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ABSTRACT 

THE NEURAL BASIS OF ADVICE UTILIZATION DURING HUMAN AND 
MACHINE AGENT INTERACTIONS 

Kimberly S. Goodyear, Ph.D. 

George Mason University, 2016 

Dissertation Director: Dr. Frank Krueger 

 

Understanding how individuals utilize advice from humans and machines has become 

progressively more pertinent as technological advances have pervaded our society.  With 

an increasing shift towards relying on automation, the necessity to understand the 

complex interactions that exist between humans and automation has emerged.  This thesis 

examines the behavioral, cognitive and neural mechanisms involved with advice 

utilization from human and machine agents framed as experts.  A series of two studies 

were implemented that consisted of an X-ray luggage-screening task with functional 

magnetic resonance imaging and effective connectivity analysis.  To assess advice taking 

differences between human and machines across both studies, the agents’ reliability was 

manipulated with high error rates.  To fully ascertain how individuals respond to 

unreliable advice, the focus of Chapter Two was on false alarms, while in Chapter Three 

the focus was on misses.  In each study, we demonstrated that there were unique 



x 
  

behavioral responses and brain activation patterns, but in both studies participant 

performance levels declined overall.  In Chapter Two, we showed that participants 

interacting with the human agent had a greater depreciation of advice utilization during 

bad advice and there was activation in brain regions associated with evaluation of 

personal characteristics, traits and interoception.  In addition, the effective connectivity 

analysis revealed that the right posterior insula and left precuneus were the drivers of the 

network that were reciprocally connected to each other and also projected to all other 

regions (right precuneus, posterior cingulate cortex, rostrolateral prefrontal cortex and 

posterior temporoparietal junction).  In Chapter Three, we demonstrated that advice 

utilization decreased more for the machine-agent group and brain areas involved with the 

salience and mentalizing networks, as well as sensory processing involved with attention, 

were recruited during the task.  The effective connectivity analysis showed that the 

lingual gyrus was the driver during the decision phase that projected to all other target 

regions (anterior cingulate cortex, precuneus and cuneus) and the fusiform gyrus was the 

driver during the feedback phase that sent an output to the inferior parietal lobule.  The 

contribution of this thesis is a greater comprehension of the decision-making processes 

involved during advice taking, which may serve as a building block for uncovering the 

different factors involved with human-machine interactions. 
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CHAPTER ONE: GENERAL INTRODUCTION  

The prevalence of new technology in our society today has created an increased 

reliance on automation and with progressions in mechanization and automated aids, this 

allows for a heuristic to decrease human workload for manual labor (Mosier, Skitka, 

Heers, & Burdick, 1998; Parasuraman & Riley, 1997).  For example, in 2013, the Federal 

Aviation Administration published a report on the operational use of flight path 

management systems that showed that pilot interaction with automation may result in 

overreliance and over 50% of accidents reviewed were due to the pilot’s reduced 

situational awareness (Federal Aviation Administration, 2013).  With this shift of job 

roles from human to automation, understanding how individuals vary in response to 

automation has become more pertinent as potential issues may arise.  To better 

comprehend the complex nature of human-machine interactions, the rest of this chapter 

will explore advice utilization and the effect of errors in greater detail.       

1.1 Advice Utilization  
 
 

The ways in which individuals respond to advice can vary depending on different 

factors involved during those social interactions.  For example, variables such as source 

credibility and type of advice can influence whether a person utilizes or discounts the 

advice given to them.  Studies have demonstrated that expert advice is used more than 
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novice advice (Sniezek, Schrah, & Dalal, 2004) and poor (inaccurate) advice is 

discounted more than good (accurate) advice (Yaniv & Kleinberger, 2000).  A study 

investigating perceptions of decision aids revealed that measures of trust varied 

depending on the pedigree (novice vs. expert) of the human or automated aid (Madhavan 

& Wiegmann, 2007), revealing that advice acceptance between humans and machines 

differs depending on source credibility.  Moreover, the authors postulate that advice 

utilization strategies for humans and automation may differ due to dispositional 

credibility and high expectations of reliable advice.  In addition, the decision to accept or 

reject advice may be influenced by the reliability of the source.  For instance, it has been 

shown that automation characteristics such as reliability, predictability and ability can 

affect how people respond to imperfect automation (Lee & See, 2004).  Initial 

expectations of reliable advice can be altered when disconfirmation evidence about an 

agent’s credibility is revealed.  For example, a study demonstrated that initial 

confirmatory experience can increase how much a person follows bad advice, which 

ultimately impacts decision-making behaviors (Staudinger & Buchel, 2013).  This 

phenomenon can be explained in terms of an expectation disconfirmation theory, where 

an expectation is a belief that someone or something will live up to what is anticipated 

and disconfirmation is a discrepancy in the evaluation of that expectation (Oliver, 1980). 

Neuroimaging studies investigating advice taking, personal traits, dispositions and 

human-robot interactions have revealed the involvement with regions associated with the 

salience, mentalizing and central executive networks (Brosch, Schiller, Mojdehbakhsh, 

Uleman, & Phelps, 2013; Chaminade et al., 2012; Krach et al., 2008; Suen, Brown, 
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Morck, & Silverstone, 2014).  Menon (2011) proposed a model involving three large-

scale brain networks, including the central executive network (CEN), the salience 

network (SN) and the default-mode network (DMN), the CEN (dorsolateral PFC, dlPFC) 

has been postulated to be involved with higher-order cognitive functions such as 

decision-making, the SN (dorsal ACC, AI) has been implicated in saliency detection of 

internal and external events and the DMN (PCC, PreC) has been revealed to be 

associated with self-processing cognitions.  A study investigating tracking of expertise 

for humans and algorithms found areas associated with the mentalizing network and 

salience networks (e.g., ACC, precuneus) during estimates of the agents’ abilities 

(Boorman, O'Doherty, Adolphs, & Rangel, 2013).  In addition, studies investigating 

observations of human and robot interactions (Suen et al., 2014) and inferences of mental 

states for humans and machines (Chaminade et al., 2012), as well as studies examining 

attribution of personal traits and characteristics (Cabanis et al., 2013) have shown 

recruitment of areas associated with large-scale brain networks. Given considerable 

overlap between the aforementioned neural networks, the overall aim of this thesis was to 

investigate the underlying mechanisms involved with advice taking from humans and 

machines to provide potential evidence about how individuals perceive and utilize advice 

from different agents.   

1.2 Errors  
 

To provide a background understanding for the circumstances in which a person 

makes decisions during levels of uncertainty (i.e., unreliable advice), Signal Detection 
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Theory (SDT) can show how differences in advice utilization pertain to differences in 

error types (Tanner Jr & Swets, 1954).  To measure the individual responses according to 

performance rates, there are signal absent (correct rejection [correct non-alert]), false 

alarm [incorrect alert]) and signal present (hit [correct alert], miss [incorrect non-alert]) 

distributions.  Looking at the different error types (false alarms and misses) within a 

decision matrix allows for an even greater interpretation of the factors involved with 

advice utilization.  For example, it has been shown that false alarms can hurt overall 

performance, operator compliance (agreeing when the aid indicates the target is present) 

and operator reliance (agreeing when the aid indicates the target is absent), while misses 

only affect operator reliance (Dixon, Wickens, & McCarley, 2007; Rice & McCarley, 

2011).  However, there are conflicting views pertaining to the overlap between 

compliance and reliance, which warrants further exploration on the topic (Dixon et al., 

2007; Meyer, 2004).  Moreover, it has been revealed that false alarms may cause 

operators to not respond to alerts at all, which has been coined as the “cry wolf effect,” 

(Breznitz, 2013; Wickens et al., 2009) and furthermore, misses may affect monitoring 

strategies during non-alarm periods causing a change in attention allocation strategies 

(Onnasch, Ruff, & Manzey, 2014). 

A comprehensive review by McBride, Rogers, and Fisk (2014) determined that 

management of automation errors can be broken up into a framework of four variables: 

automation characteristics (e.g., reliability), person factors (e.g., complacency), tasks 

when humans and automation work together (e.g., automation-error costs) and emergent 

factors that can arise during interactions (e.g., trust in automation).  Automation 
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characteristics such as reliability can provide valuable insight into operator response and 

performance when an aid performs near perfect or becomes unreliable.  For example, if 

an aid has high reliability, this can lead to misuse, or overreliance on an aid; when an aid 

has low reliability, this can lead to disuse, or ignoring alerts from an aid or disabling its 

functions (Parasuraman & Riley, 1997).  A study showed that reliability below 70% 

impairs an individual’s performance, demonstrating the importance of reliable advice 

(Wickens & Dixon, 2007).  In addition, person factors such as complacency illustrate 

how individual differences can affect the use of automation.  For instance, complacency 

can occur when automation performance is near perfect resulting in reduced monitoring 

and vigilance (Parasuraman, Molloy, & Singh, 1993).  Previous research on the topic 

indicates that varying reliability may disrupt complacency (McBride et al., 2014) and 

complacent behaviors may be due to conditions under multiple-task load (Parasuraman & 

Manzey, 2010).  However, the measurement of complacency and how it is defined is not 

clearly delineated (Parasuraman et al., 1993).  Task variables such as automation-error 

consequences and accountability can reveal how environmental contexts influence 

teamwork between humans and automation.  For example, accountability in pilot 

cockpits has been shown to be higher when the accountability is internalized (Mosier et 

al., 1998) and performance accountability can lead to less automation bias (Skitka, 

Mosier, & Burdick, 2000).  Lastly, emergent factors such trust in automation or mental 

workloads are components that can alter how an individual manages errors.  A study by 

Merritt, Heimbaugh, LaChapell, and Lee (2013) investigated trust towards automation 

with an X-ray luggage-screening task and the authors concluded that implicit attitudes 
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significantly predicted automation trust.  Furthermore, it has be revealed that 

appropriately calibrating operator trust can mitigate any potential issues that can arise 

during human-automation interactions (Lee & See, 2004) and relative trust may be an 

essential factor involved with a framework for automation use (Dzindolet, Beck, Pierce, 

& Dawe, 2001).  Studies investigating automation use have demonstrated that there are 

many different variables contributing to how individuals manage errors from automation. 

Furthermore, brain activity in response to error monitoring and processing has 

been measured with fMRI as well as event-related potential (ERP).  For instance, a study 

examining error monitoring during a Go/NoGo task with fMRI and ERP correlations 

demonstrated that error and conflict monitoring both show involvement with distinct 

ACC regions (Mathalon, Whitfield, & Ford, 2003).  The ACC has been shown to be 

involved with a wide range of cognitive functions involving decision-making and 

attention (Bush, Luu, & Posner, 2000), as well as error detection and performance 

monitoring (Carter et al., 1998; Kiehl, Liddle, & Hopfinger, 2000).  Shenhav, Botvinick, 

and Cohen (2013) postulated that dorsal ACC functionality is based on a model of 

expected value of control that integrates expected payoffs and rewards.  Moreover, 

cortical activity in sensory brain areas in response to prediction errors has also been 

examined (Hesselmann, Sadaghiani, Friston, & Kleinschmidt, 2010).  A study measuring 

cortical activity in response to signal detection categories revealed that false alarms 

evoked more cortical activity than misses, which may be due to individual perceptions 

involved with each type of error (Ress & Heeger, 2003).  There is extensive evidence that 

the ACC is involved with error monitoring and that there are perceptual differences 
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involved with each error type; however, the neural basis associated with error processing 

during unreliable advice from human and machine agents have not been determined and 

thus warrants further examination.      

1.3 Overview of the Studies 
 

The purpose of my dissertation studies was to examine how errors moderate 

advice utilization when comparing humans and machines by revealing the behavioral and 

neural mechanisms associated with advice taking.  Furthermore, the relevance of the 

research provides insight into the numerous factors that can influence advice utilization 

by investigating decision-making processes in conjunction with functional magnetic 

resonance imaging (fMRI) and effective connectivity analysis.  Recent behavioral 

research has provided evidence for advice utilization differences between humans and 

machines (De Visser, 2012); however, the underlying neural mechanisms involved with 

human-machine interactions remains to be explored.  In both studies, participants partook 

in an X-ray luggage-screening task where they received good and bad advice from either 

a machine or human agent framed as an expert, made decisions to accept or reject the 

advice and then received feedback if their decision was correct or incorrect.  Based upon 

previous findings that false alarms degrade trust and hurt overall performance more than 

misses (Dixon et al., 2007), we aimed to reveal the influence of bad advice on decision-

making processes by manipulating agent reliability with different error types (false 

alarms, misses).  Specifically, in both studies, the reliability of the agents was 60% (40% 

errors), but in Chapter Two, the focus was on false alarms while, in Chapter Three, the 
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focus was on misses.  We expected performance and advice utilization to be lower in 

Chapter Two compared to Chapter Three due to the differences in error types.  In 

addition, we expected that errors would decrease overall performance for both studies 

and that this would ultimately lead to degradation of advice utilization.  The differences 

in advice utilization would be further highlighted when comparing the human agent to the 

machine agent due to factors such as expectations of reliable advice, agent performance 

and dispositional credibility associated with each agent.  Lastly, we expected that brain 

regions corresponding with the default-mode network (e.g., TPJ, PreC) and the salience 

network (e.g, AI, ACC) to be recruited during these studies due to violations of 

expectations stemming from unreliable advice, salience detection of errors and attribution 

of dispositional credibility for each agent.   
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CHAPTER TWO: THE IMPACT OF FALSE ALARMS ON ADVICE 
UTILIZATION  

2.1 Abstract 
 
With new technological advances, advice can come from different sources such as 

machines or humans, but how individuals respond to such advice and the neural 

correlates involved need to be better understood.  We combined functional MRI and 

multivariate Granger causality analysis with an X-ray luggage-screening task to 

investigate the neural basis and corresponding effective connectivity involved with 

advice utilization from agents framed as experts.  Participants were asked to accept or 

reject good or bad advice from a human or machine agent with manipulated reliability 

(high false alarm rate).  We showed that unreliable advice decreased performance overall 

and participants interacting with the human agent had a greater depreciation of advice 

utilization during bad advice.  These differences in advice utilization can be due to 

reevaluation of expectations arising from association of dispositional credibility for each 

agent.  We demonstrated that differences in advice utilization engaged brain regions 

associated with evaluation of personal characteristics and traits (precuneus, posterior 

cingulate cortex, temporoparietal junction) and interoception (posterior insula).  We 

found that the right posterior insula and left precuneus were the drivers of the advice 

utilization network that were reciprocally connected to each other and also projected to 

all other regions.  Our behavioral and neuroimaging results have significant implications 
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for society because of progressions in technology and increased interactions with 

machines. 
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2.2 Introduction 
 
Individuals often encounter situations in their everyday lives when they must rely on 

advice from others.  With new technological advances, advice can come from not only 

humans, but also automated devices such as a Global Positioning System.  For instance, 

to provide advanced safety measures, the Transportation Safety Administration (TSA) 

has implemented X-ray luggage scanners and Advanced Imaging Technology (AIT) for 

screening passengers and exposing potential security threats (Transportation Safety 

Administration, 2014).  Numerous factors can alter the valuation of advice, such as self-

confidence (Bonaccio & Dalal, 2006; Lee & Moray, 1992; Riley, 1996), user trust (P. 

Madhavan & D. A. Wiegmann, 2007b; Mayer, Davis, & Schoorman, 1995; Rotter, 1967), 

source credibility (i.e., expert) (Birnbaum & Stegner, 1979; Madhavan & Wiegmann, 

2007a; Van Swol & Sniezek, 2005) and source reliability/performance (Bonaccio & 

Dalal, 2006).  Understanding how people utilize advice is becoming necessary to provide 

useful insight for developing safety measures and for appropriate guidelines to predict 

human behaviors.  

Individuals may vary in how they respond to advice and studies have shown that 

expert advice is more frequently used (Sniezek, Schrah, & Dalal, 2004) and more 

persuasive than novice advice (Jungermann, Fischer, Betsch, & Haberstroh, 2005).  In 

addition, people may respond to advice from automation and humans in similar ways 

under the premise of a "perfect automation schema," in which an individual believes that 

automated aids are near perfect (Dzindolet, Pierce, Beck, & Dawe, 2002).  Moreover, 

factors such as dispositional credibility can alter trust between human and machine 
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advisors due to differences in personal traits such as loyalty or benevolence.  For 

example, it has been postulated that association of dispositional credibility is higher for 

human agents due to evaluation of personal traits, while automated agents may be judged 

more by performance levels (Madhavan & Wiegmann, 2007a).  However, when 

expectations of reliable advice are altered due to disconfirmation evidence about an 

advisor’s credibility, decision-making behaviors can be impacted.  For example, 

consistent with disconfirmation theory (Oliver, 1980) decision-making can be affected by 

initial confirmatory experiences, which can be influenced by bad advice (Staudinger & 

Buchel, 2013).   

Despite existing knowledge of the cognitive processes that affect advice taking, 

the neural mechanisms and the underlying effective connectivity network involved with 

good and bad advice from human and machine agents framed as experts remains to be 

explored.  Recent neuroimaging studies have investigated the role of expert advice during 

decision-making (Boorman, O'Doherty, Adolphs, & Rangel, 2013; Meshi, Biele, Korn, & 

Heekeren, 2012), social learning (Biele, Rieskamp, Krugel, & Heekeren, 2011; 

Staudinger & Buchel, 2013) and disobedience (Suen, Brown, Morck, & Silverstone, 

2014).  Furthermore, the neural activity involved with assigning trait and intentions to 

others (Mitchell, Macrae, & Banaji, 2006; Saxe & Kanwisher, 2003), self-attributional 

processes (Cabanis et al., 2013), as well as human-robot interactions during an interactive 

rock-paper-scissors game (Chaminade et al., 2012) and during observations of social 

interactions (Wang & Quadflieg, 2015) have been investigated.  Overall, key regions 

associated with the default network (e.g., temporoparietal junction, precuneus, posterior 
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cingulate cortex, medial prefrontal cortex) and the salience network (dorsal anterior 

cingulate cortex, bilateral insulae) have been identified in playing a role during advice 

taking, evaluation of personal traits and during human-robot interactions (Engelmann, 

Capra, Noussair, & Berns, 2009; Krach et al., 2008).   

We aimed to elucidate the neural basis of advice utilization from different agents 

and the corresponding effective connectivity in the underlying brain network by 

combining an X-ray luggage-screening task and functional magnetic resonance imaging 

(fMRI) with multivariate Granger causality analysis.  The focus of this study was to 

examine the impact of false alarms on advice taking behaviors based on previous 

evidence that false alarms degrade trust and hurt overall performance more than misses 

(Dixon, Wickens, & McCarley, 2007).  On the behavioral level, we hypothesized that 

unreliable advice would decrease performance (i.e., accuracy) and advice utilization due 

to disconfirming evidence about the agents’ perceived expertise.  We further assumed 

that advice utilization would decrease more during bad advice due to disconfirmation 

evidence stemming from advice-incongruent experiences (i.e., high false alarm rates) 

(Dixon et al., 2007) and also over time as errors became more apparent due to 

participants’ reevaluation of the agent’s performance (Skitka, Mosier, & Burdick, 2000).  

In addition, we expected that advice utilization would decrease more for the machine 

agent compared to the human agent due to differences in dispositional credibility between 

humans and machines (Madhavan & Wiegmann, 2007a).  On the neural level, we first 

predicted activation differences in brain regions associated with attribution of personal 

traits and dispositions (Brosch, Schiller, Mojdehbakhsh, Uleman, & Phelps, 2013; Harris, 
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Todorov, & Fiske, 2005).  Secondly, when comparing the human to the machine agent 

during bad advice over time, we expected regions such as the precuneus and posterior 

cingulate cortex to be the drivers of the underlying advice utilization network.  

 

2.3 Methods 
 
Subjects 

Three studies were conducted according to the ethical guidelines and principles of the 

Declaration of Helsinki.  For the normative rating study, twenty-three male students (age 

(M ± SD) = 24.0 ± 2.6) from George Mason University (GMU) participated to 

standardize the X-ray luggage images for the experimental studies.  For the behavioral 

study, ten volunteers (6 males, 4 females; age = 22.3 ± 2.9) participated to complete an 

X-ray luggage-screening task without receiving advice.  For the fMRI study, twenty-four 

healthy right-handed volunteers (13 males, 11 females; age = 20.0 ± 2.6) determined by 

the Edinburgh Handedness Inventory (Right-handedness: 94.5 ± 7.7) (Oldfield, 1971) 

participated in the X-ray luggage-screening task while receiving advice either from a 

human or machine agent.  All participants gave written consent approved by GMU’s 

Institutional Review Board and received financial compensation for their participation.  

 

Stimuli 

During the normative rating study, the participants rated 320 X-ray images based on three 

dimensions —clutter (4.1 ± 0.3), general difficulty (3.5 ± 0.4), and confidence in finding 

the target (3.2 ± 0.6)— based on 7-point Likert scales (1 = very low to 7 = very high) 
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(Madhavan & Gonzalez, 2006).  From those images, 64 (32 target and 32 non-target) 

images were chosen for the experimental studies based on the standardized ratings 

(Appendix A.1a). 

 

X-ray Luggage-Screening Task 

In the X-ray luggage-screening task, participants were asked to search for the presence or 

absence of a knife.  In the behavioral study, participants did not receive advice and 

performed the task unassisted; participants in the fMRI study received good (advice-

congruent) or bad (advice-incongruent) advice from either a human or machine agent.  

For both studies, the reliability was set to 60% - good advice: 50% hits (correct alerts) 

and 10% correct rejections (correct non-alerts); bad advice: 40% false alarms (incorrect 

alerts) (Appendix A.1b). 

On each trial, the participants saw a set of phases including a fixation cross (0.5 

s), advice from one of the agents to “search” or “clear” the bag (2 s), an image of the X-

ray luggage (4 s), a decision to accept or reject the advice of the agent to “search” or 

“clear” the bag (4 s), jitter (~4 s), feedback indicating if their decision was correct or 

incorrect (2.0 s) and lastly, jitter (~4 s).  The jitter times were generated by an fMRI 

simulator software (http://www.mccauslandcenter.sc.edu/CRNL/tools/fmrisim) that 

optimized the timing and consisted of a minimum of 1 seconds and average of 4 seconds 

(Appendix A.1c).  Participants used response pads to respond and they were given an 

initial endowment of $40 and each incorrect answer resulted in a deduction of $0.30 from 

the remaining total.  Performance, advice utilization, response times, and monetary 



16 
 

deductions were collected during the experiment.  The stimuli were presented using E-

Prime 2.0 (Psychology Software Tools, Inc., http://www.pstnet.com/eprime.cfm). 

 

Procedure 

Pre-Experimental Phase. The participants came one to two weeks before the fMRI 

experiment to complete self-report questionnaires as control measures to investigate 

individual differences between the agent groups.  The control measures included: 

Interpersonal Reactivity Index (IRI, separate facets of empathy) (Davis, 1983), 

Complacency-Potential Rating Scale (CPS, feelings towards automation) (Singh, Molloy, 

& Parasuraman, 1997), National Readiness Technology Scale (NTRS, embracing new 

technologies) (Parasuraman, 2000), NEO Five-Factor Inventory (NEO-FFI, personality 

styles) (Costa & McCrae, 1992), and Propensity to Trust (PTT, trust towards automation) 

(Merritt, Heimbaugh, LaChapell, & Lee, 2013).  

 

Experimental Phase. Before participants completed a practice run for the fMRI 

experiment, they read descriptions about the human or machine agents (reliability was 

not disclosed) (Appendix A.2).  They were then asked to rate their trust in and reliability 

of the human or machine agent on a 10- point Likert scale (0 = very low, 10 = very high).  

During the four trials of the practice run, participants familiarized themselves with the X-

ray luggage-screening task and the five possible knives that could be present in the bags.  

The participants then completed two runs of the experimental task while in the scanner 

and afterwards they were again asked to rate reliability and trust. 
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Post-Experimental Session. After the fMRI experiment, participants were asked to rate 

their confidence in finding the target (i.e., knife) in each of the X-ray luggage images 

presented during the fMRI experiment on a 10-point Likert scale (1 = very low, 10 = very 

high).  

 

fMRI Data Acquisition  

Imaging data were acquired on a 3 T head-unit only scanner (Siemens Allegra) with a 

circularly polarized, transmit/receive head coil at the Krasnow Institute for Advanced 

Study, GMU, Virginia.  The anatomical imaging data were based on a 3D T1 weighted 

MPRAGE sequence with TR = 2300 ms, TE = 3.37 ms, flip angle = 7°, slice thickness = 

1 mm, voxel dimension = 1 mm x 1 mm x 1 mm and number of slices = 160.  The 

functional imaging data were based on a 2D gradient-echo EPI sequence with TR = 2000 

ms, TE = 30 ms, flip angle = 70°, slice thickness = 3 mm, voxel dimensions = 3 mm x 3 

mm x 3 mm, number of slices = 33 per volume in an axial orientation parallel to the 

anterior-posterior commissure.  The first two volumes were discarded to allow for T1 

equilibrium effects and a total of 330 volumes were taken for each run. 

 

Behavioral Data Analysis 

Behavioral data analysis were carried out by Statistical Package for the Social Sciences 

20.0 (SPSS 20.0, IBM Corp.) with alpha set to p < .05 (two-tailed).  Data were normally 

distributed (Kolmogorov–Smirnov test) and assumptions for analyses of variance 
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(Bartlett’s test) were not violated.  We first investigated task performance (i.e., accuracy) 

between the agent groups and the no agent group by employing one-way analysis of 

variance (ANOVA) with Agent (human, machine, no agent) as the between-subjects 

factor.  Next, we looked at advice utilization, response times and monetary deductions 

with mixed 2 x 2 x 2 repeated-measures ANOVAs with Advice (good, bad) and Time 

(run 1, run 2) as within-subjects factors and Agent (human, machine) as the between-

subjects factor.  In addition, we investigated reliability, trust and confidence ratings with 

mixed 2 x 2 repeated-measures ANOVAs with Time (pre, post) as the within-subjects 

factor for the reliability/trust ratings and Target (yes, no) as the within-subjects factor for 

the confidence ratings and with Agent (human, machine) as the between-subjects factor.  

Lastly, we performed bivariate Spearman’s correlations to identify associations between 

behavioral and control measures as well as independent t-tests between the agent groups 

to investigate group differences. 

 

fMRI Data Analysis 

The fMRI data analysis was carried out using NeuroElf software (http://neuroelf.net) and 

BrainVoyager QX 2.8 (Brain Innovation).  The functional imaging data were 

preprocessed using Statistical Parametric Mapping 8 (SPM8, Wellcome Department of 

Cognitive Neurology) functions batched via NeuroElf, including three-dimensional 

motion correction (six parameters), slice-scan time correction (temporal interpolation) 

and a mean functional image was computed for each participant across all runs.  The 

mean functional image was then co-registered with the anatomical images using a joint-
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histogram for the different contrast types.  Preprocessing of the anatomical images 

included segmenting images with a unified segmentation procedure (Ashburner & 

Friston, 2005) and spatial warping were applied to the functional data to normalize the 

data to a standard Montreal Neurological Institute (MNI) brain template.  Lastly, spatial 

smoothing (Gaussian filter of 6 mm FWHM) was applied to the images to account for 

any residual differences across participants.  A general linear model (GLM) that was 

corrected for first-order serial correlations was performed (Friston, Harrison, & Penny, 

2003).  The GLM consisted of thirty-six regressors based on advice utilization (accept, 

reject) separated by advice (good, bad) and time (run 1, run 2) for each of the five phases 

(fixation, advice, bag, decision, feedback) on each trial of the X-ray luggage-screening 

task and six parametric regressors of no interest for the 3D motion correction 

(translations in X, Y, Z directions, rotations around X, Y, Z axes).  The regressor time 

courses were adjusted for the hemodynamic response delay by convolution with a dual-

gamma canonical hemodynamic response function (Buchel, Holmes, Rees, & Friston, 

1998).  Random-effect analyses were performed at the multi-subject level to explore 

brain regions associated with the decision and feedback phases. 

To reveal brain activations associated with advice utilization, mixed 2 x 2 x 2 

ANOVAs on parameter estimates were applied with Advice (good, bad) and Time (run 1, 

run 2) as within-subjects factors and Agent (human, machine) as the between-subjects 

factor.  For the fMRI results, our main focus was on brain activations during the decision 

and feedback phases for the three-way interaction since our a priori hypotheses was 

based on the interaction of three factors (advice, time, agent) (see Appendix A.3 for main 
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effects for the decision and feedback phases).  Activations for the decision and feedback 

phases were reported after correcting for multiple comparisons using a cluster-level 

statistical threshold (Cluster-level Statistical Threshold Estimator plugin in BrainVoyager 

QX), which calculates the minimum cluster size to achieve a false activation probability 

(α = 0.05) (Forman et al., 1995; Goebel, Esposito, & Formisano, 2006).  The voxel-level 

threshold was set at p < .005 (uncorrected) and the thresholded map was used for a 

whole-brain correction criterion based on the estimate of the map’s spatial smoothness 

and on an iterative procedure (Monte Carlo simulation, 1,000 iterations).  The activation 

clusters were displayed in MNI space on an anatomical brain template reversed left to 

right.   

 

Effective Connectivity Analysis 

Investigation of the effective (or directional) brain connectivity in the network of 

activated brain regions was performed through multivariate Granger causality analysis 

(GCA) using a custom MATLAB (www.mathworks.com) code as previously described 

by Grant et al. (2014), Kapogiannis, Deshpande, Krueger, Thornburg, and Grafman 

(2014) and Lacey, Stilla, Sreenivasan, Deshpande, and Sathian (2014).  Granger causality 

is based on a temporal precedence concept (Granger, 1969) that can be applied to 

multivariate effective connectivity modeling of ROI (region of interest) time courses to 

predict directional influences among brain regions (Deshpande, LaConte, James, Peltier, 

& Hu, 2009; Friston et al., 2003; Preusse, van der Meer, Deshpande, Krueger, & 

Wartenburger, 2011; Roebroeck, Formisano, & Goebel, 2005; K. Sathian et al., 2011; 
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Strenziok et al., 2010).  The model examines the relationship of variables in time, such 

that given two variables, a and b, if past values of a better predict the present value of b, 

then causality between the variables can be inferred as function of their earlier time 

points (Hampstead et al., 2011; Krueger, Landgraf, van der Meer, Deshpande, & Hu, 

2011; Roebroeck et al., 2005).  GCA is advantageous for application of effective 

connectivity since it is a data-driven approach and there is no requirement for pre-

specified connectivity models like dynamic causal modeling (DCM) (Deshpande & Hu, 

2012; Deshpande et al., 2009; Deshpande, Sathian, Hu, & Buckhalt, 2012; Friston et al., 

2003; Roebroeck et al., 2005).  Recent GCA investigations, including experimental 

applications (Abler et al., 2006) as well as simulations (Deshpande, Sathian, & Hu, 

2010b; Wen, Rangarajan, & Ding, 2013), have shown its advantages and validity for 

assessing effective connectivity.  

Based upon on effective connectivity hypotheses, only those regions that survived 

the fMRI analysis threshold for the interaction effect Advice (good, bad), Time (run 1, 

run 2), and Agent (human, machine) for the decision phase were selected as ROIs for the 

subsequent multivariate GCA.  Time series of the BOLD (blood-oxygen-level-dependent) 

signal for the selected ROIs were extracted around peak activation maxima (sphere of 6 x 

6 x 6 mm3), averaged across voxels and normalized across participants, per run.  Blind 

hemodynamic deconvolution of the mean ROI BOLD time series was performed using a 

Cubature Kalman filter, which has been shown to be extremely efficient for jointly 

estimating latent neural signals and the spatially variable hemodynamic response 

functions (HRFs) (Havlicek, Friston, Jan, Brazdil, & Calhoun, 2011).  In addition, recent 
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research has shown that this model is not susceptible to over-fitting and produces 

estimates that are comparable to non-parametric methods (Sreenivasan, Havlicek, & 

Deshpande, 2015).  Hemodynamic deconvolution removes the inter-subject and inter-

regional variability of the HRF (Handwerker, Ollinger, & D'Esposito, 2004) as well as its 

smoothing effect and therefore, increases the effective temporal resolution of the signal.  

The resulting latent neural signals were entered into a first order dynamic multivariate 

autoregressive (dMVAR) model for assessing directed interactions between multiple 

nodes as a function of time (Grant, Wood, Sreenivasan, Wheelock, & White, 2015; 

Hutcheson et al., 2015; Wheelock et al., 2014)) while factoring out influences mediated 

indirectly in the set of selected ROIs (Deshpande, Hu, Stilla, & Sathian, 2008; 

Deshpande, Sathian, & Hu, 2010a; Stilla, Deshpande, LaConte, Hu, & Sathian, 2007).  A 

first order model was implemented because of the interest in causal influences arising 

from neural delays, which are less than a TR (Deshpande, Libero, Sreenivasan, 

Deshpande, & Kana, 2013).  Furthermore, the dMVAR model’s coefficients were 

allowed to vary as a function of time to obtain condition-specific connectivity values (K 

Sathian, Deshpande, & Stilla, 2013).  

Granger connectivity (GC) path weights for conditions of interest (bad advice) for 

each agent (human, machine) were extracted.  Those corresponding GC path weights 

were populated into two samples and independent samples t-tests were employed to 

reveal the condition-specific modulations of connectivity (q(FDR) < .05) (Benjamini & 

Hochberg, 1995), i.e. those paths which had significantly different effective connectivity 

between human and machine agents while receiving bad advice (Appendix A.4).  Since 



23 
 

GCA is a data-driven approach, the condition-specific modulation was specifically 

chosen for analysis based upon our fMRI results.  Effective connectivity of brain regions 

(i.e., nodes, edges) was displayed on a brain surface using BrainNet Viewer 

(www.nitrc.org/projects/bnv/), a graphical interface visualization tool (Xia, Wang, & He, 

2013). 

 

2.4 Results 
 
Behavioral Results 

First, we compared the performance between the agent groups and the no advice 

group by employing a one-way ANOVA with Agent (human, machine, no agent) as 

between-subjects factors.  A significant main effect of Agent (F(2, 31) = 13.85, p < 

.0001) was revealed, and post-hoc testing revealed that the no agent group performed 

better than the human-agent group (t(20) = -4.06, p = .001) and the machine-agent group 

(t(20) = -4.54, p < .0001) (Fig. 1a).  Next, we looked at advice utilization, response 

times, and monetary deductions For advice utilization, a significant main effect of Advice 

was revealed (F(1,22) = 7.63, p = .011), indicating that participants accepted good advice 

more than bad advice.  In addition, a significant three-way interaction of Advice x Time x 

Agent was identified (F(1, 22) = 5.06, p = .035), but no significant main effects of Agent 

(F(1, 22) = 0.65, p = .429) or Time (F(1, 22) = 2.30, p = .144) and no significant two-way 

interaction effects of Advice x Agent (F(1, 22) = 0.56, p = .463), Time x Agent (F(1, 22) 

= 2.54, p = .125), and Advice x Time (F(1, 22) = 0.40, p = .536) (Fig. 1b) were found.  

Follow-up 2 x 2 ANOVAs showed a significant interaction effect of Time x Agent for 
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bad advice (F(1, 22) = 5.63, p = .027), but not for good advice (F(1, 22) = 1.23, p = 

.279).  Follow-up independent samples t-tests revealed that the human-agent group 

accepted bad advice less than the machine-agent group during run 2 (t(22) = -1.84, p = 

.040). 

For response times, significant main effects of Advice (F(1, 22) = 12.26, p = .002) 

and Time (F(1, 22) = 5.85, p = .024) were found, indicating that responses were faster 

during good compared to bad advice and during run 2 compared to run 1 (Appendix 

A.5a).  A marginally significant interaction effect was found for the interaction of Time x 

Agent (F(1, 22) = 4.35, p = .049), but no significant main effect of Agent (F(1, 22) = 

0.49, p = .491) and no significant interaction effects of Advice x Agent (F(1, 22) = 0.10, 

p = .758), Advice x Time (F(1, 22) = 0.07, p = .798), and Advice x Time x Agent (F(1, 

22) = 0.06, p = .811) were found. 

For monetary deductions, a significant main effect of Advice (F(1, 22) = 292.45, 

p < .0001) was revealed, indicating that deductions were higher during bad advice 

compared to good advice (Appendix A.5b).  In addition, a marginally significant 

interaction effect of Time x Agent was found (F(1, 22) = 4.61, p = .043), but no 

significant main effects of Time (F(1, 22) = 0.31, p = .583) and Agent (F(1, 22) = 1.56, p 

= .224), or interaction effects of Advice x Agent (F(1, 22) = 0.10, p = .758), Advice x 

Time (F(1, 22) = 0.10, p = .921), and Advice x Time x Agent (F(1, 22) = 0.09, p = .768) 

were found. 
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Figure 1. False Alarm Behavioral Results 
Results for the Decision Phase (M ± SEM). a) Task Performance.  The no agent group 
performed better than human- and machine-agent groups.  b) Advice Utilization.  Advice 
utilization during bad advice from the human agent was significantly lower during run 2 
compared to the machine agent.   
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In addition, we looked at pre- and post-experiment ratings (reliability, trust) using 

repeated-measures ANOVAs with Time (run 1, run 2) and Agent (human, machine) as 

factors.  The reliability ratings showed no significant main effect of Agent (F(1, 22) = 

0.62, p = .439), but a significant main effect of Time (F(1, 22) = 6.54, p = .018) and a 

significant interaction effect of Time x Agent (F(1, 22) = 7.86, p = .010) (Fig. 2.2a).  

Post-hoc testing revealed that the human agent’s pre-reliability was rated higher than the 

machine’s pre-reliability (t(22) = 2.87, p = .009) and the human’s reliability ratings 

decreased from pre- to post-experiment (t(11) = 4.10, p = .002). Furthermore, one-sample 

t-tests on perceived versus actual reliability (60%) of the agent showed that pre-reliability 

ratings were significantly higher than the actual reliability for the human agent (t(11) = 

6.79 p < .0001). 

For trust ratings, no significant main effects of Agent (F(1, 22) = 0.26, p = .615) 

and Time (F(1, 22) = 3.96, p = .059) were observed, but a significant interaction effect of 

Time x Agent (F(1, 22) = 5.89, p = .026) was demonstrated (Fig. 2.2b).  Post-hoc testing 

revealed that trust ratings significantly decreased from pre- to post-experiment for the 

human agent (t(11) = 4.18, p = .002). For confidence ratings, no main effect of Agent 

(F(1, 22) = 4.16, p = .054) or significant interaction effect of Target x Agent (F(1, 22) = 

2.46, p = .131) were found, but a significant main effect of Target (F(1, 22) = 53.44, p < 

.0001) was revealed, indicating that confidence was rated higher on target bags compared 

to non-target bags. (Appendix A.6).   
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Figure 2. False Alarm Rating Results 
Results For Ratings (M ± SEM). a) Pre- And Post-Reliability.  Pre-reliability was 
higher for the human agent compared to the machine agent.  For the human agent, 
perceived pre-reliability was significantly higher than the actually reliability of the agent 
(60%) and post-reliability ratings significantly decreased.  b) Pre- And Post-Trust.  
Post-trust was significantly lower than pre-trust for the human agent.   
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Finally, we analyzed at differences in control measures (e.g., demographic 

measures and questionnaires) with bivariate Spearman’s ρ correlations and independent 

samples t-tests.  For the human-agent group, a positive correlation between the NTRS 

insecurity score and pre-reliability ratings (r(12) = .738, p = .006) and pre-trust ratings 

(r(12) = .733, p = .007) were found, indicating that a higher insecurity score towards 

automation (i.e., greater preference towards human interactions) was positively 

associated with higher pre-reliability and pre-trust ratings.  No significant group 

differences were identified for any of the control measures (Appendix A.7). 

 

Neuroimaging Results 

For the fMRI results, we looked at brain activations during the decision and feedback 

phases for the three-way interaction.  For the decision phase, a significant three-way 

interaction effect (α < .05, k = 21) was found in the right (R) posterior insula (PI) (BA 

13); R anterior precuneus (aPreC) (BA 5/7), left (L) aPreC (BA 5/7); L posterior 

cingulate cortex (PCC) (BA 30/31); L rostrolateral prefrontal cortex (rlPFC) (superior 

frontal gyrus: SFG; BA 10); and L posterior temporoparietal junction (pTPJ) (superior 

temporal gyrus: STG; BA 22) (Fig. 3, Fig. 4, Tab. 1).  The results indicate that there was 

higher activation during run 1 for the human-agent group compared to machine-agent 

group during bad advice.  For the feedback phase, a significant three-way interaction (α < 

.05, k = 14) was found in the L dorsomedial prefrontal cortex (dmPFC) (medial frontal 

gyrus: MFG; BA 9/10) showing higher activation for the human agent during run 2 for 

good compared to bad advice (Fig. 5, Tab. 1).  Note that no further post-hoc comparisons 
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were performed on the extracted data from the decision or feedback phases to avoid non-

independent analyses, or double dipping (Kriegeskorte, Simmons, Bellgowan, & Baker, 

2009). 

 

 

Figure 3. False Alarm Brain Activations for Decision Phase 
(α < .05, k = 21). The three-way interaction (Advice x Run x Agent) during the decision 
phase significantly activated the right posterior insula (PI), right anterior precuneus 
(aPreC), left aPreC, left posterior cingulate cortex (PCC), left rostrolateral prefrontal 
cortex (rlPFC) and left posterior temporoparietal junction (pTPJ). 
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Figure 4. False Alarm Activation Patterns During Decision Phase 
The activation pattern indicates higher activation for the human- compared to machine-
agent group for bad advice during run 1.  The bar plots shown are for visualization 
purposes. 
 
 
 

-0.4 

-0.2 

0.0 

0.2 

0.4 

0.6 

Run 1 Run 2 Run 1 Run 2 

Good Advice Bad Advice 

A
ct

ia
vt

io
n 

(P
I) 

Human Machine 

-0.4 

-0.2 

0.0 

0.2 

0.4 

0.6 

Run 1 Run 2 Run 1 Run 2 

Good Advice Bad Advice 

A
ct

iv
at

io
n 

(R
 a

P
re

C
) Human Machine 

-0.4 

-0.2 

0.0 

0.2 

0.4 

0.6 

Run 1 Run 2 Run 1 Run 2 

Good Advice Bad Advice 

A
ct

iv
at

io
n 

(P
C

C
) 

Human Machine 

-0.4 

-0.2 

0.0 

0.2 

0.4 

0.6 

Run 1 Run 2 Run 1 Run 2 

Good Advice Bad Advice 

A
ct

iv
at

io
n 

(r
lP

FC
) 

Human Machine 

-0.4 

-0.2 

0.0 

0.2 

0.4 

0.6 

Run 1 Run 2 Run 1 Run 2 

Good Advice Bad Advice 

A
ct

iv
at

io
n 

(L
 a

P
re

C
) 

Human Machine 

-0.4 
-0.2 
0.0 
0.2 
0.4 
0.6 

Run 1 Run 2 Run 1 Run 2 

Good Advice Bad Advice 

A
ct

iv
at

io
n 

(p
TP

J)
 Human Machine 



31 
 

 

Figure 5. False Alarm Brain Activations During Feedback Phase 
(α < .05, k = 14). The three-way interaction (Advice x Run x Agent) during the feedback 
phase significantly activated the left dorsomedial prefrontal cortex (dmPFC).  The 
activation pattern shows lower activation for bad advice compared to good advice during 
run 2 for the human agent.  The bar plot serves as a visual aid for the activation pattern. 
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Table 1. False Alarm Brain Regions  
Brain Regions Associated with the Three-Way Interaction.  Brain regions showing 
significant activation clusters associated during the decision (minimum cluster of 21) and 
feedback (minimum cluster of 14) phases (α < .05, cluster-level threshold corrected).  PI, 
posterior insula (BA 13); aPreC, anterior precuneus  (BA 5/7); PCC, posterior cingulate 
cortex (BA 30/31); rlPFC, rostrolateral prefrontal cortex (BA 10); pTPJ, posterior 
temporoparietal junction BA 22); dmPFC, dorsomedial prefrontal cortex (BA 9/10). 

 
          

  
F (1,22) 

value 
Cluster Size 

(mm3 )          x y z 
Decision phase  
(Advice x Run x Agent) 
Right posterior insula 32.86 854 36 -15 21 
Right anterior precuneus 18.65 593 18 -42 45 
Left anterior precuneus 21.52 2214 -6 -42 51 
Left posterior cingulate cortex 24.96 607 -3 -63 15 
Left rostrolateral prefrontal cortex 17.34 692 -21 45 21 
Left posterior temporoparietal 
junction 23.58 1678 -48 -45 9 

      Feedback phase 
(Advice x Run x Agent) 
Left dorsomedial prefrontal cortex 25.03 655 -6 51 12 
            

 

 

Effective Connectivity Results 

Based on our fMRI results, we implemented multivariate GCA to identify effective 

connectivity among brain regions during the decision phase when comparing the human 

with the machine agent during bad advice for run 1 (all connections survived q(FDR) < 

.05, except the connections to the L rlPFC that survived q(FDR) <. 08)  (Tab. 2).  

Analysis for the feedback phase was not done due to the fact that only one region 

survived for the fMRI results.  The L aPreC and PI were identified as the source ROIs; 

they were the drivers of the network making reciprocal connections to each other, while 
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also both sending output connections to all target ROIs (R aPreC, PCC, rlPFC and pTPJ) 

(Fig. 6).   

 

Figure 6. False Alarm Results for Multivariate Granger Causality Analysis 
The effective connectivity network for bad advice during the decision phase for run 1 
when comparing the human with machine agent showed that the PI (posterior insula) and 
L aPreC (anterior precuneus) were drivers of the network and also the source ROIs for all 
other target ROIs (R aPreC, PCC (posterior cingulate cortex), rlPFC (rostrolateral 
prefontal cortex) and pTPJ (posterior temporoparietal junction).  Note that all connections 
survived q(FDR) < .05, except the connections to rlPFC that survived q(FDR) < .08.  The 
color bar represents the t-value of the comparisons shown in Table 2. 
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Table 2. False Alarm Granger Causality Analysis 
Path Weights for Granger Causality Analysis.  The path weights displayed show 
significant effective connectivity paths that are stronger in the human-agent group 
compared to the machine-agent group during run 1 (all connections survived q(FDR) < 
.05, except the connection to rlPFC that survived q(FDR) < .08).  The directionality of 
the connectivity is shown in the first two columns, with the source column showing the 
ROIs that predict activation in the target column ROIs.  The strength of connectivity is 
given by the mean path weights in the third column.  PI, posterior insula; aPreC, anterior 
precuneus; PCC, posterior cingulate cortex; rlPFC, rostrolateral prefrontal cortex; pTPJ, 
posterior temporoparietal junction. 

 
        

Source Target 
Path weight 

Human          Machine      t value p  value 

PI R aPreC      0.23                 0.18     4.06 2.80 x 10-5 

 
L aPreC      0.18                 0.19              2.57 5.16 x 10-3 

 
PCC      0.27                 0.18 3.96 4.16 x 10-5 

 
rlPFC      0.16                 0.18 2.32 1.04 x 10-2 

 
pTPJ      0.17                 0.15 2.52 6.02 x 10-3 

L aPreC PI      0.18                -0.17 2.42 7.80 x 10-3 

 
R aPreC      0.18                -0.12 2.44 7.51 x 10-3 

 
PCC      0.20                -0.15 3.47 2.79 x 10-4 

 
rlPFC      0.16                -0.15 2.01 2.22 x 10-2 

  pTPJ      0.24                -0.21 3.12 9.39 x 10-4 
 
 

2.5 Discussion 
 

The purpose of this research was to understand the neural basis and corresponding 

effective connectivity network involved during advice utilization from human and 

machine agents framed as experts.  To provide a greater understanding of the behavioral 

and neural underpinnings associated with advice taking, we manipulated agent reliability 

with a high false alarm rate to reveal the decision-making processes during good and bad 
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advice.  We first revealed that unreliable advice decreased performance, which has been 

previously reported by other behavioral studies investigating advice differences between 

humans and machines (Dzindolet et al., 2002; Madhavan & Wiegmann, 2007a).  An 

earlier study investigating credibility found that advice utilization decreased for expert 

automation but not for expert humans; however, this study focused entirely on misses and 

false alarms, which could account for any differences between these earlier findings and 

ours (Madhavan & Wiegmann, 2007a).  In addition, a study investigating perception 

during a contrast-detection task showed that false alarms evoked more cortical activity 

when compared to misses, which supports the notion that participants’ percepts may vary 

when presented with different types of errors (Ress & Heeger, 2003).  In our study, we 

focused only on false alarms since there is evidence of distinct neuronal activity 

associated with false alarms when compared to misses and behavioral studies have 

demonstrated differences between the two error types (Dixon et al., 2007; McBride, 

Rogers, & Fisk, 2014). 

 Contradictory to our hypothesis, the behavioral results revealed that the decline in 

advice utilization was greater for the human agent compared to the machine agent.  We 

expected that advice utilization would degrade faster for the machine agent because of 

differences in association of dispositional credibility; however, our results indicate that 

false alarms weighed more heavily on the human-agent group.  Our findings provide 

evidence that although assignment of personal traits may have been higher for the human 

agent, the prevalence of false alarms may have altered evaluations of performance levels 

due to the type of error presented.  Furthermore, to reveal any preconceived notions that 
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participants had about the human and machine agents, we examined whether the 

perceived pre-reliability differed from the actual reliability for each agent.  Interestingly, 

the human agent’s pre-reliability was rated significantly higher than the actual reliability, 

showing that the human-agent group expected their advisor to be more reliable.  Our 

finding supports other behavioral studies that indicate that preconceived notions can 

influence participants’ perceptions of advice (Madhavan & Wiegmann, 2007b).  Pre-

reliability and pre-trust ratings for the human agent showed a positive association with 

insecurity scores for embracing new technologies, indicating that participants interacting 

with the human agent had initial inclinations that tended towards human interactions.  

These findings indicate that participants interacting with the human agent could have 

perceivably built a mental model of their expectations about the agent’s credibility and 

deviations from expected behavior likely caused a reevaluation of the human agent’s 

performance (Burgoon, 1993).  The change in perspectives would ultimately cause a shift 

towards self-reliance and possibly increased responsibility/accountability for the outcome 

of their decisions (Dzindolet et al., 2002).  Post-reliability ratings for the human-agent 

group showed a shift towards the actual reliability of the agent, which indicates that the 

human-agent group was able to discern the agent’s performance and recalibrate their 

expectations.  Moreover, post-trust was lower than pre-trust for human agent, supporting 

previous evidence that false alarms degrade trust (Dixon et al., 2007; Rice & McCarley, 

2011).  Lastly, our results cannot be explained by any of our control measures or 

confidence ratings because we found no differences between the agent groups.   
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Moreover, our results revealed that advice utilization decreased during bad advice 

compared to good advice.  Since bad advice was advice-incongruent, it could have 

created a mismatch between what the participants perceived and what they were advised, 

resulting in disconfirmation experiences.  The discrepancies during advice-

disconfirmation experiences most likely lead to skepticism during bad advice and 

ultimately degradation of advice utilization.  As a consequence, response times for both 

groups were slower during bad advice, since participants had more conflicting perceptual 

processes (advice-incongruencies).  In addition, monetary deductions were higher overall 

for bad advice, indicating that bad advice caused participants to make more erroneous 

decisions. 

 Subsequently, we identified the neural basis and effective connectivity of the 

underlying brain network associated with advice utilization.  On the neural level, we had 

two expectations regarding brain activity.  First, we expected activation differences in 

regions associated with attribution of personal traits and dispositions, (Brosch et al., 

2013; Harris et al., 2005), and secondly, when comparing the agent groups during bad 

advice over time, brain regions such as the precuneus and posterior cingulate cortex 

would be the drivers of the advice utilization network.  Our neuroimaging results 

revealed brain regions associated with domain-general large-scale networks, such as the 

default-mode network (left pTPJ, bilateral aPreC, left PCC) typically engaged in social 

evaluations, the salience network (PI) for detection of internal and external salient events, 

and the central-executive network (left rlPFC) implicated in higher-order executive 

functions (Menon, 2011).  Similarly to our fMRI hypotheses, on the effective 
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connectivity level, we theorized that a network to be differentially involved when 

comparing the human to the machine agent for bad advice during run 1.  Our effective 

connectivity analysis revealed that left aPreC and PI were drivers of the network that 

were reciprocally connected to each other.  The aPreC and PI acted as centralized hubs of 

the network, presumably by integrating social evaluations (e.g., judgments about other’s 

intentions and personal traits) (Cavanna & Trimble, 2006) with interoception (e.g., 

recruitment of physiological responses to environmental cues) (Kurth et al., 2010).  

Previous evidence supports the notion that integration of subjective mental states (PreC) 

and information about internal bodily states (anterior insula, AI) are important for 

awareness of one’s emotional state (Terasawa, Fukushima, & Umeda, 2013).  Since 

participants interacting with the human agent could have had greater conceptualization of 

the discrepancies between the actual and perceived reliability, this could have led to a 

visceral response (PI) to the unreliable advice in conjunction with association of personal 

traits (aPreC) during interactions with the agent. 

Furthermore, our effective connectivity results indicated that both hubs (left 

aPreC, PI) had directional influences on all other regions (right aPreC, left pTPJ, PCC, 

and left rlPFC) to guide decision-making processes during advice utilization.  PreC 

activation has been identified during a comparison of other- versus self-attribution, 

showing the involvement of this region during causal attributions towards another (Farrer 

& Frith, 2002).  In addition, PCC activation has been implicated in adapting behaviors 

(Pearson, Heilbronner, Barack, Hayden, & Platt, 2011) and self-reflection (Johnson et al., 

2002), while the pTPJ has been shown to be activated during social cognitions such as 
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determining intentionality of others (Mars et al., 2012).  Other fMRI studies investigating 

expert advice have shown activation in PCC and PreC during no advice conditions 

(Engelmann et al., 2009) and in regions such as PCC, insula and medial frontal gyrus 

when comparing advice vs. no advice in experts and peers (Suen et al., 2014); however, 

we did not expect equivalent results since our experimental design looked at differences 

between humans and machines.  Furthermore, we found directional influences to the 

rlPFC, which is part of the central-executive network and has shown to be involved in 

reasoning (Christoff et al., 2001) and while making uncertain decisions (Badre, Doll, 

Long, & Frank, 2012). 

In addition to our results for the decision phase, we also expected participants to 

have a heightened awareness of bad advice due to feedback, which would ultimately lead 

to a behavioral adjustment in advice utilization over time.  During the feedback phase, we 

found activation in the dmPFC, which coincides with another study that showed dmPFC 

activity during feedback after iterative trials with the same advisor (Behrens, Hunt, 

Woolrich, & Rushworth, 2008).  The dmPFC has been shown to be involved with social 

cognition (Amodio & Frith, 2006) and during inferences about other’s goals and traits 

(Krueger, Grafman, & McCabe, 2008; Van Overwalle, 2009).  In our study, participants 

interacting with the human agent showed lower dmPFC activation during bad compared 

to good advice toward the end of the experiment, which shows that, as participants 

ascertained that the human agent was unreliable, they could have placed lower value on 

bad advice while receiving feedback.  
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Our study had a few limitations that should be addressed.  First, we looked at 

differences between good and bad advice by manipulating agent reliability with only 

false alarms.  Future studies could elaborate on our findings by investigating how misses 

degrade advice utilization between humans and machines and the effective connectivity 

network associated with those differences.  Furthermore, to prevent cognitive anchoring, 

or the tendency to rely too heavily on the first piece of information acquired, we had 

participants receive advice before they made their decisions, rather than receiving advice 

after they made their decisions.  Cognitive anchoring has been shown to decrease reliance 

on automated aids during self-generated decisions (Madhavan & Wiegmann, 2005) and 

future studies could investigate this phenomena by implementing a paradigm where 

participants receive advice after they make their decisions. 

In summary, our findings provide extensive insight into underlying factors 

involved with advice utilization from humans and machines and the differences that 

account for those behaviors.  Our results have significant implications for society because 

of progressions in technology and increased interactions with machines.  A greater 

discernment of the various facets involved with machine interactions will ultimately 

serve to calibrate behavioral responses and to optimize future safety guidelines.  

Understanding the variables and environmental differences involved during advice taking 

will allow for substantive information to improve security and ultimately prevent 

potential catastrophic disasters.  

 
 



41 
 

2.6 References 
 

Abler, B., Roebroeck, A., Goebel, R., Höse, A., Schönfeldt-Lecuona, C., Hole, G., & 
Walter, H. (2006). Investigating directed influences between activated brain areas 
in a motor-response task using fMRI. Magnetic Resonance Imaging, 24(2), 181-
185. 

Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and 
social cognition. Nature Reviews Neuroscience, 7(4), 268-277.  

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839-
851.  

Badre, D., Doll, B. B., Long, N. M., & Frank, M. J. (2012). Rostrolateral prefrontal 
cortex and individual differences in uncertainty-driven exploration. Neuron, 
73(3), 595-607.  

Behrens, T. E. J., Hunt, L. T., Woolrich, M. W., & Rushworth, M. F. S. (2008). 
Associative learning of social value. Nature, 456(7219), 245-249.  

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical 
and Powerful Approach to Multiple Testing. Journal of the Royal Statistical 
Society. Series B (Methodological), 57(1), 289-300.  

Biele, G., Rieskamp, J., Krugel, L. K., & Heekeren, H. R. (2011). The Neural Basis of 
Following Advice. PLoS Biology, 9(6), e1001089.  

Birnbaum, M. H., & Stegner, S. E. (1979). Source credibility in social judgment: Bias, 
expertise, and the judge's point of view. Journal of Personality and Social 
Psychology, 37(1), 48.  

Bonaccio, S., & Dalal, R. S. (2006). Advice taking and decision-making: An integrative 
literature review, and implications for the organizational sciences. Organizational 
Behavior and Human Decision Processes, 101(2), 127-151.  

Boorman, E. D., O'Doherty, J. P., Adolphs, R., & Rangel, A. (2013). The behavioral and 
neural mechanisms underlying the tracking of expertise. Neuron, 80(6), 1558-
1571.  

Brosch, T., Schiller, D., Mojdehbakhsh, R., Uleman, J. S., & Phelps, E. A. (2013). Neural 
mechanisms underlying the integration of situational information into attribution 
outcomes. Social Cognitive and Affective Neuroscience, 8(6), 640-646.  

Buchel, C., Holmes, A. P., Rees, G., & Friston, K. J. (1998). Characterizing Stimulus–
Response Functions Using Nonlinear Regressors in Parametric fMRI 
Experiments. Neuroimage, 8, 140-148.  

Burgoon, J. K. (1993). Interpersonal Expectations, Expectancy Violations, and Emotional 
Communication. Journal of Language and Social Psychology, 12(1-2), 30-48.  

Cabanis, M., Pyka, M., Mehl, S., Muller, B. W., Loos-Jankowiak, S., Winterer, G., . . . 
Kircher, T. (2013). The precuneus and the insula in self-attributional processes. 
Cognitive, Affective, & Behavioral Neuroscience, 13(2), 330-345.  

Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional 
anatomy and behavioural correlates. Brain, 129(Pt 3), 564-583.  



42 
 

Chaminade, T., Rosset, D., Da Fonseca, D., Nazarian, B., Lutcher, E., Cheng, G., & 
Deruelle, C. (2012). How do we think machines think? An fMRI study of alleged 
competition with an artificial intelligence. Frontiers in Human Neuroscience, 6, 
103.  

Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & 
Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational 
integration during reasoning. Neuroimage, 14(5), 1136-1149.  

Costa, P., & McCrae, R. (1992). Revised NEO Personality Inventory (NEO PI-R) and 
NEO Five-Factor Inventory (NEO-FFI) professional manual. Odessa, FL: 
Psychological Assessment Resources, Inc. 

Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a  
multidimensional approach. Journal of Personality and Social Psychology, 44(1), 
113-126.  

Deshpande, G., & Hu, X. (2012). Investigating effective brain connectivity from fMRI 
data: past findings and current issues with reference to Granger causality analysis. 
Brain Connectivity, 2(5), 235-245.  

Deshpande, G., Hu, X., Stilla, R., & Sathian, K. (2008). Effective connectivity during 
haptic perception: A study using Granger causality analysis of functional 
magnetic resonance imaging data. Neuroimage, 40(4), 1807-1814.  

Deshpande, G., LaConte, S., James, G. A., Peltier, S., & Hu, X. (2009). Multivariate 
Granger causality analysis of fMRI data. Human Brain Mapping, 30(4), 1361-
1373.  

Deshpande, G., Libero, L. E., Sreenivasan, K. R., Deshpande, H. D., & Kana, R. K. 
(2013). Identification of neural connectivity signatures of autism using machine 
learning. Frontiers in Human Neuroscience, 7, 670.  

Deshpande, G., Sathian, K., & Hu, X. (2010). Assessing and compensating for zero-lag 
correlation effects in time-lagged Granger causality analysis of fMRI. Biomedical 
Engineering, IEEE Transactions on, 57(6), 1446-1456. 

Deshpande, G., Sathian, K., & Hu, X. (2010b). Effect of hemodynamic variability on 
Granger causality analysis of fMRI. Neuroimage, 52(3), 884-896.  

Deshpande, G., Sathian, K., Hu, X., & Buckhalt, J. A. (2012). A rigorous approach for 
testing the constructionist hypotheses of brain function. Behavoiral and Brain 
Sciences, 35(3), 148-149.  

Dixon, S. R., Wickens, C. D., & McCarley, J. S. (2007). On the independence of 
compliance and reliance: Are automation false alarms worse than misses? Human 
Factors: The Journal of the Human Factors and Ergonomics Society, 49(4), 564-
572.  

Dzindolet, M. T., Pierce, L. G., Beck, H. P., & Dawe, L. A. (2002). The perceived utility 
of human and automated aids in a visual detection task. Human Factors, 44(1), 
79-94.  

Engelmann, J. B., Capra, C. M., Noussair, C., & Berns, G. S. (2009). Expert Financial 
Advice Neurobiologically “Offloads” Financial Decision-Making under Risk. 
PloS one, 4(3), e4957.  



43 
 

Farrer, C., & Frith, C. D. (2002). Experiencing oneself vs another person as being the 
cause of an action: the neural correlates of the experience of agency. Neuroimage, 
15(3), 596-603.  

Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. 
(1995). Improved assessment of significant activation in functional magnetic 
resonance imaging (fMRI): use of a cluster‐size threshold. Magnetic Resonance in 
Medicine, 33(5), 636-647. 

Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. 
Neuroimage, 19(4), 1273-1302.  

Goebel, R., Esposito, F., & Formisano, E. (2006). Analysis of functional image analysis 
contest (FIAC) data with brainvoyager QX: From single-subject to cortically 
aligned group general linear model analysis and self-organizing group 
independent component analysis. Human Brain Mapping, 27(5), 392-401.  

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-
spectral methods. Econometrica: Journal of the Econometric Society, 424-438.  

Grant, M. M., White, D., Hadley, J., Hutcheson, N., Shelton, R., Sreenivasan, K., & 
Deshpande, G. (2014). Early life trauma and directional brain connectivity within 
major depression. Human Brain Mapping, 35(9), 4815-4826.  

Grant, M. M., Wood, K., Sreenivasan, K., Wheelock, M., White, D., Thomas, J., ... & 
Deshpande, G. (2015). Influence of early life stress on intra-and extra-amygdaloid 
causal connectivity. Neuropsychopharmacology, 40(7), 1782-1793. 

Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Deshpande, G., Hu, X., Moore, A. B., & 
Sathian, K. (2011). Activation and effective connectivity changes following 
explicit-memory training for face–name pairs in patients with mild cognitive 
impairment a pilot study. Neurorehabilitation and Neural Repair, 25(3), 210-222. 

Handwerker, D. A., Ollinger, J. M., & D'Esposito, M. (2004). Variation of BOLD 
hemodynamic responses across subjects and brain regions and their effects on 
statistical analyses. Neuroimage, 21(4), 1639-1651.  

Harris, L. T., Todorov, A., & Fiske, S. T. (2005). Attributions on the brain: neuro-
imaging dispositional inferences, beyond theory of mind. Neuroimage, 28(4), 
763-769.  

Havlicek, M., Friston, K. J., Jan, J., Brazdil, M., & Calhoun, V. D. (2011). Dynamic 
modeling of neuronal responses in fMRI using cubature Kalman filtering. 
Neuroimage, 56(4), 2109-2128.  

Hutcheson, N. L., Sreenivasan, K. R., Deshpande, G., Reid, M. A., Hadley, J., White, D. 
M., . . . Lahti, A. C. (2015). Effective connectivity during episodic memory 
retrieval in schizophrenia participants before and after antipsychotic medication. 
Human Brain Mapping, 36(4), 1442-1457. 

Johnson, S. C., Baxter, L. C., Wilder, L. S., Pipe, J. G., Heiserman, J. E., & Prigatano, G. 
P. (2002). Neural correlates of self‐reflection. Brain, 125(8), 1808-1814. 

Jungermann, H., Fischer, K., Betsch, T., & Haberstroh, S. (2005). Using expertise and 
experience for giving and taking advice. The Routines of Decision Making, 157-
173.  



44 
 

Kapogiannis, D., Deshpande, G., Krueger, F., Thornburg, M. P., & Grafman, J. H. 
(2014). Brain networks shaping religious belief. Brain Connectivity, 4(1), 70-79. 

Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., & Kircher, T. (2008). Can 
Machines Think? Interaction and Perspective Taking with Robots Investigated via 
fMRI. PloS one, 3(7), e2597.  

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009). Circular 
analysis in systems neuroscience: the dangers of double dipping. Nature 
Neuroscience, 12(5), 535-540.  

Krueger, F., Grafman, J., & McCabe, K. (2008). Neural correlates of economic game 
playing. Philosophical Transactions of the Royal Society B: Biological Sciences, 
363(1511), 3859-3874.  

Krueger, F., Landgraf, S., van der Meer, E., Deshpande, G., & Hu, X. (2011). Effective 
connectivity of the multiplication network: a functional MRI and multivariate 
Granger Causality Mapping study. Human Brain Mapping, 32(9), 1419-1431.  

Kurth, F., Eickhoff, S. B., Schleicher, A., Hoemke, L., Zilles, K., & Amunts, K. (2010). 
Cytoarchitecture and probabilistic maps of the human posterior insular cortex. 
Cerebral Cortex, 20(6), 1448-1461. 

Lacey, S., Stilla, R., Sreenivasan, K., Deshpande, G., & Sathian, K. (2014). Spatial 
imagery in haptic shape perception. Neuropsychologia, 60, 144-158.  

Lee, J., & Moray, N. (1992). Trust, control strategies and allocation of function in 
human-machine systems. Ergonomics, 35(10), 1243-1270.  

Madhavan, P., & Gonzalez, C. (2006). Effects of Sensitivity, Criterion Shifts, and 
Subjective Confidence on the Development of Automaticity in Airline Luggage 
Screening. Proceedings of the Human Factors and Ergonomics Society Annual 
Meeting, 50, 334-338.  

Madhavan, P., & Wiegmann, D. A. (2005). Cognitive anchoring on self-generated 
decisions reduces operator reliance on automated diagnostic aids. Human Factors, 
47(2), 332-341.  

Madhavan, P., & Wiegmann, D. A. (2007a). Effects of information source, pedigree, and 
reliability on operator interaction with decision support systems. Human Factors, 
49(5), 773-785.  

Madhavan, P., & Wiegmann, D. A. (2007b). Similarities and differences between 
human–human and human–automation trust: an integrative review. Theoretical 
Issues in Ergonomics Science, 8(4), 277-301. 

Mars, R. B., Sallet, J., Schuffelgen, U., Jbabdi, S., Toni, I., & Rushworth, M. F. (2012). 
Connectivity-based subdivisions of the human right "temporoparietal junction 
area": evidence for different areas participating in different cortical networks. 
Cerebral Cortex, 22(8), 1894-1903. 

Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An Integrative Model of 
Organizational Trust. The Academy of Management Review, 20(3), 709-734.  

McBride, S. E., Rogers, W. A., & Fisk, A. D. (2014). Understanding human management 
of automation errors. Theoretical issues in ergonomics science, 15(6), 545-577.  

Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple 
network model. Trends in Cognitive Sciences, 15(10), 483-506.  



45 
 

Merritt, S. M., Heimbaugh, H., LaChapell, J., & Lee, D. (2013). I Trust It, But I Don't 
Know Why : Effects of Implicit Attitudes Toward Automation on Trust in an 
Automated System. Human Factors: The Journal of the Human Factors and 
Ergonomics Society, 55(3), 520-534.  

Meshi, D., Biele, G., Korn, C. W., & Heekeren, H. R. (2012). How expert advice 
influences decision making. PloS one, 7(11), e49748.  

Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal 
contributions to judgments of similar and dissimilar others. Neuron, 50(4), 655-
663.  

Oldfield, R. C. (1971). The Assessment And Analysis Of Handedness: The Edinburgh 
Inventory. Neuropsychologia, 9, 97-113.  

Oliver, R. L. (1980). A Cognitive Model of the Antecedents and Consequences of 
Satisfaction Decisions. Journal of Marketing Research, 17(4), 460-469.  

Parasuraman, A. (2000). Technology Readiness Index (Tri): A Multiple-Item Scale to 
Measure Readiness to Embrace New Technologies. Journal of Service Research, 
2(4), 307-320.  

Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt, M. L. (2011). 
Posterior cingulate cortex: adapting behavior to a changing world. Trends in 
Cognitive Sciences, 15(4), 143-151.  

Preusse, F., van der Meer, E., Deshpande, G., Krueger, F., & Wartenburger, I. (2011). 
Fluid intelligence allows flexible recruitment of the parieto-frontal network in 
analogical reasoning. Frontiers in Human Neuroscience, 5, 22.  

Ress, D., & Heeger, D. J. (2003). Neuronal correlates of perception in early visual cortex. 
Nature Neuroscience, 6(4), 414-420.  

Rice, S., & McCarley, J. S. (2011). Effects of Response Bias and Judgment Framing on 
Operator Use of an Automated Aid in a Target Detection Task. Journal of 
Experimental Psychology: Applied, 17(4), 320-331.  

Riley, V. (1996). Operator reliance on automation: Theory and data.  
Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the 

brain using Granger causality and fMRI. Neuroimage, 25(1), 230-242.  
Rotter, J. B. (1967). A new scale for the measurement of interpersonal trust. Journal of 

Personality, 35(4), 651-665.  
Sathian, K., Deshpande, G., & Stilla, R. (2013). Neural changes with tactile learning 

reflect decision-level reweighting of perceptual readout. The Journal of 
Neuroscience, 33(12), 5387-5398.  

Sathian, K., Lacey, S., Stilla, R., Gibson, G. O., Deshpande, G., Hu, X., . . . Glielmi, C. 
(2011). Dual pathways for haptic and visual perception of spatial and texture 
information. Neuroimage, 57(2), 462-475.  

Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: The role of the 
temporo-parietal junction in “theory of mind”. Neuroimage, 19(4), 1835-1842.  

Singh, I. L., Molloy, R., & Parasuraman, R. (1997). Automation-induced "complacency": 
developement of the complancency-potential rating scale. The International 
Journal of Aviation Psychology, 3(2), 111-122.  



46 
 

Skitka, L. J., Mosier, K., & Burdick, M. D. (2000). Accountability and automation bias. 
International Journal of Human-Computer Studies, 52(4), 701-717.  

Sniezek, J. A., Schrah, G. E., & Dalal, R. S. (2004). Improving judgement with prepaid 
expert advice. Journal of Behavioral Decision Making, 17(3), 173-190.  

Sreenivasan, K. R., Havlicek, M., & Deshpande, G. (2015). Nonparametric hemodynamic 
deconvolution of FMRI using homomorphic filtering. IEEE Trans Medical 
Imaging, 34(5), 1155-1163.  

Staudinger, M. R., & Buchel, C. (2013). How initial confirmatory experience potentiates 
the detrimental influence of bad advice. Neuroimage, 76, 125-133.  

Stilla, R., Deshpande, G., LaConte, S., Hu, X., & Sathian, K. (2007). Posteromedial 
parietal cortical activity and inputs predict tactile spatial acuity. The Journal of 
Neuroscience, 27(41), 11091-11102. 

Strenziok, M., Krueger, F., Deshpande, G., Lenroot, R. K., van der Meer, E., & Grafman, 
J. (2010). Fronto-parietal regulation of media violence exposure in adolescents: a 
multi-method study. Social Cognitive and Affective Neuroscience.  

Suen, V. Y. M., Brown, M. R. G., Morck, R. K., & Silverstone, P. H. (2014). Regional 
Brain Changes Occurring during Disobedience to “Experts” in Financial 
Decision-Making. PloS one, 9(1), e87321.  

Terasawa, Y., Fukushima, H., & Umeda, S. (2013). How does interoceptive awareness 
interact with the subjective experience of emotion? An fMRI study. Human Brain 
Mapping, 34(3), 598-612.  

Transportation Safety Administration. (2014).  http://www.tsa.gov/traveler-
information/advanced-imaging-technology-ait 

Van Overwalle, F. (2009). Social cognition and the brain: a meta-analysis. Human Brain 
Mapping, 30(3), 829-858.  

Swol, L. M., & Sniezek, J. A. (2005). Factors affecting the acceptance of expert 
advice. British Journal of Social Psychology, 44(3), 443-461. 

Wang, Y., & Quadflieg, S. (2015). In our own image? Emotional and neural processing 
differences when observing human–human vs human–robot interactions. Social 
Cognitive and Affective Neuroscience, 10(11), 1515-1524. 

Wen, X., Rangarajan, G., & Ding, M. (2013). Is Granger Causality a Viable Technique 
for Analyzing fMRI Data? PloS one, 8(7), e67428.  

Wheelock, M. D., Sreenivasan, K. R., Wood, K. H., Ver Hoef, L. W., Deshpande, G., & 
Knight, D. C. (2014). Threat-related learning relies on distinct dorsal prefrontal 
cortex network connectivity. Neuroimage, 102 Pt 2, 904-912.  

Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A Network Visualization Tool for 
Human Brain Connectomics. PloS one, 8(7), e68910.  

 
 



47 
 

CHAPTER THREE: THE IMPACT OF MISSES ON ADVICE UTILIZATION 

3.1 Abstract 
 
Our objective was to reveal the underlying neural mechanisms during advice utilization 

from expert human and machine agents with fMRI and multivariate Granger causality 

analysis.  As society becomes more reliant on machines and automation, understanding 

how people utilize advice is a necessary endeavor.  The impact of misses on decision-

making and the neural basis involved with advice taking needs further exploration.  

During the X-ray luggage-screening task, participants accepted or rejected good or bad 

advice from either the human or machine agent framed as experts with manipulated 

reliability (high miss rate).  We showed that unreliable advice decreased performance and 

the machine-agent group decreased their advice utilization compared to the human-agent 

group.  The differences in behaviors during advice utilization could be accounted for by 

high expectations of reliable advice and differences in attention allocation due to miss 

errors.  Areas involved with the salience and mentalizing networks, as well as sensory 

processing involved with attention, were recruited during the task.  The advice utilization 

network consisted of attentional modulation of sensory information with the lingual gyrus 

as the driver during the decision phase and the fusiform gyrus as the driver during the 

feedback phase.  Our behavioral and fMRI results provide evidence demonstrating that 

miss errors from agents framed as experts decrease advice utilization due to reevaluation 
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of expectations.  Assessment of the behavioral and neural mechanisms during unreliable 

advice can expand on the existing literature on miss errors, while also providing a neural 

network involved with advice utilization from humans and machines. 
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3.2 Introduction 
 
People are often given numerous options regarding the type and source of advice they can 

receive.  For example, when individuals travel to a new country, they can ask a native 

citizen or use a smartphone with a Global Positioning System (GPS) for directions.  

Given the different options available, it is becoming a necessity to understand how 

individuals utilize or discount advice from different sources.  Factors such as source 

credibility (expert and novice) (Madhavan & Wiegmann, 2007; Van Swol & Sniezek, 

2005) and initial expectations of reliable advice (Dzindolet, Pierce, Beck, & Dawe, 2002) 

can influence how someone responds to advice.  Dzindolet et al. (2002) proposed that 

individuals may possess a “perfect automation schema,” which is an expectation that 

automation performs near perfectly and can ultimately cause a person to disuse the advice 

given to them when errors occur.  Initial expectations of reliable advice can be impacted, 

however, when disconfirmation evidence of misleading advice is encountered.     

To fully understand the influence of bad advice on decision-making behaviors 

requires an examination of error types: false alarms and misses.  The type of error is of 

particular interest because, while a false alarm error is misleading, it is not necessarily 

harmful.  In contrast, a miss error can lead to disastrous results such as a luggage-

screener failing to detect a bomb in a suitcase.  Previous evidence has shown that false 

alarms can cause a “cry wolf effect,” in which an individual may tend to ignore true alerts 

(Breznitz, 2013) and misses may affect monitoring strategies leading to an adaptation of 

attention allocation (Onnasch, Ruff, & Manzey, 2014).  False alarms have been shown to 

decrease trust and decrease reliance and compliance, while misses have been shown to 
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only decrease reliance (Dixon, Wickens, & McCarley, 2007; Rice & McCarley, 2011).  

Furthermore, studies comparing humans and machines have shown that expert humans 

were trusted more than expert machines due to differences in dispositional credibility 

(Madhavan & Wiegmann, 2007) and allocation of tasks to humans compared to 

automation can be affected by trust in automation (Lewandowsky, Mundy, & Tan, 2000).  

To expand on the existing literature on humans and machines, we previously investigated 

the impact of false alarms on decision-making behaviors (Goodyear et al., 2015, under 

review), and to elaborate on those findings, the current study examined misses.   

The neural processes involved with advice taking have been recently investigated 

with functional magnetic resonance imaging (fMRI) advice-taking paradigms examining 

expert advice (Boorman, O'Doherty, Adolphs, & Rangel, 2013; Meshi, Biele, Korn, & 

Heekeren, 2012) and during adaptive learning (Biele, Rieskamp, Krugel, & Heekeren, 

2011).  Furthermore, neuroimaging studies examining interactions between humans and 

robots during perspective taking (Krach et al., 2008) and during social observations 

(Wang & Quadflieg, 2015) have also been investigated. The default-mode network (e.g., 

temporoparietal junction, precuneus) and the salience network (dorsal anterior cingulate 

cortex, insulae) have been additionally implicated in other advice-taking tasks 

(Engelmann, Capra, Noussair, & Berns, 2009), as well as during robot-human interaction 

paradigms (Chaminade et al., 2012).  However, in spite of the existing literature on 

advice taking, the neural basis and underlying brain networks associated with miss errors 

from expert human and machines remains to be elucidated.  
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We implemented an X-ray luggage-screening task with fMRI combined with 

multivariate Granger causality analysis (GCA) to investigate the impact of misses on 

decision-making behaviors and to reveal the underlying brain network associated with 

advice utilization from unreliable agents framed as experts.  Based upon previous studies 

investigating misses and false alarms (Dzindolet et al., 2002; McBride, Rogers, & Fisk, 

2014), we first hypothesized that unreliable advice would decrease performance (i.e., 

accuracy) compared to no advice.  Furthermore, we expected advice utilization to 

decrease due to the significance of a miss error and due to disconfirmation evidence 

about the agents’ expertise provided by feedback.  We expected the reevaluation of the 

agents’ perceived credibility to cause a mismatch of perceptions due to advice-

incongruencies, which would ultimately cause an adjustment in attention allocation 

strategies.  In addition, based upon previous work investigating advice acceptance and 

trust between expert human and machine agents (Madhavan & Wiegmann, 2007), we 

expected participants interacting with the machine agent to have a greater depreciation of 

advice utilization compared to the human agent due to perceptions involved with the 

perfect automation schema and varying degrees of perceived dispositional credibility.  

Brain regions involved with self-processing (e.g., precuneus) and error monitoring and 

salience detection (e.g., anterior cingulate cortex) would be recruited when comparing the 

human agent and the machine agent due to deviations in expectations (agents framed as 

experts), resulting from a change in attention strategies from a high miss rate. 
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3.3 Methods 
 
Subjects 

A normative rating study and behavioral study were conducted at George Mason 

University (GMU) and an fMRI study was conducted at Auburn University (AU).  All 

studies were conducted according to the ethical guidelines and principles of the 

Declaration of Helsinki.  For the normative rating study, twenty-three male students (age 

(M ± SD) = 24.0 ± 2.6) participated to standardize the X-ray luggage images for the 

experimental studies.  For the behavioral study, twelve volunteers (7 males, 5 females; 

age = 20.9 ± 3.4) participated to complete an X-ray luggage-screening task without 

receiving advice.  For the fMRI study, twenty-four healthy right-handed volunteers (14 

males, 10 females; age = 22.3 ± 2.4) participated in the X-ray luggage-screening task 

while receiving advice.  Participants gave written consent approved by the Institutional 

Review Boards at GMU and AU and they received financial compensation for their 

participation (see Goodyear et. al, 2015, under review, for details on methods).  

 

X-ray Luggage-Screening Task 

Participants partook in an X-ray luggage-screening task and were asked to search for the 

presence or absence of a knife (Madhavan & Gonzalez, 2006) (Appendix B.1a).  In the 

behavioral study, participants performed the task unassisted without receiving advice (no 

agent group).  In the fMRI study, participants were assigned to either the human-agent 

group or the machine-agent group with 60% reliability and they received good (advice-

congruent) and bad (advice-incongruent) advice (Appendix B.1b). 
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The jitter times were generated by an fMRI simulator software 

(http://www.mccauslandcenter.sc.edu/CRNL/tools/fmrisim) and consisted of a minimum 

of one second and an average of four seconds to optimize timing.  Participants responded 

by using fiber optic response pads (Current Designs, http://www.curdes.com/); they were 

given an initial endowment of $40 and each incorrect answer resulted in a deduction of 

$0.30 from the remaining total.  Performance, advice utilization, response times and 

monetary deductions were collected during the experiment.  The stimuli were presented 

using E-Prime 2.0 (Psychology Software Tools, Inc.).  

 

Procedure 

Pre-Experimental Phase. Participants completed self-report questionnaires as control 

measures to investigate individual differences approximately one to two weeks before the 

fMRI experiment.  The control measures included: Interpersonal Reactivity Index (IRI) 

(Davis, 1983), Complacency-Potential Rating Scale (CPS) (Singh, Molloy, & 

Parasuraman, 1997), National Readiness Technology Scale (NTRS) (Parasuraman, 2000), 

NEO Five-Factor Inventory (NEO-FFI) (Costa & McCrae, 1992), and Propensity to Trust 

(PTT) (Merritt, Heimbaugh, LaChapell, & Lee, 2013). 

 

Experimental Phase. Participants completed a practice run where they read descriptions 

about the human or machine agent (reliability was not disclosed), rated their trust in and 

reliability of the human or machine agent on a 10-point Likert scale (0 = very low, 10 = 

very high), familiarized themselves with the five possible knives that could be present in 
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the bags and then completed four practice trials of the task.  The participants then 

completed two experimental runs of the task while in the scanner and rated reliability and 

trust afterwards. 

 

Post-Experimental Session. After completion of the fMRI experiment, participants were 

asked to rate their confidence in finding the target (i.e., knife) in each of the images 

presented during the experiment on a 10-point Likert scale (1 = very low, 10 = very 

high).  

 

Neuroimaging Acquisition  

Imaging data were acquired on a 7T actively shielded whole-body scanner (Siemens 

Magnetom) with a 32-channel head coil (Nova Medical) at AU MRI Research Center, 

Auburn, Alabama.  The anatomical imaging data were based on a 3D T1-weighted 

MPRAGE sequence with TR = 2020 ms, TE = 2.7 ms, flip angle = 7°, slice thickness = 

1.2 mm, voxel dimension = 1.1 mm x 1.1 mm x 1.2 mm and number of slices = 240.  The 

functional imaging data were based on a 2D gradient-echo multiband EPI sequence with 

TR = 1000 ms, TE = 20 ms, flip angle = 70°, slice thickness = 2 mm, voxel dimensions = 

2.1 mm x 2.1 mm x 2.0 mm, number of slices = 45 per volume in an axial orientation 

parallel to the anterior-posterior commissure and a multiband factor of 2.  The first two 

volumes were discarded to allow for T1 equilibrium effects and a total of 660 volumes 

were taken for each run. 
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Behavioral Data Analysis 

Behavioral data was analyzed with the Statistical Package for the Social Sciences 20.0 

(SPSS 20.0, IBM Corp.) and the alpha was set to p < .05 (two-tailed).  Data were 

normally distributed (Kolmogorov–Smirnov test) and assumptions for analyses of 

variance (Bartlett’s test) were not violated.  To investigate task performance between the 

agents and the no agent group, a one-way analysis of variance (ANOVA) with Agent 

(human, machine, no agent) as the between-subjects factor.  Mixed 2 x 2 x 2 repeated-

measures ANOVAs with Advice (good, bad) and Time (run 1, run 2) as within-subjects 

factors and Agent (human, machine) as the between-subjects factor were employed to 

examine advice utilization, response times and monetary deductions.  In addition, we 

investigated reliability, trust and confidence ratings with mixed 2 x 2 repeated-measures 

ANOVAs with Agent (human, machine) as the between-subjects factor.  The within-

subjects factor for the reliability/trust ratings were Time (pre, post) and for confidence 

ratings was Target (yes, no).   

 

Neuroimaging Data Analysis 

The fMRI data was analyzed through NeuroElf software (http://neuroelf.net) and 

BrainVoyager QX 2.8 (Brain Innovation).  The functional imaging data were 

preprocessed using Statistical Parametric Mapping (SPM, Wellcome Department of 

Cognitive Neurology) functions batched via NeuroElf, including three-dimensional 

motion correction (six parameters), slice-scan time correction (temporal interpolation).  A 

mean functional image was computed for each participant across all runs and was then 
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co-registered with the anatomical images using a joint-histogram for the different contrast 

types.  Preprocessing procedures for the anatomical images included segmenting images 

with a unified segmentation procedure (Ashburner & Friston, 2005) and the functional 

images had spatial warping applied to them to normalize the data to a standard Montreal 

Neurological Institute (MNI) brain template.  To account for any residual differences 

across participants, spatial smoothing (Gaussian filter of 6 mm FWHM) was applied to 

the images.   

A general linear model (GLM) that was corrected for first-order serial correlations 

fit to the data (Friston, Harrison, & Penny, 2003), which consisted of thirty-seven 

regressors based on advice utilization (accept, reject), advice type (good, bad), time (run 

1, run 2) for each of the five phases (fixation, advice, bag, decision, feedback) and seven 

parametric regressors of no interest for the global signal and 3D motion correction 

(translations in X, Y, Z directions, rotations around X, Y, Z axes).  The regressor time 

courses were adjusted for the hemodynamic response delay by convolution with a dual-

gamma canonical hemodynamic response function (Buchel, Holmes, Rees, & Friston, 

1998).  Random-effect analyses were performed at the multi-subject level to explore 

brain activations associated with the decision and feedback phases during advice 

utilization.   

Mixed 2 x 2 x 2 ANOVAs on parameter estimates were applied with Advice 

(good, bad) and Time (run 1, run 2) as within-subjects factors and Agent (human, 

machine) as the between-subjects factor.  Brain activations for the decision and feedback 

phases were reported after correcting for multiple comparisons using a cluster-level 
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statistical threshold (Cluster-level Statistical Threshold Estimator plugin in BrainVoyager 

QX).  The thresholded map (p < .005) was used for a whole-brain correction criterion, 

which is based off an estimate of the map’s spatial smoothness and on a Monte Carlo 

simulation (1,000 iterations).  The minimum cluster size at a specified confidence level (α 

= 0.05) was then calculated (Forman et al., 1995; Goebel, Esposito, & Formisano, 2006).  

The significant activation clusters were displayed in MNI space on an anatomical brain 

template reversed left to right (i.e., radiological convention). 

 

Effective Connectivity Analysis 

Effective (or directional) connectivity data were analyzed using a code developed in-

house using MATLAB (www.mathworks.com) (Grant et al., 2014; Lacey, Stilla, 

Sreenivasan, Deshpande, & Sathian, 2014) (for more details on methods see Appendix 

B.2).  The effective connectivity in the network of activated regions was performed 

through multivariate Granger causality analysis (GCA) and only regions that survived the 

fMRI analysis threshold for the main effect of Agent (human, machine) for the decision 

and feedback phases were selected as ROIs.  Time series of the blood-oxygen-level-

dependent (BOLD) signal for the selected ROIs were extracted around peak activation 

maxima (sphere of 6 x 6 x 6 mm3), averaged across voxels and normalized across 

participants, per run.  Blind hemodynamic deconvolution of the mean ROI BOLD time 

series was performed using a Cubature Kalman filter and smoother (Havlicek, Friston, 

Jan, Brazdil, & Calhoun, 2011) and the resulting latent neural signals were entered into a 

first order dynamic multivariate autoregressive (dMVAR) model to assess directed 
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interactions of multiple nodes as a function of time (Feng et al., 2015; Grant, Wood, 

Sreenivasan, Wheelock, & White, 2015; Hampstead, Khoshnoodi, Yan, Deshpande, & 

Sathian, 2016; Hutcheson et al., 2015; Wheelock et al., 2014).   

Granger connectivity path weights for the condition of interest (advice utilization) 

for each agent (human, machine) were extracted, populated into two samples, and 

independent samples t-tests were employed (q(FDR) < .05) (Benjamini & Hochberg, 

1995) to reveal significantly different effective connectivity paths between the agent 

groups (Appendix B.3).  Effective connectivity of brain regions (i.e., nodes, edges) was 

displayed on a brain surface using BrainNet Viewer, a graphical interface visualization 

tool (Xia, Wang, & He, 2013). 

3.4 Results 
 
Behavioral Results 

The one-way ANOVA comparing performance between the agent groups and the no 

agent group revealed a significant main effect of Agent (F(2, 33) = 5.77, p = .007).  

Planned follow-up analysis revealed that the no agent group performed better than the 

human-agent group (t(22) = -3.37, p = .003) and the machine-agent group (t(22) = -2.24, 

p = .035) (Fig. 7a). 
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Figure 7. Miss Behavioral Results 
Results for the Decision Phase (M ± SEM). a) Task Performance.  The no agent group 
performed better than human- and machine-agent groups.  b) Advice Utilization.  Advice 
utilization was significantly lower for bad advice compared to good advice and was also 
significantly lower for the machine-agent group compared to the human-agent group. 
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Next, we looked at advice utilization by implementing mixed ANOVAs.  For 

advice utilization, significant main effects of Agent (F(1, 22) = 5.24, p = .032), Advice 

(F(1,22) = 140.72, p < .0001) and Time (F(1,22) = 22.36, p < .0001) were found.  These 

results indicate that participants accepted advice more from the human agent compared to 

the machine agent.  Furthermore, good advice was accepted more than bad advice and 

advice utilization decreased over time (Fig. 7b).  In addition, a significant two-way 

interaction of Advice x Time was identified (F(1, 22) = 10.17, p = .004), but no 

significant two-way interaction effects of Advice x Agent (F(1, 22) = 0.69, p = .415), 

Time x Agent (F(1, 22) = 0.46, p = .505), or three-way interaction of Advice x Time x 

Agent (F(1, 22) = 1.40, p = .249) were found. 

 In addition, we looked at pre- and post-reliability/trust ratings.  One participant’s 

data were not used due to lack of understanding, which was indicated by the high values 

for all pre/post scales.  The reliability ratings showed no significant main effect of Agent 

(F(1, 21) = 0.76, p = .394), but a significant main effect of Time (F(1, 21) = 5.43, p = 

.030), showing that reliability ratings decreased from pre- to post-experiment (Fig. 8a).  

No significant interaction effect of Time x Agent (F(1, 21) = 0.00, p = .960) was found.  

Furthermore, one-sample t-tests on perceived versus actual reliability (60%) of the agent 

revealed that pre-reliability ratings were significantly higher than the actual reliability for 

the human agent (t(11) = 4.53 p = .001) and the machine agent (t(10) = 3.55 p = .005).  

For trust ratings, no significant main effect of Agent (F(1, 21) = 0.01, p = .905) was 

found, but a significant main effect of Time (F(1, 21) = 8.18, p = .009) was observed, 

showing that trust ratings significantly decreased from pre- to post-experiment (Fig. 8b).  
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No significant interaction effect of Time x Agent (F(1, 21) = 0.00, p = .960) was 

demonstrated.  

We next analyzed differences in control measures (e.g., demographic measures 

and questionnaires) with independent samples t-tests.  No significant group differences 

were identified for any of the control measures (Appendix B.4).   

For response times, a significant main effect of Time (F(1, 22) = 5.42, p = .030) 

was found, indicating that responses were faster during run 2 compared to run 1 

(Appendix B.5a).  No significant main effects of Agent (F(1, 22) = 0.77, p = .389) or 

Advice (F(1, 22) = 1.34, p = .260) were revealed and no significant interaction effects of 

Advice x Agent (F(1, 22) = 3.27, p = .084), Time x Agent (F(1, 22) = 3.28, p = .084), 

Advice x Time (F(1, 22) = 2.46, p = .131) or Advice x Time x Agent (F(1, 22) = 0.73, p 

= .401) were found. 

 For monetary deductions, a significant main effect of Time (F(1, 22) = 7.13, p = 

.014) was revealed, indicating that deductions were higher during run 1 compared to run 

2  (Appendix B.5b).  No significant main effects of Advice (F(1, 22) = 1.34, p = .260) 

and Agent (F(1, 22) = 0.69, p = .414), or interaction effects of Advice x Agent (F(1, 22) 

= 3.54, p = .073), Advice x Time (F(1, 22) = 0.08, p = .776), Time x Agent (F(1, 22) = 

0.66, p = .427), or Advice x Time x Agent (F(1, 22) = 2.50, p = .128) were found. 
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Figure 8. Miss Rating Results 
Results for Ratings (M ± SEM). a) Pre- and Post-Reliability.  For both groups, the 
perceived pre-reliability was significantly higher than the actually reliability of the agent 
(60%) and post-reliability ratings significantly decreased.  b) Pre- and Post-Trust.  Post-
trust was significantly lower than pre-trust for both groups. 
 

50 
55 
60 
65 
70 
75 
80 
85 
90 

Pre Post 

R
el

ia
bi

lit
y 

 

Human 

Machine 

≈

***		 **		

*    p < .05 
**  p < .01 
***	p < .005 
 
 
 

*		

50 
55 
60 
65 
70 
75 
80 
85 
90 

Pre Post 

Tr
us

t 

Human 
Machine 

≈

*		
*    p < .01 
 
 

a) 

b) 



63 
 

For confidence ratings, no main effect of Agent (F(1, 22) = 0.39, p = .538) or 

significant interaction effect of Target x Agent (F(1, 22) = 0.50, p = .488) was found, but 

a significant main effect of Target (F(1, 22) = 46.30, p < .0001) was revealed, indicating 

that confidence was rated higher on target bags compared to non-target bags  (Appendix 

B.6). 

 

Neuroimaging Results 

We investigated brain activations during the decision and feedback phases with mixed 

ANOVAs.  For the decision phase, a significant main effect of Agent (α < .05, k = 11) 

was found in the right (R) lingual gyrus (LG) (BA 18), R anterior cingulate cortex (ACC) 

(BA 24), left (L) anterior precuneus (aPreC) (superior parietal lobule; BA 7), and L 

cuneus (CUN) (BA 18) (Fig. 9, Fig. 10, Tab. 3).  A main effect of Advice (α < .05, k = 

11) was found in the R middle frontal gyrus (BA 8), R medial frontal gyrus (BA 8), R 

rostrolateral prefrontal cortex (rlPFC) (superior frontal gyrus; BA 10), R primary visual 

cortex (V1) (BA 17), R pre-supplementary motor area (pre-SMA) (superior frontal gyrus; 

BA 6), L cerebellar culmen, L inferior occipital gyrus (IOG) (BA 18).  
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Figure 9. Miss Brain Activations During Decision Phase 
(α < .05, k = 11). The main effect of Agent during the decision phase significantly 
activated the right lingual gyrus (LG), right anterior cingulate cortex (ACC), left anterior 
precuneus (aPreC) and left cuneus (CUN).   
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Figure 10. Miss Activation Patterns During Decision Phase 
The activation pattern indicates higher activation for the human- compared to machine-
agent group for all regions except the ACC.  The bar plots shown are for visualization 
purposes.  To avoid circularity, or double dipping, no further statistical analyses were 
performed for the decision and feedback phases (Kriegeskorte, Simmons, Bellgowan, & 
Baker, 2009). 
 
 
Table 3. Miss Brain Regions 
Brain Regions Associated with the Agent and Advice Main Effects. Brain regions 
showing significant activation clusters associated during the decision phase: Agent 
(minimum cluster of 11) and Advice (minimum cluster of 11); and feedback phase: 
Agent (minimum cluster of 10) and Advice (minimum cluster of 9) (α < .05, cluster-level 
threshold corrected, MNI space).   
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Left anterior precuneus 19.84 727 -9 -63 57 
Left cuneus 19.95 758 -21 -84 15 
Advice 

	 	 	 	 	Right middle frontal gyrus 24.75 822 42 18 42 
Right medial frontal gyrus 21.3 3182 21 27 33 
Right rostrolateral prefrontal cortex 28.51 560 24 54 6 
Right primary visual cortex 19.72 1722 15 -96 -3 
Right pre-supplementary motor area 19.86 665 6 9 56 
Left cerebellar culmen 17.93 601 -12 -36 -24 
Left inferior occipital gyrus 16.37 1936 -24 -90 -6 
Feedback Phase 
Agent 

	 	 	 	 	Right precentral gyrus 16.66 456 51 -6 6 
Right inferior parietal lobule  15 398 48 -26 24 
Right cuneus 15.37 422 24 -84 15 
Left putamen 19.3 1445 -27 -15 6 
Left fusiform gyrus 19.58 990 -42 -47 -21 
Advice 

	 	 	 	 	Right postcentral gyrus 19.33 960 42 -18 27 
Right middle frontal gyrus 16.78 631 33 21 39 
Right hippocampus 18.19 1347 29 -39 3 
Right extra-nuclear 18.66 468 24 21 15 
Right orbitofronal cortex 25.94 892 21 45 -3 
Right posterior cingulate cortex 31.47 1049 12 -63 23 
Right anterior precuneus 23.25 1865 6 -69 47 
Left cerebellar culmen 23.43 2945 -6 -42 -21 
Left pons 16.91 373 3 21 51 
Left pre-supplementary motor area 18.27 644 -18 -24 -30 
Left parahippocampal gyrus 29.02 1102 -24 -42 0 
Left postcentral gyrus 31.04 1300 -42 -21 27 
            

 

For the feedback phase, a main effect of Agent (α < .05, k = 10) was found in the 

R precentral gyrus (PrG) (BA 6), R inferior parietal lobule (IPL) (BA 40), R CUN (BA 

17), L putamen (Pu) and L fusiform gyrus (FG) (BA 37) (Fig. 11, Fig. 12, Tab. 3).  

Lastly, a significant main effect of Advice (α < .05, k = 9) during the feedback phase was 
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found in the R postcentral gyrus (PoG) (BA 3), R middle frontal gyrus (BA 8), R 

hippocampus, R extra-nuclear, R orbitofrontal cortex (OFC) (BA 10/11), R posterior 

cingulate cortex (PCC) (BA 31), R aPreC (BA 7), L cerebellar culmen, L pre-SMA (BA 

6/8), L pons, L parahippocampal gyrus (BA 19) and L PoG (BA 2).   

 

Figure 11. Miss Brain Activations During Feedback Phase 
(α < .05, k = 10).  The main effect of Agent during the feedback phase significantly 
activated the right precentral gyrus (PrG), right inferior parietal lobule (IPL), R cuneus 
(CUN), left putamen (Pu) and left fusiform gyrus (FG).   
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Figure 12. Miss Brain Activation Patterns During Feedback Phase 
The activation pattern shows higher activation for the machine-agent group compared to 
the human-agent group for all regions except for FG and CUN.  The bar plots shown are 
for visualization purposes. 
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Effective Connectivity Results 

To identify effective connectivity among brain regions when comparing the human to the 

machine agents during the decision and feedback phases, we implemented multivariate 

GCA based upon our results from the fMRI analysis (q(FDR) < .05).  The LG was 

identified as the source ROI for the advice utilization network for the decision phase, that 

sent output connections to all target ROIs (ACC, aPreC, CUN) and the FG was the source 

ROI for the feedback phase sending an output connection to the IPL (Fig. 13, Tab. 4).  

 

Figure 13. Miss Results for Multivariate Granger Causality Analysis 
The effective connectivity network for advice utilization during the decision phase when 
comparing the human with machine agent showed that the LG (lingual gyrus) was the 
driver of the network and source ROI, sending outputs to all target ROIs (ACC (anterior 
cingulate cortex), aPreC (anterior precuneus), and CUN (cuneus)) (all connections 
survived q(FDR) < .05).  The color bar represents the t-value of the comparisons shown 
in Table 4. 
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Table 4. Miss Granger Causality Analysis 
Path Weights for Granger Causality Analysis. The path weights displayed show 
significant effective connectivity paths that are stronger in the human-agent group 
compared to the machine-agent group during advice utilization (q(FDR) < .05).  The 
directionality of the connectivity is shown in the first two columns, with the source 
column showing the ROIs that predict activation in the target column ROIs.  The strength 
of connectivity is given by the mean path weights in the third column.  LG, lingual gyrus; 
ACC, anterior cingulate cortex; aPreC, anterior precuneus; CUN, cuneus; FG, fusiform 
gyrus; IPL, inferior parietal lobule. 

        

Source Target 
Path weight 

t value p  value 
Human          Machine 

Decision Phase 	 	  	
LG ACC     0.087             -0.003     3.23 6.18 x 10-6 

	
aPreC     0.115              0.009             4.41 5.23 x 10-8 

	
CUN     0.094             -0.006 3.49 2.43 x 10-8 

Feedback 
Phase 	 	 	 	

FG IPL     0.087             -0.156 3.03 1.20 x 10-4 
 

 

3.5 Discussion 
 
The objective of this research was to expand on our earlier work investigating the 

behavioral and neural signatures of advice utilization differences between expert human 

and machine agents during good and bad advice (Goodyear et al., 2015, under review).  

We manipulated agent reliability with a high miss rate to reveal the underlying neural 

basis (in terms of both activated brain regions and the directional interactions between 

them) involved with advice utilization.  We revealed that unreliable advice decreased 

performance overall as shown by other behavioral studies investigating human-machine 

interactions (Dzindolet et al., 2002; Goodyear et al., 2015, under review), and advice 

utilization decreased more for the machine-agent group compared to the human-agent 
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group, coinciding with another study investigating the effects of source credibility with 

varying reliability from humans and machines (Madhavan & Wiegmann, 2007).  

 As hypothesized, our results demonstrated that advice utilization decreased more 

for the machine-agent group compared to the human-agent group.  The degradation of 

advice utilization occurred regardless of the type of the advice (good, bad) given, 

showing that disconfirmation experience during bad advice had an effect on all decision-

making behaviors.  In our earlier work, we showed that false alarms caused a degradation 

of advice utilization during bad advice (Goodyear et al., 2015, under review), but for our 

current study, we expected that misses would cause an overall adjustment in attention 

allocation due to previous evidence showing that more critical types of events (misses) 

lead to an adaptation in monitoring strategies (Onnasch et al., 2014).  Our results 

indicated that advice utilization decreased for both groups, which provides evidence that 

participants made changes in their decision-making behaviors to compensate for the 

unreliable advice that they received.   

In addition, we compared the pre-reliability ratings with the actual reliability of 

each agent to uncover any preconceived notions that participants had about the human 

and machine agents.  We demonstrated that for both groups the pre-reliability ratings 

were significantly higher than the actual reliability, which could indicate that participants 

had high initial expectations of reliable advice since the agents were framed as experts.  

In addition, reliability ratings decreased overall from pre- to post-experiment, showing 

that participants were able to decipher the performance of the agents, while also 

recalibrating their expectations due to bad advice.  Furthermore, we revealed that trust 
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decreased overall from pre- to post-experiment, revealing that misses degraded trust, 

which has previously been reported for false alarms (Dixon et al., 2007; Goodyear et al., 

2015, under review; Rice & McCarley, 2011).  Although the reliability and trust ratings 

did not significantly decrease more for the machine-agent group, the ratings were still 

lower compared to the human-agent group, which could show that as trust and reliability 

decreased, advice utilization degraded as well.  Lastly, since we showed no differences 

for control measures or confidence ratings between the agent groups, our results cannot 

be explained by those findings. 

 We next identified the neural mechanisms and the underlying directional brain 

network differentially involved with advice utilization between humans and machines.  

For the decision phase, our effective connectivity network revealed the LG as the driver, 

or source ROI, of the network, sending outputs to the ACC, aPreC and CUN.  

Furthermore, the strength of the paths emanating from LG were significantly higher for 

human advice compared to machine advice. The results indicate that the LG perceivably 

modulated attention during advice utilization through the bottom-up sensory processing 

of task-relevant information.  It has been postulated that sensory processing involves a 

large-scale integration of networks with attention modulation to form a behavioral 

outcome, or a cognition (Mesulam, 1998).  For example, it has been shown that detection 

of stimulus information initially starts in primary sensory areas, and is then conveyed to 

regions such as the ACC, showing the interaction between bottom-up and top-down 

processing during attentional control (Crottaz-Herbette & Menon, 2006).  Furthermore, a 

study investigating advisor competence showed increased activity in the visual cortex 
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during advice integration from incompetent advisors (Schilbach, Eickhoff, Schultze, 

Mojzisch, & Vogeley, 2013).  The authors conclude that the activity in the visual cortices 

may relate to “perceptually based strategies” during reassessment of one’s own 

judgments, which could support our findings about the influence of visual regions on 

upstream structures such as PreC and ACC during advice utilization with unreliable 

human advisors.  Moreover, the involvement of the visual areas during the decision phase 

could be attributed to the fact that participants had to revisualize the X-ray images in 

order to compare what they saw to the advice they received.  

 Furthermore, our neuroimaging results for the decision phase revealed brain 

regions associated with attentional control and salience detection (ACC), self-processing 

(aPreC) and sensory information processing (LG and CUN).  LG activation has been 

associated with comparing advice versus no advice in expert and peer groups (Suen, 

Brown, Morck, & Silverstone, 2014) and activity in the LG and CUN has been 

implicated during decisions under risk when comparing a message to accept or reject 

advice with no message (Engelmann et al., 2009) and during decisions correlated with 

value or saliency (Litt, Plassmann, Shiv, & Rangel, 2011).  ACC activation has been 

shown to be involved with conflict monitoring during decision-making (Botvinick, 2007) 

and error detection and prediction error (Beckmann, Johansen-Berg, & Rushworth, 

2009), while the PreC has been identified to play a role in integrations of one’s mental 

state (Terasawa, Fukushima, & Umeda, 2013).  Our neuroimaging results demonstrated 

that all areas except for the ACC had higher activations for the human-agent group 

compared to the machine-agent group, indicating that participants in the human-agent 
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group may have had a greater increase in perceptual processing and perceivably less 

monitoring of errors.  Conversely, participants in the machine-agent group were more 

attuned to the advice errors, which was also indicated behaviorally, which could explain 

the ACC activation differences.   

In addition to the decision phase, we expected a behavioral adjustment in advice 

utilization due to feedback.  For the feedback phase, our effective connectivity network 

showed that the FG was the driver of the network that sent an output to the IPL.  The FG 

has been associated with receipt of monetary rewards and penalties during an outcome 

phase (Dillon et al., 2008), while the IPL has been identified to play a role during advice 

evaluation when interacting with competent and incompetent advisors (Schilbach et al., 

2013) and during decision uncertainty when given trial-by-trial feedback (Vickery & 

Jiang, 2009).  Furthermore, the neuroimaging results for the feedback phase revealed 

activity in the PrG, CUN and Pu.  Activity in the PrG has been implicated during 

comparisons of humans and computers during rock-paper-scissors games (Chaminade et 

al., 2012) and CUN activity has been shown to be related to inferential errors during a 

feedback phase (Cooper, Kreps, Wiebe, Pirkl, & Knutson, 2010).  Lastly, we revealed 

activity in the dorsal striatum (Pu), which has been implicated in stimulus-response 

learning (Packard & Knowlton, 2002) and during responses to affective feedback in 

regards to valence and magnitude (Delgado, Locke, Stenger, & Fiez, 2003).  Our results 

for the feedback phase illustrate that, for all regions except for CUN and FG, activations 

were higher for the machine-agent group compared to the human-agent group.  This 

pattern of activation indicates that as participants in the machine-agent group became 
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more aware of the errors in advice, they may have placed more value on the outcome of 

their decisions as opposed to just processing of sensory information. 

There are a couple limitations that need to be considered with the interpretation of 

our results.  First, we looked at differences between good and bad advice with only 

misses as the type of error.  However, our previous research on false alarms (Goodyear et 

al., 2015, under review) provided substantiation for expanding on the effects of advice 

utilization with different error types and future studies could include both types of errors 

to compare the two directly.  In addition, participants received advice before they made 

their decisions in order to prevent cognitive anchoring, or the tendency to rely on the first 

piece of information acquired.  Future studies could investigate the effects of cognitive 

anchoring by implementing a task where participants receive advice after they make their 

decisions. 

In conclusion, our results have shown that advice utilization differs between 

humans and machines and those distinctions are contingent on miss errors.  Our findings 

expand on the existing literature by showing that misses degrade advice utilization, which 

is represented in a neural network involving salience detection and self-processing with 

perceptual integration.  As our society progresses in technological terms, having a greater 

conceptualization of how decision-making processes differ during interactions with 

humans and machines can provide pertinent information.  A better understanding of those 

interactions can ultimately allow for safety measures to prevent any mishaps that can 

occur during advice taking. 
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CHAPTER FOUR: GENERAL DISCUSSION 

This thesis has examined the impact of misses and false alarms during advice 

utilization from human and machine agents in a series of two studies.  The goal of this 

thesis was to provide a basis for understanding the complex neural and behavioral 

mechanisms involved during advice utilization, which can ultimately serve to develop a 

framework underlining the constituents of human and machine interactions.  In each 

study we demonstrated that there were unique behavioral responses and brain activation 

patterns associated with each error type.  The rest of Chapter Four will generally discuss 

the behavioral and brain activation differences across the studies along with future 

directions.    

4.1 Behavioral Results 
 

  In Chapter Two and Chapter Three we revealed that the no agent groups 

performed significantly better than the human and machine agent groups.  The results 

indicate that regardless of error, individuals who performed the task unassisted, and did 

not receive unreliable advice, performed better overall.  It has been postulated that false 

alarms cause individuals to ignore true alerts leading to a decline in performance, while 

misses create higher workloads from increased monitoring, which also affects 

performance (Sanchez, Rogers, Fisk, & Rovira, 2014).  We therefore expected in both 
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studies, that unreliable advice would decrease performance due to high error rates and 

that participants in the no agent groups would perform significantly better.  Despite the 

fact that participant performance in the no agent groups was higher than performance in 

both studies, the accuracy rate was still not ideal for any real world applications.  These 

results align with the findings by Wickens and Dixon (2007) that showed that automation 

reliability below 70% significantly decreased performance compared to performing the 

task unassisted.  Moreover, our results provide evidence that misses could have created 

higher vigilance in performance compared to false alarms, which may have fewer 

repercussions if ignored.   

 In Chapter Two we showed that advice utilization degraded more for the human-

agent group, while in Chapter Three advice utilization degraded more for the machine-

agent group.  We hypothesized that advice utilization would decrease more for the 

machine-agent group in both studies due to previous findings that showed that when 

advice is 70% reliable, participants agree more with expert humans and depend less on 

expert machines (Madhavan & Wiegmann, 2007).  However, the study by Madhavan and 

Wiegmann (2007) focused on the combination of false alarms and misses without 

separating the two error types and that might explain why we found differences in 

Chapter Two compared to Chapter Three.  Our results further indicate that accountability 

may be higher during interactions with a human when an error is a false alarm and when 

an error is a miss, accountability may be higher during interactions with a machine.  

Previous work has revealed that 70% reliable automation may disrupt preconceived 

notions associated with the perfect automation schema due to the effects of dispositional 
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factors associated with advisors (Madhavan & Wiegmann, 2007) and participant’s 

perceived accountability for their performance may be due to automation bias, or the 

tendency toward usage of, or reliance on, automation without actively seeking or 

processing information (Mosier et al., 1998).  Our results reflect a disruption in the 

perfect automation schema, or biases associated with automation when the error was a 

miss, which could be due to the costly consequences of a miss error. 

 For reliability, we revealed in Chapter Two that the human agent’s pre-reliability 

was significantly higher than the machine agent’s pre-reliability and the reliability ratings 

significantly decreased pre- to post-experiment for the human-agent group.  Furthermore, 

the human agent’s perceived reliability was significantly higher than the actual reliability 

of the agent.  These results suggest that expectations of reliable advice were higher for 

the human-agent group compared to the machine-agent group, which ultimately led to a 

behavioral adjustment in advice utilization over time.  In comparison, for Chapter Three, 

the reliability ratings did not differ between the agent groups, but the perceived reliability 

ratings for both the human agent and machine agent were significantly higher than the 

actual reliability, showing that initial expectations of reliable advice were high for both 

groups.  Initial expectations of reliable advice, as seen during the comparison of the 

perceived reliability to the actual reliability of each agent, can lead to a decline in 

dependence on an agent and miscalibration of an agent’s reliability (Madhavan & 

Wiegmann, 2007).  The reliability ratings were initially higher than the actual reliability 

for the human agent in Chapter Two and for both groups in Chapter Three, indicating 

high expectations of reliable advice.  However, upon observation of the errors (40%) 



83 
 

generated by the agents, the participant’s advice utilization degraded rapidly.  Moreover, 

in Chapter Two, the machine agent’s perceived pre-reliability ratings were not 

significantly different from the actual reliability of the agent, showing that initial 

expectations of reliability were not high and thus participants may not have needed to 

recalibrate their expectations as indicated by less degradation of advice utilization. 

In Chapter Two, we demonstrated that trust significantly decreased for the human 

agent, however in Chapter Three, trust decreased for both groups.  In Chapter Two, 

advice utilization decreased more for the human-agent group compared to the machine-

agent group, which was also reflected by the change in trust ratings only for the human-

agent group.  Similarly, in Chapter Three, advice utilization decreased for both groups, 

which was also reflected in the change in trust ratings for both groups.  It has been 

suggested that user attitudes such as trust may affect how individuals decide to use 

automation (Lee & See, 2004).  For example, a study showed that human experts were 

trusted more than machine experts (Madhavan & Wiegmann, 2007) which indicates that 

trust may be one of the components involved during advice utilization interactions for 

both humans and machines.   

Lastly, we looked at confidence ratings and for Chapter Two and Chapter Three 

we showed that confidence was rated higher on target bags compared to non-target bags.  

However, we showed no difference between the agent groups for confidence ratings.  

Previous research has indicated that self-confidence may affect decision biases, which 

may change performance accuracy (Madhavan & Gonzalez, 2006) and when trust 

exceeds self-confidence, individuals tend towards automation use (Lee & Moray, 1992).  
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Since our findings did not show differences between the agent groups, the differences in 

advice utilization between the human and machine agents cannot be explained by self-

confidence.   

For response times, we found that for both Chapter Two and Chapter Three 

responses were faster during run 2 compared to run 1 and for Chapter Two, responses 

were faster during good advice compared to bad advice.  These results indicate that as 

participants became more familiar with the task they were able to respond faster to the 

advice given.  Furthermore, participants in Chapter Two may have had more conflicting 

perceptual processes involved during false alarm trials as reflected by slower responses 

during bad advice.  Research on response times have demonstrated that false alarms may 

result in a delayed or no response to alerts (Breznitz, 2013) and our results are in 

accordance with those findings.   

Monetary deductions were used as incentives and as a way to create a risky 

environment for participants in order to help evaluate variables such as trust towards the 

human and machine agents.  In Chapter Two, we found that deductions were higher 

during bad advice compared to good advice; in Chapter Three we found that deductions 

were higher during run 1 compared to run 2.  The impact of errors on monetary 

deductions was revealed as participants made more costly errors as demonstrated in 

Chapter Two, while during Chapter Three, participants made less costly errors over time. 
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4.2 FMRI Results 
 

In Chapter Two, we revealed a network that involved brain regions associated 

with social evaluations (aPreC, PCC), while in Chapter Three there was a network 

engaged with visual processing of sensory information (LG).  As expected, the 

comparison of the studies show that there are distinct neural networks involved with false 

alarms compared to misses during advice utilization from human and machine agents.  

Our results are in line with the findings of Onnasch et al. (2014) and Breznitz (2013), that 

false alarms may cause operators to have delayed responses, or no response at all, while 

misses may change operator’s strategies during non-alarm periods causing a reallocation 

of attention.  In Chapter Two we revealed a brain network involved with social 

evaluations of the dispositional characteristics of the agents, while in Chapter Three there 

was a network involved with visual processing and error monitoring, as participants 

shifted their attention towards the task at hand.  Since false alarms are not necessarily 

detrimental, but more of a nuisance, participants may have had more time to evaluate 

human traits such as trust or agent effort leading to involvement of regions associated 

with social evaluations.  On the other hand, due to the catastrophic nature of misses, 

participants may have concentrated more on situational factors, such as task difficulty, 

which was reflected by recruitment of visual processing regions.  The comparisons 

between Chapter Two and Chapter Three during the decision phase provides evidence 

that there are separate perceptual processes involved with each error type, which has also 
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been demonstrated with changes in cortical activity during a contrast-detection task 

comparing misses to false alarms (Ress & Heeger, 2003). 

Interestingly, the feedback phase results demonstrated a similar pattern to that of 

the decision phase results for both studies, with areas involved with social evaluations 

(dmPFC) and processing of sensory information (FG, IPL).  The results indicate that 

there was a unique pattern of activity for brain regions involved during the feedback 

phase as participants were able to evaluate their own performance based on the advice 

given to them.  These findings are of particular importance because they provide a greater 

discernment of the underlying mechanisms involved during learning and behavioral 

adaptations to unreliable advice.  As with the decision phase, the feedback phase results 

for Chapter Two and Chapter Three provides evidence that there may be distinct 

processes involved with perceptions of different error types.   

4.3 Future Directions and Conclusions 
 

The findings of Chapter Two and Chapter Three provide insight into the 

differences between error types during decision-making, which ultimately serves to 

optimize our understanding of how individuals choose to utilize or discount advice from 

different agents.  Future studies could elaborate on our findings by implementing a 

paradigm with agent reliability above the 70% threshold to investigate the behavioral 

responses and the underlying brain network involved with reliable advice.  Furthermore, 

future studies could expand on our results by implementing a paradigm with no feedback, 

or positive and negative feedback, mirroring human etiquette.  Additionally, we aimed to 
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discern the effective connectivity network associated with advice utilization with Granger 

Causality Analysis.  Granger Causality Analysis was used for our studies since it is 

particularly advantageous for exploratory analysis and for assessing directional 

influences of selected ROIs without an a priori hypothesis.  To further validate our 

findings, future studies could implement methods such as dynamic causal modeling 

(DCM) with a hypothesized network that is predefined to model the effective 

connectivity results that we discovered. 

In conclusion, this thesis has aimed to uncover the factors that influence advice 

utilization from humans and machines by assessing the behavioral responses and neural 

mechanisms associated with those interactions.  The overall objective of this research 

was to provide a foundation that will facilitate the development of a cohesive model 

explaining the behavioral, cognitive, and neural basis of advice utilization during human-

automation interactions by bridging the gap between human factors and cognitive 

neuroscience research.  The findings of this thesis are especially salient for the future as 

technological progressions continue to increase exponentially and the shift to automation 

use becomes inevitable.   
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APPENDIX A: FALSE ALARMS 

A.1 Experimental Setup 
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A.1. a) Example Stimuli Used for the X-ray Luggage-screening Task.  During the 

normative rating task, participants rated 320 X-ray luggage images (120 target: 60 high 

clutter, 60 low clutter; 200 non-target: 100 high clutter, 100 low clutter) that contained 

everyday objects (hair-dryers, clothes, etc.) and a possible target present (5 different 

knives, with one possible per image) based on clutter, difficulty and confidence in finding 

the knife.  b) Decision Matrix.  Breakdown for each advice type given during the 

experiment.   c) X-ray Luggage-Screening Task.  During each trial, participants would 

first see a fixation cross, advice from one of the agents to “search” or “clear” the bag, an 

image of the X-ray luggage bag, a decision to accept or reject the advice of the agent to 

“search” or “clear” the bag, fixation crosses, feedback indicating if their decision was 

correct or incorrect and lastly, fixation crosses.     

 

 

c) 
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A.2 Human and Machine Agent Descriptions 
 

Human: Mr. Steve Williams 

Mr. Steve Williams (Human) is a trained luggage screener, with extensive knowledge in 

identifying illegal imports inside airline luggage.  He has served the past 5 years in some 

of the busiest airports in the United States working at security checkpoints.  He also 

specializes in antiterrorism and airport security and possesses extensive knowledge about 

the types of modern weapons and explosives commonly smuggled aboard aircraft.  Mr. 

Williams has recently been appointed by the Transportation Security Administration 

(TSA) to oversee security operations at Dulles International Airport, which is one of the 

largest airports in the world. 

 

Machine: Automated Luggage Inspector 

The automated luggage inspector (Machine) is a diagnostic aid that has been programmed 

to identify hidden contraband in airline luggage. This Machine is based upon the 

technology traditionally used at major airport security checkpoints over the past 5 years.  

Its algorithms are sophisticated and are based on judgments using sensors different from 

those of the human visual system and can detect modern weapons and explosives 

smuggled aboard aircrafts.  The automated luggage detector has recently been employed 

by the Transportation Security Administration (TSA) to enhance security operations at 

Dulles International Airport, which is one of the largest airports in the world.  
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A.3 Brain Regions Associated with the Main Effect of Advice  
Brain regions showing significant activation clusters associated during the decision 

(minimum cluster of 21) and feedback (minimum cluster of 36) phases (α < .05, cluster-

level threshold corrected).  For the decision phase, a significant activation cluster was 

found in the right orbitofrontal cortex (superior frontal gyrus, BA 11).  For the feedback 

phase, significant activation clusters were found in right middle frontal gyrus (BA 6/8), 

right superior parietal lobule (BA 7), right putamen, right posterior cingulate cortex (BA 

30), right head of the caudate, left orbitofrontal cortex (medial frontal gyrus, BA 11), left 

precentral gyrus (BA 4), left subcallosal gyrus (BA 34), left middle frontal gyrus (BA 6), 

left dorsolateral prefrontal cortex (middle frontal gyrus, BA 46) and left inferior frontal 

gyrus (BA 47). 

 
          

  F (1,22) value Cluster Size (mm3 )          x y z 
Decision Phase 
Advice 

     Right orbitofrontal cortex 13.14 673 18 45 -18 
Feedback Phase 
Advice 

     Right middle frontal gyrus 16.47 4848 36 18 57 
Right superior parietal lobule 13.05 2010 21 -45 57 
Right putamen 12.18 1867 33 -3 3 
Right posterior cingulate cortex 12.47 4937 6 -51 15 
Right head of the caudate 14.27 1968 9 12 -9 
Left orbitofrontal cortex 12.30 3348 -9 48 -15 
Left precentral gyrus 15.29 4486 -24 -24 63 
Left subcallosal gyrus  13.08 2204 -12 3 -12 
Left middle frontal gyrus 12.05 2553 -33 25 60 
Left dorsolateral prefrontal cortex 15.05 2228 -42 36 12 
Left inferior frontal gyrus 15.75 1778 -36 27 -6 
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A.4 Schematic Illustrating the Effective Connectivity Analysis Pipeline 
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A.5 Behavioral Results for Decision Phase  
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A.5. (M ± SEM). a) Response Times.  Response times were faster overall from run 1 to 

run 2 and during good advice compared to bad advice.  b) Monetary Deductions.  

Monetary deductions were higher overall for bad advice compared to good advice. 

 

A.6 Results for the Confidence Ratings  
 

 

A.6. (M ± SEM). Confidence ratings were significantly lower during non-target bags 

compared to target bags. 
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A.7 Descriptive Statistics for Psychological Control Measures   
No significant differences were found between the human- and machine-agent  
groups (M ± SD). 

    Category Human Machine Statistics 

        Demographics               df = 22 

Age 20.33 ± 2.55 20.42 ± 2.75 t = -0.08, p = .939 
Education 14.08 ± 2.35 14.13 ± 1.65 t = -0.50, p = .960 
Handedness 96.53 ± 8.31 92.49 ± 6.77 t = 1.31, p = .205 
Gender (male/female) 7/5 6/6 χ2 = 0.17, p = .683 

  Complacency-Potential Rating Scale (CPS) 

Confidence 15.17 ± 2.13 14.50 ± 1.78 t = 0.83, p = .414 
Reliance 9.50 ± 1.68 10.33 ± 1.78 t = -1.18, p = .250 
Trust 8.58 ± 2.28 8.92 ± 1.44 t = -0.43, p = .672 
Safety 6.25 ± 1.71 6.75 ± 2.09 t = -0.64, p = .529 

  Interpersonal Reactivity Index (IRI) 

Perspective Taking 28.25 ± 2.30 28.33 ± 3.37 t = -0.71, p = .944 
Fantasy Scale 19.33 ± 2.84 20.25 ± 2.80 t = -0.80, p = .434 
Empathic Concern 21.67 ± 5.07 22.33 ± 2.39 t = -0.41, p = .684 
Personal Distress  20.75 ± 2.80 20.67 ± 2.96 t = 0.71, p = .944 

  NEO Five-Factor Inventory (NEO-FFI) 
Neuroticism 31.33 ± 4.89 32.67 ± 3.94 t = -0.74, p = .470 
Extraversion 41.92 ± 3.37 40.42 ± 3.26 t = 1.11, p = .280 
Openness 37.75 ± 3.60 36.92 ± 4.72 t = 0.49, p = .631 
Agreeableness 38.67 ± 4.05 41.00 ± 4.51 t = -1.33, p = .196 
Conscientiousness 41.50 ± 3.56 42.17 ± 3.49 t = -0.46, p = .647 

  National Technology Readiness Survey (NTRS) 

Optimism 37.58 ± 4.87 39.08 ± 4.54 t = -0.78, p = .444 
Innovativeness 21.75 ± 4.20 24.83 ± 4.24 t = -1.79, p = .087 
Discomfort 31.00 ± 5.21 31.50 ± 5.02 t = -0.24, p = .813 
Insecurity 30.33 ± 5.68 29.08 ± 3.85 t = 0.63, p = .534 

  Propensity to Trust (PTT) 

Trust towards Automation 19.83 ± 2.21 20.42 ± 2.07 t = -0.67, p = .511 
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APPENDIX B: MISSES 

B.1 Experimental Setup 
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B.1. a) X-ray Luggage-Screening Task.  During each trial, participants would first see a 

fixation cross, advice from one of the agents to “search” or “clear” the bag, an image of 

the X-ray luggage bag, a decision to accept or reject the advice of the agent to “search” or 

“clear” the bag, fixation crosses, feedback indicating if their decision was correct or 

incorrect and lastly, fixation crosses.  b) Decision Matrix.  Breakdown for each advice 

type (good, bad) given during the experiment.     

B.2 Effective Connectivity Analysis 
 

Granger causality is based on a concept of causality that can be used to predict directional 

influences among chosen brain regions through mulitvariate effective connectivity 

modeling of ROI (region of interest) time courses (Deshpande, LaConte, James, Peltier, 

& Hu, 2009; Friston, Harrison, & Penny, 2003; Granger, 1969; Preusse, van der Meer, 

Deshpande, Krueger, & Wartenburger, 2011).  The model examines the relationship of 

variables in time, such that given two variables, a and b, if past values of a better predict 

the present value of b, then as a function of earlier time points, causality between the 

variables can be inferred (Goodyear et al., 2015, under review; Hampstead et al., 2011; 

Krueger, Landgraf, van der Meer, Deshpande, & Hu, 2011; Roebroeck, Formisano, & 

Goebel, 2005).  Granger causality analysis is a data-driven approach and thus is 

advantageous for application of effective connectivity since there is no requirement for 

pre-specified connectivity models like dynamic causal modeling (Deshpande & Hu, 

2012; Deshpande et al., 2009; Deshpande, Sathian, & Hu, 2010).  
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B.3 Schematic Illustrating the Effective Connectivity Analysis Pipeline. 
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B.3. The mean time series from the ROIs from the decision and feedback phases were 

extracted, then blind hemodynamic deconvolution was performed using a Cubature 

Kalman Filter to reveal the underlying latent neural time series.  Next, these time series 

were applied to a dynamic Multivariate Autoregressive Model based on a Granger 

causality framework.  Granger connectivity path weights were populated into two 

samples and t-tests were performed for each effective connectivity path to reveal those 

that were significantly different between the agent groups. 
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B.4 Descriptive Statistics for Psychological Control Measures   
No significant differences were found between the human- and machine-agent  
groups (M ± SD). 

    Category Human Machine Statistics 
  Demographics        df = 22 

Age 22.58 ± 2.39 21.92 ± 2.43 t = 0.68, p = .505 
Education 16.25 ± 1.71 16.08 ± 2.68 t = 0.18, p = .858 
Gender (male/female) 7/5 7/5 χ2(1) = 0.67, p = .414 

  Complacency-Potential Rating Scale (CPS; feelings 
toward automation) 

Confidence 16.17 ± 2.41 15.42 ± 1.78 t = 0.89, p = .395 
Reliance 10.50 ± 1.51 10.08 ± 1.44 t = 0.69, p = .496 
Trust 10.17 ± 1.95 8.67 ± 1.92 t = 1.90, p = .071 
Safety 6.50 ± 1.68 6.00 ± 1.35 t = 0.80, p = .430 

  Interpersonal Reactivity Index (IRI; separate facet of 
empathy) 

Perspective Taking 27.83 ± 2.13 26.58 ± 3.29 t = 1.11, p = .281 
Fantasy Scale 19.00 ± 3.72 20.58 ± 1.51 t = -1.37, p = .185 
Empathic Concern 22.83 ± 2.25 22.92 ± 2.19 t = -0.09, p = .928 
Personal Distress  19.92 ± 3.06 19.33 ± 2.27 t = 0.53, p = .601 

  NEO Five-Factor Inventory (NEO-FFI; personality 
styles) 

Neuroticism 31.83 ± 3.56 33.50 ± 3.83 t = -1.10, p = .281 
Extraversion 41.25 ± 4.69 40.83 ± 3.71 t = 0.24, p = .812 
Openness 36.50 ± 4.44 35.83 ± 2.86 t = 0.43, p = .666 
Agreeableness 38.17 ± 4.45 37.50 ± 4.98 t = 0.35, p = .733 
Conscientiousness 43.25 ± 3.08 42.17 ± 4.32 t = 0.71, p = .487 

  National Technology Readiness Survey (NTRS; 
embracing new technologies) 

Optimism 38.50 ± 4.72 37.75 ± 5.97 t = 0.34, p = .736 
Innovativeness 20.92 ± 5.62 22.58 ± 4.10 t = -0.83, p = .415 
Discomfort 28.25 ± 5.64 30.50 ± 4.85 t = -1.05, p = .306 
Insecurity 28.67 ± 5.09 28.50 ± 3.85 t = 0.09, p = .929 
  Propensity to Trust (PTT; trust towards automation) 
Trust towards Automation 21.17 ± 2.04 21.33 ± 2.10 t = -0.20, p = .846 
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B.5 Results for the Decision Phase  

 

B.5. (M ± SEM).  a) Response Times.  Response times were faster overall during run 2 

compared to run 1.  b) Monetary Deductions.  Monetary deductions were higher during 

run 1 compared to run 2.  GA = good advice; BA = bad advice. 
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B.6 Confidence Ratings Results  
 

 
B.6. (M ± SEM). Confidence ratings were significantly lower during non-target bags 

compared to target bags. 
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