
OPTIMAL SPECTRUM ALLOCATION TO SUPPORT

TACTICAL MOBILE AD-HOC NETWORKS

by

Paul J. Nicholas
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Systems Engineering and Operations Research

Committee:

Dr. Karla L. Hoffman, Dissertation Director

Dr. Ariela Sofer, Committee Member

Dr. Andrew G. Loerch, Committee Member

Dr. Robert P. Simon, Committee Member

Dr. Ariela Sofer, Department Chair

Dr. Stephen G. Nash, Dean, Volgenau School
of Engineering

Date: Fall Semester 2016
George Mason University
Fairfax, VA



Optimal Spectrum Allocation to Support Tactical Mobile Ad-hoc Networks

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Paul J. Nicholas
Master of Science

Naval Postgraduate School, 2009
Bachelor of Science

United States Naval Academy, 2003

Director: Dr. Karla L. Hoffman, Professor
Department of Systems Engineering and Operations Research

Fall Semester 2016
George Mason University

Fairfax, VA



Copyright © 2016 by Paul J. Nicholas
All Rights Reserved

ii



Dedication

To Melissa, Abigail, and Elizabeth.

iii



Acknowledgments

I owe a debt of gratitude to Professor Karla Hoffman for her patient mentorship over the last

few years. Learning about and then trying (poorly) to mimic your approach to problem-

solving will have a lasting effect on the rest of my career. In fact, “What would Karla

do?” (WWKD) has become the first question I ask myself when faced with a new analytic

challenge. Thank you for your help in developing this new ability to think.

My dissertation committee, including Professors Ariela Sofer, Andy Loerch, and Bob

Simon, provided support and guidance during this process. Thank you very much for your

time and input. Professors Rajesh Ganesan, Sanjeev Setia, and Fei Li all generously gave

their time to help me. Dr. Don Wagner at the Office of Naval Research provided crucial

support of this research, including support for time, tuition, travel, and computational

resources. Thank you for your confidence in us.

I am deeply indebted to my good friend and mentor, Professor David Alderson at the

Naval Postgraduate School. Beginning almost ten years ago, it was your kind encouragement

and frank advice that sent me and kept me on a path to deepen my knowledge of operations

research. I hope to follow your example as a guide and role model in the professional

development of future OR practitioners.

The exceptionally competent and friendly staff at George Mason University have made

this task much easier to complete. I am indebted to Angel Manzo, Josefine Wiecks, Jonathan

Goldman, Sally Evans, and numerous individuals in the library and Registrar’s Office.

My friends and colleagues at Operations Analysis Directorate have played key roles in

enabling me to complete this work. Al Sawyers and Mike Bailey encouraged me to begin the

program, and provided the freedom and latitude to do so. George Akst provided support

via the Marine Corps Academic Degree Tuition Assistance Program. Jeff Tkacheff and

Lorri Flint provided technical support during early computational experiments. Thanks for

providing such a supportive work environment.

This research is a direct result of the MAGTF Wideband Spectrum Requirement and

Allocation Study, with which I am honored to have been involved. Josh Pepper, Max

Hipsher, and Pete Bulanow all played key roles in developing the scenarios that provided

the testbed for this research. John Pico, Bill Kloth, Dennis Murphy, Mike Bell, Art DeLeon,

and Jerome Foreman provided invaluable input as subject matter experts.

Over the last few years I’ve benefited greatly from friends and colleagues who have

shown (or artfully feigned) interest in my work and have provided support ranging from

iv



tips and words of encouragement, to detailed and constructive feedback. A necessarily

incomplete list includes Rob Dell, Jerry Brown, Matt Carlyle, Cynthia Irvine, Wade Hunt-

ley, Matt Aylward, Wayne Breakfield, Joe Monahan, Chris Fitzpatrick, Shane Price, Steve

Charbonneau, Ray Trechter, and Scott Laprise.

I would be remiss if I didn’t mention my faithful stainless steel friend, a Gaggia Classic

home espresso machine. Your caffeine-infused nectar has powered me through many other-

wise soporific and unproductive evenings. May you spout velvety lattes for years to come.

My mom, Margaret, is perhaps my most indefatigable supporter. Thank you for your

love and encouragement. You knew I could.

My wife Melissa and daughters Abigail and Elizabeth have shouldered additional bur-

dens while I’ve neglected many of my duties as husband and father in order to pursue this

degree. You bore this without complaint, taking care of each other and taking care of me

over the last three years. You kept me fed, clothed, and hydrated when I chained myself

to my laptop computer for days on end; your smiles and squirrelly antics held my spirits

high when I needed to push through. I’ve accomplished this only because of you, but it

has come at the cost of so many missed bedtime stories, playtime without me, date nights

untaken and vacations interrupted, and walks through the park that we never took. Thank

you for your love, patience, and sacrifice. I’m all yours.

v



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Objective and Approach . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 The Channel Assignment Problem (CAP) . . . . . . . . . . . . . . . . . . . 9

2.2 Computational Challenges of Cumulative Interference . . . . . . . . . . . . 11

2.3 CAP Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Exact Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Heuristic Solution Methods . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Dynamic Spectrum Access . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Mobility-aware Methods and Temporal Graphs . . . . . . . . . . . . 18

2.3.5 Parallel and Distributed Methods . . . . . . . . . . . . . . . . . . . . 21

2.3.6 Current Real-world Solution Methods . . . . . . . . . . . . . . . . . 22

2.4 Relationship to the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Model of MANET Communications . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Calculating Received Signal Strength . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Calculating Connectivity and Interference . . . . . . . . . . . . . . . . . . . 28

3.4 Description of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Minimum-Order Channel Assignment Problem . . . . . . . . . . . . . . . . . . . 36

4.1 MO-CAP Full Standard Formulation . . . . . . . . . . . . . . . . . . . . . . 36

vi



4.1.1 Computational Challenges of the MO-CAP FSF . . . . . . . . . . . 41

4.1.2 Relationships to Other Problems . . . . . . . . . . . . . . . . . . . . 46

4.1.3 MO-CAP FSF Preliminary Solution Method and Results . . . . . . 47

4.1.4 MO-CAP Greedy Heuristic Solution Method . . . . . . . . . . . . . 47

4.1.5 MO-CAP Greedy Heuristic Results . . . . . . . . . . . . . . . . . . . 50

4.2 MO-CAP Restricted Standard Formulation . . . . . . . . . . . . . . . . . . 52

4.2.1 MO-CAP RSF Solution Method . . . . . . . . . . . . . . . . . . . . 56

4.2.2 MO-CAP RSF Lazy Constraint Results . . . . . . . . . . . . . . . . 59

4.2.3 MO-CAP RSF Results Using an Initial Feasible Solution . . . . . . 60

4.2.4 MO-CAP RSF Lazy Constraints and Maximum Clique Results . . . 60

4.3 MO-CAP Constraint Programming Formulation . . . . . . . . . . . . . . . 63

4.3.1 MO-CAP CP Solution Method . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 MO-CAP CP Results . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Summary of MO-CAP Results . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 MO-CAP Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Minimum-Interference Channel Assignment Problem . . . . . . . . . . . . . . . . 72

5.1 MI-CAP Full Standard Formulation . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Computational Challenges of the MI-CAP FSF . . . . . . . . . . . . 75

5.1.2 Estimating the Operational Impact of Interference . . . . . . . . . . 75

5.2 MI-CAP Clustering Formulation . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Relationships to Other Problems . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Computational Challenges of the MI-CAP Clustering Formulation . 82

5.2.3 MI-CAP Clustering Formulation Solution Method . . . . . . . . . . 82

5.2.4 MI-CAP Clustering Formulation Results . . . . . . . . . . . . . . . . 84

5.3 MI-CAP Restricted Integer Programming Formulation . . . . . . . . . . . . 85

5.3.1 Relationships to Other Problems . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Computational Challenges of the MI-CAP Restricted IP Formulation 87

5.3.3 Calculating a Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.4 MI-CAP Restricted IP Formulation Solution Method . . . . . . . . . 97

5.3.5 MI-CAP Restricted IP Formulation Results (Unit Penalties) . . . . 97

5.3.6 MI-CAP Restricted IP Formulation Results (Weighted Penalties) . . 99

5.4 MI-CAP Constraint Programming Formulation . . . . . . . . . . . . . . . . 102

5.4.1 MI-CAP CP Solution Method . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2 MI-CAP CP Formulation Results (Unit Penalties) . . . . . . . . . . 106

5.4.3 MI-CAP CP Formulation Results (Weighted Penalties) . . . . . . . 106

vii



5.5 Comparison of MI-CAP Solution Methods . . . . . . . . . . . . . . . . . . . 107

5.5.1 Comparison with Unit Penalties . . . . . . . . . . . . . . . . . . . . 108

5.5.2 Comparison with Weighted Penalties . . . . . . . . . . . . . . . . . . 112

5.6 Estimating the Marginal Value of an Additional Channel . . . . . . . . . . 116

5.7 MI-CAP Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Minimum-Cost Channel Assignment Problem over Time . . . . . . . . . . . . . . 128

6.1 MC-CAP-T Full Standard Formulation . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 MC-CAP-T FSF Solution Method and Computational Challenges . 132

6.2 MC-CAP-T Decomposition Formulation . . . . . . . . . . . . . . . . . . . . 132

6.2.1 MC-CAP-T Decomposition Formulation Solution Method . . . . . . 136

6.2.2 MC-CAP-T Decomposition Formulation Results . . . . . . . . . . . 137

7 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A Data Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B MO-CAP RSF Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C MO-CAP CP Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

D MI-CAP Clustering Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

E MI-CAP CP Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

F MC-CAP-T Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

viii



List of Tables

Table Page

3.1 Description of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Descriptive statistics of the MEF scenario by time step . . . . . . . . . . . . 34

4.1 Performance results of the MO-CAP greedy heuristic by time step . . . . . 51

4.2 MO-CAP results using pairwise and lazy constraints without an initial fea-

sible solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 MO-CAP results using pairwise and lazy constraints with an initial feasible

solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 MO-CAP results using pairwise and lazy constraints and maximum clique

constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 MO-CAP results by time step using constraint programming . . . . . . . . 66

4.6 MO-CAP sensitivity analysis results . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Network availability using the MI-CAP clustering formulation . . . . . . . . 85

5.2 Number of pairwise violations using MI-CAP Restricted IP formulation with

500 second runtimes and unit penalties . . . . . . . . . . . . . . . . . . . . . 98

5.3 Network availability using MI-CAP Restricted IP formulation with 500 sec-

ond runtimes and unit penalties . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Number of pairwise violations using MI-CAP Restricted IP formulation with

6000 second runtimes and weighted penalties . . . . . . . . . . . . . . . . . 100

5.5 Network availability using MI-CAP Restricted IP formulation with 6000 sec-

ond runtimes and weighted penalties . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Number of pairwise violations using the MI-CAP CP formulation with unit

penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Network availability using the MI-CAP CP formulation with unit penalties 108

5.8 Number of pairwise violations using the MI-CAP CP formulation with weighted

penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.9 Network availability using the MI-CAP CP formulation with 500 second run-

times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.10 MI-CAP sensitivity analysis results . . . . . . . . . . . . . . . . . . . . . . . 127

ix



A.1 Number of available channels during the MI-CAP analysis . . . . . . . . . . 143

A.2 Total number of pairwise constraint violations using the MI-CAP clustering

formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.3 Total number of radios receiving excessive interference using the MI-CAP

clustering formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.4 Total excessive interference using the MI-CAP clustering formulation . . . . 146

A.5 Lower bound on number of pairwise interference constraint violations in the

MI-CAP Restricted IP and CP formulations . . . . . . . . . . . . . . . . . . 147

A.6 Lower bound on the total amount of received excessive interference in the

MI-CAP Restricted IP and CP formulations . . . . . . . . . . . . . . . . . . 148

A.7 Lower bound on radios receiving excessive interference in MI-CAP Restricted

IP and CP formulations (weighted penalties) . . . . . . . . . . . . . . . . . 149

A.8 Number of radios receiving excessive interference using the MI-CAP Re-

stricted IP formulation with 500 sec runtimes and unit penalties . . . . . . 150

A.9 Total excessive interference using the MI-CAP Restricted IP formulation . . 151

A.10 Number of pairwise constraint violations using MI-CAP Restricted IP for-

mulation with 500 second runtimes and weighted penalties . . . . . . . . . . 152

A.11 Number of radios receiving excessive interference using the MI-CAP Re-

stricted IP formulation, with 500 second runtimes and weighted penalties. . 153

A.12 Total excessive interference using the MI-CAP Restricted IP formulation with

500 second CPLEX runtimes and weighted penalties . . . . . . . . . . . . . 154

A.13 Number of radios receiving excessive interference using the MI-CAP Re-

stricted IP formulation, with 6000 second runtimes and weighted penalties. 155

A.14 Total excessive interference using the MI-CAP Restricted IP formulation with

6000 second CPLEX runtimes and weighted penalties . . . . . . . . . . . . 156

A.15 Number of radios receiving excessive interference using MI-CAP CP formu-

lation with unit penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.16 Total excessive interference using MI-CAP CP formulation with unit penalties158

A.17 Number of radios receiving excessive interference using MI-CAP CP formu-

lation with weighted penalties . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.18 Total excessive interference using MI-CAP CP formulation with weighted

penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

x



List of Figures

Figure Page

3.1 Example of a simple MANET . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Google Earth image of radio locations in MEF scenario . . . . . . . . . . . 32

3.3 Locations of radios within the MEF scenario by time step . . . . . . . . . . 33

4.1 Several possible interference conditions between a receiver and transmitters 38

4.2 Distribution of received signal strengths between all radios . . . . . . . . . . 42

4.3 Total interference captured by considering the strongest sources of interference 44

4.4 Example of received interference and interference threshold for each radio . 45

4.5 Depiction of pairwise constraints in MEF scenario . . . . . . . . . . . . . . 53

4.6 Depiction of pairwise constraints in MEF scenario with maximum clique . . 54

4.7 MO-CAP RSF solution at time step one . . . . . . . . . . . . . . . . . . . . 63

4.8 MO-CAP objective values and best known lower bound using various techniques 68

4.9 MO-CAP runtimes using various techniques . . . . . . . . . . . . . . . . . . 69

5.1 Simple example of the MI-CAP clustering algorithm . . . . . . . . . . . . . 79

5.2 Example of lower bound on number of monochromatic arcs in a clique . . . 89

5.3 Example of inadvertently creating monochromatic arcs in a clique . . . . . 93

5.4 Relationship between units and nodes in MI-CAP lower bound transformation 95

5.5 Comparison of excessive interference between the unit and weighted penalty

IP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Comparison of pairwise violations between the unit and weighted penalty IP

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 MI-CAP CP objective values obtained with varying runtimes . . . . . . . . 105

5.8 Comparison of excessive interference between the unit and weighted penalty

CP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.9 Comparison of pairwise violations between the unit and weighted penalty CP

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.10 Depiction of co-channel interference during the first time step of the MEF

scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.11 Relative optimality gap for the three MI-CAP solution methods (unit penalties)114

xi



5.12 Pairwise constraint violations for the three MI-CAP solution methods (unit

penalties) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.13 Excessive interference for the three MI-CAP solution methods (unit penalties)116

5.14 Network availability for the three MI-CAP solution methods (unit penalties) 117

5.15 Depiction of received interference using clustering method (unit penalties) . 118

5.16 Depiction of received interference using IP method (unit penalties) . . . . . 119

5.17 Depiction of received interference using CP method (unit penalties) . . . . 120

5.18 Relative optimality gap for the three MI-CAP solution methods (weighted

penalties) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.19 Number of radios receiving excessive interference in the MI-CAP (weighted

penalties) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.20 Excessive interference for the three MI-CAP solution methods (weighted

penalties) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.21 Network availability for the three MI-CAP solution methods (weighted penal-

ties) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.22 Depiction of received interference using IP method (weighted penalties) . . 125

5.23 Depiction of received interference using CP method (weighted penalties) . . 125

5.24 Marginal value of an additional channel . . . . . . . . . . . . . . . . . . . . 126

6.1 Example of the association of groups by time step in the MC-CAP-T . . . . 134

6.2 Number of required channel changes in the MC-CAP-T . . . . . . . . . . . 138

6.3 Results of MC-CAP-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xii



List of Abbreviations

ANW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adaptive Networking Wideband Waveform
C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . command and control
CALMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Combinatorial Algorithms for Military Applications
CAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . channel assignment problem
CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .constraint programming
CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . central processing unit
dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . decibel
DSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dynamic spectrum access
EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .electromagnetic
EUCLID . . . . . . . . . . . . . . . . . . . . . . . . . . . European Cooperation on the Long Term in Defense
FCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Federal Communications Commission
FSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . full standard formulation
GAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Algebraic Modeling System
GB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gigabyte
GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gigahertz
Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Hertz
kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kilohertz
km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kilometer
IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . integer programming
ITM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Irregular Terrain Model
MAGTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marine Air-Ground Task Force
MANET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mobile ad-hoc network
MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .megabyte
MC-CAP-T . . . . . . . . . . . . . . . . . . . . . . . . minimum-cost channel assignment problem over time
MEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marine Expeditionary Brigade
MEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Marine Expeditionary Force
MEU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marine Expeditionary Unit
MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .megahertz
MI-CAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .minimum-interference channel assignment problem
MIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mixed integer program
MO-CAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . minimum-order channel assignment problem
OPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optimization Programming Language
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random access memory
RSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . restricted standard formulation
RSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . received signal strength
SATCOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . satellite communications
SCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .single-channel radio
SIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signal-to-interference ratio
SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . Systems Planning, Engineering, and Evaluation Device
STK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Systems Toolkit
TIREM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terrain Integrated Rough Earth Model
USMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . United States Marine Corps
WLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . wireless local area network



Abstract

OPTIMAL SPECTRUM ALLOCATION TO SUPPORT TACTICAL MOBILE
AD-HOC NETWORKS

Paul J. Nicholas, PhD

George Mason University, 2016

Dissertation Director: Dr. Karla L. Hoffman

Current military forces are developing, purchasing, and fielding tactical wideband radios

capable of connecting wirelessly to each other to form a mobile ad-hoc network (MANET),

an autonomous communications system where each wideband radio serves as a mobile node.

Wideband MANET radios offer tremendous new capabilities, including high data rates

and automatic traffic relay, but have large electromagnetic spectrum requirements. Mean-

while, wireless traffic from civilian, joint, and coalition networks will increasingly clutter

the electromagnetic spectrum, and militaries will continue to operate in environments with

restrictions on spectrum use. Efficient allocation of available spectrum is required to en-

sure military forces are able to fully utilize new MANET radios, yet current methods of

allocation are woefully inadequate.

We consider three challenges faced by a military spectrum manager in supporting

MANET communications for mobile units operating on rough terrain. First, prior to the

commencement of a military operation, the spectrum manager must determine the minimum

number of channels required to support communications with an acceptable level of inter-

ference. Second, during ongoing operations, the spectrum manager may have only a fixed

and insufficient amount of spectrum available, and must now assign channels to minimize

total received interference. Finally, having solved either of these two problems to determine

channel assignments at discrete moments of time, the spectrum manager must also consider

the number of channel changes over time, as each radio requires manual channel assignment.



Efficient channel allocation schemes leverage channel reuse, and the ability to reuse a

channel is dependent on co-channel interference, i.e., interference occurring between radios

using the same channel but not communicating on the same network. A simplified version

of this problem is the graph-coloring problem, which restricts any two adjacent radios from

being assigned the same channel. This seemingly straightforward problem is NP-complete,

and yet realistic interference constraints — needed to most efficiently use available spectrum

— are much more complex. Namely, one must consider the cumulative effect of multiple

sources of interference, rather than just interference between pairs of radios. This greatly

increases the computational difficulty of quickly finding good channel allocation schemes,

and thus the vast majority of research considers only interference between pairs of radios.

We use heuristic, integer optimization, and constraint programming approaches to de-

velop more efficient methods of channel allocation considering cumulative co-channel inter-

ference. We formulate and solve several integer optimization and constraint programming

problems to minimize the number of required channels, minimize total received interference,

and minimize the number of channel changes over time. We test our methods using radio

performance data generated by high-fidelity simulation in the context of realistic, large-scale

U.S. Marine Corps combat scenarios.

Our research provides fast methods of calculating realistic and efficient channel alloca-

tion schemes that reduce the number of required channels, reduce cumulative co-channel

interference, and reduce the total number of required channel changes over time. Our

methodologies are applicable to any type of radio or electromagnetic transmission device

requiring discrete assignments from a fixed pool of available channels, including radios,

radars, jamming devices, and sensors. To our knowledge, we are the first to use integer

optimization and constraint programming methods to model and solve full-size instances

of the channel assignment problem to global or near-global optimality, while also using a

realistic interference model and considering cumulative interference constraints.



Chapter 1: Introduction

1.1 Background

The United States military fields many different types of radios and other wireless sys-

tems that require vast swathes of electromagnetic (EM) spectrum, including traditional

point-to-point single channel radios (SCRs), wideband radios, radars, jammers, satellite

communications (SATCOM) radios, and control and data links for unmanned aerial vehi-

cles. These wireless systems offer tremendous capabilities, including high data transmission

rates (in the case of communications devices) and high-fidelity portrayals of the operating

environment (in the case of radars and other sensors). However, in general, the larger the

amount of transmitted information, the more EM spectrum (i.e., bandwidth) is required.

The U.S. military is currently developing, purchasing, and fielding tactical wideband

radios capable of connecting highly mobile units operating in rugged terrain over long dis-

tances with relatively low-power radios (Goulding 2009). These wideband radios connect

wirelessly to each other to form a mobile ad-hoc network (MANET ), an autonomous com-

munications system where each wideband radio serves as a mobile node. These nodes may

move and connect in wireless, dynamic, multi-hop topologies, and exhibit self-learning,

self-healing behavior (Corson and Macker 1998, Aggelou 2004), i.e., individual radios may

automatically connect and disconnect from a MANET without any user interaction. A

MANET comprises physical radios and the associated networking protocols, waveforms,

and modulation schemes required to route traffic. Each wideband radio in a MANET is a

terminal device for voice or digital communications, and may concurrently serve as a relay

device for other radios in the network. In this way, MANETs are similar to client-mesh

wireless mesh networks (WMNs) (Zhang et al. 2006), where client devices perform routing

functions.
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Wideband MANET radios offer tremendous new capabilities, including high data rates

and automatic traffic relay, but have large electromagnetic spectrum requirements. Tech-

nological limits constrain the number of wideband radios that can be assigned the same

channel (i.e., a contiguous portion of spectrum), and the channels used by wideband radios

are larger than that used by legacy narrowband radios. For instance, 1.2 MHz wideband

channels occupy 48 times more spectrum than 25 kHz narrowband channels used for voice-

only communications. The introduction of this new wideband capability will challenge the

status quo for spectrum allocation, and future communications planning must balance the

requirements of new wideband networks and greater data capabilities with less-capable,

legacy narrowband networks that require less spectrum.

Meanwhile, the U.S. military will continue to operate in environments with increasing

restrictions on spectrum use, both in the U.S. and abroad. Wireless communications traffic

from civilian, joint, and coalition networks will increasingly clutter the EM spectrum, and

the Federal Communications Commission (FCC) is moving the military to different bands to

share spectrum with the private sector (Goldstein 2013, Selyukh 2013). Efficient allocation

of available spectrum is required to ensure military forces are able to fully utilize new

tactical wideband radio assets (Stine and Portigal 2004), yet current methods of allocation

are woefully inadequate. Indeed, in a major study the U.S. Marine Corps (USMC) finds

that with current allocation methods, Marine Air-Ground Task Forces (MAGTFs) will not

have enough spectrum available to support the use of wideband MANET radios in major

combat operations (Nicholas et al. 2013a).

Various forms of the channel assignment problem (CAP) aim to optimally allocate spec-

trum in a given moment of time. To solve realistic problem instances, one must consider

not only the scarcity of available spectrum, but also the technological limitations of the

radios being supported. Specifically, the performance of a wideband MANET radio (i.e.,

the data rate) depends greatly on the amount of interference it receives (Gupta and Kumar

2000). The interference can be naturally occurring (such as solar radiation), intentional

(such as jamming), or unintentional (such as from other nearby radios operating on the
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same, adjacent, or harmonically-adjacent frequencies). Other technological limitations in-

clude transmission power and antenna and processing gains at each radio. Environmental

factors include free space path loss (i.e., the loss in EM energy due to geometric spreading

over distance) and absorption due to terrain and the atmosphere.

Efficient channels allocation schemes leverage channel reuse. The ability to reuse a

channel is dependent on (among other things) co-channel interference, i.e., interference oc-

curring between two radios using the same channel but not communicating on the same

network. A simplified version of this problem is the vertex or graph-coloring problem, which

restricts any two adjacent nodes (i.e., radios) from being assigned the same color (i.e., chan-

nel). This seemingly simple problem is NP-complete (Skiena 1990, Cuppini 1994), and yet

realistic interference constraints are much more complex. Namely, they must consider the

cumulative effect of multiple sources of interference, rather than just interference between

pairs of radios. This greatly increases the computational difficulty of quickly finding good

channel allocations.

Several characteristics of tactical military data communications make the CAP more

difficult to solve than for typical civilian applications. For example, in radio or television

broadcast there are relatively few transmission towers and many nodes functioning only

as receivers, whereas MANET radios function as both transmitters and receivers. Also,

MANET radios may be on the move. They cannot benefit from specially-tuned transmis-

sion antennae, and instead use omnidirectional antennae that reduce their ability to project

power in desired directions and increase their production of and susceptibility to interfer-

ence. Though mobile phone applications consider mobility, the physical laydown of military

radios may be denser relative to the transmission power of each radio. The radios we con-

sider transmit from five to 50 watts, whereas most mobile phone handsets are limited to

three watts (Muller 2003) and cellular transmission towers to an effective five to ten watts

(Federal Communications Commission 2014). Further, the wideband radios we consider

occupy large bandwidths (each channel occupies 1.2 to 5 MHz). These factors decrease the

ability to reuse channels, even if the associated CAP is solved to optimality.
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The CAP becomes even more complicated when one considers the cost over time of man-

ually changing channels on each radio. Cognitive radio technology provides many benefits,

but in general its ability to dynamically allocate spectrum is premised on the assumption

that channels can be changed automatically and hence without cost (namely, manual con-

figuration time). Many military EM systems, including single-channel radio (SCR), radar,

jammers, and the tactical MANETs we consider, are not interconnected because of security

concerns and costs of additional complexity and communications overhead. These systems

thus cannot automatically sense current spectrum utilization, nor change channels dynam-

ically. They require centralized channel assignments from a spectrum manager (who must

follow specific procedures based on overall operations and policies imposed by friendly and

host nations), and must be manually configured to use a particular channel by a human

operator, thus incurring a time cost.

Current software tools to assist in channel allocation, including the Systems Planning,

Engineering, and Evaluation Device (SPEED) (Lamar 2013) and Spectrum XXI (Defense

Information Systems Agency 2013), provide radio coverage analysis reports, and the latter

tool provides a database to deconflict assignments across a given operating area. However,

neither consider interference among a large number of mobile transmitters over multiple

time periods, nor do they provide a rigorous method for minimizing the number of required

channels.

1.2 Problem Statement

We consider the problem of a military spectrum manager who must determine an efficient

channel allocation scheme to support radio communications during a certain period of time

for mobile units operating on rough terrain. The spectrum manager knows the capabilities of

each radio and their starting locations, has a rough understanding of their future locations

within the geographic operating area, and has access to the underlying terrain elevation

data.
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Our spectrum manager faces three primary challenges. First, prior to the commence-

ment of operations, the spectrum manager must determine the minimum number of chan-

nels required to support communications with an acceptable level of co-channel interference.

Solving the associated minimum-order channel assignment problem (MO-CAP) and iden-

tifying this requirement – specific to the local military force and operating area – informs

larger spectrum management operations involving other military forces and adjacent oper-

ating areas. This may be particularly useful prior to the start of operations when a higher

headquarters is allocating available spectrum and needs to know requirements within each

operating area.

The second challenge faced by our spectrum manager occurs during operations when

the allocated spectrum available for assignment to each MANET is less than that indicated

by the solution to the MO-CAP. That is, the spectrum manager must now make do with

the available spectrum. Following the seminal work of Gupta and Kumar (2000), we use

interference as a proxy for overall wireless network performance, and so we wish to minimize

total received interference in order to maximize network performance. We model this via

the minimum-interference channel assignment problem (MI-CAP).

Finally, having solved either the MO-CAP or MI-CAP to determine channel assignments

at discrete moments (or time steps) within the operation, the spectrum manager must also

consider the number of channel changes over time because each radio requires manual

channel assignment and cannot change channels automatically. We model this via our

minimum-cost channel assignment problem over time (MC-CAP-T ). A myopic solution

considers channel assignments only during a particular moment in time. Such a solution

may needlessly “flip-flop” channel assignments over time, and may be particularly fragile

to changes in network physical topologies. By leveraging available information on the

future locations of radios, we can quickly provide a more far-sighted solution that aims

to reduce the number of required channel changes over time. This decreases the time used

by operators to manually adjust radio configurations, and the time needed by the spectrum
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manager to de-conflict unexpected interference, thus improving overall network availability

and performance.

In all cases, we assume the spectrum manager has a few hours to perhaps several days

to determine the best allocation using local computing resources (including one or more

computers with multiple cores). Once the allocation is determined using this centralized

approach, the channel assignments are distributed to each radio operator for manual con-

figuration.

We consider a specific type of radio system (i.e., multiple, independent MANETs) oper-

ating within a particular EM band, i.e., we do not consider the use of other radio transmis-

sion systems such as radar or other communications radios in the same band. However, our

approach applies to any type of EM transmission system requiring a channel assignment

within a particular band. This includes traditional point-to-point single-channel radios,

point-to-point wideband transmission systems, radar systems, and jamming equipment. In

reality, EM bands will be segmented for use by different systems in this way, so this approach

is realistic.

1.3 Research Objective and Approach

The objective of this research is to identify and develop formulations and methodologies for

solving realistic, full-sized instances of the mobility-aware channel assignment problem in

a reasonable amount of time to provide a more efficient method of allocating channels for

military communications.

We use heuristic, integer optimization, and constraint programming methods to develop

more efficient methods of military channel allocation. We formulate several integer programs

(IPs) and constraint programming (CP) problems to minimize the number of required

channels subject to cumulative co=channel interference constraints, minimize total received

interference, and minimize the number of channel changes over time.

We examine the cumulative interference constraints and consider methods of addressing

their computational difficulties. We explore the use of heuristics to preprocess input data
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and reduce the complexity of each problem, and the use of exact methods to solve each IP

and CP problem to global or near-global optimality. Crucially, we consider the far-sighted

assignment of channels over time and not just multiple, independent “snap-shots” in time.

We use realistic radio performance data from high-fidelity simulations of U.S. Marine

Corps combat scenarios. The radio propagation engine, the Terrain Integrated Rough Earth

Model (TIREM) (Alion Science and Technology Corporation 2016), is the de facto stan-

dard government model for calculating radio propagation over terrain and through the

atmosphere. Our scenarios model both steady-state operations (i.e., irregular warfare or

peacekeeping operations) and major combat operations (i.e., large amphibious assaults).

The data sets range in complexity from just a few dozen radios to nearly 2,000 radios. Our

computational experiments consider only the largest scenario, since (as we demonstrate)

the others are trivial.

1.4 Research Contribution

Our research provides fast methods of calculating realistic and efficient channel allocation

schemes that reduce the number of required channels, reduce total co-channel interference,

and/or reduce the total number of required channel changes over time for tactical mili-

tary wideband radio systems. This methodology is applicable to any type of radio or EM

transmission device requiring discrete assignments from a fixed pool of available channels,

including radios, radars, jamming devices, and certain types of sensors.

The vast majority of previous research on exactly solving the channel assignment prob-

lem ignores cumulative co-channel interference, instead modeling only pairwise interference.

Most cognitive radio research considers cumulative interference but assumes channel changes

are automated and essentially costless (in our case, a time cost is incurred). The only pa-

per that considers the use of temporal graphs to minimize the number of required channels

over time considers only pairwise interference (Yu et al. 2013). Such simplifications greatly
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reduce computational load and may increase model tractability, but come at the price of

reduced model fidelity.

Further, most research on solving realistic instances of the channel assignment problem

use heuristics, which may quickly provide feasible solutions but in general fail to provide

any sort of certificate of optimality. We use exact optimization and constraint programming

techniques to provide bounds on the goodness of a solution.

To our knowledge, there has been no research that uses integer optimization and con-

straint programming methods to model and solve full-size instances of the channel assign-

ment problem to global or near-global optimality, while also using a realistic interference

model and considering cumulative interference constraints.

1.5 Document Structure

This document is structured as follows. Chapter 2 comprises a literature review. Chapter 3

describes our model of MANET communications, and provides detail on our datasets. The

next three chapters each describe a particular type of channel assignment problem of interest

to our spectrum manager. Each chapter includes various formulations and descriptions of

their computational challenges, and our solution methods and results. Chapter 4 considers

the minimum-order CAP, which is relevant to a spectrum manager conducting planning in

advance of an operation and who wishes to determine the minimum number of required

channels. Chapter 5 considers the minimum-interference problem, which is relevant to

a spectrum manager immediately before and during an operation, when a fixed number

of channels have been allocated and the manager must make do with available spectrum.

Chapter 6 considers the minimum-cost CAP, wherein the spectrum manager uses the results

from either MO-CAP or MI-CAP and attempts to reduce the total number of required

channel changes over time. Chapter 7 provides our conclusions and recommendations for

future research.
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Chapter 2: Literature Review

2.1 The Channel Assignment Problem (CAP)

The CAP is a well-researched problem, and interest has been growing rapidly with the

spread of wireless telephony (including both voice and data networks) and satellite com-

munications (Aardal et al. 2007). Hale (1980) wrote a landmark paper on the frequency

assignment problem. He differentiates the frequency assignment problem (where assigned

frequencies may be non-contiguous) from the channel assignment problem (where assigned

frequencies are in a contiguous block). Note this terminology is not consistent in the litera-

ture, and these terms are often interchangeable. (In the present research, we consider only

the channel assignment problem.) Hale (1980) recognizes two possible figures of merit for

this family of problems: span (the total range of frequencies assigned) and order (the total

number of channels), which we consider.

Metzger (1970) is usually credited with first observing the possibility of using optimiza-

tion techniques for solving channel assignment problems. He describes several heuristic

methods to make sequential channel assignments. A frequency exhaustive method attempts

to assign the lowest available frequency. A uniform method attempts to use that frequency

which has been used the least. A requirement exhaustive method attempts to use each

frequency in order.

Metzger (1970) compares the CAP to the vertex or graph coloring problem (Gould

1988), where any two adjacent vertices (i.e., radios) may not be colored the same color (i.e.,

channel). In the CAP, this is analogous to ensuring two particular radios are not assigned

the same channel in order to prevent interference. The problem is easy to explain, yet

it is proven to be NP-complete (Skiena 1990, Cuppini 1994). The cumulative co-channel
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interference problem which we consider is more complex because we disallow certain n-

tuples of radios from being assigned the same channel, potentially of much higher order

than just pairs.

Murphey et al. (1999) observe that though there is extensive research into the channel

assignment problem, it remains a notoriously difficult problem to solve. They state that due

to the complexity of the problem, real-world practitioners often rely on sequential methods

that assign a channel to one radio or network at a time. They contrast these methods to

the exact methods based on the graph coloring problem.

Aardal et al. (2007) provide the seminal survey of contemporary research into the models

and solution methods for the CAP, focused primarily on the practical aspects of mathemat-

ical optimization. They differentiate between dynamic channel assignment problems (where

channel assignments may vary over time) and the fixed channel assignment problems; they

consider only fixed channel assignment. They provide a basic formulation for a CAP (which

we build upon), including an objective, assignment constraints, and interference constraints.

They state interference constraints are usually represented as an interference graph, where

an arc represents an unallowable combination. With only pairwise constraints, this reduces

to a binary constraint satisfaction problem. They describe several different types of ob-

jective functions, including maximum service (assign as many channels as possible to each

node), minimum blocking (minimize the number of blocked calls in a phone network), min-

imum span (minimize the total range of spectrum needed to support operations), minimum

interference, and minimum order (i.e., minimize the total number of required channels),

the latter two of which we consider.

Aardal et al. (2007) describe four different types of CAP constraints. Co-cell separation

constraints ensure channels being used by the same antenna must differ in frequency by a

given amount. Co-site separation constraints ensure channels used at the same physical site

must differ by a given amount. Interference constraints (which we consider) ensure radios

using the same or spectrally-adjacent channels do not provide unacceptable interference.
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Hand-over separation constraints ensure that when a mobile radio moves from one service

cell to another, the channels must differ by a given frequency distance.

Aardal et al. (2007) describe several CAP test sets, including Philadelphia (Anderson

1973), the COST 259 project (COoperation Européenne le Domaine de la Recherche Scien-

tifique et Technique) (Correia 2001), the EUCLID CALMA project (see Aardal et al. (2002)

for overview), and the CELAR instances which consider multiple interference (used by Pal-

pant et al. (2008), Sarzeaud and Berny (2003), Dupont et al. (2005)). Each of these datasets

provides pre-calculated interference constraints, whereas we must discover our interference

constraints from raw data generated by our combat simulations.

We differentiate our approach from the classic fixed CAP of Aardal et al. (2007) and

the dynamic CAP of Katzela and Naghshineh (1996) as follows. Unlike the fixed CAP, we

consider channel changes over time and look at these changes holistically, instead of just

successive “snapshots” in time. Unlike the dynamic CAP, we do not assume there is a fixed

pool of available channels that are used to meet changing demand, but rather try to find

this total minimal number over the time period of interest.

2.2 Computational Challenges of Cumulative Interference

The vast majority of exact optimization work on the CAP considers only pairwise inter-

ference constraints (Aardal et al. 2007). This is due to the computational challenges of

explicitly representing cumulative interference, and the ease with which the problem can be

represented as a graph coloring problem when considering only pairwise constraints (Berry

1990, Wang and Rappaport 1989, Dunkin et al. 1998, Nicholas and Hoffman 2015).

Dunkin et al. (1998) describe the computational challenge of using cumulative inter-

ference constraints, and instead use simple binary and tertiary constraints (e.g., groups

of three interfering radios) using a constraint satisfaction approach. Daniels et al. (2004)

formulate an integer minimum-order CAP that considers cumulative interference (unlike

the related work of Murphey et al. (1999)) and establish the NP-hardness of the problem.
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Their centralized dynamic channel assignment heuristic provides solution values within 3%

of those obtained via CPLEX. They note the impact of cumulative interference in their ar-

tificial test data is quite small, unlike the cumulative interference we observe in our realistic

test data.

Fischetti et al. (2000) use pre-processing and branch-and-cut to solve their cumula-

tive interference CAP. They use the Big M technique to avoid nonlinearity in their inte-

ger formulation, and tune their Big M value to improve convergence performance of the

integrality-relaxed problem. They solve a number of real-world problem instances in a rea-

sonable amount of time, but their problem sizes are much smaller than ours and consider

relatively few sources of interference.

Palpant et al. (2008), Sarzeaud and Berny (2003), and Dupont et al. (2005) all consider

cumulative interference using integer programming formulations to solve the minimum in-

terference and minimum span problems. Palpant et al. (2008) note their IP formulations

perform badly because of the huge number of variables and the symmetry of the problem,

problems which we also detect in our test data. They show that using cumulative interfer-

ence constraints provides a much larger feasible region than simply replacing all cumulative

constraints with binary constraints.

Other papers that consider cumulative interference include Alouf et al. (2005), who

use heuristic and exact optimization techniques to allocate spectrum for satellites, and

Garcia Villegas et al. (2005), who use a distributed heuristic to minimize interference for

WiFi networks.

2.3 CAP Solution Methods

In the following sections, we categorize previous research for solving CAPs into two broad

groups, exact methods and heuristic methods, provide a brief overview of related dynamic

spectrum access research, and then describe previous research using two approaches (specif-

ically, temporal graphs and parallel and distributed computation) that we leverage to solve

our large-scale, mobility-aware CAPs.
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Exact methods use mathematical optimization techniques to find optimal solutions, or

solutions whose goodness (i.e., distance to optimality) can be calculated. These methods

are useful when there is sufficient time and computational power available to find an opti-

mal or near-optimal solution, e.g., for small communications networks, when designing fixed

communications infrastructures (like cellular phone and television towers), and during delib-

erate military planning. Heuristic methods are used when such resources are not available,

or exact solutions are not required, e.g., when using radio systems that can automatically

change their own channels based on environmental conditions. In general, heuristics provide

solutions quickly but with no certification of the optimality gap of any particular solution.

Heuristics are the most common method used in real-world channel allocation algorithms,

and can be useful for pre-processing input data prior to solving using exact methods.

2.3.1 Exact Solution Methods

Exact solution methods are the most relevant to our minimum-order CAP because we

assume that the spectrum manager has sufficient time and computational resources to find

certifiably-good solutions, and has incentive to do so because of the spectrum scarcity

and the time cost of changing channels. However, as Garcia Villegas et al. (2005) note,

great computational power is required to solve real-world CAP problems to optimality. We

explore the use of exact optimization and constraint programming techniques to provide a

bound to the goodness of our solutions.

The CAP naturally lends itself to an integer programming (IP) formulation, and the

vast majority of the literature on exact solution methods for CAP use an IP formulation,

including Aardal et al. (2007), Fischetti et al. (2000), Mannino and Sassano (2003), Daniels

et al. (2004), and Palpant et al. (2008). Our IP formulation follows that of Aardal et al.

(2007); other formulations include column generation (see, e.g., Mehrotra and Trick (1996)

and Jaumard et al. (2002)) and the orientation formulation of Borndörfer et al. (1998). The

most common exact solution methods are variations of combinatorial tree search, including

branch-and-bound, branch-and-cut, and implicit enumeration (see, e.g., Aardal et al. (1996,
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2007), Fischetti et al. (2000), Mannino and Sassano (2003), Chen et al. (2010)), along with

heuristics to bound the optimal solution.

In general, these exact methods explore the solution tree by selecting variables to fix,

solving the associated sub-problem, and using the result to update upper and lower bounds

in order to fathom provably suboptimal portions of the tree. Solving sub-problems is gener-

ally done via linear programming (LP) relaxation, i.e., relaxing the integer constraints and

solving using a variation of the simplex method or other LP solution method (Grötschel and

Lovász 1995, Wolsey and Nemhauser 2014, Hoffman and Ralphs 2013).

Aardal et al. (2007) note the particular challenge posed by the minimum-interference

CAP due to its weak linear programming relaxation, and also note the relative dearth

of literature on the topic. Hassan and Chickadel (2011) provide a brief overview of graph

coloring methods to minimize interference in wireless networks. Ahmadi and Pan (2011) use

IP to solve the minimum-interference CAP, but consider only pairwise interference and use

much smaller problem instances (12 nodes). Sridhar et al. (2009) use Lagrangian relaxation

with their IP to solve the MI-CAP and provide a lower bound to the solutions they obtain

using a heuristic. They too consider only pairwise interference, and use problem instances

of 60 nodes or less.

Tiourine et al. (1995) are the first to work on bounding the MI-CAP. Fishburn et al.

(1998) establish a lower bound for the number of interfering edges when coloring a d -regular

graph. Montemanni et al. (2001, 2004) refine the work of Koster (1999) to establish lower

bounds for the number of interfering pairs of transmitters within cliques. Montemanni

et al. (2001) also develop a closed-form equation for bounding the number of interfering

pairs of transmitters within cliques, which we use to bound the goodness of our MI-CAP.

Subramanian et al. (2008) use an exact IP technique based in part on Montemanni et al.

(2001) to provide a lower bound to their MI-CAP, and they use this bound to gauge the

performance of their tabu search algorithm. However, their network instances are much

smaller than ours (50 nodes).
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The CAP can also be expressed as a constraint satisfaction problem (CSP) or constraint

program (CP) as first suggested by Dunkin and Jeavons (1997). CSPs determine if there

exists a consistent assignment of variables that satisfies a system of logical constraints.

Related weighted constraint satisfaction or optimal soft arc consistency problems aim to

find a solution which minimizes penalties associated with violating these logical constraints

(Rossi et al. 2006, Cooper et al. 2007). We reformulate our MO-CAP as a CP to aid in

determining lower bounds, and use an optimal soft arc consistency approach to solve the

MI-CAP.

Dunkin et al. (1998) model their CAP and solve the problem using custom CSP code, but

they consider only groups of seven or fewer transmitters for their dataset of 37 transmitters.

Our datasets (and the number of associated logical clauses) are much larger and may be

beyond the ability of current constraint satisfaction solvers when considered en masse.

Palpant et al. (2008) solve their cumulative interference CAP using a hybrid of constraint

programming and heuristic methods, and provide comparable or better performance than

heuristic methods (specifically Sarzeaud and Berny (2003) and Dupont et al. (2005)) using

a dataset from a military application. Hu (2012) considers the same dataset, and uses

constraint satisfaction to identify irreducible infeasible subsets, which are useful in finding

geographic areas where a given number of available channels may be insufficient, i.e., the

subproblem is infeasible.

Constraint satisfaction may also be used within a Benders decomposition framework (see,

e.g., Hooker (2011), Hooker and Ottosson (2003), Chu and Xia (2004)). We use constraint

programming, integer optimization, and decomposition techniques to solve various subs-

problems within a larger CAP framework. Another approach worth investigation is solving

certain geographic areas of the problem at a time (see, e.g., Ding et al. (2010)).

2.3.2 Heuristic Solution Methods

Due to the computational difficulties of exactly solving the CAP, heuristics are often used

to solve the problem (Aardal et al. 2007, Mannino and Sassano 2003).
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Heuristic methods that have been used to consider cumulative interference CAPs include

neighborhood search (Palpant et al. 2008, Voudouris and Tsang 1998); simulated annealing

(Sarzeaud and Berny 2003, Smith et al. 2001), tabu search (Dupont et al. 2005, Smith

et al. 2001, Capone and Trubian 1999, Vlasak and Vasquez 2003); ant colony optimization

(Montemanni et al. 2002), greedy heuristics (Gomes et al. 2001, Daniels et al. 2004, Babadi

and Tarokh 2010, Yu et al. 2013, Nicholas 2016), and a combination of greedy and exact

methods (Palpant et al. 2008, Alouf et al. 2005).

Skalli et al. (2007) survey channel assignment methods for wireless mesh networks, and

Katzela and Naghshineh (1996) do the same for cellular systems. Both categorize techniques

as fixed (i.e., not changing over time), dynamic, or hybrid. Skalli et al. (2007) describe the

ripple effect which often affects heuristics, where an already-assigned node is repeatedly

revisited. This increases time to convergence and/or the complexity of the algorithm. They

develop a new centralized algorithm with fixed channel assignment, i.e., without considering

changes over time. Katzela and Naghshineh (1996) describe schemes that set aside a portion

of channels in a common pool, to be dynamically assigned as needed.

The problem of assigning units to channels naturally lends itself to a clustering interpre-

tation. Xu et al. (2005) provide a well-referenced survey of clustering algorithms. Abbasi

and Younis (2007) and Boyinbode et al. (2011) both provide surveys of clustering algorithms

specifically for wireless sensor networks, which share some important common features with

the MANETs we consider. The use of clusters to “bin” radios has much in common with

packing problems (see, e.g., Dowsland and Dowsland (1992) and Sung and Wong (1997)),

which we consider when handling our cumulative co-channel interference constraints.

While heuristics can often provide useful solutions in reasonable amounts of time, in

general they do not provide certificates of optimality for any particular solution, i.e., the

distance to the global optimum is unknown. We feel these bounds are important for un-

derstanding the goodness of a particular solution, especially since spectrum is increasingly

crowded and scarce.
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2.3.3 Dynamic Spectrum Access

Dynamic spectrum access (DSA) is a broad term that refers to dynamic (rather than fixed)

allocation of spectrum. Spectrum may be assigned in a centralized or distributed fashion,

and is reassigned based on the current state of the environment, including changing radio

locations, interference, traffic patterns, and even market conditions (Zhao and Sadler 2007).

In general, DSA technology assumes channels can be changed dynamically by each radio at

little or no cost (Akyildiz et al. 2008).

As previously noted, for our application there is a cost (namely, configuration time)

associated with changing channels. Another difference of our approach is that we do not

instantly react to new environmental states as they occur: to do so may require many

frequent channel reassignments. Rather, we leverage available information regarding future

radio locations to determine channel allocations that both efficiently use spectrum and

minimize the number of required channel changes over a given planning horizon. Our

methods can be re-run as often as needed with new information on the status of the operating

environment, but our aim is to provide a degree of temporal stability to channel allocation.

We provide a brief overview of DSA research to identify some similarities and differences of

our work and DSA.

The term NeXt Generation (xG) network is sometimes used synonymously with DSA

(Akyildiz et al. 2008). However, we follow Zhao and Sadler (2007) and do not use the

term cognitive radio synonymously with DSA. Cognitive radio refers to devices that can

change their configurations in a dynamic and intelligent manner based on current condi-

tions (Federal Communications Commission 2003). Cognitive radio technology includes

DSA capabilities but also includes dynamic power allocation, antenna reconfiguration, and

differing signal encoding and modulation schemes.

Akyildiz et al. (2006, 2008) and Zhao and Sadler (2007) provide overviews and surveys

of DSA technology. Following Zhao and Sadler (2007), DSA can be divided into three

categories of models. Dynamic exclusive use models assign spectrum to licensed users

for exclusive use. Under this model, licensees may sell and trade their spectrum rights
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using market mechanisms, or they may use dynamic spectrum allocation to assign spectrum

based on current environmental conditions. Under the open sharing model, all users share

spectrum in a peer relationship. The most common example of this is WiFi. Under the

hierarchical access model, primary users are licensed to use spectrum at their convenience;

secondary users are allowed to use spectrum when primary users are not, or at transmission

powers that are below the noise floor of primary users. Technology categorized within this

model would not apply to the tactical MANET radios which we consider, which are constant

key devices and continually transmit, regardless of current traffic levels.

Other relevant papers on DSA include Ding et al. (2010), who describe a distributed,

localized algorithm where each radio makes real-time decisions based on locally-collected

information. They consider cumulative interference at each node in a signal-to-interference

ratio (SIR) format (very similar to our approach). They also bound upper and lower

transmission power based on performance and noise thresholds. Zhao et al. (2005) used a

distributed, coordinated method to dynamically assign spectrum, but use a simply binary

interference model. Riihijärvi et al. (2005) relate their distributed, dynamic channel alloca-

tion method for wireless local area networks (WLANs) to graph coloring techniques, but do

not consider cumulative interference. Garcia Villegas et al. (2005) also using a distributed,

dynamic model for WLANs. They use a minimum interference objective function, as this

makes sense for WiFi applications (where the number of available channels is fixed), and

scan and react to cumulative interference.

2.3.4 Mobility-aware Methods and Temporal Graphs

Most of the methods described thus far are generally applied to fixed CAPs, where assign-

ments are permanent or not expected to change quickly. Dynamic CAPs consider frequent

channel changes, but most of these methods simply repeatedly apply fixed CAP methodolo-

gies (usually heuristics), or employ schemes for borrowing channels between radios, without

consideration of reducing reassignments over time. See Katzela and Naghshineh (1996) for

a survey on dynamic CAPs.
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A seldom-researched challenge of the mobility-aware CAP is channel allocations chang-

ing over time, and not just at certain points in time, i.e., a myopic solution. Such a solution

may needlessly flip-flop channel assignments, and may be particularly fragile to changes in

physical network topologies. The movement of radios in a military environment is far from

arbitrary (Zhou et al. 2004, Nicholas et al. 2013b); by leveraging available information on

the future locations of radios and considering the effects of network perturbations (such

as degraded signal quality), one can provide a more far-sighted and robust solution to re-

duce the number of required channel changes over time. This decreases the time used by

operators to manually adjust radio configurations, and the time needed by the spectrum

manager to de-conflict unexpected interference. Changes over time make the challenges we

consider that much more difficult, as now we must compute possible channel assignments

over multiple time steps.

We assume our spectrum manager has some information available regarding the future

positions of radios. In a combat environment, this information may be incomplete or later

proved to be entirely inaccurate, but we assume there is at least some utility in considering

this information in allocating channels. Tseng et al. (2002) present (apparently for the

first time) a location-aware method for dynamically allocating channels to MANETs. Their

methods are similar to those used to support GSM cellular service, including channel bor-

rowing. The tactical MANET radios we consider have GPS-enabled position-location infor-

mation (PLI) available for use, and new technology such as DARPA’s RadioMap will allow

each radio to sense the interference environment in real time (Defense Advanced Research

Projects Agency 2015). However, we still require the ability to plan channel assignments in

advance, as channels will not be automatically assigned and configured. Kostakos (2009)

and Whitbeck et al. (2012) develop the concept of temporal graphs (or evolving graphs),

which Yu et al. (2013) use to consider channel assignment over time, rather than just a

series of snapshots.

Casteigts et al. (2012) provide an overarching framework of time-varying graphs in

pursuit of general properties, and mention that very little work on algorithms and protocols
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has been done in this area. In a seminal and highly-referenced work, Ferreira (2004) provides

several useful definitions of terms relevant to evolving graphs, and describes the use of

such graphs to consider time-varying MANETs. This work was extended by Monteiro

et al. (2006), who use evolving graphs to model dynamic MANET communications, and

by Ferreira et al. (2010), who demonstrate the use of evolving graphs to analyze MANET

protocol performance.

Scellato et al. (2013) present for the first time a measure of temporal robustness for time-

varying mobile networks (an area of research that surely is applicable to military problems),

but do not provide any measures specific to channel allocation.

One of the most relevant papers to our research is that of Yu et al. (2013), who present

a unique methodology for channel assignment using temporal graphs. They develop several

heuristics to solve their multi-objective optimization problem to minimize the number of

required channels, while also considering co-channel interference and the cost of changing

channels over time. They evaluate several different algorithms, including SNAP, which as-

signs colors for each “snapshot” in time independently (without regard to channel reassign-

ment), and SMASH, which “smashes” together all of the snapshots into a single temporal

graph and assigns channels considering channel reassignments. They state their work is

the first to apply a temporal graph methodology to the channel assignment problem that

considers the cost of reassignment.

Our work builds upon Yu et al. (2013). They use a “protocol model” for interference

calculations, whereas we use a much more realistic SIR model. They assume random unit

mobility, whereas we base future locations upon a military concept of operations (specific

to each scenario). They use only greedy heuristics and pairwise interference constraints,

whereas we use exact optimization techniques (which allow us to provide a measure of good-

ness for a given solution) and cumulative interference, which is more realistic for military

MANET operations.
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2.3.5 Parallel and Distributed Methods

We assume our spectrum manager will be solving the problem from a central location and

will have multiple computers and/or cores available. As described, the CAP can be unwieldy

for realistic problem sizes. We assume our spectrum manager will leverage distributed and

parallel computation to quickly obtain useful solutions.

Computing technology has advanced significantly since much of the work on CAPs

in the late 2000s. Most computers and even smartphones have multiple cores, yet most

algorithms specifically developed for solving CAPs are serial and do not take advantage of

parallel and distributed computation. The problem has structure that seems to naturally

lend itself to decomposition (e.g., into physical neighborhoods of radios, or by separate

time steps), increasing the desirability of applying parallel and distributed techniques. New

versions of both CPLEX and Gurobi enable distributed implementations, and there are

several free computing packages to support distributed programming (see, e.g., the Python

dispy library (Pemmasani 2016)).

Crainic et al. (2006) provide a seminal survey paper focusing on parallel implementations

of the branch-and-bound algorithm. Drummond et al. (2006) use a distributed branch-and-

bound approach to solve the Steiner tree problem (see, e.g., Hwang et al. (1992)), and

consider the effects of unreliable communications links between processes (which may affect

our spectrum manager if he/she is using computing resources distributed across a tactical

network). Modi et al. (2005) and Yeoh et al. (2008) respectively create and further develop

a distributed constraint optimization framework, but they consider only binary constraints.

Their work was extended by Pecora et al. (2006) to look at n-ary constraints, which would

be necessary if we were to apply this framework to consider our cumulative co-channel

interference problem.

The use of parallel and distributed methods to specifically solve the channel assignment

problem include Zhao et al. (2005), who design their distributed algorithm around the

assumption that a central control station may not be accessible by all nodes (which also
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applies in our problem). They model only binary interference. Riihijärvi et al. (2005) and

Garcia Villegas et al. (2005) each use a distributed, dynamic graph-coloring approach to

assign channels to WLANs, but both require the existence of a backhaul network to enable

a channel coordination mechanism among access points. Garcia Villegas et al. (2005) take

dynamic readings of local background interference in order to inform channel assignment.

Ding et al. (2010) look at simultaneously solving routing, power, and spectrum allocation

decisions. They use a distributed, localized algorithm where each radio makes real-time

decisions based on locally-collected information. They consider cumulative interference at

each node using signal-to-interference ratio information, and provide computational results

using network simulation.

2.3.6 Current Real-world Solution Methods

Military spectrum managers have several tools to assist in allocating spectrum. One is the

Systems Planning, Engineering, and Evaluation Device (SPEED) (Lamar 2013). Another is

Spectrum XXI (Defense Information Systems Agency 2013). Both tools use the high-fidelity

Terrain Integrated Rough Earth Model (TIREM) (Alion Science and Technology Corpora-

tion 2016) (which we also use) to provide radio coverage analysis reports and interference

calculations. Spectrum XXI provides a database to deconflict assignments across a given

operating area. Neither of these software tools consider cumulative co-channel interference

among a large number of mobile transmitters over multiple time periods, nor do they pro-

vide an automated method for minimizing the number of required channels. Rather, the

spectrum manager simply tries out different solutions and attempts to manually reduce

total spectrum requirements.
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2.4 Relationship to the Literature

We use an integer programming formulation to model the CAP similar to Aardal et al.

(2007), but unlike nearly all research on the CAP using IP, we consider cumulative co-

channel interference. Our research builds upon the method of Yu et al. (2013), who consider

co-channel interference but only solve small problem instances with heuristic methods. We

develop a method for bounding the performance of the MI-CAP, and present a new method

for minimizing the number of channel changes over time. To our knowledge, we are the first

to use exact optimization methods to solve realistic, full-size instances of the cumulative

interference MO-CAP and MC-CAP-T to global or near-global optimality.
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Chapter 3: Model of MANET Communications

This chapter describes how we model and simulate MANET communications, and provides

details on our datasets.

3.1 Preliminaries

We create a network model to simulate key aspects of a MANET formed by tactical wide-

band radios at a given moment in time (i.e., time step). We specifically model variants of the

Harris PRC-117G Multiband Networking Manpack Radio (Harris Corporation 2016) and

the Adaptive Networking Wideband Waveform (ANW2 ), but our technique is applicable to

any type of EM transceiver system requiring a channel assignment.

Let r ∈ R (alias s) represent each radio. Each radio is permanently assigned to a

MANET unit u ∈ U , indicated by the set of logical arcs (r, u) ∈ L. A unit may represent

a tactical organization such as an infantry company or reconnaissance team. Let the set of

nodes N (indexed by n) consist of both radios R and units U , i.e., n ∈ N = R ∪ U . Let

a channel c ∈ C be a contiguous range of EM frequencies, where C is the set of available

orthogonal (i.e., non-interfering) channels. Each unit u and the radios r ∈ R assigned to it

require a channel assignment.

Let (r, s) ∈ W indicate the set of arcs representing wireless transmissions between all

radios r, s ∈ R. These arcs represent both intentional EM transmissions between radios

assigned to the same unit, and unwanted interference from all other radios assigned to

the same channel c ∈ C. These arcs exist in both directions, and each radio can receive

transmissions from any other radio, so |W | = |R| (|R| − 1).

We do not explicitly model communications within a MANET formed by a unit, but

we must simulate this communication prior to solving our channel assignment problem in

order to calculate the maximum allowable interference and provide that information as
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input to the formulations. A unit u ∈ U forms a MANET among its assigned radios using

the available wireless arcs (r, s) ∈ W : (r, u) ∈ L, (s, u) ∈ L. Each MANET enables the

exchange of communications traffic between all radios and a network control radio, such

as the infantry company commander or reconnaissance team leader. This bi-directional

connectivity to a single radio ensures that radios within each unit are strongly connected

(i.e., a directed path exists between each pair of radios) (Ahuja et al. 1993). Technological

limits of the radios constrain the number of radios that can be assigned to the same unit;

we assume a limit of 30 radios.

Figure 3.1 shows two separate units (indicated in blue and green) and their assigned

radios. The solid lines indicate bidirectional wireless arcs (r, s) ∈ W between radios. Any

radio (e.g., radio r in Figure 3.1) communicates with its network control radio (e.g., radio

s) via these arcs (a radio may route through other radios in the same unit to reach the

network control radio). All radios are subject to co-channel interference from any other

radios assigned to different units but operating on the same channel, indicated by dashed

gray arrows directed to r (other lines withheld for clarity). In our scenarios, there are no

connections between units; that is, disparate MANETs are not connected via a backhaul

network. In practice, connectivity between units (if any) is provided by satellite, fiber optic

cable, or other backhaul network.

Using its assigned channel, each independent MANET uses orthogonal frequency divi-

sion multiplexing (OFDM ) to enable connectivity between assigned radios, though other

multiplexing techniques may be used without altering our formulation.

3.2 Calculating Received Signal Strength

To calculate both co-channel interference and the strength of desired wireless transmissions

between intra-unit radios, we calculate the received signal strength (RSS ) ρrs along all

wireless arcs (r, s, ) ∈W in dBm (decibel-milliwatts) using the standard link budget formula

(Olexa 2004):
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Figure 3.1: Simple example of two units (indicated in blue and green) with network control
radios (solid circles) and other radios (open circles). Wireless arcs are indicated by arrows.
The radios within each unit must be capable of bi-directional communication with their
network control radio via direct communication or routing through other radios in the same
unit. All radios are subject to co-channel interference (dashed arrows) from other radios
assigned to different units but operating on the same channel.

ρrs = powerr + gr − lr − lpath − lmisc + gs − ls ∀ (r, s, ) ∈W (3.1)

where powerr is transmitted power in dBm, gr and gs are respectively the gains of the radios

r and s in dB, lr and ls are respectively the losses (i.e., from cables, connectors, etc.) of the

radios in dB, lpath is total path loss in dB, and lmisc is miscellaneous loss or fade margin in

dB. All of the terms are input data, determined by the equipment and environment, except

for the total path loss lpath, which depends on the physical position of radios r and s and

the intervening terrain.

Our formulation allows the use of any method for computing lpath, including the Irregular

Terrain Model (ITM) (Longley and Rice 1968) and Hata-COST 231 (Cichon and Kürner

1993). We instantiate our scenarios in Systems Toolkit (STK) (Analytical Graphics, Inc.

2016) and then use Python and the Terrain Integrated Rough Earth Model (TIREM) of

Alion Science and Technology Corporation (2016) to calculate lpath. We use STK to consider
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the movement of various types of platforms (e.g., ground troops, vehicles, aircraft, etc.) in

a three-dimensional environment, defining realistic locations and velocities according to the

scenario concept of operations. TIREM samples terrain elevation to compute path loss,

and considers the effects of free space loss, diffraction around obstacles, and atmospheric

absorption and reflection.

We can use STK to run TIREM to calculate lpath, but STK is very graphics-intensive and

calculates many other quantities with which we are not particularly concerned (e.g., Doppler

shift and the effects of different signal coding schemes). This computational overhead causes

very slow simulation runtimes: simulating just a single time step of our largest scenario in

STK takes over one week. To reduce this runtime, we export the locations of each radio

from STK to a text file and then use Python to iteratively calculate lpath via TIREM

(as a dynamic-link library) for each radio pair at each time step. Using this method,

we are able to reduce simulation runtimes to less than one day using a laptop computer.

While TIREM is computationally more expensive than simpler models, it provides fairly

accurate results. For line-of-sight propagation in commonly-used frequency ranges, Eppink

and Kuebler (1994) compare TIREM predictions and actual measurements. They find a

difference with a mean of -2.8 dB and a standard deviation of 8.9 dB, which is very accurate

considering the speed and relative simplicity of the model. Nicholas and Alderson (2012)

use TIREM to simulate WiFi propagation, and find the computed predictions to be very

comparable to that obtained during real-world field testing.

In general, higher frequency signals will propagate farther than lower frequencies. We

are able to use TIREM to calculate propagation at any frequency band within the operating

specifications of our modeled radios. However, Nicholas et al. (2013a) and Nicholas (2016)

use a similar modeling approach and find that the cumulative effects of channels at various

frequencies tend to essentially cancel out. Specifically, higher frequencies propagate less far

and produce less interference, but are more sensitive to interference because their intra-unit

signal strengths are weaker. Conversely, lower frequencies propagate farther and produce

more interference, but they are less sensitive to interference. We thus make a simplifying
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assumption that each channel will perform roughly the same in our scenarios, though our

formulations allow for the general case where channel performance varies.

3.3 Calculating Connectivity and Interference

To calculate the strength of connectivity between each radio and its network control radio,

we use Dijkstra’s algorithm (Dijkstra 1959) to calculate the shortest path from each radio

to its assigned network control radio. Arc cost is defined to be inversely proportional to

the RSS ρrs between radios. This methodology favors paths that have both fewer links and

higher received signal strengths, and is similar to the Open Shortest Path First (OSPF )

routing algorithm (Moy 1998, Coltun et al. 2008). We assume a radio will be disconnected

from its assigned network control radio if it is unable to communicate along this shortest

path, as all other paths will be more costly (i.e., consist of more links and/or links of weaker

signal strength). Along each path and at each radio s ∈ R, we follow Aardal et al. (2007)

and pre-calculate the maximum allowable interference in watts max interferencecs. This

calculation is based on the RSS ρrs between radios and each particular radio’s required

signal-to-interference ratio (SIR), a measure of signal quality (Poisel 2011). Any co-channel

interference above this level severs the shortest path and thus disconnects the radio from its

assigned network control radio. (Unless otherwise noted, throughout this work we assume

a minimum required SIR of 10 dB.)

Among radios not assigned to the same unit but operating on the same channel, the RSS

ρrs represents co-channel interference. The magnitude of co-channel interference along all

arcs (r, s) ∈ W for each available channel c ∈ C is pre-calculated in watts and is indicated

by interferencecrs. (We simulate transmissions between all radios, though in practice some

arcs may represent negligible or zero interference.)

Based on Marine Corps wideband spectrum allocation practices and following Nicholas

et al. (2013a), we assume spectrum is pre-divided into channels with sufficient white space

to prevent adjacent-channel or other harmonic interference between channels. Hence, we
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need only consider co-channel interference. While other factors (such as signal modulation

schemes and routing protocols) will affect the ability of two radios to communicate, in

the scenarios we consider (with mobile radios operating over rough terrain), propagation

loss and signal interference are by far the two strongest determinants of radio performance

(Molisch 2011, Katzela and Naghshineh 1996, Nicholas et al. 2013b).

The following pseudo-code describes our algorithm for calculating connectivity and in-

terference in our MANET model. Throughout this document, the arrow notation x ← y

indicates the assignment of value y to variable x.
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Algorithm Calculate Connectivity

Input: Radio technical specifications and locations; terrain and atmospheric data; re-

quired SIR (in dB)

Output: max interferencecs ∀s ∈ R, c ∈ C

begin

Calculate path loss lpath along all wireless arcs (r, s) ∈W
Calculate ρrs along all wireless arcs (r, s) ∈W
for u ∈ U

for r, s ∈ u
minSignals ←∞

arcCostrs ←
1

ρrs
next;

for r ∈ u
pathru ← Shortest path from r to network control radio for unit u

next;

for each pathru
for s ∈ pathru // For each radio in pathru

signals ← min (ρs+1,s, ρs−1,s)

if signals < minSignals
minSignals ← signals // Set minimum received at s

endif;

next;

next;

for s ∈ u, c ∈ C
max interferencecs ← minSignals − requiredSIR

next;

next;

end;

3.4 Description of Datasets

We use realistic datasets depicting particular time steps within high-fidelity simulations of

U.S. Marine Corps combat operations. We use Systems Toolkit (STK) (Analytical Graph-

ics, Inc. 2016) to develop our scenarios, i.e., to position radios in time and space according
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to the scenario concept of operations, and then use Python and TIREM to calculate ra-

dio propagation between all radios at each time step. We consider three tactical Marine

Air-Ground Task Force (MAGTF) scenarios, each with different network topologies. The

first scenario, based on Major Combat Operation 1 (Department of Defense 2007) involves

a Marine Expeditionary Unit (MEU) conducting an amphibious assault on an island. The

second scenario, based on combat operations in Helmand Province, Afghanistan circa Jan-

uary 2010, is a Marine Expeditionary Brigade (MEB) conducting irregular warfare (IW)

operations in a desert environment. Our final scenario, based on Integrated Security Con-

struct B (Department of Defense 2013), is a Marine Expeditionary Force (MEF) conducting

a major amphibious assault. Each of these scenarios include classified details; we make in-

consequential adjustments to the scenarios to keep this research unclassified and to be able

to provide the datasets to the research community.

A description of these scenarios by number of Marines, units, and radios is displayed

in Table 3.1. We find the largest scenario to be the most computationally interesting, and

so we generate separate datasets at 20 different time steps within that scenario (each with

118 units comprising 1887 total radios). Nicholas et al. (2013a) provide full details on our

scenarios.

Table 3.1: Description of datasets, depicting the number of Marines, units, and radios
represented in each combat scenario.

Scenario Marines Units Radios

MEU 2000 6 131
MEB 15,000 24 641
MEF 60,000 118 1887

In general, we observe that the MANET radios assigned to a particular unit are located

relatively close to one another due to the limitations of transmission distance, as is evident

in Figure 3.2, a Google Earth (2016) image of all radios in the MEF scenario during the first

time step. The distance between units depends on the particular scenario and associated
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Figure 3.2: Locations of 1887 radios at the first time step within the MEF scenario. [Image
courtesy of Google Earth Pro (2016) and Digital Globe (2016)].

concept of operations. For example, units may be located close to each other when build-

ing combat power ashore during an amphibious assault, but thereafter may be relatively

dispersed as forces push farther inland.

Figure 3.3 displays the location of each radio in the MEF scenario at each of 20 time

steps (arranged from upper left to lower right), where each grid line represents one degree

of latitude and longitude (approximately 69 miles or 111 kilometers). During the first time

step, the units have just arrived ashore during the amphibious assault and are located

relatively close to one another. As time progresses, the units gradually disperse and move

northward.

In Table 3.2, we provide descriptive statistics of the MEF scenario by time step. “Num-

ber of pairwise constraints” is the number of units that cannot be assigned the same channel

at the same time without excessive co-channel interference (see Section 4.1). The graph
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Figure 3.3: Locations of radios within the MEF scenario, by time step (from upper-left to
lower-right).
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formed by these constraints is an interference graph, and we calculate the density and aver-

age degree for this graph. We provide several measures of geographic dispersion, including

“Geographic diameter” (the longest great circle distance between any two radios), and the

average and standard deviation of distances between each radio, and between each network

control radio (NCR). In general, the MEF formation becomes more dispersed as time pro-

gresses. Not surprisingly, the highest graph density occurs when the geographic dispersion

is the smallest (i.e., time step one).

Table 3.2: Descriptive statistics of the MEF scenario, by time step.

Time
Step

Number of
Pairwise

Constraints

Interference
Graph

Density

Interference
Graph

Average

Degree

Geographic

Diameter
(km)

Average

Distance
Between
Radios
(km)

σ of
Distance
Between
Radios
(km)

Average

Distance
Between
NCRs

σ of
Distance
Between
NCRs

1 4407 0.6384 74.69 75.31 29.09 14.31 28.84 14.19
2 3892 0.5638 65.97 147.36 36.55 20.20 29.62 14.53
3 3945 0.5715 66.86 143.75 36.71 20.02 30.10 14.86
4 3823 0.5538 64.80 147.23 37.50 20.41 30.67 15.12
5 3762 0.5450 63.76 151.67 38.32 21.10 31.65 15.60
6 3904 0.5656 66.17 150.74 38.37 21.53 31.51 15.79
7 3884 0.5627 65.83 157.50 39.09 21.93 32.14 16.20
8 3538 0.5125 59.97 151.44 39.73 22.07 32.65 16.31
9 3398 0.4922 57.59 151.54 40.55 22.31 33.38 16.62
10 3541 0.5130 60.02 156.47 41.15 22.77 34.16 17.46
11 3449 0.4996 58.46 165.48 42.17 23.24 34.96 17.88
12 3367 0.4878 57.07 165.79 42.47 23.79 35.35 18.20
13 3550 0.5143 60.17 163.73 42.90 23.73 36.16 18.48
14 3301 0.4782 55.95 165.30 42.86 24.17 36.24 18.79
15 3666 0.5311 62.14 168.04 43.43 24.38 36.84 18.91
16 3749 0.5431 63.54 167.17 43.24 24.35 36.85 18.96
17 3721 0.5390 63.07 171.44 44.59 25.13 38.07 19.76
18 3214 0.4656 54.47 173.29 45.01 25.29 38.88 20.06
19 3282 0.4754 55.63 175.19 45.10 25.63 38.94 20.38
20 3660 0.5302 62.03 176.35 45.81 25.46 39.48 20.35

Aver: 3652.65 0.5291 61.91 156.24 40.73 22.59 34.33 17.42

While our scenarios are derived from official U.S. Defense Planning Scenarios, our meth-

ods apply to any type of input dataset, including randomly-generated datasets. Unlike the

publically available test sets often used for CAP research (e.g., CELAR or CALMA), our
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approach assumes that interference constraints must be discovered from raw radio prop-

agation data, i.e., they are not already provided in the form of preprocessed interference

constraints.

3.5 Computational Resources

Unless otherwise indicated, all results are obtained using a Dell Mobile Precision 6800 laptop

with 32 GB of RAM and an Intel Core i7-4940MX processor running at 3.1 GHz. We use

IBM ILOG CPLEX version 12.6.2 and Python 2.7.
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Chapter 4: Minimum-Order Channel Assignment Problem

This chapter describes the minimum-order channel assignment problem (MO-CAP), which

aims to minimize the total number of channels required to support MANET communications

at a given time step, subject to cumulative interference constraints. We provide several

formulation variations, and include our solution techniques and results. To our knowledge,

we are the first to solve this problem to global or near-global optimality for a realistic,

full-size dataset.

4.1 MO-CAP Full Standard Formulation

The minimum-order channel assignment problem (MO-CAP) aims to minimize the total

number of channels required to support MANET operations at a given moment in time.

Let the binary variable Xc
n indicate whether node n (either a radio or a unit) is using

channel c:

Xc
n =

{
1, if node n uses channel c

0, otherwise
∀n ∈ N, c ∈ C. (4.1)

Each radio is assigned the same channel as its associated unit, so

Xc
r = Xc

u ∀c ∈ C, (r, u) ∈ L. (4.2)

To ensure each unit u is assigned one and only one channel, the problem contains the

constraint: ∑
c∈C

Xc
u = 1 ∀u ∈ U. (4.3)
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Let the binary variable Y c indicate whether channel c is being used:

Y c =

{
1, if channel c is used

0, otherwise
∀c ∈ C. (4.4)

Since the goal is to minimize the total number of required channels, our objective function

is:

min
∑
c∈C

Y c. (4.5)

Two radios from different units are subject to interference if they are both assigned to

the same channel, so one possible constraint is:

interferencecrsX
c
rX

c
s ≤ max interferencecs ∀ (r, s) ∈W, c ∈ C. (4.6)

That is, a radio s ∈ R may be assigned a particular channel c ∈ C only if the interference

from any other single radio is at or below the pre-calculated max interferencecs threshold.

Following Katzela and Naghshineh (1996) and St̊ahlberg (2000), we assume the cumulative

effects of jamming sources on the same channel are additive (in watts) at each receiver.

That is, a radio s ∈ R may be unable to use a channel c ∈ C because the total sum of

interference exceeds the threshold max interferencecs, even if the interference received from

any single radio is less than the threshold. Summing along all arcs yields:

∑
r:(r,s)∈W

interferencecrsX
c
rX

c
s ≤ max interferencecs ∀s ∈ R, c ∈ C. (4.7)

Figure 4.1 provides a graphical representation of several possible interference conditions

between a receiver r and transmitters s and t, where the colored blobs represent radio prop-

agation. In Figure 4.1a, r receives an acceptable amount of interference from transmitter

t and thus these two radios may be assigned the same channel. In Figure 4.1b, r receives
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Figure 4.1: Several possible interference conditions between a receiver r and transmitters
t and s, where a red arc or hyper-arc connects radios that cannot be assigned the same
channel.

unacceptable interference from t, and these two may not share a channel, i.e., one of the

constraints (4.6) is violated. This is depicted as a red arc between the radios. Note this

constraint exists if either or both radios receive unacceptable interference from the other.

In Figure 4.1c, r receives acceptable interference from both transmitters t and s separately,

but unacceptable interference when all three are assigned the same channel, i.e., at least

one of the constraints (4.7) is violated. This is depicted as a red hyper-edge or hyper-arc

among the three radios. The set of all pairwise interference constraints (e.g., the arc in

Figure 4.1b) is an interference graph; the set of all interference constraints (pairwise and

higher-order) is an interference hypergraph.

To linearize constraints (4.7), we introduce the binary variable Zc
rs where:

Zc
rs =

{
1, if Xc

r = Xc
s = 1

0, otherwise
∀ (r, s) ∈W, c ∈ C (4.8)

38



which is enforced via:

Zc
rs ≥ Xc

r +Xc
s − 1 ∀ (r, s) ∈W, c ∈ C. (4.9)

Zc
rs ≤ Xc

r ∀ (r, s) ∈W, c ∈ C. (4.10)

Zc
rs ≤ Xc

s ∀ (r, s) ∈W, c ∈ C. (4.11)

We thus obtain our cumulative co-channel interference constraints:

∑
r:(r,s)∈W

interferencecrsZ
c
rs ≤ max interferencecs ∀s ∈ R, c ∈ C. (4.12)

Given the results of radio propagation simulation in a combat scenario, we pre-calculate

the max interferencecs values (using the method described in Chapter 3), and fix the assign-

ment of radios to their respective units (indicated by arcs (r, u) ∈ L). We summarize our

Full Standard Formulation (FSF ) of the MO-CAP as follows:
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MO-CAP Full Standard Formulation

Index and Set Use

n ∈ N node (either radio or unit)

r ∈ R ⊂ N radio (alias s)

u ∈ U ⊂ N unit

c ∈ C channel

(r, u) ∈ L arc indicating logical assignment of radio r ∈ R to unit u ∈ U
(r, s) ∈W arc indicating wireless interference between radios r and s ∈ R

where r and s are not in the same unit, i.e., r, s /∈ u,∀u ∈ U
Input Data

interferencecrs interference on c ∈ C along arc (r, s) ∈W [watts]

max interferencecs max allowable interference s ∈ R and c ∈ C [watts]

Decision Variables

Xc
n binary variable indicating whether n is using c

Y c binary variable indicating whether channel c is being used

Zc
rs binary variable indicating whether r and s are both using c

Formulation

min
X,Y

∑
c∈C

Y c (F0)

s.t. Xc
u ≤ Y c ∀u ∈ U, c ∈ C (F1)∑

c∈C
Xc

u = 1 ∀u ∈ U (F2)

Xc
r = Xc

u ∀c ∈ C, (r, u) ∈ L (F3)∑
r:(r,s)∈W

interferencecrsZ
c
rs ≤ max interferencecs ∀s ∈ R, c ∈ C (F4)

Zc
rs ≥ Xc

r +Xc
s − 1 ∀ (r, s) ∈W, c ∈ C (F5)

Zc
rs ≤ Xc

r ∀ (r, s) ∈W, c ∈ C (F6)

Zc
rs ≤ Xc

s ∀ (r, s) ∈W, c ∈ C (F7)

Xc
n ∈ {0, 1} ∀n ∈ N, c ∈ C (F8)

Y c ∈ {0, 1} ∀c ∈ C (F9)

Zc
rs ∈ {0, 1} ∀ (r, s) ∈W, c ∈ C (F10)

The MO-CAP FSF is a pure 0-1 integer program. The objective function (F0) minimizes

the sum of assigned channels. Constraints (F1) ensure that each channel utilized by a unit

is counted toward the objective function. Constraints (F2) require the assignment of one
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channel to each unit. Constraints (F3) require that each radio uses the same channel as its

assigned unit. Constraints (F4) ensure that the sum total of co-channel interference at each

radio is below the maximum threshold. Constraints (F5)-(F7) enforce the definition of Zc
rs.

4.1.1 Computational Challenges of the MO-CAP FSF

The Full Standard Formulation is relatively easy to understand and describe. However,

it suffers from several serious computational difficulties when the full problem is simply

“thrown” at a commercial solver (e.g., CPLEX or Gurobi) with our realistic datasets. Fol-

lowing Nicholas and Hoffman (2015, 2016), we describe and provide evidence of these prob-

lems, and provide preliminary results that demonstrate the challenges.

First, commercial solvers may be sensitive to vast differences in input parameters. Our

interference values may range from extremely small to quite large, depending on the distance

and terrain between the given radios. In our simulated datasets, these values vary by 24

orders of magnitude, and are generally quite small (see an example from the MEF scenario

in Figure 4.2). The CPLEX solver may experience difficulties when the objective function

and constraint coefficients vary by six or more orders of magnitude (IBM 2013b). Also,

non-integral input data may result in highly fractionalized LP solutions, as the solver will

attempt to “pack” the most units (including fractions of units) onto the same channel.

These fractional solutions must then undergo a computationally-costly repair process to

become integer-feasible.

Another computational problem (also observed by Palpant et al. (2008)) is that of

symmetry, which occurs when channel assignments may be changed among units with no

corresponding change in the objective function value (Margot 2010). While there are perfor-

mance differences between channels on different frequencies (i.e., lower frequency channels

generally propagate farther than higher frequencies), these differences may be very slight or

even indistinguishable (given computer floating-point precision) between proximate chan-

nels. When conducting a tree search over problems exhibiting near symmetry, solvers may

waste time examining different solutions that provide essentially identical utility. The very
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Figure 4.2: Distribution of received signal strengths between all radios in the first time
step of the MEF scenario. The values vary by 24 orders of magnitude, and are in general
quite small. Such numeric properties are known to cause computational difficulties with
commercial solvers.

near symmetry that is characteristic of our datasets (as opposed to exact symmetry) is

especially difficult for solvers to detect and mitigate (Barnhart et al. 1998, Ostrowski et al.

2011, Margot 2002).

Most commercial LP solvers leverage the sparse nature of a problem by considering only

subsets of variables at a time. However, in our cumulative interference constraints (F4), a

row may contain hundreds of nonzero coefficients. That is, a given radio s on channel c

may experience interference from dozens or hundreds of other radios assigned to the same

channel. Thus the overall constraint matrix is much more dense than if we considered only

pairwise interference constraints, i.e.,

interferencecrsZ
c
rs ≤ max interferencecs ∀ (r, s) ∈W, c ∈ C. (4.13)
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The system of linear equations formed by these constraints would be very sparse, i.e., each

row may contain only one nonzero coefficient (representing two radios from different units

assigned to the channel); all other column entries would be zero. These pairwise interference

constraints can be handled very efficiently by IP and constraint satisfaction solvers.

Unfortunately, these pairwise constraints alone do not adequately represent the real-

world problem. Specifically, the assignment of a radio to a particular channel may not

result in excessive interference from any other single radio assigned to a different unit, but

that radio may very well likely receive excessive cumulative interference from all the other

radios assigned to different units but on the same channel (also observed by Garcia Villegas

et al. (2005)).

To illustrate this in the context of the MEF scenario (our largest dataset), for each of

the roughly 1800 radios we sum the total interference received from all other radios not

assigned to the same unit. We then calculate the total percentage of interference that is

captured by the single largest source of interference, i.e., that interference that would be

avoided via a pairwise constraint. Ideally this is a large percentage, indicating that we

can use pairwise constraints to reasonably represent co-channel interference. Figure 4.3

presents the results for each radio, where the vertical axis displays the percentage of total

interference. On average, the single largest source of interference (blue line) accounts for

73.4% of total interference received by each radio. However, for about 34% of radios, this

single source only accounts for half or less of total received interference. By considering the

strongest ten sources (black line in Figure 4.3), on average 95.1% of interference is captured,

and for less than four percent of radios would these ten sources capture less than 50% of

total interference. This illustrates that pairwise interference constraints may fail to capture

a large portion of the total interference received by most radios, and thus if used alone, may

inadequately represent the real-world problem.

We find in our scenarios that considering only pairwise interference constraints will

cause at least a few radios to be disconnected from their respective MANETs. “Repairing”

these disconnections, i.e., ensuring all radios in each unit are connected, is what makes
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Figure 4.3: Percentage of total interference captured by considering the strongest sources
of interference (for one to ten sources), for each radio in the full MEF scenario (time step
one).

this problem particularly challenging. Figure 4.4 provides a visualization of the received

interference and interference constraints for the first time step of the MEF scenario, solved

using CPLEX and considering only pairwise constraints. Each black dot indicates the

received interference at each radio, where the vertical axis indicates signal strength in dBm,

and the horizontal axis follows the rank-ordered list of radios by interference (i.e., the radio

receiving the least interference is on the extreme left). The red line (actually, collection

of points) immediately above each radio indicates the max interferencecs threshold; a point

above this line indicates a radio receives too much interference. There are nine radios that

receive excessive interference and are thus unable to communicate, visible in the lower-left

corner.

One can imagine trying to “push” these points under the line in Figure 4.4 by reassign-

ing channels. The empty space under the red line in the upper-right corner might seem to

indicate slack in the constraints, i.e., that reassigning the violated radios should be relatively
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Figure 4.4: Depiction of the received interference (dots) and interference threshold (red
line) for each of the 1887 radios in the MEF scenario (time step one), after being solved
by CPLEX with only pairwise constraints. Nine radio fall above the line (in the lower-left
corner), indicating constraint violations. Large blue dots represent seven radios assigned to
one particular unit.

easy, given that some radios receive interference far below their respective thresholds. In

practice, this is very computationally challenging, in part because radios within a particular

unit are often spread across this diagram, i.e., the radios receive greatly different interfer-

ence. To illustrate, the highlighted blue dots indicate radios from a single unit. While one

radio (on the right) has considerable slack, several radios are very close to their respective

thresholds, and thus cannot easily be reassigned to a different channel with other radios

operating concurrently.

Despite these challenges, we find that even a simple “brute force” IP method (i.e., using

CPLEX to solve the full problem as-is, without providing any initial solution or conducting

preprocessing) is sufficient to solve the smaller two scenarios (i.e., MEU and MEB) to

optimality (see Section 4.1.3). However, this approach fails to obtain useful answers to

the MEF scenario, even after 60 hours of computation on a cluster of 14 high-performance
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desktop computers. We use a variation of the Full Standard Formulation to address the

computational problems imposed by the cumulative interference constraints (F4), including

the vast differences in input parameter values and symmetry.

4.1.2 Relationships to Other Problems

We observe our MO-CAP is structurally similar to other NP-hard problems. These obser-

vations may be useful when exploring the use of heuristics or approximate algorithms to

solve the problem or sub-problems.

Hypergraph Coloring. Binary interference constraints are often represented using an in-

terference graph, where an edge connects two radios that may not be assigned the same

channel. Our cumulative co-channel interference constraints can be represented using a hy-

pergraph (Berge 1984), where a hyper-edge or hyper-arc may connect more than two radios

(as opposed to two radios defining a traditional edge or arc). Thus our problem may be rep-

resented as a generalized form of hypergraph coloring (Phelps and Rödl 1984, Brown 1996),

which seeks the minimal numbers of colors such that no hyper-edge is monochromatic. In

our problem, we have an additional complication in that different colors (i.e., channels) may

perform differently because the associated radio frequencies may have different propagation

properties, e.g., lower frequencies generally propagate farther than higher frequencies. In

any case, hypergraph coloring is known to be a notoriously difficult problem, but this field

may be worth exploring further to determine if there are algorithms or approaches that may

benefit our research.

Set Covering. The MO-CAP is similar to the set covering problem in that we aim to select

the minimal number of sets (i.e., channels) that cover all elements (i.e., units).

Bin Packing Problem. Our problem bears a superficial resemblance to the bin-packing prob-

lem, which attempts to pack items (i.e., units) into as few bins (i.e., channels) as possible.
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However, our problem is different and more complex in that capacities are associated with

each unit, not a channel, and the “space” occupied by a unit (i.e., the amount of interfer-

ence it provides) depends on the other units assigned the same channel. This property also

differentiates our problem from the classic knapsack problem.

4.1.3 MO-CAP FSF Preliminary Solution Method and Results

We pre-process all interferencecrs and max interferencecs values, as described in Section 3.3.

We use Python 2.7 and Pyomo (Hart et al. 2011, 2012) to create a problem instance, and

initially attempt to solve it using CPLEX without any further processing, i.e., a “brute

force” approach. We obtain the following results:

• MEU scenario (6 units, 131 radios): Solves to optimality in less than two seconds.

• MEB scenario (24 units, 641 radios): On certain time steps, solves to optimality in

five seconds. On one time step, finds feasible solution but fails to converge after 24

hour of computation.

• MEF scenario (118 units, 1887 radios). Fails to find a feasible solution, even after two

weeks of processing on a 14-computer cluster of high-performance desktops running a

distributed version of CPLEX.

These preliminary results clearly indicate we need a better method than just “throwing”

the full, original problem at CPLEX. For the rest of this analysis, we focus solely on the

MEF scenario (at each of 20 time steps), as it presents the most interesting computational

challenge.

4.1.4 MO-CAP Greedy Heuristic Solution Method

In an attempt to improve the solution process, we create a simple greedy heuristic to find and

provide an initial feasible solution to the solver. The heuristic iteratively “packs” units onto

channels until the channel is full, and then starts with the next channel. This constructive
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heuristic guarantees a feasible solution (as long as the number of available channels is at

least as large as the number of units, i.e., |C| ≥ |U |), but provides no certificate of optimality.

The following pseudo-code describes this heuristic:
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Algorithm Pack Channels

Input: Number of units requiring channels U , max interferencecs,∀s ∈ R, c ∈ C

Output: Xc
u,∀u ∈ U, c ∈ C;Y c,∀c ∈ C

begin

currentChannel← 0

numberAssignedUnits← 0

for r ∈ R, c ∈ C
interferenceMarginc

r ← max interferencecr

next;

for i = 1, 2, . . . , |U |
Assign individual channel to any unit that cannot share channels

numberAssignedUnits← numberAssignedUnits + 1

next;

while (numberAssignedUnits < |U |) do

currentChannel← next available channel

if (|U | − numberAssignedUnits > 2)

nextUnit← unassigned unit that receives least interference from all other

unassigned units

else

nextUnit← the first remaining unit

endif;

XcurrentChannel
nextUnit ← 1

eligibleUnits← Calculate Eligible Units (currentChannel)

while (|eligibleUnits| > 0) do

weakestUnit← the unit already assigned to currentChannel with smallest

remaining interferenceMargincurrentChannel
r

leastInterferer← the eligibleUnit that least interferes with weakestUnit

eligibleUnits← eligibleUnits\leastInterferer

XcurrentChannel
leastInterferer ← 1

numberAssignedUnits← numberAssignedUnits + 1

Update interferenceMargincurrentChannel
r

eligibleUnits← Calculate Eligible Units (currentChannel)

end;

Y currentChannel ← 1 // No more eligible units; currentChannel is “packed”

end;

end;

49



The following function supports Algorithm Pack Channels by determining the units

that are eligible to be assigned to the given channel, considering interference constraints:

Function Calculate Eligible Units (givenChannel)

// Calculate and return eligibleUnits (the set of units eligible for assignment) for the
givenChannel

begin

eligibleUnits← { }
for each unassigned unit u

if u can be assigned to givenChannel and not cause unacceptable co-channel

interference

eligibleUnits← eligibleUnits ∪ u
endif;

next;

end;

return eligibleUnits;

4.1.5 MO-CAP Greedy Heuristic Results

We use our heuristic to solve each time step of the MEF scenario; the results are displayed

in Table 4.1. The heuristic runs quickly, but it provides no indication of the goodness of

each solution, as it does not provide a lower bound or measure of the optimality gap.

In a further attempt to reduce the computational load on CPLEX, we make some

additional assumptions. First, we assume we can ignore any source of interference that is

less than 1/50th of the maximum allowable by a given receiver. That is, we assume that

even if all other units operating at or below this 1/50th level are communicating on the same

channel as a given radio, that radio would not be significantly affected. This assumption

reduces the size of the input data file from 1.42 GB to 152 MB. (However, in general this

assumption is not valid, as we find solutions using our other techniques where this level of

interference affects the results.) We also assume that all channels provide the same level

of performance, regardless of frequency band. In practice we have found this to make only

a negligible difference in the quality of the results. This assumption furthers reduces the

input file size to 1.2 MB. We then use the initial feasible solution provided by our heuristic
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Table 4.1: Performance results of the MO-CAP greedy heuristic by time step.

Time step Solution value Runtime (s)

1 51 292.66
2 48 350.75
3 46 340.53
4 47 379.69
5 43 339.25
6 51 333.76
7 49 358.94
8 42 342.33
9 43 371.08
10 49 348.66
11 45 354.01
12 43 298.93
13 43 311.49
14 43 321.6
15 49 409.84
16 47 358.38
17 49 328.1
18 40 324.81
19 40 297.56
20 49 345.82

Average: 45.9 340.41

and attempt to solve the MEF problem using a 14-computer cluster of high-performance

desktops.

We find that after 60 hours of runtime on a single time step, CPLEX improves upon

the initial feasible solution (providing a reduction of over 18% in the number of channels),

but the solution has an optimality gap of 77%. This indicates that our heuristic may not

be providing very good solutions (as in this instance it could be improved by over 18%),

and that we require more sophisticated methods if we are going to solve realistic instances

of this problem over multiple time steps.
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4.2 MO-CAP Restricted Standard Formulation

We next describe a Restricted Standard Formulation (RSF ) to enable us to preprocess the

cumulative interference constraints (F4) and alleviate the numerical issues associated with

the interferencecrs and max interferencecs values.

Given a dataset, we preprocess the interference constraints to create simplified and more

computationally tractable packing constraints. For example, suppose two specific nodes r

and s (not assigned to the same unit) are not both allowed to be assigned to channel c

because to do so would violate the associated interference constraint (i.e., Figure 4.1b).

This may be represented as:

Xc
r +Xc

s ≤ 1. (4.14)

We use Python and the mpmath library (Johannson et al. 2013), which allows the use of

arbitrary-precision floating point mathematics, to identify unacceptable pairs of radios and

handle the extremely small interference values present in our realistic data sets. Figure

4.5 (created using Gephi (Gephi Consortium 2016, Bastian et al. 2009)) displays all the

pairwise interference constraints, i.e., the interference graph, for the first time step of the

MEF scenario.

Among these pairwise interference constraints, we identify and constrain the maximum

clique, which is the largest maximal clique (i.e., complete sub-graph) formed from among the

pairwise interference constraints (i.e., the interference graph). We use the NetworkX Python

library (Hagberg et al. 2008) to find the maximum clique, which relies on the algorithm

of Bron and Kerbosch (1973) as adapted by Tomita et al. (2006). Figure 4.6 depicts in

red the maximum clique among the pairwise constraints for the first time step of the MEF

scenario. Let M ⊂ U be the subset of units in the maximum clique. The maximum clique

is constrained by: ∑
u∈M

Xc
u ≤ 1 ∀c ∈ C. (4.15)
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Figure 4.5: Depiction of pairwise constraints in MEF time step one, where an arc indicates
that the two associated units cannot be assigned the same channel at the same time, and
the size of each node is relative to the degree of the node.

That is, only one unit in the clique may be assigned any given channel. Cutting off such

a clique more efficiently constrains the problem than a series of pairwise constraints, as

a larger portion of the solution space can be excluded and the cut face will be closer in

proximity to the integer optimal solution. After we add the maximum clique, we then add

to the list of constraints all remaining pairwise constraints, i.e., those pairs that are not

included in the clique.

To generalize for larger n-tuples of units above pairs (triplets, quadruplets, etc.) (e.g.,

Figure 4.1c), let S ⊂ U be a subset of units that cannot all be assigned to the same channel
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Figure 4.6: Depiction of pairwise constraints in MEF time step one, with the maximum
clique (comprising 46 units) depicted in red.

c. We can represent such a restriction of assignments as

∑
u∈S

Xc
u ≤ |S| − 1 ∀c ∈ C. (4.16)

Preprocessing all such unacceptable combinations and adding them as constraints would

effectively replace the cumulative co-channel interference constraints (F4). However, iden-

tifying all unacceptable combinations would be very computationally costly (as they grow
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exponentially in number with both the number of units and available channels) and un-

necessary, as many combinations will be redundant and/or represent negligible levels of

co-channel interference.

Instead, we dynamically add these higher-order constraints to the formulation only as

needed via lazy constraints, which are constraints which are feasible in the full version of the

problem, but are only checked on an as-needed basis (IBM 2013a). When the solver obtains

a feasible solution, it will check the feasibility of the solution in the full problem, and if one

or more infeasibilities exist, it will add constraints to further constrain the problem.

This approach avoids the problem of very small numbers in CPLEX, as we can process

the constraints outside of the solver (e.g., in Python), and then add the much-simplified

packing constraints (4.16) dynamically. Also, since the solver is no longer required to

calculate cumulative interference, the formulation no longer requires the index r ∈ R or

variables Zc
rs, greatly reducing the number of decision variables in the problem. Our MO-

CAP Restricted Standard Formulation (RSF) is summarized as follows:
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MO-CAP Restricted Standard Formulation

Index and Set Use

u ∈ U unit

c ∈ C channel

M ⊂ U maximum clique formed from pairwise interference constraints

S ⊂ U, S ∈ P a dynamically-generated subset of units that cannot be

assigned the same channel c, for all such generated subsets P

Decision Variables

Xc
u binary variable indicating whether unit u is using c

Y c binary variable indicating whether channel c is being used

Formulation

min
X,Y

∑
c∈C

Y c (R0)

s.t. Xc
u ≤ Y c ∀u ∈ U, c ∈ C (R1)∑

c∈C
Xc

u = 1 ∀u ∈ U (R2)

∑
u∈M

Xc
u ≤ 1 ∀c ∈ C (R3)

∑
u∈S

Xc
u ≤ |S| − 1 ∀S ∈ P, c ∈ C (R4)

Xc
u ∈ {0, 1} ∀u ∈ U, c ∈ C (R5)

Y c ∈ {0, 1} ∀c ∈ C (R6)

The MO-CAP RSF is a pure 0-1 integer program. The objective function (R0) minimizes

the sum of assigned channels. Constraints (R1) ensure that each channel assigned to a unit

is counted toward the objective function. Constraints (R2) require the assignment of one

channel to each unit. Constraints (R3) enforce the maximum clique cut formed among the

pairwise interference constraints. Constraints (R4) are packing constraints for dynamically-

generated subsets S of units that cannot co-occupy a channel, for all such subsets P .

4.2.1 MO-CAP RSF Solution Method

After building an initial problem instance with the maximum clique and pairwise constraints

with Python and Pyomo, we send the problem to CPLEX via the Python API and indicate

56



to the solver that we wish to initiate lazy constraints callbacks. Upon finding a solution

that is feasible (with the current constraints), the solver runs our lazy constraint callback

code (written in Python). The code checks the feasibility of the current solution in the full

problem; this can be calculated in polynomial time, specifically O
(
|R|2|C|

)
. If infeasibility

exists, we add the lowest-order packing constraints (R4) to prevent the same units from

being assigned the same channel again. CPLEX then continues the search process with

these new constraints added into the formulation. The process repeats until optimality is

achieved or a time limit is reached.

The following pseudo-code describes our algorithm for solving the MO-CAP Restricted

Standard Formulation using lazy and maximum clique constraints:

Algorithm MO-CAP RSF

Input: MO-CAP problem; MO-CAP initial feasible solution (if desired); max time

Output: MO-CAP solution, objective value, and optimality gap

begin

Preprocess and identify all pairwise interference constraints

Initialize CPLEX problem instance

Calculate maximum clique and add clique constraints to CPLEX problem instance

Add remaining pairwise constraints to CPLEX problem instance

Add initial feasible solution to CPLEX problem instance (if desired)

while time < max time do

Run CPLEX

if CPLEX finds new feasible RSF solution

Check feasibility of current solution in MO-CAP FSF

if current solution is not feasible in MO-CAP FSF

Identify violations of co-channel interference constraint(s) (F4)

packingConstraints← Calculate Packing Constraints (violations)

Add packingConstraints to CPLEX problem instance

endif;

endif;

Continue CPLEX search process

end;

end;
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The following function supports Algorithm MO-CAP RSF by finding the lowest-order

packing constraints, given violation(s) in the original MO-CAP FSF (i.e., radios that receive

excessive co-channel interference):

Function Calculate Packing Constraints (violations)

// Calculate and return packingConstraints (the lowest-order packing constraints), given
violations indicating radios that receive excessive co-channel interference

begin

unitList← { }
packingConstraints← { }

for each violation

Add that radio’s associated unit to unitList

next;

for unit ∈ unitList

tempList← { }
channel← channel assignment of unit

for u ∈ U, u 6= unit

if channel assignment of u = channel

tempList← tempList ∪ u
unitList← unitList\u

endif;

next;

tupleSize← 3

while True

for each combination in tempList of size tupleSize:

if combination is an interference violation (F4)

newConstraint← {combination1 + combination2 + · · ·+
combination|tupleSize|

}
≤ |tupleSize| − 1

packingConstraints← packingConstraints ∪ newConstraint

break;

endif;

tupleSize← tupleSize + 1

next;

end;

next;

returnpackingConstraints;

We provide partial programming code in Python to solve the MO-CAP RSF using

Pyomo and CPLEX in Appendix B. The following sections describe our results using lazy

constraints, the use of an initial feasible solution (provided via our heuristic), and the use

of lazy constraints and the maximum clique constraints.
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4.2.2 MO-CAP RSF Lazy Constraint Results

We use the restricted standard formulation of the MO-CAP to add to the problem all

pairwise interference constraints, and then dynamically add interference constraints using

lazy constraints (without providing an initial solution). Table 4.2 displays results for each

time step in the MEF scenario, including the number of pairwise constraints, the number

of lazy constraints (and the order of the highest-order lazy constraint), and solution results.

Each time step is run for 9,000 seconds, or until optimality is obtained. The times in Table

4.2 indicate solver time when the displayed solution value and optimality gap is obtained;

those time steps with a non-zero optimality gap fail to converge within 9,000 seconds.

Table 4.2: MO-CAP results by time step in the MEF scenario using pairwise and lazy
constraints, without an initial feasible solution. “Time” indicates the time at which the
displayed solution and optimality gap is obtained, during a total runtime of 9,000 seconds.

Time
Step

Number
pairwise

constraints

Number
lazy

constraints

Highest-
order lazy
constraint

Solution
value

Lower
Bound

Gap Time
(s)

Improvement
over

heuristic

1 4407 49 5 46 45 2.17% 1356.53 9.80%
2 3892 25 5 37 37 0% 1333.92 22.92%
3 3945 87 6 36 34 5.56% 4432.53 21.74%
4 3823 62 5 34 32 5.88% 7828.09 27.66%
5 3762 9 5 33 33 0% 678.23 23.26%
6 3904 104 6 36 35 2.78% 4086.04 29.41%
7 3884 67 5 37 37 0% 1737.45 24.49%
8 3538 57 5 31 29 6.45% 8614.79 26.19%
9 3398 21 8 32 32 0% 271.19 25.58%
10 3541 0 0 34 34 0% 248.16 30.61%
11 3449 121 11 33 32 3.03% 5997.82 26.67%
12 3367 29 5 36 35 2.78% 927.38 16.28%
13 3550 104 6 32 31 3.12% 2510.22 25.58%
14 3301 69 6 31 30 3.23% 1780.48 27.91%
15 3666 147 6 38 37 2.63% 1669.23 22.45%
16 3749 119 8 36 34 5.56% 4194.86 23.40%
17 3721 128 6 37 36 2.70% 3092.38 24.49%
18 3214 8 4 31 31 0% 245.20 22.50%
19 3282 99 5 30 29 3.33% 1673.56 25.00%
20 3660 47 5 37 37 0% 1268.30 24.49%

Aver: 3652.7 67.6 5.6 34.9 34.0 2.46% 2697.32 24.02%
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The lazy constraint approach to solving the MO-CAP yields results far superior to our

previous methods. The solutions are on average 24% lower than the heuristic, and each

solution has an associated optimality gap. Bolded solution values indicate better solution

values than that provided via the heuristic, which is the case in every time step. On seven

time steps, optimality is achieved. While generally slower than the greedy heuristic, this

method finds solutions within one or two channels of optimality within an average of about

45 minutes, which is not unreasonable for our projected use case.

We note that the number of required channels is considerably higher in the first time

step than in any other time step. This occurs because within the MEF amphibious assault

scenario, the units have just reached the beach at the first time step and are relatively close

to one another (see Figure 3.3). Thereafter, the units spread apart and are better able to

leverage channel reuse.

4.2.3 MO-CAP RSF Results Using an Initial Feasible Solution

Next, we examine whether the use of an initial feasible solution improves the performance

of the lazy constraint method. We provide the output of the greedy heuristic as an initial

solution to CPLEX; the results are displayed in Table 4.3.

We observe no qualitative difference in the solutions obtained when we provide the

solver an initial feasible solution: the solution values are the same, and the runtimes are

very similar. This indicates that the solutions found with the heuristic are of little use to

CPLEX. For the remainder of this analysis, we do not consider the heuristic solutions.

4.2.4 MO-CAP RSF Lazy Constraints and Maximum Clique Results

In an attempt to further reduce the optimality gap, we build on our lazy constraint method

by adding the maximum clique formed among the pairwise interference constraints. We

then add all remaining pairwise constraints and dynamically add lazy constraint callbacks.

The results are displayed in Table 4.4.
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Table 4.3: MO-CAP results by time step in the MEF scenario using pairwise and lazy con-
straints, with an initial feasible solution. “Time” indicates the time at which the displayed
solution and optimality gap is obtained, during a total runtime of 9,000 seconds.

Time
Step

Number
pairwise

constraints

Number
lazy

constraints

Highest-
order lazy
constraint

Solution
value

Lower
Bound

Gap Time
(s)

Improvement
over

heuristic

1 4407 49 5 46 45 2.17% 1352.19 9.80%
2 3892 25 5 37 37 0% 1362.26 22.92%
3 3945 122 5 36 34 5.56% 4793.59 21.74%
4 3823 62 5 34 32 5.88% 7738.66 27.66%
5 3762 9 5 33 33 0% 670.54 23.26%
6 3904 103 6 36 35 2.78% 4002.05 29.41%
7 3884 68 5 37 37 0% 1723.43 24.49%
8 3538 57 5 31 29 6.45% 8641.12 26.19%
9 3398 21 8 32 32 0% 271.18 25.58%
10 3541 0 0 34 34 0% 248.10 30.61%
11 3449 121 11 33 32 3.03% 5879.65 26.67%
12 3367 48 5 36 35 2.78% 919.39 16.28%
13 3550 105 6 32 31 3.12% 2492.53 25.58%
14 3301 70 6 31 30 3.23% 1737.95 27.91%
15 3666 147 6 38 37 2.63% 1690.00 22.45%
16 3749 52 5 36 34 5.56% 4242.65 23.40%
17 3721 128 6 37 36 2.70% 3075.19 24.49%
18 3214 8 4 31 31 0% 244.39 22.50%
19 3282 116 5 30 29 3.33% 1667.00 25.00%
20 3660 57 5 37 37 0% 1248.50 24.49%

Aver: 3652.7 68.4 5.4 34.9 34.0 2.46% 2700.01924.02%

Bolded values indicate an improvement over the previously-described technique. Again,

each time step is run for 9,000 seconds, or until optimality is obtained, and “Time” indicates

solver time when the displayed solution value and optimality gap is obtained. Overall,

inclusion of the maximum clique reduces average runtime to obtain solutions within one

channel of optimality. On time step 3, this method obtains a solution that requires one

less channel than that identified without the use of the maximum clique. On eight time

steps, this method reduces the known optimality gap, and on 12 time steps, it obtains the

provably-optimal solution (five more than the previous method). It is interesting to note

that the size of the maximum clique (which itself provides a lower bound on the number

of required channels) is within one of the best known solution, for each time step. This is
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Table 4.4: MO-CAP results by time step in the MEF scenario using pairwise and lazy
constraints, and a maximum clique constraint, without an initial feasible solution. “Time”
indicates the time at which the displayed solution and optimality gap is obtained, during a
total runtime of 9,000 seconds.

Time
Step

Max
Clique

Size

Number
pairwise

con-
straints

Number
lazy con-

straints

Highest-

order
lazy
con-

straint

Sol’n
value

Lower
Bound

Gap Time (s) Improvement

over heuristic

1 46 3372 45 6 46 46 0% 552.68 9.80%
2 37 3226 4 4 37 37 0% 273.40 22.92%
3 34 3384 143 7 35 35 0% 4338.21 23.91%
4 33 3295 85 6 34 33 2.94% 3831.19 27.66%
5 33 3234 10 3 33 33 0% 1010.00 23.26%
6 35 3309 95 6 36 35 2.78% 3128.34 29.41%
7 37 3218 13 6 37 37 0% 266.68 24.49%
8 30 3103 45 5 31 30 3.23% 4415.48 26.19%
9 32 2902 2 4 32 32 0% 226.37 25.58%
10 34 2980 6 4 34 34 0% 323.08 30.61%
11 33 2921 42 8 33 33 0% 856.69 26.67%
12 35 2772 30 5 36 35 2.78% 1577.96 16.28%
13 31 3085 131 6 32 31 3.12% 3172.95 25.58%
14 30 2866 214 9 31 30 3.23% 2702.16 27.91%
15 38 2963 105 6 38 38 0% 1047.00 22.45%
16 35 3154 16 5 36 35 2.78% 600.91 23.40%
17 36 3091 89 5 37 36 2.70% 1495.15 24.49%
18 31 2749 13 4 31 31 0% 322.90 22.50%
19 30 2847 74 6 30 30 0% 1653.29 25.00%
20 37 2994 33 4 37 37 0% 1387.28 24.49%

Aver: 34.4 3073.3 59.8 5.5 34.8 34.4 1.18% 1659.09 24.13%

indicative of the power of the maximum clique constraint, which very efficiently cuts off a

significant portion of the solution tree. It is also interesting to note that CPLEX did not

exploit this clique structure until we manually provided it to the solver.

To provide a qualitative sense of the results of the MO-CAP RSF, we generate Figure

4.7 using Gephi (Gephi Consortium 2016, Bastian et al. 2009) and the MO-CAP solution

for the first time step of the MEF scenario using the maximum clique and lazy constraints.

Color indicates channel assignment. Arcs connect those units assigned the same channel,

and the size of each node is relative to the degree of that associated unit.
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Figure 4.7: Depiction of the MO-CAP RSF solution at time step one. Color indicates
channel assignment. Arcs connect those units assigned the same channel, and node size is
relative to the degree of the associated unit.

4.3 MO-CAP Constraint Programming Formulation

Constraint programming (CP) is often used to complement IP approaches. We reformulate

MO-CAP as a CP problem to attempt to quickly find lower bounds to the problem. We

use the Optimization Programming Language (OPL) (Van Hentenryck 1999) to formulate

the problem using integer variables, where each variable Wu ∈ C indicates the channel that

unit u ∈ U is assigned, and the domain of each variable is equal to the number of available

channels |C|. (We originally formulate this problem using binary variables, but find that the
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CP solver is much less efficient in finding solutions using binary variables for this particular

problem.)

We add all pairwise constraints to the problem, indicating that two given units u and v

are not allowed to be assigned the same channel, for all pairs (u, v) ∈ A:

Wu 6= Wv ∀ (u, v) ∈ A. (4.17)

We also identify the maximum clique M , and add the constraint using the CP constraint

type allDifferent, which requires that all variables be assigned pairwise different values

(Régin 1994, Puget 1998, Mehlhorn and Thiel 2000):

allDifferent
([
Wu=1,Wu=2, . . . ,Wu=|M |

])
. (4.18)

Our CP formulation of the MO-CAP is summarized as follows:

MO-CAP Constraint Programming Formulation

Index and Set Use

u ∈ U ⊂ N unit (alias v)

c ∈ C channel

(u, v) ∈ A arc indicating u and v cannot occupy the same channel

M ⊂ U maximum clique formed from pairwise interference constraints

Decision Variables

Wu integer variable indicating the channel assignment of unit u

Formulation

s.t. Wu 6= Wv ∀ (u, v) ∈ A (C1)

allDifferent
([
Wu=1,Wu=2, . . . ,Wu=|M |

])
(C2)

Wu ∈ C ∀u ∈ U (C3)

The MO-CAP CP formulation attempts to find a feasible assignment of integer values for

the variables Wu ∈ C. Constraints (C1) represent the pairwise interference constraints, and

constraint (C2) represents the maximum clique constraint. Note this is a relaxation of the

Full Standard Formulation in that only pairwise constraints are considered.
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4.3.1 MO-CAP CP Solution Method

To solve the problem, we use the IBM ILOG CPLEX CP Optimizer (IBM 2016). We

decrease the number of available channels |C| (i.e., the domain of each Wu) until the solver

determines that the problem is infeasible, or until a maximum time limit is reached (i.e.,

infeasibility is not detected). If this relaxation of the original problem is infeasible with the

given number of channels, then we have established that the corresponding Full Standard

Formulation problem (with all constraints) is also infeasible. This indicates that at least

|C| + 1 channels are required, establishing a lower bound. If the lower bound equals the

upper bound (obtained using CPLEX and the Restricted Standard Formulation), we have

obtained an optimal solution.

We provide partial Python and OPL code for solving the MO-CAP using constraint

programming in Appendix C. The following pseudo-code describes our algorithm:

Algorithm MO-CAP CP

Input: MO-CAP problem; starting value of |C|; max time

Output: min channels (lower bound on |C|)

begin

Preprocess and identify all pairwise interference constraints

Initialize CP problem instance

Calculate maximum clique and add clique constraints to CP problem instance

Add remaining pairwise constraints to CP problem instance

avail channels← |C|
while time < max time do

Run CP

if CP determines feasible

avail channels← avail channels− 1

else

min channels← avail channels + 1

exit while;

endif;

Continue CP search process

end;

end;
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4.3.2 MO-CAP CP Results

The results of solving our MO-CAP CP formulation are displayed in Table 4.5, where

“Infeasible” indicates the largest value at which CPLEX CP Solver detects infeasibility, i.e.,

at least one more channel is required for the problem to be feasible. “Optimal solution?”

indicates whether the obtained value proves the optimality of a solution (i.e., no gap between

this solution and that provided in the previous methods), where bolded values indicate new

lower bounds (i.e., not found in the previous analyses).

Table 4.5: MO-CAP results by time step in the MEF scenario using constraint programming.

Time Step Infeasible Optimal solution?

1 45 Yes
2 36 Yes
3 33
4 32
5 32 Yes
6 34
7 36 Yes
8 29
9 31 Yes
10 33 Yes
11 32 Yes
12 34
13 31 Yes
14 29
15 37 Yes
16 34
17 36 Yes
18 30 Yes
19 29 Yes
20 36 Yes

While the CP solver does not find the exact lower bound at each time step, it does

establish two new exact lower bounds (at time steps 13 and 17). When infeasibility is

detected by the solver, it is detected extremely quickly (less than a tenth of a second in

each case). This provides great utility when an approximate lower bound is needed quickly.

66



On the other time steps, we are unable to tighten the lower bound, even after consid-

erable runtimes (over 12 hours) and the addition of symmetry-breaking constraints. A high

degree of symmetry exists in this problem in that many different solutions (i.e., assignments

of channels to units) have the same objective value. For example, the channel assignments

of any two units may be swapped without changing the objective. Symmetry-breaking con-

straints reduce or eliminate this possibility, and may (though with no certainty) provide

better CP performance (IBM 2016). Following Ramani et al. (2004), we add such con-

straints to the MO-CAP CP problem instance, but in each case, we fail to improve the

ability of the solver to find a tighter lower bound.

We also try adding all triplet and maximum clique constraints (via allDifferent con-

straints), as well as adding constraints iteratively in a sort of lazy-constraint approach,

all to no avail. This “try and see” approach is common in constraint programming, as

there are few general guidelines on the types of CP formulations that always provide good

performance (Hooker and Ottosson 2003, Hooker 2011). We find in general that this CP

approach is very efficient at finding infeasibilities (and thus establishing lower bounds), but

may struggle to find a feasible solution close to the lower bound.

4.4 Summary of MO-CAP Results

The summary results from our MO-CAP analysis are displayed in Figures 4.8 and 4.9. Fig-

ure 4.8 displays the MO-CAP objective value from the use of the greedy heuristic, CPLEX

with lazy constraints, CPLEX with lazy constraints and the maximum clique constraint,

the best known lower bound, and the highest known infeasible solution found using con-

straint programming. Figure 4.9 displays the runtimes for each of the techniques. While

the heuristic is overall the fastest technique, our CPLEX techniques provide certifiably-

good solutions in reasonable amounts of time. The maximum clique technique allows us to

achieve solutions within one channel of optimality for all time steps. In all but one time

step (3), the constraint programming technique provides a lower bound within one channel
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Figure 4.8: MO-CAP objective values and best known lower bound, for each time step in
the MEF scenario, using various techniques.

of the best solution found using CPLEX, and does so extremely quickly (less than a tenth

of a second).

4.5 MO-CAP Sensitivity Analysis

We next conduct sensitivity analysis on our MO-CAP RSF formulation and solution method

to determine its robustness to small perturbations in inputs. Specifically, we randomly per-

turb our received signal strength values ρrs by up to ±10% (uniform random distribution),

and then re-run our CPLEX method with lazy constraints and the maximum clique con-

straint, for each time step. In each case, we find that the number of required channels

differs by at most one from the control case (i.e., no perturbation in input values) (left side

of Table 4.6).
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Figure 4.9: MO-CAP runtimes, for each time step in the MEF scenario, using various
techniques.

These results indicate that our method is fairly robust to small perturbations in input

values. This is not surprising, given the vast range in input values present in our data (see

Section 4.1.1). This is encouraging from the perspective of our spectrum manager in that

not even the highest-fidelity simulation of the radio environment will necessarily be perfect;

this robustness to perturbation provides evidence that the computed solution objective

values will not vary tremendously if the simulated values are slightly different than the real

world.

We next wish to examine how much the solution itself (i.e., the assignment of channels to

units) changes due to these perturbations. Note that we cannot simply penalize the assign-

ment of a different channel number, as a group of units may remain assigned together but

simply be assigned a different channel number, and the channel number itself is arbitrary.

For example, suppose in the unperturbed control case our solution indicates that units i, j,
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and k should be assigned channel 1. If we perturb our input values and our solution now

indicates that these three units (and only these three units) should be assigned channel 2,

we do not wish to penalize this difference.

We calculate the difference in group membership using a technique very similar to that

described in Section 6.2, and present the results in the right side of Table 4.6, where each

entry indicates the percentage of units that must be assigned to a new channel (compared

to the unperturbed control case), for each time step and level of perturbation from ±0.5%

to ±10%. With even small levels of perturbation, we find a large percentage of units will be

assigned to different groups. This is not surprising, given the vast symmetry in the problem.

That is, it is frequently possible to swap group membership of many units with no effect on

the objective value. In Chapter 6, we find this to be the case when moving from time step

to time step, and develop a method to minimize the number of required channel changes.
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Table 4.6: MO-CAP sensitivity analysis results for each time step, including the number of
required channels and the percentage of units that must change channel (compared to the
unperturbed control case), for given levels of random perturbation of input values.

Number of Required Channels % Units Changing Groups

Time
Step

No Pertur-
bation

±0.5% ±1.0% ±5% ±10% ±0.5% ±1.0% ±5% ±10%

1 46 46 46 46 46 46.6% 50.0% 43.2% 44.9%
2 37 37 37 37 37 47.5% 43.2% 48.3% 43.2%
3 35 35 35 35 36 44.1% 44.1% 44.9% 45.8%
4 34 34 34 34 33 41.5% 36.4% 35.6% 44.9%
5 33 33 33 33 33 33.1% 44.9% 39.8% 41.5%
6 36 36 36 36 36 35.6% 33.1% 40.7% 46.6%
7 37 37 37 37 37 49.2% 50.0% 44.9% 49.2%
8 31 31 31 31 31 39.0% 48.3% 41.5% 48.3%
9 32 32 32 32 31 52.5% 52.5% 52.5% 50.8%
10 34 34 34 34 34 49.2% 42.4% 47.5% 50.0%
11 33 33 33 33 33 48.3% 49.2% 54.2% 50.0%
12 36 36 36 36 36 48.3% 48.3% 47.5% 50.0%
13 32 32 32 32 32 41.5% 40.7% 47.5% 43.2%
14 31 31 31 31 31 41.5% 40.7% 41.5% 43.2%
15 38 38 38 38 38 50.8% 49.2% 49.2% 48.3%
16 36 36 36 36 36 44.1% 46.6% 53.4% 50.0%
17 37 37 37 37 37 45.8% 44.9% 55.1% 50.0%
18 31 31 31 31 31 49.2% 52.5% 53.4% 53.4%
19 30 30 30 30 30 48.3% 50.8% 46.6% 45.8%
20 37 37 37 37 37 44.1% 44.1% 46.6% 42.4%

Average 34.8 34.8 34.8 34.8 34.75 45.0% 45.6% 46.7% 47.1%
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Chapter 5: Minimum-Interference Channel

Assignment Problem

This chapter describes the minimum-interference channel assignment problem (MI-CAP),

which aims to minimize the total received interference given a fixed number of channels. As

Gupta and Kumar (2000) show, minimizing interference is essential in maximizing wireless

network performance. This problem reflects the real-world challenge of a spectrum manager

being allocated less than the required number of channels identified by a MO-CAP solution.

That is, the spectrum manager is now forced to make do with the channels available. We

first develop a MI-CAP full standard formulation, and then present clustering, integer

optimization, and constraint programming methods and their respective results.

In general, we assume that the number of channels available is less than that required by

MO-CAP, i.e., there will necessarily be violations of the cumulative interference constraints

(F4) for any time step that we have solved to optimality in the MO-CAP.

5.1 MI-CAP Full Standard Formulation

The MI-CAP Full Standard Formulation (FSF) is similar to the MO-CAP FSF, with the

following modifications. We assume all available channels |C| will be used, so the binary

variable Y c is no longer required, nor are constraints (F1) and (F9). To create the MI-CAP

objective function, we can essentially relax the cumulative interference constraints from

MO-CAP (F4). One possible objective function is:

min
∑
s∈R

∑
c∈C

∑
(r,s)∈W

interferencecrsZ
c
rs −max interferencecs

 . (5.1)
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This objective function minimizes the difference between the cumulative received interfer-

ence and maximum allowable interference. However, this function also provides a benefit

when a radio receives less interference than max interferencecs, which is not our intent and

may skew the solver into seeking such solutions. Instead, consider the objective function:

min
∑
s∈R

∑
c∈C

∑
(r,s)∈W

interferencecrsZ
c
rs −max interferencecs


+

(5.2)

where (·)+ denotes projection onto the non-negative real line. We define the inner quantity

as excessive interference, which we wish to penalize. We introduce the nonnegative real

variable Es to represent excessive interference received by radio s, where:

Es ≥
∑

(r,s)∈W

interferencecrsZ
c
rs −max interferencecs ∀s ∈ R, c ∈ C. (5.3)

That is, Es is positive only when the received interference at s is greater than max interferencecs.

Our objective function thus becomes:

min
∑
s∈R

Es. (5.4)

The MI-CAP Full Standard Formulation follows:
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MI-CAP Full Standard Formulation

Index and Set Use

n ∈ N node (either radio or unit)

r ∈ R ⊂ N radio (alias s)

u ∈ U ⊂ N unit

c ∈ C channel

(r, u) ∈ L arc indicating logical assignment of radio r ∈ R to unit u ∈ U
(r, s) ∈W arc indicating wireless interference between radios r and s ∈ R

where r and s are not in the same unit, i.e., r, s /∈ u,∀u ∈ U
Input Data

interferencecrs interference on c ∈ C along arc (r, s) ∈W [watts]

max interferencecs max allowable interference s ∈ R and c ∈ C [watts]

Decision Variables

Xc
n binary variable indicating whether n is using c

Zc
rs binary variable indicating whether r and s are both using c

Es nonnegative variable representing excessive interference

received at s ∈ R [watts]

Formulation

min
E,X,Z

∑
s∈R

Es (M0)

∑
c∈C

Xc
u = 1 ∀u ∈ U (M1)

Xc
r = Xc

u ∀c ∈ C, (r, u) ∈ L (M2)

Es ≥
∑

r:(r,s)∈W

interferencecrsZ
c
rs −max interferencecs ∀s ∈ R, c ∈ C (M3)

Zc
rs ≥ Xc

r +Xc
s − 1 ∀ (r, s) ∈W, c ∈ C (M4)

Zc
rs ≤ Xc

r ∀ (r, s) ∈W, c ∈ C (M5)

Zc
rs ≤ Xc

s ∀ (r, s) ∈W, c ∈ C (M6)

Es ≥ 0 ∀s ∈ R (M7)

Xc
n ∈ {0, 1} ∀n ∈ N, c ∈ C (M8)

Zc
rs ∈ {0, 1} ∀ (r, s) ∈W, c ∈ C (M9)

The MI-CAP FSF is a mixed integer program (MIP). The objective function (M0) minimizes

the total excessive interference. Constraints (M1) require the assignment of one channel to

each unit. Constraints (M2) require that each radio uses the same channel as its assigned
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unit. Constraints (M3) enforce the definition of Es, and constraints (M4)-(M6) enforce the

definition of Zc
rs.

5.1.1 Computational Challenges of the MI-CAP FSF

Like the MO-CAP FSF, the MI-CAP FSF suffers from the problems of extremely small

input values, which are beyond the precision of the solver to handle correctly. Also, we

cannot simply pre-process and handle these numbers in the form of lazy constraints (as we

did with the MO-CAP), as the troublesome values are required to calculate penalties in the

objective function. Aardal et al. (2007) note that this property of the MI-CAP makes it in

general more difficult to solve than other versions of the CAP. Rather than attempting to

solve the problem as-is, we re-formulate and develop several methods of solving variations

of the problem.

5.1.2 Estimating the Operational Impact of Interference

In general, minimizing co-channel interference is a worthy goal, but simply providing the

amount of interference at each radio (e.g., in terms of watts or dBm) may not be enlightening

to a decision-maker. In order to provide an estimate of the operational impact of excessive

interference, we follow Nicholas et al. (2013b, 2016) and calculate network availability,

defined as the number of radios that are able to communicate with their respective network

control radio. This is perhaps the most fundamental metric of network performance, as

without simple availability, two radios cannot communicate and few other measures of

network performance will be non-zero.

Recall from Section 3.3 that we calculate max interferencecs by calculating the short-

est path between a network control radio and each of its assigned radios. The value

max interferencecs represents that interference strength that would disconnect radio s from

its network control radio. In practice, such a disconnection may also disconnect other ra-

dios of the network that are dependent on radio s to reach the network control radio, or

these other radios may have alternate paths to the network control radio (i.e., the MANET
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may exhibit self-healing behavior). To capture and quantify these repercussions on net-

work availability, we resolve the shortest path problem described in Section 3.3 using each

MI-CAP solution.

We note that network availability may be a more complete measure of network perfor-

mance than simply counting the number of radios that receive greater than max interferencecs,

since disconnected radios may disconnect other radios. For example, using our CP method

(Section 5.4), we find that on average there are about seven times more unavailable radios

than those radios exceeding their max interferencecs thresholds, indicating that in general

the disconnection of a radio results in considerable impact on other radios within the same

unit.

In the following sections, we use network availability as a metric in evaluating and

comparing the performance of our clustering, IP, and CP methods.

5.2 MI-CAP Clustering Formulation

Our first formulation and solution method is based on the idea of clustering units into a

given number of groups (equal to the number of available channels |C|), where the clus-

tering metric is based on minimizing cumulative co-channel interference. Such a clustering

approach is complicated by the interference relationships. When examining the assignment

of any particular unit to a group, one must consider not only the pairwise interference

between any two radios, but also the cumulative interference from all other radios in that

group and the effect on the ability of a unit to communicate among its assigned radios

(based on the max interferencecs value of each radio).

We simplify the problem as follows. We pre-process our dataset to allow us to consider

pairwise interactions between units during the clustering process. For a given unit pair

(u, v) ∈ U , we first calculate the total normalized interference received by each radio s ∈ v
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from all radios in unit u, r ∈ u, on a given channel, i.e.,

total normalized interferencesu ≡
∑

r∈u interferencecrs
max interferencecs

. (5.5)

This allows us to equitably compare the interference received by different radios, where a

value greater than one indicates excessive interference will be received by radio s if it is

assigned the same channel as unit u. For each unit v we determine the most sensitive radio

to u by examining the total normalized interference received at each s ∈ v, i.e., that radio

s which most violates (or is closest to violating) its interference threshold if u is assigned

the same channel:

most sensitive radiouv ≡ arg max
s∈v

{∑
r∈u interferencecrs

max interferencecs

}

= arg max
s∈v

{total normalized interferencesu} .

(5.6)

We then use these resulting sensitivity values as distances between units in a clustering

paradigm. Note these distance scores are not symmetric, as different radio characteristics

and terrain effects will create different interferencecrs and max interferencecs values. To

overcome this challenge, we redefine the distance between two units as the sum of the

original distances in each direction. Specifically, the distance between units u and v is

defined as:

distanceuv ≡ total normalized interferencesu + total normalized interferencerv (5.7)

where s ∈ v is most sensitive radiouv and r ∈ u is most sensitive radiovu. We pre-calculate

distanceuv values for all (u, v) ∈ A in O (a|U |a (|U | − 1)) = O
(
a2|U |2

)
time, where the

constant a is the maximum number of radios in a unit (we assume 30).

Note that even with these simplifying assumptions, this is not a metric space because

the triangle inequality does not necessarily hold. This defining property of a metric space
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states that (in our case) the combined distance from a unit a to unit b and unit b to unit c

must be greater than or equal to the distance between unit a to unit c, i.e.,

distanceac ≤ distanceab + distancebc. (5.8)

This property does not necessarily hold in the current paradigm because of the effects of

rough terrain (e.g., hills and valleys) and different radio specifications on signal propagation.

This prevents us from using clustering algorithms that are dependent on a metric space

where the triangle inequality holds, such as k -means.

To overcome this computational challenge, we use a k -medoids clustering algorithm,

which generates k clusters based on the dissimilarity (in our case, distanceuv) between the

k selected medoids and the surrounding observations (in our case, units) (Hastie et al.

2001). This method avoids the computation of a Euclidean centroid (such as in k -means

clustering), which is not defined in this non-metric space.

Ignoring for a moment the non-Euclidean nature of this method, we provide a simple

graphic example of our clustering process in Figure 5.1. In Figure 5.1a, the arcs between

each unit represent distanceuv values, where shorter arc lengths represent smaller distanceuv.

We wish to divide this space into k = 2 clusters, i.e., channels. In Figure 5.1b, two medoids

are selected (indicated by open circles), and the units are divided into two clusters (indicated

by blue and green) to minimize the total distance between each medoid and its assigned

units.

We specify our k -medoids clustering formulation building on the notation we use in the

MO-CAP, where Xc
u is a binary variable indicating whether unit u is assigned channel c.

Let Y c
u be a binary variable indicating whether unit u is selected as a medoid and is assigned

channel c, i.e.,

Y c
u =

{
1, if unit u uses channel c

0, otherwise
∀u ∈ U, c ∈ C. (5.9)
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(a) (b)

Figure 5.1: Simple example of the clustering algorithm. In (a), the distance between each
unit is calculated based on radio sensitivity and interference, as per (5.7). In (b), two
clusters are created (indicated by green and blue) by choice of medoids (indicated by open
circles) that minimize the total distance from each medoid to each assigned unit.

The total number of medoids is |C|, which is constrained via:

∑
u∈U

Y c
u = |C|. (5.10)

We wish to select medoids and assign units to medoids (via channel assignments) such that

the total distances from the selected medoids to all units in that cluster (i.e., on the same

channel) are minimized, i.e.,

min
∑
c∈C

∑
(u,v)∈A

distanceuvY
c
uX

c
v. (5.11)

Note that minimizing this distance is not equivalent to minimizing the total distances among

all pairs within a cluster (i.e., total received interference). We make this simplification

in order to avoid the computational difficulties of the latter problem. To linearize this
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objective, we use the binary variable Zc
uv where:

Zc
uv =

{
1, if Y c

u = Xc
v = 1

0, otherwise
∀ (u, v) ∈ A, c ∈ C (5.12)

which is enforced via:

Zc
uv ≥ Y c

u +Xc
v − 1 ∀ (u, v) ∈ A, c ∈ C. (5.13)

Zc
uv ≤ Y c

u ∀ (u, v) ∈ A, c ∈ C. (5.14)

Zc
uv ≤ Xc

v ∀ (u, v) ∈ A, c ∈ C. (5.15)

We thus obtain our objective function:

min
∑
c∈C

∑
(u,v)∈A

distanceuvZ
c
uv. (5.16)

Our MI-CAP Clustering Formulation is summarized as follows:
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MI-CAP Clustering Formulation

Index and Set Use

u ∈ U unit (alias v)

(u, v) ∈ A set of all arcs (u, v)

c ∈ C channel

Input Data

distanceuv total distance (dissimilarity) between u and v [none]

Decision Variables

Xc
u binary variable indicating whether u is using c

Y c
u binary variable indicating whether u is the medoid for c

Zc
uv binary variable indicating whether u is the medoid for c and

unit v is using c

Formulation

min
X,Y,Z

∑
c∈C

∑
(u,v)∈A

distanceuvZ
c
uv (L0)

∑
c∈C

Xc
u = 1 ∀u ∈ U (L1)

∑
c∈C

∑
u∈U

Y c
u = |C| (L2)

Zc
uv ≥ Y c

u +Xc
v − 1 ∀ (u, v) ∈ A, c ∈ C (L3)

Zc
uv ≤ Y c

u ∀ (u, v) ∈ A, c ∈ C (L4)

Zc
uv ≤ Xc

v ∀ (u, v) ∈ A, c ∈ C (L5)

Xc
u ∈ {0, 1} ∀u ∈ U, c ∈ C (L6)

Y c
u ∈ {0, 1} ∀u ∈ U, c ∈ C (L7)

Zc
uv ∈ {0, 1} ∀ (u, v) ∈ A, c ∈ C (L8)

The MI-CAP Clustering Formulation is a pure 0-1 integer program. The objective function

(L0) minimizes the sum of distances (or dissimilarity) among all units assigned the same

channel, i.e., in the same cluster. Constraints (L1) require the assignment of one channel

to each unit, and constraint (L2) requires the assignment of |C| medoids among the units

u ∈ U . Constraints (L3)-(L5) enforce the definition of Zc
uv.
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5.2.1 Relationships to Other Problems

If distanceuv is calculated between all (u, v) ∈ A (thus forming a complete graph), then

selecting the |C| clusters that minimize these distances is equivalent to selecting cliques

among this complete graph that minimize total clique distances. Our clustering formulation

is a simplification in that we consider only the distance from each unit to its assigned medoid,

not the clique distance.

5.2.2 Computational Challenges of the MI-CAP Clustering Formulation

The MI-CAP Clustering Formulation suffers from the same computational problem of the

MI-CAP Full Standard Formulation: the presence of very small values in the objective

function which prevent us from using CPLEX or other exact optimization solvers. Instead,

we use a heuristic approach.

5.2.3 MI-CAP Clustering Formulation Solution Method

We use Python to implement a k-medoids clustering method similar to that of Park and

Jun (2009), where k is the number of available channels |C|, and m is a unit u ∈ U assigned

as a medoid for a cluster of units g ∈ G. The following pseudo-code describes our algorithm

for solving the MI-CAP using k-medoid clustering:
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Algorithm MI-CAP Clustering

Input: max interferencecs and interferencecrs values; number of available channels |C|;
max iterations

Output: cluster medoid and cluster assignments

begin

Calculate distanceuv for all units (u, v) ∈ A
iteration← 0

bestMedoids← { }
bestClusters← { }
bestDistances← { }
while iterations < max iterations do

Randomly select medoids m

Assign each unit u ∈ U to medoid m that minimizes distanceum to create

clusters g ∈ G
oldMedoids← current medoid assignments m, for all clusters g ∈ G
currentMedoids← { }
while currentMedoids 6= oldMedoids do

oldMedoids← currentMedoids

for g ∈ G
Find unit u in g that minimizes within-cluster distanceum
Set this unit as new medoid m for cluster g

next;

for each medoid m

Assign each unit u ∈ U to medoid m that minimizes distanceum
next;

currentMedoids← current medoid assignments m, for clusters g ∈ G
currentClusters← current cluster assignments

currentDistances← current total distances
∑

c∈C
∑

(u,v)∈A distanceuvZ
c
uv

end;

if currentDistances < bestDistances

bestMedoids← currentMedoids

bestClusters← currentClusters

bestDistances← currentDistances

endif;

iteration← iteration + 1

end;

end;
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Algorithm MI-CAP Clustering first calculates the distance (i.e., dissimilarity) val-

ues (5.7) between all units. During each iteration, the algorithm randomly selects ini-

tial medoids, and assigns each unit to the nearest (least dissimilar) medoid. With these

randomly-selected medoids as a starting point, the algorithm will next iteratively find the

unit in each cluster that minimizes total distance within each cluster and assign that unit as

the new medoid. The algorithm will then assign each unit to the closest medoid among these

new medoids. This process repeats until a local optimum is reached, i.e., the newly-selected

medoids are the same as the previous medoids. Upon discovering this local optimum, the

algorithm will then randomly select new initial medoids and repeat the entire process, for a

given number iterations. Newly-selected medoids are saved as the incumbents bestMedoids

if they provide the best solution yet discovered. We provide partial Python code for solving

the MI-CAP using our clustering method in Appendix D.

5.2.4 MI-CAP Clustering Formulation Results

We run our clustering algorithm for 200 iterations for each case, which runs in about 12

minutes. Our detailed results our tabulated in Appendix A. Though this algorithm does

not explicitly value reducing the number of pairwise constraint violations, we provide this

information in Table A.2 for the sake of comparison with our other MI-CAP solution meth-

ods (Sections 5.3 and 5.4). Table A.3 displays the number of radios receiving excessive

interference, and Table A.4 displays the total excessive interference (i.e., the objective func-

tion of the MI-CAP Full Standard Formulation). In Table 5.1, we provide the percentage

of network availability (i.e., the percent of radios that are able to communicate with their

network control node), for each time step and for varying levels of channel availability.

While the clustering algorithm runs relatively quickly and does not require a commercial

solver, it provides only a heuristic solution and is prone to falling into local optima. As we

will show in the next section, it also provides poorer performance than our other methods

in most cases. Further, this method does not provide a lower bound.
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Table 5.1: Percentage network availability (for radios) using the MI-CAP clustering formu-
lation, with varying numbers of available channels and 200 iterations of the algorithm.

Network Availability (radios), by Channel Availability

Timestep 100% 90% 80% 70% 60% 50%

1 57.8% 57.0% 50.9% 49.9% 42.8% 37.8%
2 50.7% 43.6% 38.7% 44.6% 37.3% 38.5%
3 51.5% 48.2% 48.1% 45.7% 45.3% 36.9%
4 48.3% 47.9% 51.4% 48.2% 40.2% 41.0%
5 52.0% 41.3% 44.4% 43.1% 42.1% 40.8%
6 61.3% 53.7% 46.2% 48.4% 42.9% 41.5%
7 50.1% 46.7% 47.7% 47.7% 39.8% 34.1%
8 47.4% 46.3% 40.7% 38.0% 37.8% 38.8%
9 54.6% 50.0% 47.7% 42.5% 45.2% 39.6%
10 61.7% 55.9% 54.2% 51.4% 45.7% 41.0%
11 52.6% 43.9% 43.5% 44.5% 42.9% 38.6%
12 63.6% 60.4% 54.7% 52.5% 46.2% 43.1%
13 52.4% 56.2% 48.0% 50.5% 47.1% 46.4%
14 56.2% 52.4% 51.8% 49.9% 46.2% 43.7%
15 54.0% 52.8% 47.5% 42.0% 46.2% 37.3%
16 64.6% 54.4% 58.1% 52.0% 55.9% 47.2%

Average 54.8% 50.8% 48.4% 47.5% 43.7% 40.3%

5.3 MI-CAP Restricted Integer Programming Formulation

We next develop a restricted version of the MI-CAP Full Standard Formulation to which

we can apply integer optimization techniques. In this relaxation, we follow Subramanian

et al. (2008) and try to minimize the number of pairwise interference constraint violations.

Pairwise constraints represent the most critical interference and are more likely to impact

the solution than higher-order constraints. Thus by focusing solely on these pairs, we

capture the largest portion of the total interference.

Let the binary variable Xc
u indicate whether unit u is assigned to channel c, and let

the binary variable Zc
uv indicate whether units u and v are both assigned to channel c, for

all arcs (u, v) ∈ A. Let penaltyuv indicate the penalty for assigning u and v to the same

channel; if non-zero, this represents the violation of a pairwise interference constraint. Our
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objective function is thus:

min
∑
c∈C

∑
(u,v)∈A

penaltyuvZ
c
uv. (5.17)

We initially use a unit penalty for all pairwise constraints. This is equivalent to the maxi-

mum constraint satisfaction problem (MaxCSP) (Freuder and Wallace 1992), as minimizing

the number of violated constraints is equivalent to maximizing the number of satisfied con-

straints. We also consider the use of penalties where penaltyuv is equal to the number of

radios in u and v that will receive excessive interference if the two units are assigned the

same channel; we refer to this as weighted penalties.

The MI-CAP Restricted Integer Programming Formulation is summarized as follows:

MI-CAP Restricted Integer Programming Formulation

Index and Set Use

u ∈ U unit (alias v)

(u, v) ∈ A arc representing constraint violation between u and v

c ∈ C channel

Input Data

penaltyuv penalty of assigning u and v to the same channel

[number of radios]

Decision Variables

Xc
u binary variable indicating whether u is using c

Zc
uv binary variable indicating whether u and v are both using c

Formulation

min
X,Z

∑
c∈C

∑
(u,v)∈A

penaltyuvZ
c
uv (P0)

∑
c∈C

Xc
u = 1 ∀u ∈ U (P1)

Zc
uv ≥ Xc

u +Xc
v − 1 ∀ (u, v) ∈ A, c ∈ C (P2)

Zc
uv ≤ Xc

u ∀ (u, v) ∈ A, c ∈ C (P3)

Zc
uv ≤ Xc

v ∀ (u, v) ∈ A, c ∈ C (P4)

Xc
u ∈ {0, 1} ∀u ∈ U, c ∈ C (P5)

Zc
uv ∈ {0, 1} ∀ (u, v) ∈ A, c ∈ C (P6)
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The MI-CAP Restricted Integer Programming Formulation is a pure 0-1 integer program.

The objective function (P0) minimizes the sum of penalties for violating (preprocessed)

pairwise interference constraints. Constraints (P1) require the assignment of one channel

to each unit. Constraints (P2)-(P4) enforce the definition of Zc
uv.

5.3.1 Relationships to Other Problems

Subramanian et al. (2008) observe that the pairwise interference MI-CAP formulated as an

IP is similar to the max k-cut problem (see, e.g., Frieze and Jerrum (1995)). This problem

assigns each node within a graph into one of k separate partitions in order to maximize

the number of edges whose endpoints are in different partitions. When this problem is

applied to our interference graph, this is equivalent to minimizing the number of pairwise

interference constraint violations, i.e.,
∑

(u,v)∈A Z
c
uv. However, the max k-cut problem is

also NP-hard, so this insight does not immediately result in an improvement in optimization

efficiency.

5.3.2 Computational Challenges of the MI-CAP Restricted IP Formula-

tion

We note that as long as each unit is assigned a channel (P1), any channel assignment solution

will satisfy the constraints. We also observe that this formulation has a weak LP relaxation,

i.e., there is potential for a very large gap between the LP solution and the integer-feasible

solution. Specifically, when the integer constraints are relaxed, the LP optimal solution will

comprise very small fractions for Xc
u and Zc

uv that will cumulatively satisfy constraints (P1),

but will generate only very small penalties in the objective function (P0). This typically

results in an optimality gap between the best integer solution and the LP relaxation of

nearly 100%.
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5.3.3 Calculating a Lower Bound

In order to find a more useful lower bound for determining the goodness of solutions ob-

tained to the MI-CAP IP formulation, we use the result of Montemanni et al. (2001), who

establish a lower bound on the number of monochromatic arcs within a clique given k

colors. In our problem, a monochromatic arc within the interference graph represents a

pairwise interference constraint violation. We apply and develop their result (also used for

this purpose by Subramanian et al. (2008)) to the cliques within our interference graph

to establish a lower bound on the number of pairwise constraints violations and provide a

tighter optimality gap. We consider both the case where all penaltyuv = 1, and weighted

penaltyuv values.

5.3.3.1 Unit Penalties

We first consider the case where all penaltyuv = 1, i.e., unit penalties. We describe our

method by slightly modifying the notation of Montemanni et al. (2001). Let S ⊂ U be a

subset of units forming a clique S within the unweighted interference graph. Let |S| be

the number of units in the clique, and let |C| be the number of available channels, which

may be less than the number identified using MO-CAP (i.e., reduced channel availability).

Define:

α =

⌊
|S|
|C|

⌋
(5.18)

and

β = |S| mod |C|. (5.19)

Montemanni et al. (2001) derive and prove that a lower bound on the number of monochro-

matic arcs within S is:

τ =
αβ (α+ 1) + (|C| − β)α (α− 1)

2
. (5.20)
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u

v

w
Figure 5.2: A simple example of the lower bound on the number of monochromatic arcs in
a clique. With three available colors (i.e., green, blue, and orange), a clique comprising five
nodes must have at least τ = 2 monochromatic arcs (indicated by red).

Note that |C| ≥ |S| =⇒ τ = 0, i.e., the lower bound is zero when there are sufficient

channels to uniquely assign a channel to each unit u ∈ S.

We provide an illustration of this lower bound in Figure 5.2. Consider the clique formed

among the five units in this interference graph. If we wish to color the units in this clique

(i.e., assign channels) with |C| = 3 colors (indicated by blue, green and orange), there must

be at least τ = 2 violations where an arc is monochromatic (indicated by red).

We calculate τ for disjoint cliques within the interference graph, beginning with the

maximum clique M and then iteratively considering the maximum clique among those units

that have not yet been considered. We define T as the sum of the τ for these disjoint cliques

within the interference graph, and use T as a lower bound on our MI-CAP IP objective

function, i.e., ∑
c∈C

∑
(u,v)∈A

penaltyuvZ
c
uv ≥ T (5.21)
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assuming all penaltyuv = 1. The bound

∑
c∈C

∑
(u,v)∈A

Zc
uv ≥ T (5.22)

is valid for both the unit penalty and weighted penalty cases, and we use this bound when

we are unable to calculate a tighter bound to the weighted MI-CAP.

We investigate adding (5.22) as a constraint within our Restricted IP Formulation, but

find that it does not improve the efficiency of the search process, and in fact sometimes

results in poorer solutions in the same amount of time (unlike the results observed with the

much smaller datasets of Subramanian et al. (2008)). However, it does provide utility in

providing non-zero lower bounds on the number of pairwise violations, and can be calculated

a priori.

Further, this result can be used to calculate lower bounds on both the total amount of

received excessive interference (i.e.,
∑

s∈REs from the MI-CAP Full Standard Formulation),

and on the total number of radios that will receive excessive interference. To calculate each,

we find the τ arcs among each clique S that, should they be violated, respectively result in

the least total amount of excessive interference and the fewest number of radios receiving

excessive interference, i.e., the best case possible. (Note the τ arcs selected by these two

operations may be different.) A drawback to this method is that these bounds may be

infeasible in the full problem because they do not consider the added cost incurred when

two or more arcs are adjacent. However, both of these lower bounds can be calculated a

priori.

The following pseudo-code describes our method of calculating these lower bounds for

a particular time step and given number of available channels in the MI-CAP with unit

penalties.
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Algorithm MI-CAP Lower Bounds (Unit Penalties)

Input: pairwise interference constraints among all (u, v) ∈ A; number of available chan-

nels |C|

Output: T (lower bound on number of pairwise constraint violations); LBE (lower bound

on excessive interference); LBR (lower bound on number of radios receiving excessive
interference)

begin

unitList← U

T ← 0

LBE ← 0

LBR ← 0

while |unitList| > 1 do

S ← maximum clique formed among pairwise interference constraints in

unitList

if |S| < |C|
exit while

else

α←
⌊
|S|
|C|

⌋
β ← |S| mod |C|

τ ← αβ (α+ 1) + (|C| − β)α (α− 1)

2
T ← T + τ

endif;

eList← { }
rList← { }
for (u, v) ∈ S

e← excessive interference if (u, v) are assigned same channel

r ← number of radios receiving excessive interference if (u, v) are assigned

same channel

eList← eList ∪ e
rList← rList ∪ r

next;

Sort eList and rList descending

LBE ← LBE+ total excessive interference from top τ elements in eList

LBR ← LBR+ total number of radios receiving excessive interference from top

τ elements in rList

unitList← unitList\S
end;

end;
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We provide these lower bounds on the unit-penalty method in Appendix A in Table

A.5 for each time step and with various levels of channel availability (i.e., |C|), where 100%

availability is the full MO-CAP solution and lesser percentages indicate a reduced number

of available channels (available in Table A.1). We calculate and provide the lower bound on

total amount of received excessive interference (in dBm) in Table A.6. By happenstance,

the lower bounds on the total number of radios receiving excessive interference are equal in

each case to the lower bound on the number of pairwise constraint violations (Table A.5),

so we do not duplicate this table.

Note that these bounds are theoretical and do not indicate the presence of a feasible

solution at the lower bound, as they consider a bound only on the cliques within the

(pairwise) interference graph, and not the entire MI-CAP. We find that the lower bound

on the number of pairwise constraint violations is useful in determining the goodness of

our MI-CAP solutions, as one of our methods approaches and even occasionally achieves

optimality. However, the lower bound on the amount of received excessive interference is of

little use, as it is far below our observed solutions and provides relative optimality gaps of

nearly 100% in all cases (in watts). This is not surprising, as this method considers only the

excessive interference among the violated pairwise constraints within the examined cliques,

and not interference among all units (pairwise and higher-order).

Note also these lower bounds apply even to those time steps which have non-zero op-

timality gaps in the MO-CAP, as these results depend on a given number of available

channels, not on the true minimum required number of channels.

5.3.3.2 Weighted Penalties

We next consider the case of weighted penalties. In general, τ may not be a feasible lower

bound for the costs of violations in a weighted clique. Suppose we select the τ lowest-cost

arcs within a weighted clique by simply sorting and selecting them. Selecting an arc in this

way monochromatically colors the associated vertices, incurring a penalty. We illustrate by

continuing the example of Figure 5.2 in Figure 5.3. If we are choosing τ = 2 arcs, perhaps
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u

v

w

Figure 5.3: A simple example of how selecting monochromatic arcs (indicated by red) may
inadvertently result in another monochromatic arc.

we select arcs (u, v) and (u,w). They share vertex u, and so now we also inadvertently

incur the cost associated with arc (v, w), forming a triangle when we intend to select two

disjoint arcs and thus incurring a larger cost.

Further, in a weighted clique it may be possible to select a less-expensive set of arcs

with cardinality greater than τ . For example, suppose the triangle we form in the previous

example is of lower cost than any set of two non-adjacent arcs.

In an attempt to establish a tighter lower bound for the weighted-penalty MI-CAP and

building on the methodology of Montemanni et al. (2001), we transform the problem as

follows. Let a node i ∈ N represent an arc in the original clique S. Each node has an

associated penaltyi equal to the original penaltyuv in the Restricted IP formulation. For

each triangle formed in the original clique S (e.g., the triangle (u, v, w) in Figure 5.3), we

create a hyper-arc (u, v, w) ∈ H. Let the binary decision variable Zi indicate whether node

i is selected, i.e., the associated pairwise constraint in the clique S is violated:

Zi =

{
1, if node i is selected

0, otherwise
∀i ∈ N. (5.23)
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We wish to minimize the total penalty, so our objective function is:

min
∑
i∈N

penaltyiZi. (5.24)

From the result of Montemanni et al. (2001), we must select at least τ arcs from the clique

S, which we enforce via the constraint:

∑
i∈N

Zi ≥ τ. (5.25)

To ensure that we appropriately penalize all monochromatic arcs (e.g., arc (v, w) in Figure

5.3), we include the constraints:

Zi ≥ Zj + Zk − 1 ∀ (i, j, k) ∈ H (5.26)

which force node i to be selected if both nodes j and k are selected, among all hyper-arcs

(i, j, k) ∈ H.

To illustrate these constraints and the relationship between the original clique S and

the current transformation, consider Figure 5.4, comprising units u, v, w, and x from the

clique S. Each node in this transformation (indicated in blue font, e.g., node i) represents

an arc in clique S (e.g., (u, v)). We enumerate all hyper-arcs H by identifying triangles in

the clique and indicate them by node label, so in this example H comprises permutations

on {(i, k, l) , (i, j,m) , (j, l, n) , (k,m, n)}. Suppose τ = 2, and nodes i and k are selected.

In the original problem, this indicates that units u, v, and x are now monochromatically

colored. The hyper-arc (l, i, k) ∈ H, so the constraint Zl ≥ Zi +Zk − 1 ensures that node l,

though not intentionally selected, is now selected and generates a penalty representing the

co-channel interference between units u and x.

Since the structure of the graph is a clique and we have enumerated all hyper-arcs, these

constraints also induce the selection of any other arcs required to model monochromatic
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Figure 5.4: Simple illustration of the relationship between units in the original clique S (u,
v, w, and x) and nodes (i, j, k, l, m, and n) in the transformation used to generate a lower
bound to the weighed MI-CAP.

coloring of units. Suppose τ = 3, and suppose nodes i, j, and k are selected, thus monochro-

matically coloring all four units u, v, w, and x. From (5.26), constraints Zl ≥ Zi+Zk−1 and

Zm ≥ Zi+Zj−1 immediately ensure nodes l andm are selected. Now, both Zn ≥ Zk+Zm−1

and Zn ≥ Zj + Zl − 1 ensure the selection of node n, yet the use of binary variables (e.g.,

Zn) ensures that any node generates at most one penalty.

Our minimum-cost weighted clique lower bound problem is summarized as follows:
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Minimum-Cost Weighted Clique Lower Bound Formulation

Index and Set Use

i ∈ N node representing an arc in the original clique (alias j, k)

(i, j, k) ∈ H hyper-arc comprising nodes i, j, and k, representing a triangle

in the original clique

Input Data

penaltyi penalty of selecting node i [number of radios]

τ minimum number of selected nodes [number of nodes]

Decision Variables

Zi binary variable indicating whether node i is selected

Formulation

min
Z

∑
i∈N

penaltyiZi (B0)

∑
i∈N

Zi ≥ τ (B1)

Zi ≥ Zj + Zk − 1 ∀ (i, k, k) ∈ H (B2)

Zi ∈ {0, 1} ∀i ∈ N (B3)

The minimum-cost weighted clique lower bound problem is a pure 0-1 integer program.

The objective function (B0) minimizes the sum of penalties associated with selecting nodes

i ∈ N . Constraint (B1) ensures that at least τ nodes must be selected. Constraints (B2)

ensure that the selection of any two adjacent nodes within a hyper-arc (i, j, k) ∈ H result

in the selection of the third node in the hyper-arc.

We use CPLEX to solve the problem for each time step and with varying τ , and present

the results in Table A.7. Empirically, we find that this method provides far better perfor-

mance than simply solving the original Restricted IP formulation or the CP formulation

(Section 5.3.6) on the maximum clique. In each time step and case, we are able to solve

this problem to optimality in less than a second, whereas we are unable to solve the Re-

stricted IP formulation or CP formulation (on the maximum clique) to optimality with

50% channel availability, even after extremely long (24 hour) runtimes. This problem does

not consider channel or color assignment, and is thus much simpler and results in smaller
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problem instances (in terms of variables and constraints) than the original Restricted IP

formulation.

5.3.4 MI-CAP Restricted IP Formulation Solution Method

Having established lower bounds to the MI-CAP Restricted IP Formulation of both unit

and weighted penalties, we continue describing our solution method. We determine the

number of available channels |C| at each given time step using MO-CAP, or possibly based

on an allocation provided to our spectrum manager from a senior decision-maker or a

policy. We pre-process the pairwise interference constraints using Python, and then solve

the problem at each time step using CPLEX. We run this analysis with both unit penalties

(penaltyuv = 1) and weighted penalties.

5.3.5 MI-CAP Restricted IP Formulation Results (Unit Penalties)

For each time step, we consider various levels of channel availability, where 100% availability

is the full MO-CAP solution, and lesser percentages indicate a reduced number of available

channels, thereby inducing excessive co-channel interference (see Table A.1 for the number

of channels available at each time step). We run CPLEX for 500 seconds for each case. The

number of pairwise violations (i.e., the objective function to this problem if penaltyuv =

1,∀ (u, v) ∈ A) are displayed in Table 5.2. In Appendix A, we provide the number of radios

receiving excessive interference (Table A.8), and the total excessive interference (i.e., the

objective function of the MI-CAP Full Standard Formulation) (Table A.9).

Even with the full (i.e., original MO-CAP solution) number of available channels, the

solver is unable to find a solution that eliminates pairwise violations. In general and as

expected, these violations (and the total excessive interference) increase as the number of

available channels decreases. This relationship is not always monotonic increasing (e.g.,

time step 1 from 90% to 80%), as the solver may make more or less progress depending on

the number of available channels, but holds true on average.
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Table 5.2: Total number of pairwise violations using the MI-CAP Restricted IP formula-
tion, with varying numbers of available channels, 500 second CPLEX runtimes, and unit
penalties.

Pairwise Violations, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 55 72 95 109 133 329
2 73 85 98 218 227 302
3 86 83 111 190 204 280
4 86 101 118 246 241 283
5 84 96 117 203 251 125
6 72 96 110 238 259 254
7 67 84 105 177 341 243
8 79 106 197 239 225 380
9 77 85 145 209 200 206
10 76 87 106 221 199 184
11 75 89 107 202 264 254
12 63 77 85 191 297 287
13 83 102 166 104 247 134
14 79 103 158 266 152 305
15 67 81 97 107 188 195
16 71 92 107 182 219 282
17 69 84 93 209 385 260
18 71 86 171 213 220 268
19 75 96 185 245 208 111
20 71 79 99 231 183 171

Average 74.0 89.2 123.5 200.0 232.2 242.7

We note that the logarithmic basis of dBm may be misleading in terms of interpreting

the differences in Table A.9. The average amount of excessive interference received with

50% of the required channels (-19.74 dBm) is in fact roughly 21 times more powerful than

the interference received with 100% channel availability.

We also note that the number of pairwise violations and the excessive interference is

considerably greater in the first time step than in any other time step. As we note in Section

4.2.2, this occurs because within the MEF amphibious assault scenario, the units have just

reached the beach at the first time step and are relatively close to one another. Thereafter,

the units spread apart and are better able to reduce co-channel interference (see Figure

3.3).
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In Table 5.3, we provide an estimate of the operational impact using network availability,

i.e., the number of radios that are able to communicate with their network control node.

Table 5.3: Network availability (for radios) using the MI-CAP Restricted IP formulation,
with varying numbers of available channels, 500 second runtimes, and unit penalties.

Network Availability (radios), by Channel Availability

Timestep 100% 90% 80% 70% 60% 50%

1 63.0% 48.2% 46.3% 43.8% 40.5% 42.2%
2 58.5% 54.6% 45.9% 44.0% 43.7% 35.0%
3 45.7% 46.8% 42.8% 50.0% 49.3% 40.2%
4 48.6% 72.7% 51.1% 49.8% 38.5% 44.5%
5 50.3% 50.4% 48.1% 49.4% 43.2% 48.0%
6 52.9% 51.9% 43.8% 51.2% 46.5% 42.1%
7 70.5% 45.4% 43.3% 52.3% 44.4% 40.8%
8 65.6% 54.5% 50.8% 42.6% 48.6% 45.1%
9 71.1% 68.8% 44.7% 68.3% 45.2% 45.4%
10 58.7% 60.5% 53.5% 58.6% 53.5% 52.6%
11 52.7% 52.8% 52.6% 53.6% 54.2% 35.1%
12 59.5% 52.8% 51.0% 59.8% 50.2% 49.7%
13 67.6% 51.0% 57.0% 58.8% 52.7% 47.3%
14 63.0% 59.7% 54.6% 55.0% 56.4% 42.3%
15 58.8% 56.9% 52.6% 45.2% 42.0% 53.8%
16 59.1% 56.7% 49.5% 50.9% 50.7% 52.5%
17 56.8% 57.3% 52.0% 47.4% 49.5% 43.8%
18 75.3% 62.6% 49.8% 59.6% 50.1% 45.1%
19 56.1% 54.8% 57.9% 58.2% 45.3% 49.1%
20 64.7% 54.2% 57.7% 56.7% 47.1% 50.0%

Average 59.9% 55.6% 50.3% 52.8% 47.6% 45.2%

5.3.6 MI-CAP Restricted IP Formulation Results (Weighted Penalties)

Next, in an attempt to reduce the number of radios receiving excessive interference, we

re-run the analysis but set each penaltyuv equal to the number of radios in u and v that

will receive excessive interference if the two units are assigned the same channel. Initially,

we run each case for 500 seconds. The results are presented in Appendix A in Tables A.10,

A.11, and A.12. We observe that in general, the solutions are actually less desirable than

those obtained using unit penalties: the number of pairwise constraint violations and the
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total number of radios receiving excessive interference is greater. This occurs because the

weighted (non-unit) penalties remove the symmetry of the problem, making the problem

much more difficult for the solver.

Because of this added computational burden and in order to see a reduction in received

interference using weighted penalties, we must run the solver for a longer period of time.

We run the solver for 6000 seconds for each time step and level of channel availability, and

present the number of violations and availability results in Tables 5.4 and 5.5. The number

radios receiving excessive interference and the amount excessive interference are presented

in Tables A.13 and A.14.

Table 5.4: Total number of pairwise violations using the MI-CAP Restricted IP formulation,
with varying numbers of available channels, 6000 second CPLEX runtimes, and weighted
penalties.

Pairwise Violations, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 14 23 25 41 53 77
2 14 13 34 47 53 87
3 15 21 33 59 61 121
4 16 25 32 47 82 95
5 48 30 36 48 98 110
6 17 25 33 45 62 97
7 13 18 32 50 65 93
8 7 21 40 54 66 106
9 3 14 21 40 52 83
10 4 12 23 40 55 79
11 1 6 15 29 49 72
12 1 7 15 26 43 54
13 6 16 21 38 51 74
14 0 13 22 33 49 72
15 8 18 19 32 50 61
16 9 16 28 41 68 71
17 8 18 32 40 53 77
18 2 13 12 35 53 69
19 6 13 19 41 54 74
20 10 17 21 36 49 81

Average 74.0 89.2 123.5 200.0 232.2 242.7
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Table 5.5: Network availability (for radios) using the MI-CAP Restricted IP formulation,
with varying numbers of available channels, 6000 second runtimes, and weighted penalties.

Network Availability (radios), by Channel Availability

Timestep 100% 90% 80% 70% 60% 50%

1 85.4% 77.2% 76.2% 65.4% 58.7% 51.4%
2 86.6% 85.1% 72.2% 65.6% 59.8% 51.1%
3 86.9% 72.0% 70.4% 59.7% 60.9% 40.5%
4 84.8% 82.0% 68.9% 67.4% 55.8% 50.7%
5 78.0% 67.7% 70.6% 65.3% 53.6% 50.0%
6 83.8% 78.7% 73.1% 73.0% 73.0% 56.8%
7 84.6% 80.5% 73.0% 59.7% 51.6% 48.0%
8 94.3% 82.2% 77.4% 75.4% 60.9% 51.3%
9 96.2% 83.1% 82.3% 73.2% 65.7% 63.3%
10 92.9% 84.5% 81.7% 74.7% 65.9% 56.4%
11 95.1% 90.9% 85.7% 75.4% 69.8% 59.4%
12 93.6% 87.0% 81.1% 76.2% 69.6% 60.1%
13 94.1% 88.0% 80.8% 80.8% 64.0% 50.7%
14 94.4% 88.4% 80.6% 75.4% 66.3% 61.6%
15 91.4% 84.9% 81.3% 66.9% 61.6% 63.4%
16 92.0% 84.9% 74.1% 70.8% 59.5% 59.0%
17 89.1% 86.2% 69.4% 67.2% 59.7% 58.5%
18 94.9% 87.8% 83.3% 75.8% 69.3% 53.5%
19 95.0% 87.3% 78.2% 76.0% 62.6% 57.1%
20 90.4% 82.0% 74.8% 73.3% 68.2% 59.9%

Average 59.9% 55.6% 50.3% 52.8% 47.6% 45.2%

We compare the performance of the unit penalties and weighted penalties method with

70% channel availability in Figures 5.5 and 5.6. In Figure 5.5, we see that the weighted

penalty method provides a significant reduction in the number of radios receiving excessive

interference, but roughly similar levels of received excessive interference. In Figure 5.6, we

see that the weighted penalty method obtains solutions with greater numbers of pairwise

constraint violations, but in conjunction with Figure 5.5, we conclude that these violations

are in general of less cost.
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Figure 5.5: Comparison of number of radios receiving excessive interference (out of 1887),
and the total received interference, between the unit penalty and weighted penalty IP
methods (6000 sec run times), with 70% channel availability.

5.4 MI-CAP Constraint Programming Formulation

As with the MO-CAP, in the MI-CAP we are not particularly concerned with the actual

channel number assigned to a group of units, so long as each group receives an assignment.

The MI-CAP Restricted Integer Programming Formulation does not leverage this prop-

erty, and may waste computational effort by explicitly considering channel assignment as

an index. The MI-CAP is natural candidate for constraint programming, where channel

assignment is represented as the value of a variable, instead of as an index on a variable.

We reformulate the MI-CAP as a CP problem. If the number of available channels |C|

is less than the optimal MO-CAP solution, then the problem is over-constrained, i.e., one

or more pairwise constraints must be violated. We associate a penalty with each constraint

and then use CP to attempt to minimize the penalties associated with these violations. In
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Figure 5.6: Comparison of number of the total number of pairwise constraint violations,
between the unit penalty and weighted penalty IP methods (6000 sec run times), with 70%
channel availability.

the constraint programming literature, this approach is referred to as the optimal soft arc

consistency problem (Cooper et al. 2007, Rossi et al. 2006).

Similar to the MO-CAP CP formulation, let the variable Wu ∈ C indicate the channel

assigned to unit u ∈ U , where the domain of each variable is equal to the number of available

channels |C|. We model all pairwise constraints in the problem, indicating that two given

units u and v are not allowed to be assigned the same channel, for all pairs (u, v) ∈ A. We

use a CP logical construct to generate a variable Pi ∈ R for i = 1, 2, . . . , |A|, if any pairwise

constraint is violated. This is specified logically as:

(Wu = Wv) =⇒ Pi = penaltyi ∀ (u, v) ∈ A. (5.27)
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That is, if Wu = Wv, Pi equals penaltyi, where penaltyi is a scalar indicating the penalty

incurred for the violation. Note this implies a preprocessed mapping (u, v) 7→ i,∀ (u, v) ∈ A.

As with the IP formulation, we consider both unit penalties and weighted penalties.

We wish to minimize the total penalties, so our objective function is:

min

|A|∑
i=1

Pi. (5.28)

Our MI-CAP constraint programming formulation is summarized as follows:

MI-CAP Constraint Programming Formulation

Index and Set Use

u ∈ U unit (alias v)

c ∈ C channel

(u, v) ∈ A arc indicating u and v cannot occupy the same channel

i penalty number, for i = 1, 2, . . . , |A|
Input Data

penaltyi possible penalty incurred if Wu = Wv [number of radios]

Decision Variables

Wu integer variable indicating the channel assignment of unit u

Pi continuous variable equal to penaltyi if Wu = Wv

Formulation

min
P,W

|A|∑
i=1

Pi (N0)

(Wu = Wv) =⇒ Pi = penaltyi ∀ (u, v) ∈ A, i = 1, 2, . . . , |A| (N1)

Wu ∈ C ∀u ∈ U (N2)

Pi ∈ R ∀i = 1, 2, . . . , |A| (N3)

The MO-CAP CP formulation attempts to find a feasible assignment of integer values for

the variables Wc ∈ C that minimizes the total penalties
∑|A|

i=1 Pi (N0). Constraints (N1)

are the logical statements that force Pi to penaltyi if Wu = Wv. Note this is a relaxation of

the MI-CAP Full Standard Formulation in that only pairwise constraints are considered.
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Figure 5.7: MI-CAP CP objective values obtained with varying runtimes for the first time
step of the MEF scenario, from 10 to 1000 seconds, in ten second increments. No improve-
ment is observed beyond 440 seconds.

5.4.1 MI-CAP CP Solution Method

As in our previous methods, we use Python to determine the pairwise constraints. We then

use OPL to formulate the problem, and solve using IBM CPLEX CP Optimizer. We provide

partial Python and OPL code in Appendix E. For both the unit and weighted penalties

methods, we use CP runtimes of 500 seconds, as empirically we find no benefit of longer

runtimes. This is demonstrated for the first time step in Figure 5.7, where we show the

objective value obtained (for the unit penalty method) with CP runtimes varying from 10

to 1000 seconds, in ten second increments. No improvement to the objective value is made

beyond runtimes of 440 seconds.
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5.4.2 MI-CAP CP Formulation Results (Unit Penalties)

We again consider various levels of channel availability, where 100% availability is the full

MO-CAP solution, and lesser percentages indicate a reduced number of available channels,

thereby inducing excessive co-channel interference. We run CP Optimizer for 500 seconds

for each case with unit penalties. The number of pairwise violations are displayed in Table

5.6 (where bold values indicate optimal solutions). In Table 5.7, we provide the network

availability (i.e., the number of radios able to communicate with their respective network

control radio). In Appendix A, we provide the total number of radios receiving excessive

interference (Table A.15), and the total excessive interference (i.e., the objective function

of the MI-CAP Full Standard Formulation) (Table A.16).

Both Table 5.6 and 5.7 demonstrate the improved performance of this method over the

Restricted IP formulation (i.e., Tables 5.2 and 5.3); we compare these methods explicitly in

Section 5.5.1.

5.4.3 MI-CAP CP Formulation Results (Weighted Penalties)

We next conduct the same analysis but with weighted penalties. Unlike the IP method, we

are able to observe the difference between the unit penalty and weighted penalty variants

without greatly increasing the solver runtime. We present the number of pairwise violations

in Table 5.8 and network availability in Table 5.9. In Appendix A we provide the num-

bers of radios receiving excessive interference (Table A.17) and the total received excessive

interference (Table A.18).

We compare the performance of the CP unit and weighted penalties methods in Figures

5.8 and 5.9, focusing on the cases with 70% channel availability at each time step. The

weighted penalties method obtains solutions with less total excessive interference and fewer

radios receiving excessive interference.
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Table 5.6: Total number of pairwise violations using the MI-CAP CP formulation, with
varying numbers of available channels, 500 second CP runtimes, and unit penalties. Bold
values indicate optimal solutions.

Number of Pairwise Violations, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 0 5 10 14 26 38
2 0 4 8 12 22 41
3 0 3 7 20 31 54
4 0 3 7 17 27 43
5 0 4 8 14 33 53
6 0 4 8 14 30 40
7 0 4 8 15 26 46
8 0 3 10 21 35 58
9 0 4 7 14 23 41
10 0 4 7 15 24 41
11 0 4 7 10 22 42
12 0 3 7 10 17 31
13 0 3 6 11 22 37
14 0 4 7 11 21 38
15 0 4 8 12 23 33
16 0 4 8 11 22 33
17 0 3 7 12 21 36
18 0 4 7 13 22 39
19 0 3 6 9 18 36
20 0 4 8 13 23 38

Average 0 3.7 7.6 13.4 24.4 40.9

5.5 Comparison of MI-CAP Solution Methods

To provide a qualitative sense of the results of the MI-CAP, we generate Figure 5.10 using

Gephi (Gephi Consortium 2016, Bastian et al. 2009) and the CP MI-CAP solution for the

first time step of the MEF scenario with 70% channel availability (32 channels) and unit

penalties. The color of each arc and node depicts channel assignment; the size of each

node is relative to the total amount of excessive interference received by that unit (the

smallest size indicates no excessive interference); and the width of each arc is relative to

the total interference between units on the same channel. One may expect units located in

relatively dense clusters to experience the greatest co-channel interference, but Figure 5.10
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Table 5.7: Network availability (for radios) using the MI-CAP CP formulation, with varying
numbers of available channels, unit penalties, and 500 second runtimes.

Network Availability (radios), by Channel Availability

Timestep 100% 90% 80% 70% 60% 50%

1 93.8% 88.6% 76.2% 74.2% 60.4% 54.1%
2 97.6% 92.1% 84.6% 69.3% 70.7% 56.1%
3 96.9% 87.1% 83.0% 72.1% 63.8% 51.0%
4 99.5% 94.6% 86.9% 79.9% 71.4% 66.3%
5 96.5% 90.7% 87.4% 74.8% 64.8% 57.2%
6 96.1% 91.5% 87.9% 77.4% 68.3% 62.3%
7 97.3% 93.4% 84.5% 72.7% 70.6% 55.7%
8 98.0% 93.5% 85.6% 71.8% 63.4% 51.9%
9 95.7% 89.9% 85.3% 77.7% 71.8% 61.4%
10 96.0% 92.7% 88.3% 76.5% 70.2% 64.8%
11 96.4% 91.7% 87.3% 85.8% 73.0% 61.2%
12 96.1% 92.1% 86.2% 83.1% 72.7% 68.2%
13 93.0% 87.2% 88.6% 79.1% 70.2% 65.5%
14 93.9% 89.2% 85.6% 85.1% 75.4% 67.0%
15 97.4% 93.8% 84.5% 80.0% 74.7% 65.3%
16 96.3% 95.0% 86.8% 81.1% 68.5% 63.6%
17 95.5% 90.0% 87.1% 78.5% 67.7% 61.0%
18 93.7% 89.6% 83.9% 76.0% 64.9% 61.3%
19 92.1% 91.1% 84.1% 79.8% 78.2% 63.2%
20 98.4% 94.1% 85.1% 79.7% 72.6% 57.9%

Average 96.0% 91.4% 85.5% 77.7% 69.7% 60.7%

demonstrates that this need not be the case, as these units may share channels with units

located farther away.

In the next two sections, we compare the performance of our MI-CAP solution methods

for both unit and weighted penalties.

5.5.1 Comparison with Unit Penalties

Of our three MI-CAP solution methods, CP provides by far the best performance. We

obtain superior results even when the method is run for just 180 seconds. The method

obtains optimality (i.e., no pairwise constraint violations) in 55 of these 120 cases. In

fact, the average number of radios receiving excessive interference and the total excessive
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Table 5.8: Total number of pairwise violations using the MI-CAP CP formulation, with
varying numbers of available channels, 500 second CP runtimes, and weighted penalties.
Bold values indicate optimal solutions.

Number of Pairwise Violations, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 0 5 12 18 33 46
2 0 4 8 20 29 53
3 0 4 10 27 46 78
4 0 4 11 21 35 55
5 0 4 11 21 40 62
6 0 6 11 20 34 54
7 0 4 10 21 30 60
8 0 5 16 30 42 72
9 0 4 8 18 32 59
10 0 4 8 19 34 57
11 0 4 8 14 34 53
12 0 3 7 10 23 37
13 0 3 9 17 31 50
14 0 4 9 15 34 47
15 0 4 8 13 25 43
16 0 4 9 13 26 41
17 0 3 10 18 28 47
18 0 4 7 14 27 45
19 0 3 7 11 25 48
20 0 4 10 16 31 49

Average 0 4.0 9.5 17.8 32.0 52.8

interference found by CP at the worst channel availability (50%) is comparable to the

average values found using the clustering and IP methods with no channel degradation.

We provide a comparison of the relative optimality gaps achieved by each of our methods

in terms of minimizing the number of pairwise violations (note this is not the objective of

the clustering formulation). Figure 5.11 displays the results with unit penalties for each

method (depicted in separate colors) and for each level of channel availability (depicted as

separate lines), where in general the top line within a color group is 50% channel availability

and the bottom line is 100% channel availability. It is clear from this figure that CP provides

much more desirable performance.
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Table 5.9: Percentage network availability (for radios) using the MI-CAP CP formulation,
with varying numbers of available channels, weighted penalties, and 500 second runtimes.

Network Availability (radios), by Channel Availability

Timestep 100% 90% 80% 70% 60% 50%

1 93.5% 92.7% 83.4% 74.4% 66.7% 56.1%
2 97.4% 91.3% 87.2% 70.6% 67.8% 61.2%
3 96.7% 89.8% 85.6% 76.3% 64.0% 50.5%
4 99.4% 90.4% 88.7% 77.5% 66.6% 57.7%
5 96.3% 91.1% 82.6% 71.6% 65.7% 54.8%
6 95.9% 91.3% 87.7% 75.8% 74.1% 63.3%
7 97.2% 93.0% 82.7% 75.4% 68.5% 53.5%
8 97.8% 90.0% 81.2% 74.5% 63.7% 50.6%
9 95.4% 92.7% 88.1% 80.4% 75.7% 60.7%
10 95.9% 92.8% 89.1% 79.2% 66.6% 64.2%
11 96.2% 96.2% 86.3% 84.8% 70.6% 65.4%
12 95.9% 94.0% 86.5% 83.4% 77.1% 68.6%
13 92.7% 91.1% 84.8% 83.1% 71.1% 64.5%
14 93.6% 89.7% 87.3% 82.0% 77.1% 67.9%
15 97.2% 92.1% 87.8% 80.6% 73.5% 68.7%
16 96.1% 90.0% 89.7% 79.8% 73.9% 65.3%
17 95.3% 95.8% 86.0% 81.9% 74.9% 65.4%
18 93.4% 87.1% 87.4% 78.2% 75.3% 61.6%
19 91.7% 93.9% 88.9% 79.3% 68.0% 61.3%
20 98.3% 94.8% 90.7% 78.9% 68.6% 67.3%

Average 95.8% 92.0% 86.6% 78.4% 70.5% 61.4%

We then focus on more specific comparative results, considering the results of each

solution method with 70% channel availability and unit penalties, in Figures 5.12 and 5.13.

Figure 5.12 displays the total number of pairwise constraint violations at each time step

(and on average), using each solution method. The lower bound T is indicated as a red hash

mark. Note the objective function of the clustering formulation does not aim to minimize

these violations. On average with 70% channel availability, the CP solution method finds

solutions with 93.3% fewer pairwise interference constraint violations than the IP method,

and 95.9% fewer than the clustering method.

In Figure 5.13, the solid lines display the total number of radios receiving excessive

interference (indicated on the left axis), and the dashed lines display the total excessive
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Figure 5.8: Comparison of number of radios receiving excessive interference (out of 1887),
and the total received interference, between the unit penalty and weighted penalty CP
methods, with 70% channel availability and 500 sec run times.

interference in dBm (indicated on the right axis). On average with 70% channel availability,

the CP solution method finds solutions with nearly 54% fewer radios receiving excessive

interference than the IP method, and 60% fewer than the clustering method. This results

in the CP solutions having 84.1% less total excessive interference than the IP method, and

81.6% less than the clustering method (both in terms of watts).

In Figure 5.14, we present a comparison of the network availability results for each of

MI-CAP methods (with unit penalties) (depicted in separate colors) and for each level of

channel availability (depicted as separate lines), where in general the top line within a color

group is 50% channel availability and the bottom line is 100% channel availability. Here

again, it is clear that CP provides much more desirable performance.

We next provide a more qualitative comparison of the results generated by these meth-

ods, using the same type of graph as Figure 4.4. We consider the first time step of the
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Figure 5.9: Comparison of the total number of pairwise constraint violations between the
unit penalty and weighted penalty CP methods, with 70% channel availability and 500 sec
run times.

MEF scenario with 70% availability and unit penalties. Figure 5.15 displays the results for

the clustering method, Figure 5.16 for the IP method, and Figure 5.17 for the CP method.

Points over the red line indicate that the associated radio receives excessive interference.

Clearly, the CP solution provides much more desirable solutions than the other two meth-

ods.

5.5.2 Comparison with Weighted Penalties

Our spectrum manager is most concerned with minimizing the total received interference

(M0), regardless of technique, and we observe that weighted penalties provides better per-

formance for the IP and CP techniques. We again provide a comparison of the relative

optimality gaps achieved by each of our methods in terms of minimizing the number of

pairwise weighted violations. Figure 5.18 displays the results with weighted penalties for
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Figure 5.10: Depiction of co-channel interference during the first time step of the MEF
scenario with 32 available channels. Color indicates channel assignment, the size of each
node is relative to total excessive interference at that unit, and the width of each arc is
relative to total co-channel interference between units.

each method (depicted in separate colors) and for each level of channel availability (de-

picted as separate lines), where in general the top line within a color group is 50% channel

availability and the bottom line is 100% channel availability. It is clear from this figure that

again CP provides much more desirable performance. Note the sharp spike when the IP

method is able to obtain an optimal solution on time step 14, with 100% channel availability.

We now focus on more specific comparative results, considering the results of each solu-

tion method with 70% channel availability and weighted penalties, in Figures 5.19 and 5.20.
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Figure 5.11: Relative optimality gap (in terms of pairwise constraint violations) for the three
MI-CAP solution methods, for each time step and for various levels of channel degradation
with unit penalties, where in general the bottom line in each group represents 100% channel
availability.

IP and CPLEX with weighted penalties are run for 6000 seconds; CP with weighted penal-

ties is run for 500 seconds, and clustering is run for 200 iterations. Figure 5.19 compares

the number of radios receiving excessive interference (equivalent to the objective functions

of the weighted IP and CP formulations) for the IP and CP methods. The lower bound

is calculated using the method described in Section 5.3.3.2. On average with 70% chan-

nel availability, the CP solution method finds solutions with 37.3% fewer radios receiving

excessive interference than the IP method.

In Figure 5.20, we compare all three solutions methods. The solid lines display the

total number of radios receiving excessive interference (indicated on the left axis), and the
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Figure 5.12: Comparison of the number of pairwise interference constraint violations in the
MI-CAP, using the IP, clustering, and CP solution methods with 70% channel availability
and unit penalties.

dashed lines display the total excessive interference in dBm (indicated on the right axis).

On average with 70% channel availability, the CP solution method finds solutions with

nearly 100% less total excessive interference than the IP and clustering methods (in terms

of watts).

In Figure 5.21 we present a comparison of the network availability results for each of

MI-CAP methods (with weighted penalties) (depicted in separate colors) and for each level

of channel availability (depicted as separate lines), where in general the top line within a

color group is 50% channel availability and the bottom line is 100% channel availability.

The CP method continues to provide the best overall performance.

As with the unit penalty section, we next provide a more qualitative comparison of the

results generated by these methods. We consider the first time step of the MEF scenario

with 70% availability and weighted penalties. Figure 5.22 displays the results for the IP
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Figure 5.13: Comparison of the number of radios receiving excessive interference and the
total cumulative excessive interference in the MI-CAP, using the IP (500 seconds), clustering
(200 iterations), and CP (500 seconds) solution methods with 70% channel availability and
unit penalties.

method and Figure 5.23 for the CP method (the clustering method is in Figure 5.15). Points

over the red line indicate that the associated radio received excessive interference. The CP

solution provides much more desirable solutions than the other two methods.

We note that none of our techniques provide useful lower bounds to the amount of total

excessive interference. Aardal et al. (2007) note that the MI-CAP is a notoriously difficult

problem for this reason. In Section 7.2, we recommend further research on how to find

tighter lower bounds to the MI-CAP.

5.6 Estimating the Marginal Value of an Additional Channel

During interviews with the U.S. Marine Corps spectrum officer, Nicholas et al. (2013a) find

that the number of available channels during a large USMC operation may be far fewer
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Figure 5.14: Network availability (in terms of radios) for the three MI-CAP solution meth-
ods, for each time step and for various levels of channel degradation with unit penalties,
where in general the top line in each group represents 100% channel availability.

than indicated by our MO-CAP analysis. Our spectrum manager may wish to indicate to

higher headquarters the marginal value (in terms of network availability) of one additional

channel. That is, how much better will the MANETs perform if the Marine Expeditionary

Force is allotted one additional channel? Our CP technique is fast enough to allow our

spectrum manager to consider this problem.

To demonstrate, we run our weighted MI-CAP CP technique on the first time step,

varying the number of available channels from 1 to 46 (the optimal MO-CAP solution) and

with 500 second runtimes, and then calculate network availability as we did in Section 5.1.2.
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Figure 5.15: Depiction of the received interference (dots) and interference threshold (red
line) for each of the 1887 radios in the MEF scenario (time step one), using the clustering
method, 70% channel availability, and unit penalties.

The results are presented in Figure 5.24, where the horizontal axis indicates the number

of available channels. The green line indicates the percentage of radios receiving excessive

interference, and the blue and red lines respectively indicate the percentage network avail-

ability by radio and by unit. In general, there is increased excessive interference and reduced

network availability as the number of available channels is reduced; the non-monotonic in-

consistencies occur because of numerical differences in the progress of the CP Optimizer in

solving the problem, i.e., the problem is not solved to optimality.

On average, the inclusion of one additional channel results in an increase of network

availability (by radios) of approximately 4.7%. This information can be quickly generated

by our CP technique and used by a spectrum manager to justify additional spectrum.
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Figure 5.16: Depiction of the received interference (dots) and interference threshold (red
line) for each of the 1887 radios in the MEF scenario (time step one), using the integer
programming method, 70% channel availability, and unit penalties.

5.7 MI-CAP Sensitivity Analysis

As we did with the MO-CAP, we conduct sensitivity analysis on our MI-CAP CP formu-

lation and solution method to determine its robustness to small perturbations in inputs.

Specifically, we randomly perturb our received signal strength values ρrs by up to ±10%

(uniform random distribution), and then re-run our method, for each time step and with

70% channel availability. In each case, we find that the number of radios receiving excessive

interference is roughly the same as the control case (i.e., no perturbation in input values)

(left side of Table 5.10).

We next wish to examine how much the solution itself (i.e., the assignment of channels to

units) changes due to these perturbations. We use the method described in Section 4.5, and
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Figure 5.17: Depiction of the received interference (dots) and interference threshold (red
line) for each of the 1887 radios in the MEF scenario (time step one), using the constraint
programming method, 70% channel availability, and unit penalties.

present the results in the right side of Table 5.10, where each entry indicates the percentage

of units that must be assigned to a new channel (compared to the unperturbed control

case), for each time step and with varying levels of perturbation from ±0.5% to ±10%. As

with the MO-CAP (Table 4.6) and again due to the vast symmetry in the problem, even

small levels of perturbation result in large percentages of units being assigned to different

groups.
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Figure 5.18: Relative optimality gap (in terms of pairwise constraint violations) for the three
MI-CAP solution methods, for each time step and for various levels of channel degradation
with weighted penalties, where in general the bottom line in each group represents 100%
channel availability.
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Figure 5.19: Comparison of the number of radios receiving excessive interference in the
MI-CAP, using the IP (6000 seconds) and CP (500 seconds) solution methods with 70%
channel availability and weighted penalties.
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Figure 5.20: Comparison of the number of radios receiving excessive interference and the
total cumulative excessive interference in the MI-CAP, using the IP (500 seconds), clustering
(200 iterations), and CP (500 seconds) solution methods with 70% channel availability and
weighted penalties.

123



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
e

tw
o

rk
 A

v
a

il
a

b
il

it
y
 (

b
y
 r

a
d

io
)

Time Step

CP Cluster IP

Figure 5.21: Network availability (in terms of radios) for the three MI-CAP solution meth-
ods, for each time step and for various levels of channel degradation with weighted penalties,
where in general the top line in each group represents 100% channel availability.
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Figure 5.22: Depiction of the received interference (dots) and interference threshold (red
line) for each of the 1887 radios in the MEF scenario (time step one), using the integer
programming method, 70% channel availability, and weighted penalties.
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Figure 5.23: Depiction of the received interference (dots) and interference threshold (red
line) for each of the 1887 radios in the MEF scenario (time step one), using the constraint
programming method, 70% channel availability, and weighted penalties.
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Table 5.10: MI-CAP sensitivity analysis results for each time step, including the number of
radios receiving excessive interference and the percentage of units that must change channel
(compared to the unperturbed control case), for given levels of random perturbation of input
values.

Radios Receiving Excessive Interference % Units Changing Groups

Time
Step

No Pertur-
bation

±0.5% ±1.0% ±5% ±10% ±0.5% ±1.0% ±5% ±10%

1 96 6 84 96 107 51.7% 46.6% 58.5% 50.8%
2 54 101 52 63 57 49.2% 49.2% 54.2% 52.5%
3 68 51 79 77 62 58.5% 53.4% 55.9% 53.4%
4 57 81 60 67 55 0.0% 47.5% 55.9% 50.8%
5 62 56 72 59 62 0.0% 55.1% 52.5% 62.7%
6 65 62 79 57 65 0.0% 52.5% 61.0% 53.4%
7 64 65 65 68 67 53.4% 51.7% 60.2% 53.4%
8 76 61 90 70 78 50.0% 61.9% 51.7% 56.8%
9 47 76 66 64 58 0.0% 57.6% 56.8% 55.1%
10 60 47 57 62 54 0.0% 55.1% 59.3% 51.7%
11 50 60 55 54 50 45.8% 51.7% 57.6% 44.1%
12 49 53 57 59 52 0.0% 59.3% 61.0% 55.9%
13 55 49 51 58 60 46.6% 50.8% 47.5% 51.7%
14 54 60 64 55 59 53.4% 55.9% 62.7% 34.7%
15 50 53 49 49 48 55.1% 0.0% 51.7% 55.9%
16 57 51 53 51 55 0.0% 46.6% 52.5% 52.5%
17 71 57 65 65 58 52.5% 52.5% 55.9% 55.9%
18 53 52 56 52 57 49.2% 59.3% 50.8% 55.1%
19 47 47 56 49 55 46.6% 55.1% 57.6% 47.5%
20 57 51 60 56 64 0.0% 49.2% 46.6% 53.4%

Average 59.6 57.0 63.5 61.6 61.2 30.6% 50.6% 55.5% 52.4%
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Chapter 6: Minimum-Cost Channel Assignment

Problem over Time

This chapter describes the minimum-cost channel assignment problem over time (MC-CAP-

T), which aims to minimize the total received interference, given a fixed number of channels.

This problem reflects the real-world challenge of a spectrum manager attempting to mini-

mize the total number of channel changes over time, given MO-CAP or MI-CAP solutions

at each moment (or time step). We wish to avoid myopic “flip-flopping” solutions because

they waste the time of the radio operators and require coordination and synchronization

among potentially many dispersed units, which may be difficult to achieve in battlefield

conditions.

One straightforward approach would simply modify the MO-CAP objective function by

introducing an additional index t ∈ T to each variable and input parameter to represent

time steps. One could also introduce a penalty term, say p, to penalize changing channels

from one step to the next. The objective function could thus be stated:

min
∑
t∈T

∑
c∈C

∑
u∈U

p|Xct
u −Xc,t+1

u |. (6.1)

That is, we could aim to minimize the number of times a radio must change channels

over time. However, we explore this and similar formulations and find this approach to be

computationally intractable. Essentially this formulation seeks alternate optimal MO-CAP

or MI-CAP solutions at each time step in order to reduce the number of required channel

changes. Such searches are known to be computationally challenging and often relatively

fruitless because the alternate optima are often not located anywhere near each other within

the solution tree. That is, having obtained solutions to the MO-CAP or MI-CAP does
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not markedly increase our ability to find other comparable solutions. Our exploratory

experiments with this type of formulation are insolvable in any reasonable amount of time.

Instead, we define the scope of our temporal problem to use the solution of the MO-CAP

or MI-CAP as an input, and then assign actual channel numbers (or colors) to units, rather

than also (and concurrently) considering the assignment of units to channels. To illustrate

this difference, we introduce the concept of a group g of units that co-occupy a channel

at a given time step. These groups follow from the solutions obtained at each time step

from either the MO-CAP or MI-CAP problems. We wish to determine an actual channel

number (e.g., channel 5) to assign to each group at each time step. A näıve approach would

simply assign channel numbers to the groups as they appear in order. In practice, this

produces surprisingly bad solutions as group membership (i.e., the units assigned to each

group) may change significantly from time step to time step, and thus an excessively large

cost is incurred if one simply dictates that group 1 is always assigned channel 1, etc.

The minimum-cost channel assignment problem over time (MC-CAP-T) aims to min-

imize the cost incurred by channel changes over time by assigning channels to groups of

units. We first describe a full standard formulation of the problem and note the difficulties

in solving it. We then describe our decomposition formulation that solves to optimality in

polynomial time, and present our results.

6.1 MC-CAP-T Full Standard Formulation

To describe the full MC-CAP-T problem, we introduce the index t ∈ T to represent each

time step. Let c ∈ Ct indicate the channels at each time, where |Ct| is the number of

channels required at time t. Let gt ∈ G be a group of units that co-occupy a channel at

time t, where gt ⊂ U and gt is indexed by u1, u2, . . . , u|gt|. These groups are pre-calculated

using the results of either the MO-CAP or MI-CAP, or other solution technique.
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Let the binary variable Xct
u indicate if unit u is using channel c at time t:

Xct
u =

{
1, if unit u uses channel c at time t

0, otherwise
∀u ∈ U, c ∈ Ct, t ∈ T. (6.2)

We wish to count the number of times a unit changes channel, so let the binary variable

W t
u indicate whether unit u changes channel from t to t+ 1:

W t
u =

{
1, if unit u changes channel from t to t+ 1

0, otherwise
∀u ∈ U, t ∈ T. (6.3)

To enforce this definition, we include the constraints:

W t
u ≥ Xc,t+1

u −Xct
u ∀c ∈ Ct, t ∈ T, t 6= |T |. (6.4)

That is, W t
u is one if a unit u is assigned channel c at t+ 1, but not at t. (Defining W t

u in

only this direction prevents double-counting of channel changes.)

Each time a unit is assigned a new channel, all radios in that unit must change channels,

so we use the scalar radiosu to indicate the number of radios assigned to unit u. Our

objective function is thus:

min
∑
t∈T

∑
u∈U

radiosuW
t
u. (6.5)

Our Full Standard Formulation of the MC-CAP-T is summarized as follows:
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MC-CAP-T Full Standard Formulation

Index and Set Use

u ∈ U unit (alias v)

t ∈ T time step

c ∈ Ct channel at time t, where |Ct| is the number of channels

available at time t

gt ∈ G group of units (i.e., units on the same channel) at time t

Input Data

radiosu number of radios assigned to unit u

Decision Variables

Xct
u binary variable indicating whether u is using c at t

W t
u binary variable indicating whether u must change channel

from t to t+ 1

Formulation

min
W,X

∑
t∈T

∑
u∈U

radiosuW
t
u (T0)

Xct
u = Xct

v ∀u, v ∈ gt, c ∈ Ct, t ∈ T (T1)∑
c∈C

Xct
u1

= 1 ∀u1 ∈ gt, gt ∈ G, t ∈ T (T2)

∑
u1∈gt

Xct
u1

= 1 ∀gt ∈ G, c ∈ Ct, t ∈ T (T3)

W t
u ≥ Xc,t+1

u −Xct
u ∀c ∈ Ct, t ∈ T, t 6= |T | (T4)

W t
u ∈ {0, 1} ∀u ∈ U, t ∈ T (T5)

Xct
u ∈ {0, 1} ∀u ∈ U, c ∈ Ct, t ∈ T (T6)

The MC-CAP-T FSF is a pure 0-1 integer program. The objective function (T0) minimizes

the total cumulative cost of changing channels from one time step to the next. Constraints

(T1) ensure that all units within a group are assigned the same channel, at each time step.

Constraints (T2) ensure that the first unit u1 in each group gt ∈ G is assigned exactly

one channel; together with (T1), this ensures all units in each group are assigned the same

channel. Constraints (T3) ensure each available channel at time t is used exactly once.

Constraints (T4) enforce the definition of W t
u. Notice that constraints (T2) and (T3) are
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constraints of the classic integer assignment problem, a network problem with polynomial

time complexity. We will exploit this fact in our decomposition method.

6.1.1 MC-CAP-T FSF Solution Method and Computational Challenges

We solve the MO-CAP or MI-CAP problems to optimality for each time step, and then use

the solutions of the problem to determine group assignments gt ∈ G. We then unsuccess-

fully attempt to solve the MC-CAP-T FSF directly using CPLEX. While the problem has

structure similar to that of the assignment problem, the FSF has additional constraints (T1

and T4) that make this formulation much less efficient. After 1000 seconds of computation,

the solver has a 90% optimality gap, even when just considering one time step. Clearly,

this method is not suited for processing multiple time steps concurrently.

6.2 MC-CAP-T Decomposition Formulation

We reformulate the problem based on the key insights that the actual channel number (or

color, or any other label) is arbitrary; that is, we do not particularly care what channel

is assigned to a group of units, as we assume that the net effect of different operating

frequencies is negligible. We also observe that the cost of changing the channel assignment

of a group from t to t + 1 depends only on the unit membership of each group at t and

t+ 1; that is, the costs of channel assignment can be decomposed by time step. Together,

these insights allow us to decompose and solve the problem by time step and still maintain

global convergence.

Our MC-CAP-T Decomposition Formulation (DF ) aims to associate each group g at

time t to a group h at time t + 1 at least cost, where costtgh is a function of the difference

in unit membership between g and h. Specifically,

costtgh ≡
∑

u∈h\g

radiosu ∀ (g, h, t) ∈ A. (6.6)
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That is, the cost from g to h is the number of radios from units that are in group h but not

in group g. This method of calculating costs prevents double-counting when a unit moves

from an existing channel to a new channel. Note this cost function assumes all units and

radios have the same importance, but that need not be the case: one could associate scalar

weights to each radio to model relative importance.

Let the binary variable Y t
gh indicate if group g at t is associated with group h at t+ 1,

and let (g, h, t) ∈ A be the arcs representing the set of possible associations between groups

g and h:

Y t
gh =

{
1, if g at t is associated with h at t+ 1

0, otherwise
∀ (g, h, t) ∈ A. (6.7)

One could simplify this formulation further by dropping the t ∈ T index, but we retain the

notation to aid in describing our decomposition approach. Our objective function minimizes

the sum total costs of associating each group g at t with group h at t+ 1:

min
∑

(g,h,t)∈A

costtghY
t
gh. (6.8)

Figure 6.1 provides a visual representation of the process of associating groups at each

time step, where for each time step the column of squares on the left represents groups g

and on the right represents groups h. The number of groups (and their unit membership)

is determined by the solutions from the MO-CAP or MI-CAP, so some time steps may

have more or fewer groups than others. For those time steps with fewer groups than the

maximum, we create virtual groups (indicated in Figure 6.1 by dashed lines), representing

a placeholder group with no assigned units. In this sense, a group in this formulation

represents both a collection of units to be assigned the same channel, and a placeholder for

the channel itself, i.e., |G| is equal to the number of available channels across the scenario.
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Figure 6.1: Example of the association of groups (blue boxes) at each time step. Virtual
groups (comprising no units) are represented by dashed lines. Gray arrows indicate the
association of a group at a given time step with another group at the next time step.

At each time step, each group g must be associated with a group h, indicated by gray

lines between groups in Figure 6.1. We illustrate via two examples. When a real group

a (i.e., comprising units) at t + 1 is associated with a virtual group b at t + 2, no cost is

incurred because the units in a are assigned to other groups (not in b) at t + 2. When a

virtual group b is associated with a real group at c at t+3, the cost equals the total number

of radios in c, since each unit in c was previously assigned to a different group.

Note that in this formulation (unlike the Full Standard Formulation), there is no variable

or index representing a particular channel; the association Y t
gh implies one. After solving

the problem, the paths created by associating each g with an h at the next time step (i.e.,

the gray lines in Figure 6.1) represent discrete channels. By assigning a channel number to

each of these paths, we effectively solve the MC-CAP-T.

The Decomposition Formulation of the MC-CAP-T is summarized as follows:
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MC-CAP-T Decomposition Formulation

Index and Set Use

g ∈ G group of units (i.e., units on the same channel) (alias h)

t ∈ T time step

(g, h, t) ∈ A arcs representing possible association of g at t with h at t+ 1

Input Data

costtgh cost of associating g at t to h at t+ 1 [number of radios]

Decision Variables

Y t
gh binary variable indicating whether group g at t is associated

with group h at t+ 1

Formulation

min
Y

∑
(g,h,t)∈A

costtghY
t
gh (D0)

∑
h∈G

Y t
gh = 1 ∀ (g, ·, t) ∈ A (D1)

∑
g∈G

Y t
gh = 1 ∀ (·, h, t) ∈ A (D2)

Y t
gh ∈ {0, 1} ∀ (g, h, t) ∈ A (D3)

The MC-CAP-T Decomposition Formulation is a pure 0-1 integer program. The objective

function (D0) minimizes the cost of associating each group g with a group h at successive

time steps. Constraints (D1) ensure that each group g at t is associated with a group h

at t + 1. Likewise, constraints (D2) ensure that each group h at t + 1 is associated with a

group g at t.

This formulation is considerably simpler than the Full Standard Formulation, and has

fewer decision variables. Further, we observe that this problem has special structure that

allows us to decompose the problem by time step. Specifically, at each time step we are

solving a classic integer assignment problem (as evidenced by the assignment constraints

(D1) and (D2)). Global convergence is maintained because at each time step, the cost

of channel changes depends only on the assignments at t and t + 1. The actual assigned

channel (i.e., its number) is arbitrary, since all channels provide the same performance and

each group must have a channel. Thus this formulation exhibits optimal substructure that
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allows us to efficiently solve each time step to optimality and then combine our results to

solve the entire problem to optimality.

We observe that this type of decomposition does not apply to the MC-CAP-T Full

Standard Formulation, because the decision to assign a unit u to a channel c at t will affect

both the costs of transitioning from t− 1 to t and from t to t+ 1.

6.2.1 MC-CAP-T Decomposition Formulation Solution Method

Leveraging the optimal substructure of the problem, we decompose each time step of the

problem sequentially. Since we can completely decompose the problem by time step (i.e.,

the decisions at each stage do not depend on others), one could also use a parallel approach

to solve each problem simultaneously. One could also solve this problem as a minimum-cost

network flow problem (Ahuja et al. 1993), which we also do using the network optimizer in

CPLEX and obtain the same solutions (and thereby verify our decomposition approach).

However, our decomposition approach is more amenable to the consideration of new, addi-

tional time steps later in a scenario (or indeed, in between two existing time steps), as it

does not require that we resolve the entire problem. If new time steps are considered, then

only the MO-CAP/MI-CAP problems for those steps need to be solved. Similarly, if only

some of the time steps have changes, then only those MO-CAP/MI-CAP problems need to

be re-solved, rather than every time step.

We implement our solution in Python. We first calculate all of the costtgh values for each

possible (g, h, t) ∈ A. For our MEF scenario with 20 time steps, this is 46× 45× (20− 1) =

40, 204 values (we do not need to calculate costs to arrive at the first time step). We

then solve the assignment problem at each time step using a variation of the Hungarian

(or Munkres) algorithm (Kuhn 1955), which solves to global optimality in O(n)3 time.

One may assign channels after each iteration of the assignment problem (our approach),

or “follow the path” through each time step after solving the entire problem. We provide

partial Python code for solving the MC-CAP-T in Appendix F. The following pseudo-code

describes our algorithm:
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Algorithm MC-CAP-T

Input: MO-CAP or MI-CAP solutions at each time step

Output: Xct
u ,∀u ∈ U, c ∈ C, t ∈ T (unit channel assignments for all time steps)

begin

Calculate costtgt, ∀ (g, h, t) ∈ A
channel← 1

for g ∈ G : t = 1

Γg ← channel // Assign channels to groups during first time step

channel← channel + 1

next;

for t = 1, 2, . . . , t− 1

Solve the MC-CAP-T for t using Hungarian / Munkres algorithm

Store Y t
gh values

for g, h ∈ (g, h, t)

if Y t
gh = 1

Γh ← Γg // Assign channels to groups for time step t

endif;

next;

next;

for g ∈ G
for u ∈ g

X
Γtg
u ← 1 // Assign channels to units

next;

next;

end;

6.2.2 MC-CAP-T Decomposition Formulation Results

We first use a näıve method of determining channel assignment, based on the order that

groups appear in a solution. Next, we use our methodology, including using Python and

the Munkres / Hungarian algorithm to solve an assignment problem at each time step, and

then determine channel assignments based on the solutions to these sub-problems.

Figure 6.2 displays a comparison of the näıve method and our decomposition method,

where the vertical axis indicates the number of required channel changes, for each time

step in the MEF scenario using MO-CAP solutions as inputs (solved via the lazy constraint
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Figure 6.2: Number of required channel changes in the MC-CAP-T, using the näıve and
exact methods.

method). The näıve method requires a total of 33,340 channel changes, whereas our decom-

position method (which solves in less than 53 seconds) requires 21,915 channel changes, a

reduction of 34%.

Figure 6.3 is another method of visualizing the results of this comparison. For both the

näıve and decomposition methods, a row represents a unit, where reddish units are larger

(comprising up to 25 radios each) and greenish units are smaller, each column represents

a time step, and a blank entry indicates that no channel change is required for that unit

at that time step. This visualization provides a qualitative sense of how much better the

decomposition method (which provides an exact solution) is at reducing channel changes,

especially for larger (and thus more penalizing) units.
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Figure 6.3: Results of MC-CAP-T, where each row represents a unit, and each column
represents a time step. White indicates that the channel assignment remains the same (i.e.,
no cost), and color indicates that a different channel is assigned at the next time step. Red
indicates larger units (more radios); green indicates smaller units.

Our decomposition method very quickly provides an exact solution to the MC-CAP-

T, and unlike other formulations, does not need to be completely resolved when new or

different time steps are introduced into a scenario.
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Chapter 7: Conclusions and Future Research

7.1 Conclusions

We consider the challenges faced by a spectrum manager in allocating spectrum to support

MANET radios in a tactical military environment. During planning before an operation,

the spectrum manager may wish to determine the minimum number of required channels to

support operations (i.e., MO-CAP). If the resulting number of channels is larger than can be

provided, or if after an allocation the situation changes and fewer channels are available, the

spectrum manager may now need to determine the best allocation of the available channels.

In this case, “best” means minimizing the total amount of received excessive interference

(i.e., MI-CAP). Throughout operations, the spectrum manager wishes to minimize the

total number of channel changes over time (i.e., MC-CAP-T), as each change requires

coordination across the battlefield and manual intervention by a radio operator.

We describe our model of MANET communications, which – though a simplification of

reality – captures the most important aspect of tactical radio communications: signal and

interference propagation over rough terrain. We generate realistic but unclassified datasets

based on U.S. Marine Corps combat scenarios. We describe and provide evidence of the

computational challenges of the cumulative-interference CAP problem. For this reason, the

vast majority of research considers only pairwise interference constraints. We demonstrate

that for our tactical MANET radios, pairwise interference constraints insufficiently capture

interference that can inhibit the ability of a radio to communicate.

We describe an integer programming formulation of the cumulative interference MO-

CAP, and develop a method for solving realistic, full-size instances the problem to global or

near global optimality in a reasonable amount of time using lazy constraints and maximum

clique constraints. We also use constraint programming to quickly obtain lower bounds to

the problem.
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We develop and compare three methods of solving the cumulative interference MI-CAP.

We also describe a method for bounding the goodness of MI-CAP solutions. We find that

our CP approach obtains certifiably-good solutions in less time than our IP technique or

clustering heuristic. We describe the operational impact of excessive interference in terms

of network availability, a metric that may more closely speak to the demands of tactical

operations than the specific dBm or watts of excessive interference.

We develop a globally-optimal method for quickly solving the MC-CAP-T, minimizing

the number of required channel changes over time using the solutions from either the MO-

CAP or MI-CAP. Our MC-CAP-T method can be implemented without commercial solvers,

and can easily be re-run to account for changes in the future operating state.

7.2 Future Research

Current methods of assigning channels to support tactical radios during military operations

are quite rudimentary. An obvious next step would be to demonstrate the utility of our

methods in field experiments, and then to incorporate the methods into spectrum planning

software, such as SPEED or Spectrum XXI.

The MI-CAP remains a notoriously difficult problem. Future research is needed on

bounding the amount of received excessive interference to help provide a better under-

standing of the goodness of obtained solutions. Our work shows that for the instances

tested, pairwise interference alone captures a significant (but not total) portion of inter-

ference resulting in network unavailability. Our use of lazy constraints and the maximum

clique constraint to consider cumulative interference maximizes the efficient use of available

spectrum. More study should reveal if this is true in most real-world situations.

We find great utility in using constraint programming to bound the goodness of solutions

to the MO-CAP, and to obtain good solutions to the MI-CAP. However, there are few

general rules when formulating CP problems, and we often result to trial-and-error in order

to find formulations that obtain useful results. Future research is needed on proving and
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articulating general strategies for CP (see, e.g., Refalo (2004), Rossi et al. (2006), Hooker

(2011)).

One could develop and apply variations of our methods to the other CAPs described in

Aardal et al. (2007), including maximum service, minimum blocking, and minimum span

problems. Also, our work assumes that spectrum – though scarce – will not be contested,

yet military operations are likely to take place within actively-contested EM environments.

Future research could consider the allocation of spectrum in the presence of a determined

adversary (see, e.g., London (2015), Wu et al. (2012), El-Bardan et al. (2014)).
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Appendix A: Data Tables

This appendix provides various data tables of the results of our methods.

Table A.1: Number of available channels during the MI-CAP analysis, for each time step
and channel availability level, where 100% channel availability is the best known solution
to the MO-CAP.

Channel Availability

Time Step Best known
MO-CAP
Solution

90% 80% 70% 60% 50%

1 46 41 36 32 27 23
2 37 33 29 25 22 18
3 35 31 28 24 21 17
4 34 30 27 23 20 17
5 33 29 26 23 19 16
6 36 32 28 25 21 18
7 37 33 29 25 22 18
8 31 27 24 21 18 15
9 32 28 25 22 19 16
10 34 30 27 23 20 17
11 33 29 26 23 19 16
12 36 32 28 25 21 18
13 32 28 25 22 19 16
14 31 27 24 21 18 15
15 38 34 30 26 22 19
16 36 32 28 25 21 18
17 37 33 29 25 22 18
18 31 27 24 21 18 15
19 30 27 24 21 18 15
20 37 33 29 25 22 18
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Table A.2: Total number of pairwise constraint violations using the MI-CAP clustering
formulation, with varying numbers of available channels and 200 iterations.

Pairwise Violations, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 111 216 188 154 210 419
2 302 195 233 364 255 422
3 162 190 170 215 321 354
4 259 272 222 392 490 409
5 386 404 443 568 506 1057
6 196 315 211 240 272 308
7 161 207 175 363 281 462
8 228 227 252 376 409 343
9 188 215 259 306 449 347
10 177 158 364 274 301 468
11 214 283 185 309 305 289
12 268 206 245 232 554 580
13 183 195 257 240 391 393
14 150 358 272 397 378 473
15 146 255 263 202 268 336
16 142 316 272 241 305 345
17 173 194 344 421 302 344
18 516 279 334 354 595 477
19 276 272 254 354 379 491
20 181 210 255 542 378 463

Average 221.0 248.4 259.9 327.2 367.5 439.0
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Table A.3: Total number of radios (out of 1887) receiving excessive interference using
the MI-CAP clustering formulation, with varying numbers of available channels and 200
iterations.

Radios Receiving Excessive Interference, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 123 141 177 174 207 229
2 129 136 158 153 166 162
3 125 139 140 145 163 182
4 150 146 144 148 178 160
5 149 170 165 189 187 213
6 123 144 154 149 175 162
7 132 145 146 160 169 192
8 152 158 170 165 188 176
9 130 150 146 170 161 163
10 110 117 133 137 149 155
11 125 146 156 158 169 176
12 109 122 138 143 176 176
13 131 126 137 140 156 164
14 111 126 138 145 149 137
15 120 121 135 128 147 158
16 85 114 119 130 131 142
17 114 118 135 138 165 159
18 131 113 135 137 177 163
19 146 135 145 151 169 183
20 124 118 124 133 151 165

Average 125.95 134.25 144.75 149.65 166.65 170.85
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Table A.4: Total excessive interference (in dBm) using the MI-CAP clustering formulation,
with varying numbers of available channels and 200 iterations.

Total Excessive Interference (dBm), by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 17.70 19.07 21.43 22.88 23.96 24.86
2 -33.30 -30.68 -29.82 -31.02 -28.93 -26.09
3 -27.96 -27.91 -28.00 -28.09 -25.81 -23.61
4 -24.44 -31.61 -27.57 -28.42 -28.56 -23.80
5 -30.51 -26.02 -28.41 -22.15 -24.84 -23.68
6 -24.09 -28.24 -28.01 -32.73 -18.91 -21.89
7 -34.80 -34.37 -33.54 -31.73 -30.51 -26.28
8 -30.31 -33.29 -30.10 -31.44 -26.86 -30.93
9 -33.98 -31.70 -28.07 -27.93 -28.28 -28.73
10 -36.04 -37.20 -34.02 -30.95 -30.70 -32.14
11 -33.50 -28.92 -27.72 -31.29 -27.26 -26.07
12 -34.15 -31.96 -31.23 -32.11 -29.19 -30.46
13 -34.27 -32.36 -33.52 -32.23 -30.81 -36.50
14 -38.29 -37.06 -33.24 -32.94 -32.99 -32.90
15 -39.07 -37.14 -33.14 -33.26 -31.71 -30.08
16 -44.36 -34.22 -37.24 -30.20 -33.13 -28.95
17 -36.06 -41.55 -37.53 -35.25 -37.55 -31.81
18 -24.37 -25.25 -26.26 -25.50 -24.84 -24.16
19 -40.02 -39.93 -32.71 -35.77 -29.96 -27.68
20 -33.07 -40.01 -33.42 -31.05 -34.88 -29.80

Average -30.75 -30.52 -28.61 -28.06 -26.59 -25.53
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Table A.5: Lower bound on the number of pairwise interference constraint violations in the
MI-CAP Restricted IP and CP formulations, for each time step and with varying channel
availability.

LB of Pairwise Violations (T ), by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 0 5 10 14 19 23
2 0 4 8 12 15 20
3 0 3 6 10 13 19
4 0 3 6 10 13 16
5 0 4 7 10 14 18
6 0 3 7 10 14 17
7 0 4 8 12 15 20
8 0 3 6 10 16 22
9 0 4 7 10 13 16
10 0 4 7 11 14 17
11 0 4 7 10 14 18
12 0 3 7 10 14 17
13 0 3 6 9 12 15
14 0 3 6 9 12 15
15 0 4 8 12 16 19
16 0 3 7 10 14 17
17 0 3 7 11 14 18
18 0 4 7 10 13 17
19 0 3 6 9 12 15
20 0 4 8 12 15 20

Average 0 3.55 7.05 10.55 14.1 17.95
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Table A.6: Lower bound on the total amount of received excessive interference in the MI-
CAP Restricted IP and CP formulations, for each time step and with varying channel
availability.

LB of Received Excessive Interference, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 - -125.34 -117.89 -114.89 -111.80 -109.38
2 - -138.61 -131.28 -127.72 -125.96 -123.40
3 - -145.69 -136.84 -131.02 -128.13 -125.33
4 - -152.12 -145.38 -139.96 -136.02 -132.54
5 - -149.27 -143.41 -139.83 -131.97 -128.37
6 - -156.12 -148.01 -144.92 -142.09 -140.07
7 - -157.55 -151.62 -147.75 -144.96 -140.75
8 - -157.77 -152.25 -147.71 -138.23 -132.23
9 - -146.92 -142.32 -138.97 -136.22 -134.14
10 - -154.34 -147.80 -141.74 -139.08 -136.99
11 - -154.35 -149.10 -140.92 -136.07 -132.29
12 - -150.84 -143.08 -138.54 -134.16 -131.54
13 - -148.91 -142.31 -138.39 -135.49 -132.85
14 - -145.02 -140.16 -136.67 -133.68 -131.45
15 - -147.28 -141.95 -137.52 -133.62 -129.89
16 - -148.20 -141.95 -138.83 -135.55 -133.53
17 - -157.88 -151.33 -147.88 -145.87 -143.25
18 - -143.74 -139.00 -136.28 -133.39 -129.68
19 - -145.20 -140.59 -136.77 -133.80 -131.38
20 - -144.83 -135.47 -131.97 -129.91 -127.07

Average - -148.5 -142.09 -137.91 -134.3 -131.31
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Table A.7: Lower bound on the number of radios receiving excessive interference in the
MI-CAP Restricted IP and CP formulations with weighted penalties, for each time step
and with varying channel availability.

LB of Radios Receiving Excessive Interference, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 0 5 10 16 25 33
2 0 4 8 12 15 24
3 0 3 6 10 13 19
4 0 3 6 10 14 20
5 0 4 7 10 15 22
6 0 3 7 10 15 20
7 0 4 8 12 15 22
8 0 3 6 10 16 23
9 0 4 7 10 14 18
10 0 4 7 11 14 17
11 0 4 7 10 16 22
12 0 3 7 10 16 21
13 0 3 6 9 12 17
14 0 3 6 9 12 17
15 0 4 8 12 17 21
16 0 3 7 10 15 19
17 0 3 7 11 14 18
18 0 4 7 10 13 20
19 0 3 6 9 12 16
20 0 4 8 12 15 21

Average 0 3.55 7.05 10.65 14.9 20.5
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Table A.8: Total number of radios (out of 1887) receiving excessive interference using the
MI-CAP Restricted IP formulation, with varying numbers of available channel, 500 second
CPLEX runtimes, and unit penalties.

Radios Receiving Excessive Interference, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 104 170 156 224 255 284
2 106 117 134 154 135 172
3 123 137 131 129 136 159
4 135 89 139 137 167 172
5 137 133 148 133 175 144
6 127 125 147 146 154 181
7 75 120 142 119 174 169
8 83 126 113 167 153 137
9 83 91 131 88 163 149
10 112 121 124 106 152 153
11 127 132 131 132 124 177
12 100 109 124 109 146 159
13 88 125 124 121 137 166
14 103 128 119 143 134 161
15 102 112 117 122 140 117
16 105 90 134 147 131 137
17 100 105 137 118 153 167
18 73 108 118 91 131 157
19 120 124 100 104 142 153
20 78 107 103 101 132 136

Average 104.1 118.5 128.6 129.6 151.7 162.5
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Table A.9: Total excessive interference (in dBm) using the MI-CAP Restricted IP formu-
lation, with varying numbers of available channels, 500 second CPLEX runtimes, and unit
penalties.

Total Excessive Interference (dBm), by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 15.96 23.52 16.71 25.52 26.94 29.21
2 -32.70 -25.59 -13.83 -17.19 -30.26 -21.89
3 -31.01 -20.44 -13.68 -21.78 -16.52 -24.32
4 -23.81 -24.79 -28.65 -12.49 -16.92 -22.87
5 -32.58 -32.55 -21.47 -22.79 -24.85 -27.32
6 -26.85 -34.55 -15.59 -23.09 -26.31 -14.73
7 -40.78 -31.71 -34.73 -28.05 -7.68 -26.48
8 -15.82 -27.74 -30.02 -10.52 -25.84 -27.51
9 -20.03 -29.14 -25.89 -33.02 -23.69 -26.91
10 -18.70 -19.26 -29.60 -34.48 -17.60 -15.42
11 -8.83 -32.73 -34.98 -11.76 -18.91 -11.56
12 -30.05 -37.30 -38.80 -16.24 -28.87 -35.42
13 -36.78 -28.20 -14.16 -31.92 -30.85 -21.73
14 -22.08 -21.94 -26.51 -20.15 -33.09 -14.65
15 -23.43 -27.90 -21.20 -34.68 -18.44 -33.36
16 -30.25 -33.79 -3.13 -23.39 -33.73 -28.78
17 -43.35 -40.37 -26.70 -26.01 -3.58 -10.12
18 -24.57 -35.81 -30.02 -24.22 -32.82 -12.98
19 -26.55 -24.00 -30.05 -27.53 -29.40 -17.23
20 -48.15 -26.15 -15.48 -10.69 -31.99 -30.77

Average -26.02 -26.52 -21.89 -20.22 -21.22 -19.74
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Table A.10: Total number of pairwise constraint violations using the MI-CAP Restricted
IP formulation, with varying numbers of available channels, 500 second CPLEX runtimes,
and weighted penalties.

Pairwise Violations, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 74 72 95 109 133 352
2 73 85 98 202 243 285
3 86 83 111 228 209 283
4 86 102 118 223 310 239
5 84 96 117 214 362 163
6 72 96 110 214 304 285
7 65 84 105 180 277 281
8 80 106 216 272 266 270
9 77 88 195 235 228 167
10 76 87 106 256 262 171
11 74 89 107 216 259 291
12 63 77 85 210 258 265
13 84 102 179 199 112 194
14 79 103 204 392 198 358
15 67 81 97 107 185 119
16 71 93 107 195 231 277
17 69 84 93 224 329 183
18 81 86 197 216 291 287
19 87 96 206 230 167 168
20 73 79 103 266 169 235

Average 76.1 89.5 132.5 219.4 239.7 243.7
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Table A.11: Total number of radios (out of 1887) receiving excessive interference using the
MI-CAP Restricted IP formulation, with varying numbers of available channels, 500 second
CPLEX runtimes, and weighted penalties.

Radios Receiving Excessive Interference, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 123 170 156 224 255 266
2 106 117 134 139 143 162
3 123 137 131 155 131 163
4 135 122 139 137 155 157
5 137 133 148 144 130 134
6 127 125 147 144 157 153
7 75 120 142 118 175 150
8 117 126 115 144 128 156
9 77 142 104 114 148 160
10 112 121 124 110 137 155
11 67 132 131 125 156 166
12 100 109 124 116 127 148
13 90 125 120 137 130 151
14 103 128 116 121 133 152
15 102 112 117 122 130 96
16 105 105 134 108 116 146
17 100 105 137 115 131 134
18 105 108 118 130 118 137
19 73 124 91 118 109 161
20 107 107 91 116 134 152

Average 104.2 123.4 126.0 131.9 142.2 155.0
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Table A.12: Total excessive interference (in dBm) using the MI-CAP Restricted IP for-
mulation, with varying numbers of available channels, 500 second CPLEX runtimes, and
weighted penalties.

Total Excessive Interference (dBm), by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 21.19 23.52 16.71 25.52 26.94 25.94
2 -32.70 -25.59 -13.83 -16.77 -19.91 -22.11
3 -31.01 -20.44 -13.68 -20.60 -31.36 -24.52
4 -23.81 -26.18 -28.65 -28.51 -26.86 -17.47
5 -32.58 -32.55 -21.47 -24.04 -23.69 -30.40
6 -26.85 -34.55 -15.59 -20.26 -24.30 -13.22
7 -40.78 -31.71 -34.73 -23.78 -7.45 -25.54
8 -37.33 -27.74 -29.17 -8.25 -24.74 -25.40
9 -19.94 -23.49 -22.33 -28.17 -27.35 -5.35
10 -18.70 -19.26 -29.60 -34.17 -33.82 -17.46
11 -37.47 -32.73 -34.98 -19.52 -30.37 -28.56
12 -30.05 -37.30 -38.80 -16.26 -26.96 -31.45
13 -36.16 -28.20 -43.27 -28.78 -28.93 -25.79
14 -22.08 -21.94 -15.54 -18.63 -17.26 -25.34
15 -23.43 -27.90 -21.20 -34.68 -22.65 -46.74
16 -30.25 -14.33 -3.13 -32.54 -24.50 -31.00
17 -43.35 -40.37 -26.70 -39.00 -27.31 -31.81
18 -31.84 -35.81 -26.00 -39.85 -38.85 -22.42
19 -31.44 -24.00 -29.37 -20.49 -21.72 -28.28
20 -28.68 -26.15 -39.08 -19.34 -30.55 -19.35

Average -27.86 -25.34 -23.52 -22.41 -23.08 -22.31
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Table A.13: Total number of radios (out of 1887) receiving excessive interference using
the MI-CAP Restricted IP formulation, with varying numbers of available channels, 6000
second CPLEX runtimes, and weighted penalties.

Radios Receiving Excessive Interference, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 19 43 48 80 96 128
2 22 24 47 80 78 108
3 22 38 53 76 89 136
4 22 42 60 79 103 115
5 59 51 55 68 101 118
6 28 47 62 68 83 102
7 21 30 48 76 89 114
8 16 28 37 47 78 101
9 12 23 37 51 82 91
10 7 22 34 51 68 93
11 8 16 28 54 74 89
12 7 16 28 41 59 84
13 10 22 31 52 81 110
14 8 24 34 57 67 89
15 12 27 34 64 75 84
16 17 29 47 70 82 90
17 15 28 59 66 77 90
18 8 24 33 46 62 85
19 10 24 33 52 70 83
20 17 30 48 62 70 86

Average 104.2 123.4 126.0 131.9 142.2 155.0
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Table A.14: Total excessive interference (in dBm) using the MI-CAP Restricted IP for-
mulation, with varying numbers of available channels, 6000 second CPLEX runtimes, and
weighted penalties.

Total Excessive Interference (dBm), by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 -70.37 -63.00 -56.25 -35.67 -33.68 12.00
2 -80.34 -60.18 -46.39 -29.38 -36.81 -37.89
3 -86.37 -59.18 -70.96 -32.47 -42.97 -25.57
4 -58.58 -54.43 -29.07 -24.08 -31.33 -35.18
5 -37.99 -54.94 -55.43 -25.98 -36.78 -35.24
6 -58.32 -56.11 -38.80 -25.46 -37.65 -39.28
7 -79.65 -80.34 -48.71 -39.66 -35.99 -36.12
8 -74.35 -73.97 -53.17 -17.07 -40.65 -29.18
9 -82.54 -38.36 -44.54 -40.23 -23.46 -27.62
10 -74.18 -71.08 -75.65 -43.86 -44.90 -43.38
11 -92.41 -85.63 -67.65 -27.52 -54.17 -40.35
12 -78.07 -69.95 -43.46 -43.32 -56.43 -51.53
13 -85.15 -50.38 -50.99 -25.83 -45.53 -38.12
14 -74.30 -55.37 -53.80 -28.24 -53.02 -48.49
15 -84.52 -76.53 -77.64 -39.52 -42.22 -48.98
16 -62.44 -73.09 -65.95 -37.33 -53.05 -55.63
17 -92.52 -78.63 -56.37 -41.39 -50.83 -50.27
18 -88.79 -78.17 -63.84 -28.84 -50.30 -54.91
19 -91.43 -46.64 -70.57 -32.20 -37.58 -38.69
20 -87.00 -80.67 -60.28 -21.37 -58.04 -36.10

Average -27.86 -25.34 -23.52 -22.41 -23.08 -22.31
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Table A.15: Total number of radios receiving excessive interference using the MI-CAP CP
formulation, with varying numbers of available channels, 500 second CP runtimes, and unit
penalties.

Radios Receiving Excessive Interference, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 7 52 50 96 140 215
2 4 23 44 54 80 113
3 13 26 44 68 97 134
4 9 18 39 57 79 102
5 5 26 41 62 108 134
6 7 27 46 65 96 109
7 9 27 38 64 86 127
8 7 19 44 76 91 116
9 7 25 38 47 79 107
10 8 19 33 60 78 110
11 10 24 39 50 73 108
12 6 19 43 49 77 86
13 12 27 38 55 80 100
14 10 28 38 54 75 94
15 6 26 45 50 72 92
16 8 20 38 57 74 102
17 7 18 31 71 87 101
18 9 18 30 53 81 82
19 12 18 32 47 71 99
20 7 20 36 57 73 99

Average 8.15 24 39.35 59.6 84.85 111.5
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Table A.16: Total excessive interference (in dBm) using the MI-CAP CP formulation, with
varying numbers of available channels, 500 second CP runtimes, and unit penalties.

Total Excessive Interference (dBm), by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 -66.14 17.46 6.95 17.53 21.11 22.13
2 -61.47 -66.05 -39.93 -57.30 -25.06 -36.53
3 -85.82 -78.37 -44.65 -32.59 -20.78 -20.83
4 -73.98 -48.82 -62.94 -48.66 -38.46 -31.10
5 -53.66 -53.50 -50.87 -28.78 -32.89 -33.13
6 -80.31 -44.84 -42.88 -40.03 -37.03 -42.64
7 -80.50 -55.29 -53.54 -37.67 -34.62 -28.38
8 -88.26 -94.32 -35.48 -35.02 -28.62 -11.68
9 -84.93 -55.87 -59.01 -65.91 -39.59 -36.94
10 -88.64 -48.95 -78.21 -44.59 -37.24 -51.67
11 -83.68 -78.45 -42.52 -36.84 -41.00 -36.83
12 -83.77 -63.72 -16.09 -66.93 -41.69 -42.28
13 -62.60 -51.68 -60.21 -49.08 -38.33 -36.79
14 -67.34 -69.14 -68.73 -66.94 -60.20 -22.10
15 -75.03 -52.59 -45.31 -42.65 -38.91 -39.05
16 -60.91 -63.42 -23.60 -40.29 -55.33 -46.14
17 -81.47 -80.67 -76.84 -32.07 -29.98 -32.76
18 -72.39 -60.06 -48.56 -46.84 -44.44 -44.27
19 -80.87 -73.09 -57.87 -48.26 -23.08 -22.87
20 -63.54 -60.80 -79.72 -24.97 -51.70 -28.47

Average -74.77 -59.11 -49.00 -41.39 -34.89 -31.12

158



Table A.17: Total number of radios receiving excessive interference using the MI-CAP CP
formulation, with varying numbers of available channels, 500 second CP runtimes, and
weighted penalties.

Radios Receiving Excessive Interference, by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 7 16 31 41 78 103
2 4 13 18 41 53 86
3 13 14 26 42 66 95
4 9 16 23 45 66 87
5 5 14 30 53 70 96
6 7 13 31 46 66 88
7 9 11 20 45 57 86
8 7 16 30 40 65 91
9 7 17 19 41 56 82
10 8 10 20 40 60 79
11 10 11 24 35 58 81
12 6 10 19 25 47 67
13 12 15 27 41 62 87
14 10 15 21 34 49 70
15 6 12 17 32 54 69
16 8 14 21 38 54 76
17 7 8 19 35 52 74
18 9 16 22 33 47 73
19 12 9 19 33 55 73
20 7 15 21 38 60 71

Average 8.15 13.25 22.9 38.9 58.75 81.7

159



Table A.18: Total excessive interference (in dBm) using the MI-CAP CP formulation, with
varying numbers of available channels, 500 second CP runtimes, and weighted penalties.

Total Excessive Interference (dBm), by Channel Availability

Time Step 100% 90% 80% 70% 60% 50%

1 -66.14 -64.89 -58.97 -40.04 -53.95 -41.57
2 -61.47 -62.24 -67.88 -55.84 -67.01 -44.02
3 -85.82 -101.39 -65.22 -52.46 -32.21 -41.01
4 -73.98 -88.72 -53.70 -63.25 -40.87 -38.30
5 -53.66 -88.68 -53.67 -45.53 -45.49 -41.06
6 -80.31 -76.18 -44.36 -44.67 -36.78 -22.78
7 -80.50 -90.58 -80.81 -45.43 -55.54 -41.81
8 -88.26 -74.45 -75.00 -46.13 -54.99 -39.07
9 -84.93 -62.51 -66.38 -60.48 -53.28 -48.49
10 -88.64 -74.80 -91.14 -61.77 -63.92 -41.04
11 -83.68 -84.67 -76.43 -67.39 -61.64 -46.80
12 -83.77 -93.73 -67.35 -66.89 -63.11 -53.35
13 -62.60 -66.77 -66.88 -39.47 -39.26 -39.17
14 -67.34 -71.40 -66.94 -70.03 -55.39 -41.84
15 -75.03 -76.33 -70.17 -76.08 -54.11 -55.80
16 -60.91 -64.11 -61.19 -89.79 -63.50 -55.55
17 -81.47 -80.76 -65.60 -75.80 -66.47 -49.15
18 -72.39 -71.98 -71.97 -69.02 -62.37 -41.03
19 -80.87 -85.31 -78.17 -69.25 -23.09 -51.90
20 -63.54 -62.74 -59.39 -59.36 -59.49 -54.19

Average -74.77 -77.11 -67.06 -59.93 -52.62 -44.40
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Appendix B: MO-CAP RSF Code

This appendix provides partial computer code to solve the MO-CAP Restricted Standard

Formulation using Python, Pyomo, and CPLEX.

# Import packages

import g loba lVars as g loba lVars # Contains g l o b a l var i a b l e s

import U t i l i t i e s as u t i l # Basic u t i l i t i e s , l i k e reading in input f i l e s and pre−
proces s ing i n t e r f e r en c e va lue s

import c p l e x U t i l i t i e s as cpUt i l # CPLEX u t i l i t i e s , l i k e adding pa i rw i se con s t r a i n t s

and check ing i f un i t s can be on same channel

import numpy as np

import mpmath as mp # Import mpmath l i b r a r y , f o r ab i t rary−pr e c i s i on f l o a t i n g−po in t
numbers

mp. dps = globa lVars .MP PRECISION # Set p r e c i s i on o f mpmath f l o a t s to g iven number o f

decimal p l a c e s

import math

import copy # For copying arrays

import i t e r t o o l s as i t e r t o o l s # For i t e r a t i n g over combinations o f un i t s in

LazyConstraints c a l l b a c k

import cp l ex

from cp l ex . c a l l b a c k s import LazyConstra intCal lback

from pyomo . env i ron import ∗
from pyomo . opt import ∗ #SolverFactory , So l verS ta tus , TerminationCondition # Needed to

execute `opt = SolverFactory (` cp l e x ') ' and run s o l v e r

from os import path # For check ing i f a f i l e e x i s t s

import p i c k l e # For sav ing p i c k l e d array

import time # For measuring e lapsed proces s ing time

# Determines i f the g iven un i t s can share a channel ( checks each way)

def canTheseUnitsShareChannelAssignment ( u n i t L i s t ) :

for unitA in u n i t L i s t : # Check each un i t aga in s t a l l the o ther s in un i tL i s t

o the rUn i tL i s t = copy . deepcopy ( u n i t L i s t )

o the rUn i tL i s t . remove ( unitA ) # Create a l i s t o f a l l the o ther un i t s in

un i tL i s t

for i in range ( g loba lVars . un i tPo in t e r [ unitA ] , g loba lVars . un i tPo in t e r [ unitA]+

globa lVars . numberSubUnits [ unitA ] ) : # For each radio in unitA

i f any( g loba lVars . maxInter f e rence [ i ] < np .sum( g loba lVars .

i n t e r f e r e n c e M a t r i x [ i , o therUni tL i s t , 0 ] ) ) : return False # Over a l l

o ther uni t s , on channel 0

return True

# Find c l i q u e s (among the pa i rw i se con s t r a i n t s ) and add as con s t r a i n t s to CPLEX

problem ( i f needed )

def addCl iqueConstra ints ( p ick ledPai rwi seConstra intsF i l eName , pyomoProblem = None ) :

numberCliqueConstraintsAdded = 0

i f not pyomoProblem i s None : numberUnits = len ( pyomoProblem . u)

else : numberUnits = globa lVars . numberUnits
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canUnitsShareChannelAssignmentArray = u t i l . calcUnitsShareChannelAssignmentArray (

p ick ledPai rwiseConstra intsF i l eName , g loba lVars . numberUnits ) # Calcu la t e and

return the canUnitsShareChannelAssignmentArray

# Create NetworkX graph o b j e c t from pa i rw i se con s t r a i n t s

import networkx as netX

theGraph = netX . Graph ( ) # Create d e f a u l t graph

theGraph . add nodes from (range (0 , g loba lVars . numberUnits−1) ) # Add a l l un i t s as

nodes (−1 because o f how NetworkX crea t e s nodes )

for i in range ( g loba lVars . numberUnits ) :

for j in range ( g loba lVars . numberUnits ) :

i f i < j and not canUnitsShareChannelAssignmentArray [ i , j ] : theGraph .

add edge ( i , j )

# Find maximal c l i q u e s ( l a r g e s t c l i que , f o r each node ) . The b i g g e s t maximal

c l i q u e i s the maximum c l i q u e

maximalCliqueGenerator = netX . f i n d c l i q u e s ( theGraph ) # A generator o f a l l o f the

maximal c l i q u e s

maximalCl iqueList = [ ] # Copy to l i s t to work with i t

for i in maximalCliqueGenerator : maximalCl iqueList . append ( i )

[ maximumCliqueLength , maximumClique ] = max(enumerate( maximalCl iqueList ) , key =

lambda tup : len ( tup [ 1 ] ) ) # Lambda func t ion to ge t maximum c l i q u e ( b i g g e s t

maximal )

# Add maximum c l i q u e to the pyomoProblem , i f one was sent as argument

i f not pyomoProblem i s None :

for c in pyomoProblem . c :

theRule = pyomoProblem .X[ 'u ' + str ( maximumClique [ 0 ] ) , c ]

for i in range (1 , len ( maximumClique ) ) : theRule = theRule + pyomoProblem .X

[ 'u ' + str ( maximumClique [ i ] ) , c ]

pyomoProblem . Cuts . add ( theRule <= 1)

print 'Maximum c l i q u e ( s i z e ' + str ( len ( maximumClique ) ) + ' ) : ' , sorted (

maximumClique )

return numberCliqueConstraintsAdded , maximumClique

# Can ' t pass arguments to CPLEX ca l l b a c k s , so need to use the se g l o b a l s

u n i t L i s t = [ ] # Li s t o f the CPLEX var i a b l e s f o r unit , in sor t ed order

un i tDic t = {} # Looks up a un i t by un i t number and channel , and re turns the number o f

a s soc i a t ed CPLEX var i a b l e

numberFixedUnits = 0 # Number o f un i t s whose a s soc i a t ed var i a b l e s have been f i x e d ( so

CPLEX can ' t change them)

# Generage u t i l i z a t i o n con s t r a i n t s : A channel i s counted i f i t g e t s used

def c a p u t i l i z a t i o n C o n s t r a i n t r u l e ( model , u , c ) :

return model .X[ u , c ] <= model .Y[ c ]

# Generage mu l t i p l i c i t y c on s t r a i n t s : Each un i t must have e x a c t l y one channel ass i gned

def c a p m u l t i p l i c i t y C o n s t r a i n t r u l e ( model , u ) :

return sum( model .X[ u , c ] for c in model . c ) == 1
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# Generage a cons t r a in t to prov ide a lower bound to the o b j e c t i v e value , in hopes o f

speed ing up convergence

def cap ob j ec t iveVa lueLBConst ra in t ru l e ( model ) :

return sum( model .Y[ c ] for c in model . c ) >= 35

# Objec t i v e ru l e d e f i n i t i o n ( doesn ' t work when you dec l a r e wi th in the Ob j ec t i v e

func t i on )

def c a p o b j e c t i v e r u l e ( model ) :

return sum( model .Y[ c ] for c in model . c )

# Calcu la t e and return the current channelAssignment f o r the g iven CPLEX ob jec t ,

depending on c a l l i n g rou t ine

def calcCurrentCPLEXChannelAssignment ( so lve r , i sPyomoInter face ) :

currentChannelAssignment = np . empty ( g loba lVars . numberUnits , dtype=np . in t32 ) #

CPLEX ' s current channel assignment so lu t i on , by un i t

counter = 0

nonSharerCounter = 0

i f i sPyomoInter face :

u n i t S t a r t = globa lVars .NUMBER AVAILABLE CHANNELS # Advance to the X u va lues ,

which f o l l ow a f t e r the Y c va lue s

global numberFixedUnits

counter = u n i t S t a r t − numberFixedUnits

for i in range (0 , g loba lVars . numberUnits ) :

for c in range (0 , g loba lVars .NUMBER AVAILABLE CHANNELS) :

i f (not i sPyomoInter face and round( s o l v e r . g e t v a l u e s ( str ( 'X(u ' + str ( i ) +

' ' + str ( c ) + ' ) ' ) ) ) == 1) or ( i sPyomoInter face and round( s o l v e r .

g e t v a l u e s ( counter ) ) == 1) :

currentChannelAssignment [ i ] = c

counter = counter + ( g loba lVars .NUMBER AVAILABLE CHANNELS−c )

break

counter += 1

return currentChannelAssignment

# Pyomo and CPLEX la zyCons t ra in tCa l l b a c k s go here to check f e a s i b i l i t y , add l a z y

con s t r a i n t s ( i f needed ) , and ( i f s o l v i n g MO−CAP−T) , add s o l u t i on to so lu t i onPoo l

and cons t ra in s o l u t i on from being used again .

def addLazyConstraints ( so lv e r , model = None , i sPyomoInter face = True ) :

# Read in current s o l u t i on

print ' Lazy c o n s t r a i n t c a l l b a c k . Reading in cur rent CPLEX s o l u t i o n . . . ' ,

currentChannelAssignment = np . empty ( g loba lVars . numberUnits , dtype=np . in t32 ) #

CPLEX current channel assignment so lu t i on , by un i t

currentChannelAssignment = calcCurrentCPLEXChannelAssignment ( so lve r ,

i sPyomoInter face ) # Get current channelAssignment

currentObject iveVa lue = round( s o l v e r . g e t o b j e c t i v e v a l u e ( ) )

i f len (np . unique ( currentChannelAssignment ) ) <> currentObject iveVa lue :

print ' There i s a problem in c a l c u l a t i n g the currentChannelAssignment in the

lazy c o n s t r a i n t c a l l b a c k . '
print 'Done . '

# Check i f current CPLEX so l u t i on has any rad ios r e c e i v i n g e x c e s s i v e i n t e r f e r en c e

print ' Cal cu l a t ing t o t a l r e c e i v e d i n t e r f e r e n c e at each rad io . . . ' ,
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numberRece ivedExcess ive Inter f e rence = 0 # Number o f rad ios r e c e i v i n g e x c e s s i v e

i n t e r f e r en c e

r e c e i v e d I n t e r f e r e n c e = np . z e r o s ( g loba lVars . numberRadios , dtype=mp. mpf ) # Total

r e ce i v ed in t e r f e r ence , by radio

numberRece ivedExcess ive Inter f e rence , r e c e i v e d I n t e r f e r e n c e = u t i l .

c a l c R e c e i v e d I n t e r f e r e n c e ( currentChannelAssignment )

print 'Done . '

# No v i o l a t i o n s . I f running MO−CAP−T, then check to see i f s o l u t i on needs to be

added to so lu t i onPoo l

i f numberRece ivedExcess ive Inter f e rence == 0 :

print 'No cumulat ive i n t e r f e r e n c e v i o l a t i o n s e x i s t ; cur r ent s o l u t i o n i s

f e a s i b l e . Channels r equ i r ed : ' + str ( cur rentObject iveVa lue ) + ' .

Current s o l v e r time : ' + str ( time . time ( ) − g loba lVars . g loba lStartTime )

g loba lVars . isCPLEXSolutionFeasible = True

# Vio la t i on s e x i s t . Find them and add packing con s t r a i n t s preven t ing them

e l i f numberRece ivedExcess ive Inter f e rence > 0 :

print ' Cumulative i n t e r f e r e n c e c o n s t r a i n t v i o l a t i o n s e x i s t . Current s o l u t i o n

r e q u i r e s ' + str ( cur rentObject iveVa lue ) + ' channe l s . Finding

v i o l a t i o n s . . . '
constrainedAssignmentsByChannel = [ [ ] for i in range (0 , g loba lVars .

NUMBER AVAILABLE CHANNELS) ] # A l i s t o f l i s t s , where the f i r s t index i s

channel and the second i s a l i s t o f un i t s t ha t can ' t a l l be ass i gned tha t

channel

counter = 0

# Loop through a l l rad ios to f i nd v i o l a t i on s , and add the un i t to l i s t

for i in range (0 , g loba lVars . numberUnits ) :

for j in range (0 , g loba lVars . numberSubUnits [ i ] ) :

i f r e c e i v e d I n t e r f e r e n c e [ counter ] > g loba lVars . maxInter f e rence [ counter

, currentChannelAssignment [ i ] ] :

constrainedAssignmentsByChannel [ currentChannelAssignment [ i ] ] .

append ( i ) # Add t h i s un i t to the l i s t o f un i t s t ha t can ' t be

ass i gned t h i s channel

counter = counter + ( g loba lVars . numberSubUnits [ i ] − j )

break

counter += 1

# Loop through a l l channels and add to constrainedAssignmentsByChannel a l l

un i t s on a v i o l a t e d channel t ha t haven ' t ye t been added

for c in range (0 , g loba lVars .NUMBER AVAILABLE CHANNELS) :

i f len ( constrainedAssignmentsByChannel [ c ] ) > 0 : # I f there are v i o l a t i o n s

on t h i s channel , add a l l un i t s not a l ready added ( checked us ing the

. count () method )

for i in range (0 , g loba lVars . numberUnits ) :

i f currentChannelAssignment [ i ] == c and

constrainedAssignmentsByChannel [ c ] . count ( i ) == 0 :

constrainedAssignmentsByChannel [ c ] . append ( i )

# Add o r i g i n a l packing con s t r a i n t s ( i . e . , a l l ow | S|−1 un i t s in the sub s e t S

o f uni t s , on the ass igned (and v i o l a t e d ) channel )
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print ' Adding t r i p l e t and higher−order packing c o n s t r a i n t s as l azy

c o n s t r a i n t s . . . '
for c in range (0 , g loba lVars .NUMBER AVAILABLE CHANNELS) :

i f len ( constrainedAssignmentsByChannel [ c ] ) > 0 : # I f there are v i o l a t i o n s

on t h i s channel

r e s t r i c t e d U n i t L i s t = [ ] # Li s t o f c on s t r a i n t s o f un i t s on t h i s c t ha t

can ' t be ass i gned t o g e t h e r ( us ing ac tua l unitNumber ) , to be

converted in to CPLEX index number

LHS = [ ] # Combined l i s t o f var i a b l e L i s t and c o e f f i c i e n t L i s t

i f len ( constrainedAssignmentsByChannel [ c ] ) == 3 : # I f e x a c t l y three ,

add a l l t h ree

t h e L i s t = [ ]

for uni t in constrainedAssignmentsByChannel [ c ] : t h e L i s t . append (

un i t )

r e s t r i c t e d U n i t L i s t . append ( t h e L i s t )

e l i f len ( constrainedAssignmentsByChannel [ c ] ) > 3 : # I f more than

three , check f o r d i s a l l owed t u p l e s among the four or more un i t s

t u p l e S i z e = 3

while t u p l e S i z e <= globa lVars .MAX INTERFERENCE TUPLE SIZE and len

( r e s t r i c t e d U n i t L i s t ) == 0 : # Check u n t i l you h i t t u p l e S i z e

l im i t , or a d i s a l l owed t up l e i s found

l i s tOfUnitCombinat ions = i t e r t o o l s . combinat ions (

constrainedAssignmentsByChannel [ c ] , t u p l e S i z e ) # Get a l l

combinations o f t u p l e S i z e among un i t s ( where order doesn '
t matter )

for uni t in l i s tOfUnitCombinat ions : # Check i f a combination

i sn ' t a l l owed ; i f so , add to l i s t

t h e L i s t = l i s t ( un i t ) # Convert t u p l e to l i s t

i f not cpUt i l . canTheseUnitsShareChannelAssignment ( t h e L i s t

) : # I f they can ' t share

r e s t r i c t e d U n i t L i s t . append ( t h e L i s t ) # Add each un i t to

the a s soc i a t ed cons t r a in t

t u p l e S i z e += 1 # Increase t u p l e S i z e f o r next i t e r a t i o n

else :

print ' Problem : There are not enough un i t s a s s i gned to t h i s

channel f o r the re to be a v i o l a t i o n . '

# Loop over a l l un i t s f o r each cons t r a in t on t h i s channel and add to

packing cons t r a in t

for c o n s t r a i n t in r e s t r i c t e d U n i t L i s t :

var i a b l e L i s t = [ ] # CPLEX ind i c e s ( not the ac tua l names/numbers )

c o e f f i c i e n t L i s t = [ ] # Always one , f o r each un i t

actualUnitNames = [ ] # For p r i n t i n g the un i t names

for uni t in c o n s t r a i n t :

i f i sPyomoInter face : var i a b l e L i s t . append ( 'x ' + str ( un i tDic t [

int ( un i t ) , c ] ) )

else : var i a b l e L i s t . append ( str ( 'X(u ' + str ( un i t ) + ' ' + str ( c

) + ' ) ' ) )

c o e f f i c i e n t L i s t . append ( 1 . 0 )

actualUnitNames . append ( int ( un i t ) )
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LHS = [ var i a b l e L i s t , c o e f f i c i e n t L i s t ] # CPLEX API needs LHS to be

var i a b l e s , then c o e f f i c i e n t s

s o l v e r . add (LHS, 'L ' , len ( c o n s t r a i n t ) − 1) # Add packing

cons t r a in t to problem

g loba lVars . numberLazyConstraintsAdded [ len ( c o n s t r a i n t ) ] += 1

#pr in t LHS, l en ( r e s t r i c t e dUn i t L i s t ) − 1

print actualUnitNames , c

# I f only one unique channel , add the same cons t r a in t on every

channel

i f g loba lVars .NUMBER UNIQUE CHANNELS == 1 :

for chan in range (0 , g loba lVars .NUMBER AVAILABLE CHANNELS) :

i f chan <> c :

var i a b l e L i s t = [ ]

c o e f f i c i e n t L i s t = [ ]

LHS = [ ]

for uni t in c o n s t r a i n t :

i f i sPyomoInter face : var i a b l e L i s t . append ( 'x ' +

str ( un i tDic t [ int ( un i t ) , chan ] ) )

else : var i a b l e L i s t . append ( str ( 'X(u ' + str ( un i t ) +

' ' + str ( chan ) + ' ) ' ) )

c o e f f i c i e n t L i s t . append ( 1 . 0 )

LHS = [ var i a b l e L i s t , c o e f f i c i e n t L i s t ] # CPLEX API

needs LHS to be var i a b l e s , then c o e f f i c i e n t s

#pr in t LHS, l en ( r e s t r i c t e dUn i t L i s t ) − 1

s o l v e r . add (LHS, 'L ' , len ( c o n s t r a i n t ) − 1) # Add

packing cons t r a in t to problem

print ' Continuing CPLEX search . . . '

# Lazy cons t r a in t c a l l b a c k : Using the current CPLEX so lu t i on , check i f any assignment

v i o l a t e s the cumulat ive i n t e r f e r en c e con s t r a i n t s . I f so , add a packing

cons t r a in t preven t ing t ha t assignment .

# For now , assumes a l l channe ls are the same frequency .

def ca l lback LazyCons t ra in t ( so lv e r , model = None ) :

addLazyConstraints ( s o l v e r . cplex , model , True )

# CPLEX la z y cons t r a in t c a l l b a c k ( s im i l a r but d i f f e r e n t from above ; can ' t j u s t use

the same code because t h i s r e f e r s to . s e l f ob j ec t , un l i k e above )

class cp lexLazyConstra intCal lback ( LazyConstra intCal lback ) :

def c a l l ( s e l f ) :

addLazyConstraints ( s e l f , None , Fa l se )

# Solve us ing CPLEX

def solveMOCAPUsingCPLEX( pick ledPai rwi seConstra intsF i l eName , i n i t i a l So lu t i onF i l eName ,

useCPLEXAPI , adjustForNonSharingUnit , addMaxClique ) :

# See i f any un i t s r e qu i r e t h e i r own channel assignment , and i f so , t emporar i l y

ad ju s t input data so CPLEX doesn ' t cons ider the se un i t s

nonSharerLi s t = None

i f adjustForNonSharingUnit :

print ' Adjust ing input data f o r un i t s that can ' t share channe l s . . . '
nonSharerLi s t = cpUt i l . removeNonSharingUnits ( )

# Create a s o l v e r
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pr in t ' Creat ing Pyomo model for CPLEX . . . '
opt = SolverFactory ( ' cp l ex ' , s o l v e r i o= ' python ' )

cap = ConcreteModel ( ) # Create the problem

# I n d i c e s

p r i n t ' Creat ing CPLEX i n d i c e s . . . ' ,

cap . u = Set ( i n i t i a l i z e =[ 'u ' + s t r (u) f o r u in range (0 , g loba lVars . numberUnits ) ] ,

ordered=True ) # Index on each un i t

cap . c = Set ( i n i t i a l i z e =[c f o r c in range (0 , g loba lVars .NUMBER AVAILABLE CHANNELS)

] , ordered=True ) # Index on channe l s

p r i n t 'Done . '

# Var iab l e s

p r i n t ' Creat ing var i a b l e s . . . ' ,

cap .Y = Var ( cap . c , domain=Binary , i n i t i a l i z e = 0) # I n d i c a t e s i f channel c i s

be ing used

cap .X = Var ( cap . u , cap . c , domain=Binary , i n i t i a l i z e = 0) # I n d i c a t e s i f un i t u i s

us ing channel c

p r i n t 'Done . '

i f not i n i t i a l S o l u t i o n F i l e N a m e i s None : # I f i n i t i a l s o l u t i o n was provided , read

i t in and use i t

p r i n t ' Reading in i n i t i a l X and Y va lues . . . ' ,

u t i l . r e a d S o l u t i o n F i l e ( so lut ionFi leName = in i t i a l So lu t i onF i l eName ,

shi ftChannelAssignmentsToZero = True , nonSharerLi s t = nonSharerLis t ) #

Read in s o l u t i o n to g loba lVars . channelAssignment ( w i l l be ove rwr i t t en )

f o r i in range (0 , g loba lVars . numberUnits ) : # For each un i t

cap .Y[ g loba lVars . channelAssignment [ i ] ] . va lue = 1 # Assign Y va lue s

cap .X[ 'u '+ s t r ( i ) , g loba lVars . channelAssignment [ i ] ] . va lue = 1 # Assign

un i t X va lues

p r i n t 'Done . '

# Object ive func t i on

p r in t ' Creat ing o b j e c t i v e func t i on . . . ' ,

cap . Obj = Object ive ( r u l e = c a p o b j e c t i v e r u l e , s ense=minimize )

p r i n t 'Done . '

# Const ra int s

p r i n t ' Creat ing CAP c o n s t r a i n t s . . . ' ,

cap . u t i l i z a t i o n C o n s t r a i n t s = Constra int ( cap . u , cap . c , r u l e=

c a p u t i l i z a t i o n C o n s t r a i n t r u l e )

cap . m u l t i p l i c i t y C o n s t r a i n t s = Constra int ( cap . u , r u l e=

c a p m u l t i p l i c i t y C o n s t r a i n t r u l e )

#cap . object iveValueLBConstra int = Constra int ( r u l e=

cap ob j ec t iveVa lueLBConst ra in t ru l e ) # Provide a lower bound to the o b j e c t i v e

value , in hopes o f speed ing up convergence

cap . Cuts = Cons t ra in tL i s t ( ) # To add cuts dynamical ly us ing Cuts . add ( )

p r i n t 'Done . '

maximumClique = [ ]

i f addMaxClique :

p r i n t ' Adding maximal c l i q u e c o n s t r a i n t . . . '
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numberCliqueConstraintsAdded = 0

numberCliqueConstraintsAdded , maximumClique = cpUt i l . addCl iqueConstra ints (

p ick ledPai rwiseConstra intsF i l eName , cap )

p r i n t ' Creat ing pa i rw i s e i n t e r f e r e n c e c o n s t r a i n t s . . . '
#cpUt i l . ca l cHigherOrderConst ra int s ( p i ck l edPa i rwi seConst ra int sF i l eName ) # Comment

out i f not wanting to p r i n t higher−order c o n s t r a i n t s

g loba lVars . numberLazyConstraintsAdded = np . z e r o s ( g loba lVars .

MAX INTERFERENCE TUPLE SIZE, dtype=np . in t32 ) # Number o f l a zy c o n s t r a i n t s

added , by the number o f un i t s in l azy c o n s t r a i n t ( s t a r t i n g with zero at index

0)

p r i n t s t r ( cpUt i l . addPai rwi seConst ra int s ( p ick ledPai rwi seConstra intsF i l eName ,

maximumClique , cap ) ) + ' pa i rw i s e c o n s t r a i n t s added ( for one channel ) . ' #

Add pa i rw i s e c o n s t r a i n t s and p r i n t number

# The f o l l o w i n g i s needed when us ing Pyomo−CPLEX c a l l b a c k s to get cur rent

s o l u t i o n d i r e c t l y from CPLEX, because CPLEX doesn ' t know o r i g i n a l names , only

the index order ( which i s a l p h a b e t i c a l )

i f not useCPLEXAPI : # Using l a z y cons t ra in t s , and the Pyomo−CPLEX in t e r f a c e

opt . a l l o w c a l l b a c k s = True

opt . i n i t i a l i z e c a l l b a c k s ( cap )

opt . s e t c a l l b a c k ( ' l azycut−c a l l b a c k ' , c a l l b a c k f n=ca l lback LazyCons t ra in t ) #'
l a zycu t−c a l l b a c k ' # Ava i l a b l e c a l l b a c k s l i s t e d on l i n e 1168 in \Lib\ s i t e
−packages \pyomo\ s o l v e r s \ p l u g in s \ s o l v e r s \CPLEXDirect . py

global u n i t L i s t # The CPLEX order o f un i t X var i a b l e s

u n i t L i s t = [ ] # Reset , in case running CPLEX more than once in a row

for i in range (0 , g loba lVars . numberUnits ) : u n i t L i s t . append ( 'u ' + str ( i ) )

global un i tDic t # Looks up un i t number and channel , and re turns the CPLEX var

i a b l e number

un i tDic t = {} # Reset , in case running CPLEX more than once in a row

u n i t S t a r t = globa lVars .NUMBER AVAILABLE CHANNELS # Advance to the X u va lues ,

which f o l l ow a f t e r the Y C

counter = u n i t S t a r t+1 # +1 needed b/c CPLEX var i a b l e s beg in with x1 , not x0

for uni t in u n i t L i s t :

for c in range (0 , g loba lVars .NUMBER AVAILABLE CHANNELS) :

un i tDic t [ int ( un i t [ 1 : ] ) , c ]= counter

counter += 1

# Solve CAP using CPLEX with Pyomo i n t e r f a c e

i f not useCPLEXAPI : # I f us ing the Pyomo−CPLEX in t e r f a c e

print 'Pyomo model c r ea ted . So lv ing us ing CPLEX and Pyomo i n t e r f a c e . . . ' ,

opt . opt ions [ ' threads ' ] = 8 # Options

opt . opt ions [ ' t i m e l i m i t ' ] = g loba lVars . CPLEX TIME LIMIT

# opt . s e t o p t i o n s ( ' mip ordertype=3 ') # An example o f sending op t ions to CPLEX

capResu l t s = opt . s o l v e ( cap , t e e=True ) # Run CPLEX, showing output , but not

keeping in termed ia te f i l e s # Use warmstart=True to use i n i t i a l f e a s i b l e

s o l u t i on ; Use k e e p f i l e s=False to not keep intermediary f i l e s

print 'Done . '
print ' Loading r e s u l t s from CPLEX . . . ' ,

cap . s o l u t i o n s . load from ( capResu l t s ) # Load r e s u l t s

print 'Done . '
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# Check i f problem i s f e a s i b l e

i f capResu l t s . s o l v e r . t e r m i n a t i o n c o n d i t i o n == TerminationCondit ion . i n f e a s i b l e

: # In f e a s i b l e ;

print ' Problem i s i n f e a s i b l e . '
return ” i n f e a s i b l e ”

e l i f not g loba lVars . isCPLEXSolutionFeasible : # Lazy cons t r a in t c a l l b a c k never

found a f e a s i b l e s o l 'n
print 'CPLEX could not f i n d a f e a s i b l e s o l u t i o n . '
i f not i n i t i a l S o l u t i o n F i l e N a m e i s None :

print ' Resort ing to i n i t i a l s o l u t i o n . . . ' # Which has been s to red a l l

a long in g loba lVars . channelAssignment

else :

print 'No i n i t i a l s o l u t i o n given ; r e tu rn ing without s o l u t i o n . '
return ' i n f e a s i b l e '

else : # Problem i s f e a s i b l e ; load r e s u l t s in to var i a b l e s

i f not i n i t i a l S o l u t i o n F i l e N a m e i s None and len (np . unique ( g loba lVars .

channelAssignment [ 0 : g loba lVars . numberUnits ] ) ) < cap . Obj . expr ( ) :

print ' I n i t i a l f e a s i b l e s o l u t i o n was b e t t e r than that found by CPLEX.

Resort ing to i n i t i a l s o l u t i o n . . . ' # Stored in g loba lVars .

channelAssignment

else : # CPLEX seems to have worked

g loba lVars . channelAssignment [ : ] = −999

for u in cap . u : # Get assignments from CPLEX so l u t i on

for c in cap . c :

i f round( cap .X[ u , c ] . va lue ) == 1 . 0 : g loba lVars .

channelAssignment [ int (u [ 1 : ] ) ] = c

i f not nonSharerLi s t i s None and len ( nonSharerLis t ) > 0 : cpUt i l .

r e inse r tNonShar ingUni t s ( nonSharerLis t ) # I f non−channel−shar ing un i t s

have been removed , re−i n s e r t them

g loba lVars . numberRequiredChannels = len (np . unique ( g loba lVars .

channelAssignment [ 0 : g loba lVars . numberUnits ] ) )

i f nonSharerLi s t i s None and ( len (np . unique ( g loba lVars . channelAssignment [ 0 :

g loba lVars . numberUnits ] ) ) <> round( cap . Obj . expr ( ) ) or any( g loba lVars .

channelAssignment [ : ] == −999) ) :

print ' There was a problem in c a l c u l a t i n g the channel ass ignments . '

print ' Problem i s f e a s i b l e . ' , str (round( g loba lVars . numberRequiredChannels ) )

, ' channe l s r equ i r ed . '
i f g loba lVars . isCPLEXSolutionFeasible : # I f CPLEX found a f e a s i b l e s o l u l t i o n ,

p r in t the number o f l a z y con s t r a i n t s

print str (np .sum( g loba lVars . numberLazyConstraintsAdded [ : ] ) ) + ' l a zy

c o n s t r a i n t s added . '
for i in range (0 , g loba lVars .MAX INTERFERENCE TUPLE SIZE) :

i f g loba lVars . numberLazyConstraintsAdded [ i ] > 0 : print str ( g loba lVars

. numberLazyConstraintsAdded [ i ] ) + ' l a zy c o n s t r a i n t s o f s i z e ' +

str ( i ) + ' added . '
return ' f e a s i b l e '

else : # Using a d i r e c t connect ion to CPLEX, by wr i t i n g an LP f i l e f i r s t
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print 'Pyomo model c r ea ted . Saving as LP f i l e and s e t t i n g up CPLEX i n t e r f a c e

. . . ' ,

cap . wr i t e ( 'pyomoCAPModel . lp ' , i o o p t i o n s={ ' s y m b o l i c s o l v e r l a b e l s ' : True }) #

Write Pyomo model as an LP f i l e

capCPLEX = cplex . Cplex ( 'pyomoCAPModel . lp ' )

theCPLEXLazyCallback = capCPLEX . r e g i s t e r c a l l b a c k ( cp lexLazyConstra intCal lback

) # Reg i s t e r the l a z y cons t r a in t ca l l b a c k , i f needed

print ' So lv ing us ing CPLEX Python API . . . ' ,

capCPLEX . parameters . p a r a l l e l = −1 # Force CPLEX to be oppo r t un i s t i c in

mu l t i t h read ing ; otherwise , wi th ca l l b a c k s , i t w i l l be d e t e rm in i s t i c ( and

use only one thread )

capCPLEX . parameters . threads = 8

capCPLEX . parameters . t i m e l i m i t = globa lVars . CPLEX TIME LIMIT

capCPLEX . s o l v e ( )

print 'Done . Loading s o l u t i o n . . . ' ,

capResu l t s = capCPLEX . s o l u t i o n

print 'Done . '

# Check i f problem i s f e a s i b l e

i f not capResu l t s . i s p r i m a l f e a s i b l e ( ) : # In f e a s i b l e ;

print ' Problem i s i n f e a s i b l e . '
return ' i n f e a s i b l e '

else : # Problem i s f e a s i b l e ; load r e s u l t s in to var i a b l e s

g loba lVars . numberRequiredChannels = capResu l t s . g e t o b j e c t i v e v a l u e ( )

print ' Problem i s f e a s i b l e . ' , str (round( g loba lVars .

numberRequiredChannels , 0 ) ) , ' channe l s r equ i r ed . '
print str (np .sum( g loba lVars . numberLazyConstraintsAdded [ : ] ) ) + ' l a zy

c o n s t r a i n t s added . '
g loba lVars . channelAssignment = calcCurrentCPLEXChannelAssignment (

capResults , False , Fa l se )

i f len (np . unique ( g loba lVars . channelAssignment ) ) <> round( capResu l t s .

g e t o b j e c t i v e v a l u e ( ) ) :

print ' There was a problem in c a l c u l a t i n g the channel ass ignments . '
return ' f e a s i b l e '
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Appendix C: MO-CAP CP Code

This appendix provides partial computer code to bound the MO-CAP Restricted Standard

Formulation using constraint programming with Python and CPLEX CP Solver.

# Import packages

import g loba lVars as g loba lVars # Contains g l o b a l var i a b l e s

import U t i l i t i e s as u t i l # Basic u t i l i t i e s , l i k e reading in input f i l e s and pre−
proces s ing i n t e r f e r en c e va lue s

import c p l e x U t i l i t i e s as cpUt i l # CPLEX u t i l i t i e s , l i k e adding pa i rw i se con s t r a i n t s

and check ing i f un i t s can be on same channel

import numpy as np

import i t e r t o o l s as i t e r t o o l s # For i t e r a t i n g over combinations o f un i t s in

LazyConstraints c a l l b a c k

from os import path # For check ing i f a f i l e e x i s t s

import time # For measuring e lapsed proces s ing time

import p i c k l e # For sav ing p i c k l e d array

import pandas as pd # For import ing . csv f i l e s ( f a s t e r than openpyx l )

import subproces s # For running OPL model as a subprocess

# Write the cons t r a in t s a t i s f a c t i o n problem in OPL format , wi th the g iven

c on s t r a i n tL i s t

def wr i t eOp lF i l e ( c o n s t r a i n t L i s t , numberChannels , maximumClique = None ) :

print ' Creat ing OPL mod f i l e . . . ' ,

modelFi le = open( ' oplCPmodel . mod ' , 'wb ' )

modelFi le . wr i t e ( ' us ing CP;\n ' )

modelFi le . wr i t e ( ' range u= 0 . . ' + str ( g loba lVars . numberUnits−1) + ' ;\n ' ) # Minus

one b/c we index by zero

modelFi le . wr i t e ( ' range c= 0 . . ' + str ( numberChannels−1) + ' ;\n ' ) # Minus one b/c

we index by zero

modelFi le . wr i t e ( 'dvar i n t X[ u ] in c ;\n ' )

i f not maximumClique i s None : # Add index s e t f o r maximumClique

theS t r ing = ' { i n t } maximumClique = { '
for i in sorted ( maximumClique ) :

theS t r ing = theSt r ing + str ( i ) + ' , '
theS t r ing = theSt r ing [ : −1 ] # Remove l a s t comma

theS t r ing = theSt r ing + ' } ; '
modelFi le . wr i t e ( theS t r ing )

modelFi le . wr i t e ( ' s ub j e c t to {\n ' )

i f not maximumClique i s None : # Add maximumClique as allDifferent cons t r a in t

modelFi le . wr i t e ( ' allDifferent ( a l l ( i in maximumClique ) X[ i ] ) ;\n ' )

# Write a l l c on s t r a i n t s

for i in c o n s t r a i n t L i s t :

modelFi le . wr i t e ( str ( i ) + ' \n ' )

modelFi le . wr i t e ( ' }\n ' ) # Close con s t r a i n t s b l o c k

modelFi le . wr i t e ( 'execute {\n ' )

modelFi le . wr i t e ( 'var f=new I loOplOutputFi le ( ' oplCPModelOutput . txt ' ) ;\n ' )
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modelFi le . wr i t e ( ' f o r (var i in u) \n ' )

modelFi le . wr i t e ( ' f . w r i t e l n (X[ i ] ) ;\n ' )

modelFi le . wr i t e ( ' f . c l o s e ( ) ;\n ' )

modelFi le . wr i t e ( ' }\n ' )

modelFi le . c l o s e ( )

print 'Done . ' + str ( len ( c o n s t r a i n t L i s t ) ) + ' c o n s t r a i n t s in model . '

# Read in currentChannelAssignment from OPL model ' s output

def getCurrentChannelAssignment ( ) :

currentChannelAssignment = np . empty ( g loba lVars . numberUnits , dtype=np . in t32 ) #

Current channel assignment so lu t i on , by un i t

theDataFrame = pd . r ead c sv ( ' oplCPModelOutput . txt ' , header=None ) # Read in us ing

pandas

for i in range (0 , g loba lVars . numberUnits ) :

currentChannelAssignment [ i ] = theDataFrame . va lue s [ i , 0 ]

return currentChannelAssignment

# Find i n f e a s i b i l i t i e s in currentChannelAssignment , and add con s t r a i n t s to

c on s t r a i n tL i s t to e l im ina t e them

def addNewConstraints ( numberChannels , r e c e i v e d I n t e r f e r e n c e , currentChannelAssignment ,

c o n s t r a i n t L i s t ) :

constrainedAssignmentsByChannel = [ [ ] for i in range (0 , numberChannels ) ] # A l i s t

o f l i s t s , where the f i r s t index i s channel and the second i s a l i s t o f un i t s

t ha t can ' t a l l be ass i gned tha t channel

counter = 0

# Loop through a l l rad ios to f i nd v i o l a t i on s , and add the un i t to l i s t

for i in range (0 , g loba lVars . numberUnits ) :

for j in range (0 , g loba lVars . numberSubUnits [ i ] ) :

i f r e c e i v e d I n t e r f e r e n c e [ counter ] > g loba lVars . maxInter f e rence [ counter ,

currentChannelAssignment [ i ] ] :

constrainedAssignmentsByChannel [ currentChannelAssignment [ i ] ] . append ( i

) # Add t h i s un i t to the l i s t o f un i t s t ha t can ' t be ass i gned

t h i s channel

counter = counter + ( g loba lVars . numberSubUnits [ i ] − j )

break

counter += 1

# Loop through a l l channels and add to constrainedAssignmentsByChannel a l l un i t s

on a v i o l a t e d channel t ha t haven ' t ye t been added

for c in range (0 , numberChannels ) :

i f len ( constrainedAssignmentsByChannel [ c ] ) > 0 : # I f there are v i o l a t i o n s on

t h i s channel , add a l l un i t s not a l ready added ( checked us ing the . count ()

method )

for i in range (0 , g loba lVars . numberUnits ) :

i f currentChannelAssignment [ i ] == c and

constrainedAssignmentsByChannel [ c ] . count ( i ) == 0 :

constrainedAssignmentsByChannel [ c ] . append ( i )

# Add o r i g i n a l packing con s t r a i n t s ( i . e . , a l l ow | S|−1 un i t s in the sub s e t S o f

uni t s , on the ass i gned (and v i o l a t e d ) channel )

for c in range (0 , numberChannels ) :

172



i f len ( constrainedAssignmentsByChannel [ c ] ) > 0 : # I f there are v i o l a t i o n s on

t h i s channel

r e s t r i c t e d U n i t L i s t = [ ] # Li s t o f c on s t r a i n t s o f un i t s on t h i s c t ha t can

' t be ass i gned t o g e t h e r

i f len ( constrainedAssignmentsByChannel [ c ] ) == 3 : # I f e x a c t l y three , add

a l l t h ree ( s ince we ' ve a l ready added a l l pa i r s )

r e s t r i c t e d U n i t L i s t . append ( constrainedAssignmentsByChannel [ c ] )

e l i f len ( constrainedAssignmentsByChannel [ c ] ) > 3 : # I f more than three ,

check f o r d i s a l l owed n−t u p l e s among the four or more un i t s

t u p l e S i z e = 3

while len ( r e s t r i c t e d U n i t L i s t ) == 0 and t u p l e S i z e <= len (

constrainedAssignmentsByChannel [ c ] ) : # Go un t i l a r e s t r i c t e d

sub s e t i s found , or t u p l e S i z e i s b i g g e r than the number o f un i t s

( in which case , t he re ' s a problem )

l i s tOfUnitCombinat ions = i t e r t o o l s . combinat ions (

constrainedAssignmentsByChannel [ c ] , t u p l e S i z e ) # Get a l l

combinations o f t u p l e S i z e among un i t s ( where order doesn ' t
matter )

for uni t in l i s tOfUnitCombinat ions : # Check i f a combination i sn '
t a l l owed ; i f so , add to l i s t

t h e L i s t = l i s t ( un i t ) # Convert t u p l e to l i s t

i f not cpUt i l . canTheseUnitsShareChannelAssignment ( t h e L i s t ) : #

I f they can ' t share

r e s t r i c t e d U n i t L i s t . append ( t h e L i s t ) # Add each un i t to the

a s soc i a t ed cons t r a in t

t u p l e S i z e += 1 # Increase t u p l e S i z e f o r next i t e r a t i o n

i f len ( r e s t r i c t e d U n i t L i s t ) == 0 :

print ' Problem : There aren ' t v i o l a t i o n s on t h i s channel . '
# Loop over a l l un i t s f o r each c o n s t r a i n t on t h i s channel and add to

c o n s t r a i n t L i s t

f o r c o n s t r a i n t in r e s t r i c t e d U n i t L i s t : # For each channel with a

c o n s t r a i n t

# Format : (X[ i ] == X[ j ] ) && (X[ j ] == X[ k ] ) => (X[ k ] != X[ l ] ) ;

theS t r ing = ' ' '
for i in range (0 , len ( c o n s t r a i n t )−2) : # Fir s t par t o f c on s t r a in t

i f i <> 0 : theSt r ing = theSt r ing + ' && '
theS t r ing = theSt r ing + ' (X[ ' + str ( c o n s t r a i n t [ i ] ) + ' ] == X[ ' +

str ( c o n s t r a i n t [ i +1]) + ' ] ) '
theS t r ing = theSt r ing + ' => (X[ ' + str ( c o n s t r a i n t [ len ( c o n s t r a i n t )

−2]) + ' ] != X[ ' + str ( c o n s t r a i n t [ len ( c o n s t r a i n t ) −1]) + ' ] ) ; '
#pr in t 'New cons t r a in t : ' + theS t r i n g

c o n s t r a i n t L i s t . append ( theSt r ing )

return c o n s t r a i n t L i s t

# Solve the cons t r a in t s a t i s f a c t i o n problem using the g iven number o f channels .

# Parameter addHigherOrder=True w i l l dynamica l ly check the t rue ( o r i g i n a l problem )

f e a s i b i l i t y o f a CP so lu t i on , add higher−order cons t ra in t s , and r e s o l v e u n t i l

i n f e a s i b l e

def s o l v eCons t r a in tSa t i s f a c t i onProb l em ( inputFileName ,

p ick ledPai rwiseConstra intsF i l eName , solut ionFi leName , numberChannels ,

addMaximumClique , addHigherOrder , maxIte rat ions ) :
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# Get a l l pa i rw i se con s t r a i n t s and add to c on s t r a i n t sL i s t

c o n s t r a i n t L i s t = [ ] # Dynamic l i s t to ho ld con s t r a i n t s as they ' re added

print ' Opening p i ck l edPa i rw i s eCons t r a in t f i l e : ' + str (

p i ck l edPa i rwi seConst ra int sF i l eName ) + ' . . . ' ,

numberPairwiseConstra ints = 0

canUnitsShareChannelAssignmentArray = calcUnitsShareChannelAssignmentArray (

p ick ledPai rwiseConstra intsF i l eName , numberUnits ) # Calcu la t e and return the

canUnitsShareChannelAssignmentArray

maximumClique = None

i f addMaximumClique :

print ' Adding maximal c l i q u e c o n s t r a i n t . . . '
maximumClique = [ ]

# Create NetworkX graph o b j e c t from pa i rw i se con s t r a i n t s

import networkx as netX

theGraph = netX . Graph ( ) # Create d e f a u l t graph

theGraph . add nodes from (range (0 , g loba lVars . numberUnits−1) ) # Add a l l un i t s as

nodes (−1 because o f how NetworkX crea t e s nodes )

for i in range ( g loba lVars . numberUnits ) :

for j in range ( g loba lVars . numberUnits ) :

i f i < j and not canUnitsShareChannelAssignmentArray [ i , j ] : theGraph .

add edge ( i , j )

# Find maximal c l i q u e s ( l a r g e s t c l i que , f o r each node ) . The b i g g e s t maximal

c l i q u e i s the maximum c l i q u e

maximalCliqueGenerator = netX . f i n d c l i q u e s ( theGraph ) # A generator o f a l l o f

the maximal c l i q u e s

maximalCl iqueList = [ ] # Copy to l i s t to work with i t

for i in maximalCliqueGenerator : maximalCl iqueList . append ( i )

[ maximumCliqueLength , maximumClique ] = max(enumerate( maximalCl iqueList ) , key

= lambda tup : len ( tup [ 1 ] ) ) # Lambda func t ion to ge t maximum c l i q u e (

b i g g e s t maximal )

print 'Maximum c l i q u e ( s i z e ' + str ( len ( maximumClique ) ) + ' ) : ' , sorted (

maximumClique )

print ' Adding pa i rw i s e i n t e r f e r e n c e c o n s t r a i n t s . . . '
for i in range (0 , g loba lVars . numberUnits ) :

for j in range (0 , g loba lVars . numberUnits ) :

i f addMaximumClique and maximumClique . count ( i ) > 0 and maximumClique .

count ( j ) > 0 : continue # These un i t s are a l ready in maximumClique ;

s k i p

e l i f not i == j and i < j : # Only l i s t pa i r s o f c on s t r a i n t s one way ,

s ince the se are allDifferent con s t r a i n t s

i f canUnitsShareChannelAssignmentArray [ i , j ] == False : # These un i t s

can ' t share a channel

numberPairwiseConstra ints += 1

c o n s t r a i n t L i s t . append ( 'X[ ' + str ( i ) + ' ] != X[ ' + str ( j ) + ' ] ; ' )

print 'Done . ' + str ( numberPairwiseConstra ints ) + ' pa i rw i s e c o n s t r a i n t s added . '

# Loop un t i l maxIterat ions , or u n t i l new lower bound found

i t e r a t i o n s = 0

isLowerBound = False
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while i t e r a t i o n s < maxIterat ions and not isLowerBound :

# Create OPL mod (model ) f i l e

i f addMaximumClique : wr i t eOp lF i l e ( c o n s t r a i n t L i s t , numberChannels ,

maximumClique )

else : wr i t eOp lF i l e ( c o n s t r a i n t L i s t , numberChannels )

print ' Running CPLEX CP Optimizer , i t e r a t i o n ' + str ( i t e r a t i o n s +1) + ' . . . '
try :

exitCode = subproces s . c h e c k c a l l ( [ 'C: / Program F i l e s /IBM/ILOG/

CPLEX Studio1262/ opl / bin / x64 win64 / oplrun ' , ' oplCPmodel . mod ' ] )

except :

print str ( numberChannels ) + ' i s i n f e a s i b l e f o r t h i s cur r ent c o n s t r a i n t

s a t i s f a c t i o n problem and e s t a b l i s h e s a lower bound ( i . e . , at l e a s t '
+ str ( numberChannels+1) + ' channe l s are r equ i r ed . Current s o l v e r

time : ' + str ( time . time ( ) − g loba lVars . g loba lStartTime )

isLowerBound = True

break # Break out o f wh i l e loop

i f exitCode == 0 :

print str ( numberChannels ) + ' i s f e a s i b l e f o r t h i s cur r ent c o n s t r a i n t

s a t i s f a c t i o n problem . '
print ' Reading in CP Optimizer s o l u t i o n to determine i f i t i s f e a s i b l e in

o r i g i n a l problem . . . '
currentChannelAssignment = getCurrentChannelAssignment ( )

numberRece ivedExcess ive Inter f e rence , r e c e i v e d I n t e r f e r e n c e = u t i l .

c a l c R e c e i v e d I n t e r f e r e n c e ( currentChannelAssignment )

i f numberRece ivedExcess ive Inter f e rence == 0 :

print 'The cur rent s o l u t i o n i s f e a s i b l e in the o r i g i n a l problem ; t h i s

may be a new optimal s o l u t i o n . Current s o l v e r time : ' + str (

time . time ( ) − g loba lVars . g loba lStartTime )

isLowerBound = True # Break out o f loop

g loba lVars . channelAssignment = currentChannelAssignment # Save

s o l u t i on

g loba lVars . numberRequiredChannels = len (np . unique ( g loba lVars .

channelAssignment ) )

u t i l . writeMOCAPSolutionFile ( so lut ionFi leName )

else :

print 'The cur rent s o l u t i o n i s NOT f e a s i b l e f o r the o r i g i n a l MO−CAP.

Current s o l v e r time : ' + str ( time . time ( ) − g loba lVars .

g loba lStartTime )

i f addHigherOrder and i t e r a t i o n s < maxIterat ions −1:

print ' Adding new c o n s t r a i n t s to pursue a MO−CAP−f e a s i b l e lower

bound . . . '
addNewConstraints ( numberChannels , r e c e i v e d I n t e r f e r e n c e ,

currentChannelAssignment , c o n s t r a i n t L i s t )

i t e r a t i o n s += 1

else :

print 'Some other e x i t code . '
print 'Done . '

The following is an example of the OPL code generated by the above Python code.
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using CP;

range u= 0 . . 1 1 7 ;

range c= 0 . . 4 5 ;

dvar int X[ u ] in c ;

{ int} maximumClique = {1 , 2 , 3} ;

s ub j e c t to {
allDifferent ( a l l ( i in maximumClique ) X[ i ] ) ;

X[ 0 ] != X [ 1 ] ;

}

execute {
var f=new I loOplOutputFi le ( ' oplCPModelOutput . txt ' ) ;

for (var i in u)

f . w r i t e l n (X[ i ] ) ;

f . c l o s e ( ) ;

}
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Appendix D: MI-CAP Clustering Code

This appendix provides partial computer code to solve the MI-CAP using the k -medoids

clustering method.

# Port ions o r i g i n a l l y based on h t t p s :// g i t hub . com/ sa l spaugh /machine learning / b l o b /

master/ c l u s t e r i n g /kmedoids . py by sa lepaugh .

# Import packages

import g loba lVars as g loba lVars # Contains g l o b a l var i a b l e s

import U t i l i t i e s as u t i l # Basic u t i l i t i e s , l i k e reading in input f i l e s and pre−
proces s ing i n t e r f e r en c e va lue s

import numpy as np

import mpmath as mp # Import mpmath l i b r a r y , f o r ab i t rary−pr e c i s i on f l o a t i n g−po in t
numbers

import sys

def a s s i g n p o i n t s t o c l u s t e r s ( medoids , d i s s i m i l a r i t y A r r a y ) : # Assign each po in t to

the c l o s e s t medoid

d i s t ance s t o medo id s = d i s s i m i l a r i t y A r r a y [ : , medoids ]

c l u s t e r s = medoids [ np . argmin ( d i s tance s to medo ids , a x i s =1) ]

c l u s t e r s [ medoids ] = medoids

return c l u s t e r s

def compute new medoid ( c l u s t e r , d i s s i m i l a r i t y A r r a y ) : # Pick and return tha t po in t in

t h i s c l u s t e r t ha t minimizes d i s t ance s ; make i t the new medoid in t h i s c l u s t e r

mask = np . ones ( d i s s i m i l a r i t y A r r a y . shape )

mask [ np . i x ( c l u s t e r , c l u s t e r ) ] = 0 .

c l u s t e r d i s t a n c e s = np .ma. masked array ( data=d i s s i m i l a r i t y A r r a y , mask=mask ,

f i l l v a l u e =10e9 )

c o s t s = c l u s t e r d i s t a n c e s .sum( a x i s =1)

return c o s t s . argmin ( a x i s =0, f i l l v a l u e =10e9 )

# Calcu la t e and return t o t a l co s t ( i . e . , t o t a l i n t e r f e r en c e ) o f t h i s assignment o f

c l u s t e r s

def calcChannelAssignmentCosts ( medoids , c l u s t e r s , d i s s i m i l a r i t y A r r a y ) :

# Create and popu la te a temporary channelAssignment array from c l u s t e r s

tempChannelAssignment = [ ]

medoidToChannel = {} # Dict ionary i nd i c a t i n g the channel assignment f o r a

p a r t i c u l a r medoid

for index , medoid in enumerate( medoids ) : medoidToChannel [ medoid ] = index #

Populate d i c t i ona ry

# Map c l u s t e r assignments to channels

for uni t in c l u s t e r s : tempChannelAssignment . append ( medoidToChannel [ un i t ] )

# Calcu la t e i n t e r f e r en c e

e x c e s s i v e I n t e r f e r e n c eC o u n t e r , r e c e i v e d I n t e r f e r e n c e = u t i l .

c a l c R e c e i v e d I n t e r f e r e n c e ( tempChannelAssignment )
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return tempChannelAssignment , ex c e s s i v e I n t e r f e r e n c e C o u n t e r , r e c e i v e d I n t e r f e r e n c e

# Run k−medoids c l u s t e r i n g algori thm , save r e s u l t to g loba lVars . channelAssignment ,

and return

def kMedoidsCluster ( d i s s i m i l a r i t y A r r a y , ava i lab leChanne l s , maxIterat ions ,

p i ck l edPa i rwi seConst ra int sF i l eName ) :

print ' Opening p i ck l edPa i rw i s eCons t r a in t f i l e : ' + str (

p i ck l edPa i rwi seConst ra int sF i l eName ) + ' . . . ' ,

canUnitsShareChannelAssignmentArray = calcUnitsShareChannelAssignmentArray (

p ick ledPai rwiseConstra intsF i l eName , numberUnits ) # Calcu la t e and return the

canUnitsShareChannelAssignmentArray

m = d i s s i m i l a r i t y A r r a y . shape [ 0 ] # number o f po in t s

best medoids = np . array ( [−1]∗ ava i l ab l eChanne l s ) # Best found s o l u t i on

b e s t c l u s t e r s = [ ] #a s s i g n p o i n t s t o c l u s t e r s ( best medoids , d i s s im i l a r i t yAr ray )

b e s t R e c e i v e d I n t e r f e r e n c e = mp. mpf ( ' i n f ' ) # Best ( l e a s t ) t o t a l r e ce i v ed

i n t e r f e r en c e thus f a r

# Loop un t i l maxI tera t ions h i t

i t e r a t i o n s = 0

while i t e r a t i o n s < maxIterat ions :

# Pick c=ava i l a b l eChanne l s random medoids .

curr medoids = np . array ( [−1]∗ ava i l ab l eChanne l s )

while not len (np . unique ( curr medoids ) ) == ava i l ab l eChanne l s :

curr medoids = np . array ( [ random . rand int (0 , m − 1) for in range (

ava i l ab l eChanne l s ) ] ) # Randomly p ick medoids

old medoids = np . array ( [−1]∗ ava i l ab l eChanne l s ) # Doesn ' t matter what we

i n i t i a l i z e t he se to .

new medoids = np . array ( [−1]∗ ava i l ab l eChanne l s )

# Loop un t i l the medoids s top updat ing or maxI tera t ions i s h i t

c l u s t e r s = a s s i g n p o i n t s t o c l u s t e r s ( curr medoids , d i s s i m i l a r i t y A r r a y ) #

Assign each po in t to c l u s t e r with c l o s e s t medoid .

while i t e r a t i o n s < maxIterat ions and not ( ( o ld medoids == curr medoids ) . a l l ( )

) :

# Update c l u s t e r medoids to be l owes t co s t po in t .

for curr medoid in curr medoids :

c l u s t e r = np . where ( c l u s t e r s == curr medoid ) [ 0 ]

new medoids [ curr medoids == curr medoid ] = compute new medoid ( c l u s t e r

, d i s s i m i l a r i t y A r r a y ) # Find tha t po in t in t h i s c l u s t e r t ha t

minimizes d i s t ance s ; make i t the new medoid in t h i s c l u s t e r

old medoids [ : ] = curr medoids [ : ]

curr medoids [ : ] = new medoids [ : ]

# Assign each po in t to c l u s t e r with c l o s e s t medoid .

c l u s t e r s = a s s i g n p o i n t s t o c l u s t e r s ( curr medoids , d i s s i m i l a r i t y A r r a y )

# Check assignment co s t s ( i . e . , i n t e r f e r en c e )
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tempChannelAssignment , ex c e s s i v e I n t e r f e r e n c e C o u n t e r , r e c e i v e d I n t e r f e r e n c e

= calcChannelAssignmentCosts ( curr medoids , c l u s t e r s ,

d i s s i m i l a r i t y A r r a y )

print ' Clus t e r i ng i t e r a t i o n ' + str ( i t e r a t i o n s +1) + ' : Received

i n t e r f e r e n c e = ' + str (mp. fsum ( r e c e i v e d I n t e r f e r e n c e ) ) + ' ; Number

r e c e i v e d e x c e s s i v e i n t e r f e r e n c e = ' + str (

e x c e s s i v e I n t e r f e r e n c e C o u n t e r )

# Save i f t h i s i s new incumbent

theSumInter f e rence = mp. fsum ( r e c e i v e d I n t e r f e r e n c e )

i f theSumInter fe rence < b e s t R e c e i v e d I n t e r f e r e n c e :

print 'New incumbent s o l u t i o n . '
best medoids = np . copy ( curr medoids )

b e s t c l u s t e r s = l i s t ( c l u s t e r s )

b e s t R e c e i v e d I n t e r f e r e n c e = theSumInter f e rence

i t e r a t i o n s += 1

# Save s o l u t i on and return

g loba lVars . channelAssignment , e x c e s s i v e I n t e r f e r e n c e C o u n t e r , r e c e i v e d I n t e r f e r e n c e

= calcChannelAssignmentCosts ( best medoids , b e s t c l u s t e r s , d i s s i m i l a r i t y A r r a y )

print ' Cal cu l a t ing number o f pa i rw i s e c o n s t r a i n t v i o l a t i o n s . . . ' ,

p a i r w i s e V i o l a t i o n s = 0

for i in range ( g loba lVars . numberUnits ) :

for j in range ( g loba lVars . numberUnits ) :

i f i > j :

i f g loba lVars . channelAssignment [ i ] == globa lVars . channelAssignment [ j ]

and canUnitsShareChannelAssignmentArray [ i , j ] == False :

p a i r w i s e V i o l a t i o n s += 1

print 'Done . '

print 'Done . F ina l c l u s t e r i n g s o l u t i o n r e c e i v e d i n t e r f e r e n c e = , ' + str (mp. fsum (

r e c e i v e d I n t e r f e r e n c e ) ) + ' , Number r e c e i v e d e x c e s s i v e i n t e r f e r e n c e = , ' + str

( e x c e s s i v e I n t e r f e r e n c e C o u n t e r ) + ' , Number pa i rw i s e v i o l a t i o n s = , ' + str (

p a i r w i s e V i o l a t i o n s )

return b e s t c l u s t e r s , best medoids
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Appendix E: MI-CAP CP Code

This appendix provides partial computer code to solve the MI-CAP using Python and

CPLEX CP Solver.

# Import packages

import g loba lVars as g loba lVars # Contains g l o b a l var i a b l e s

import U t i l i t i e s as u t i l # Basic u t i l i t i e s , l i k e reading in input f i l e s and pre−
proces s ing i n t e r f e r en c e va lue s

import c p l e x U t i l i t i e s as cpUt i l # CPLEX u t i l i t i e s , l i k e adding pa i rw i se con s t r a i n t s

and check ing i f un i t s can be on same channel

import numpy as np

from os import path # For check ing i f a f i l e e x i s t s

import mpmath as mp # Import mpmath l i b r a r y , f o r ab i t rary−pr e c i s i on f l o a t i n g−po in t
numbers

import time # For measuring e lapsed proces s ing time

import p i c k l e # For sav ing p i c k l e d array

import pandas as pd # For import ing . csv f i l e s ( f a s t e r than openpyx l )

import subproces s # For running OPL model as a subprocess

# Write the cons t r a in t s a t i s f a c t i o n problem in OPL format , wi th the g iven

c on s t r a i n tL i s t

def wr i t eOp lF i l e ( c o n s t r a i n t L i s t , numberChannels , numberPairwiseConstraints ,

maxPenalty , cpTimeLimit ) :

print ' Creat ing OPL mod f i l e . . . ' ,

modelFi le = open( ' oplCPmodel . mod ' , 'wb ' )

modelFi le . wr i t e ( ' us ing CP;\n ' )

modelFi le . wr i t e ( ' range u= 0 . . ' + str ( g loba lVars . numberUnits−1) + ' ;\n ' ) # Minus

one b/c we index by zero

modelFi le . wr i t e ( ' range c= 0 . . ' + str ( numberChannels−1) + ' ;\n ' ) # Minus one b/c

we index by zero

modelFi le . wr i t e ( 'dvar i n t X[ u ] in c ;\n ' )

modelFi le . wr i t e ( ' range numberPenalt ies =0. . ' + str ( numberPairwiseConstraints −1) +

' ;\n ' ) # Number o f pa i rw i se p ena l t i e s

modelFi le . wr i t e ( ' range penaltyRange =0. . ' + str ( maxPenalty ) + ' ;\n ' ) # Range o f

pena l t y va lue s

modelFi le . wr i t e ( 'dvar i n t pena l ty [ numberPenalt ies ] in penaltyRange ;\n ' )

modelFi le . wr i t e ( 'execute{ \n ' )

modelFi le . wr i t e ( ' cp . param . timeLimit= ' + str ( cpTimeLimit ) + ' ;\n ' )

modelFi le . wr i t e ( ' }\n ' )

modelFi le . wr i t e ( ' \n ' )

modelFi le . wr i t e ( ' minimize sum( j in numberPenalt ies ) pena l ty [ j ] ; \ n ' )

modelFi le . wr i t e ( ' s ub j e c t to {\n ' )

# Write a l l c on s t r a i n t s

for i in c o n s t r a i n t L i s t :

modelFi le . wr i t e ( str ( i ) + ' \n ' )
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modelFi le . wr i t e ( ' }\n ' ) # Close con s t r a i n t s b l o c k

modelFi le . wr i t e ( 'execute {\n ' )

modelFi le . wr i t e ( 'var f=new I loOplOutputFi le ( ' oplCPModelOutput . txt ' ) ;\n ' )

modelFi le . wr i t e ( ' f . w r i t e l n ( cp . getObjValue ( ) ) ;\n ' )

modelFi le . wr i t e ( ' f o r (var i in u) \n ' )

modelFi le . wr i t e ( ' f . w r i t e l n (X[ i ] ) ;\n ' )

modelFi le . wr i t e ( ' f o r (var i in numberPenalt ies ) \n ' )

modelFi le . wr i t e ( ' f . w r i t e l n ( pena l ty [ i ] ) ;\n ' )

modelFi le . wr i t e ( ' f . c l o s e ( ) ;\n ' )

modelFi le . wr i t e ( ' }\n ' )

modelFi le . c l o s e ( )

print 'Done . ' + str ( len ( c o n s t r a i n t L i s t ) ) + ' c o n s t r a i n t s in model . '

# Read in currentChannelAssignment from OPL model ' s output

def getCurrentChannelAssignment ( numberPairwiseConstra ints ) :

currentChannelAssignment = np . empty ( g loba lVars . numberUnits , dtype=np . in t32 ) #

Current channel assignment so lu t i on , by un i t

theDataFrame = pd . r ead c sv ( ' oplCPModelOutput . txt ' , header=None ) # Read in us ing

pandas

ob j e c t i veVa lue = theDataFrame . va lue s [ 0 , 0 ] # Number o f pa i rw i se v i o l a t i o n s ( which

i s the o b j e c t i v e funct ion , assuming unweighted )

for i in range (0 , g loba lVars . numberUnits ) : currentChannelAssignment [ i ] =

theDataFrame . va lue s [ i +1 ,0] # Get the channel assignment

numberPairwiseVio lat ions = 0

for i in range (0 , numberPairwiseConstra ints ) : # Get the number o f pa i rw i se

v i o l a t i o n s

i f theDataFrame . va lue s [ i+1+globa lVars . numberUnits , 0 ] >= 1 :

numberPairwiseVio lat ions += 1

return objec t iveVa lue , numberPairwiseVio lat ions , currentChannelAssignment

# Solve the MI−CAP opt imal s o f t arc cons i s t ency problem using the g iven number o f

channels . p i ck l edPairwisePena l t i e sFi l eName i s p i c k l e d array o f p e n a l t i e s f o r each

pa i rw i se con s t r a in t v i o l a t i o n .

def s o l v eCons t r a in tSa t i s f a c t i onProb l em ( inputFileName ,

p ick ledPai rwiseConstra intsF i l eName , numberChannels , cpTimeLimit ,

p i ck l edPa i rw i s ePena l t i e sF i l eName = None ) :

# Get a l l pa i rw i se con s t r a i n t s and add to c on s t r a i n t sL i s t

c o n s t r a i n t L i s t = [ ] # Dynamic l i s t to ho ld con s t r a i n t s as they ' re added

print ' Opening p i ck l edPa i rw i s eCons t r a in t f i l e : ' + str (

p i ck l edPa i rwi seConst ra int sF i l eName ) + ' . . . ' ,

numberPairwiseConstra ints = 0

canUnitsShareChannelAssignmentArray = u t i l . calcUnitsShareChannelAssignmentArray (

p ick ledPai rwiseConstra intsF i l eName , g loba lVars . numberUnits ) # Calcu la t e and

return the canUnitsShareChannelAssignmentArray

print ' Cal cu l a t ing pa i rw i s e c o n s t r a i n t v i o l a t i o n p e n a l t i e s . . . ' ,

penaltyArray = np . ones ( ( g loba lVars . numberUnits , g loba lVars . numberUnits ) , dtype=np .

in t32 ) # I n i t i a l i z e to zero

i f not p i ck l edPa i rw i s ePena l t i e sF i l eName i s None : # Use p i c k l e d pena l t y f i l e

i f path . i s f i l e ( ' obj / '+ pick l edPa i rw i s ePena l t i e sF i l eName + ' . pkl ' ) : # Load

p i c k l e d pa i rw i se cons t r a in t v i o l a t i o n p ena l t i e s

with open( ' obj / ' + pick l edPa i rw i s ePena l t i e sF i l eName + ' . pkl ' , ' rb ' ) as f :
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penaltyArray = p i c k l e . load ( f )

print 'Done . '
else :

print ' Problem : The p i ck l edPa i rw i s ePena l t i e sF i l eName f i l e does not e x i s t .

'
return

print 'Done . '

print ' Adding pa i rw i s e i n t e r f e r e n c e c o n s t r a i n t s . . . '
numberPairwiseConstra ints = 0

maxPenalty = 0

for i in range (0 , g loba lVars . numberUnits ) :

for j in range (0 , g loba lVars . numberUnits ) :

i f not i == j and i < j : # Only l i s t pa i r s o f c on s t r a i n t s one way

i f canUnitsShareChannelAssignmentArray [ i , j ] == False : # These un i t s

can ' t share a channel

c o n s t r a i n t L i s t . append ( ' penal ty [ ' + str ( numberPairwiseConstra ints )

+ ' ] == ' + str ( penaltyArray [ i , j ] ) + ' ∗ (X[ ' + str ( i ) + ' ]

== X[ ' + str ( j ) + ' ] ) ; ' )

numberPairwiseConstra ints += 1

i f penaltyArray [ i , j ] > maxPenalty : maxPenalty = penaltyArray [ i , j ]

print 'Done . ' + str ( numberPairwiseConstra ints ) + ' pa i rw i s e c o n s t r a i n t s added . '

# Create OPL mod (model ) f i l e

wr i t eOp lF i l e ( c o n s t r a i n t L i s t , numberChannels , numberPairwiseConstraints ,

maxPenalty , cpTimeLimit )

print ' Running CPLEX CP Optimizer . . . '
try :

exitCode = subproces s . c h e c k c a l l ( [ 'C: / Program F i l e s /IBM/ILOG/CPLEX Studio1262

/ opl / bin / x64 win64 / oplrun ' , ' oplCPmodel . mod ' ] )

except :

print 'CPLEX CP Optimizer e r r o r . '

i f exitCode == 0 :

print ' Reading in CP Optimizer s o l u t i o n . . . '
objec t iveVa lue , numberPairwiseVio lat ions , currentChannelAssignment =

getCurrentChannelAssignment ( numberPairwiseConstra ints )

g loba lVars . channelAssignment = currentChannelAssignment # Save s o l u t i on

g loba lVars . numberRequiredChannels = len (np . unique ( g loba lVars .

channelAssignment ) )

numberRece ivedExcess ive Inter f e rence , r e c e i v e d I n t e r f e r e n c e = u t i l .

c a l c R e c e i v e d I n t e r f e r e n c e ( currentChannelAssignment )

print 'Done . CP s o l u t i o n o b j e c t i v e va lue = ' + str ( ob j e c t i veVa lue ) + ' ;

number o f pa i rw i s e c o n s t r a i n t v i o l a t i o n s = ' + str (

numberPairwiseVio lat ions ) + ' ; r e c e i v e d i n t e r f e r e n c e = ' + str (mp. fsum (

r e c e i v e d I n t e r f e r e n c e ) ) + ' ; Number r a d i o s r e c e i v e d e x c e s s i v e i n t e r f e r e n c e

= ' + str ( numberRece ivedExces s ive Inte r f e rence )

else :

print 'Some other e x i t code . '

The following is an example of the OPL code generated by the above Python code.
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using CP;

range u= 0 . . 1 1 7 ;

range c= 0 . . 3 4 ;

dvar int X[ u ] in c ;

range numberPenalt ies =0 . . 3748 ;

range penaltyRange = 0 . . 1 ;

dvar int penal ty [ numberPenalt ies ] in penaltyRange ;

execute{
cp . param . timeLimit =500;

}

minimize sum( j in numberPenalt ies ) pena l ty [ j ] ;

s ub j e c t to {
penal ty [ 0 ] == 1 ∗ (X[ 0 ] == X[ 1 ] ) ;

}

execute {
var f=new I loOplOutputFi le ( ' oplCPModelOutput . txt ' ) ;

f . w r i t e l n ( cp . getObjValue ( ) ) ;

for (var i in u)

f . w r i t e l n (X[ i ] ) ;

for (var i in numberPenalt ies )

f . w r i t e l n ( pena l ty [ i ] ) ;

f . c l o s e ( ) ;

}
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Appendix F: MC-CAP-T Code

This appendix provides partial computer code to solve the MC-CAP-T Decomposition For-

mulation using Python.

# Import packages

import g loba lVars as g loba lVars # Contains g l o b a l var i a b l e s

import U t i l i t i e s as u t i l # Basic u t i l i t i e s , l i k e reading in input f i l e s and pre−
proces s ing i n t e r f e r en c e va lue s

import numpy as np

import math

import munkres # Munkres / Hungarian algori thm , f o r s o l v i n g the assignment problem in

O(nˆ3) time

import sys

from os import path # For check ing i f a f i l e e x i s t s

# Solve min−cos t co l o r i n g problem using assignment problem formula t ion ( to support MC

−CAP−T) using Munkres code . Finds the l e a s t−cos t c o l o r i n g over time , g iven MO−
CAP so l u t i o n s at each t imeStep

def solveMinCostColoringAssignmentUsingMunkres ( numberTimeSteps , na iveSolut ionFi leName

= None ) :

# Id en t i f y groups o f un i t s ( i . e . , un i t s ass i gned the same channel , f o r each time

s t ep )

print ' I d e n t i f y i n g groups o f un i t s . . . ' ,

g roupLis t = u t i l . getGroupList ( g loba lVars . channelAssignment ) # Li s t o f l i s t s .

F i r s t index i s t imeStep ; Second i s group number in t ha t t imeStep ( not the

same th ing as channel number )

numberGroups = np .max( g loba lVars . numberRequiredChannels )

print 'Done . '

# Calcu la t e the cos t o f a naive co l o r i n g ( i . e . , j u s t c o l o r i n g in the order o f

groups as they appear )

print ' Cal cu l a t ing co s t o f na ive c o l o r i n g . . . '
naiveColor ingCost = u t i l . ca lcNaiveColorCost ( groupList , na iveSolut ionFi leName )

print 'Done . Naive c o l o r i n g co s t i s ' + str ( na iveColor ingCost )

# Calcu la t e the a s s o c i a t i on cos t s , i . e . , the cos t o f a s s o c i a t i n g g with h at

t imeStep t (h i s at t imeStep t )

print ' Cal cu l a t ing c o s t s o f a s s o c i a t i n g groups at each timeStep . . . ' ,

ass ignmentCosts = np . z e r o s ( ( numberGroups , numberGroups , numberTimeSteps−1) , dtype=

np . in t32 ) # Costs o f a s s o c i a t i n g g at t wi th h at t imeStep t+1

for t in range (0 , numberTimeSteps−1) : # Loop through each t imeStep in groupLis t

for g in range ( numberGroups ) : # Get each group from current t imeStep

for h in range ( numberGroups ) : # Get each group from next t imeStep

newUnitList = [ ] # Units t ha t are in h but not g

i f len ( groupLis t [ t ] ) > g and len ( groupLis t [ t +1]) > h : # I f r e a l (non−
v i r t u a l ) groups e x i s t at t and t+1, count a l l new un i t s in t+1

for theUnit in groupLis t [ t +1] [ h ] : # For each un i t in h

i f groupLis t [ t ] [ g ] . count ( theUnit ) == 0 : newUnitList . append (

theUnit ) # I f in h but not p r e v i ou s l y in g , count i t
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e l i f len ( groupLis t [ t ] ) <= g and len ( groupLis t [ t +1]) > h : # I f r e a l (non−
v i r t u a l ) groups e x i s t only at t +1, count a l l un i t s

for theUnit in groupLis t [ t +1] [ h ] : newUnitList . append ( theUnit ) # Count

eve ry th ing in h

i f len ( newUnitList ) > 0 : # I f new un i t s are added at t+1, count cos t

co s t = 0 # Cost o f a s s o c i a t i n g g at t wi th h at time t+1

for theUnit in newUnitList : c o s t = cos t + globa lVars . numberSubUnits [

theUnit ]

ass ignmentCosts [ g , h , t ] = co s t

print 'Done . '

# Calcu la t e group assignments

print ' Cal cu l a t ing group ass ignments over a l l t imeSteps us ing Munkres / Hungarian

a lgor i thm . . . '
groupAssignment = np . empty ( ( numberGroups , numberTimeSteps ) , dtype=np . in t32 ) #

Ind i ca t e s assignment o f group g ( f i r s t index ) at time t ( second index ) to a

group h at t+1 ( the va lue at [ g , t ] )

groupChannelAssignment = np . empty ( ( numberGroups , numberTimeSteps ) , dtype=np . in t32

) # Actual channel number to as s i gn to group g ( f i r s t index ) at time t (

second index )

t o ta lCos t = 0

channel = 0

for group in range ( numberGroups ) : # Assign channel numbers f o r f i r s t t imeStep

groupChannelAssignment [ group ] [ 0 ] = group

for g , group in enumerate( groupLis t [ 0 ] ) : # Assign channel numbers to un i t s f o r

f i r s t t imeStep

for uni t in group : g loba lVars . channelAssignment [ un i t ] [ 0 ] =

groupChannelAssignment [ g ] [ 0 ]

g loba lVars . numberRequiredChannelChanges . append (0) # No channel changes requ i red

to ge t to t imeStep 0

for t in range (0 , numberTimeSteps−1) : # Loop through each t imeStep to c a l c u l a t e

co s t o f going from g ( at t ) to h ( at t+1)

costMatr ix = [ ] # Reset

costMatr ix = np . copy ( ass ignmentCosts [ : , : , t ] ) . t o l i s t ( ) # Create cos tMatr ix f o r

Munkres a lgor i thm (Munkres doesn ' t work with arrays , j u s t l i s t s )

m = munkres . Munkres ( ) # Create Munkres ins tance

output Ind i c e s = m. compute ( costMatr ix ) # Solve assignment problem using

Munkres

t imeStepCost = 0

for g , h in output Ind i c e s : # Loop through output Ind ices , which i n d i c a t e s

assignment o f g to h

co s t = costMatr ix [ g ] [ h ]

t imeStepCost += cos t

groupAssignment [ g ] [ t ] = h # Record assignments

i f len ( groupLis t [ t +1]) > h : # I f h i s a r e a l group o f un i t s at t +1,

as s i gn channel number to each un i t in group h at t+1 ( i . e . , ' carry
forward ' channel assignment a long path )

for uni t in groupLis t [ t +1] [ h ] : g loba lVars . channelAssignment [ un i t ] [ t

+1] = groupChannelAssignment [ g ] [ t ]

groupChannelAssignment [ h ] [ t +1] = groupChannelAssignment [ g ] [ t ] # Save

channel number f o r next t imeStep
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print ' Cost from timeStep ' + str ( t ) + ' to timeStep ' + str ( t +1) + ' i s : ' +

str ( t imeStepCost )

g loba lVars . numberRequiredChannelChanges . append ( timeStepCost )

to ta lCos t += timeStepCost

# Print and save r e s u l t s

print 'Done . ' + str ( t o ta lCos t ) + ' r a d i o s r e q u i r e channel changes over a l l

t imes teps . '
percentageFewer = 0

i f naiveColor ingCost == 0 : percentageFewer = 0

else : percentageFewer = ( na iveColor ingCost − t o ta lCos t ) / f loat ( na iveColor ingCost )

print ' Naive c o l o r i n g co s t i s ' + str ( na iveColor ingCost ) + ' . Optimizat ion

r e q u i r e s ' + str ( percentageFewer ) + ' percent fewer channel changes . '
return ' f e a s i b l e '
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