Mandelbrot, 2010). For example, the price movement and return distribution of a stock 

over a time scale of 1 minute would exhibit a similar, very recognizable pattern at a time 

scale of 1,000 minutes. Figure 10 shows that the price movement from a typical simulation 

run appears to have a fractal pattern. 
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Figure 10 Fractal Price Pattern (Typical Run) 

 

The left side of Figure 10 shows a zoomed in area of the price at roughly 1/10th of the entire 

scale, and the right side of the figure shows a zoomed area roughly 1/100th of the total. All 

three time scales 1/1, 1/10, and 1/100 show a similar pattern. However, a visual test is only 

an indicator that the price pattern may be fractal, or self-similar. To test whether the price 

history produced by the simulation is stylistically similar to that of an empirical price 

history the fractal dimension can be compared between the two. The fractal dimension is a 

measure of the roughness of the data, but is also a proxy for its fractal properties (Bruno & 

Raspa, 1989). The daily closing price of Microsoft’s (MSFT) stock from 2014 to 2018 was 

chosen for a comparison with the simulation price history. The variogram method from 

Tilman, Ševčíková, and Percival (2010) for analyzing time-series data was used to measure 

the fractal dimension of MSFT and a price history from a typical simulation. The fractal 

dimension of MSFT’s stock price history from 2014 to 2018 (for the daily closing prices) 
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is 1.61, while the fractal dimension of the simulation’s price history is 1.59. Two time-

series with equal fractal dimensions will not necessarily be equivalent in their underlying 

data – i.e. the price history of MSFT may be completely different than the simulation’s, 

but their fractal dimension could be nearly equal as is the case here. Rather, similar or equal 

fractal dimensions suggest that the fractal nature of the two time-series are very similar, 

which can be concluded from the two values above. 

 Another important stylized fact is the presence of excess kurtosis and heavy tails in 

the distribution of returns. Despite the fact that the dominant portfolio risk management 

theories assume that returns, or the difference between the price of a stock at 𝑡 and 𝑡 − Δ, 

are normally distributed, actual returns are distributed much differently. Figure 11 shows 

the return distribution from the simulation, a return distribution from daily returns for 

Microsoft’s stock price, and a return distribution constructed from normally distributed 

returns. The normal distribution has severely truncated left and right tails compared to the 

distributions from the simulation and from empirical data. The simulation returns and 

empirical data also show exaggerated kurtosis which the normal distribution lacks. This 

signals that the majority of the returns are zero for actual markets, and that the model is 

able to stylistically reproduce the same shape of empirical returns as seen in Figure 11. 
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Figure 11 Return Distribution (Typical Run) 
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CHAPTER 5: CONCLUSION 

 One of the main questions this study addreses is how maker-taker fees affect the 

quality of trading in stock markets. Currently, there is significant disagreement over the 

value of these fees. Some hold the position that maker-taker fees are misleading to investors 

and likely result in unethical, if not illegal, behavior by brokers (see Section 1.1.1). Others 

say that any undesirable behavior or consequences can be seen as acceptable tradeoffs for 

reduced spreads, lower trading costs, and more liquid markets (see Section 1.1.2). Because 

of the concerns and potential benefits, the SEC has put forward a proposal for a pilot 

program to test the effects of maker-taker fees on trader behavior and market quality. The 

pilot will allow the collection of empirical data on a range of stocks with different price 

and volume characteristics, which will hopefully provide a representative cross-section of 

all stocks (Securities and Exchange Commission, 2018). The model presented in this thesis 

provides evidence that ABMs have potential to be used in furthering the understanding of 

how current regulation and market structures affect the behavior or markets. This should 

function as encouragement for regulators to examine how ABMs may be implemented in 

a portfolio of research methodologies when studying potential regulatory changes. 

Stock markets are extremely complex environments, and, despite massive amounts 

of data generated from them every millisecond, the macro-level behavior of markets is still 
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mainly a mystery. Questions such as “Why does the market exhibit such high volatility?”, 

“Why do prices move so frequently?”, and even “Why do prices move at all?” are still 

considered unsatisfactorily answered in many circles (Bouchaud, 2010). Although these 

questions are not the main focus of the research in this thesis, it has been shown in the 

previous chapters that very minimal assumptions regarding trader behavior combined with 

market microstructure effects can stylistically reproduce the behavior of asset price 

changes in real markets. For more than a half century, the Efficient Market Hypothesis 

(EMH) was the dominant explanation for changes in market prices. EMH says that prices 

move because traders receive new information about a stock and that they incorporate that 

information into the price of the stock virtually instantaneously (Malkiel, 1989). However, 

this explanation has been placed in doubt during the last twenty years or so because the 

actual characteristics of stock price movement appear to be out of alignment with EMH. 

For example, volatility is too high, and surprisingly uncorrelated with changes in 

underlying financial fundamentals or other news events (Joulin et al., 2008). This has led 

some to search for answers to stock market behavior not in exogenous information, but in 

the internal mechanistic properties of the stock market itself. This includes the structure of 

markets (i.e. how orderbooks are constructed, the prioritization rules of orders, different 

order types etc.) as well as trader behavior (Cristelli, 2014). This is why some have 

suggested that researchers should turn to ABMs to assist in gaining deeper insight into the 

the driving factors behind market characteristics (Bouchaud, 2010). 

ABMs are well-suited to exploring and analyzing complex systems like the stock 

market, especially when looked at from the perspective of endogenous sources of price 



89 

 

formation through the interaction of traders and their environment (Tesfatsion & Judd, 

2006). It is possible that future SEC pilot programs, and other regulatory market research, 

could be guided or even supplemented by ABMs. The Bank of England and the Office of 

Financial Research are already beginning to publish findings from ABMs related to 

financial instability as a sort of proof-of-concept (Bookstaber, 2012; Kårvik et al., 2018). 

One of the most difficult aspects of this is the modeling of adaptive human behavior, which 

many ABMs have attempted (Arthur et al., 1997; Darley, 2007). However, as Gode & 

Sunder (1993) demonstrated in their zero-intelligence research, unintelligent, non-adaptive 

behavior can be at least a good starting point for understanding how the structure and rules 

of a market affect the outcome.  

The present study applies the principles of endogenous price formation through 

trader interaction and near-zero-intelligence agents to maker-taker fees by building an 

orderbook market with basic price-time order prioritization and basic trader behavior 

influenced by a simple market maker rebate parameter. The goal is to measure the effects 

on market quality in the presence of varying rebate amounts. Market quality, in the scope 

of this study, refers to lower transaction costs and higher liquidity. All of the transaction 

cost and liquidity measures taken into account in this study improve as the rebate increases. 

These include effective spread, volume-weighted quoted spread, time-weighted quoted 

spread, log dollar depth at the best ask and bid prices, and price impact to trade volume 

ratio (see Section 3.6). Interestingly, the effective spread was reduced at both the exchange 

offering a rebate and the exchange without a rebate. This could be a result of more price 

competition at the rebate exchange induced by the rebate incentive which gives the non-
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rebate exchange more time to form narrower spreads when the best price is at the rebate 

exchange. At the lowest rebate value, the rebate exchange had a 2% lower volume-

weighted spread than the non-rebate exchange, and an 11% lower volume-weighted spread 

at the highest simulated rebate value (see Section 4.2). The rebate exchange also had an 

18% greater log dollar depth, and nearly a 50% improvement in price impact to trade 

volume at the highest rebate level compared to the non-rebate exchange. These results 

indicate that simply banning rebates, or reducing the access fees that fund them, as a 

regulatory solution may reduce market quality according to some primary measures. Other 

proposed solutions, such as incorporating maker-taker fees into the displayed price or 

passing the fees and rebates on to the customer may be more desirable from a market 

quality perspective. The impact of these changes is left for further research, but could be 

incorporated into a baseline model such as the one described here. 

5.1 Model Limitations 

 As with all models, there are several limitations to the one presented in this thesis. 

First, the market maker and liquidity provider agents are only allowed to trade at the 

exchange to which they are assigned at the beginning of the simulation. This is obviously 

a limitation imposed on the model by its design, and future ABMs that simulate trading at 

multiple exchanges may benefit from allowing all of the agents to pursue their optimal 

order placement according to their strategy. 

 Also, the number of agents in the model is small compared to the actual number of 

traders active in the stock market each day. This is due to the drastic reduction in simulation 
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efficiency when large numbers of agents are introduced. It is difficult to determine how 

much of a limitation this is since agent activation is random and their choices are random. 

This randomness may allow for fewer agents without influencing the results since the 

agents are not heavily dependent on their previous decisions, which means that each agent 

could potentially represent the actions of multiple agents. Market maker agents, however, 

do have a memory of their inventory, which does affect their future decisions of order 

placement. This limitation could potentially be overcome by implementing the model in a 

parallel computing framework to allow for simultaneous decision making by the agents. 

 Another limitation that could also benefit from parallel computing is the fact that 

the model measures time in discrete events. This means that there is no running clock, but 

the act of an agent placing an order is how change in time is observed. Also, agents are 

activated sequentially, which means that no two agents can be processing the same 

information at the same time. In reality, many traders could be processing the same market 

information at the same time, and could potentially enter an order at exactly the same time 

(the times at which the orders reach the market is another story). Parallel processing could 

allow for the agents to simultaneously process information and enter orders in the presence 

of a running clock. 

5.2 Further Research 

 The research presented in this thesis is designed to demonstrate that ABMs can 

contribute to the understanding of regulatory issues, and that minimally intelligent agents 

are a reasonable assumption in a model with the right market microstructure in place. 
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Although ABMs may never be able to completely replace empirical observations, they may 

help increase the amount of information available to decision-makers. In this case, the 

results of the model aligned with what one would expect according to the theoretical 

assumptions in Section 2.2. However, one of the strengths of ABMs is that they are capable 

of repeated simulations. One of the most valuable aspects of this is that scenarios that may 

not have been recognized in the design of regulatory changes could be discovered and 

accounted for before they are implemented and cause unintended consequences. The ABM 

in this thesis adds to the previous work in the field of exploring financial markets using 

ABMs by framing it in the context of specific, real-world regulatory concerns. 

 Future research would ideally include variations on the model in this thesis by 

testing different regulatory proposals designed to address maker-taker fees. Convincing 

regulators to adopt ABMs as a tool may be a difficult task in the financial arena, so the 

concepts in this model should also be used to try to replicate the results of previous 

completed pilot programs as a demonstration of viability. Additional intelligence may also 

be given to traders but should be kept as minimal as possible. 
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APPENDIX 

 

The ABM code can be found at the following link: 

https://github.com/cgit2017/Thesis 
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