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Abstract

A TWO-FLUID MODEL FOR PARTICLE ACCELERATION AND DYNAMICS IN BLACK-
HOLE ACCRETION FLOWS
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Hot, tenuous Advection-Dominated Accretion Flows (ADAFs) are ideal sites for the

Fermi acceleration of relativistic particles at standing shock waves in the accretion disk.

Previous work has demonstrated that the shock-acceleration process can be efficient enough

to power the observed, strong outflows in radio-loud active galaxies such as M87. However,

the dynamical effect (back-reaction) on the flow, due to the pressure of the relativistic

particles, has not been previously considered, as this effect can have a significant influence

on the disk structure. We reexamine the problem by creating a new two-fluid model that

includes the dynamical effect of the relativistic particle pressure, as well as the background

(thermal) gas pressure. The new model is analogous to the incorporation of the cosmic-

ray pressure in the two-fluid model of cosmic-ray-modified supernova shock waves. We

derive a new set of shock jump conditions and obtain dynamical solutions that describe

the structure of the disk, the discontinuous shock, and the outflow. From this, we show

that smooth (shock-free) global flows are impossible when relativistic particle diffusion is

included in the dynamical model.



Chapter 1: Introduction

When it comes to science, we often seek to explore the unknown, whether it be on Earth

or among the stars. In Astronomy, we seek to understand the Universe by observing all the

celestial bodies and phenomena that we can. No matter the field, often the goal/pursuit

is the same: the hope that by obtaining a better grasp of the cosmos, perhaps we gain a

better perspective of our own existence.

In the case of black holes, it is generally accepted that anything (e.g. matter) in prox-

imity to its gravitational field is immediately sucked in; a one-stop destination. But we

know that’s not the complete picture. For one thing, matter is not immediately sucked in.

Extensive observations show that matter experiences an effect similar to being trapped in

a whirlpool, or a marble going down a drain. The circular area surrounding the center of a

black hole is known as the accretion disk, in which matter within this disk spirals towards

the event horizon. That should be the end of it, but another curiosity emerges as well. For

certain black-hole systems, a detectable outflow-burst of relativistic particles (which looks

similar to an outflow from a jet engine) appears to emit from the disk itself, in a bipolar

formation from a region just outside the event horizon. An example of this can be seen in an

artistic expression for Messier 87 (M87, also known as Virgo A or NGC 4486) given in Figure

1.1. These observations have boggled astronomers and physicists alike, because it brings

into question whether our perceptions of black holes are correct. If nothing can escape

from being sucked into a black hole, then why are we seeing these outflows? Even recently,

Professor Stephen Hawking postulated a work-around to the information-loss-paradox by

suggesting that ‘information’ can indeed escape the event horizon itself, but it’s more of a

mirrored-jumbled version of the original information and practically useless (Feltman 2015).

Determining how anything can escape from a black hole’s gravity has been an ongoing

study for many years, and has evolved into a broad subject. While the question has been
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Figure 1.1: Radio-loud galaxy M87 (also known as NGC 4486). This is an
artist rendition of the accretion disk showing the bipolar jetted outflows, found at:
http://i.space.com/images/i/000/011/929/original/black-hole-jet.jpg?1315414855.
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addressed in one form or another, this work continues the trend focusing on one topic,

specifically the formation of the jets themselves, while at the same time reassessing the

roots of its theoretical framework. It should be noted to the reader that this chapter serves

to provide a generalized overview of the field, without delving too much into the intricate

details.

1.1 Active Galactic Nuclei

1.1.1 Overview

Active galactic nuclei (AGNs) have been studied for several decades using a wide range of

multi-wavelength observational data. AGNs are galaxies containing supermassive (millions

to billions of M�) black holes at their centers (or nuclei). They are typically known as

quasars, blazars, and Seyfert galaxies. A point of interest are the bipolar, bulk relativistic

outflows (or jets) commonly seen from some AGNs (see Figure 1.1 for example). These

jets are matter outflows propagating away at relativistic speeds; these jets are believed to

contain high-energy relativistic particles. Depending on whether or not an AGN exhibits a

strong jet will classify it in one of two categories, the ‘radio loud’ or the ‘radio quiet.’ And in

each category, AGNs are distinguished by their emission properties. This radiation includes

X-rays, γ-rays, ultraviolet and radio waves, where specific AGNs are typically strong in one,

and weak in others.

1.1.2 Mass and Luminosity

The total radiation luminosity, L, generated near a black hole is proportional with its mass,

M , and the accretion rate, Ṁ . Astrophysical black-hole sources are measured in units of

solar mass (M�), and are categorized i.e. as stellar-mass (∼ 3− 10 M�), which have been

detected in our own galaxy, as well as intermediate-mass (∼ 102 − 104 M�), which have

been observed in nearby galaxies. Larger black holes are found at the center of their host

galaxy. These can range from massive (∼ 105 − 107 M�) black holes in the center of our
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galaxy, to supermassive (∼ 108 − 109 M�) black holes in more distant galaxies. Because

of its mass, a supermassive black hole (SMBH) at the center of an active galaxy can be

brighter than the combined luminosities of all the stars in that galaxy. The total luminosity

from a SMBH typically exceeds ∼ 1044 ergs s−1 and can reach ∼ 1049 ergs s−1. To put

that into perspective, our own Sun has a luminosity of L� = 3.8 × 1033 erg/s, and a large

spiral galaxy (like the Milky Way) has a stellar luminosity ∼ 1045 ergs s−1. The critical

quantity to be obtained from this is the ratio of the accretion rate and the black hole mass

(Ṁ/M), which is the determining factor in the observed radiation and outflow power that’s

discussed later on.

1.2 Observations of AGNs

1.2.1 General History

Observations of AGNs started in the early twentieth century and up to the mid-1950’s, where

Seyfert galaxies were identified as the first class due to their similar emission spectra on

the basis of high central surface brightness, indicative of stellar-appearing cores. They also

display strong high-ionization emission lines. With the application of radio observatories in

the late 1950’s, astronomers were able to observe galaxies that had strong radio emission,

the first an associated strong optical stellar source being 3C-48, with a magnitude 16 times

greater than the Sun (Matthews and Sandage 1963). The observed emission spectra were

confusing at the time until the sixties when Maarten Schmidt (1963) realized that these

quasi-stellar radio sources (or quasars) were point-like radio emitters, whose optical coun-

terparts displayed unusual spectra with prominent emission lines were redshifted systems.

The large redshifts indicated great distances, according to Hubble’s Law, and therefore the

redshifts implied that quasars are extremely luminous, commonly producing 1046 erg s−1.

Further sensitive imaging of the nebulosities, which often were seen to surround quasars,

indicated that they are the nuclei of galaxies. As such, quasars were identified to be the

higher-luminosity counterparts of the compact nuclei of Seyfert galaxies.
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1.2.2 Radio-loud vs. Radio-quiet

Quasi-Stellar Objects (QSOs) are denoted as either ‘radio-quiet’ or ‘radio-loud’. Quasars are

radio-loud QSOs, and comprise roughly ∼ 5− 10% of the QSO population. The two classes

of QSOs are distinguished by the value of the radio-optical flux ratio Rr-o (Kellermann et

al. 1989). Radio-loud QSOs have Rr-o ≥ 10, while radio-quiet QSOs have 0.1 < Rr-o < 1.

Radio galaxies are described broadly in terms of being ‘extended’ (or spatially resolved)

and ‘compact’ (or spatially unresolved), and each type has different spectral characteris-

tics. Generally speaking, radio galaxies have been observed to contain two ‘lobes’ of radio

emission symmetrically located on either side of the central core, along with additional

synchrotron radiation (usually in the X-ray range) from relativistic electrons that form jets

connecting the core with the lobes. Compact sources are typically found to be optically

thick (more opaque) than extended sources, which are optically thin (less opaque). This

means that compact sources (which are core-dominated) have stronger X-ray emissions than

extended sources, which are lobe-dominated and have higher radio emissions. For the ex-

tended radio structures, they are further divided into classes FR I and FR II, where FR

I sources are considered ‘limb-darkened’, meaning their surface luminosity is brightest in

the center while decreasing towards the edges, thus weaker radio emissions. Whereas FR II

sources are considered ‘limb-brightened’, meaning their surface luminosity remains bright

throughout the extended lobes. M87, as well as Cygnus A (see Figure 1.2), are examples of

FR II, radio-loud quasars (with Cygnus A having extended emission). In this dissertation

we shall look at two specific AGNs (M87 and Sgr A* ), whose radio, X-ray, and optical

observations are given in Figures 1.3, 1.4 and 1.5, respectively. Additionally, the astrophys-

ical properties for both sources are given in Table 1.1. What’s also interesting about the

distinction between the two classes is how they relate to the observations pertaining to the

jets (see § 1.2.5).
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Figure 1.2: Radio galaxy Cygnus A, where we see the radio jet moving outward from
the central engine to and the lobes. The red areas are indicative of regions with bright
radio emission, while the blue regions show fainter emission. This image was taken from:
http://images.nrao.edu/260.
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Figure 1.3: Radio emission output of (left-panel) M87 showing
the central core and the two radio lobes, taken by the VLA ra-
dio telescope: http://images.nrao.edu/AGN/Radio Galaxies/57, and
(right-panel) of Sgr A* showing the central core, taken from:
http://www.eventhorizontelescope.org/science/images/GalCntr lg.jpg. Both images
indicate the scaling factors observed for each source.
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Figure 1.4: X-ray images of (left-panel) M87 taken from:
https://www.spacetelescope.org/images/heic0815j/, and (right-panel) of Sgr A* taken
from: https://universe-review.ca/F05-galaxy10.htm. Both images indicate the scaling
factors observed for each source.
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Figure 1.5: Optical images of (left-panel) M87, taken from:
http://phys.org/news/2014-04-entire-star-cluster-thrown-galaxy.html, and of (right-
panel) Sgr A* taken from: https://en.wikipedia.org/wiki/Sagittarius A∗. Both images
indicate the scaling factors observed for each source.
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Table 1.1: M87 and Sgr A* (Galactic Center) Properties.

M87 Sgr A*

X-ray L (ergs s−1): 7× 1040 2× 1035

Radio L (ergs s−1): 5× 1041 1× 1036

Distance: 16.4 Mpc 8.0 kpc
Mass (M�): 3.0× 109 2.6× 106

Outflow Rate (M� yr−1): 0.13 8.8× 10−7

Ljet (ergs s−1): 5.5× 1043 5.0× 1038

1.2.3 Observational Methods for Determining the Mass of AGNs

The consensus is that it’s likely that many normal local galaxies (not just active ones)

harbor supermassive black holes. Although when in doubt, there are two general lines of

argument used to validate the existence of black holes in AGNs, which are discussed overtly

by several sources (e.g. Peterson 1997; Dermer & Menon 2009; Abramowicz et al. 1999).

We need to measure the total mass within a given volume, and argue that nothing besides

a black hole can be that dense. This is done by using Kepler’s laws to measure the stellar

or gaseous velocities in the vicinity of the black hole.

The first method is to estimate the central mass by tracking the detailed orbital motion

of stars in the center of the AGN. However this cannot be done in distant galaxies, but it

has been applied to determine the mass of the central black hole in the Milky Way. The

second method focuses on the distortion that appears in the emission line profiles due to

the influence of strong gravity, resulting from the presence of a black hole. While the first

method is considered the most reliable, both of these arguments led to the classifications of

M87 and Sgr A* as they are known today. Though it should be noted that another technique

known as reverberation mapping is used to estimate the volume and density structure of

the accreting gas from variability data (via the light travel time arguments as a result of

the changes in the central UV flux) and mass from the luminosity. It’s a way to study the

structure of the central engine and the hot corona overlaying it, however it is not considered

a means for demonstrating that the central object is a black hole.
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1.2.4 Observing M87 and Sgr A*

The radio galaxy known as M87 is an AGN whose black hole presence was revealed by

measuring the velocity and thermal properties of the matter emitting close to its central

mass. This dates back to the ground-based observations made in the late 70’s, when Sargent

et al. (1978) showed that M87’s stellar velocity dispersion increases to 350 km s−1 in the

innermost 1.11” from the nucleus (Kormendy & Richstone 1995). Ford et al. (1994) was

able to observe this galaxy using the Planetary Camera, and likewise Harms et al (1994)

with the Faint Object Spectrograph onboard the Hubble Space Telescope (hereafter HST).

The images showed evidence of the presence of a disk-like structure of ionized gas in the

innermost region (a few arc seconds). What was provided from the spectroscopy was a

measure of the velocity of the gas at an angular distance of 0.25” from the nucleus, which

corresponds to ∼ 20 parsecs, or ∼ 6 × 1019 cm. This determines a velocity difference of

∼ 920 km s−1 as the galaxy recedes from Earth on one side, and approaches it on the

other, in the galaxy’s reference frame. This implies that the central object has a mass of

∼ 3× 109 M�.

In the case of M87, the Event Horizon Telescope has been used to detect emission

from the vicinity of the event horizon itself (Broderick et al. 2015). The fact that the

result spectra lie in the infrared-optical range, rather than in the X-ray range, implies the

presence of relatively low temperature matter, which is expected near the event horizon. In

the case of MCG-6-30-15, evidence for the presence of a supermassive black hole is provided

via the Doppler interpretation of the observed double-peaked X-ray spectra, which indicate

simultaneous, extreme blueshifts and redshifts, as shown in Figure 1.6. No other object,

other than a black hole, possesses a mass concentration that can explain these observations.

It should be noted that M87 is considered a possible blazar, and as such has served to

be the closest evidence that blazars likewise contain black holes at their centers. This AGN

is also considered a variable black-hole on a timescale of weeks (Broderick et al. 2011),

which can be seen in the form of bright knots propagating away from the radio core (see
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Figure 1.11b of the jet observed from the Very Long Baseline Interferometry, or VLBI).

Figure 1.7 illustrates its multi-wavelength energy spectrum, which shows a double-hump

in the lower part of the spectrum. The low-frequency hump is believed indicative of syn-

chrotron radiation, while the high-frequency hump results from inverse-Compton scattering

(see § 1.5.3).

There have been similar spectroscopy observations done with the HST that revealed high

stellar velocities in the central regions of other normal galaxies, which show no evidence

of an active nucleus (e.g. Ford et al. 1998; Madejski 1999). The presence of massive

(108− 109 M�) black holes in the center of these galaxies is the only thing that can explain

how such high velocities can exist in their innermost regions. For instance, the infrared data

and velocity measurements gathered for our Milky Way galaxy (or Sgr A* ) has revealed

its center to contain a ‘modest’ nuclear black hole with a mass of ∼ 3 × 106 M�. For Sgr

A* the velocity detection technique is direct imaging of the relativistic star velocity orbital

motion, which can be seen in Figure 1.8. This data was obtained from the ground (cf.

Eckart & Genzel 1997) at a much higher resolution than the data gathered from the HST

for external galaxies. Hence, Sgr A* is considered a supermassive black hole containing

a ‘nearly quiescent’ active galactic center, so it’s considered a low-level AGN compared

to M87. In both cases, the technique reveals relativistic orbital motion, implying a very

compact mass; thus a central black hole in both cases. These and other observations led to

the implication that supermassive black holes are rather common and may inhabit as much

as half of all galaxies, some may well be the quasars that were observed in the past (e.g.

Ford et al. 1998, Ho et al. 1998). Figure 1.9 shows the multi-wavelength energy spectrum

for Sgr A* . It should be noted that the energy spectra for both M87 and Sgr A* shows

the general pattern that the luminosity for supermassive AGNs carries observations across

the whole energy spectrum.
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Figure 1.6: AGN iron line profile of MCG-6-30-15 observed by the ASCA
satellite (left-panel), taken from: http://science.nasa.gov/science−news/science-at-
nasa/2001/ast23oct 1/, in reference to an artistic representation of an AGN (right-panel)
taken from: https://www.uni-goettingen.de/en/216897.html. The yellow arrow around the
AGN indicates direction of rotation, in which the right-side is observed from Earth, and
the left-side is moving away from Earth. Hence the first peak signifies extreme redshift
(denoted with a red arrow accordingly), while the second peak represents extreme blueshift
and is given by a blue arrow. Extreme redshift implies an orbital velocity of c/3, evidence
for a black hole in the center of the galaxy.
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Figure 1.7: Taken from Abdo et al. (2009). SED of M87. The red are (in order) the
LAT spectrum, the 2009 VLBA, and Chandra X-ray measurements of the core. The light
brown represent (in order) the 2004 TeV spectrum and the X-ray limits worked out in the
paper. The black circles are measurements of the compact core taken from VLA (Biretta
et al. 1991), IRAM (Despringre et al. 1996), SMA (Tan et al. 2008), Spitzer (Shi et al.
2007), Gemini (Perlman et al. 2001), HST optical/UV (Sparks et al. 1996), and Chandra
(Marshall et al. 2002). The blue line is a model fit outlined in the paper.
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Figure 1.8: Evidence for a black hole at the Galactic center, taken from:
http://www.galacticcenter.astro.ucla.edu/blackhole.html. Stellar orbits are within the cen-
tral arc second of our Galaxy. The orbits imply the presence of a compact mass, in which
the central mass is non-stellar, thus implying the presence of a black hole.
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Figure 1.9: Taken from Regis & Ullio (2008). Multiwavelength spectrum of Sgr A* , see
paper for full details.
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1.2.5 Relativistic Jets

Which brings us to the point of interest in this thesis: the relativistic jets, which have been

observed in many radio galaxies (in addition to the compact and extended components) and

have been reviewed extensively (see Frank et al. 2002; Peterson 1997; Carroll & Ostlie 1995;

Abramowicz et al. 1999; Novikov & Thorne 1973; Rees 1984; Ford et al. 1994). Typically

seen in FR II AGNs like M87 (Figure 1.10a) and Sgr A* (Figure 1.10b), the jets themselves

are considered proton-electron beams; streams of hot, highly collimated, magnetized gas

that appear narrow, fast and straight, and seen ejected from the compact core (see Figure

1.11), extending out to the outer lobe at a few kpc. Figure 1.12 shows the short-timescale

variability of the VLBI images of blob variability in M87, indicating that the jet is not a

continuous plasma beam, but consists of blobs of various sizes. It should be noted that the

jets can also be considered electron-positron or neutron beams, as long as they are charge

neutral. The physical observation of the jet was actually first mentioned by Curtis (1918)

while observing M87, who described it as “a curious straight ray [that] lies in a gap in

the nebulosity....apparently connected with the nucleus by a thin line of matter....[which] is

brightest at its inner end.” Though he didn’t describe it as a ‘jet’, the term itself did not

describe it until it was coined by Baade & Minkowski (1954).

Though jets sometimes appear stronger on one side of the radio source and fainter on the

other (also known as the counter-jet, if any), this is usually attributed to Doppler beaming,

which refers to the perspective of the observer and the instrument in question. Hence,

it’s generally believed that the jets are bipolar, moving away in opposite directions from

compact source. However, the direction in which the jet is moving can be affected by either

the spin axis of the black hole or the angular momentum of the accretion disk. Since the

jets have radiation from the radio (which the VLBI can study) to the γ-ray spectrum, they

are considered a secondary source for the observed emission spectrum (with the compact

torus being the primary source).

Over the course of the last century, several theoretical models have emerged to explain
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Figure 1.10: (left-panel) Radio-loud galaxy M87 (also known as NGC 4486),
taken from the Hubble Space Telescope. Pictured is the observed jetted out-
flow, found at: http://hubblesite.org/newscenter/archive/releases/2000/20/image/a/.
(right-panel) A closer examination of the core of Sgr A* with the jet ema-
nating from the base of the disk, taken from the Chandra X-ray observatory:
http://chandra.harvard.edu/photo/2003/0203long/0203long xray jet label.jpg. Both im-
ages indicate the scaling factors observed for each source.
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Figure 1.11: Radio emission output of M87 showing a closer examination of
the core with the jet emanating from the base of the disk, taken from
http://images.nrao.edu/AGN/Radio Galaxies/270.
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(a) (b)

Figure 1.12: (a) Sequence of Hubble images showing the short-timescale variability of the
VLBI images of blob variability in M87, taken between 1994 and 1998 with the Faint Object
Camera on the Hubble Space Telescope (http://www.stsci.edu/ftp/science/m87/m87.html).
The slanting lines track the moving features and correspond to a broader image, with the
speeds given in units of c. (b) Still image from a movie of the M87 jet at 43 GHz with the
VLBA, taken from: http://www.aoc.nrao.edu/ cwalker/M87/.

how the jets are produced. However, it should be clear to the reader that these remain

broad and ambiguous because at the present, the mechanism responsible for this is yet to

be understood. This is primarily due to the fact that observations are still limited to the

low resolution of astronomical instruments, thus it makes it extremely difficult to justify

(or verify) the logistics behind one model over another. Though, extensive research in this

field has at least produced a general consensus. In the next section, we now transcend from

the observations to theoretical backbone of black hole accretion.

1.3 Earlier Model Approaches

1.3.1 Rotating vs. Stationary Black Holes

The primary distinction in all of the theoretical models starts at the core, specifically the

black hole, and whether it’s spinning (rotating) or not (stationary). Rotating black holes are

subject to the laws that govern General Relativity (GR), specifically Einstein’s equations,
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and are commonly referred to as Kerr black holes, named after the physicist who solved the

associated Einstein equations (see Kerr 1963). What distinguishes a Kerr black hole from

a stationary black hole is that it contains an ergosphere (not just an event horizon) where

space is distorted due to the black hole rotation, yet matter and energy can escape from

this region via Penrose processes (function of the black hole’s rotation), and the angular

momentum is axially-symmetric (dependent on the radius and polar coordinate). It is said

that the region outside the ergosphere is the stationary (or static) limit, just before normal

space. Also, it’s been known that black holes have to be electrically charge neutral, since

any net charge that’s acquired would rapidly cancel out due to attracting charge of the

opposite sign. Thus, Kerr black holes are considered realistic in nature as they describe

sources with no electric charge.

Stationary black holes (commonly known as Schwarzschild black holes) are the simplest

forms to study, as they contain just the event horizon, and are spherically symmetric. The

distance between the singularity and the event horizon is defined by the Schwarzschild

radius,

rS =
2GM

c2
, (1.1)

where G is the gravitational constant, M is the black hole’s mass, and c is the speed of light.

It should be noted that when all of the energy and matter is extracted from the ergosphere,

Kerr black holes become Schwarzschild black holes. As such, they became the more popular

forms of study due to the possibility that the large amounts of energy extracted could be

used to explain energetic phenomena. This overview is reviewed extensively in a variety of

GR textbooks (e.g. Zee 2013; Weinberg 1972).

1.3.2 Black Hole Accretion

While a variety of scenarios were explored in order to explain the nature of quasars, it wasn’t

until the mid-60’s when the idea that quasars are powered by an accretion of surrounding

matter onto a black hole was proposed and advanced by Salpeter (1964) and Zeldovich &
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Novikov (1965). This became the established paradigm used today. The concept that a

quasar is a black hole surrounded by an accretion disk was first hypothesized by Lynden-Bell

(1969), where the accretion disk is threaded by a magnetic field. He was the first to conclude

that the emissions observed from quasars came from the heated gas in the disk, and also

that the torque due to the magnetic field is what accelerates some of the electrons in the gas

to higher energies. The electrons spiral around the magnetic force lines which creates the

observed synchrotron radio emission in quasars. However, his conclusions didn’t account

for the jets. What came out of this was the introduction of transonic flow in accretion disks

and the prospect of a fluid shock responsible for the heat generated and radiated away (thus

the continuum spectrum), especially in regards to radio-loud quasars. We discuss spherical

and disk accretion in more detail below.

1.3.3 Spherical Accretion Model

Hoyle & Lyttleton (1939, 1940, 1940) and Bondi & Hoyle (1944) studied spherical accretion

of interstellar gas as stars interacted with it. Also, these papers focused on the dynamical

effects but ignored the pressure effects, with the argument being that whatever heat was

generated was rapidly radiated away, making the thermal gas temperature rather low (Bondi

1952). Later, Bondi explored this further by adding thermal gas pressure to the spherical

accretion model. This became known as Bondi accretion, which not only simplified the

physics considerably, but it also agreed with most cases of astrophysical interest outlined in

Hoyle & Lyttleton (1940). The Bondi model is transonic but there are no shocks, at least

for the black-hole application. This is because there is no solid surface or centrifugal wall

in this case. Most accretion models derived for celestial bodies came from this concept, and

while the physics was far simpler and applicable to pulsars, it didn’t take long for it to be

applied to black holes. However, it quickly became apparent that the physics of black hole

accretion was much more complex (Shakura & Sunyaev 1973).
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1.3.4 Accretion Rate and Disk Morphology

When we talk about an accretion disk, we are referring to a flattened astronomical object

with a differentially-rotating gas flow, governed by gravitational potential energy while

orbiting a black-hole source. The basic mechanism that leads to the formation of a disk

rather a spherical shell is the conservation of angular momentum as the gas collapses down

towards the black hole. As the cloud collapses, the angular velocity increases in order to

conserve angular momentum. The associated centripetal force balances gravity in the plane

perpendicular to the spin axis of the gas cloud. On the other hand, along the spin axis, there

is no force that can resist gravitational contraction, and therefore in the end one obtains a

disk of rotating matter orbiting the black hole.

Accretion disks are believed responsible for powering stellar binaries, AGNs, proto-

planetary systems and some γ-ray bursts. Generally speaking, the high angular momentum

of rotating matter in accretion disks is gradually transported outwards by viscous stresses,

which are frictional forces due to the interactions between the particles, such as turbulence,

shear and magnetic fields. With the gradual loss of angular momentum, matter progressively

moves inwards towards the center of gravity. This process describes the gravitational energy

of the gaseous, infalling matter being converted into kinetic and thermal energy. Part of

this thermal energy is converted into radiation, which partially escapes and cools down the

accretion disc. Thus the physics that governs accretion disks is a non-linear combination of

gravity, hydrodynamics, radiation and stresses.

Two important quantities in describing the structure of an accretion disk are the half-

thickness, H, and the optical thickness to absorption, τ . Depending on the temperature

and accretion rate, the accretion disk can ‘puff’ up due to gas or radiation pressure. The

height of this puffiness determines whether the disk is ‘thick’ with H & r, or ‘thin’ H . r,

where r is the radial distance along the disk. Also, disks can either be described as opaque

(τ � 1), or transparent (τ � 1). Opaque disks have a temperature much less than the

virial value and exhibit black-body radiation, whereas transparent disks have relatively high

temperatures and emit optically thin spectra. The transparent disk scenario has proven to
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be an attractive model for ADAF emission spectra. These models have been reviewed in

detail by Narayan & Yi (1995a, 1995b).

The luminosity L radiated by the accretion disk is related to the accretion rate Ṁ via

the expression

L = βṀc2 , (1.2)

where β ≤ 10% is the radiative efficiency. There is a maximum possible luminosity at which

gravity is able to balance out the outward pressure due to radiation. This maximum limit

for the steady, spherically symmetric accretion of pure, fully ionized hydrogen is known as

the Eddington luminosity,

LEdd ≡
4πGMmpc

σT
= 1.15× 1038

(
M

M�

)
erg s−1 , (1.3)

where σT, M , mp, and c denote the Thomson cross section, the mass of the gravitational

source, the proton mass and the speed of light, respectively. This luminosity limit is also

related to the Eddington mass accretion rate ṀEdd and the radiative efficiency parameter

β via LEdd = βṀEddc
2, leading to

ṀEdd ≡ c−2β−1LEdd . (1.4)

The Eddington limit is used as a unit to quantify the luminosity of a celestial object. It

should be noted that accretion discs are not spherical in nature, and often have additional

stresses that can counteract the radiation pressure along with gravity. As such, they may

exceed this limit and radiate at a super-Eddington luminosity.

Comparing a black hole’s accretion rate Ṁ to the Eddington limit is often used to

describe the physical structure of the accretion disk, with characteristics such as opacity

and thermal or radiative dominance. What follows is an overview of the possible disk

morphologies described in terms of Ṁ/ṀEdd, as reviewed by a variety of sources (e.g.
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Frank et al. 2002).

• Ṁ/ṀEdd > 0.1: This usually describes slim disks (H . r), where the accretion rate

is high, and the luminosity is approaching the Eddington limit, in which case the

radiation pressure is supported and nearly balanced with the black hole’s gravity.

This happens when the radiation flowing upward becomes trapped by the accreting

material, causing the disk to expand vertically into the radiation torus. In these kinds

of disks, the energy that’s advected into the black hole is moving faster than that

which radiated away (or inefficient radiative cooling). These kinds of disks tend to

resemble more star-like structures, and as such their emitted spectra are close to a

single-temperature blackbody spectrum.

• 0.01 < Ṁ/ṀEdd < 0.1: This is the basis for the geometrically thin disk (H � r).

Here, the accretion rate is low and the disk is highly opaque, meaning that it radiates

at high efficiency. This signifies that the rate of energy that’s advected inward is

considered negligible when compared to that which is radiated away. Here, the X-ray

emission tends to arise from the innermost part of the disk (where the temperature is

the hottest), while the optical-UV emissions tend to further out along the disk. This

is also where the Shakura-Sunyaev model comes from (see below).

• Ṁ/ṀEdd < 0.01: A geometrically thick disk (H ∼ r), where the accretion rate is

extremely low, optically thin, and the plasma flow becomes radiatively inefficient,

resulting in the gas temperature approaching the virial value. This is from the disk

becoming a stable, two-temperature structure (ion torus) due to the ions and electrons

being thermally decoupled, thus making it harder for the disk to cool efficiently in the

inner regions. When this happens, the disk becomes advection-dominated, resulting in

most of the binding energy being swallowed by the black hole. It should be noted that

advection-dominated disks are inefficient with X-ray production, but are luminous in

the radio and γ-ray emission spectrum (e.g. Sambruna et al. 2004; Di Matteo et al.

2000; Allen et al. 2000; Urry & Padovani 1995, and Owen et al. 2000).
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In the next section, we review the various models used to describe the accretion regimes

listed above.

1.3.5 The Thin-Disk Accretion Model

The standard model (or thin-disk model) for accretion disks stems from the study on the

geometrically thin disk (H � r, Ṁ/ṀEdd < 0.1) by Shakura & Sunyaev (1973, hereafter

SS73). This was applied to a stationary, axially-symmetric black hole. The disk was consid-

ered optically thick (high opacity), emitted locally black body radiation, had a Keplerian

orbit (see § 1.6.1), high luminosity and highly efficient radiative cooling. This model also

established the possibility that the radiative processes were specifically Compton scattering

and bremsstrahlung, not just synchrotron radiation. Some of the findings that came out of

this work were: 1) that a thin disk containing vertical equilibrium and a Keplerian orbit

will have efficient radiative cooling, assuming that there’s a thermal balance between the

viscous heating and radiative cooling; 2) that viscosity (see § 1.3.7) is magnetic in origin

and can be applied in an ad hoc manner to the dynamical equations.

This work has attributed to the development of the accretion disk models that came after

it, all purely theoretical, and as has been heavily cited/reviewed (e.g. Novikov & Thorne

1973; Rees 1984; Ford et al. 1994). The SS73 model described the disk being balanced by

gas (thermal) and radiation pressure, which thermal pressure dominated further out along

the disk and was thermally stable, while radiation pressure dominated near the central

black hole and was considered rather unstable. The Shapiro, Lightman, & Eardley (1976,

hereafter SLE) model is the optically-thin, geometrically thick version of the SS73 model,

and was developed from the work done by Thorne and Price (1975) who postulated that

this instability may change the inner part of the disk into an optically thin, hot, thermally-

dominated state. The SLE model effectively made the gas-pressure dominant over the

radiative pressure (Te � Tp), though was very thermally unstable. As such, according to

Abramowicz (1999), it was widely used as a viable fit to the observed high-energy spectra

from accreting black holes.
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This changed with the development of the advection-dominated accretion flow (ADAF)

model (Narayan & Yi 1994, see next section for more). Cooling via bremsstrahlung (free-

free) emission is a two-body process. This is therefore a non-linear process, and that is why

the radiative efficiency changes as the ratio Ṁ/M is varied. Lower values of the ratio lead

to lower radiative efficiency, as in the ADAF flows. Specifically, optically-thin ADAF disks

had low accretion rates and were considered very hot yet radiatively inefficient, as such,

that made them under-luminous with very hard spectra (see Figure 1.13 for a geometric

representation of this), which seemed to fit better with the observational data than the

earlier models (see Figure 1.14). This is the reason that the ADAF scenario has become

the preferred model for the inflow of gas onto black holes with a sub-Eddington accretion

rate (e.g. Pringle 1981). For a full review of the differences between the three models, see

Chen et al. (1995) who summarized their structure and properties.

1.3.6 Advection-Dominated Accretion Model

This model has been covered and reviewed extensively (e.g. Narayan & Yi 1995; Pringle

1981; Abramowicz et al. 1995). Originally, the ADAF concept was proposed by Ichimaru,

(1977), however this work was largely ignored. Rees et al. (1982) then developed its

definitive characteristic: an accretion flow with very sub-Eddington accretion rates will be

radiatively inefficient due to being very hot and optically thin. Rees (1978), Begelman

(1978, 1979), and Katz (1977) suggested that this kind of low efficiency is characteristic of

spherical accretion with a near Eddington accretion rate (Ṁ ∼ ṀEdd). Eventually, Narayan

& Yi (1995) revisited the concept in the context of disk accretion. This led to the modern

formation of the ADAF scenario, in which the accretion is occurring at a sub-Eddington

rate, and the disk is hot and puffy, and radiatively inefficient. The ADAF disk is therefore

primarily cooled by advection of energy into the black hole, rather than via the emission of

radiation. A precursor of the ADAF model was the ‘slim disk’ model of Abramowicz et al.

(1988). Slim disks are less radiatively efficient than the SS73 model, but ADAFs are much
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Figure 1.13: Taken from Meyer-Hofmeister et al. (2009). Geometry of the accretion flow as
a function of the mass accretion rate ṁ scaled to the Eddington rate ṁc. The images show
the change from a soft state with high mass flow rate (1), to the beginning of the hard state
(2-4), with the mass flow rate in the ADAF indicated by contrast in gray.
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(a) SS73 fit, taken from Davis et al. (2006). (b) ADAF fit, taken from Esin et al. (2001).

Figure 1.14: Comparative plots between the two disk models: (a) A variation of the SS73
fit to the BeppoSAX observation of LMC X-3 (in black), represented by the orange solid
curve; see Davis et al. (2006) for further details. (b) An ADAF model fit (red and green
lines) to the observed spectrum of the X-Ray Nova XTE J1118+480 (crosses, triangles and
squares); see Esin et al. (2001) for further details. It can be seen between the two that the
ADAF model fits the observed spectrum better than the SS73 model.

less radiatively efficient in comparison. These two advection-dominated accretion models

are both considered dynamically, viscously and thermally stable. See Narayan & Yi (1995)

for a complete review on the ADAF disk, and Abramowicz et al. (1988) for the slim disk.

1.3.7 Viscosity

As stated in § 1.3.4, stresses are involved in transporting out the angular momentum in the

disk in order to allow for matter to accrete onto the black hole. Typically for thin accretion

disks (H � r), the most common stressor is the kinetic viscosity ν, which is generally

defined as (via the Shakura-Sunyaev paradigm).

ν(r) = αH(r)ag(r) , (1.5)
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where α is a constant, and ag is the thermal sound speed for the gas in the plasma. Viscosity

is believed to be the result of the MHD waves from the black hole, which is excited by

the magnetic shearing (magnetorotational) instability (or MRI), which was proposed by

Velikhov (1959), Chandrasekhar (1960, 1981), and revisited by Balbus & Hawley (1991,

1992), and is currently considered the only viable mechanism for the turbulence in disks

(Brandenburg 1999). This kind of frictional force between the particles is responsible for

producing a torque in the accretion disk that transports angular momentum outward. The

viscous stress also converts the gravitational potential energy of the infalling matter into

kinetic and thermal energy, thus heating the gas as it slowly spirals in toward the central

mass. This leads to the super-adiabatic variation of the energy density U , as expressed by

the co-moving time derivative,

v
d

dr
ln

(
U

ργ

)
=
ρνr2

U

(
dΩ

dr

)2

, (1.6)

where γ is the adiabatic index of heat, ρ is the volumetric mass density, and Ω is the viscous

torque. In the case of solid-body rotation, Ω = const, and therefore we find that U ∝ ργ ,

as expected for adiabatic flow. It should be noted that Shakura & Sunyaev (1973) included

this viscosity in an ad hoc manner (via dimensional analysis) because before, no one was

able to derive the viscosity from the microphysical processes themselves.

However, it has been determined that inviscid disks can just as well produce accretion

models, as long as it’s provided with an appropriate angular momentum (e.g. Chakrabarti

1989; Chakrabarti & Molten 1993; Kafatos & Yang 1994; Lu & Yuan 1997; Das et al.

2001a). Accretion disks were believed to be driven by viscosity, but recent models show

that inviscid disks can produce the same results, provided that α . 0.01 (e.g. Narayan et

al. 1997). It should be noted that in the inviscid case, the right-hand side of Equation (1.6)

vanishes, and therefore U/ργ is constant, which is consistent with adiabatic flow.
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1.4 Energy Extracted to Produce the Outflows

There are generally two different types of models for the observed outflows: the electro-

dynamic models, and the shock-acceleration models. We will first summarize the electro-

magnetic model and then move into the motivation for our use of the shock-acceleration

model.

1.4.1 The Electrodynamic Model for Outflows

Black hole accretion is believed to be the result of a cascade effect between the black hole’s

magnetic field and centrifugal motion, which became the basis for the electrodynamic model.

In this model, the magnetic field is the catalyst for the conversion of gravitational potential

energy into heat and radiation. This process results in the formation of outflows that

produce synchrotron radiation, which contributes to the AGN continuous spectrum. The

synchrotron radiation is produced by electrons that spiral around the magnetic field lines

that surround the jets.

This is the basis for the Blandford-Znajek model (Blandford & Znajek 1977), as well as

the electromagnetic cocoon (or dynamo) model (Lovelace 1976; Blandford & Payne 1982).

In both magnetohydrodynamic models, the magnetic field from the black hole transfers the

angular momentum outward, removing the need for the ad hoc viscosity of the SS73 model.

In the Blandford-Znajek model (Figure 1.15), there are two regions of interest: the force-free

region and the acceleration region. A rotating magnetic field will induce current, however

due to the proximity to the black hole’s gravity, the current flow near the event horizon is

neutralized. This allows the neutrally charged particles to become mobile (hence force-free)

and ‘carried’ through the force-free region from the disk to the acceleration region via the

Poynting vector (Equation 9.25 of Frank, King, & Raine 2002),

~S =

[
4π

µ0c

]
c

4π
~E × ~B , (1.7)
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Figure 1.15: Schematic representation of the Blandford-Znajek model, showing the magnetic
surface and current flows in the vicinity of the black hole and disc. This image is from Frank,
King, & Raine (2002), though it was adapted from D. Macdonald & K.S. Thorne (1982).

where µ0 is the vacuum permeability, and ~E and ~B are the electric and magnetic fields of

the disk. Once exposed to the second current flow, they become accelerated to relativistic

energies. The dynamo model (Figure 1.16) follows the same setup as the Blandford-Znajek

model, except the centrifugal motion of the accreting plasma is what first drives the gas from

the disk, which when exposed to the magnetic pressure in the force-free region, becomes

accelerated to an ultra-relativistic proton beam with cold electrons. Further out along the

disk, these cold electrons could get “trapped and untrapped in the unstable plasma waves

[in the intergalactic medium] and accelerated to relativistic energies” (Lovelace 1976).

As discussed by Le & Becker (2005), this kind of model (while attractive) is rather

complex in that the physics loses sight of the fundamental microphysical processes that

may play a role in generating the observed outflows. Specifically, as they point out, the

relativistic particles that escape to form the jet in the electrodynamic models are invoked

in an ad hoc manner without any reference to the dynamical processes involved in the
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Figure 1.16: The electromagnetic dynamo model, taken from Lovelace 1976.
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accretion disk; this is similar to the way in which the viscosity was included in the SS73

model. Because of this kind of complexity, it is interesting to examine the alternative

presented by the shock-acceleration model.

1.4.2 The Shock-Acceleration Model

The generation of outflows from thin accretion disks can also be explored using the theory

of shock acceleration. As matter accretes towards the black hole, it encounters a ‘wall’ or

‘centrifugal barrier’ (Hawley et al. 1984a, 1984b), at which point the fluid passes through

a shock, and the velocity decreases abruptly (either continuous or discontinuous). The

centrifugal barrier occurs where the centripetal force, FC, balances gravity, FG, given by

FC =
mv2

r
; FG =

GMm

r2
, (1.8)

where m is the mass and v is the orbital speed of a particle in the disk, G is the gravitational

constant, and M is the mass of the black hole. This leads to determining the centrifugal

barrier radius rC,

rC =
l2

GM
, (1.9)

where l = vr is the specific angular momentum per unit mass, which is constant in an

inviscid disk. The kinetic energy that is lost is partially converted into thermal energy and

partially lost to power the jetted outflow. The cooled post-shock plasma continues onward

towards the black hole. This whole process is represented in Figure 1.17 of the classic

ADAF model containing the tangled magnetic field in the disk, and how it ‘opens up’ above

the shock radius in order to allow the outflow to proceed. This also helps to collimate the

outflow, and is analogous with the magnetic topology during solar flares.

Typically, X-ray luminous AGNs have higher relative accretion rates (Ṁ/ṀEdd), and

consequently higher gas densities, compared with the radio-loud sources. The two-body

nature of free-free emission creates a nonlinear dependence of the cooling timescale on the
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Figure 1.17: Schematic representation of the Le & Becker (2005) accretion disk with the
tangled magnetic field in the disk, and how it ‘opens up’ above the shock radius in order to
allow the outflow to proceed. This also helps to collimate the outflow.
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accretion rate, which decreases the efficiency of free-free cooling in the low-luminosity AGNs.

Therefore sources with accretion rates far below the Eddington value achieve temperatures

close to the virial value (as stated in § 1.3.5). The high temperatures lead to a further

reduction in the gas density, and as a result, the plasma becomes fully collisionless. The

combination of high temperature and low density makes the low-luminosity sources radio-

loud. As a result, the mean free path (which is a good tool for analyzing the efficiency of

the particle-particle collision, see § 1.6.2) in these sources can exceed the disk half-thickness,

which can then lead to efficient Fermi acceleration of a relativistic particle population, if

a shock is present in the disk (Le & Becker 2004, 2005, 2007; Becker et al. 2011). These

accelerated particles are what’s believed to power the observed outflows in the radio-loud

sources. Conversely, in the X-ray luminous sources, the accretion rate is higher, the cooling

is more efficient, and a shock (if present) will simply lead to heating of the gas rather than

particle acceleration, resulting in weaker outflow. An example representation of this can be

seen in Figure 1.18 for Cygnus X-1, showing that a stronger radio flux leads to a harder

X-ray spectrum. This overall picture naturally explains the observed correlation between

radio luminosity and the presence of relativistic outflows in AGNs.

1.5 The Standard Model for AGNs

Which leads to the basis of this work: the underlying question as to how these luminous,

energetic emissions and matter outflows are formed. What mechanism or power source

is responsible for it? The standard (or unified) model for AGNs establishes that they

are powered by a black-hole engine, and the only energy sources allowed are the black-hole

rotation, as well as the total black-hole mass accretion rate, Ṁ . Intrinsically, AGNs function

by the release of gravitational potential energy due to matter accreting onto the black hole,

resulting in matter outflow and energetic emissions. One of the critical parameters is the

ratio of the accretion rate Ṁ divided by the black hole mass M , or Ṁ/M , which is often

compared to the Eddington accretion rate ṀEdd (see § 1.3.5). These parameters determine
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Figure 1.18: Plot of the INTEGRAL hardness ratio versus the radio flux from the observa-
tions of Cygnus X-1, taken from: http://www.isdc.unige.ch/newsletter/n16?isdclayout=a.
The plot shows the correlation between the radio fluxes and X-ray spectrums, in which a
stronger radio flux will have a harder spectrum, and likewise a softer radio flux will have a
softer spectrum.
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whether the black hole is underfed, or ‘starved’ (Ṁ � ṀEdd) or luminous (Ṁ & ṀEdd).

1.5.1 Viewing Angle and Accretion Geometry

The other important parameter is the angle between the black-hole spin (jet) axis and

the line of sight to Earth, which is what separates them into the subclasses like quasars,

blazars, and Seyfert galaxies. Examples of this can be seen in Figure 1.19 and Figure 1.20

(adaptations from the scheme determined in Urry & Padovani 1995), which illustrates how

depending on the viewing angle, the AGN could be classified as a type 1 or 2 Seyfert galaxy,

a radio-loud quasar or a radio-quiet QSO, or even a blazar (OVV BL Lac). This largely also

affects the observations of the narrow-line region (NLRG) and broad-line region (BLRG)

spectrum energy distributions (SED), as they determine how strong the emissions are in

the X-ray and γ-ray spectra for various classes of AGNs.

Black hole accretion is believed to be responsible for producing the radiative power in

AGNs (no matter the spectrum), which has been known to typically outshines its host

galaxy via observations. The accretion disk is surrounded by a hot corona plasma (or

torus), containing clouds of gas. Gravitational potential energy must be released in order

for matter to accrete onto the black hole. About . 5 − 30% of the gravitational potential

energy is released in the form of radiation and outflows during the accretion process (Dermer

& Menon 2009). The details depend on the specific angular momentum of the gas supplied

to the disk at a large radius, as well as on the spin of the black hole. The processes that

occur within the disk are responsible for powering the observed emissions in the broad-

line and narrow-line energy spectra (see § 1.3.5). From accretion disks, the luminosity is

the observable physical quantity of radiation that’s produced. Generally speaking, this

luminosity is what determines whether an AGN is more dominant in the X-ray, γ-ray, or

radio spectrum.

38



Figure 1.19: An illustration of the geometric dependency of the unified AGN model, taken
from: http://astrobites.org/2011/03/07/intrinsic-differences-in-agn-accretion-rates/.
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Figure 1.20: A more detailed illustration of the AGN unified model, taken
from: http://www.astro-photography.net/Supermassive-Black-Holes-Active-Galactic-
Nuclei.html.
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1.5.2 High-Energy Radiation from AGNs

The standard model of AGNs suggests that the relatively cold material at a large distance

from the black hole forms into a geometrically thin accretion disk, as described by SS73. If

the accretion rate is sub-Eddington, the flow transitions into a hot ADAF in the inner region.

The ADAF is composed of two-temperature plasma with ion temperature Ti ∼ 1012 K

and electron temperature Te ∼ 109 K. The associated relativistic jets are made up of

equal numbers of protons and electrons (or possibly electrons and positrons), as required

to maintain charge neutrality.

Aside from accretion being driven by the centrifugal motion of the disk due to the black

hole’s gravity, the force responsible for the particle-particle (or ion-electron) interaction

within the disk (which produces the continuum spectrum) is believed to be the result of

magnetohydrodynamic turbulence (or MHD waves). The resulting continuum spectrum

observed in AGNs is widely believed to be produced by synchrotron radiation, due to its

agreement of a power-law form to the observed data. This kind of radiation is the emitted

result of relativistically charged particles (e.g. electrons) spirally around magnetic field lines

(believed for the electrodynamic model). However, this kind of contributed radiation in the

X-ray spectrum is considered low, therefore other processes have been considered to explain

the excess in X-ray brightness.

Another possible kind of process responsible for the observed emissions is Compton

scattering (photons loose energy) or inverse-Compton scattering (photons gain energy).

Essentially these kinds of scattering processes result in radiation being shifted to lower or

higher energies, depending on the kinetic energy of the electron involved. These kinds of

processes can account for possible lower energy photons being scattered to higher energies

via collisions with relativistic electrons, or vice versa, as a possible explanation for the excess

in X-ray production.

However, the emission spectrum can also to be the result of bremsstrahlung (or free-

free) emission, due to a similar (or characteristic) power-law spectrum that’s been observed
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with the X-ray spectrum in galaxy clusters. This process describes that a free electron

can increase its speed after coming in contact with an ion and absorbing a photon, or it

very well could lose its speed if a photon is emitted from the electron rather than absorbed

(free-free cooling). This process has been of interest lately in regards to AGNs, especially

radio-loud sources, and is the preferred method in regards to the shock-acceleration model

(see Le & Becker 2004, 2005, 2007; Becker et al. 2011).

1.5.3 Primary and Secondary Emissions

The SED includes primary and secondary emission components. The primary emission

produced in the disk can interact with the torus to create the broad-line (BLRG) spectrum,

or with external clouds to create the narrow-line (NLRG) spectrum. These resulting inter-

actions are known as the secondary emissions. In addition to the primary emission from

the disk, the jets are believed to create another primary emission component in the form

of inverse-Compton and/or synchrotron radiation, which can extend from the radio to the

gamma-ray region of the spectrum. This is believed to be the explanation for the classic

double-humped multi wavelength spectrum we see from M87 (see Figure 1.7).

When the jet outflows from the disk it can interact with a surrounding cloud in the

galactic medium, resulting in the production of neutral and/or charged pions and then

secondary radiation. An example of this for M87 can be seen in Figure 1.21, which is a

sketch of the jet penetrating a slow-moving (a) red giant or (b) a generic massive cloud

of matter. The X-rays and UV photons can be produced in either the disk or the jet,

however the γ-rays are almost exclusively produced in the jet via inverse-Compton and/or

synchrotron processes, as well as via collisions with external clouds. In order to fit the

observational data for the γ-ray spectrum, previous studies have modeled a theoretical

secondary-interaction between a relativistic jet and a cloud. They were just assuming that

a jet existed without really postulating how it was formed. Hence, the phenomenon has

never been directly connected with the process of accretion occurring in the disk surrounding

the SMBH in the heart of the AGN. Filling this gap is one of the major focuses in this thesis.
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This is further explored in Ch. 5 in regards to my specific work. For now, we move forward

in describing the overall plan for the research.

1.6 Plan of Research

This work focuses on the two-temperature ADAF model originally introduced by Ichimaru

(1977), and later standardized by Narayan & Yi (1994, 1995a, 1995b), Abramowicz et al.

(1995), Chen (1995), and Chen et al. (1995). In the ADAF model, the density is relatively

low, the disk is optically thin to absorption, and the accretion rate Ṁ � ṀEdd. The

ADAF scenario is qualitatively similar to the thermally unstable (Piran 1978) accretion

model developed by Shapiro, Lightman and Eardley (1976, hereafter SLE), which likewise

contains a two-temperature plasma with the ion temperature greatly exceeding the electron

temperature. It should be noted that these initial models operated without considering the

effects of general relativity.

1.6.1 Keplerian Orbits and Pseudo-Newtonian Potential

In the earlier models, the gravitational potential energy per unit mass Φ used for either a

Kerr or Schwarzschild black hole was given by the Newtonian expression,

Φ = −GM
r

. (1.10)

In the case of Schwarzschild black holes, the ‘particle in a circular whirlpool’ as we described

on the first page takes effect, for which then the Newtonian gravitational energy (Equation

1.10) can be applied to find the Keplerian angular velocity ΩK,

Ω2
K =

1

r

dΦ

dr
=
GM

r3
, (1.11)
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Figure 1.21: From Barkov et al. (2012). An outgoing jet from M87 interacting with a slow
moving (a) red giant (RG) or (b) a generic massive clump of matter (cloud), resulting in
gamma-ray production.
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and specific angular momentum per unit mass lK = ΩKr
2,

l2K = r3dΦ

dr
= GMr . (1.12)

Based on General Relativity (GR), we find that for Schwarzschild black holes, there is a

critical angular momentum in which a particle can maintain a stable orbit lc, which coincides

with a radius for the innermost stable circular orbit of risco = 3rS (Zee 2013). If l < lc,

and likewise if r < risco, the particle falls into the black hole. However, for the general

relativistic treatment of perfect fluid disks around a black hole, this limit was adjusted to

include the marginally bound circular orbit rmb = 2rS , in which case risco was redefined

as the last stable circular orbit, rms (Abramowicz et al. 1978, Kozlowski et al. 1978,

Fishbone and Moncrief 1976). Though it still remains that r > rms is defined for stable

orbits, and r < rms for unstable orbits. Also, that orbits that have r < rmb are considered

unbound, containing positive binding energy, while those at r = rmb have zero binding

energy (Abramowicz 1999). The range between r = rmb and r = rms is called the inner disk

edge r = rin for black hole accretion, in which the particles in the disk experience circular

orbits when r > rin, and free fall when r < rin (see Abramowicz et al. 2010 more details).

It’s further classified between the two standard accretion models that the inner disk edge

is rin ≈ risco for the SS73 model and rin ≈ rmb for radiatively inefficient flow models (like

ADAFs).

The thin-disk and SLE models utilized the standard Newtonian form for the gravita-

tional potential energy, which introduces significant errors close to the event horizon. The

technical difficulty associated with fully implementing general relativity led to the devel-

opment of the pseudo-Newtonian approximation for the gravitational potential, given by

(Paczyński and Wiita 1980)

Φ = − GM

r − rS
, (1.13)

for the purpose of exploring the disk inner edge. This lead to a new sub-Keplerian angular
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velocity,

Ω2
K =

1

r

dΦ

dr
=

GM

r (r − rS)2 , (1.14)

and angular momentum,

l2K = r3dΦ

dr
=

GMr3

(r − rS)2 . (1.15)

This is a surprisingly accurate approximation that provides a convenient method for ex-

ploring the structure of the inner region of a sub-Keplerian disk. Not only were they able

to successfully explore the inner edge region, but their results further out along the disk

agreed well with previous models who operated on Newtonian gravitational energy, even

with viscosity included (see § 1.3.7).

By adopting the pseudo-Newtonian approximation, we are able to the treat the physical

processes occurring within the accretion disk using a semiclassical methodology. Narayan

et al. (1999) and Becker & Subramanian (2005), amongst other authors, used this approach

in developing their models for ADAF disks. The dynamical solutions obtained successfully

describe the global structure of the accretion flow. It should be noted that the maximum

angular momentum lmax for steady-state inviscid accretion corresponds to a circular orbit

with radius r = rmb = 2rS (Le & Becker 2005). Setting r = rmb in Equation (1.15) yields

lmax = lK (rmb) =

√
GMr3

mb

rmb − rS
=

4GM

c
. (1.16)

The radius of marginal stability only exists in the case of GR, and therefore inviscid accretion

only occurs in relativistic disks.

1.6.2 Magnetic Mean Free Path

When a shock is present, magnetohydrodynamical (MHD) waves can lead to the first-order

Fermi acceleration of charged particles. However, this depends critically on the value of the
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mean free path for ion-ion collisions, which is given by (Subramanian et al. 1996)

λii = 1.20× 105 T 2
i

ni ln Λ
, (1.17)

where ni is the thermal ion number density, and ln Λ is the Coulomb logarithm. In ADAF

disks, λii can exceed the disk half-thickness, which allows the formation of a distribution of

relativistic particles via multiple shock crossings. A series of previous investigations have

established that particle acceleration in the shock can channel a significant fraction of the

kinetic energy of the accreting gas into the acceleration of relativistic particles that can

escape to form the observed outflows (Le & Becker 2004, 2005, 2007; Becker et al. 2011).

1.6.3 Summary of the Le & Becker Shock-Acceleration Model

Of the many accretion models that exist, my work branches off from the model created by

Le & Becker (2004, 2005, 2007), hereafter known as LB04, LB05, and LB07. Below is a

summary of the motivation and the results obtained from their work.

This model in particular began with Blandford & Ostriker (1978), who were the first

to suggest that shock acceleration existed in the environment of AGNs. This was later

explored in spherically symmetric accretion flows (Protheroe & Kazanas 1983; Kazanas &

Ellison 1986) as a possible explanation for the energetic radio and γ-radiation emitted by

many AGNs. However, these papers did not account for a detailed transport equation. This

was changed when Webb & Bogdan (1987) and Spruit (1987) employed a transport equation

in order to solve for the distribution of energetic particles in a spherical accretion flow, one

defined as a velocity profile terminating at a standing shock. This did enhance the state

of the theory, though it was considered to be more quantitative in nature compared to the

earlier models. But accretion disks around black holes are not spherical (well perhaps in the

innermost region), they are cylindrical in geometry. Therefore the solutions obtained in the

earlier models were not appropriately applicable to disks. Plus the velocity distribution also

was derived for a spherical flow and therefore was likewise inappropriate to a disk structure.
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Therefore, to quote LB07, “none of these previous models can be used to develop a single,

global, self-consistent picture for the acceleration of relativistic particles in an accretion disk

containing a shock”.

LB07 was the first to develop a transport equation written in the appropriate cylindrical

geometry in order to describe the acceleration of energetic particles in the accreting plasma

of a hot, ADAF disk containing an isothermal shock. They created a self-consistent cylindri-

cal symmetric model that describes specifically the acceleration of protons and/or electrons

via first-order Fermi acceleration processes operating in the disk. This was to be applied to

the model developed in LB04; a new inflow/outflow model that was successfully applied in

order to explain the observed kinetic power of the outflows in M87 and Sgr A*. This was

further explored in LB05 where a discussion was made on the detailed dynamics of ADAF

disks containing isothermal shocks. Specifically, they explored the relationship between

the dynamical structure of the disk/shock system and accelerated relativistic particles that

escape form the disk and can become the jets.

In both papers, they were able to compute a self-consistent dynamical model for the

structure of a shocked disk while maintaining that the rate of which the particles and

energy escape from the shock location is consistent. LB07: they provided more information

regarding how the accelerated particles are distributed in space and in energy. Furthermore,

they also look into the distribution of the escaping relativistic particles from the disk at the

shock location. They did this by computing the Green’s function for monoenergetic particle

injection. They finished up with a discussion of the spectrum of the observed (observable)

secondary radiation produced by the escaping particles. This includes radio (synchrotron),

inverse Compton X-ray and γ-ray emissions. This discussion served as a quantitative basis

for the observational tests developed for the single-fluid model.

1.7 Motivation: Two-Fluid Model for Cosmic-Ray Shocks

While it has been demonstrated that the shock-acceleration process can be efficient enough

to power the observed strong outflows in radio-loud active galaxies, such as M87, these early

48



models neglected the back-reaction of the particle pressure onto the dynamical structure of

the disk. Essentially, these models described a single-fluid accretion disk. This structure is

largely assumed to contain a thermally-dominant fluid, with no microphysical connection to

the relativistic particles, in which the thermal pressure firmly exceeds the particle pressure.

Usually the dynamical structure is compared to the relativistic particle energy distribution

in order to determine self-consistency. However, it has been shown that the pressure of the

accelerated particles can actually exceed the pressure of the thermal background gas in the

vicinity of the shock (see Figure 1.22a). This same phenomenon is also observed in the early

models for the acceleration of cosmic-rays in supernova-driven shock waves (Figure 1.22b).

In the cosmic-ray case, this problem was remedied through the inclusion of the cosmic-ray

pressure in the two-fluid model of cosmic-ray-modified supernova shock waves (Drury &

Volk 1981; Becker & Kazanas 2001).

The majority of the cosmic rays observed in our galaxy are thought to be accelerated

by shock waves driven by supernova explosions (Axford et al. 1977). The exception is the

population of ultra-high energy cosmic rays, whose origin is still not well understood, and

which are probably created outside our galaxy. In the shock-acceleration model, energetic

charged particles scatter elastically with magnetic irregularities (MHD waves) convected

with the background gas (Drury & Völk 1981; Becker & Kazanas 2001). This is synonymous

with the production of relativistic particles due to MHD in a shocked ADAF disk. Cosmic

rays can travel freely when crossing a shock, but experience an increase in momentum. The

convergence of the MHD waves at the shock, combined with the effect of spatial diffusion,

allows the cosmic rays to cross the shock multiple times, gaining energy continuously. These

particles avoid thermalization because the ion-ion mean free path, λii, is much larger than

the magnetic mean free path (coherence length), λmag. Repeated shock crossings result in

the characteristic power-law energy spectrum associated with first-order Fermi acceleration.

The real difference between the two models (as depicted in Figure 1.23) is that cosmic-ray

particles are accelerated at a supernova-expanding shock, while relativistic particles in the

disk are accelerated at a standing shock.
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Although the cosmic rays and the thermal background gas do not interact directly via

collisions, the two populations are coupled together through interactions with the MHD

waves. However, despite this, the earliest models for the acceleration of cosmic rays in

supernova-driven shocks neglected to include the dynamical effect of the cosmic ray pressure.

It was soon realized that the resulting cosmic ray pressure could exceed the pressure of the

background thermal gas. In the next generation of models, this problem was remedied by

treating the nonlinear coupling of the gas dynamics and the energization of the cosmic rays

in a self-consistent manner. The resulting ‘two-fluid’ model for diffusive shock acceleration

has become an accepted paradigm for studying the self-consistent cosmic-ray-modified shock

problem.

The cosmic-ray-modified shock model can include both globally smooth solutions as

well as solutions that contain discontinuous, gas-mediated ‘sub-shocks.’ In the case of a

discontinuous shock, one observes a deceleration precursor in the fluid just upstream from

the shock. This precursor phenomenon is not observed in the classical case, and is a unique

characteristic of the two-fluid shock model. I anticipate that this type of behavior will also

be observed in the disk context when the pressure of the accelerated particles is included

in the dynamical equations self-consistently.

1.8 Thesis Objectives

Just to clarify, observing the effect of the cosmic-ray pressure to the background pressure

has been done by comparing the dynamical structure to the particle distribution function.

The struggle in previous studies has been verifying the self-consistency between them, rather

than mixing them together. The importance of particle pressure in both the cosmic-ray-

modified shock model and the two-temperature ADAF disk model is a strong motivation

to reexamine the whole dynamical structure of the ADAF disk to include the relativistic

particle pressure.

In this thesis, we intend to perform the same modification in the disk context in order

to create a fully self-consistent model for the structure of the accretion disk, and the energy
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distribution of the accelerated relativistic particles that form the outflow. The work in

this thesis branches off from the work of LB04, LB05, and LB07. From this, we will

create a new two-fluid disk accretion model demonstrating the dynamical effect of both the

relativistic particle pressure and the background (thermal) gas pressure. Here, we focus

on the hydrodynamic structure of the disk, the modifications to the standard shock jump

conditions that come into play due to the inclusion of the relativistic particle pressure, and

how it feeds back into the relativistic particle energy transport function. The relativistic

particle number and energy densities will also be determined self-consistently along with

the structure of the disk. In essence, this model is a generalization of the one outlined and

developed in LB04, LB05, and LB07. This thesis will cap off with examining the secondary

radiation that can form from the outflows.

For the layout of this thesis: Ch. 2 will address the general theoretical framework be-

tween the dynamical single-fluid and two-fluid disk/shock models, and Ch. 3 will address

the theoretical particle distributions computed using the two models. Ch. 4 provides a de-

tailed application analysis of the number and energy density distributions of the relativistic

particles to the disks/outflows in M87 and Sgr A* . Ch. 5 goes into observational predictions

regarding the high-energy spectra (or secondary radiation) produced by the outflows. Fin-

ishing up this document is a discussion and conclusion (Ch. 6) regarding the astrophysical

implications of these results.
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(a) (b)

Figure 1.22: Comparative plots of the two pressures. (a) From Becker et al. (2011): the
background pressure P (solid lines) and relativistic particle pressure Pr (dot-dashed lines)
plotted in cgs units as functions of radius r for two celestial bodies, where the thick lines
represent the shocked-disk solution. (b) From Axford et al. (1977): ratios of the cosmic-
ray Pc and background P pressures, and Mach number M , as functions of radius x. In
both cases it can be seen that the relativistic particle pressure can exceed the background
pressure if a shock is present.
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Figure 1.23: (a) An accretion disk with a standing shock (white arrows in the inner re-
gion), taken from: http://168.176.8.14/sagan/QAGN.html, and (b) a supernova with an
expanding shock, taken from: http://www.spacetelescope.org/images/opo1438a/.

53



Chapter 2: Theory - Dynamical Disk Structure

In this chapter we will provide the theoretical background for the dynamical disk structure

developed in this thesis. In moving forward, we will define the components for three different

models, labeled Model 1, 2, and 3, respectfully. Model 1 is a representation of the single-

fluid model and largely follows the work of LB04, LB05, and LB07, describing an inviscid

disk with no relativistic particles in the dynamical equations. In Model 2, we introduce

the relativistic particle pressure into the dynamical equations. Model 3 is the only self-

consistent model, which also includes the dynamical effect of relativistic particle diffusion.

Due to the similar structure and physics behind all three models, it was best to include

them all into one chapter. Before we move into that, let’s first go over some preliminary

identities used in this work.

2.1 Preliminaries

This work uses the full Lagrangian derivative,

D

Dt
=

∂

∂t
+ ~v · ~∇ . (2.1)

as well as Newton’s second law in fluid mechanics,

ρ
D~v

Dt
= −∇P +∇ · ~T + ~f , (2.2)

where ρD~v/Dt represents the inertia (per volume), D~v/Dt is the material derivative that

incorporates the full Lagrangian derivative (Equation 2.1) and represents the flow of the

fluid in the disk, ∇P is the total pressure gradient, ~T is the stress tensor that corresponds
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to viscosity, and ~f represents the body forces (per unit volume) acting on the fluid. When

expanding out the material derivative, Equation (2.2) becomes

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇P +∇ · ~T + ~f , (2.3)

where ∂~v/∂t is the unsteady acceleration, and ~v ·∇~v is the convective acceleration. Equation

(2.3) is also known as the general form of the Navier-Stokes equation. In this work we focus

on a system without viscosity, in which applying ∇ · ~T → 0 to Equation (2.3),

ρ

(
∂~v

∂t
+ ~v · ~∇~v

)
= −~∇P + ~f , (2.4)

becomes Euler’s equation in fluid dynamics. Next, we move forward into describing the

transonic flow structure of the disk.

2.2 Transonic Flow Structure

2.2.1 The Relationship Between Shocks and Outflows

A shock is formed from the centrifugal motion of the plasma in the disk, which has been

pointed out via simulations by Hawley et al. (1984a, 1984b) and Chakrabarti (1990) to be

a ‘wall’ as a result of the gas falling in with some rotation. In the vicinity of the shock, the

acceleration of the relativistic particles is concentrated, which is what “channels a significant

fraction of the binding energy of the accreting gas into a population of relativistic particles”

(LB07). These particles become high-energy relativistic particles, and via diffusion are

allowed to escape through the disk vertically, containing the energy and entropy created

from the accelerated particles. What’s remaining in the gas/plasma is accreted into the

black hole.
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(a) (b)

Figure 2.1: A schematic diagram of our disk/shock/outflow model for (a) the single-fluid
model, and (b) our two-fluid model. Both contain the test particles (filled circles) injected
at the shock location, and the MHD scattering centers (open circles) moving with the
background gas throughout the disk. The compression of the scattering centers at the shock
leads to efficient particle acceleration, which is analogous to the acceleration of cosmic rays
in supernova-driven shocks.

In the model considered here (depicted in Figure 2.1), the gas is accelerated gravitation-

ally toward the central mass, and experiences a shock transition due to an obstruction near

the event horizon, which is a consequence of the centrifugal ‘barrier’ located between the

inner and outer sonic points. Relativistic particles accelerated at the shock are transported

throughout the disk until they either (1) escape via diffusion through the disk surface (form-

ing the outflow from the upper/lower edges of the cylindrical shock), (2) advect through

to the event horizon, or (3) diffuse radially outward through the disk (see §3 of LB05 for

further detail). We employ the standard set of physical conservation equations discussed

by Chakrabarti (1989a) and Abramowicz & Chakrabarti (1990) describing a vertically-

averaged, one-dimensional, steady-state accretion disk that incorporates the effects of gen-

eral relativity using the pseudo-Newtonian approximation for the gravitational potential.

However, the conservation equations used here will be generalized to include relativistic

particle pressure.
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Figure 2.2: Black hole accretion system.

2.2.2 The System: An Accretion Disk with Gas and Relativistic Particles

To paraphrase Chakrabarti’s book (1990), the black hole has a mass M and is at rest in

the center of an infinite cloud of gas (the accretion disk), which at infinity is also at rest

and has uniform density ρ∞ and pressure P∞. The motion of the gas in the accretion disk

is symmetric (depending on the disk’s geometry) and steady, and the increase in mass of

the black hole is ignored so that the field of force is unchanging. The accretion disk is

depicted in Figure 2.2. Here, the flat part represents a cool, thin accretion disk (with high

accretion rate), and the curved part represents a hot, thick disk (with low accretion rate).

This work incorporates both types but will largely focus on the mechanics of the hot disk.

The convective acceleration ~v · ∇~v defined in Equation (2.4) is an acceleration caused by a

change in velocity over position, while individual fluid particles are being accelerated and

thus are under unsteady motion.

The accretion disk is considered a compressible fluid; by assuming that the fluid is

comprised of an ideal gas the system becomes simpler. Here the disk becomes a closed,

isolated system limited to the mechanizations and interactions of the individual particles;

here it is considered adiabatic. The pressure (either thermal pressure, particle pressure, or

both) acted on by an adiabatic fluid is generally defined as

P = (γ − 1)U , (2.5)
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where U is the internal energy density of the fluid and γ is the isentropic heat index. If the

disk fluid contains gas particles, there is thermal particle pressure,

Pg = (γg − 1)Ug . (2.6)

If the fluid also contains non-thermal particles, there is relativistic particle pressure,

Pr = (γr − 1)Ur , (2.7)

where γg and γr now represent the isentropic, adiabatic index of the thermal and relativistic

particles, respectively. In the single-fluid model (Model 1), typically γ was set to represent

either a thermally-dominated γ = 5/3, or radiatively-dominated γ = 4/3 accretion disk.

Here, in this work, we will set γr = 4/3 since it represents the relativistic pressure, while γg =

3/2 in order for the thermal pressure to contain equal amounts of gas and magnetic pressure

(Narayan & Yi 1995), which is considered appropriate for an optically thin advection-

dominated flow (Narayan et al. 1997). It should be noted that from this point forward, we

use the subscripts ‘g’ and ‘r’ to refer to quantities associated with the gas and relativistic

particles, respectively.

As these particles interact with each other in the fluid, a sound speed is generated.

Considering that the adiabatic sound speed is generally defined as

a2(r) =
γP

ρ
,

we can use this correlation to define the adiabatic sound speed due to the gas (thermal

particles),

a2
g(r) =

γgPg
ρ

, (2.8)
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Figure 2.3: Hot-accretion disk-system with imaginary cylindrical shell.

as well as the adiabatic sound speed due to the relativistic (non-thermal) particles,

a2
r(r) =

γrPr
ρ

. (2.9)

2.2.3 The Geometry of the Disk

The ADAF disk is represented with an imaginary cylindrical shell, with H being the disk

half-thickness of the accretion flow (with respect to the center-axis of the shell) and r is

the radius of the cylinder, as seen in Figure 2.3. The radius of the cylindrical shell can

be adjusted depending on location in the accretion disk; in Figure 2.3 the radius is the

maximum of the hot accretion disk where the black hole is the center reference. This work

assumes a steady state/cylindrical symmetry with mass conservation. From Figure 2.3, the

shell area A∗ (or area of a cylinder) is defined as,

A∗ = 2πrh = 2πr (2H) = 4πrH . (2.10)

2.2.4 Deriving the Hydrostatic Relation for an Inviscid Disk

Imagine that the flow to be in vertical hydrostatic equilibrium, where the force balance (or

conservation of momentum) is in the vertical (ẑ) direction: Here, the main forces operating
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Figure 2.4: Force balance in the vertical (z) direction in cylindrical coordinates.

are gravity (the normal force due to the black hole) and internal pressure (or pressure

gradient) in the disk. Consider a force balance across a thin disk shell of mass dm, in which

the two forces are incorporated where the internal pressure and volumetric density become

functions of the radius, with height dz and whose face is given by the area A. The shell

given in Figure 2.5 has a mass dm defined as,

dm = ρdV = ρAdz . (2.11)

Hydrostatic equilibrium occurs when these two forces are in balance. Even under the

guise of the disk shell above, the minute changes in the forces due to pressure dFP and

gravity dfG have to be equal to one another dFP +dfG = 0 for this condition to be satisfied.

The force due to the internal pressure is a product of the disk shell area and the pressure

itself dFP = AdP . For now we will make a small substitution where we will define the

change in pressure as

dP =
dP

dz
dz , (2.12)

in which case we can substitute in Equation (2.12) and define the change in the force due

the pressure as

dFP = AdP = A
dP

dz
dz . (2.13)
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Figure 2.5: Closer examination of the force balance in the vertical direction.

Now the force due to gravity here references to Newton’s law of universal gravitation,

F =
Gm1m2

R2
,

where G is the gravitational constant and R refers to the distance between the center of two

masses. In this system m1 refers to the mass M of the black hole and m2 corresponds to

the mass of the shell dm, while R is now the distance from the shell to the black hole, which

is denoted by the Schwarzschild radius rS . Considering that the change in the gravitational

force will depend on the mass of the shell, there is an additional angle θ reference in the

geometry, and thus from Figure 2.5 this force is defined as

dfG = − GM

(R− rS)2 sin θdm = − GM

(R− rS)2

z

R
dm . (2.14)
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In order to satisfy the hydrostatic equilibrium we equate Equations (2.13) and (2.14) to get

A
dP

dz
dz =

GM

(R− rS)2

z

R
dm .

By subtituting in Equation (2.12),

dP

dz
=

GMρ

(R− rS)2

z

R
. (2.15)

Under the limit that z → H, then the change in the internal pressure becomes just the total

pressure dP → P , in which case Equation (2.15) becomes

P

H
=

GMρ

(R− rS)2

H

R
.

Assuming that z � R, then R ∼ r, where now the generic form of the hydrostatic equilib-

rium defines that the disk half-thickness H as

H2 =
Pr (r − rS)2

GMρ
. (2.16)

For the purposes of this work though we do make a minor correction to Equation (2.16),

where we define the true disk half-thickness for this system as

H2 ≈ Pr (r − rS)2 γg
GMρ

, (2.17)

where P is now the total pressure, considering though that pressure will be different de-

pending on the model. For Model 1, the total pressure of system is due to the gas itself
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P → Pg,

H2 ≈ r (r − rS)2 γg
GMρ

Pg . (2.18)

For Models 2 and 3, the total pressure is actually a linear combination of the thermal and

relativistic pressures P = Pg + Pr,

H2 ≈ r (r − rS)2 γg
GMρ

(Pr + Pg) . (2.19)

It is generally accepted that with AGNs, the accretion disk follows Keplerian rotation (see

§ 1.6.1), subjecting the particles to simple celestial mechanics. The Keplerian angular

velocity used in this model is defined under a pseudo-Newtonian context (Equation 1.14)

Ω2
K =

GM

r (r − rS)2 . (2.20)

This serves to further simplify the derived hydrostatic relations. Thus by combining Equa-

tion (2.18) with Equations (2.8) and (2.20), the disk half-thickness for Model 1 becomes

H =
ag
ΩK

. (2.21)

And likewise, combining Equation (2.19) with Equations (2.8), (2.9) and (2.20), the disk

half-thickness for Models 2 and 3 becomes

H =
1

ΩK

√(
γg
γr

)
a2
r + a2

g . (2.22)
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2.3 The Transport Rates

There are three conserved transport rates in viscous ADAF disks: the mass transport rate

Ṁ , the angular momentum transport rate J̇ , and the energy transport rate Ė, which are

all defined to be positive for inflow. The transport rates are determined as follows.

2.3.1 Deriving the Mass Transport Rate Ṁ

Upon mass conservation, we use the mass continuity equation

∂ρ

∂t
= −~∇ · (ρ~v) (2.23)

where ρ is the volumetric fluid mass density, and ~v is the bulk velocity. There are two ways

to derive the mass transport rate. First is directly defining the mass accretion rate,

Ṁ = A∗Fm , (2.24)

as a product of the mass flux Fm and the shell area A∗ (Equation 2.10). The mass flux

is a result from integrating the radial component of Equation (2.23) with respect to r in

cylindrical coordinates. First we expand the right-hand-side of Equation (2.23),

~∇ · (ρ~v) =
1

r

∂

∂r
(rρvr) +

ρ

r

∂vφ
∂φ

+ ρ
∂vz
∂z

. (2.25)

Since all particles in the fluid are advected into the black hole, it should be noted that

for the radial component for ~v: vr = −v, since the radial velocity v is considered positive

for inflowing particles. Focusing on the radial component of Equation (2.25), the mass

continuity equation becomes

∂ρ

∂t
= −1

r

∂

∂r
(rρv) . (2.26)
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Considering that my work focuses on the steady-state solution, ∂ρ/∂t → 0 and ∂/∂r can

be replaced by the ordinary derivative d/dr. Integrating Equation (2.26) with respect to r

will bring up the mass flux Fm = ρv,

Fm =

∫
1

r

∂

∂r
(rρv) dr =

1

r
(rρv) = ρv (2.27)

which is a constant. Combining this with Equation (2.10), the mass accretion rate (Equation

2.24) becomes,

Ṁ = 4πrHρv , (2.28)

which is a universal relation for all three Models, in which H is the only thing that differ-

entiates between them.

From the positive sign of the radial flow velocity, it can be seen that the mass transport

rate is also positive for inflowing particles. Note that the mass transport rate is in units of

mass per unit time and is considered a constant. On a final note, the second method for

determining the mass accretion rate is through direct calculation for Equation (2.23) and a

full volumetric integration dV over the radial component, with v = −vr:

Ṁ = −
∫
∇ · (ρ~v) dV =

∫
1

r

∂

∂r
(rρv) rdrdφdz =

r∫
0

ρvdr

2π∫
0

dφ

2H∫
0

dz = 4πrHρv . (2.29)

This agrees with Equation (2.28).

2.3.2 The Angular Momentum Transport Rate J̇

The angular momentum transport rate is defined by (LB05),

J̇ = Ṁr2Ω− G , (2.30)
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Figure 2.6: Angular momentum of the disk.

where Ω is the angular velocity and G is the torque. The gradient of the angular velocity Ω

is related to the torque G by (e.g., Frank et al. 2002)

G = −4πr3Hρν
dΩ

dr
, (2.31)

where ν is the kinematic viscosity. Particles rotating around the disk (see Figure 2.6) will

not follow along the arc path S, but rather through it while rotating since they are inflow.

In this work, we will consider the energy due to the torque to be negligible (G = 0; see

§ 2.4 for further details), as the torque in the system corresponds to the azimuthal direction

only, and we will be working under the radial component. Therefore the velocity in the

azimuthal direction vφ corresponds to the specific angular momentum l as

l = rvφ . (2.32)

Likewise the specific angular momentum is also related to the angular velocity Ω,

l = r2Ω . (2.33)
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Since angular momentum is conserved in this system, the specific angular momentum will

effectively be the same even if the angular velocity is Keplerian,

l = r2ΩK . (2.34)

Following this we can see that the Keplerian angular velocity (Equation 2.20) actually comes

from the velocity in the azimuthal direction,

ΩK =
vφ
r
. (2.35)

2.3.3 The Total Radial Energy Flux

It’s been shown in Appendix A that the total energy density Utot is related to the total

energy flux ~Ftot via the following relationship,

∂Utot

∂t
= −~∇ · ~Ftot , (2.36)

where,

~Ftot = (Ug + Pg)~v + (Ur + Pr)~v −
GMρ~v

R−Rs
+

1

2
ρ (~v · ~v)~v − κ~∇Ur . (2.37)

In Appendix A, we show that this relation stems from the full Lagrangian derivatives for

the thermal Ug and relativistic Ur energy densities (Equation A.5),

DUr
Dt

=
γrUr
ρ

Dρ

Dt
− ~∇ ·

(
−κ~∇Ur

)
,

DUg
Dt

=
γgUg
ρ

Dρ

Dt
. (2.38)
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In moving forward, now we must split the components apart accordingly. If we go with the

vector notation for velocity in cylindrical coordinates,

~v = vrr̂ + vφφ̂+ vz ẑ , (2.39)

then the term ~v · ~v becomes a scalar:

~v · ~v = v2
r + v2

φ + v2
z .

However, it should be noted that in this work, there’s no velocity in the ẑ direction as

everything’s been vertically averaged. So the product (~v · ~v)~v becomes,

(~v · ~v)~v = v3
r r̂ + v2

φvrr̂ + v2
rvφφ̂+ v3

φφ̂ .

The divergence of the relativistic energy density Ur in cylindrical coordinates is written as,

~∇Ur =
dUr
dr

r̂ +
1

r

dUr
dφ

φ̂+
dUr
dz

ẑ .

Note that R − Rs → r − rS in the gravitational potential term, and when you combine

Equation (2.5) with everything above and focus on the r̂ components, we get the total

radial energy flux,

Ftot,r = γgUgvr + γrUrvr −
GMρvr
r − rS

+
1

2
ρv3
r +

1

2
ρv2
φvr − κ

dUr
dr

. (2.40)

Note that vr refers to the cylindrical radial component of the bulk velocity, which extends

outward from zero to infinity, and is positive for inflow, vr = −v.
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2.3.4 The Energy Transport Rate Ė

In this work, the total energy transport rate Ė can be written as a linear combination

Ė = Ėg + Ėr , (2.41)

where Ėg and Ėr denote the rates for the gas and relativistic particles, respectively. Gen-

erally, the energy transport rate is defined as,

Ė = A∗F , (2.42)

where F is the energy flux and A∗ is the shell area (Equation 2.10). In § 2.3.3 the total

radial energy flux Ftot,r ignored the energy due to torque G, so we should be more clear

that the total energy transport rate is actually,

Ė = Ėtot,r − GΩ , (2.43)

where,

Ėtot,r = −4πrHFtot,r . (2.44)

Since vr = −v for positive inflow, Equation (2.44) ensures that the energy transport rate

likewise remains positive for inflowing particles. Combining this with Equations (1.14),

(2.28), (2.40) and (2.44), we redefine Equation (2.43) as

Ė = −GΩ + Ṁ

(
1

2
v2
φ +

1

2
v2 +

γgUg
ρ

+
γrUr
ρ

+ Φ +
κ

ρv

dUr
dr

)
, (2.45)

in which now, the components of Equation (2.41) are given by

Ėg = −GΩ + Ṁ

(
1

2
v2
φ +

1

2
v2 +

γgUg
ρ

+ Φ

)
, (2.46)
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and

Ėr = Ṁ

(
γrUr
ρ

+
κ

ρv

dUr
dr

)
, (2.47)

where ρ is the mass density, v is the radial velocity (defined to be positive for inflow),

Ω is the angular velocity, G is the torque, H is the disk half-thickness, vφ = rΩ is the

azimuthal velocity, and κ is the spatial diffusion coefficient in the radial direction. Each

quantity is interpreted as a vertical average over the disk structure, and it is assumed that

the adiabatic indices γg and γr remain constant throughout the flow. Following LB05 and

LB07, we describe the variation of the spatial diffusion coefficient using

κ(r) = κ0v (r) rS

(
r

rS
− 1

)2

, (2.48)

where κ0 is a dimensionless constant. In this work, the torque G is eliminated between

Equations (2.30) and (2.45), which can then be combined with Equations (2.6), (2.7), (2.8),

and (2.9) to express the energy transport per unit mass as

ε ≡ Ė

Ṁ
=

1

2
v2 − 1

2

l2

r2
+
l0l

r2
+

a2
g

γg − 1
+

a2
r

γr − 1
+ Φ +

κ

ρv

dUr
dr

, (2.49)

where

l(r) ≡ r2Ω(r) , l0 ≡ J̇/Ṁ , (2.50)

respectively, represent the specific angular momentum at radius r and the (constant) angular

momentum transport per unit mass. Equation (2.49) is considered valid for both viscid and

inviscid flows.
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2.4 Inviscid Flow Equations

With viscosity neglected, the torque G= 0 and the specific angular momentum becomes

l(r) = l0 = constant . (2.51)

In the inviscid case, Equation (2.49) reduces to

ε =
1

2
v2 +

1

2

l2

r2
+

a2
g

γg − 1
+

a2
r

γr − 1
+ Φ +

κ

ρv

dUr
dr

, (2.52)

Since radiative losses are negligible in ADAF disks, in the absence of viscosity, the thermal

flow is purely adiabatic, and the gas pressure and density are related by

Pg = D0ρ
γg , (2.53)

where the parameter D0 remains constant, except at the location of the isothermal shock

if one exists in the flow. Combining Equation (2.53) with Equations (2.6), (2.7), (2.8) and

(2.9) defines the derivative of the particle energy density,

dUr
dr

=
ρ

γr (γr − 1)

[
da2

r

dr
+

a2
r

a2
g (γg − 1)

da2
g

dr

]
. (2.54)

This combined with Equation (2.52) redefines the energy transport rate in terms of the

sound speeds

ε =
1

2
v2 +

1

2

l2

r2
+

a2
g

γg − 1
+

a2
r

γr − 1
+ Φ +

κ

vγr (γr − 1)

[
da2

r

dr
+

a2
r

a2
g (γg − 1)

da2
g

dr

]
. (2.55)

71



It should be noted that Equation (2.55) purely defines the energy transport for Model 3,

however it does link back to Models 1 and 2. In the case of a non-diffusive, purely adiabatic

disk, κ = 0 in Equation (2.55), we get the energy transport rate for Model 2,

ε =
1

2
v2 +

1

2

l2

r2
+

a2
g

γg − 1
+

a2
r

γr − 1
+ Φ , (2.56)

and likewise for when ar → 0, we get back the energy transport rate defined for Model 1,

ε =
1

2
v2 +

1

2

l2

r2
+

a2
g

γg − 1
+ Φ . (2.57)

Determining the Entropy Parameter

In an adiabatic disk, the entropy of the thermal background gas is conserved. It is therefore

convenient to define the gas entropy parameter, Kg, which is related to the entropy per

particle, Sg, via (Becker & Le 2003)

Sg = k lnKg + c0 , (2.58)

where k is the Boltzmann constant and c0 is a constant that is independent of the state

of the gas. The entropy parameter is a constant specific to each Model, and acts as a

variable consistent throughout the accretion disk; one which can be used to simplify down

the dynamic equations. Normally this is derived from the mass transport rate (Equation

2.28), which when combined with Equation (2.21) becomes for Model 1,

Ṁ =
4πrρvag

ΩK
. (2.59)
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Likewise, by combining Equations (2.28) and (2.22), the mass transport rate for Models 2

and 3 becomes,

Ṁ =
4πrρv

ΩK

√(
γg
γr

)
a2
r + a2

g . (2.60)

Considering that we are looking at a system where pressure and mass density are both

functions of the radius, it is actually easier to not keep track of the mass density ρ. With

the disk being adiabatic we can use the polytropic relation (Equation 2.53) and can make

a substitution for the adiabatic sound speed (Equation 2.8),

a2
g = γgD0ρ

γg−1 . (2.61)

Note that in the case where there’s no diffusion but the fluid comprises both the thermal

and relativistic particles (Model 2), then it stands to reason that the non-thermal particles

would follow the same adiabatic properties as the thermal particles. Therefore, we can

argue that in this case the relativistic flow is purely adiabatic, and the nonthermal pressure

and density are related by

Pr = D1ρ
γr , (2.62)

where D1 is also a constant, except in the presence of a shock. Thus in that case we can

likewise define the adiabatic sound speed for the relativistic particles using Equations (2.8)

and (2.62) as

a2
r = γrD0ρ

γr−1 . (2.63)

Thus, by combining Equations (1.14), (2.22), (2.28) and (2.61), we obtain

Kg ≡ r3/2 (r − rS) va
2/(γg−1)
g

(
γg
γr
a2
r + a2

g

)1/2

, (2.64)

which is constant throughout an adiabatic disk, except at the location of an isothermal
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shock. It should be noted that Equation (2.64) is a generalization of the corresponding

result obtained by Becker & Le (2003) with the inclusion of the relativistic particle sound

speed ar. If ar → 0, we end up back with the familiar relation defined in Model 1,

Kg ≡ r3/2 (r − rS) va
(γg+1)/(γg−1)
g . (2.65)

By analogy with Kg, we also can define the entropy parameter for the relativistic particles

using Equations (1.14), (2.22), (2.28) and (2.63) to get

Kr ≡ r3/2 (r − rS) va2/(γr−1)
r

(
γg
γr
a2
r + a2

g

)1/2

. (2.66)

This quantity approaches a constant value near the horizon where the fluid becomes non-

diffusive and purely adiabatic. However at larger radii, Kr is not conserved, and will increase

due to spatial diffusion. Combining Equations (2.64) and (2.66) produces an entropy ratio

defined as

Kg

Kr
≡ a

2/(γg−1)
g

a
2/(γr−1)
r

. (2.67)

2.4.1 Wind Equation with Diffusion (Model 3)

The wind equation is derived as a method for analyzing the implications of the transonic

(critical) nature of the accretion flow. Previously it was a first-order differential equation

in terms of the flow velocity v (Model 1), which is computed using a simple root-finding

procedure. In this work, the wind equation is defined as the first-order differential equation

that governs the square of the thermal sound speed ag. It should be noted that one cannot

use a simple root-finding procedure to solve for the thermal sound speed ag as a function

of r, when diffusion is included, as it is an unstable computation. By first obtaining the
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steady-state radial momentum equation (Equation B.10)

v
dv

dr
= −1

ρ

dP

dr
− GM

(r − rS)2 +
l2

r3
, (2.68)

where here, P = Pg + Pr. Substituting in Equations (2.8) and (2.9), we can see that

dP

dr
=
dPg
dr

+
dPr
dr

=

(
a2
g

γg
+
a2
r

γr

)
dρ

dr
+

ρ

γg

da2
g

dr
+

ρ

γr

da2
r

dr
. (2.69)

We can also see from Equation (2.61) that,

dρ

dr
=

ρ

a2
g (γg − 1)

da2
g

dr
. (2.70)

Thus, after combining with Equation (2.70), Equation (2.69) simplifies down to,

dP

dr
=
ρ
(
a2
r + γra

2
g

)
γra2

g (γg − 1)

da2
g

dr
+

ρ

γr

da2
r

dr
. (2.71)

Therefore, by substituting in Equation (2.71), the steady-state radial momentum equation

for Model 3 (Equation 2.68) becomes

v
dv

dr
=
l2

r3
− GM

(r − rS)2 −
1

γr

da2
r

dr
−
(
a2
gγr + a2

r

)
a2
gγr (γg − 1)

da2
g

dr
, (2.72)
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then by taking the first-order derivative of the thermal entropy parameter (Equation 2.64)

−1

v

dv

dr
=

3

2r
+

1

(r − rS)
+

γg

2
(
a2
rγg + a2

gγr
) da2

r

dr
+

[
1

a2
g (γg − 1)

+
γr

2
(
a2
rγg + a2

gγr
)] da2

g

dr
,

(2.73)

Equations (2.72) and (2.73) can now be combined with Equation (2.55) to construct the

wind equation for the case with κ 6= 0.

da2
g

dr
=
N

D
, (2.74)

where the numerator and denominator functions (N and D) are given by

N =
v (γr − 1)

κ

[
v2 γgγr

2
(
a2
rγg + a2

gγr
) − 1

](
ε− 1

2
v2 − 1

2

l2

r2
−

a2
g

γg − 1
− a2

r

γr − 1
− Φ

)

+
l2

r3
− GM

(r − rS)2 + v2 (5r − 3rS)

2r (r − rS)
,

D = −

{
a2
rγg + γra

2
g (γg + 1)

2a2
g (γg − 1)

(
a2
rγg + a2

gγr
)} (v2 − a2

eff,κ

)
,

(2.75)

and aeff,κ denotes the effective sound speed for the diffusive model,

a2
eff,κ =

2a2
g

(
a2
rγg + a2

gγr
)

a2
rγg + γra2

g (γg + 1)
. (2.76)
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2.4.2 Wind Equation without Diffusion (Models 1 and 2)

Model 2

In the case of an adiabatic disk (κ = 0), where both the gas and relativistic particles

experience non-diffusive transonic flow (Model 2), the particle pressure Pr relates to the

density via Equation (2.62). Combining this with Equation (2.53) creates a symmetrical

relationship between the two sound speeds

da2
r

dr
=
a2
r (γr − 1)

a2
g (γg − 1)

da2
g

dr
, (2.77)

where now, when combined with Equations (2.72), (2.73) and Equation (2.57), the numer-

ator and denominator functions become

N =
l2

r3
− GM

(r − rS)2 + v2 (5r − 3rS)

2r (r − rS)
,

D = −

{
a2
gγr (γg + 1) + a2

rγg (γr + 1)

2
(
a2
rγg + a2

gγr
)
a2
g (γg − 1)

}(
v2 − a2

eff

)
,

(2.78)

with aeff defined as the effective sound speed for the purely adiabatic disk

a2
eff =

2
(
a2
rγg + a2

gγr
) (
a2
g + a2

r

)
a2
gγr (γg + 1) + a2

rγg (γr + 1)
. (2.79)

This becomes useful (later shown in § 2.5.1), when combined with the adiabatic critical

conditions, in solving for the thermal sound speed ag as a function of r using a simple

root-finding procedure. But it should be noted that this is only true for the non-diffusive

disk (Model 2).

77



Model 1

The wind equation derived for Model 1 is not much different for that Models 2 and 3, except

it follows in a derivative jump in the velocity v rather than the thermal sound speed ag. We

first start with the steady-state radial momentum equation (Equation 2.68), except here

the total pressure P → Pg,

v
dv

dr
= −1

ρ

dPg
dr
− GM

(r − rS)2 +
l2

r3
. (2.80)

It should be noted that this has already been solved for Model 3 in Equation (2.72), except

in Model 1, ar → 0, thus it reduces down to the radial momentum equation described in

LB05,

v
dv

dr
=
l2

r3
− GM

(r − rS)2 −
2ag

(γg − 1)

dag
dr

. (2.81)

It should be noted that Equation (2.81) can also be derived from the first-order derivative of

Equation (2.57). Then we take the first-order derivative of the thermal entropy parameter

(Equation 2.73) by setting ar → 0,

−1

v

dv

dr
=

3

2r
+

1

(r − rS)
+

(γg + 1)

(γg − 1)

1

ag

dag
dr

, (2.82)

which again, is exactly the relation defined in LB05 for Model 1. Combining Equations

(2.81) and (2.82) will obtain the wind equation for Model 1,

1

v

dv

dr
=
N

D
, (2.83)
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where the numerator and denominator functions are

N =
l2

r3
− GM

(r − rS)2 + v2 (5r − 3rS)

2r (r − rS)
, D =

2a2
g

(γg + 1)
− v2 , (2.84)

which are exactly like those derived in LB05. It should be noted that there is indeed a

correlation between the numerator and denominator functions derived for Models 1 and 2,

in which by setting ar = 0 in Equation (2.78), we get back the same function determined

in Equation (2.84) with a slight adjustment in the denominator function D determined by

Equation (2.82). We move forward in laying out all of the material that goes with creating

a global solution flow by first discussing the critical point analyses.

2.5 Critical Point Analysis

In the previous sections we have analyzed the properties of the wind equation for the diffusive

and non-diffusive cases with κ 6= 0 and κ = 0, respectively. Now we must understand the

implications of the transonic (critical) nature of the accretion flow in both cases. It should

be noted that when applied, we shall use natural gravitational units with GM = c = 1 and

rS = 2.

2.5.1 Critical Conditions for κ = 0 (Models 1 and 2)

Model 2

For the purposes of this section, we feel it pertinent to derive the critical point analysis for

Model 2 first, then show what was done for Model 1. As stated in LB04 and LB05, the

simultaneous vanishing of N and D (Equations 2.78) yields the critical conditions

l2

r3
c

− GM

(rc − rS)2 + v2
c

(5rc − 3rS)

2rc (rc − rS)
= 0 , (2.85)
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v2
c −

2
(
a2
rcγg + a2

gcγr
) (
a2
gc + a2

rc

)
a2
gcγr (γg + 1) + a2

rcγg (γr + 1)
= 0 , (2.86)

where vc, agc and arc denote the values of the velocity and the thermal and relativistic

sound speeds, respectively, at the critical radius, r = rc. From the denominator function D

in Equation (2.86) it can be seen that the critical velocity is symmetrically related to the

two sound speeds via

v2
c =

2
(
a2
rcγg + a2

gcγr
) (
a2
gc + a2

rc

)
a2
gcγr (γg + 1) + a2

rcγg (γr + 1)
. (2.87)

It can also be seen from the numerator function N in Equation (2.85) that the critical

velocity is a function of the critical radius rc and the specific angular momentum l,

v2
c =

2rc (rc − rS)

(5rc − 3rS)

[
GM

(rc − rS)2 −
l2

r3
c

]
. (2.88)

It’s interesting that Equation (2.88) is the same as Equation (23) of LB05. Note that if

arc → 0 in Equation (2.87), and is then combined with Equation (2.88), it will yield the

same relationship for the critical thermal sound speed as given by Equation (24) from LB05.

This confirms how this new ‘transitional’ model rebounds back to the previous models for a

non-diffusive disk, while also synchronizing with the newer analysis that yields to a diffusive

disk (see § 4).

This new approach does not allow for an elegant analytical solution for rc like the quartic

equation derived for Model 1, a thermal-based, inviscid disk (e.g. LB05, Das et al. 2001a).

But there are steps to remedy that, even in this transitional model, with a more numerical

approach. Starting with the energy transport rate (Equation 2.55) in the case where κ = 0,

and combining it with Equation (2.88), we can solve for the thermal sound speed at the
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critical radius, r = rc,

a2
gc = (γg − 1)

[
ε− 1

2

l2

r2
c

− a2
rc

γr − 1
+

GM

rc − rS
− rc (rc − rS)

(5rc − 3rS)

{
GM

(rc − rS)2 −
l2

r3
c

}]
. (2.89)

It serves to know that the entropy ratio in Equation (2.67) remains constant in an adiabatic

disk, even at the critical point,

Kgc

Krc
≡ a

2/(γg−1)
gc

a
2/(γr−1)
rc

. (2.90)

Note that in this model we assume that γg = 1.5 as an approximate equipartition between

the gas and magnetic pressures (e.g. Narayan et al. 1997), while γr = 4/3 for the relativistic

particles.

Combining Equations (2.89) and (2.90) yields a cubic function, in the form of the stan-

dard formula (e.g., Abramowitz & Stegun 1965), for the relativistic sound speed at the

critical point,

a3
rc +Na2

rc + P = 0 , (2.91)

where

N =
(γg − 1)

(γr − 1)

√
Krc

Kgc
,

P = − (γg − 1)

√
Krc

Kgc

{
ε− 1

2

l2

r2
c

+
GM

rc − rS
− rc (rc − rS)

(5rc − 3rS)

[
GM

(rc − rS)2 −
l2

r3
c

]}
.

(2.92)

Of the three possible solutions to this cubic function, only one is actually a real, valid

answer. Combining this solution with Equations (2.85) and (2.89) to the denominator

function D (Equation 2.86), we can numerically obtain three solutions for rc in terms of

the fundamental parameters ε, l, γg, γr, and Kgc/Krc. Here we refer to the roots using the

notation rc1, rc2, and rc3 in order of decreasing radius.
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Previous models have demonstrated that with the given parameters ε, l, and γg, only

one solution was viable for a shock or shock-free inviscid ADAF disk. The additional

parameters γr and Kgc/Krc opens up the possibility for multiple solutions to be viable,

as well as deciding the type of each critical point. For instance, depending on the values

of these parameters, a fourth solution rc4 remains possible; however this critical radius

always lies inside the event horizon and therefore is not physically relevant, whereas the

other three lie outside of the horizon. Previously, these critical point types would have

been determined by computing the two possible values for the derivative da2
g/dr at the

critical point via L’Hôpital’s rule to see if they were real or complex. Currently, a simple

root-finding method is more efficient.

This model is rather sensitive to the fundamental parameters, resulting in rc1 being ei-

ther a real or complex value. Based on the criteria (e.g. LB05, Abramowicz & Chakrabarti

1990), a complex rc1 is automatically an O-type critical point, which doesn’t yield a phys-

ically acceptable solution. However, if real, then it’s considered a physically acceptable

sonic point and remains an α-type critical point. Any accretion flow that passes through

this point goes through a shock transition below rc1, that is if it originated at a large dis-

tance. Then, the flow becomes subsonic and is required to pass through another α-type

critical point in order to become supersonic before entering the black hole, that is accord-

ing to Weinberg (1972). The critical point rc2 is a real value, however it was previously

considered an O-type because the two possible values for the derivative were determined

complex, and thus a non-physically acceptable solution. We likewise consider it as such in

this new analysis.

The final root rc3 remains a X-type critical point as it is a physically acceptable sonic

point due to its two real derivative values. It allows for a smooth, global, shock-free solution

to exist where the flow is transonic at rc3, and continues to be supersonic as it moves

towards the event horizon. Once rc3 is determined, then it can be relayed back into the

adjoining relations (Equations 2.87, 2.89, and 2.91) to find the corresponding conserved
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entropy parameter Kg at this critical point

Kgc ≡ r3/2
c (rc − rS) vca

2/(γg−1)
gc

(
γg
γr
a2
rc + a2

gc

)1/2

. (2.93)

The values for rc3 are used in transition when determining the transonic flow profiles for

the diffusive shock model, considering how similar the diffusive and non-diffusive profiles

are near the event horizon due to advection dominating over diffusion.

While Equations (2.53) and (2.62) remain valid for a purely adiabatic disk, they likewise

remain valid at the critical point (in terms of the sound speeds)

a2
gc = γgD0ρ

(γg−1)
c , a2

rc = γrD1ρ
(γr−1)
c . (2.94)

This combined with Equations (2.8), (2.9) and (2.53) yields a symmetrical, adiabatic relation

for the relativistic sound speed in terms of the thermal sound speed for a known critical

value

a2
r = a2

rc

(
a2
g

a2
gc

)(γr−1)/(γg−1)

. (2.95)

This can be applied back to Equations (2.55) and (2.64) to yield the energy transport rate

per unit mass in terms of the thermal sound speed a2
g,

ε =
1

2

l2

r2
+ Φ +

a2
g

γg − 1
+

a2
rc

γr − 1

(
a2
g

a2
gc

)(γr−1)/(γg−1)

+
K2
gc

2r3 (r − rS)2 a
4/(γg−1)
g

γg
γr
a2
rc

(
a2
g

a2
gc

)(γr−1)/(γg−1)

+ a2
g

−1

.

(2.96)

Equation (2.96) can be solved using a simple root-finding procedure for any value of the

fundamental parameters, which can then be applied in either a shock or shock-free case.
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Model 1

Just like in Model 2, the simultaneous vanishing of N and D in Equation (2.84) yields the

critical conditions,

l2

r3
c

− GM

(rc − rS)2 + v2
c

(5rc − 3rS)

2rc (rc − rS)
= 0 , (2.97)

2a2
gc

(γg + 1)
− v2

c = 0 , (2.98)

at the critical radius, r = rc. It can be seen in Equation (2.98) that there’s a direct

connection between the critical velocity vc and thermal sound speed agc,

v2
c =

2a2
gc

(γg + 1)
. (2.99)

Combining Equations (2.97) and (2.99) allows for agc to expressed explicitly as a function

of the critical radius rc,

a2
gc = (γg + 1)

[
GMr3

c − l2 (rc − rS)2

r2
c (rc − rS) (5rc − 3rS)

]
, (2.100)

which can then be substituted into Equation (2.99) to likewise find an explicit function for

vc in terms of rc,

v2
c = 2

[
GMr3

c − l2 (rc − rS)2

r2
c (rc − rS) (5rc − 3rS)

]
. (2.101)

Determining the critical points r̂c is done by looking at the energy transport equation

(Equation 2.57) at the critical point,

ε =
1

2
v2
c +

1

2

l2

r2
c

+
a2
gc

γg − 1
+ Φc , (2.102)
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where Φc = Φ(rc). Combining Equations (1.13), (2.100) and (2.100) to Equation (2.102),

the energy transport parameter ε can be expressed in terms of l, γg and rc,

ε =
1

2

l2

r2
c

− GM

(rc − rS)
+

2γg
(γg − 1)

[
GMr3

c − l2 (rc − rS)2

r2
c (rc − rS) (5rc − 3rS)

]
. (2.103)

Unlike Model 2, Equation (2.103) for Model 1 allows for a direct way to rewrite the expres-

sion into a quartic equation for rc, which is first expanded into terms like,

εr2
c (rc − rS) (5rc − 3rS) =

1

2
l2 (rc − rS) (5rc − 3rS)−GMr2

c (5rc − 3rS)

+
2γg

(γg − 1)

(
GMr3

c − l2 (rc − rS)2
)
,

(2.104)

which is then rewritten into the form (after applying natural gravitational units GM = c =

c1 and rS = 2),

N r4
c −Or3

c + Pr2
c −Qrc +R = 0 , (2.105)

where

N = 5ε , O = 16ε− 3 +
2

γg − 1

P = 12ε+
1

2

(
5− γg
γg − 1

)
l2 − 6 ,

Q =

(
8

γg − 1

)
l2, R =

(
2γg + 6

γg − 1

)
l2 .

(2.106)

Just like in Model 2, the roots are referred in the notation rc1, rc2, rc3, and rc4 in order of

decreasing radius. Unlike Model 2, these critical point types are determined by computing

the two possible values for the derivative da2
g/dr at the critical point via L’Hôpital’s rule

to see if they were real or complex. As discussed in Model 2 and LB05 regarding the

critical point criteria, rc4 lies inside the event horizon so it’s physically irrelevant; rc2 has
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two complex roots which yield a physically unacceptable solution, therefore it’s an O-type

critical point; rc1 is an α-type critical point, meaning that any accretion flow that passes

through this point must go through a shock transition below rc1; and finally rc3 is a X-type

critical point as it allows for a smooth, global, shock-free solution to exist where the flow is

transonic at rc3, and continues to be supersonic as it moves towards the event horizon.

2.5.2 Alternative Method for Smooth-Shock Flow

For a purely adiabatic disk, we can see from Equation (2.52) that the energy transport rate

per unit mass becomes

ε =
a2
g∞

γg − 1
+

a2
r∞

γr − 1
, r →∞ . (2.107)

If we adopt a ratio defined as T between the two sound speeds as r →∞,

T =
ar∞
ag∞

, (2.108)

the constant entropy ratio (Equation 2.67) can be redefined in terms of this ratio,

Kg

Kr
=

1

T 6a2
g∞

. (2.109)

Combining Equations (2.107), (2.108), and (2.109) yields the following relationship,

ε =
Kr

Kg

[
1

T 6 (γg − 1)
+

1

T 4 (γr − 1)

]
, (2.110)

which means that the T-ratio is highly dependent on the fundamental parameters ε, Kg/Kr

and the two adiabatic indices. Solving Equation (2.110) and combining the result with

Equations (2.107) and (2.108) will yield the asymptotic values for the thermal and relativis-

tic sound speeds, respectively, as r → ∞. These in turn can be combined with Equations
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(2.89) and (2.95), as r → ∞, to form another cubic function for arc (similar to Equation

(2.91)),

a3
rc +Na2

rc + P = 0 , (2.111)

where

N =
(γg − 1)

(γr − 1)

a3
r∞
a2
g∞

, O = 0 ,

P = − (γg − 1)
a3
r∞
a2
g∞

[
ε− 1

2

l2

r2
c

+
GM

rc − rS
− rc (rc − rS)

(5rc − 3rS)

{
GM

(rc − rS)2 −
l2

r3
c

}]
. (2.112)

Likewise, of the three possible solutions to this cubic function, only one is actually a real,

valid answer. The same process outlined in § 3.1 can then be implemented to solve for the

thermal sound speed ag(r). This approach becomes useful when solving for the smooth-

shock solutions for the diffusive and non-diffusive cases.

2.5.3 Critical Conditions for κ 6= 0 (Model 3)

In this paper we focus on using the transitional values determined near the horizon, and at

the inner rc3 critical point, since their profiles are rather similar near the horizon. These

values are used in order to compute the global profiles for the shocked disk in the diffusive

two-fluid model. But before we do so we must first determine its own critical values. Here,

the simultaneous vanishing of N and D yields the critical conditions

vc (γr − 1)

κc

[
γgγrv

2
c

2
(
a2
rcγg + a2

gcγr
) − 1

](
ε− 1

2
v2
c −

1

2

l2

r2
c

−
a2
gc

γg − 1
− a2

rc

γr − 1
− Φc

)

+
l2

r3
c

− GM

(rc − rS)2 +
(5rc − 3rS) v2

c

2rc (rc − rS)
= 0 ,

(2.113)

v2
c −

2a2
gc

(
a2
rcγg + a2

gcγr
)

a2
rcγg + γra2

gc (γg + 1)
= 0 , (2.114)
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where κc denotes the diffusion coefficient (Equation 2.48) at the critical radius, r = rc. From

the denominator function D in Equation (2.114), it can be seen that the critical velocity is

related to the two sound speeds via

v2
c =

2a2
gc

(
γga

2
rc + γra

2
gc

)
γga2

rc + γra2
gc (γg + 1)

, (2.115)

which is slightly different from that in the non-diffusive model (Equation 2.93).

Even though the critical point rc was solved analytically in previous work, in this new

model there is no clear way to do so with the new sets of equations. If a critical radius is

known, then these new relations can be applied to numerically solve for the sound speeds agc

and arc at the critical point. Combining Equations (2.93) and (2.114) will yield an analytical

function for a2
rc as a function of a2

gc. This can then be combined with Equation (2.113) to

yield two possible numerical results for a2
gc, where only one is a real physical quantity. From

there, the other critical quantities arc and vc (Equation 2.115) can be determined for the

diffusive two-fluid model.

2.6 Isothermal Shock Model

Moving forward into the core of the thesis, it should be noted that like the primary goal of

LB05, we too are interested in analyzing the acceleration of relativistic particles due to the

presence of a standing, isothermal shock in an accretion disk. The focus in Model 1 was

on flows passing smoothly through the outer critical radius rc1, and then experiencing a

discontinuous velocity jump at the shock location r∗. Here, in Model 3, we are interested in

flows passing smoothly through the inner critical radius rc3 first, and then moving outward

until encountering that velocity discontinuity at r∗. In this new method, we too need to

understand how the structure of the disk responds to the presence of a shock, in order

for any self-consistent global model to form. This means also analyzing the shock jump

conditions using the standard fluid dynamical conservation equations.
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In all three Models, we designate ε− and ε+ as the values of the energy transport

parameter ε on the upstream and downstream sides of the isothermal shock at r = r∗,

respectively. Here, ε− > ε+ as a result of energy being lost through the upper and lower

surfaces of the disk at the shock location. In Model 1, the flow moved inward toward the

event horizon, in which the drop in ε at the shock had a way of altering the flow’s transonic

structure in the post-shock region. In Model 3, the jump in ε at the shock will alter the

transonic structure of the flow in the pre-shock region. In Model 1, the post-shock flow

originally had to pass through an inner critical point to become supersonic before crossing

the event horizon. This value was different from the inner critical point calculated for a

smooth-shock transonic flow.

In Model 3, the pre-shock flow has to pass through a new outer critical radius (not

one calculated from the downstream energy transport parameter ε+) in order to become

supersonic further out along the disk. This can be done using the upstream value of the

energy transport parameter ε−. It’s required that c2 + ε+ > 0 since the total energy inflow

rate across the horizon, which includes the rest mass contribution, has to be positive as no

energy can escape from the black hole. In determining the isothermal shock jump conditions,

we apply the same assumptions as stated in LB05.

Model 2 follows the same logistics as Model 1 (with the added particle pressure), however

we found it to be a rather unrealistic model since the relativistic particle pressure should not

remain adiabatic further out along the disk, even before the shock (for inflowing particles).

Logistically it makes sense to assume that Model 2 is applicable near the event horizon,

as all of the angular momentum has been lost and the plasma is advected onto the black

hole. In proceeding forward, the isothermal shock jump conditions will be determined for

Models 1 and 3, though for the most part these conditions for Model 3 are equivalent also

for Model 2.
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2.6.1 Isothermal Shock Jump Conditions

Adopting the premise that the escape of the relativistic particles from the disk results in

negligible mass loss (due to the Lorentz factor of the escaping particles being greater than

unity), essentially the mass accretion rate Ṁ is conserved as the gas in the disk crosses the

shock as stated via

∆Ṁ ≡ lim
ε→0

Ṁ (r∗ − ε)− Ṁ (r∗ + ε) = 0 , (2.116)

where ∆ defines the difference between any post- and pre-shock quantities. We assume that

the outflow produces no torque on the disk, and therefore the specific angular momentum

l ≡ J̇/Ṁ is conserved across the shock. Hence we find that

∆J̇ = 0 . (2.117)

Likewise, the radial momentum transport rate for Models 2 and 3

İ ≡ 4πrH
(
Pg + Pr + ρv2

)
, (2.118)

and Model 1

İ ≡ 4πrH
(
Pg + ρv2

)
, (2.119)

is also conserved across the shock,

∆İ = 0 . (2.120)

Combining Equations (2.8), (2.9), (2.22), (2.28), and (2.52) with (2.116), and (2.120)

yields the following jump relationships for Models 2 and 3

(
γg
γr
a2
r+ + a2

g+

)1/2

ρ+v+ =

(
γg
γr
a2
r− + a2

g−

)1/2

ρ−v− , (2.121)
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a2
g+

v+
+
γga

2
r+

γrv+
+ γgv+ =

a2
g−
v−

+
γga

2
r−

γrv−
+ γgv− , (2.122)

with the subscripts (minus and plus) defining those measured quantities, respectively, just

upstream and downstream from the shock. The same approach can likewise be done for

Model 1 using Equation (2.21), though really it’s the same as setting ar → 0 in Equations

(2.121) and (2.122),

ag+ρ+v+ = ag−ρ−v− , (2.123)

a2
g+

v+
+ γgv+ =

a2
g−
v−

+ γgv− . (2.124)

In the case of an isothermal shock, which is our focus here, we have

ag+ = ag− , (2.125)

and therefore Equations (2.121) and (2.122) for Models 2 and 3 reduce to

(
γg
γr
a2
r+ + a2

g−

)1/2

ρ+v+ =

(
γg
γr
a2
r− + a2

g−

)1/2

ρ−v− , (2.126)

a2
g−
v+

+
γga

2
r+

γrv+
+ γgv+ =

a2
g−
v−

+
γga

2
r−

γrv−
+ γgv− , (2.127)

and likewise Equations (2.123) and (2.124) for Model 1,

ρ+v+ = ρ−v− , (2.128)

a2
g−
v+

+ γgv+ =
a2
g−
v−

+ γgv− . (2.129)

From Equation (2.126), we can determine the shock compression ratio R∗ of Models 2 and
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3,

R∗ =
ρ+

ρ−
=
v−
v+

(
γg
γr
a2
r− + a2

g−

)1/2

(
γg
γr
a2
r+ + a2

g−

)1/2
> 1 , (2.130)

and likewise Equation (2.128) for Model 1,

R∗ =
ρ+

ρ−
=
v−
v+

> 1 . (2.131)

The compression ratios defined in Equations (2.130) and (2.131) can actually be redefined

in terms of the are the upstream Mach numbers associated with the thermal gas Mg− and

relativistic particles Mr− that’s incident of the shock,

M≡ v−
ag−

, M≡ v−
ar−

, (2.132)

like so for Model 1 by combining Equations (2.128), (2.129) and (2.132),

R∗ =
ρ+

ρ−
= γgM2

g− > 1 . (2.133)

Though for Models 2 and 3, in this more complicated system we first need to determine the

velocity jump ratio (v+/v−, see § 2.6.2) before we can proceed and compare the differences

between the three Models.

Moving forward, we can also determine the isothermal entropy jump for the gas in

Models 2 and 3 from Equation (2.64) at r = r∗

Kg+

Kg−
=
v+

v−

(
γg
γr
a2
r+ + a2

g−

)1/2

(
γg
γr
a2
r− + a2

g−

)1/2
< 1 . (2.134)
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Notice that even with the inclusion of relativistic particles, the gas density increases across

the shock, and thermal entropy is lost from the disk at the shock location due to parti-

cles escaping to form the jet (outflow), as expected. Whereas for Model 1, in which the

isothermal energy jump can be found by setting ar → 0 in Equation (2.134),

Kg+

Kg−
=
v+

v−
< 1 , (2.135)

it can be seen that the jump is directly equal to the velocity jump ratio. This remains an

interesting find because it suggests that in Models 2 and 3, the entropy jump is directly equal

to the inverse of the compression ratio (Equation 2.130), but not the velocity jump ratio.

Whereas for Model 1, the entropy jump is not only equal to the inverse of the compression

ratio (Equation 2.131) but also the velocity jump ratio.

The relativistic energy density Ur(r) is a continuous function of radius r throughout the

disk, meaning at the shock jump this value is conserved, ∆Ur = 0. This likewise means that

the particle pressure is also conserved, ∆Pr = 0. If the energy density Ur is not continuous

at the shock location, then an infinite diffusive flux will be generated. Combining this

relation with Equations (2.6), (2.7), (2.8), (2.9), (2.130) and (2.134) shows

Kg+

Kg−
=
a2
r+

a2
r−

, (2.136)

stating that the thermal entropy jump is dependent on the squared sound speed jump for

the relativistic particles. This further shows that in a thermally-dominant single-fluid disk

(Model 1), the isothermal entropy jump ratio is equivalent to the inverse compression ratio

and the velocity jump ratio. However with the introduction of relativistic particle pressure

as it is in the two-fluid model (Models 2 and 3), the entropy ratio is still equivalent to the

inverse compression ratio, and also now the squared jump in the relativistic sounds speeds,

but not the velocity jump ratio. This suggests (as we will explore in the next section) that
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the velocity jump ratio has a more complicated impact on the system than was done in

Model 1.

2.6.2 Velocity Shock Jump

It is worth discussing the implications of these newly derived jump conditions. From Equa-

tion (2.127) for Models 2 and 3, we can derive the downstream relativistic sound speed in

terms of the upstream parameters

a2
r+ =

γr
γg

(
v+

v−
− 1

)
a2
g− +

v+

v−
a2
r− + γrv+ (v− − v+) . (2.137)

This relationship is rather symmetrical between the upstream and downstream values, which

can be seen for the upstream relativistic sound speed

a2
r− =

γr
γg

(
v−
v+
− 1

)
a2
g+ +

v−
v+
a2
r+ + γrv− (v+ − v−) . (2.138)

Combining Equations (2.134), (2.136), and (2.137), one obtains a quartic equation for the

isothermal velocity jump ratio Q = v+/v−. One root of the quartic equation is the trivial

upstream root, Q = 1. We can therefore divide the quartic equation by the factor (Q− 1)

to obtain the cubic equation,

Q3F +Q2H+QI + J = 0 , (2.139)
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where, in terms of the upstream Mach numbers (Equation 2.132)

F = 1 + γ−1
r M−2

r− −
(
γrM2

r− + γgM2
g−
)−1

,

H = −2γ−1
g M−2

g− − γ−2
r M−4

r−
(
1 + γrM2

r−
)2

,

I = γ−2
g M−4

g−
[
2γgM2

g−
(
1 + γ−1

r M−2
r−
)

+ 1
]
,

J = −γ−2
g M−4

g− ,

(2.140)

with

Mg− ≡
v−
ag−

, Mr− ≡
v−
ar−

. (2.141)

However, only one of the three solutions is physically valid.

The three solutions to the cubic function are given as,

Q1 = S + T − 1

3

H
F
, (2.142)

Q2 = −1

2
(S + T )− 1

3

H
F

+
1

2
i
√

3 (S − T ) , (2.143)

Q3 = −1

2
(S + T )− 1

3

H
F
− 1

2
i
√

3 (S − T ) , (2.144)

where

S =
(
X +

√
W 3 +X2

)1/3

T =
(
X −

√
W 3 +X2

)1/3

(2.145)
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and

W =
1

9

(
3I
F
− H

2

F2

)
,

X =
1

54

(
9HI
F2
− 27J
F
− 2H3

F3

)
.

(2.146)

For an arbitrary set of parameters (see e.g. Figure 2.7 and Table 2.1), the solutions show

that Q1 is unphysical since v+ > v−, therefore it is invalid. The two roots Q2 and Q3 are

acceptable physical solutions because v+ < v−. However, when these roots are substituted

into Equation (2.137), it can be seen that a2
r+ < 0 for Q2 and a2

r+ > 0 for Q3. Therefore,

since a2
r > 0, this analysis determines that Q3 (Equation 2.144) is the only physically valid

solution for the velocity jump ratio in Models 2 and 3. For Model 1, the velocity jump ratio

has already been determined via Equations (2.131) and (2.133),

v+

v−
= γ−1

g M−2
g− < 1 . (2.147)

Based on the result given in Equation (2.147), we can likewise expect that the velocity jump

ratio for Model 3 (Equation 2.144) will also be less than one.

2.6.3 Analyzing the Jump Ratios

This leads back into analyzing the difference between the compression ratios, as well as the

other jump ratios, for all three Models that was touched on in § 2.6.1. For an arbitrary set

of values (Table 2.1), we can see that the velocity jump ratios Q are about equal between

Model 1 (Equation 2.147) and Models 2 and 3 (Equation 2.144). This suggests that there’s

a balance going on between the other jump ratios. As determined in § 2.6.1, the isothermal

entropy jump ratio for Model 1 is the same as its velocity jump. For Models 2 and 3, we

can actually redefine Equation (2.64) in terms of the upstream Mach numbers (Equation
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Figure 2.7: A depiction of the cubic function (Equation 2.140), solid line), the roots of
which determine the shock velocity jump Q = v+/v−, for a typical set of the parameters
Mg−, Mr−, and v−. See the discussion in the text.
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Table 2.1: Comparison between the three Models for the velocity jump ratios (Q = v+/v−),
the compression ratios (ρ+/ρ−), and the isothermal entropy jump ratios (Kg+/Kg−) for an
arbitrary set of values: v− = 0.3, Mg− = 1.125 and Mr− = 3.0.

Model 1 Models 2 and 3

Q = v+/v− 0.5267 0.5236
ρ+/ρ− 1.8984 2.0122

Kg+/Kg− 0.5267 0.4970

2.132),

Kg+

Kg−
= Q

(
γgQ

2M−2
r+ + γrM−2

g−
)1/2(

γgM−2
r− + γrM−2

g−
)1/2 < 1 (2.148)

in order to see that the jump ratio is slightly less in Model 3 when compared to Model 1.

This indicates that there’s less entropy being lost from the disk at the shock location, due

to particles escaping to form the jet (or outflow), than there is in Model 1.

This finally leads to comparing the compression ratios for Model 1 (Equation 2.131),

and Models 2 and 3 (Equation 2.130, which is simply the inverse of Equation 2.148). It can

be seen in Table 2.1 that the compression ratio is higher for Model 3 than it is more Model

1. This indicates that introducing relativistic particle pressure into the dynamical structure

makes the compression ratio larger. The relationship between the compression ratio and

the outflows has been discussed in Das et al. (2001a, 2001b), in which a low compression

ratio results in a low outflow rate, and likewise a higher compression ratio results in a high

outflow rate. Of course this was applied to the single-fluid model (or Model 1), but for this

work it acts as a viable metric to use. Further discussion on this relationship and how it

applies to Model 3 will be done more in Ch. 4, in which the model applications are done.

Before we move into analyzing the energy jump conditions, we should remind the reader

that our new two-fluid model is analogous to the classic supernova-driven cosmic-ray (CR)

acceleration model. Here we would like to point out that we will be able to verify that the
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particle Green’s function, fG, given as

fG ∝ E−λCR , (2.149)

is proportional to a power relation between the particle energy E and the cosmic-ray spectral

index, λCR, which is indicative of first-order Fermi acceleration. The particle energy density,

Ur, relates to the Green’s function via the relation,

Ur =

∫ ∞
E0

fGE
3dE , (2.150)

which when combined with Equation (2.149) becomes,

Ur ∝
E4−λCR

4− λCR

∣∣∣∣∞
E0

. (2.151)

In the classic CR case, the cosmic-ray spectral index, λCR, relates to the compression ratio

R∗ via (Blandford & Ostriker 1978),

λCR =
3R∗
R∗ − 1

. (2.152)

Thus, we can see from Equations (2.151) and (2.152) that R∗ < 4 in order to avoid a

divergent CR energy density since λCR > 4. Otherwise, if λCR < 4, then Ur → ∞. It

should be noted that the numerical value obtained from λCR is considered a rough estimate

from the CR analogy and is more applicable to Model 1, but it is not properly applicable

to Model 3.
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2.6.4 Isothermal Shock Model: Energy

In the dynamical model considered by LB05 (Model 1), all of the terms in the energy

transport rate Ė reflected contributions due the thermal background gas. However, in the

situation considered in Model 3, both the relativistic particles and the gas contribute to

Ė. Hence we need to develop energy jump conditions for each of these two populations. It

should be noted that Model 2 likewise requires both contributions, however as we proceed

through this section it will be clearer why we did not move forward with building it a shock

model. According to Equation (2.41), we have

Ė = Ėg + Ėr , (2.153)

where the energy transport rates for the particles and the gas can be rewritten in terms of

the sound speeds as (cf. Equations (2.46) and (2.47))

Ėg = Ṁ

(
1

2
v2 +

1

2

l2

r2
+ Φ +

a2
g

γg − 1

)
, (2.154)

and

Ėr = Ṁ

(
a2
r

γr − 1
+

κ

ρv

dUr
dr

)
. (2.155)

The jump in the energy transport rate can be written as

∆Ė = ∆Ėg + ∆Ėr , (2.156)

where

∆Ėg = Ṁ

(
1

2
∆v2 +

∆a2
g

γg − 1

)
, (2.157)
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and

∆Ėr = Ṁ

(
∆a2

r

γr − 1
+ ∆

[
κ

ρv

dUr
dr

])
. (2.158)

In an isothermal shock, ∆a2
g = 0, and therefore Equation (2.157) reduces to

∆Ėg =
1

2
Ṁ∆v2 . (2.159)

We assume that the energy lost by the background thermal flow provides the kinetic lumi-

nosity Ljet that powers the outflow. This implies that

Ljet = −∆Ėg ∝ ergs s−1 , (2.160)

which also implies that the kinetic luminosity is equal to the energy of the escaped particles,

Lesc = Ljet , (2.161)

since it’s assumed that the relativistic particles are what populate the outflow. Energy lost

from the jump in the gas becomes the energy that escapes the disk to form the jet

Lshock = Lesc = Ljet , (2.162)

which signifies that (cf. Equation 2.158)

∆Ėr = 0 , ∆

[
κ

ρv

dUr
dr

]
= − ∆a2

r

γr − 1
. (2.163)

Therefore, we can write the total jump in the energy transport rate (Equation 2.156) as

∆Ė = ∆Ėg =
1

2
Ṁ∆v2 , (2.164)
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or more specifically,

∆ε ≡ ε+ − ε− =
v2

+ − v2
−

2
. (2.165)

It should be noted that Equation (2.165) is valid for both Models 1 and 3, but not for

Model 2. This can be seen in Equation (2.158), in which since κ→ 0, we are left with the

following relation,

∆Ėr = Ṁ
∆a2

r

γr − 1
. (2.166)

This new relation invalidates Equation (2.163) since the relativistic particle pressure has to

be diffusively radiated out in order for the energy lost from the jump in the gas to become

the relativistic jets, which it is considered in Model 1. Therefore, Equation (2.165) would

have to incorporate the change in ar, which for a purely adiabatic disk could easily produce

a shock profile like with what was done in Model 1. However, this shock profile would be

considered ‘fictitious’, and thus not a valid physical model structure to pursue.

2.6.5 Shock Point Analysis

We know from LB05 that for a shock to exist in the flow, it must be located between two

critical points and must satisfy the jump conditions given by Equations (2.137), (2.140),

and (2.165). Below summarizes the procedure for determining the disk/shock structure for

Models 1 and 3.

Model 3

The process begins by selecting the values for the fundamental parameters ε+, l, κ0, Kg/Kr,

γg and γr. We remind the reader that γg = 1.5 and γr = 4/3. Determining the shock

location is first done by computing the inner critical point location rc3 from the adiabatic

model outlined in § 2.6. According to GR, the plasma flow must be adiabatic near the

horizon, because the flow velocity v → c, in which case diffusion becomes negligible. Hence

the diffusive velocity profile (Model 3) and the non-diffusive profile (Model 2) must be
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identical near the horizon, and therefore Model 2 serves as an ideal starting point for the

Model 3 calculations. The values associated with the critical velocity vc3, the critical sound

speeds agc and arc, and the critical entropy for the gas Kgc, are calculated next. The profile

for the thermal sound speed ag(r) in the post-shock region of the adiabatic model is then

calculated up to slightly above rc3 using a root-finding procedure based on Equation (2.96).

The relativistic sound speed ar(r) can likewise be calculated using Equation (2.95). From

this, we have everything to determine the starting values for v, ag and ar at r = 2.1 in the

adiabatic model, which carry over into the diffusive model, along with Kgc.

Starting at r = 2.1, the sound speed profiles ag(r) and ar(r) are determined by numer-

ically integrating Equation (2.74) up to rc3. The associated values for the critical sound

speeds agc and arc, and the critical velocity vc are calculated using Equations (2.113),

(2.114) and (2.115). Integrating forward requires computing the two possible values for

the derivative da2
g/dr at the inner critical point using L’Hôpital’s rule. Since the flow is

adiabatic in the post-shock region,

Kg+ = Kc3 . (2.167)

The next step is determining a good value for the shock radius r∗, and calculating the

associated pre-shock values for v and ar. This is accomplished by implementing Equations

(2.139) and (2.165) with a particular value of r∗, and calculating the associated upstream

values for the thermal entropy Kg−, velocity v−, and sound speeds ag− and ar−. The

process for integrating forward is repeated until an outer critical point rc1 is determined,

in which case then implementing L’Hôpita’s rule is done to progress pass this location and

outward along the disk.

This in-depth outward integration approach is reiterated for a varying ε+ until a good

outer critical point is determined. For any given input parameters, the outer critical point

can only go out so far before the integration becomes unstable. Consequently, this point

also agrees with the N and D functions (Equation 2.75), which cross zero as expected.
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Subsequently, the corresponding ε− determined from the jump conditions for a particular

l, agrees with the parameter space outlined in LB05 for Model 1 as well as that for Model 2

(see Figure 2.8). The topology for Model 2 follows the same criteria as outlined by LB05 for

Model 1, it’s just interesting to note that with the inclusion of relativistic particle pressure,

the parameter space shifts noticeably. The analysis of the shock location discussed above

allows us to compute the structure of shocked disk solutions for a given set of parameters

ε+, l, κ0, Kg/Kr, and γg and γr. The dynamical results derived in this section are then

used in Ch. 4 to model the outflows observed in M87 and Sgr A* .

Model 1

The process defined for Model 1 is nearly identical to that in Model 3, but in reverse

and with fewer starting parameters. Here, we start with the fundamental parameters ε−

and l, and then compute the outer critical point location rc1 from the steps mentioned in

§ 2.6. From there, after determining the associated critical velocity vc1 and thermal sound

speed agc, a Wronskian method is used to determine the correct shock location in order to

calculate (via a simple root finding procedure) the correct inner critical point rc3. Once

those associated critical values are determined, then the profile can integrate towards the

event horizon at r = 2.001. This process for a smooth-shock solution is more simple and

relies just knowing the upstream energy transport value ε−, as well as the specific angular

momentum l, in order to calculate the inner critical point rc3 and the overall profile.

This chapter closes here in which we move forward into the steady-state particle ac-

celeration by analyzing/deriving the dynamical transport equation as well as the particle

distribution function with associated eigenvalues and eigenfunctions.
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Figure 2.8: Similar to Figure 2 of LB05: plot of the (ε−, l) parameter space of an ADAF
disk with γg = 1.5 and γr = 4/3 for both Model 1 (LB05, black lines) and Model 2 (red

and blue lines). The blue lines represent the parameter space in Model 2 with T = 0.3 in
Equation (2.110), and T = 0.5 for the red lines. The layout is such that only smooth flows
exist in region I, only smooth flows exist, and both shocked and smooth solutions remain
possible in regions II and III. In region IV in which l > lmax, no steady state dynamical
solution can be obtained.
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Chapter 3: Theory: Steady State Particle Acceleration

One of the goals in this thesis is to analyze the transport and acceleration of relativistic

particles (electrons) in a disk governed by the two-fluid dynamical model developed (Model

3) in this work. The particle transport model considered here includes spatial diffusion,

Fermi energization, advection and particle escape. From this transport equation, as well as

the dynamical profiles outlined in the previous sections, we’ll be able to analyze the Green’s

function fG (E, r) in the disk. Overall, this is very similar to the transport formalism

outlined in LB05 for the single-fluid model (Model 1). However, from the examples provided

in the previous sections on how elements of the dynamical structure change in the two-fluid

model, we too need to reexamine some of the fundamentals described in LB05 to compensate

for the inclusion of relativistic particle pressure.

3.1 Dynamical Transport Equation

The particle transport formalism used in this work is outlined in § 5 of LB05, which includes

advection, spatial diffusion, first-order Fermi acceleration, and relativistic escape particles.

We’ve adopted the same simple, one-dimensional radial (r) model for the spatial transport,

which uses the test particle approximation and assumes that the isothermal shock radius is

where the injection of the seed particles and escape of the accelerated particles occur. This

allows for a connection to exist between the jump in the relativistic energy flux and the

energy radiated away by the escaping particles, at the shock location. Thus like in LB05 (as

well as LB07), we too are essentially maintaining self-consistency between the dynamical

and transport calculations.

This work focuses on the particle Green’s function, fG (E0, E, r∗, r), which is a repre-

sentation of the particle distribution resulting from the injection of Ṅ0 particles per second,
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containing energy E0, from a source located at the shock radius, r = r∗, and it satisfies this

steady-state transport equation (Becker 1992)

∂fG

∂t
= 0 = −~∇ · ~F − 1

3E2

∂

∂E

(
E3~v · ~∇fG

)
+ ḟsource − ḟesc . (3.1)

It should be noted that integrating Equation (3.1) with
∫∞

0 4πE3dE, without the source or

escape terms, achieves Equation (2.38, see Appendix E for further details). The source and

escape terms are given by

ḟsource =
Ṅ0δ (E − E0) δ (r − r∗)

(4πE0)2 r∗H∗
, ḟesc = A0cδ (r − r∗) fG , (3.2)

the specific flux ~F is evaluated using

~F = −κ~∇fG −
~vE

3

∂fG

∂E
, (3.3)

and the quantities E signifies the particle energy, H∗ ≡ H (r∗) the disk half-thickness at the

shock location, and A0 as the dimensionless parameter that determines the rate at which

particles escape through the surface of the disk at the shock location (c.f. Appendix D). It

should be noted that the presence of the δ-functions given in Equation (3.2) indicate that

the particle escape and injection are localized to the shock radius.

The alternative form of the Green’s function is found by combining Equations (3.1) and

(3.3),

~v · ~∇fG =
~∇ · ~v

3
E
∂fG

∂E
+ ~∇ ·

(
κ~∇fG

)
+ ḟsource − ḟesc , (3.4)

where here, the left-hand side is defined as the comoving (advective) time derivative. On

the right-hand side, respectively, are the terms for first-order Fermi acceleration, spatial

diffusion, and the particle source and escape from the disk at the shock location. It should
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be noted that Equation (3.4) only contains the first-order Fermi acceleration of relativistic

particles at a standing shock in an accretion disk. It’s possible for second-order Fermi

processes to occur in the flow due to MHD turbulence (e.g., Schlickeiser 1989a, 1989b;

Subramanian et al. 1999), but it’s ignored here. Considering cylindrical and azimuthal

symmetries, Equation (3.4) can be combined with Equation (3.2) to express the steady

state transport equation as,

vr
∂fG

∂r
+ vz

∂fG

∂z
− 1

3

[
1

r

∂

∂r
(rvr) +

dvz
dz

]
E
∂fG

∂E
− 1

r

∂

∂r

(
rκ
∂fG

∂r

)
− ∂

∂z

(
κ
∂fG

∂z

)

=
Ṅ0δ (E − E0) δ (r − r∗)

(4πE0)2 r∗H∗
−A0cδ (r − r∗) fG ,

(3.5)

where the vertical variation that occurs with the velocity component vz is dealt with in

Appendix C, in which the transport equation is vertically integrated. Considering the focus

in this work is on the radial variations in the disk, thus we obtain the radial transport

equation used in this work,

Hvr
∂fG

∂r
=

1

3r

∂

∂r
(rHvr)E

∂fG

∂E
+

1

r

∂

∂r

(
rHκ

∂fG

∂r

)
+
Ṅ0δ (E − E0) δ (r − r∗)

(4πE0)2 r∗

−A0cH∗δ (r − r∗) fG ,

(3.6)

where v = −vr for positive inflow. The quantities fG, vr, H and κ are now considered

vertically averaged.

3.2 Deriving the Energy Moments

The Green’s function is also related to the total number and energy densities of the rela-

tivistic particles, denoted by nr and Ur, respectively, via

nr (r) =

∫ ∞
0

4πE2fGdE, Ur (r) =

∫ ∞
0

4πE3fGdE , (3.7)
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which constitute to the normalization of fG. However, these can be generalized in terms of

the energy moments of the Green’s function, In (r), defined as

In (r) ≡
∫ ∞

0
4πEnfGdE , (3.8)

where essentially nr (r) = I2 (r) and Ur (r) = I3 (r). If we were to operate Equation (3.8)

with
∫∞

0 4πEndE and integrate the parts once, the differential equation for In becomes

Hvr
∂In
∂r

= −
(
n+ 1

3

)
In
r

∂

∂r
(rHvr) +

1

r

∂

∂r

(
rHκ

∂In
∂r

)

+
Ṅ0E

n−2
0 δ (r − r∗)

4πr∗
−A0cH∗Inδ (r − r∗) .

(3.9)

We can see from Equation (3.9) that the vertically integrated transport equation for the

total relativistic particle density nr (r) = I2 (r) is

Hvr
dnr
dr

= −nr
r

d

dr
(rHvr)+

1

r

d

dr

(
rHκ

dnr
dr

)
+
Ṅ0δ (r − r∗)

4πr∗
−A0cH∗nr∗δ (r − r∗) , (3.10)

and for the energy density Ur (r) = I3 (r), upon substitution with γr = 4/3,

Hvr
dUr
dr

= −γrUr
r

d

dr
(rHvr) +

1

r

d

dr

(
rHκ

dUr
dr

)

+
Ṅ0E0δ (r − r∗)

4πr∗
−A0cH∗Ur∗δ (r − r∗) .

(3.11)

It should be noted that Equations (3.10) and (3.11) are valid for both Models 1 and 3, as

they are both applicable, and Equation (3.11) is actually equal to the first-order derivative

of the energy transport rate per unit mass (Equation 2.55) for Model 3. Equation (3.9) can
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also be rewritten in the flux conservation form,

dGn
dr

= 4πrH

[(
2− n

3

)
v
dIn
dr

+
Ṅ0E

n−2
0 δ (r − r∗)
4πr∗H∗

−A0cδ (r − r∗) In

]
, (3.12)

where

Gn = 4πrHFn (3.13)

represents the rate of transport of the nth moment, and

Fn ≡ −
(
n+ 1

3

)
vIn − κ

dIn
dr

, (3.14)

denotes the flux Fn of the nth moment, naturally. Integrating Equation (3.12) around the

shock location r = r∗ yields,

∆Ġn = −Ṅ0E
n−2
0 + 4πr∗H∗A0cIn∗ . (3.15)

The global solution for the energy moments In(r) is expressed as

In (r) =


AQI (r) , r > r∗

BQII (r) , r < r∗

(3.16)

where A and B are defined as normalization constants, and the functions QI(r) and QII(r)

satisfy the homogeneous differential equation (via Equation 3.9),

Hvr
dQ

dr
= −

(
n+ 1

3

)
Q

r

d

dr
(rHvr) +

1

r

d

dr

(
rHκ

dQ

dr

)
, (3.17)
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with the boundary conditions (which are related to the asymptotic forms given in § 3.3),

QI (rout) = C0 + C1

(
rout

rS

)−1

, QII (rin) =

(
rin

rS
− 1

)−(n+1)/(3γg+3)

, (3.18)

where rin and rout denote, respectively, the radii at which the inner and outer boundary

conditions are applied, and the constants C0 and C1 have yet to be determined. By requiring

that the energy moments are conserved through the shock ∆In = 0, and operating 4πrH

to Equation (3.14) at the shock location r = r∗,

∆Ġn = −4πr∗∆

[
n+ 1

3
HvIn +Hκ

dIn
dr

]
, (3.19)

these constants can be calculated generally by combining Equations (3.15) and (3.19),

A = B
QII

QI

∣∣∣∣
r=r∗

, (3.20)

B =
Ṅ0E

n−2
0

4πr∗
QI

[
(n+ 1)

3
(H+v+ −H−v−)QIQII −H−κ−QIIQ

′
I

+H+κ+QIQ
′
II +H∗A0cQIIQI

]−1
∣∣∣∣
r=r∗

,

(3.21)

where the primes denote differentiation with respect to radius. Obtaining the solutions for

the functions QI(r) and QII(r) are done by numerically integrating Equation (3.17), subject

to the boundary conditions (Equation 3.18). Once these constants are computed, the global

solution for In(r) is evaluated using Equation (3.16). Applying these methods can be used

to evaluate the global solutions for the number nr = I2 and energy Ur = I3 densities. This

completes the solution procedure for the energy moments.
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3.2.1 Relativistic Particle Number Density

By setting n = 2, Equation (3.12) becomes the governing transport equation for the particle

number density nr given as

dṄr

dr
= Ṅ0δ (r − r∗)− 4πr∗H∗A0cnr (r − r∗) , (3.22)

where Ṅr(r) is defined as the relativistic particle transport rate. This quantity is written

in the form (via Equations 3.13 and 3.14)

Ṅr(r) ≡ −4πrH

(
vnr + κ

dnr
dr

)
, (3.23)

where Ṅr > 0 for an outward directed transport. The particle transport has two spatial

regions in the calculations, designated domain I (r > r∗) and domain II (r < r∗), since

the source, where particle injection and escape occur, is located at the shock. The global

solution is written in the form

Ṅr(r) =


ṄI , r > r∗ ,

ṄII , r < r∗ ,

(3.24)

where ṄI > 0 and ṄII < 0 denote the rate at which particles are radially transported

outward along the disk and inward toward the event horizon, respectively, from the source

location. Integrating Equation (3.22) in a very small region around r = r∗ gives the mag-

nitude of the jump in the particle transport rate,

ṄI − ṄII = Ṅ0 − Ṅesc , Ṅesc ≡ 4πr∗H∗A0cn∗ , (3.25)
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where n∗ ≡ nr (r∗), and Ṅesc is the positive rate at which particles escape the disk at the

shock location in order to form the jet outflow. We demonstrated the vertically averaged

transport equation for the total relativistic number density (via Equation 3.10), where

vr = −v for positive inflow. It should be pointed out that the discontinuity at the shock

location, seen in Ṅr, will produce a jump in the derivative dnr/dr as shown in this function.

The global solution for the particle number density nr = I2 is expressed as

nr (r) =


AQI (r) , r > r∗

BQII (r) , r < r∗

(3.26)

where A and B are defined as normalization constants, and the functions QI(r) and QII(r)

satisfy the homogeneous differential equation (e.g. Equation 3.10),

Hvr
dQ

dr
= −Q

r

d

dr
(rHvr) +

1

r

d

dr

(
rHκ

dQ

dr

)
, (3.27)

with the boundary conditions (see Equation 3.18),

QI (rout) = C0 + C1

(
rout

rS

)−1

, QII (rin) =

(
rin

rS
− 1

)−1/(γg+1)

, (3.28)

where rin and rout denote, respectively, the radii at which the inner and outer boundary

conditions are applied. The normalizing constants A and B are determined (cf , Equations

3.20 and 3.21) for n = 2 as,

A = B
QII

QI

∣∣∣∣
r=r∗

, (3.29)
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B =
Ṅ0

4πr∗
QI

[
(H+v+ −H−v−)QIQII −H−κ−QIIQ

′
I

+H+κ+QIQ
′
II +H∗A0cQIIQI

]−1
∣∣∣∣
r=r∗

,

(3.30)

where the primes denote differentiation with respect to radius. Obtaining the solutions for

the functions QI(r) and QII(r) are done by numerically integrating Equation (3.27), subject

to the boundary conditions (Equation 3.28). Once these constants are computed, the global

solution for nr(r) is evaluated using Equation (3.26). This section is valid for both Models

1 and 3, except in Model 1 the disk half-thickness is conserved, H+ = H− = H∗. This

completes the solution procedure for the particle number density.

3.2.2 Relativistic Particle Energy Density

The differential equation that is satisfied by the relativistic particle energy density Ur is

given by Equation 3.11), where vr = −v for positive inflow. This expression can be redefined

in the flux conservation form of the relativistic particle energy transport rate Ėr(r) (by

setting n = 3 in Equations 3.13 and 3.14),

dĖr
dr

= 4πrH

[
−v

3

dUr
dr

+
Ṅ0E0δ (r − r∗)

4πr∗H∗
−A0cUrδ (r − r∗)

]
, (3.31)

where here, Ėr > 0 for outward directed transport. It has been shown from the jump

in the energy transport rate (Equation 2.163) that the derivative dUr/dr will display a

discontinuity at r = r∗. This can also be seen by integrating Equation (3.31) in a very

small region around r = r∗

∆Ėr = Lesc − Ṅ0E0 , Lesc ≡ 4πr∗H∗A0cU∗ ∝ ergs s−1 , (3.32)

where Lesc is the rate of escape energy from the disk into the jet outflow at the shock

location (Equation 2.161), E0 and Ṅ0 denote the injection energy and rate of the seed
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particles, respectively, and U∗ ≡ Ur (r∗).

In this work, the global solution for Ur(r) is expressed as

Ur (r) =


AQI (r) , r > r∗

BQII (r) , r < r∗

(3.33)

in which A and B are the normalization constants for the functions QI(r) and QII(r), which

satisfy the homogeneous differential equation (cf. Equation 3.11, upon substitution with

γr),

Hvr
dQ

dr
= −γr

Q

r
(rHvr) +

1

r

d

dr

(
rHκ

dQ

dr

)
. (3.34)

This function operates with the boundary conditions (see Equation 3.18)

QI (rout) = C0 + C1

(
rout

rS

)−1

, QII (rin) =

(
rin

rS
− 1

)−4/(3γg+3)

, (3.35)

in which rin and rout represent the radii where the inner and outer boundary conditions are

applied, respectively. Since we know from Equation (2.161) that ∆Ėr = 0, this signifies (cf.

Equation 3.32)

Lesc = Ṅ0E0 . (3.36)

The normalization constants A and B are determined by ensuring the derivative dUr/dr

satisfies this energy conservation, along with the jump condition given by Equation (2.163),

and mandating that Ur is continuous across the shock at r = r∗. The generalized results

obtained (Equations 3.20 and 3.21 for n = 3) are

A = B
QII

QI

∣∣∣∣
r=r∗

, (3.37)
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B =
Ṅ0E0

4πr∗
QI

[
4

3
(H+v+ −H−v−)QIIQI +H+κ+QIQ

′
II

−H−κ−QIIQ
′
I +A0H∗cQIQII

]−1
∣∣∣∣
r=r∗

,

(3.38)

where the primes denote differentiation with respect to radius.

Obtaining the solutions for the functions QI(r) and QII(r) are done by numerically inte-

grating Equation (3.34). Normally these functions are subject to the boundary conditions

(Equation 3.35), but in this work they are subject to the dynamical values obtained for Ur

near the horizon r → rS , and at the shock location r = r∗, where we apply the upstream

values for the derivative dUr/dr (cf. Equations (2.54))

dUr∗
dr∗

= Ur∗

[
1

a2
r−

da2
r−

dr∗
+

1

a2
g− (γg − 1)

da2
g−

dr∗

]
. (3.39)

Once these constants are computed, the global solution for Ur(r) is evaluated using Equation

(3.33). It should be noted that this section is valid for both Models 1 and 3, except for

Model 1 the disk half-thickness is conserved, H+ = H− = H∗. This completes the solution

procedure for the particle energy density. The results derived from this can be compared

with the dynamical profiles computed in Ch. 4 in modeling the outflows observed in M87

and Sgr A* . Now we need to take into account the remaining requirements for energy

conservation. This will ensure that the energy that escapes from the disk remains consistent

with the energy lost from the jump.

3.2.3 Energy Conservation Conditions

The goal in our work is to determine the properties of the integrated disk/shock/outflow

model using the observed values of the black hole mass mass M and the jet kinetic power

Ljet, for a given source. In order to apply these observations to our model, we need to

take into account the global energy conservation conditions. We have already mentioned

(cf. Equation 2.162) that the energy lost from the jump in the gas at the shock location
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becomes the energy that escapes the disk to form the jet. Next we ensure that the rate in

which the relativistic seed particles are injected into the flow is equal to the energy-loss rate

for the background gas at the isothermal shock location, via

Ṅ0E0 = Lshock . (3.40)

This allows for Equations (2.162) and (3.36), (3.37), (3.38), (3.39), and (3.40) to be consis-

tent and for energy to be conserved.

The other condition is where the mean energy of the escaping particles is defined as a

fraction between the relativistic particle number n∗ and energy U∗ densities at the shock

location,

Eesc ≡
U∗
n∗

. (3.41)

Since Eesc is proportional to E0 and independent of Ṅ0, this leads to the final conservation

condition

Lesc = ṄescEesc , (3.42)

which is a combination of Equations (3.25), (3.32) and (3.41). Satisfying these conditions

ensures that energy is conserved properly in our model. We finish off this section by pointing

out a need to revisit the asymptotic solutions obtained for the dynamical variables, near the

event horizon and also at large radii. As it it, the global solutions to the transport function

depend on the sensitive nature of the boundary conditions that are imposed at these radii.

Here they play a role when applying the integrated dynamical solution to the relativistic

particle and energy densities.

3.3 Asymptotic Behavior

These estimated behaviors have been derived and demonstrated via Becker & Le (2003)

and Le & Becker (2005) for the single-fluid model (Model 1). These same relationships
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come into play in the new two-fluid hydrodynamic model (Model 3). What makes them

necessary is that the global solutions are dependent on the sensitivity on the boundary

conditions enforced at large and small radii, particularly as we found more so near the

event horizon when analyzing the diffusive and non-diffusive cases. What follows is an

analysis of how these relations are derived for each Model.

3.3.1 Asymptotic Behavior Near the Horizon

The global solutions in a viscous ADAF disk become purely adiabatic close to the event

horizon, which also has been shown to be quite similar to those profiles of an inviscid disk

(Becker & Le 2003). These asymptotic solutions are therefore applied to this model. Near

the horizon, the radial velocity v approaches the free-fall velocity v2
ff (r) ≡ 2GM/ (r − rS),

thus

v2 (r) ∝ (r − rS)−1 , r → rS . (3.43)

It should be noted that since the velocity v diverges as r → rS and cannot be represented

near the horizon, it is interpreted as the radial component of the four-velocity (Becker & Le

2003; Becker & Subramanian 2005). Equation (3.43) is valid for both Models 1 and 3. For

Model 1, it can be combined with Equation (2.65) to determine the thermal sound speed

ag near the horizon, as

a2
g ∝ (r − rS)(1−γg)/(γg+1) r → rS . (3.44)

For Model 3, being identical to Model 2 near the horizon, Equation (3.43) can be combined

with Equations (2.64) and (2.95) to show the following relationship,

K2
g ∝ (r − rS)

[
a

2(γr+1)/(γg−1)
g + a

2(γg+1)/(γg−1)
g

]
, r → rS . (3.45)

What Equation (3.45) shows is that near the horizon, there are two possible terms for ag
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Figure 3.1: Plot of the disk half-thickness for Model 3 (Equation 3.49), in which the rela-
tivistic term (blue line, the left-most term containing the γr variable) is surpassed by the
thermal term (red line, the right-most term). It can be seen that the thermal pressure
continues to dominate the relativistic particle pressure near the horizon.

with different power values due to the contribution by both the thermal and relativistic

particle pressure. However, near the horizon the particle transport is dominated by inward-

bound advection, which means that not only numerically (γg > γr), but conceptually the

thermal pressure will dominant over the relativistic pressure as the plasma is accreted onto

the black hole. Hence, Equation (3.45) can be reduced to show the thermal sound speed

ag, near the horizon, for Model 3 as

a2
g (r) ∝ (r − rS)(1−γg)/(1+γg) , r → rS , (3.46)
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which is exactly the same for Model 1. Plugging this back into Equation (2.95) gives the

following asymptotic for the nonthermal sound speed ar for Model 3 near the horizon as,

a2
r ∝ (r − rS)(1−γr)/(γg+1) , r → rS . (3.47)

Using Equation (3.46) results in the the asymptotic variations of the disk half-thickness

H (Equation 2.21), as well as the density ρ (Equation 2.28), for Model 1 as

H (r) ∝ (r − rS)(γg+3)/(2γg+2) , ρ (r) ∝ (r − rS)−1/(γg+1) , r → rS . (3.48)

However, when applying Equations (3.46) and (3.47) to Equation (2.22), we end up with a

double relation for the disk half-thickness H for Model 3,

H2 ∝ (r − rS)(2γg−γr+3)/(γg+1) + (r − rS)(γg+3)/(γg+1) , r → rS . (3.49)

This one is not as easy to determine numerically but rather analytically, which can be seen

in Figure (3.1). The left-most term in Equation (3.49) represents the relativistic term (blue

line, containing the γr variable), while the right-most term represents the thermal gas term

(red line). It can be seen that the thermal gas continues to dominate over the relativistic

term near the horizon, and thus we can approximate Equation (3.49) accordingly,

H2 ∝ (r − rS)(γg+3)/(γg+1) , r → rS , (3.50)

which is exactly the same as Model 1. Thus, the volumetric mass density ρ in Model 3 is

likewise the same as it is in Model 1 (Equation 3.48).

We can use Equation (3.23) to study the behavior of nr near the event horizon by

taking the limit as r → rS (in which κ → 0 due to the particle transport being dominated
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by advection, and Ṅr = ṄII),

nr(r)→ −
ṄII

4πrHv
, r → rS , (3.51)

which can be compared to Equation (2.28) and be rewritten as,

nr(r) ∝ ρ(r) . (3.52)

Therefore, by combining Equations (3.48) and (3.52), we obtain this explicit asymptotic

form for nr near the horizon,

nr (r) ∝ (r − rS)−1/(γg+1) , r → rS . (3.53)

The relativistic particle energy density Ur follows the same logic as nr near the horizon and

follows the adiabatic relation

Ur ∝ n4/3
r , r → rS , (3.54)

which can be combined with Equation (3.53) to show

Ur(r) ∝ (r − rS)−4/(3γg−3) , r → rS . (3.55)

Thus, the asymptotic relations near the event horizon for both energy densities are exactly

identical for both Models 1 and 3. One can also see how the asymptotics defined in Equations

(3.53) and (3.55) relate to the boundary conditions near the horizon (QII) established in

Equations (3.28) and (3.35), respectively.

3.3.2 Asymptotic Behavior at Infinity

In contrast with near the event horizon, far from the black hole advection is negligible and

the particle transport in the disk is dominated by outward-bound diffusion (κ). In the
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limit r →∞, the entropy Kg for both Models 1 (Equation 2.65) and 3 (Equation 2.64) are

constant in the adiabatic upstream flow, as well as the thermal ag∞ and relativistic ar∞

sound speeds (see Ch. 4). Thus, it can be seen that the asymptotic variation of the inflow

velocity for both Models is

v ∝ r−5/2 , r →∞ , (3.56)

resulting in the variation of the disk half-height (Equation 2.22)

H ∝ r3/2 , r →∞ , (3.57)

as well as the density (Equation 2.28)

ρ −→ const , r →∞ . (3.58)

Applying the above conditions to either Equation (2.52) or (3.11) will show that the rela-

tivistic energy density further along in the disk becomes,

U ′r(r) ∝
1

r2
, r →∞ . (3.59)

Since in this regime for the particle number density, Ur ∝ nr,

n′r(r) ∝
1

r2
, r →∞ . (3.60)

It should be noted that even these asymptotic behaviors are essentially the boundary con-

ditions (QI) set for the energy moments (Equation 3.18), as well as the particle number and

energy densities (Equations 3.28 and 3.35). Thus, this completes the theoretical background

for the dynamical structure of the disk for Models 1, 2, and 3. We move forward now in

deriving the particle distribution function needed for these three models.
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3.4 Transport Equation and Separation of Variables

The goal here, like the dynamical particle transport model, is to analyze the transport and

acceleration of relativistic particles (electrons) in a disk governed by the two-fluid dynamical

model developed in the previous chapter. And just like the dynamical particle transport

model developed in the previous sections, this particle transport model likewise includes

spatial diffusion, Fermi energization, advection and particle escape. As such we’ll be able

to analyze the Green’s function fG (E, r) in the disk. Overall, this is very similar to the

transport formalism outlined in LB07 for the single-fluid model (Model 1). However, from

the examples provided in the previous sections on how elements of the dynamical structure

change in the two-fluid model (Model 3), we too need to reexamine some of the fundamentals

described in LB07 to compensate for the inclusion of relativistic particle pressure.

The particle transport formalism used in this work is outlined in § 3 of LB07, which

includes advection, spatial diffusion, first-order Fermi acceleration, and relativistic escape

particles. We’ve adopted the same simple, one-dimensional radial (r) model for the spatial

transport, which uses the test particle approximation and assumes that the isothermal shock

radius is where the injection of the seed particles and escape of the accelerated particles

occur. This allows for a connection to exist between the jump in the relativistic energy

flux and the energy radiated away by the escaping particles, at the shock location. Thus

like in LB07, we too are essentially maintaining self-consistency between the dynamical and

transport calculations outlined in the previous sections, which will be explored more in

Ch. 4.

Following LB07, in this work we focus on the vertically integrated form of the transport

equation (Equation 3.6),

Hvr
∂fG

∂r
=

1

3r

1

r

∂

∂r
(rHvr)E

∂fG

∂E
+

1

r

∂

∂r

(
rHκ

∂fG

∂r

)

+
Ṅ0δ (E − E0) δ (r − r∗)

(4πE0)2 r∗
−A0cH∗δ(r − r∗)fG ,

(3.61)
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where vr = −v for positive inflow, and the quantities for the Green’s function fG and the

diffusion coefficient κ are considered vertically averaged. As noted in that paper, within

the vicinity of the shock the velocity v is discontinuous, and is denoted by

dv

dr
→ (v− − v+) δ (r − r∗) , r → r∗ , (3.62)

where v− and v+ represent the positive inflow speeds just upstream and downstream from

the shock, respectively. This is to indicate that the first-order Fermi acceleration of the

particles is most pronounced in this region due to its presence. Applying the separation of

variables function,

fn (E, r) =

(
E

E0

)−λn
Yn (r) , (3.63)

where λn are the eigenvalues, and the spatial eigenfunctions Yn (r) to Equation (3.61) will

satisfy the second-order ordinary differential equation,

−HvdYn
dr

=
λn
3r

d

dr
(rHv)Yn +

1

r

d

dr

(
rHκ

dYn
dr

)
−A0cH∗δ (r − r∗)Yn . (3.64)

This works for particle energy E > E0 , in which the source term in Equation (3.61)

vanishes, and what’s left is separable in energy and space. When combined with Equation

(2.48), Equation (3.64) can be rewritten as,

d2Yn
dr2

+

[
rs

κ0 (r − rs)2 +
d ln (rHv)

dr
+

2

(r − rs)

]
dYn
dr

+
λnrsYn

3κ0 (r − rs)2

d ln (rHv)

dr
= 0 . (3.65)

This is the same as Equation (30) in LB07 for the single-fluid model (Model 1) and is valid

for the two-fluid model (Model 3). However the difference for Model 3 is that it’s governed

by the dynamical profiles numerically determined for H(r) and v(r) (Equations 2.22 and

2.64, respectively), which both now experience a jump at the shock location. It should be
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noted that a proof of Equation (3.63)’s validity is given in Appendix F.

3.5 Revisiting the Eigenvalues and Eigenfunctions

In order to numerically solve the global function for the eigenfunction Yn (r), we must

satisfy the continuity and derivative jump conditions associated with the existence of the

shock/source at radius r = r∗. This can be determined by integrating Equation (3.64), with

respect to the radius, in the vicinity of the shock,

∆ (Yn) = 0 , (3.66)

∆

(
λn
3
HvYn +Hκ

dYn
dr

)
= −A0cH∗Yn (r∗) , (3.67)

where ∆ represents the difference between post-shock and pre-shock quantities. Essentially,

it is established in Equations (3.66) and (3.67) that Yn (r) is continuous and its derivative

displays a jump at the shock location. It should be noted that in the single-fluid model,

H+ = H− = H∗, and thus Equation (3.67) becomes Equation (33) in LB07, showing that

we get the same jump conditions if ar → 0 for Model 1. Derivation of Equation (3.67) is

seen more so in Appendix G.

There are two boundary conditions imposed in order to determine the global solutions,

and associated eigenvalues λn, for the second-order linear differential equation (Equation

3.65). The global solutions for the spatial eigenfunctions is written as

Yn(r) =


Gin
n (r) , r ≤ r∗ ,

anG
out
n (r) , r ≥ r∗ ,

(3.68)

where Gin
n (r) and Gin

n (r) represent the fundamental solutions to Equation (3.65) in the inner
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and outer regions of the disk, and an is the matching coefficient defined as,

an =
Gin
n (r∗)

Gout
n (r∗)

. (3.69)

In the single-fluid model (Model 1), the asymptotic behavior in the inner region Gin
n (r) can

be seen in Equation (3.65) as r → rS (or Equation 35 of LB07),

Gin
n (r)→ gin

n (r) ≡
(
r

rS
− 1

)−λn/(3γg+3)

, r → rS . (3.70)

This remains valid in the two-fluid model (Model 3) since near the horizon, the plasma

becomes fully adiabatic and the thermal particles remain dominant over the relativistic

particles as they are accreted onto the black hole (likewise mentioned in Ch. 2). At a large

radii (r →∞), we can also see from Equation (3.65) the outer asymptotic form (Equation

35 of LB07),

Gout
n (r)→ gout

n (r) ≡
(
r

rS

)−1

, r →∞ , (3.71)

which is valid for the case treated by LB07 because that did not include the pressure of the

relativistic particles. This is further discussed in Appendix H.

However, in the case of interest here, with relativistic particle pressure included, we

showed in Ch. 2 that the dynamical profiles for the particle energy Ur and number nr

densities do not show a 1/r relationship, but rather they approach constants at a large

radius. Therefore, for the eigenfunction solution, we too must implement the same outer

boundary condition that was used for the energy transport equation (see Ch. 4),

Gout
n (r)→ gout

n (r) ≡ Ur (r) , r →∞ , (3.72)

since we likewise don’t know the outer asymptotic for the spatial eigenfunctions (to be
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determined in future work). The validity of the asymptotic forms in Equations (3.70) and

(3.72) are shown in Ch. 4 by comparing the numerical solutions obtained from the spatial

eigenfunctions, similar to Figures (3) and (4) of LB07.

Model 1 (LB07) implemented a bidirectional integration technique to solve for the eigen-

values λn from the boundary conditions (Equations 3.70 and 3.71). This process uses

a Wronskian bisection method of the inner and outer solutions until they vanish at the

matching radius situated in the post-shock region. After determining a particular value for

λn, the matching coefficient an is then found using Equation (3.69). Consecutive repetitions

of this process is done until a desired number of eigenvalues and eigenfunctions is obtained.

Figure 3.2 shows the sequences of eigenvalues associated with the parameters for models 2

and 5 (see Ch. 4 for further details), in which λ1 ∼ 4 in all cases, meaning that the accel-

eration is efficient and analogous with cosmic ray acceleration (see Blandford & Ostriker

1978, LB07). In Model 3 we too implement the same methodology as Model 1, from which

in Ch. 4 we will explore the impact of what including relativistic particle pressure does for

eigenvalues and eigenfunctions.

3.6 Revisiting Eigenfunction Orthogonality

The following section is a revision of § 3.4 of LB07, which is being generalized to include

the relativistic particle pressure of Model 3. In LB07, the Sturm-Liouville form,

d

dr

[
S (r)

dYn
dr

]
+ λnω (r)Yn (r) = 0 , (3.73)

where

S (r) ≡ rHκ

r∗H∗κ∗
exp

{
1

κ0

[(
r∗
rS
− 1

)−1

−
(
r

rS
− 1

)−1
]}

, (3.74)
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and ω (r) is the weight function given as

ω (r) ≡ vS

3κ

d ln (rHv)

dr
, (3.75)

was used to rewrite Equation (3.65) in a way to verify that the eigenfunctions satisfied the

orthogonality relation,

∫ ∞
r
S

Yn (r)Ym (r)ω (r) dr = 0, m 6= n . (3.76)

This was done with the criteria that the boundary conditions (Equations 3.70 and 3.72)

were able to satisfy the spatial eigenfunctions Yn(r); we likewise have demonstrated that

the eigenfunctions satisfy this orthogonality relation in Appendix I. It should be noted that

ω (r) continues to display a δ-function discontinuity at due to the derivative of v (r) in the

vicinity of the shock. In this region, we can show from combining Equations (3.62), (3.74),

and (3.75) that

ω (r)→ 1

3κ∗H∗
(H−v− −H+v+) δ (r − r∗) , r → r∗ . (3.77)

It should be noted that Equation (3.77) is a generalization of the weight function and is

applicable in Model 3. For Model 1, by setting the disk half-thickness at the shock location

via H+ = H− = H∗, Equation (3.77) becomes Equation (40) from LB07.

3.7 Revisiting the Eigenfunction Expansion

The following section is also a revision of § 3.5 of LB07, which is being generalized to include

the relativistic particle pressure of Model 3. Aside from completing the set of eigenfunctions,

LB07 also determined that the Green’s function fG (E, r) can be represented using the
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eigenfunction separation function (see Equation 3.63)

fG (E, r) =

Nmax∑
n=1

bnfn(E, r) =

Nmax∑
n=1

bnYn (r)

(
E

E0

)−λn
, E ≥ E0 , (3.78)

in which bn represents the expansion coefficients (with either positive or negative signs) and

Nmax is a value determined by analyzing the term-by-term convergence of the series. These

expansion coefficients (b1, b2, b3, . . .) were calculated via the orthogonality of the spatial

eigenfunctions. Model 1 used a value Nmax = 10 in the numerical calculations, within

an accuracy of three decimal digits. We likewise found that we can also use a value of

Nmax = 10 in the Model 3 numerical calculations (see Ch. 4). We also establish in both

Models 1 and 3 that fG (E, r) = 0 for all E < E0 as there’s no deceleration processes

included in the particle transport model.

In order to calculate the expansion coefficients (b1, b2, b3, etc.), LB07 utilized the orthog-

onality of the spatial eigenfunctions and determined a quadratic normalization integral, In.

This was done by setting E to the source energy E = E0 in Equation (3.78),

fG (E, r) =

Nmax∑
m=1

bmYm (r) . (3.79)

Both sides of Equation (3.79) were then multiplied by the product Yn (r)ω (r) and integrated

from r = rS to r =∞ to yield

∫ ∞
r
S

fG (E0, r)Yn (r)ω (r) dr =

Nmax∑
m=1

bm

∫ ∞
r
S

Ym (r)Yn (r)ω (r) dr . (3.80)

In order to abide to the orthogonality of the eigenfunctions, only the m = n term on the
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RHS of Equation (3.80) will work,

∫ ∞
r
S

fG (E0, r)Yn (r)ω (r) dr = bn

∫ ∞
r
S

Y 2
n (r)ω (r) dr . (3.81)

Thus the expansion coefficient bn equates back to Equation (46) in LB07,

bn =

∫∞
r
S
fG (E0, r)Yn (r)ω (r) dr

In
, (3.82)

in which In is defined as

In ≡
∫ ∞
r
S

Y 2
n (r)ω (r) dr . (3.83)

It should be noted that up to this point, Equations (3.78)-(3.83) remain valid for both

Models 1 and 3.

In moving forward in completing the calculation of the expansion coefficients for Model

3, we need to do what was done for Model 1 (LB07) by reevaluate the distribution function

at the source energy, fG (E0, r). This is done with the velocity derivative (Equation 3.62)

being substituted back into Equation (3.61) and then integrating with respect to E in a

small range around the injection energy E0, yielding

fG (E0, r) =


3Ṅ0

(4π)2E3
0r∗H∗(H−v−−H+v+)

, r = r∗ ,

0, r 6= r∗ .

(3.84)

Substituting fG (E0, r) in Equation (3.82) with Equation (3.84) and carrying out the inte-

gration, we get

bn =
Ṅ0Yn (r∗)

(4π)2E3
0r∗H∗κ∗In

, (3.85)
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in which we utilized the δ-function behavior close to the shock for the weight function

ω(r) (see Equation 3.77). Equation (3.85) is exactly the same as Equation (49) of LB07.

However when we also consider the singular nature of the weight function when computing

the normalization integrals In defined in Equation (3.83),

In = lim
ε→0

∫ r∗−ε

r
S

ω (r)Y 2
n (r) dr +

∫ ∞
r∗+ε

ω (r)Y 2
n (r) dr +

1

3κ∗H∗
(H−v− −H+v+)Y 2

n (r∗) ,

(3.86)

we find that In is different in Model 3 than in Model 1, notably with the term at the shock

radius r∗. We use this expression to evaluate the normalization integrals (see Ch 4). When

setting for Model 1 H+ = H− = H∗, Equation (3.86) becomes Equation (50) in LB07.

We shall close off this chapter, before moving onto the model applications of Ch. 2 and

3, by summarizing the physical significance of the Green’s function (fG) evaluated at the

injection energy E0, as discussed in LB07. As noted in Equation (3.84), the Green’s function

at the injection energy is only valid at the shock (r = r∗) and has a finite value, whereas

it’s zero for radii away from the shock. This is due to the fact that the model specifically

states that particle injection occurs at the shock. So while the δ-function may exist for the

flow velocity (Equation 3.62), it will not for the Green’s function since it’s eliminated from

the particles at the shock experiencing strong acceleration. Both Models 1 and 3 assume

that the plasma in the disk is converging at all radii (including the shock) in the accretion

flow, in which the particle acceleration causes the Green’s function to vanish everywhere

except at the shock r = r∗.
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Figure 3.2: This is Figure 2 of LB07: eigenvalues of model 2 and model 5, which were
associated with M87 and Sgr A* , respectively.
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Chapter 4: Astrophysical Applications

4.1 Dynamical Solution

As was done for Model 1 (LB04 LB05 and LB07), the goal is to determine the properties of

the integrated disk/shock/outflow model using the observed values of the black hole mass

M and the jet kinetic power Ljet, for a given source. For Model 3, the fundamental free

parameters for the theoretical model are ε+, l, κ0, Kg/Kr, and γg and γr, where only ε+,

l, κ0, Kg/Kr remain to be determined since γg = 1.5 and γr = 4/3. For Model 1, the

fundamental free parameters were just ε+ and l. The sound speed profiles ag(r) and ar(r)

are computed by numerically integrating Equations (2.55) and (2.74), and subsequently the

associated solution for the velocity v(r) is obtained from Equation (2.64), as well as the

effective sound speed (Equation 2.76).

After these profiles are computed, the corresponding pressure and energy density profiles

for the gas and relativistic particles can be computed from Equations (2.6), (2.7), (2.8)

and (2.9). Likewise, we can compute the number and energy density distributions for the

relativistic particles in the disk using Equations (3.26) and (3.33), respectively. We specify

that the injection energy of the seed particle E0 = 0.002 ergs, which can then be used to

calculate the particle injection rate Ṅ0 via Equation (3.40) for a known Lshock. Taking this

in addition to energy being conserved in our model, we can solve for various theoretical

parameters based on observational values for M and Ljet, which is explained below.

4.1.1 Model Parameters

For Model 3, six different accretion/shock scenarios are explored in detail here. All of the

model profiles are dimensionless and can be scaled to any mass black hole. The simulations
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Table 4.1: Disk Structure Parameters. Note: All quantities are expressed in gravitational
units (GM = c = 1) except T∗, which is in units of 1011 K.

Model 3 l κ0 Kg/Kr ε+ ε− rc1 rc3 r∗ H∗ R∗ T∗
A.............................. 3.1340 0.02044 7,400 -0.006100 -0.000429 110.29 5.964 12.565 6.200 1.605 1.503
B.............................. 3.1524 0.02819 7,700 -0.007500 -0.001502 123.52 5.937 11.478 5.460 1.607 1.586
C.............................. 3.1340 0.03000 65,000 -0.007500 -0.001073 131.75 5.898 14.780 7.486 1.691 1.412
D.............................. 3.1524 0.05500 260,000 -0.009900 -0.003784 61.11 5.886 14.156 6.910 1.614 1.446
E.............................. 3.1340 0.02044 20,000 -0.005100 -0.000857 171.48 5.821 19.022 10.406 1.612 1.098
F.............................. 3.1524 0.02819 10,000 -0.007700 -0.001343 127.47 5.926 11.696 5.589 1.642 1.583

Model 1

2.............................. 3.1340 0.02044 N/A -0.005746 0.001527 98.524 5.379 21.654 11.544 1.897 1.160
5.............................. 3.1524 0.02819 N/A -0.008749 0.001229 131.874 5.329 15.583 7.672 1.970 1.490

of the disk structure in M87 and Sgr A* are based on the published observational estimates

for M and Ljet used in LB05. In the case of M87, we set M = 3× 109M� (e.g., Ford et al.

1994) and for Sgr A* , we use M = 2.6× 106M� (e.g., Schödel et al. 2002). For the kinetic

luminosity of the outflow in M87, we use the value Ljet = 5.5× 1043 ergs s−1 (Reynolds et

al. 1996; Bicknell & Begelman 1996; Owen et al. 2000). The kinetic luminosity in Sgr A* is

rather uncertain, and the published values encompass a rather wide range (e.g., Yuan 2000;

Yuan et al. 2002). For example, Falcke & Biermann (1999) obtained Ljet = 5 × 1038

ergs s−1, and Yusef-Zadeh et al. (2012) estimated Ljet = 1.2 × 1041 ergs s−1. Hence,

in our comparisons, we adopt both of these values for Ljet for Sgr A* . This results in

Ṅ0 = 2.75× 1046 s−1 for M87, and Ṅ0 = 2.5× 1041 s−1 or Ṅ0 = 6.0× 1043 s−1, respectively,

for Sgr A* . The values for the various model parameters, l, κ0, Kg/Kr, ε+, ε−, rc1, rc3,

r∗, H∗, R∗ and T∗ are reported in Table 4.1, along with the associated values for models 2

and 5 from LB05, which are designated for M87 and Sgr A* , respectively. Here, T∗ is the

ion temperature at the shock location related to the thermal pressure Pg = ngkT∗ in cgs

units, where k is the Boltzmann constant, and the ion number density is related to the mass

density via ng = ρ/mp, where mp is the mass of a proton. The parameters associated with

the shock jump conditions, the transport equation, and the specific sources are reported in

Tables 4.2, 4.3, and 4.4, respectively, for both Models 1 and 3.

We obtain shock-disk solutions ranging between the inner radius rin = 2.1 and the outer
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Table 4.2: Shock Jump Conditions. Note: All quantities are expressed in gravitational units
(GM = c = 1).

Model 3 v+/v− ρ+/ρ− ag+ = ag− ar+ ar− H+/H− Mg− Mr−
A.............................. 0.6593 1.605 0.1440 0.0676 0.0857 0.9447 0.9839 1.6530
B.............................. 0.6588 1.607 0.1479 0.0694 0.0880 0.9447 0.9843 1.6541
C.............................. 0.6163 1.691 0.1395 0.0498 0.0647 0.9593 1.0318 2.2236
D.............................. 0.6381 1.614 0.1412 0.0444 0.0564 0.9706 1.0174 2.5488
E.............................. 0.6547 1.612 0.1230 0.0555 0.0704 0.9475 0.9904 1.7311
F.............................. 0.6444 1.642 0.1478 0.0667 0.0854 0.9451 0.9979 1.7261

Model 1

2.............................. 0.5267 1.897 0.1262 N/A N/A 1.0000 1.125 N/A
5.............................. 0.5076 1.970 0.1431 N/A N/A 1.0000 1.146 N/A

radius rout = 5, 000, where rin and rout denote the boundaries of the computational domain

for the simulations. Our numerical examples use natural gravitational units (GM = c = 1

and rS = 2). While LB05 (Model 1) used the values of the accretion rate for M87 Ṁ =

1.3 × 10−1M�yr−1 (.g. Reynolds et al. 1996), and Sgr A* Ṁ = 8.8 × 10−7M�yr−1 (e.g.

Yuan et al 2002; Quataert 2003), respectively, Model 3 does not. Since it’s required that

Lshock = Ljet (e.g. Equation 2.162), the accretion rate Ṁ is dependent on ∆ε via Equation

(2.160). Thus for the fundamental parameters l, κ0 and Kg/Kr, multiple possible values

can exist for ∆ε. It can no longer be concluded (cf. LB05) that ∆ε = −0.007 for M87 and

∆ε = −0.01 for Sgr A* , as there are now multiple possible values when relativistic particles

and diffusion are included. The associated values used for ∆ε and Ljet in each model, as

well as the corresponding values for Ṁ , are shown in Table 4.4. Table 4.5 shows the ratio of

the jetted outflow rate Ṁesc to the accretion rate (Ṁesc/Ṁ) for each model. The low ratio

values validates our assumption of a constant mass accretion rate at the shock location.

In using the energy conservation condition Lesc = Ljet (Equation 2.161), we can deter-

mine the dynamical profiles for a given l, κ0 and Kg/Kr with the M87 and Sgr A* param-

eters. As a point of departure, we will focus on the l and κ0 values determined in LB05

that coincides with M87 (their model 2) and Sgr A* (their model 5), labeled in this work

as Model A and Model B, respectively. What is presented in these two models are those
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Table 4.3: Transport Equation Parameters. Note: All quantities are expressed in gravita-
tional units (GM = c = 1).

Model 3 κ∗ A0 ∆x/λmag η ηrat ṄI/ṄII Ṅesc/Ṅ0 Eesc/E0 Γesc

A.............................. 0.1341 0.0500 6.628 11.883 1.79 -0.0045 0.3864 2.607 3.476
B.............................. 0.1529 0.0515 6.411 7.303 1.14 -0.0217 0.3881 2.601 3.468
C.............................. 0.2850 0.1001 3.563 7.673 2.15 -0.1401 0.5725 1.781 2.375
D.............................. 0.4781 0.1248 1.418 2.895 2.04 -0.8033 0.5469 1.842 2.456
E.............................. 0.2986 0.0476 4.586 6.426 1.40 -0.0925 0.4281 2.339 3.119
F.............................. 0.1606 0.0587 6.178 7.896 1.23 -0.0253 0.4228 2.370 3.160

Model 1

2.............................. 0.4279 0.0124 1.000 1.000 1.000 -0.1800 0.1700 5.950 7.920
5.............................. 0.3214 0.0158 1.000 1.000 1.000 -0.1500 0.1800 5.450 7.260

profiles that give the maximum possible value for the mean Lorentz factor of the escaping

particles Γesc = Eesc/mpc
2 while maintaining the LB05 values for l and κ0. It should be

noted that many dynamical profiles are possible provided that l < 4 in inviscid models,

though here l is not specific to any AGN dynamically speaking. In the next set of models,

we will allow ourselves to vary the value of κ0 while fixing the value for l using the results

of LB05. Models C and D utilize the same specific angular momentum l values used in

Models A and B, respectively, but we vary κ0 in order to obtain the value Γesc ≈ 2.3 quoted

by Abdo et al. (2009) for M87. Models E and F are used to obtain the value Γesc ≈ 3.0

estimated by Yusef-Zadeh et al. (2012) for Sgr A* . Energy conservation in our disk/shock

model creates self-consistent solutions since we enforce Lesc/Ljet = 1 with the data gathered

for M87 and Sgr A* . This is a different approach from Model 1 since κ0 was determined

when Lesc/Ljet = 1, instead of enforcing it. For illustrative purposes in this section, we

focus on the details of the disk structure and particle transport obtained in Models A and

B, as they are associated to models 2 and 5, respectively, due to their identical values for l

and κ0.

4.1.2 Disk Structure and Particle Transport

The importance of the shock for the acceleration of high-energy particles can be seen in

the examination of the structure of the accretion disk with a discontinuous shock based
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Table 4.4: Source Parameters. Note: ∆ε is expressed in gravitational units (GM = c = 1).

Ljet

(
ergs s−1

)
Ṁ
(
M� yr−1

)
n∗
(
cm−3

)
U∗
(
ergs cm−3

)
Model 3 ∆ε Sgr A* M87 Sgr A* M87 Sgr A* M87 Sgr A* M87

A.............................. -0.005671 5.0×1038 5.5×1043 1.56×10−6 1.71×10−1 4.46×105 3.66×104 2.31×103 1.91×102

B.............................. -0.005998 5.0×1038 5.5×1043 1.47×10−6 1.62×10−1 5.40×105 4.43×104 2.79×103 2.30×102

C.............................. -0.006427 5.0×1038 5.5×1043 1.37×10−6 1.51×10−1 2.32×105 1.88×104 8.12×102 6.71×101

D.............................. -0.006116 5.0×1038 5.5×1043 1.44×10−6 1.59×10−1 2.01×105 1.65×104 7.38×102 6.09×101

E.............................. -0.004243 1.2×1041 5.5×1043 4.99×10−4 2.29×10−1 4.90×107 1.66×104 2.29×105 7.89×101

F.............................. -0.006357 1.2×1041 5.5×1043 3.33×10−4 1.53×10−1 1.18×108 4.05×104 5.63×105 1.94×102

Model 1

2.............................. -0.007 N/A 5.5×1043 N/A 1.30×10−1 N/A 2.01×104 N/A 2.39×102

5.............................. -0.010 5.0×1038 N/A 8.80×10−7 N/A 4.33×105 N/A 4.71×103 N/A

on the values of the fundamental parameters. In Figures 4.1a and 4.1b, we plot the inflow

speed v(r) and the effective adiabatic sound speed aeff,κ(r) (Equation 2.76) for the shocked

solutions for Model A and Model B, respectively, with the corresponding results tabulated

in Table 4.1. We are working within the isothermal shock model, so the thermal sound

speed ag(r) is continuous at the shock location, although the particle sound speed ar(r)

experiences a discontinuous jump, as expected. In Figures 4.1c and 4.1d, we compare the

dynamical profiles computed using our new two-fluid model with the corresponding results

obtained using the one-fluid LB05 model, which does not include relativistic particles nor

diffusion. The LB05 model (Model 1) relied on knowing the value for ε− for a known l value,

which is then used to determine a dynamic profile. In order for us to do a valid comparison

seen in these figures, ε− is calculated for the LB05 model via

ε− → a2
g∞/ (γg − 1) , r →∞ , (4.1)

where here we are using ag∞ from Models A and B for a given specific angular momentum.

Right away we can see some differences between the two model versions.

An interesting feature of the new model is the distinctive precursor deceleration in the

velocity profile, which was likewise seen in the cosmic-ray shock acceleration model (Axford

et al. 1977). This feature is completely absent in the LB05 dynamical profile, and it

clearly indicates the role of diffusive particle acceleration as relativistic particles cross the
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Table 4.5: Results: mass outflow rate Ṁesc/Ṁ for each model.

Model 3 Ṁesc/Ṁ

A 0.00164144
B 0.00174225
C 0.00274897
D 0.0025007
E 0.00136147
F 0.00201269

shock multiple times. These results clearly show the precursor deceleration occurring before

the shock, thereby demonstrating how the inclusion of the relativistic sound speed affect

the transition into the shock, compared to the discontinuous drop that occurs in previous

models. With the inclusion of the dimensionless parameter η for the shock thickness (see

Appendix B), these plots show that the shock is wider when relativistic particle pressure

and diffusion are included in the dynamical structure. We emphasize that these new results

continue the rigorous work of Blandford & Begelman (1999), Becker et al. (2001), and

LB05, for a fully self-consistent calculation of the structure of an ADAF disk coupled with

a shock-driven outflow, this time including relativistic particle pressure and diffusion.

Also, as mentioned in § 2.6.3, we can see the result of a harder compression ratio in

Figure 4.1 for Model 3. Das et al. (2001a, 2001b) described the relationship between the

compression ratio and the outflows for Model 1 in being that a low compression ratio results

in a low outflow rate, while a higher compression ratio results in a high outflow rate. This is

associated with the kind of shocks that can exist, in which generally weak shocks (R∗ ∼ 1)

are considered to have negligible outflow rate while strong shocks (R∗ → 7) have a small

outflow rate. In between you can have a mid-strength shock with a stronger outflow rate.

Likewise, increasing the specific angular momentum l can also result in a higher outflow

rate. This ties into the Keplerian rate of the disk, where a high Keplerian rate equates

to a low compression ratio and outflow rate, whereas a low Keplerian rate results in a

higher compression ratio and outflow rate. This illustrates the correlation that a lower

compression ratio means that the gas in the post-shock region is cooled down due to inverse
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Figure 4.1: Velocity v(r) (blue curves) and effective sound speed aeff,κ(r) (red curves),

plotted in units of c, for the shocked solution of (a) Model A and (b) Model B. These
curves cross at the critical points. The solid lines denote the self-consistent model results
developed here, which includes relativistic particle pressure and diffusion, and the dashed
lines represent the non-self-consistent results obtained by LB05.
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Compton scattering in which case the shock disappears, thus reducing the thermal pressure

and resulting in low outflow rate.

Of course, this conclusion for Model 1 was based on a 1:1 relation between the compres-

sion, velocity and entropy jump ratios where everything was correlated. For Model 3 we

can see that’s no longer the case. Yes while there still remains a link between the compres-

sion and entropy jump ratios, there’s no longer a connection to the velocity jump ratio as

before due to the presence of relativistic particles. Now we see that a higher compression

ratio results in a lower shock outflow, in which the amount of entropy jump is likewise less

than before, while the velocity jump ratios remain identical. In this case what’s happening

here may be very similar to the Model 1 scenario, where the inclusion of relativistic par-

ticle pressure is resulting in higher bulk pressure in the pre- and post-shock regions and

lower outflows, suggesting that there’s less energy to be lost than there was before. While

diffusion is successfully removing the nonthermal radiation for a high Keplerian rate, the

gas in the post-shock region is still efficiently cooled down due to inverse Comptonization,

resulting in a lower bulk outflow. Because of this, there’s a possibility that the Lorentz

factor for the protons γp can never reach higher than anticipated in previous models.

4.1.3 Smooth-Shock Analysis

In the single-fluid model of LB05, it is always possible to obtain a smooth velocity profile that

corresponds to any shocked-disk solution. However, the dynamical model of LB05 did not

include either relativistic particle pressure or diffusion, and therefore we must reexamine

the possible existence of globally smooth flows within the context of our new two-fluid

model. Figures 4.2a and 4.2b depict the dynamical profiles for Model A and Model B,

respectively, for globally smooth flow in the diffusive (thick-lines) and non-diffusive (dashed-

lines) cases. It should be noted that the non-diffusive (κ = 0) model is determined via a

simple root-finding procedure using Equation (2.96). We expect the two profiles to resemble

one another near the horizon, as the disk becomes purely adiabatic, and this is indeed the

case. However, the globally smooth diffusive model fails to pass through the inner critical
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point displayed by the adiabatic model, and therefore it is unphysical. After an extensive

exploration of the parameter space, we find that in fact it is not possible to obtain any

globally smooth solutions when diffusion is included, regardless of the values for the specific

angular momentum l, entropy ratio Kg/Kr, and the energy transport rate per unit mass

ε−. On the other hand, it is always possible to obtain a globally smooth flow even when the

pressure of the relativistic particles is included, provided there’s no diffusion and ε− > 0.

Hence we conclude that the inclusion of diffusion (κ 6= 0) invariably leads to the formation

of a standing shock in the accretion flow.

4.1.4 Pressure Distribution Analysis

Next we study the solutions obtained for the thermal and particle pressure distributions

in the disk based on the flow structures for Models A and B. We plot the global profiles

obtained in a shocked disk in Figure 4.3a and 4.3b for Model A and Model B, respectively,

for Sgr A* (thick lines) and M87 (dashed lines). Considering the universal nature of the

dynamical profiles, what separates these specific profiles for the thermal pressure (blue lines)

and the relativistic particle pressure (red lines) is based on the AGN’s jet Ljet and mass

M . These results show that the pressures decrease monotonically with increasing radius,

much like their corresponding energy densities would. The increase near the horizon is still

a consequence of advection, however the gradual leveling off as r →∞ reflects the fact that

in the inviscid case, the particles injected at the shock now have a very strong chance of

diffusing to large distances from the black hole. In fact it can be seen that Pr > Pg as

r → ∞. These figures clearly show the relativistic particle pressure being comparable to

the gas pressure for both Sgr A* and M87, thereby supporting Axford et al. (1977) and

Becker et al. (2011) on the total pressure exceeding the background pressure.

4.1.5 Dynamical Energy Density Analysis

Moving forward, we study the solutions obtained for the relativistic number and energy

density distributions in the disk based on the flow structures for both models. The related
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Figure 4.2: Velocity v(r) (blue curves) and effective sound speed aeff,κ(r) (red curves),

plotted in units of c, for the globally smooth (shock-free) solutions with ε+ = ε−. The
solid lines were computed using the diffusive model (κ0 6= 0), with the parameters for (a)
Model A and (b) Model B. Also plotted are the corresponding adiabatic models (κ0 = 0,
dashed lines) for the velocity and effective sound speed aeff(r). It can be seen that a smooth
solution is possible in the adiabatic case, but not in the diffusive case.

Figure 4.3: Dynamical pressure profiles for thermal pressure Pg (blue curves) and relativistic

particle pressure Pr (red curves) plotted as functions of r in cgs units for (a) Model A and
(b) Model B. The thick and dashed lines represent the results obtained for Sgr A* and M87,
respectively. Note that the particle pressure is comparable with the thermal pressure at the
shock, and it is dominant at large radii.
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transport parameters are tabulated in Table 4.3, with the corresponding astrophysical values

in Table 4.4. It should be noted that the astronomical values tabulated in Table 4.3 for each

model are dimensionless and can be scaled to any specific AGN mass. We plot the global

energy density derivations obtained in a shocked disk in Figure 4.4a and 4.4b for Model A

and Model B, respectively. The kinks that appear in the energy density distributions at

the shock radius r = r∗ reflect the derivative jump conditions given by Equations (2.163).

These plots show self-consistency between the energy density derived from the vertically-

integrated transport equation (thick lines) with those obtained from the dynamical profiles

(dots). It should be noted that this remains true for any model, not just those shown in

this paper.

The numerical solutions for the number energy density remain self-consistent with the

formal solutions developed in LB05, but for the purposes of this paper it is unnecessary

to show comparisons. The values for the ratios ṄI/ṄII and Ṅesc/Ṅ0 reported in Table

4.3 indicate that most of the injected particles are advected into the black hole, with no

more than ∼ 40% on average escaping to form the outflow. These results, and others we’ve

observed in this work, seem to show that for a given specific angular momentum, the highest

possible escape Lorentz factor Γesc is obtainable with the lowest possible diffusion constant

κ0 and entropy ratio Kg/Kr allowed. This indicates that for an inviscid disk, with particle

pressure and diffusion included, a higher volume of relativistic particles in the disk with a

nudge of diffusion will result in a higher relativistic outflow. This is also indicative by the

higher mass accretion rates obtained for Sgr A* and M87. However, it should be noted that

there’s not much variation in these specific models for the particle escape Lorentz factor,

Γesc ∼ 3.5, as so far obtaining a profile resulting in a higher factor has yet to be found for

the inviscid disk with relativistic particles and diffusion included. This may or may not be

the case when viscosity is included in the dynamical structure, which will be addressed in

later work.
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4.1.6 Jet Formation in M87 and Sgr A*

Next we address the mean energy of the relativistic particles in the disk

〈E〉 ≡ Ur(r)

nr(r)
, (4.2)

to where 〈E〉 = Eesc at the shock location r = r∗. The mean energy as a function of radius

in shocked disks is plotted in Figure 4.5 based on the parameters used for Models A and

B. When a shock is present in the flow, the results again demonstrate that the relativistic

particle energy experiences a boost. This time, only by a factor of 2.5 due to the presence

of relativistic particles and diffusion. This work further demonstrates the essential role that

a shock has in the efficiency of accelerating particles up to very high energies, far above

the energy required to escape from the disk. Also, the mean energy of the relativistic

particles close to the event horizon remains slightly enhanced by the strong compression of

the accretion flow. This is indicated by the slight increase in 〈E〉 as r → rS .

Now we can move in comparing our predictions for the shock/jet location and the

asymptotic Lorentz factor with the observations of M87 and Sgr A* . We find that our

models agree with Biretta et al. (2002), in which the M87 jet forms in a region no larger

than ∼ 30 gravitational radii from the black hole, as well as Yuan (2000) for the case of

Sgr A* . In regards to the asymptotic (terminal) Lorentz factor, which is estimated by

Γ∞ = Γesc =
Eesc

mpc2
, (4.3)

we note that Models C and D are in agreement with Abdo et al. (2009) who estimated

Γ∞ = 2.3, based on their observations, for M87. In the case of Sgr A* , Models E and

F are in agreement with Yusef-Zadeh et al. (2012) who likewise adopted Γ∞ ∼ 3 from

their observations. These values for Γ∞ are still above the injected Lorentz factor Γ0 ≡

E0/
(
mpc

2
)
∼ 1.3, with mp denoting the proton mass, naturally. Since the shock thickness
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Figure 4.4: Global solutions for the relativistic particle energy density Ur, showing a com-
parison between the particle transport equation (thick line) and the dynamical profile (dots).
These plots are self-consistent for any black hole application.

Figure 4.5: Mean energy of the relativistic particles in the disk, 〈E〉 ≡ Ur (r) /nr (r), for
Model A (a) and Model B (b), plotted in units of the injection energy E0.
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parameter η (cf. Appendix B) is also related to the mean magnetic free path η = ∆x/λmag,

we can determine a ratio difference between the two values ηrat = ηλmag/∆x shown in

Table 4.3. For this work we have determined a limit in which a valid solution is one

where ηrat . 1.5. Thus from this cutoff, we can see that Models B, E and F are the more

self-consistent solutions. Considering the different, arbitrary nature in which the observed

parameters from Abdo et al. (2009) and Yusef-Zadeh et al. (2012) were obtained from

the data, we can argue that either Model B, E or F can be applied to M87 and Sgr A* .

Observations in astronomy is always a matter of opinion and instrument error, therefore

the Lorentz factors obtained for either galactic source can in reality be lower or higher than

what was reported. Hence, more observational work is needed in the future in order to test

our predictions for Γ∞ for Sgr A* , as there is still no reliable observational estimate for

that quantity.

4.1.7 Radiative Losses from the Jet and the Disk

While it remains unclear as to whether the outflows observed from many radio-loud systems

containing black holes are composed of an electron-proton plasma or electron-positron pairs,

or a mixture of both, the particles must maintain sufficient energy to power the observed

radio emission. Though it should be noted that this can be hindered by some form of

reacceleration occuring e.g., due to shocks propagating along the jet (Atoyan & Dermer

2004a). Our work assumes the proton-electron outflows, which is ideal since the ions carry

most of the kinetic power, they don’t radiate much, and they are not strongly coupled to

the electrons under the typical conditions in a jet (e.g., Felten 1968; Felten et al. 1970;

Anyakoha et al. 1987; Aharonian 2002). Operating on the speculation that the observed

outflows are proton driven, LB05 explored two methods in which ions in the jet lose energy:

either from 1) the production of synchrotron and inverse Compton emission, or 2) indirect

radiative losses via Coulomb coupling with the electrons. These two methods were evaluated

by their corresponding cooling timescales for the outflows. They concluded that synchrotron

and inverse Compton losses have virtually no effect on the energy of the protons in either
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the M87 jet or the Sgr A* jet. The associated energy-loss timescale for this method is

defined as (cf. Equation 112 of LB05)

trad ≡
3mpc

4σTΓesc

(
mp

me

)2

(UB + Uph)−1 , (4.4)

where me is the mass for electrons, Uph is the energy density of the soft radiation, and

UB = B2/ (8π) is defined as the energy density of the magnetic field with strength B. Even

with lower values for the terminal (asymptotic) Lorentz factor in our models, and setting

B ∼ 0.1 G for M87 and B ∼ 10 G for Sgr A* based on estimates from Biretta et al. (1991)

and Atoyan & Dermer (2004b), respectively, we too come to the same conclusion.

They also concluded that Coulomb coupling between the protons and electrons cannot

seriously degrade the energy of the accelerated ions escaping from the disk, as they prop-

agate out to the radio lobes via the jet. However, this conclusion was based on extremely

conservative estimates and the fact that the theoretical accretion disks were thermally dom-

inated. They did emphasize that in reality, the density of the jet will drop rapidly as the

gas expands, and thus the ‘real’ proton energy-loss timescales for the outflows will be much

larger than what they determined. With the addition of relativistic particles, it is worth

reevaluating this method of energy lose for the ions.

Coulomb coupling with thermal electrons allows the protons in the jet to lose energy,

which are considered less efficient in radiating away than the electrons. The associated loss

timescale for these escaping protons is defined (cf. Equation 114 of LB05) as

tCoul ≡
Γescmpc

2

(dE/dt)|Coul

=
Γescmp

30neσT cme
, (4.5)

where me is the mass for electrons. In moving forward with this analysis, we adopt the

same conservative assumption that since ne decreases rapidly as the jet expands from the

disk into the external medium, the strongest Coulomb coupling will occur at the base of
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the jet, where ne is at maximum. This value can be estimated by first using Equation (D.4)

to eliminate A0 in Equation (3.25), in order to determine the rate at which protons escape

from the disk at the shock location (in terms of λmag),

Ṅesc ≡
4πr∗ηλ

2
magcn∗

H∗
, (4.6)

where r∗, n∗, H∗, η, and λmag represent, respectively, the radius, proton number density,

vertical disk half-thickness, the shock length and magnetic mean free path inside the disk

at the shock location. Using the idea that now the shock has a width comparable to ηλmag,

and operating on the same relations for the sum of the upper and lower sides of the shock

annulus, as well as the flux of the escaping protons into the outflow, the proton escape rate

can likewise be written as

Ṅesc = 4πr∗ηλmagcnp . (4.7)

Combining these two relations for Ṅesc yields the following,

np
n∗

=
λmag

H∗
< 1 , (4.8)

and since the electron-proton jet is charge neutral (ne = np),

ne =
λmag

H∗
n∗ , (4.9)

where ne is the electron number density at the base of the jet and np is the proton number

density. Combining the relation λmag/H∗ = (A0/η)1/2 (e.g. Equation D.4) with the results

for A0, η and n∗ obtained in Table 4.3, we can see for Models B, E and F, we can see in

Table 4.4 the corresponding values for ne, Γesc, and the electron-proton Coulomb coupling

timescale (Equation 4.5) for each source, which we can see ranges between ∼ 101 − 105 yr.
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Table 4.6: Radiative losses for Models B, E, and F. Note: All quantities are expressed in
gravitational units (GM = c = 1), unless otherwise indicated.

ne
(
cm−3

)
tCoul (yr) Lrad/Ljet

Model λmag/H∗ Γesc Sgr A* M87 Sgr A* M87 Sgr A* M87

B.............................. 0.0840 3.468 4.53×104 3.72×103 7.38×103 9.06×104 1.32×10−4 1.26×10−2

E.............................. 0.0861 3.119 4.22×106 1.43×103 7.18×101 2.17×105 2.28×10−2 9.01×10−3

F.............................. 0.0862 3.160 1.02×107 3.50×103 3.00×101 8.86×104 2.36×10−2 9.36×10−3

For the most part, these results essentially confirm those obtained by LB05 who found that

Coulomb losses were negligible in the outflowing jet. This is due to the fact that these

timescale values imply, that is if the jet travels at half or more the speed of light, the length

of the jet will be thousands of parsecs long before energy is drained from the protons. The

exception seems to be for Sgr A* in Models E and F, but that’s due to fact that we were

using a ∼ 2× higher kinetic luminosity power Ljet estimated by a source different from

Model 1 There’s no telling if that estimated value for the jet power is indeed more correct

than the one used in Model 1. Thus for the purpose of this work, we conclude that shock

acceleration of the protons in the disk is sufficient to power the observed outflows without

requiring additional energization in the jets.

Radiative losses from the disk are largely ignored here, which is justified for ADAF

disks. LB05 illustrated this by estimating the total bremsstrahlung X-ray luminosity via

integration of Equation (5.15b) from Rybicki & Lightman (1985) over the disk volume. The

result obtained for pure, fully ionized hydrogen is

Lrad =

∫ ∞
r
S

1.4× 10−27T 1/2
e ρ2m−2

p dV , (4.10)

where Te represents the electron temperature, and dV = 4πrHdr denotes the differential

volume element in cylindrical coordinates. Based on the assumption that the electron

temperature is equal to the ion temperature T∗, we find for all three Models that Lrad/Ljet

ranges between ∼ 10−2 − 10−4 for either source (see Table 4.6 for more details). Even
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with the electron temperature being roughly three orders of magnitude lower than the ion

temperature, due to X-ray luminosity being actually much lower than these values in a real

ADAF disk, our new model further supports the justification for neglecting radiative losses.

4.2 Transport Solution

In the previous section we investigated particle acceleration in an inviscid ADAF disk with

an isothermal shock. For a given source with a measured jet kinetic power Ljet and black

hole mass M , we found that several flow solutions can be obtained for different values of

the entropy ratio Kg/Kr for a specific diffusion parameter κ0. We adopted the value of the

downstream energy flux ε+ for a given Kg/Kr and κ0 to obtain the highest possible value

of the Lorentz factor for the given model parameters of models 2 and 5 of LB05, which

correspond to M87 and Sgr A* , respectively. The dynamical parameters for M , Ṁ , etc.

associated with Models A and B are listed in Tables 4.3. What follows in this section is

almost the same analysis that was performed for Model 1 in LB07.

We implement the same bidirectional integration technique outlined in LB07 (Model 1)

to solve for the eigenvalues λn from the boundary conditions (Equations 3.70 and 3.72).

This process uses a Wronskian bisection method of the inner and outer solutions until

they vanish at the matching radius situated in the post-shock region. After determining

a particular value for λn, the matching coefficient an is then found using Equation (3.69).

Consecutive repetitions of this process is done until a desired number of eigenvalues and

eigenfunctions is obtained. For illustrative purposes, Figure 4.6 shows the sequences of

eigenvalues associated with the parameters for Models A and B, as the corresponding free

parameters l and κ0 tie in to models 2 and 5, respectively, shown in Figure 3.2. Though, for

the duration of this analysis, we will be using the results associated with Models B, E and

F, as it was determined in the previous section that are considered the most self-consistent

solutions of the six models used.

Like in LB07, λ1 ∼ 4 in all cases, maintaining that even with the inclusion of particle
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Figure 4.6: Eigenvalue plot for Models A and B.

pressure in the dynamical structure, the acceleration is indeed efficient and analogous with

cosmic ray acceleration (see Blandford & Ostriker 1978, LB07). What’s interesting is that

unlike models 2 and 5 in LB07, the first two eigenvalues in Models B, E and F are λ1 = 4.05

and λ2 = 4.76, and λ1 = 4.32 and λ2 = 4.80, and λ1 = 4.06 and λ2 = 4.78, respectively.

This is in contrast to LB07 where λ1 = 4.165 and λ2 = 6.415 and λ1 = 4.180 and λ2 = 6.344

for models 2 and 5, respectively. This suggests that at high energies the energy distribution

is dominated by the first two eigenvalue λ1 and λ2, as the consecutive eigenvalues are all

much larger. However, instead of a power-law slope for the energy distribution, λ1 suggests

that the slope is much flatter, and its value comes close to the limit given by λmax = 4.
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4.2.1 Numerical Solutions for the Eigenfunctions

Computing the Green’s function fG (E, r) comes first from solving the eigenvalues λn and

the eigenfunctions Yn (r) outlined in Ch. 3 and implementing the orthogonality of the eigen-

functions. Afterwards, we compute the expansion coefficients bn (with either positive or

negative signs) in order evaluate fG (E, r) via the eigenfunction expansion (Equation 3.78),

fG (E, r) =

Nmax∑
n=1

bnYn (r)

(
E

E0

)−λn
, E ≥ E0 , (4.11)

where Nmax is determined by analyzing the term-by-term convergence in the series, and

E ≥ E0, otherwise fG (E, r) = 0 since there’s no deceleration process included in this

particle transport model. Before in LB07, it was determined that a higher value of Nmax

used in the numerical examples would generally yield an accuracy of at least three decimal

places. However in our work, the accuracy fromNmax is dependent on radius. As an example,

the fundamental asymptotic solutions Gin and Gout are compared with the asymptotic

solutions gin and gout for Model B with n = 1 in Figure 4.7. The agreement between the G

and g functions confirms the continued validity of the asymptotic relations employed near

the event horizon and at large radii. The global solution for the first eigenfunction Y1 is

also included in Figure 4.7 for Model B. Even with the inclusion of relativistic particles, a

derivative jump at the shock location is visible in the global solutions, as stated in Equation

(3.64). The analysis given in Figure 4.7 remains valid for Models E and F as well.

4.2.2 Green’s Function Particle Distribution

Just like what was done in LB07, we can combine our results for the eigenvalues, eigenfunc-

tions, and expansion coefficients in order to calculate the Green’s function fG(E, r) using

Equation (4.11). This can be seen in Figure 4.8 which is a plot of fG(E, r) as a function

of the particle energy E at various radii r in the disk for Models B, E and F, respectively.

It remains that at the injection energy (E = E0) that the Green’s function is equal to zero
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everywhere except at the shock location (r = r∗), as stated in Ch. 3, due to the particles

being rapidly accelerated after being injected. As such, due to the similar structure of Fig-

ure 5 in LB07, we can likewise make the conclusions obtained in § 4.2: in which the particle

acceleration in the disk is highly efficient, which can be seen from the relatively flat slope

of the Green’s function above the turnover. Also, even with the inclusion of relativistic

particle pressure, only a small fraction of the particles diffuse upstream to larger radii, in

which Figure 4.8 shows via the strong attenuation of the particle spectrum with increasing

r. Though what remains different, as first seen with the mean energy distribution plotted

in Figure 4.5, is that the particles in the inner region (r < r∗) appear to no longer exhibit

the greatest overall energy gain. This is the first indication that with the introduction of

relativistic particles, there’s a greater flow of energy coming inward in which a lot of it is

lost through the multiple shock crossings, yet the particles maintain a strong compression

flow near the event horizon.

One other point of interest is exploring the expansion coefficients bn (see Equation 3.82)

for each of the three models when compared to those obtained for models 2 and 5 of LB07.

These results are tabulated in Table 4.7. The results for the first two expansion functions

indicate that the second eigenfunction actually dominates over the first eigenfunction at low

energies. This can likewise be seen in Figure 4.9 which shows (at the shock radius r = r∗)

that the first eigenvalue does not become dominant until at higher energies.

4.2.3 Number and Energy Density Distributions

We continue by following § 4.3 of LB07 in which we generate results for the Green’s function

fG(E, r) by summing the eigenfunctions based on radius using Equation (4.11). At which

point, once the Green’s function energy distribution is determined for that radius, it can

be integrated with respect to the particle energy E to obtain the corresponding values for

the number and energy densities This is exactly the same as the term-by-term relations
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Figure 4.7: Similar to Figures 3 and 4 of LB07: fundamental solutions to Equations (3.70)

and (3.72), Gin
1 (r) and Gout

1 (r) (blue, solid lines), for Model B, compared with the cor-

responding asymptotic solutions gin
1 (r) and gout

1 (r) (red, dashed lines) in panels a and b,
respectively. Likewise, the associated global solution for the first eigenfunction Y1(r) (see
Equation 3.68) is plotted in panel c, with the shock location at r = r∗ is indicated.

Figure 4.8: Similar to Figure 5 of LB07: results for the relativistic particle Green’s function
fG(E, r) in units of ergs−3cm−3, computed using Equation (4.11) for (a) Model B, (b) Model

E and (c) Model F. The value of the radius r in units of GM/c2 is indicated for each curve,
with r = r∗ denoting the shock location.
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Table 4.7: Expansion coefficients (see Equation 3.82).

bn Model 2 (LB07) Model 5 (LB07) Model B Model E Model F

b1 2.63× 1047 2.09× 1047 6.19× 1045 1.68× 1049 1.32× 1048

b2 1.03× 1048 5.02× 1047 1.86× 1047 6.07× 1049 4.12× 1049

b3 −8.85× 1048 −1.79× 1048 5.00× 1047 4.01× 1050 1.31× 1050

b4 −2.93× 1049 −1.13× 1049 1.77× 1048 −1.81× 1051 4.95× 1050

b5 1.89× 1050 2.84× 1049 −8.39× 1048 −1.06× 1052 −2.55× 1051

b6 5.29× 1050 1.24× 1050 −3.02× 1049 4.96× 1052 −7.29× 1051

b7 −2.74× 1051 −5.55× 1050 −2.26× 1049 2.12× 1053 1.02× 1052

b8 8.69× 1051 −9.36× 1050 4.27× 1050 −9.43× 1053 9.19× 1052

b9 2.07× 1052 5.25× 1051 1.87× 1050 −1.36× 1054 −1.29× 1053

b10 −1.08× 1053 1.14× 1052 −3.54× 1051 1.02× 1055 −7.17× 1053

determined in Equation (51) of LB07,

nG
r (r) ≡ 4πE3

0

Nmax∑
n=1

bnYn (r)

λn − 3
,

UG
r (r) ≡ 4πE4

0

Nmax∑
n=1

bnYn (r)

λn − 4
.

(4.12)

Equation (4.12) above is used primary for checking the self-consistency of our formalism,

which is done by comparing the obtained values to those profiles of the number nr and energy

Ur densities determined in the previous section. In essence, our procedure for computing

fG(E, r) should produce results close enough to the dynamical profiles. The comparison

for Model B is given in Figure 4.10, and likewise Figures 4.11 and 4.12 for Models E and

F, respectively. Note that due that the close agreement between the two sets of results in

all three models confirms the validity of the analysis involved in calculating the Green’s

function, much like it was done in LB07. More importantly, that given the new outer

asymptotic relationship for Model 3, that Equation (4.11) still converges successfully with

the Nmax terms given for each radius in the series.
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Figure 4.9: Exploration of the Green’s function fG(E, r) at the shock location r = r∗ across
the energy range for (a) Model B, (b) Model E, (c) Model F.

Figure 4.10: Similar to Figure 6 of LB07: plots of a) the relativistic particle number density
and b) the relativistic particle energy density in cgs units for Model B. The solid lines are
the dynamical profiles determined in the previous section, and the filled in circles represent
the corresponding results obtained by integrating the Green’s function via Equation (4.12),
with the location of the shock radius r = r∗ indicated. It should be noted that with the
introduction of relativistic particle pressure, there still remains a close agreement between
the results, thus confirming the accuracy of our computational method.
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Figure 4.11: Same as Figure 4.10, but for Model E.

Figure 4.12: Same as Figure 4.11, but for Model F.
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4.2.4 Escaping Particle Distribution

We close out this chapter by analyzing the escaping particle distribution, similar to § 4.4 of

LB07. The energy spectrum of the escaping particles is computing using Equation (52) of

LB07 (which is actually an integration of the escape term given in Equation 3.2),

Ṅ esc
E = (4πE)2 r∗H∗cA0fG(E, r∗) , (4.13)

where Ṅ esc
E dE denotes the number of particles escaping from the disk per unit time with

energies E and E + dE. The total number of particles escaping from the disk per second,

Ṅesc, as well as the total energy escape rate, are related to the spectrum Ṅ esc
E via

Ṅesc =

∫ ∞
0

Ṅ esc
E dE = 4πr∗H∗cA0n∗ , (4.14)

and

Lesc =

∫ ∞
0

Ṅ esc
E EdE = 4πr∗H∗cA0U∗ , (4.15)

where n∗ ≡ nr(r∗) and U∗ ≡ Ur(r∗) represent the relativistic particle number and energy

densities, respectively, at the shock location. The escaping particle distributions for Models

B, E and F are plotted in Figure 4.13. One can see that the results vary due to the differences

reported in the dynamical parameters for each model given in Tables 4.1, 4.2, 4.3 and 4.4.

Just as was concluded in LB07, the values obtained for Lesc via Equation (4.15) agree well

with those listed for Ljet in Table 4.4, thus confirming that our model satisfies global energy

conservation. Likewise for the values obtained for Equation (4.14) when compared to those

listed in Table 4.4. Thus, all of these tests confirm the validity of our new approach used to

derive the Green’s function given by Equation (4.11), which was very similar to that done

for LB07.
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Figure 4.13: Plots of (a) the number distribution Ṅ esc
E and (b) the energy distribution EṄ esc

E

for the relativistic particles escaping at the shock location, r = r∗ (see Equation 4.13). The
curves are color-coded to represent each individual model.
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Chapter 5: Observational Predictions

5.1 Overview

We close out this thesis by addressing the source for the spectral energy distribution (SED)

observed for various black hole sources, or in this case the radio-loud sources such as M87.

This is believed to be due to the jet’s interaction with the surround gas in the torus as well

as the outer lobes. The material behind this chapter doesn’t care if the jet was from the

shock-acceleration model or the electrodynamic model outlined in Ch. 1; that’s all left in

the disk context. What happens when the relativistic particles in the jet collide with the

‘conceivably’ stationary thermal particles in the intergalactic medium is a different story.

This delves into areas of nuclear interactions and pair-production. For the purpose of this

work, we’ll assume that the only particles at work are the accelerated protons contained in

the jet emanated from the disk.

As noted in § 1.5.3, energy emitted from the disk as well as the jet is known as primary

radiation. When this radiation bombards with the surrounding gas and dust, the energy

resulting from the nuclear reactions is known as secondary radiation. This has been covered

in review (e.g. Eilek & Kafatos 1983, Barkov et al. 2012, Björnsson 1999, Dermer & Menon

2009) where the premise is simple: as the proton beam jets out from the disk in a cone-like

formation with a semi-opening angle (θ, in radians), interaction with the surrounding gas

creates a proton-proton (p-p) reaction and results in the creation of neutral and charged

pions, represented as π0, π+ and π−, respectively. Once these particles interact with other

surrounding particles, the resulting pair-production of an electron and positron results in γ-

ray emission. This overall process is illustrated in Figure 5.1. The γ-ray emission spectrum

is one of the most observed quantities from AGNs, in which the secondary radiation makes

considerable contribution. Though, it hasn’t been fully understood how the dynamical
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processes may affect this energy spectrum. Thus, the purpose of this final chapter is to

create a linear connection between our new diffusive two-fluid model to the production of

the observed γ-ray spectrum; one which hasn’t been done before as previous models only

provided an ad hoc fit to observational data.

5.2 Preliminaries for Secondary Pion Production

Before we move into how we create the γ-ray spectrum, we must first figure out how we create

the pions. The theoretical basis for this work will be a mix-match of various approaches

from different authors, ones we feel are valid logistically, though they will be made suited

to our Model 3. Turning first to basics, we note that neutral pions (π0) generally decays

into two γ-rays in its rest frame, π0 → 2γ. However, for p-p interactions, there’s a more

accurate formalism for this inelastic nuclear process,

p+ p→ π0 +X → 2γ +X , (5.1)

where X is everything else that could possibly be created in this collision (using Dermer

& Menon 2009 terminology). This could even include the charged particles which decays

through a muon to an electron (a positron or negaton, using Eilek & Kafatos 1983 termi-

nology),

π± → ν± + µ; ν± → e± + 2µ . (5.2)

Next we move to Eilek & Kafatos (1983) where we define the average energy of a pion (of

any charge) that arises in a p-p reaction as

γ̄ = 1 + (γp − 1)3/4 , (5.3)

where γp is the Lorentz factor for the protons (or more specifically the jet, depending on

the model). This was considered a good representation and fit to the data presented by
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Figure 5.1: Schematic representation of secondary γ-ray production, as observed on Earth,
from the jet.
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Table 5.1: Neutral pion production cross sections used in calculation, from Eilek & Kafatos
(1983).

π0 : Σπ0 (γp) = 1.4× 10−26 (γp − 1)7.375 cm2 , (γp < 2)

π0 : Σπ0 (γp) = 8.4× 10−27γ0.75
p cm2 , (γp > 2)

Ramaty and Lingenfelter (1966) with energies above a few GeV, even though there was a

slight error in low γp. Keeping with Eilek & Kafatos (1983), we shall write γ̄π = g (γp)

generally, in which we use Equation (5.3) for its simplicity. Therefore, Equation (5.3) can

be redefined as,

g (γp) = γ̄π = 1 + (γp − 1)3/4 . (5.4)

Moving forward, Eilek & Kaftans (1983) defined the cross section for pion production

as,

σπ (γπ, γp) = Σπ (γp) δ [γπ − g (γp)] , (5.5)

where Σπ is considered the magnitude of the cross section for species π
(
π+, π0, or π−

)
.

Σπ has been assigned specific functions of γp, depending on the π species in question, and

are listed in Table 5.1. Of interest to us in Equation (5.5) is the δ-function, in which we

can use it to define a function for the Lorentz factor of the protons γp in terms of that for

the pions γπ. Referring back to Equation (5.4) and setting g(γp) = γπ, we can see that

γp = (γπ − 1)4/3 + 1 . (5.6)

It should be noted that the energy of the protons E from the jet, as well as the injection

energy E0 at the shock, is related to the Lorentz factor via

E = Ep = γpmpc
2 , E0 = γp,τmpc

2 , (5.7)
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where γp,τ is defined as the threshold Lorentz factor for the protons. From this, we can

define the derivative for the energy of the protons as

dE = mpc
2dγp . (5.8)

Considering that in our work we’ve defined E0 = 0.002 ergs, this correlates to a γp,τ =

1.33959, which is < 1.37 the value determined for the data mentioned in Eilek & Kafatos

(1983).

The production of the secondary quanta (photons and electrons) outlined in Eilek &

Kafatos (1983) was determined with the pion production rate per target proton qπ(γπ),

in units of (s−1 per proton), which was also a function of an isotropic proton flux, Ip (γp)

(cm−2 s−1 sr−1 erg−1). For our work, we set the isotropic proton flux Ip (γp) in units of

(cm−2 s−1), where it won’t be applied to the pion production rate qπ(γπ). Instead, it ties

back into the dynamical equations established in Ch. 4, specifically the number of particles

escaping from the disk per unit time per unit energy Ṅ esc
E (Equation 4.13),

Ṅ esc
E (E) = (4πE)2r∗H∗cA0fG (E, r∗) ∼ ergs−1 s−1 . (5.9)

For us, we define the isotropic proton flux as

Ip (γp) =
Ṅ esc
E (E = Ep = γpmpc

2)

Ac
∼ ergs−1 cm−2 s−1 , (5.10)

where Ac is defined as the surface area of the cloud/gas coming in contact with the jet

(considered a constant). Referring to a similar model for M87 (see Barkov et al. 2012), we

define this area as

Ac = πR2 = πd2θ2 , (5.11)

where d is the distance of the jet from the disk to the cloud (or known as the distance from
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the SMBH at which the cloud crosses the jet). It should be noted that we are defining the

isotropic proton flux as a function of the proton Lorentz factor Ip (γp), but since the number

of particles escaping from the disk per unit time per unit energy is a function of energy

Ṅ esc
E (E), we therefore substitute Equation (5.7) into Equation (5.10) to indicate that now

Ṅ esc
E (γpmpc

2). In order to solve Equation (5.10), we can substitute in Equation (5.11) and

redefine the relation with the respective derivative on both sides,

Ip (γp) dγp =
Ṅ esc
E (γpmpc

2)

πd2θ2
dE ∼ cm−2 s−1 , (5.12)

which when combined with Equation (5.8) becomes,

Ip (γp) =
Ṅ esc
E (γpmpc

2)mpc
2

πd2θ2
. (5.13)

5.3 Pion Production

This work considered two possible scenarios for pion production when the jet hit the cloud,

one where there was pure neutral pions produced, and another where both neutral and

charged pions were produced. Pure neutral pion-production is more of an ideal case, whereas

the neutral-charged pion-production scenario is considered more realistic. Either way, both

scenarios incorporate a concept in particle physics of the probability P of surviving interac-

tion and making it out of the cloud. Figure 5.2 shows the overall system of the jet hitting

the cloud of length L0, where we denote Q0 as the number of protons incident onto the

cloud from the jet, and np as the proton number density (target proton per cm3).
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Figure 5.2: Cross-section of the Jet hitting the Cloud.
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5.3.1 Probability for Pure Neutral Pion Production

Here, we can use dimensional analysis to determine the derivative of the probability of

neutral pions surviving within an infinitesimal area (blue section of Figure 5.2) as

dP =
AcdLnpσπ0

Ac
, (5.14)

where σπ0 is the cross section for only neutral pions. The probability relates to the number

of protons Q as

dQ = −Q (L) dP , (5.15)

which when combined with Equation (5.14), we get the number of protons through the

cloud as a function of L for the neutral pions,

Q (L) = Q0e
−npσπ0L . (5.16)

The survival probability is actually defined as the ratio between the number of protons

incident through a portion of the cloud Q and all of it Q0,

Psurvive (L0) =
Q (L)

Q0
= e−npσπ0L0 . (5.17)

Therefore the probability for pure neutral pion production is given as

Pπ0 (L0) = 1− Psurvive = 1− e−npσπ0L0 . (5.18)

5.3.2 Probability Regarding the Neutral and Charged Pions

In the previous section we worked out the correct approach for pure neutral pion production

(that is, neglecting charged pion production). In this section, we include the effect of charged
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pion production, which removes protons from the incident beam without producing gamma-

rays. In this instance, charged pion production really becomes a pure attenuation effect

rather than a source of gamma-rays. But in order to correctly compute the gamma-ray

spectrum, we do need to include this attenuation resulting from charged pion production.

In essence, we are accounting for the attenuation of the charged particles in the survival

probability for the neutral pions (Equation 5.17).

To do this, we need to start from the beginning. What we really end up doing is changing

Equation (5.14) to include the charged pions,

dP =
AdLnp
A

(σπ0 + σπ+ + σπ−) , (5.19)

where σπ+ and σπ− denote the cross sections for the positively and negatively charged pions,

respectively. So now, the probability is related to the number of protons Q via

dQ = −Q (L) dP = −Q (L)np (σπ0 + σπ+ + σπ−) dL , (5.20)

which when combined with Equation (5.19) now allows the number of protons through the

cloud to consider all forms of pions that can be produced,

Q (L) = Q0e
−np(σπ0+σπ++σπ−)L . (5.21)

So now, the probability that an incident proton survives without suffering some kind of

pion-producing event is given as,

Psurvive (L0) =
Q (L)

Q0
= e−np(σπ0+σπ++σπ−)L0 . (5.22)

However, we are not done yet. See we cannot just follow like Equation (5.18) and assume

that the probability that the incident proton doesn’t survive is 1−Psurvive, the probability
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Table 5.2: Coefficients for the high-energy asymptotic inclusive cross sections for pion pro-
ductions in p− p collisions. This is essentially Table 8.1 of Dermon & Menon 2009.

X aπ bπ cπ
π+ 32 48.5 59.5
π0 27 57.9 40.9
π− 28.2 74.2 69.3

that some kind of pion is produced from a single incident proton. We have to take into

consideration that in this new regime that there are now three possible pions that can be

produced. Which means that the probability that an incident proton produces a neutral

pion has to take into account charged pion attenuation given by,

σπ0
ATT

=

(
σπ0

σπ0 + σπ+ + σπ−

)
. (5.23)

In other words, the neutral pion production is offset by the decay branching ratios for the

charged particles. Thus, the new probability for neutral pion production is defined as

Pπ0 (L0) =
[
1− e−np(σπ0+σπ++σπ−)L0

]( σπ0

σπ0 + σπ+ + σπ−

)
. (5.24)

It should be noted that the values for the cross sections of the pions can actually be defined

in terms of the proton Lorentz factor (γp) given by (see Equation 8.55 of Dermon & Menon

2009),

σπX(cm2) = 10−27

(
aπ ln γp +

bπ√
γp
− cπ

)
, (5.25)

with the corresponding values for the coefficients given in Table 5.2.
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5.4 γ-ray Production

For gamma-ray production, note that the number of gamma-rays produced per second is

twice the number of pions produced per second,

Ṅε = 2Ṅπ . (5.26)

From Equation (5.1), we know that the energy for the pions Eπ is related to that for the

gamma-rays ε via,

Eπ = 2ε . (5.27)

Since the energy of the pions is related to its respective Lorentz factor via,

Eπ = γπmπc
2 , (5.28)

thus we can combine this with Equation (5.27) to show

γπ =
2ε

mπc2
. (5.29)

This comes in handy as the objective is to determine a relationship that’s a function of

energy rather than a Lorentz factor, which is common when plotting the gamma-ray energy

flux. Let’s now determine the energy flux for the gamma-ray production via dimensional

analysis,

1

ε
Fε (ε) ∼ cm−2 s−1 erg−1 . (5.30)

It should be noted that since the particle number density is in units of ∼ s−1, we can

therefore use the above with Equation (5.26 to show (via dimensional analysis)

2Ṅπdγπ = Ṅεdγε = πD2θ2 1

ε
Fε (ε) dε ∼ s−1 , (5.31)

170



where now we’ve defined D as the distance from Earth to the observed cloud. Focusing on

the pion number density as a function of the gamma-ray energy,

2Ṅπdγπ = πD2θ2 1

ε
Fε (ε) dε ∼ s−1 , (5.32)

and noting from Equation (5.29) that,

dε =
mπc

2

2
dγπ , (5.33)

thus the energy flux for the gamma-rays is derived as,

Fε (ε) =
4εṄπ

(
γπ = 2ε

mπc2

)
πD2θ2mπc2

, (5.34)

where we note that Ṅπ is a function of the gamma-ray energy ε via the relation given in

Equation (5.29).

Next thing we need to do is determine the function of Ṅπ itself in order to close this

function completely. We derived this definition Ṅπ0 (γπ0) ourselves using the probability

relation for neutral pion production (Equation 5.24, which accounted for the charged-pion

attenuation), as well as the isotropic proton flux (Equation 5.13) and dimensional analysis

to show,

Ṅπ0 (γπ0) dγπ0 =

(
σπ0

σπ0 + σπ+ + σπ−

)(
1− e−np(σπ0+σπ++σπ−)L0

)
Ip (γp) dγpMin

[
Ac, πθ

2d2
]
,

(5.35)

where Ac is the area of the cloud. The derivative for dγp can be found from Equation (5.6)
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to show,

dγp =
4

3
(γπ0 − 1)1/3dγπ0 , (5.36)

which when combined with Equation (5.35) simplifies down to,

Ṅπ0 (γπ0) =
4

3
(γπ0 − 1)1/3

(
σπ0

σπ0 + σπ+ + σπ−

)(
1− e−np(σπ0+σπ++σπ−)L0

)
Ip (γp) Min

[
Ac, πθ

2d2
]
.

(5.37)

Thus, by combining Equation (5.37) with Equations (5.13) and (5.34), we simplify down

the expression to

Fε (ε) =
16mpε

3π2d2D2θ4mπ0

(γπ0 − 1)1/3Ṅ esc
E (γpmpc

2)

(
σπ0

σπ0 + σπ+ + σπ−

)
(

1− e−Σ(σπ0+σπ++σπ−)
)

Min
[
Ac, πθ

2d2
]
,

(5.38)

where Σ = npL0 is known as the column density of the cloud. We can also refer back to

Equation (5.9) to simplify this down even further to,

Fε (ε) =
256m3

pr∗H∗c
5A0ε

3d2D2θ4mπ0

Min
[
Ac, πθ

2d2
]

(γπ0 − 1)1/3 (γp)
2 fG

(
γpmpc

2, r∗
)

(
σπ0

σπ0 + σπ+ + σπ−

)(
1− e−Σ(σπ0+σπ++σπ−)

)
.

(5.39)

Note that in the previous Equation, we will need to switch from γp → γπ0 → 2ε/mπ0c2

by Equations (5.6) and (5.29) in order to correctly calculate Fε (ε). Also, in order to avoid

problems in the calculation, we set ε > mπ0c
2/2.

Now, in order to analyze the results obtained from Barkov et al. (2012), what we want

to do first is plot ε × Fε (ε)
(
erg cm−2 s−1

)
vs. ε (erg), however it should be noted that

the goal is to achieve ε × Fε (ε)
(
erg cm−2 s−1

)
vs. ε (eV). The problem is that this kind
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of figure (even on a log scale) is linear rather than what was obtained in that work. But

that’s alright as this serves primarily as a preliminary result for future work, in which we

can apply either Models B, E or F from Ch. 4 to observe the secondary γ-ray radiation

produced when the jet interacts with the surrounding cloud. Applying Model F results to

Equation (5.39) for an arbitrary set of input values (Σ = 1013 cm−2 and Ac = 109.4 cm2)

and those given in Barkov et al. (2012), we can fit our model to their computed SED for

secondary pp gamma rays (see Figure 5.3), which matches well with the VHE data points

taken from Aliu et al. (2012). This analysis can be done as well either Model B or Model E,

since the secondary radiation produced doesn’t care how the jet is created before it interacts

with the surrounding cloud.

It should be noted that Barkov et al. (2012) were not able to derive predictions in

the radio spectrum due to the particle’s energy evolution timescale being either longer,

or very sensitive to the dynamical evolution of the cloud. They stuck to X-ray emission.

Our model fit to the data is based on the results from a radio-loud source, and thus we

can show that the micro-processes occurring in the accretion disk can be used to derive

predictions for secondary pp γ-ray energy production. However, we currently cannot account

for the downward curve in the lower energy spectrum, which according to Barkov et al.

(2012) occurs when pp collisions become optically thin to where the gamma rays reach

their maximum after a sharp rise. At which point, pp collisions become strongly inefficient

quenching the gamma-ray emission, explaining the drop of the gamma-ray flux, which can

also be more abrupt due to γγ absorption. At the present time further study would need

to be done to further explore these results.
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Figure 5.3: Superposition of our secondary radiation model to Figure 6a of Barkov et al.
(2012) for M87. The primary focus is our model fit (blue-red line) to their computed SED
for secondary pp gamma rays (black dashed line), which matches the VHE data points taken
from Aliu et al. (2012).
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Chapter 6: Conclusion

In this dissertation I have developed the first self-consistent model for the accretion hydro-

dynamics and the particle acceleration occurring in an inviscid black hole accretion disk.

In particular, this is the first time that the ‘test particle’ approximation has been relaxed

in studies of black hole accretion. My results show that particle acceleration at a standing,

isothermal shock in an ADAF accretion disk can give relativistic protons the energy needed

to power the outflows observed from radio-loud sources containing black holes. The work

presented here is a modified, improved version of the model created in LB04 and LB05,

which now includes relativistic particle pressure and diffusion, and is self-consistent with

the dynamical results. This allows us to show the dynamical structure of the transonic flow

to be self-consistent with the relativistic particle transport occurring in the disk. Since en-

ergy conservation is enforced, our model ensures that the energy lost from the background

gas at the shock will result in the acceleration of some background particles to relativistic

energies. Plus, it continues to support the concept of first-order Fermi acceleration in shock

waves by providing a single, coherent explanation for the disk structure and the formation

of the outflow.

The existence of shocks in viscous disks is a controversial issue, and it’s been suggested

that shock formation is possible (provided the viscosity is relatively low) by several studies.

Our new inviscid model clearly indicates that a smooth-shock solution is impossible when

particle pressure and diffusion are included in the dynamical structure. It should be noted

that the dynamical profiles shown here are universal and can applied to any AGN from

their known jets and masses.

Our work is in analogy with the ‘cosmic-ray modified shock’ scenario for cosmic-ray

acceleration. It has been shown here in our new model that the pressure of the accelerated

particles is comparable to that of the thermal background gas, in contrast with the earlier
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investigations, which adopted the ‘test particle’ approximation (e.g., Blandford & Ostriker

1978). In fact, we have shown that an inclusion of relativistic particles and diffusion af-

fect the width of the shock thickness in the dynamical profiles, allowing for a precursor

deceleration into the shock, compared to the discontinuous jump seen in previous models.

Our result that the two pressures are comparable near the shock agrees with the results of

Axford et al. (1977) and Becker et al. (2011).

Here we have shown that the total pressure is not dominated by the pressure of the

background (thermal) gas throughout most of the disk, due to the fact that the particles

injected at the shock have a very large chance of diffusing to large distances from the black

hole. We have shown that a larger relativistic particle population and smaller diffusion effect

will result in higher relativistic outflows, achieving a maximum Lorentz factor of Γesc ∼ 3.5,

which is consistent with AGN observations. The lower value of Γesc in our new two-fluid

model not only indicates that relativistic particle pressure is comparable to the gas pressure

at the shock, but also that its inclusion in the dynamical profiles will create a softer particle

spectrum than in Model 1 (LB04; LB05), as it was determined in the cosmic-ray models.

The results obtained in this new model continue to confirm the general properties of

the jets observed in M87 and Sgr A* , particularly the terminal Lorentz factors and total

powers comparable to those observed in those AGNs. Likewise, the preliminary secondary

γ-ray spectrum agrees with the observed TeV spectrum for M87. However, higher efficien-

cies can be achieved by varying the downstream energy transport rate, the specific angular

momentum, the diffusion constant and the entropy ratio, which are the fundamental free

parameters in our model. The buildup of the particle pressure in such high-efficiency situ-

ations justifies our relaxation of the test particle approximation.

Much like LB05, we too shall continue this work by developing a self-consistent viscous

disk model in order to explore shock formation and particle acceleration more realistically

since viscosity plays a key role in determining the structure of an actual accretion disk. We

expect that the inclusion of viscosity will not significantly alter the conclusions reached in

this work since significant particle acceleration will occur regardless of the level of viscosity
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if a shock is present. In particular, we will reexamine the question of whether smooth flow

is possible when particle diffusion and viscosity are both included. We conclude that our

coupled, self-consistent theory for the disk structure and the particle acceleration provides

for the first time a completely self-consistent explanation for the outflows observed in many

radio-loud systems containing black holes.
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Appendix A: Deriving the Total Energy Transport Equation

The purpose of this section is to derive the total energy transport equation. The goal is to

show that from the total energy density Utot,

Utot = Ug + Ur −
GMρ

R−RS
+

1

2
ρ~v · ~v , (A.1)

the following relationship is valid,

∂Utot

∂t
= −~∇ · ~Ftot , (A.2)

where

~Ftot = (Ug + Pg)~v + (Ur + Pr)~v −
GMρ~v

R−RS
+

1

2
ρ (~v · ~v)~v − κ~∇Ur , (A.3)

is the total energy flux, Ug and Ur, as well as Pg and Pr, represent the internal energy

densities and pressures for the thermal and relativistic particles, respectively, G is the

gravitational constant, M is the mass of the celestial object (black hole source), R represents

the distance between two objects of force, RS = 2GM/c2 is the Schwarzschild radius, ρ is the

volumetric fluid mass density, ~v is the vector bulk velocity (considered positive for inflowing

particles), and κ represents the diffusion coefficient (Equation (2.48)). It should be noted

that the general form of the total energy flux ~Ftot is given as

~Ftot = γU~v − GMρ~v

R−RS
+

1

2
ρ (~v · ~v)~v − κ~∇Ur , (A.4)

where γU = γgUg + γrUr represents the total energy density of Model 3 as a linear combi-

nation of the thermal and relativistic particle energy densities, respectively, multiplied by

their respective adiabatic index of heat γ.
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First let’s define the full Lagrangian derivatives for the thermal Ug and relativistic Ur

energy densities,

DUr
Dt

=
γrUr
ρ

Dρ

Dt
− ~∇ ·

(
−κ~∇Ur

)
,

DUg
Dt

=
γgUg
ρ

Dρ

Dt
. (A.5)

Now let’s take the partial time-derivative of the total energy density (Equation (A.1)),

∂Utot

∂t
=
∂Ug
∂t

+
∂Ur
∂t
−GM ∂

∂t

(
ρ

R−RS

)
+

1

2

∂

∂t
(ρ~v · ~v) , (A.6)

which from the product rule on ∂/∂t [ρ/ (R−RS)] and ∂/∂t (ρ~v · ~v) expands out to become,

∂Utot

∂t
=
∂Ug
∂t

+
∂Ur
∂t
− GM

R−RS

∂ρ

∂t
−GMρ

∂

∂t
(R−RS)−1+

1

2

(
∂ρ

∂t
~v · ~v + ρ

∂~v

∂t
· ~v + ρ~v · ∂~v

∂t

)
.

Note that the last two terms on the right-hand side are equivalent (vector multiplication

rule), which simplifies the expression to,

∂Utot

∂t
=
∂Ug
∂t

+
∂Ur
∂t
− GM

R−RS

∂ρ

∂t
−GMρ

∂

∂t
(R−RS)−1 +

1

2

∂ρ

∂t
~v · ~v + ρ

∂~v

∂t
· ~v . (A.7)

The task now is finding all the terms necessary to simplify Equation (A.7) down to one

clean, efficient expression.

We start by using the Lagrangian derivative (Equation (2.1)) on ρ and exploiting the

mass continuity equation (Equation (2.23)),

Dρ

Dt
=
∂ρ

∂t
+ ~v · ~∇ρ = −~∇ · (ρ~v) + ~v · ~∇ρ . (A.8)
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Applying the divergence of the product of a scalar and a vector to ~∇ · (ρ~v),

~∇ · (ρ~v) = ~v ·
(
~∇ρ
)

+ ρ
(
~∇ · ~v

)
, (A.9)

simplifies this relation down,

Dρ

Dt
= −ρ

(
~∇ · ~v

)
. (A.10)

Next we can implement Euler’s equation (Equation (2.4)),

∂~v

∂t
= −1

ρ
~∇P + ~g − ~v · ~∇~v , (A.11)

where P = Pg +Pr is the total pressure in Model 3. Also we can show from Equation (2.5)

that γU can generally be rewritten as,

γU = P + U . (A.12)

Moving forward, we apply the full Lagrangian derivative (Equation (2.1)) to the left-hand

side, as well as Equation (A.10) to the right-hand side, of the relativistic Ur energy density

(Equation (A.5)),

∂Ur
∂t

+ ~v · ~∇Ur =
γrUr
ρ

[
−ρ
(
~∇ · ~v

)]
− ~∇ ·

(
−κ~∇Ur

)
,

which simplifies down to,

∂Ur
∂t

= −γrUr
(
~∇ · ~v

)
− ~∇ ·

(
−κ~∇Ur

)
− ~v · ~∇Ur . (A.13)
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Now we apply the same technique to the thermal Ug energy density (Equation (A.5)),

∂Ug
∂t

+ ~v · ~∇Ug =
γgUg
ρ

[
−ρ
(
~∇ · ~v

)]
= −γgUg

(
~∇ · ~v

)
,

which simplifies down to,

∂Ug
∂t

= −γgUg
(
~∇ · ~v

)
− ~v · ~∇Ug . (A.14)

Now we combine Equation (A.7) with Equations (2.23) and (A.10–A.14) to get,

∂Utot

∂t
= −γgUg

(
~∇ · ~v

)
− ~v · ~∇Ug − γrUr

(
~∇ · ~v

)
− ~∇ ·

(
−κ~∇Ur

)
− ~v · ~∇Ur

− GM

R−RS

[
−~∇ · (ρ~v)

]
−GMρ

∂

∂t
(R−RS)−1 +

1

2

[
−~∇ · (ρ~v)

]
~v · ~v

+ρ

[
−1

ρ
~∇P + ~g −

(
~v · ~∇

)
~v

]
· ~v .

(A.15)

Note that R is not dependent on t, so the term ∂/∂t (R−RS)−1 → 0. Also, we can

implement Equation (A.9) to redefine the expression as,

∂Utot

∂t
= −γgUg

(
~∇ · ~v

)
− ~v · ~∇Ug − γrUr

(
~∇ · ~v

)
− ~∇ ·

(
−κ~∇Ur

)
− ~v · ~∇Ur

− GM

R−RS

[
−~v ·

(
~∇ρ
)
− ρ~∇ · ~v

]
+

1

2

[
−~v ·

(
~∇ρ
)
− ρ~∇ · ~v

]
~v · ~v

+ρ

[
−1

ρ
~∇P + ~g −

(
~v · ~∇

)
~v

]
· ~v .

(A.16)
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Once the vector terms are expanded,

∂Utot

∂t
= −γgUg

(
~∇ · ~v

)
− ~v · ~∇Ug − γrUr

(
~∇ · ~v

)
− ~∇ ·

(
−κ~∇Ur

)
− ~v · ~∇Ur

+
GM

R−RS
~v ·
(
~∇ρ
)

+
GM

R−RS
ρ~∇ · ~v − 1

2
~v ·
(
~∇ρ
)
~v · ~v − 1

2
ρ~∇ · ~v (~v · ~v)

−~∇P · ~v + ρ~g · ~v − ρ
(
~v · ~∇

)
~v · ~v ,

(A.17)

the like-terms can be combined,

∂Utot

∂t
= −

[
γgUg + γrUr −

GMρ

R−RS
+

1

2
ρ (~v · ~v)

](
~∇ · ~v

)
− ~v · ~∇Ug

−~∇ ·
(
−κ~∇Ur

)
− ~v · ~∇Ur +

GM

R−RS
~v ·
(
~∇ρ
)
− 1

2
~v ·
(
~∇ρ
)
~v · ~v

−~∇P · ~v + ρ~g · ~v − ρ
(
~v · ~∇

)
~v · ~v .

(A.18)

Note that ~∇P is the gradient of the total pressure P = Pg +Pr, which when combined with

Equation (2.5) becomes,

~∇P = ~∇Pg + ~∇Pr = (γg − 1) ~∇Ug + (γr − 1) ~∇Ur . (A.19)

Combining Equations (A.18) and (A.19),

∂Utot

∂t
= −

[
γgUg + γrUr −

GMρ

R−RS
+

1

2
ρ (~v · ~v)

](
~∇ · ~v

)
− ~v · ~∇Ug

−~∇ ·
(
−κ~∇Ur

)
− ~v · ~∇Ur +

GM

R−RS
~v ·
(
~∇ρ
)
− 1

2
~v ·
(
~∇ρ
)
~v · ~v

−
[
(γg − 1) ~∇Ug + (γr − 1) ~∇Ur

]
· ~v + ρ~g · ~v − ρ

(
~v · ~∇

)
~v · ~v ,

(A.20)
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and then simplifying the expression,

∂Utot

∂t
= −

[
γgUg + γrUr −

GMρ

R−RS
+

1

2
ρ (~v · ~v)

](
~∇ · ~v

)
− ~∇ ·

(
−κ~∇Ur

)

+~v ·
[

GM

R−RS

~∇ρ− 1

2
(~v · ~v) ~∇ρ− γg ~∇Ug − γr ~∇Ur + ρ~g − ρ

(
~v · ~∇

)
~v

]
,

(A.21)

we have everything needed to make the connection between Equation (A.2) and Equation

(A.3). The final step is to simplify Equation (A.21) by applying the divergence of the

product of a scalar and a vector for various terms, but in reverse.

Looking at Equation (A.4), we can start by applying the divergence to the energy density

terms,

~∇ · (γgUg~v) = ~v ·
(
γg ~∇Ug

)
+ γgUg ~∇ · ~v , (A.22)

~∇ · (γrUr~v) = ~v ·
(
γr ~∇Ur

)
+ γrUr ~∇ · ~v . (A.23)

Next we can do to the same to the potential energy term,

~∇ ·
(

GM

R−RS
ρ~v

)
= ~v ·

(
GM

R−RS

~∇ρ
)

+
GMρ

R−RS

~∇ · ~v +GMρ~v · ~∇ (R−RS)−1 .

Note that the last term includes the acceleration due to gravity ~g since,

GMρ~v · ~∇ (R−RS)−1 = −GMρ~v · (R−RS)−2 = ρ~v · ~g

thus simplifying down the expression,

~∇ ·
(

GM

R−RS
ρ~v

)
= ~v ·

(
GM

R−RS

~∇ρ
)

+
GMρ

R−RS

~∇ · ~v + ρ~v · ~g . (A.24)
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Finally, we apply the divergence to the kinetic energy term,

~∇ ·
[

1

2
(~v · ~v) ρ~v

]
= ~v ·

[
1

2
(~v · ~v) ~∇ρ+ ρ

(
~v · ~∇

)
~v

]
+

1

2
ρ (~v · ~v) ~∇ · ~v

=
1

2
~v · (~v · ~v) ~∇ρ+ ρ~v ·

(
~v · ~∇

)
~v +

1

2
ρ (~v · ~v) ~∇ · ~v .

(A.25)

Combining Equations (A.22–A.25), and applying them to Equation (A.21), we can see that

the expression simplifies down to

∂Utot

∂t
= −~∇ ·

(
γgUg~v + γrUr~v −

GMρ~v

R−RS
+

1

2
ρ (~v · ~v)~v − κ~∇Ur

)
. (A.26)

Thus when we apply Equation (A.12),

∂Utot

∂t
= −~∇ ·

[
(Ug + Pg)~v + (Ur + Pr)~v −

GMρ~v

R−RS
+

1

2
ρ (~v · ~v)~v − κ~∇Ur

]
, (A.27)

and comparing the right-hand side to Equation (A.3), we have therefore confirmed that

∂Utot

∂t
= −~∇ · ~Ftot

184



Appendix B: Precursor to the Wind Equation

Before we can derive the wind equation for either Model 1, 2 or 3, we must first determine

the steady-state radial momentum equation. This is derived from the radial component of

Euler’s relation (Equation 2.4),

∂~v

∂t
+
(
~v · ~∇

)
~v = −1

ρ
~∇P +

1

ρ
~f , (B.1)

when adopting cylindrical coordinates in steady-state, where the only forces acting on the

fluid is a pseudo-Newtonian force, defined for this system (where it is already assumed to

be vertically averaged) in the radial direction as

~f ≡ frr̂ =
ρdΦ

dr
r̂ =

GMρ

(r − rS)2 r̂ . (B.2)

The first thing that needs to be addressed is the convective acceleration term,
(
~v · ~∇

)
~v

(also known as the material derivative), we can be spaced out as so,

(
~v · ~∇

)
~v = ~∇

(
1

2
~v2

)
− ~v ×

(
~∇× ~v

)
. (B.3)

The first term on the right-hand-side of Equation (B.3) can be written in cylindrical coor-

dinates as,

~∇
(

1

2
~v2

)
=

1

2

(
r̂
∂v2

r

∂r
+ φ̂

1

r

∂v2
φ

∂φ
+ ẑ

∂v2
z

∂z

)
. (B.4)

Now, we focus on the innermost curl in the second term, written in cylindrical coordinates

185



as,

~∇× ~v =

(
1

r

∂vz
∂φ
−
∂vφ
∂z

)
r̂ +

(
∂vr
∂z
− ∂vz

∂r

)
φ̂+

1

r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
ẑ (B.5)

Next, we apply the cross product of ~v to Equation (B.5) to obtain,

~v ×
(
~∇× ~v

)
= vrr̂ ×

[(
1

r

∂vz
∂φ
−
∂vφ
∂z

)
r̂ +

(
∂vr
∂z
− ∂vz

∂r

)
φ̂+

1

r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
ẑ

]

+vφφ̂×
[(

1

r

∂vz
∂φ
−
∂vφ
∂z

)
r̂ +

(
∂vr
∂z
− ∂vz

∂r

)
φ̂+

1

r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
ẑ

]

+vz ẑ ×
[(

1

r

∂vz
∂φ
−
∂vφ
∂z

)
r̂ +

(
∂vr
∂z
− ∂vz

∂r

)
φ̂+

1

r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
ẑ

]
,

which break up the components as,

~v ×
(
~∇× ~v

)
= vr

(
∂vr
∂z
− ∂vz

∂r

)
ẑ − 1

r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
φ̂− vφ

(
1

r

∂vz
∂φ
−
∂vφ
∂z

)
ẑ

+
vφ
r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
r̂ + vz

(
1

r

∂vz
∂φ
−
∂vφ
∂z

)
φ̂− vz

(
∂vr
∂z
− ∂vz

∂r

)
r̂ .

(B.6)

However, since vz = 0, as everything is vertically averaged, Equation (B.6) simplifies down

to,

~v ×
(
~∇× ~v

)
= −1

r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
φ̂+

vφ
r

(
∂

∂r
(rvφ)

)
r̂

= −1

r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
φ̂+

v2
φ

r
r̂ .

(B.7)
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Thus, combining Equations (B.4) and (B.7) brings the convective acceleration term (Equa-

tion B.3) to,

(
~v · ~∇

)
~v =

1

2

{
r̂
∂v2

r

∂r
+ φ̂

1

r

∂v2
φ

∂φ
+ ẑ

∂v2
z

∂z

}
+

1

r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
φ̂−

v2
φ

r
r̂ . (B.8)

Combining Equations (B.1), (B.2) and (B.8) we get,

∂~v

∂t
+

1

2

{
r̂
∂v2

r

∂r
+ φ̂

1

r

∂v2
φ

∂φ
+ ẑ

∂v2
z

∂z

}
+

1

r

(
∂

∂r
(rvφ)− ∂vr

∂φ

)
φ̂−

v2
φ

r
r̂

= −1

ρ
~∇P +

1

ρ

GMρ

(r − rS)2 r̂ .

(B.9)

Focusing on just the radial components r̂, we obtain the steady-state (∂~v/dt → 0) radial

momentum equation,

1

2

∂v2
r

∂r
−
v2
φ

r
= −1

ρ

∂P

∂r
+

GM

(r − rS)2 ,

which is rewritten as,

v
dv

dr
= −1

ρ

dP

dr
− GM

(r − rS)2 +
v2
φ

r
, (B.10)

where dP/dr is the change in the total pressure in the system with respect to the radius

r, which is dependent on the model. It should be noted that Equation (B.10) is universal

for all three Models, it’s just dependent on the total pressure P , which separately defines it

for a particular model. For Model 1, P → Pg, and for Models 2 and 3, P = Pg + Pr. This

becomes useful when deriving the wind equations (e.g. see § 2.4.1)
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Appendix C: Treatment of the Vertical Structure

The following is from Appendix A of of Le & Becker (2005), but with references made to my

document. In principle, the pressure P , density ρ, diffusion coefficient κ, Green’s function

fG, and velocity components vr and vz in the disk all display significant variations in the

vertical (z) direction. Following Abramowicz & Chakrabarti (1990), we use the first five

quantities to represent vertical averages over the disk structure at radius r. However, the

vertical variation of the velocity components vz must be treated differently. Here, we assume

for simplicity that the vertical expansion is homologous, and therefore the vertical velocity

variation is given by

vz (r, z) = B(r)z . (C.1)

It follows that the vertical velocity at the surface of the disk, z = H(r), can be written as

vz (r, z) = B(r)H(r) . (C.2)

In a steady state situation, we can also express the vertical velocity at the disk surface using

vz (r, z)|z=H = vr
dH

dr
. (C.3)

By combining the two previous expressions, we find that the function B(r) is given by

B(r) = vr
d lnH

dr
. (C.4)

This result will prove useful when we vertically integrate the transport equation. Note that

in terms of B(r), we can write the divergence of the flow velocity ~v in cylindrical coordinates

as

~∇ · ~v =
1

r

∂

∂r
(rvr) +

∂vz
∂z

=
1

r

∂

∂r
(rvr) +B(r) , (C.5)
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where we have assumed azimuthal symmetry. Application of Equation (C.4) now yields

~∇ · ~v =
1

Hr

∂

∂r
(rHvr) . (C.6)

The steady state transport equation expressed in cylindrical coordinates (see Equation

3.5) is

vr
∂fG

∂r
+ vz

∂fG

∂z
=

1

3

[
1

r

∂

∂r
(rvr) +

∂vz
∂z

]
E
∂fG

∂E
+

1

r

∂

∂r

(
rκ
∂fG

∂r

)

+
Ṅ0δ (E − E0) δ (r − r∗)

(4πE0)2 r∗H∗
−A0cδ (r − r∗) fG .

(C.7)

Operating on equation (C.7) with
∫∞

0 dz and applying equation (C.1) yields, after partially

integrating the term containing vz on the left-hand side,

vr
∂

∂r
(HfG)−HBfG =

1

3

[
1

r

∂

∂r
(rvr) +B

]
HE

∂fG

∂E
+

1

r

∂

∂r

(
rHκ

∂fG

∂r

)

+
Ṅ0δ (E − E0) δ (r − r∗)

(4πE0)2 r∗
−A0cH∗δ (r − r∗) fG ,

(C.8)

where the symbols fG, vr, and κ now refer to vertically averaged quantities. Using equations

(C.4), (C.5), and (C.6), we can rewrite the vertically integrated transport equation as

Hvr
∂fG

∂r
=

1

3r

∂

∂r
(rHvr)E

∂fG

∂E
+

1

r

∂

∂r

(
rHκ

∂fG

∂r

)

+
Ṅ0δ (E − E0) δ (r − r∗)

(4πE0)2 r∗
−A0cH∗δ (r − r∗) fG .

(C.9)

This expression is used in § (5.1) to analyze the transport of the relativistic particles in the

disk.
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Appendix D: Derivation of the Escape Parameter

The rate at which particles escape through the surface of the disk, quantified with the

dimensionless parameter A0 mentioned in Equation (3.8), occurs from random walks near

the shock location. The particle acceleration is a consequence of magnetic wave collisions,

in which the shock thickness is similar to the magnetic mean free path λmag. Following

Appendix B of Le & Becker (2005, hereafter LB05), we follow the same cylindrical pipe

model with the analogy that the particles are escaping via a “leak” from a radius equal to

the disk half-thickness at the shock location, H∗, in order to estimate A0. However, the

length of the open section of the pipe is now set equal to the thickness of the shock by

ηλmag, where η is a dimensionless quantity that represents this thickness in units of the

magnetic coherence length.

The model of LB05 dealt with a discontinuous shock, in which the shock thickness was

assumed to be equal to the magnetic coherence length λmag; therefore η = 1. In the case

under consideration here, the relativistic particle pressure creates a precursor deceleration

which increases the effective width of the shock, as seen in Figure 4.1, to which η ∼ 7− 11.

This is the same behavior observed in the self-consistent models for cosmic-ray-modified

shocks (Axford et al. 1977; Becker et al. 2011). In order to obtain the estimated value A0

for this new model, we must retrace our steps from Appendix B of LB05. First we note

that the particle number density in the open section of the pipe is governed by the relation

vx
dnr
dx

= − nr
tesc

, (D.1)

where vx, nr, and tesc denote the flow velocity, the relativistic particle number density, and

the average time for the particles to “leak” through the pipe via diffusion, respectively.
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Integrating Equation (D.1) leads to

nr (x) = n0 exp

(
− x

vxtesc

)
, (D.2)

where n0 denotes the incident number density as the flow encounters the exit in the pipe

(at x = 0). The solution for nr(x) is approximated via Taylor expansion around x = 0,

yielding

nr (x) ≈ n0

(
1− x

vxtesc

)
. (D.3)

To estimate the fraction of particles that escape from the pipe, we now set x = ηλmag to

obtain

fesc = 1− nr
n0

∣∣∣∣
x=λmag

=
ηλmag

vxtesc
. (D.4)

With the assumption that advection dominates over diffusion, as the gas crosses the isother-

mal shock the fraction of escape particles is given as

fesc = A0
c

v∗
, (D.5)

where the mean velocity at the shock is defined as v∗ ≡ (v+ + v−) /2. By setting vx = v∗

when combining Equations (D.4) and (D.5), we obtain

A0 =
ηλmag

ctesc
. (D.6)

Following Appendix B of LB05, we too use the definition for the mean escape time tesc

since our model for the particle transport in the disk is one-dimensional. This quantity is
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related to λmag and the disk half-thickness at the shock H∗ via

tesc =
H∗
vdiff

=
H2
∗

cλmag
, (D.7)

where vdiff = cλmag/H∗ represents the vertical diffusion velocity of the protons in the tangled

magnetic field near the shock. This is only valid if H∗/λmag > 1. Now in order to eliminate

tesc in Equation (D.6), the parameter A0 can be defined in terms of λmag,

A0 = η

(
λmag

H∗

)2

< 1 , (D.8)

which when combined with the standard expression (e.g., Reif 1965) for the diffusion coef-

ficient in an ideal dilute gas fluid at the shock

κ =
cλmag

3
, (D.9)

can be rewritten as

A0 = η

(
3κ∗
cH∗

)2

, (D.10)

where κ∗ ≡ (κ+ + κ−) /2 is the average of the upstream and downstream values of the

diffusion coefficient (Equation (2.48)) on either side of the shock.
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Appendix E: Deriving the Lagrangian Particle Energy

Density

The purpose of this section is to verify that by integrating the steady-state transport equa-

tion (Becker 1992),

∂fG

∂t
= 0 = −~∇ · ~F − 1

3E2

∂

∂E

(
E3~v · ~∇fG

)
+ ḟsource − ḟesc , (E.1)

where the specific flux ~F is defined as,

~F = −κ~∇fG −
~vE

3

∂fG

∂E
, (E.2)

with
∫∞

0 4πE3dE, without the source or escape terms, that we get back the full Lagrangian

of the relativistic particle energy density Ur,

DUr
Dt

=
γrUr
ρ

Dρ

Dt
− ~∇ ·

(
−κ~∇Ur

)
. (E.3)

Start by integrating Equation (E.1) with with
∫∞

0 4πE3dE, ignoring the source terms,

0 = −
∫ ∞

0
4π
(
~∇ · ~F

)
E3dE −

∫ ∞
0

4πE3 1

3E2

∂

∂E

(
E3~v · ~∇fG

)
dE . (E.4)

Now branch out the vector components for the right-most term,

0 = −
∫ ∞

0
4π
(
~∇ · ~F

)
E3dE −

∫ ∞
0

4πE3
(
~v · ~∇fG

)
dE

+

∫ ∞
0

4πE3 1

3E2

(
E3 ∂~v

∂E
· ~∇fG

)
dE +

∫ ∞
0

4πE3 1

3E2

(
E3~v · ∂

~∇fG

∂E

)
dE .

(E.5)
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Since ~v is not dependent on E,

0 = −
∫ ∞

0
4π
(
~∇ · ~F

)
E3dE −

∫ ∞
0

4πE3
(
~v · ~∇fG

)
dE

+

∫ ∞
0

4πE3 1

3E2

(
E3~v · ∂

~∇fG

∂E

)
dE .

(E.6)

Next, substitute in Equation (E.2) in the left-most term,

−
∫ ∞

0
4π
(
~∇ · ~F

)
E3dE = −

∫ ∞
0

4π

(
~∇ ·
[
−κ~∇fG −

~vE

3

∂fG

∂E

])
E3dE , (E.7)

which after applying the distributive property becomes,

−
∫ ∞

0
4π
(
~∇ · ~F

)
E3dE = −

∫ ∞
0

4π

(
~∇ ·
[
−κ~∇fG

]
− ~∇ ·

[
~vE

3

∂fG

∂E

])
E3dE , (E.8)

and finally,

−
∫ ∞

0
4π
(
~∇ · ~F

)
E3dE = −

∫ ∞
0

4π
(
~∇ ·
[
−κ~∇fG

])
E3dE

+

∫ ∞
0

4π

(
~∇ ·
[
~vE

3

∂fG

∂E

])
E3dE .

(E.9)

Note that the first term of the right-hand-side of Equation (E.9) can be simplified down

using Ur ≡
∫∞

0 4πE3dE,

∫ ∞
0

4π
(
~∇ ·
[
−κ~∇fG

])
E3dE = ~∇ ·

[
−κ~∇

∫ ∞
0

4πE3fGdE

]
= ~∇ ·

(
−κ~∇Ur

)
. (E.10)
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Likewise, the second term of the right-hand-side of Equation (E.9) can be simplified down,

∫ ∞
0

4π

(
~∇ ·
[
~vE

3

∂fG

∂E

])
E3dE = ~∇ · ~v

3

∫ ∞
0

4πE4∂fG

∂E
dE , (E.11)

which after applying integration-by-parts,

∫ ∞
0

4π

(
~∇ ·
[
~vE

3

∂fG

∂E

])
E3dE = ~∇ · ~v

3

(
4πE4 fG|∞0 −

∫ ∞
0

16πE3fGdE

)
, (E.12)

simplifies down to,

∫ ∞
0

4π

(
~∇ ·
[
~vE

3

∂fG

∂E

])
E3dE = −~∇ · ~v

3

(
4

∫ ∞
0

4πE3fGdE

)

= −~∇ · 4~v

3
Ur = −4

3
~∇ · (~vUr) .

(E.13)

Note that the divergence term in Equation (E.13) can be expanded out as,

~∇ · (~vUr) = Ur

(
~∇·~v
)

+ ~v · ~∇Ur . (E.14)

Also, the middle-term of Equation (E.6) can be simplified down,

∫ ∞
0

4πE3
(
~v · ~∇fG

)
dE = ~v · ~∇

(∫ ∞
0

4πE3fGdE

)
= ~v · ~∇Ur . (E.15)

Finally, we simplify down the last-term of Equation (E.6),

∫ ∞
0

4πE3 1

3E2

(
E3~v · ∂

~∇fG

∂E

)
dE =

1

3
~v · ~∇

[∫ ∞
0

4π

(
E4∂fG

∂E

)
dE

]
, (E.16)
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and after applying integration-by-parts, simplifies down to,

∫ ∞
0

4πE3 1

3E2

(
E3~v · ∂

~∇fG

∂E

)
dE =

1

3
~v · ~∇

(
4πE4 fG|∞0 −

∫ ∞
0

16πE3fGdE

)

= −1

3
~v · ~∇

(
4

∫ ∞
0

4πE3fGdE

)
= −4

3
~v · ~∇Ur .

(E.17)

Now we substitute in Equations (E.10), (E.13), (E.14), (E.15), (E.17) into Equation (E.6),

0 = −~∇ ·
(
−κ~∇Ur

)
− 4

3
Ur

(
~∇·~v
)
− 4

3
~v · ~∇Ur − ~v · ~∇Ur +

4

3
~v · ~∇Ur , (E.18)

which simplifies down to,

0 = −~∇ ·
(
−κ~∇Ur

)
− 4

3
Ur

(
~∇·~v
)
− ~v · ~∇Ur , (E.19)

and is rewritten as,

~v · ~∇Ur = −~∇ ·
(
−κ~∇Ur

)
− 4

3
Ur

(
~∇·~v
)
. (E.20)

Applying the full Lagrangian (Equation 2.1) to the relativistic particle energy density Ur

and focusing on the steady-state case,

DUr
Dt

=
∂Ur
∂t

+ ~v · ~∇Ur = ~v · ~∇Ur , (E.21)

and with the substitution of γr = 4/3, Equation (E.20) thus becomes,

DUr
Dt

= −~∇ ·
(
−κ~∇Ur

)
+
γrUr
ρ

Dρ

Dt
. (E.22)
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Appendix F: Proof: Separation of Variables Function

Now in order to prove that the separation of variables function (Equation 3.63) works to

verify Equation (3.65), let’s start with a generic separation of variables function,

fλ (E, r) = G (λ,E)Y (λ, r) . (F.1)

Next we set the source term in Equation (3.61) to zero and make the equation homogeneous,

−Hv∂fG

∂r
+

1

3r

∂

∂r
(rHv)E

∂fG

∂E
− 1

r

∂

∂r

(
rHκ

∂fG

∂r

)
+A0cH∗δ (r − r∗) fG = 0 . (F.2)

Now substitute in Equation (F.1),

−HvG∂Y
∂r

+
1

3r

∂

∂r
(rHv)EY

∂G

∂E
− 1

r

∂

∂r

(
rHκG

∂Y

∂r

)
+A0cH∗δ (r − r∗)GY = 0 , (F.3)

and then divide everything by GY,

−Hv 1

Y

∂Y

∂r
+

1

3r

∂

∂r
(rHv)E

1

G

∂G

∂E
− 1

Y

1

r

∂

∂r

(
rHκ

∂Y

∂r

)
+A0cH∗δ (r − r∗) = 0 . (F.4)

Now we can separate out the radial spatial components to the LHS of Equation (F.4), as

well as the energy components to the RHS,

3

(
d ln (rHv)

dr

)−1 [
− 1

Y

dY

dr
− 1

Y

1

rHv

d

dr

(
rHκ

dY

dr

)
+
A0c

v∗
δ (r − r∗)

]
= −E 1

G

dG

dE
, (F.5)

which ensures that the LHS depends only on r and the RHS depends only on E. The only

way for Equation (F.5) to hold is to have both the LHS and the RHS be equal to a common
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constant. This implies,

3

(
d ln (rHv)

dr

)−1 [
− 1

Y

dY

dr
− 1

Y

1

rHv

d

dr

(
rHκ

dY

dr

)
+
A0c

v∗
δ (r − r∗)

]
= −E 1

G

dG

dE
= λ

(F.6)

where λ is a constant. The original PDE is now split into two ODEs, where we can focus

on one,

−E 1

G

dG

dE
= λ , (F.7)

which becomes

lnG = − (lnE − lnE0)λ = − ln

(
E

E0

)
λ , (F.8)

and thus a definitive function for G(λ,E),

G(λ,E) =

(
E

E0

)−λ
, (F.9)

in Equation (F.1),

fλ (E, r) =

(
E

E0

)−λ
Y (λ, r) . (F.10)

Now we plug in Equation (F.10) into Equation (F.2) and then separate out the variables,

in which away from the shock (r 6= r∗), gets reduced to

d2Yn
dr2

+

[
v

κ
+

1

rκH

d

dr
(rHκ)

]
dYn
dr

+
λn

3rκH

d

dr
(rHv)Yn = 0 . (F.11)

It should be noted that,

d

dr
(rHv) = (rHv)

d ln (rHv)

dr
. (F.12)
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Thus, plugging Equation (F.12) back into Equation (F.11) gets back Equation (29) from

LB07,

d2Yn
dr2

+

[
v

κ
+
d ln (rHκ)

dr

]
dYn
dr

+
λnvYn

3κ

d ln (rHv)

dr
= 0 , (F.13)

in which applying the diffusion coefficient function (Equation 2.48) brings it to,

d2Yn
dr2

+

[
rS

κ0 (r − rS)2 +
d ln (rHv)

dr
+

2

(r − rS)

]
dYn
dr

+
λnrSYn

3κ0 (r − rS)2

d ln (rHv)

dr
= 0 . (F.14)

This is Equation (30) from LB07. Here, since I have the global solution for v (r) and H (r)

for Model 3, I will be able to compute all of the coefficients in order to solve numerically

for the spatial eigenfunction Yn (r).
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Appendix G: Determining the Eigenfunction Jump

Condition

The global solution for the eigenfunction Yn (r) must satisfy the continuity and derivative

jump conditions associated with the presence of the shock/source at radius r = r∗. In order

to do this we must integrate the vertically-integrated transport equation (Equation 3.65)

with respect to the radius in the vicinity of the shock. From Equation (3.65),

−HvdYn
dr

=
λn
3r

d

dr
(rHv)Yn +

1

r

d

dr

(
rHκ

dYn
dr

)
−A0cH∗δ (r − r∗)Yn , (G.1)

let’s multiply both sides by r first,

−HvrdYn
dr

=
λn
3

d

dr
(rHv)Yn +

d

dr

(
rHκ

dYn
dr

)
−A0cH∗rδ (r − r∗)Yn . (G.2)

Now integrate Equation (G.2) with respect to the radius in the vicinity of the shock,

−
∫
Hvr

dYn
dr

dr =
λn
3

∫
d

dr
(rHv)Yndr +

∫
d

dr

(
rHκ

dYn
dr

)
dr

−A0cH∗

∫
rδ (r − r∗)Yndr ,

(G.3)

which expands out to,

−
∫
Hvr

dYn
dr

dr =
λn
3

[
−∆r∗HvYn −

∫
rHv

dYn
dr

dr

]
+

∫
d

(
rHκ

dYn
dr

)

−A0cH∗

∫
rδ (r − r∗)Yndr .

(G.4)
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Note,
∫
Hvr dYndr dr = 0, thus Equation (G.4) reduces to,

0 =
λn
3

[−∆r∗HvYn] +

∫
d

(
rHκ

dYn
dr

)
−A0cH∗

∫
rδ (r − r∗)Yndr , (G.5)

which simplifies down to,

∆

(
λn
3
HvYn +Hκ

dYn
dr

)
= −A0cH∗Yn (r∗) , (G.6)

where ∆ denotes the difference between postshock and preshock quantities. It should be

noted that Equation (G.6) is the generic jump derived and mainly applies to Model 3. For

Model 1, where H+ = H− = H∗, this reduces down to

∆

(
λn
3
vYn + κ

dYn
dr

)
= −A0cYn (r∗) . (G.7)

This establishes that Yn (r) must be continuous at the shock location, and its derivative

must display a jump there.
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Appendix H: Asymptotic Relations for the Eigenfunction

The purpose of this section is, to quote LB07, that “since the spatial eigenfunctions Yn(r)

satisfy the second-order linear differential equation given in [Equation (3.65)], we must

also impose two boundary conditions in order to determine the global solutions and the

associated eigenvalues λn”. Fortunately, it turns out that these required conditions can be

based on the conditions set from the dynamical structure of the disk near the event horizon

(r → rS) and at large radii (r → ∞, see Ch. 2 for details). As we move forward in this

Appendix, we break down the eigenfunction boundary conditions for each of the Models.

H.1 Model 1

This, as well as the other Models, will rely on using Equation (3.65),

d2Yn
dr2

+

[
rS

κ0 (r − rS)2 +
d ln (rHv)

dr
+

2

(r − rS)

]
dYn
dr

+
λnrS

3κ0 (r − rS)2

d ln (rHv)

dr
Yn = 0 ,

(H.1)

to derive the various boundary conditions.

H.1.1 Near the Horizon (r → r
S
)

In this region, LB07 noted that the Frobenius expansion method was useful in identifying

the dominant terms in Equation (3.65). Let’s first start with the disk half-thickness term

for Model 1 (Equation 2.21) and combine it with Equations (1.14) and (2.65) to obtain

H =
1

ΩK

[
r3/2 (r − rS) v

Kg

](1−γg)/(γg+1)

=
r1/2 (r − rS)

GM

[
r3/2 (r − rS) v

Kg

](1−γg)/(γg+1)

.

(H.2)
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We know that as r → rS , the bulk velocity v becomes (Equation 3.43)

v ∝ (r − rS)−1/2 , r → rS . (H.3)

Substituting this into Equation (H.2) yields,

H ∝ (r − rS)(γg+3)/2(γg+1) , r → rS . (H.4)

Thus, we can apply Equation (H.3) and (H.4) to the logarithmic term in Equation (H.1) to

show,

d ln (rHv)

dr
≈ 1

(γg + 1)

1

(r − rS)
, r → rS , (H.5)

which reduces Equation (H.1) to,

d2Yn
dr2

+

[
rS

κ0 (r − rS)2 +

{
1

(γg + 1)
+ 2

}
1

(r − rS)

]
dYn
dr

+
λnrS

3κ0 (r − rS)3 (γg + 1)
Yn = 0 .

(H.6)

Now we apply the Frobenius method for the zero-order term,

Yn = (r − rS)α
∞∑
m=0

cm (r − rS)m =
∞∑
m=0

cm (r − rS)m+α , (H.7)

and then the first-order term,

Y ′n =
∞∑
m=0

(m+ α) cm (r − rS)m+α−1 , (H.8)
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and finally the second-order term,

Y ′′n =

∞∑
m=0

(m+ α) (m+ α− 1) cm (r − rS)m+α−2 . (H.9)

Now we combine Equations (H.6), (H.7), (H.8) and (H.9) to yield,

∞∑
m=0

(m+ α) (m+ α− 1) cm (r − rS)m+α−2

+

[
rS

κ0 (r − rS)2 +

{
1

(γg + 1)
+ 2

}
1

(r − rS)

]
(m+ α) cm (r − rS)m+α−1

+
λnrS

3κ0 (r − rS)3 (γg + 1)
cm (r − rS)m+α = 0 ,

(H.10)

which simplifies down to,

∞∑
m=0

(m+ α) (m+ α− 1) cm (r − rS)m+α−2

+

[
rS

κ0 (r − rS)
+

{
1

(γg + 1)
+ 2

}]
(m+ α) cm (r − rS)m+α−2

+
λnrS

3κ0 (γg + 1)
cm (r − rS)m+α−3 = 0 .

(H.11)

We can see that the α− 3 terms are dominant, which we need to collect with m = 0,

rS
κ0
αc0 (r − rS)α−3 +

λnrS
3κ0 (γg + 1)

c0 (r − rS)α−3 = 0 , (H.12)

and solve for α,

α = − λn
3 (γg + 1)

. (H.13)
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Plugging this back into Equation (H.7) with m = 0 will yield the boundary condition near

the horizon,

Yn ∝ (r − rS)−λn/3(γg+1) , r → rS . (H.14)

H.1.2 Towards Infinity (r →∞)

In Ch. 2 we learned that in this region, the bulk velocity v becomes (Equation 3.56),

v ∝ r−5/2 , r →∞ , (H.15)

which can be plugged back into Equation (H.4) to show

H ∝ r3/2 , r →∞ , (H.16)

which can then be applied to the logarithmic term in Equation (H.1) to obtain,

d ln (rHv)

dr
= 0 , r →∞ . (H.17)

The Frobenius Method

Now we will find the outer asymptotic by implementing the Frobenius method, just as it

was done in the previous section. First we apply Equation (H.17) to Equation (H.1),

d2Yn
dr2

+

[
rS

κ0 (r − rS)2 +
2

(r − rS)

]
dYn
dr

= 0 , (H.18)

which in the limit r →∞ reduces to,

d2Yn
dr2

+

[
rS
κ0r2

+
2

r

]
dYn
dr

= 0 , r →∞ . (H.19)
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Because this is a second-order differential equation, two linear independent solutions must

be available in the asymptotic domain. One solution is simply

Yn = C0 , (H.20)

where C0 is a constant. To determine the second solution, we must employ the Frobenius

method, in which the asymptotic solution is given by the power law expansion

Yn = xβ
∞∑
m=0

cmx
m =

∞∑
m=0

cmx
m+β , (H.21)

then the first-order term,

Y ′n =
∞∑
m=0

(m+ β) cmx
m+β−1 , (H.22)

and finally the second-order term,

Y ′′n =
∞∑
m=0

(m+ β) (m+ β − 1) cmx
m+β−2 , (H.23)

in which we’ve set x = r/rS . Combining Equations (H.21), (H.22) and (H.23) into Equation

(H.19) will obtain

∞∑
m=0

(m+ β) (m+ β − 1) cm

(
r

rS

)m+β−2

+

[
rS
κ0r2

+
2

r

]
(m+ β) cm

(
r

rS

)m+β−1

= 0 ,

(H.24)
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which when separated out becomes,

∞∑
m=0

(m+ β) (m+ β − 1) cm

(
r

rS

)m+β−2

+ 2 (m+ β) cm

(
1

rS

)m+β−1

(r)m+β−2

+
1

κ0
(m+ β) cm

(
1

rS

)m+β−2

(r)m+β−3 = 0 .

(H.25)

It can be shown that the most singular point occurs with the β − 2 term, and at infinity

the constant 1/rS is negated,

∞∑
m=0

(m+ β) (m+ β − 1) cm (r)m+β−2 + 2 (m+ β) cm (r)m+β−2 = 0 , (H.26)

which shows that

∞∑
m=0

m+ β = −2 + 1 = −1 . (H.27)

Plugging this back into Equation (H.21), and combining it with Equation (H.20), reveals

that the outer asymptotic form for the eigenfunction is given by

Yn =
C1

r
+ C0 , r →∞ . (H.28)

The Direct Method

Although, there is a more direct method for obtaining the same relationship in Equation

(H.28). Continuing on with Equation (H.19),

d2Yn
dr2

+

[
rS
κ0r2

+
2

r

]
dYn
dr

= 0 , r →∞ , (H.29)

207



we can see that 1/r2 is the dominant term as r →∞, which simplifies down to,

d2Yn
dr2

= − rS
κ0r2

dYn
dr

. (H.30)

Thus, this results in the generic integrated form,

Yn =
C1

r
+ C0 , r →∞ , (H.31)

where C0 and C1 are constants of integration, in agreement with Equation (H.28). It

should be noted that in Model 1, C0 = 0 and C1 = 1. Now we can move on determining

the asymptotic forms for Models 2 and 3.

H.2 Models 2 and 3

In this region, just as we did in Model 1, we’re going to first start with the disk half-thickness

term for Models 2 and 3 (Equation 2.22) and combine it with Equation (1.14) to obtain

H =
1

ΩK

[
γg
γr
a2
r + a2

g

]1/2

=
r1/2 (r − rS)

GM

[
γg
γr
a2
r + a2

g

]1/2

, (H.32)

as well as use Equation (2.64) to show for the bulk velocity v,

v =
Kg

r3/2 (r − rS) a
2/(γg−1)
g

[
γg
γr
a2
r + a2

g

]−1/2

. (H.33)
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Thus if we combine Equations (H.32) and (H.33) into the logarithmic term in Equation

(H.1), we can show that

d ln (rHv)

dr
=

d

dr
ln

(
Kg

GM
a
−2/(γg−1)
g

)
, (H.34)

meaning that the asymptotic terms either near the horizon or at large radii is dependent

on those terms derived for the thermal sound speed ag in those regions, which fortunately

were done in Ch. 2 for Models 2 and 3.

H.2.1 Near the Horizon (r → r
S
)

In the region close to the event horizon, we have worked out extensively in Ch. 2 that the

asymptotic relation for the thermal sound speed ag in Models 2 and 3 is given as (Equation

3.46),

a2
g (r) ∝ (r − rS)(1−γg)/(1+γg) , r → rS , (H.35)

which when plugged back into Equation (H.34) shows that

d ln (rHv)

dr
≈ − 2

(1 + γg)

1

(r − rS)
. (H.36)

This is pretty much Equation (H.5) for Model 1, which means that if we applied Equation

(H.36) back into Equation (H.1) for Models 2 and 3, we would likewise end up with the

α − 3 terms being dominant (with m = 0) via the Frobenius method, and thus we would

derive the same asymptotic relation given by Equation (H.14).
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H.2.2 Towards Infinity (r →∞)

In Ch. 2 we likewise learned that in this region, the thermal sound speed ag becomes a

constant, which means that Equation (H.34) becomes, essentially,

d ln (rHv)

dr
= 0 , r →∞ . (H.37)

This is exactly Equation (H.17) for Model 1, which means that if we applied either the

Frobenius or direct method in this region, we would essentially achieve back the 1/r relation.

However, for the purposes of this work as we will see in Ch. 4, we shall use Equation (H.31)

to set the asymptotic boundary condition in this region for Models 2 and 3,

Yn =
C1

r
+ C0 , r →∞ , (H.38)

in which the constants of integration (C0 and C1) are yet to be assigned. Note that Equation

(H.38) agrees with our earlier result given by Equation (H.31). Thus we can conclude that

the asymptotic relationships are the same in all three Models.
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Appendix I: Orthogonality of the Spatial Eigenfunctions

The following is the Appendix from Le & Becker (2007), with references made to my doc-

ument. We can establish the orthogonality of the spatial eigenfunctions Yn (r) by starting

with the Sturm-Liouville form (see Equation 3.73)

d

dr

[
S (r)

dYn
dr

]
+ λnω (r)Yn (r) = 0 , (I.1)

where ω (r) and S (r) are given by Equations (3.75) and (3.74), respectively. Let us suppose

that λn and λm denote two distinct eigenvalues (λn 6= λm) with associated spatial eigen-

functions Yn (r) and Ym (r). Since Yn and Ym each satisfy Equation (I.1) for their respective

values of λ, we can write

Yn (r)

{
d

dr

[
S (r)

dYm
dr

]
+ λmω (r)Ym (r)

}
= 0 , (I.2)

Ym (r)

{
d

dr

[
S (r)

dYn
dr

]
+ λnω (r)Yn (r)

}
= 0 . (I.3)

Subtracting Equation (I.3) from Equation (I.2) yields

Yn (r)
d

dr

[
S (r)

dYm
dr

]
− Ym (r)

d

dr

[
S (r)

dYn
dr

]
= (λn − λm)ω (r)Yn (r)Ym (r) . (I.4)
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We can integrate Equation (I.4) by parts from r = rS to r =∞ to obtain

Yn (r)S (r)
dYm
dr

∣∣∣∣∞
r
S

−
∫ ∞
r
S

S (r)
dYm
dr

dYn
dr

dr

− Ym (r)S (r)
dYn
dr

∣∣∣∣∞
r
S

+

∫ ∞
r
S

S (r)
dYn
dr

dYm
dr

dr

= (λn − λm)

∫ ∞
r
S

ω (r)Yn (r)Ym (r) dr .

(I.5)

Upon cancellation of like terms, this expression reduces to

S (r)

[
Yn (r)

dYm
dr
− Ym (r)

dYn
dr

]∞
r
S

= (λn − λm)

∫ ∞
r
S

ω (r)Yn (r)Ym (r) dr . (I.6)

On the basis of the asymptotic behaviors of Yn (r) as r → rS and r →∞ given by Equations

(3.70) and (3.71), we conclude that the left-hand side of Equation (I.6) vanishes, leaving

∫ ∞
r
S

ω (r)Yn (r)Ym (r) dr = 0, m 6= n . (I.7)

This result establishes that Ym and Yn are orthogonal eigenfunctions relative to the weight

function ω (r) defined in Equation (3.75).
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