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CLASSIFICATION AND PREDICTION OF ANTIMICROBIAL PEPTIDES USING N-
GRAM REPRESENTATION AND MACHINE LEARNINIG 
 
Manal Othman, Ph.D. 
 
George Mason University, 2020 
 
Dissertation Director: Dr. Iosif Vaisman 
 
 
 
Current antibiotic treatments for infectious diseases are rapidly losing effectiveness, as the 

organisms they target are developing drug resistance over time. In the United States alone 

antibiotic-resistant bacterial infections annually result in more than 35,000 deaths, and 

much higher morbidity rates   A promising alternative to the current antibiotic treatments 

is antimicrobial peptides (AMPs), short strings of amino acid residues that are able to 

inhibit the propagation of pathogens. A problem of correctly identifying AMPs based on 

their sequence features remains a subject of active investigations. In this dissertation, we 

successfully explored many features of AMP sequences using reduced amino acid 

alphabets and machine learning algorithms. Sequence patterns and sequence composition 

were represented by vectors of N-gram frequencies, where N-grams are substrings of 

length N. Machine learning (ML) models were used to differentiate between AMPs and 



xv 

 

non-AMPs, and to classify AMPs based on target pathogen class. These models 

demonstrated performance comparable or exceeding many states of the art models based 

on more complex peptide descriptors.  Peptide representation based on reduced alphabets 

and N-gram frequencies can be used for design of novel AMP for targeting specific 

pathogens, which may provide a potential pathway for alternatives to antibiotic treatments. 

This work opens opportunities for collaboration with the wet lab researchers who can test 

the designed AMPs in experimental setting. N-gram a new publicly available application 

created for the peptide representation using N-grams and reduced amino acid alphabets is 

available at http://www.binf.gmu.edu/mothman/N-gram-Classification-Application/



1 

 

 

Chapter 1: Introduction 

1.1 The Antibiotic Resistance Problem 

Antibacterial resistance is one of the most serious public health threats which is increasing 

with the proliferation of drug-resistant bacteria. A related and even more serious problem 

of multidrug-resistant pathogens  is linked to microorganisms which developed resistance 

to different types of antibiotics. The fast appearance of resistance to antibiotics is occurring 

worldwide, jeopardizing the therapeutic ability of antibiotics that have transformed modern 

medicine and protected millions of lives (Ventola, 2015). 

The antibiotics age started in 1928 by Alexander Fleming’s discovery of penicillin. 

. Penicillin was successfully used to control the bacterial infections among the soldiers 

during the World War II (Ventola, 2015). However, soon thereafter penicillin resistance 

became a huge medical problem. Lately, other front-line drugs have begun to be ineffective 

against bacteria such as methicillin-resistant staphylococcus aureus (MRSA) and 

carbapenem-resistant enterobacteriaceae (CRE). 

Many common medical procedures such as cancer chemotherapy and different 

types of surgery become significantly riskier without effective antimicrobial medications. 

According to the US Centers for Disease Control (CDC), the mortality rates due to 

multidrug-resistant bacterial infections are growing. Each year, more than 63,000 patients 
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in the US die from hospital-acquired bacterial infections, including 35,000 deaths from 

antibiotic-resistant infections. More than 2.8 million people in the U.S. are diagnosed with 

antibiotic-resistant infections every year ( CDC, 2019.; Magana et al., 2020). 

The antibiotic resistance crisis has been exacerbated by the misuse and overuse of 

antibiotics, as well as by lack of new drug development by the pharmaceutical industry 

(Aminov, 2010). Due to this problem, only a few drugs show the effectiveness of treating 

some of the opportunistic infections. However, some of these drugs have the disadvantage 

of toxicity, such as amphotericin B, that could limit patients from receiving other 

treatments with toxic medications (Amaral et al., 2012). Coordinated efforts to reinvigorate 

medical research, implement new strategies for drug discovery, and pursue steps to control 

this crisis are badly needed. 

Nowadays, with the increase of bacterial resistance and spreading of infectious 

diseases becoming potential threats to humans, the discovery of more antimicrobial 

peptides (AMPs) or designing peptide from scratch (de novo) have emerged as a promising 

interest area in antibiotic research to overcome this crisis. For this reason, AMPs show the 

potential to be used as bactericidal and antifungal drugs and how they can be successfully 

used to fight multi-drug resistant bacteria ( Magana et al., 2020). 

The development of microbial drug resistance is challenging for the researchers 

who were working on the design of new anti-pathogenic drugs. This kind of drug is 

presented in almost all living organisms as a part of their innate non-specific immune 

system; AMPs are much valued as lead compounds for the invention of human therapeutics 
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to stop the development of antibiotic drug resistance. As drugs, AMPs display unique 

characteristics like, low toxicity, high biological activity, and specificity, which makes 

them attractive therapeutic agents (Phoenix et al., 2013a). This dissertation supports these 

efforts by using computational study for classification and prediction of these naturally 

occurring AMPs. The work described in this thesis has a potential to assist in discovering 

novel treatments and to help in AMP design or modification in wet lab research against 

multi-drug-resistant bacteria (Magana et al., 2020). 

1.2 The History of Antimicrobial Peptides 

A peptide is a short chain of amino acids. There are 20 naturally occurring amino acids, 

and they can be combined into an enormous variety of different molecules. The amino 

acids are connected in a sequence by peptide bonds. Proteins are long molecules made up 

of multiple peptide subunits (polypeptides). Historically AMPs have been referred to as 

cationic host defense peptides, anionic antimicrobial peptides/proteins, cationic 

amphipathic peptides, cationic AMPs, host defense peptides, and α-helical AMP. Unlikely 

antibiotics that target particular cellular activities (e.g., synthesis of protein, cell wall, or 

DNA), the AMPs target is the lipopolysaccharide layer of the cell membrane, which is 

universal in the microorganisms. Having low anionic charge and a high level of cholesterol 

puts eukaryotic cells out of the target range of many AMPs (Bahar & Ren, 2013). 

AMPs first became a research interest in the middle decades of the twentieth 

century. It starts with the examination of cecropins from magainins from frogs and moths. 
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At the end of the 1920s, the first AMP lysozyme was discovered by Alexander Fleming as 

mentioned above. In 1928, he discovered penicillin. Then, in 1939, Dubos had been 

identified the AMPs in prokaryotic cells. This extract was showed to protect mice from 

pneumonia infection. A year after, Hotchkiss and Dubos identified gramicidins that 

isolated from Bacillus Brevis and were seen to have activity against a wide range of gram-

positive bacteria in vitro and in vivo (Bahar & Ren, 2013). Despite some reported toxicity 

related to an intraperitoneal application, gramicidins were later proved to use successfully 

to heal infected wounds on the guinea-pig skin, showing their therapeutic potential for 

clinical use. Gramicidins were the first AMPs to be commercially manufactured as 

antibiotics. 

In 1940, along with Fleming, Ernst Chain and Howard Florey started a successful 

therapeutic use of penicillin, and for this discovery, these three men shared Nobel prize in 

medicine (Gaynes, 2017). In the following year, tyrocidine was discovered to be effective 

against both gram-positive and gram-negative bacteria and exhibit to be toxic to human 

blood cells. At the same time, purothionin was isolated from a plant Triticumaestivum and 

found effective against several pathogenic bacteria and fungi (Bahar & Ren, 2013). 

The appearance of penicillin and streptomycin started the “Golden Age of 

Antibiotics”, which led to a quick loss of interest in the therapeutic of natural antibiotics 

as lysozyme and the consequence of this immune defense strategy (Gaynes, 2017).  

Though, in 1942, the antimicrobial substance had been found in wheat flour that was 

isolated from Triticum aestivum (wheat endosperm) and worked as a growth inhibitor of 
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specific phytopathogens, such as Xanthomonas campestris and Pseudomonas 

solanacearum (Gaynes, 2017). By 1956, defensin appeared as first the AMP originated 

from an animal which isolated from rabbit leukocytes. After that, lactoferrin from cow 

milk, bombinin from epithelia, and AMPs in human leukocytes in their lysosomes were 

reported. 

These types of natural peptides play vital roles in the modulation of both the innate 

and adaptive immune systems, and the ability to promote and suppress the inflammation 

response to microbial infection. A few years later, in the 1960s, the scientist starts realizing 

that the “Golden Age of Antibiotics” had finished and with the appearance of multidrug-

resistant microbial pathogens, and an awakened interest in host defense molecules was 

prompted (Phoenix et al., 2013b). In the late 1980s, numerous researchers described several 

AMPs from leukocytes as (α-defensins) from humans and rabbits (Gaynes, 2017).   

Conversely, after the 1980s, the number of AMPs has burgeoned to over 2000 with 

representatives in almost all eukaryotic organisms (Bahar & Ren, 2013). In previous days 

when the number of AMPs was limited, these AMPs were writing in review articles. With 

a fast increase in the number of such AMPs, it became unreasonable to continue to do them 

manually. As a result, several databases have been established to categorize these peptides. 

Recently, these peptides were sequenced, characterized, and renamed as the more familiar 

“cecropins”, thus representing the first major α-helical AMPs to be reported.  

Since the 1980s, computational quantitative structure-activity relationships 

(QSARs) models for peptides have been used as prediction and sequence optimization for 
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some biological activities. By 1990s, the artificial neural networks (ANN) as machine 

learning (ML) methods substituted the traditional QSAR models. Nowadays, a 

computational design approach that is joining a sophisticated activity estimator with a 

stochastic optimization technique (Fjell et al., 2011). Evolutionary algorithms, evolution 

strategies, and genetic algorithms have been used to search for peptides with improved 

activity in silico through consecutive generations of mutations, deletions and sequence 

shuffling. 

1.3 Antimicrobial Peptides (AMPs) 

Many studies indicated that AMPs exist in nearly all multicellular organisms, see figure 

1.1. These peptides have been known at most sites of the human body, usually exposed to 

microbes like the skin mucosae, and are produced by some blood cell types, involving 

platelets, neutrophils, and eosinophils. 
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Figure 1.1: Sources of antimicrobial peptides (Wang, 2013)  

 

 
AMPs demonstrate the potent killing of a wide range of microorganisms such as 

gram-positive, gram-negative bacteria, viruses, and fungi. These AMPs serve as a first-line 

defense system that is existing constitutively, but it may increase with injury and 

inflammation. Besides, AMPs act beyond the first-line defense system and have vital 

interactions with host adaptive immune responses and repair. 

 AMPs are a group of molecules that form a significant part of the innate immune 

system. AMPs are small oligopeptides, cationic or anionic, amphipathic molecules 

(hydrophobic and hydrophilic regions) of variable amino acid composition that enables the 

particle to be soluble in aqueous environments and enter lipid-rich membranes (Peters et 
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al., 2010). The length of AMPs ranges from (five to over a hundred amino acid residues) 

and can be found through all classes of life, including bacteria, fungi, plants, vertebrates, 

and invertebrates. These peptides have a broad spectrum of targeted organisms, such as 

viruses and parasites. New synthetic peptides are created in silico using alternating 

variation selection operators and ML model that guides the design of sequence space that 

include residue sequences with a higher biological activity prediction (Gaynes, 2017). 

1.4 Structure of AMPs: 

Most AMPs can be characterized based on their secondary structures as one of the 

following four types: 

1. β-sheet peptides are composed of at least two β-strands with disulfide bonds 

between these strands. 

2. α-helix peptides: In α-helix structures, the distance between two adjacent amino 

acids is around 0.15 nm. 

3. Extended peptides.  

4. Loop peptides. 
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α-helix and β-sheet structures are more common among these structural groups, while 

α-helical structure AMPs are the most studied to date. Most AMPs relate to one of the 

above four classes conversely some AMPs do not relate to any of these groups. Some 

AMPs include two different structural segments. Also, many peptides make their active 

structure only when they interact with the membranes of target cells. Similarly, they alter 

its conformation site during interaction with DNA (Bahar & Ren, 2013). 

1.5 Major Categories of AMPs: 

1. Antibacterial Peptides (ABPs): ABPs are the most studied AMPs to date, and 

most of them are cationic, which target bacterial cell membranes and cause a 

Figure 1.2 Example of structural differences of the four classes of antimicrobial 
peptides.  
(A) α-helical peptides, (B) peptides composed of a series of β -sheets, (C) extended 
helices peptides, and (D) loops peptides (Peters, Shirtliff, & Jabra-Rizk, 2010). 
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breakdown of the lipid bilayer structure or by inhibiting some vital pathways inside 

the cell such as protein synthesis and DNA replication. Most of these AMPs are net 

positive charge (to enhance interaction with anionic lipids and other bacterial 

targets), hydrophobicity (for membrane insertion), and flexibility (to allow the 

peptide to switch from rest conformation to membrane-interacting conformation). 

There are many ABPs that do not fit into the simplified four structural 

classifications, as mentioned above. For instance, many bacterial peptides have two 

domains, one of which is α-helical, while the other has a β-structure, e.g., bovine 

neutrophil indolicidin (Jenssen et al., 2006). Some of the certain AMPs have been 

shown the ability to kill antibiotic-resistant bacteria. For instance, a methicillin 

resistant staphylococcus aureus (MRSA) strain was described to be sensitive to 

nisin (an AMP), while it is resistant to vancomycin (an antibiotic). Buforin, 

drosocin, pyrrhocoricin, and apidaecin are examples of ABPs (Bahar & Ren, 2013). 

2. Antiviral Peptides (AVPs): AVPs from all four structural classes of the cationic 

host defense peptides have displayed the ability to inhibit viral infection. The 

spectra of viruses that are affected mainly enveloped DNA and RNA viruses, except 

for non-enveloped adenovirus, feline calici virus, and echovirus (Jenssen et al., 

2006). AVPs are often highly cationic and amphiphilic. The antiviral activity works 

by neutralizing viruses by integrating into the viral envelope and cause membrane 

weakness, rendering the viruses unable to infect the host cell, and reduce the 

binding of viruses to the membrane. Also, some of the antiviral AMPs can stop 

viral particles from entering host cells by inhibiting specific receptors on 
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mammalian cells. Also, these AVPs able to cross the cell membrane, and locate in 

the cytoplasm and organelles and change the gene expression profile of the host 

cells to support the host defense system fighting viruses or block their gene 

expression. Example of AVPs: α-helical AVPs magainins, dermaseptin, and 

melittin, β-sheet peptides such as defensins, tachyplesin and protegrins, β-turn 

peptide as lactoferricin. However, it seems to be impossible to predict antiviral 

activity based on peptide’s secondary structures (Bahar & Ren, 2013). 

3. Antifungal Peptides (AFPs): To our knowledge of AFPs has accelerated in recent 

years, and the numbers of known AFPs increase. Peptides with mainly antifungal 

activity, tend to be rich in neutral and polar amino acids, such as many of those 

isolated from plants (Jenssen et al., 2006). AFPs can kill fungi by targeting either 

the cell walls or intracellular components. This binding ability helps AFPs to target 

fungal cells efficiently. Cell wall targeting-antifungal kill the target cells by 

interrupting the fungal membranes, by rising permeability of the plasma membrane, 

or by creating pores directly. These types of peptides have members from different 

sequence and structure classes such as α-helical (D-V13K and P18), β-sheet 

(defensins and a coleopteran), and extended (indolicin) (Bahar & Ren, 2013). 

4. Antiparasitic Peptides (APPs): APPs are a smaller group compared to the other 

three previous classes. APPs kill cells by directly interacting with the cell 

membrane. The first antiprotozoan peptide is magainin, which can kill by swelling 

and eventual bursting of Paramecium caudatum. Recently, a synthetic peptide was 

developed for treating naturally acquired canine leishmaniasis, and it is shown to 
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be safe and effective (Jenssen et al., 2006). It looks likely that antiprotozoan activity 

it may be dependent on peptide motifs basically different from those that needed 

for bacterial, viral, and fungal activities (Bahar & Ren, 2013). 

1.6 Mechanism of Antimicrobial Activity 

AMPs are a common defense system of almost all forms of life. The importance of 

microbial activities in contributing to host defense may change between different sites 

within a distinct organism and among various kinds of organisms (Jenssen et al., 2006). 

The molecular mechanism of membrane permeation different from peptide to other 

depending on several factors, such as the amino acid sequence, peptide concentration, and 

membrane lipid composition (Jenssen et al., 2006). Despite their vast diversity, most AMPs 

work straight against microbes through a mechanism involving: 

1- Membrane integrity disruption by interaction with the negative charge of the cell 

membrane. 

2- Pore formation, which permitting the efflux of vital nutrients and ions. 

3- Inhibiting proteins, RNA, and DNA synthesis. 

4- Inhibition of cell wall biosynthesis. 

5- Interacting with specific intracellular targets (Bahar & Ren, 2013). 

Naturally, an AMP is only effective against one type of microorganism, for example, 

bacteria or viruses. Some AMPs are recognized to have different mechanisms against 
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various types of microorganisms. For instance, indolicidin can kill; 1) fungi by destructive 

of the cell membrane, 2) bacteria, e.g., E. coli by inhibiting DNA synthesis and, 3) displays 

anti-HIV activities by inhibiting HIV-integrase. In contrast, some AMPs have the same 

way of killing action for different types of cells. For instance, PMAP-23 can kill parasites 

and fungi by creating pores in their cell walls (Bahar & Ren, 2013). 

Most membrane-active AMPs are amphipathic (cationic and hydrophobic faces) to 

ensure the electrostatic interaction with the negatively charged cell membrane, while the 

hydrophobic face helps insertion of AMP molecule into the cell membrane. These 

interactions with cell membrane typically depend on cationic state and hydrophobicity of 

the AMP (Bahar & Ren, 2013). 

Recent studies were found that some of the AMPs start mechanism of killing by 

membrane permeabilization at concentrations lower than their minimum inhibitory 

concentrations (MICs), while others could start at concentrations higher than their MICs. 

However, some AMPs can kill their target cells without affecting membrane 

permeabilization by interacting with targets inside the cells. Also, some AMPs can also 

stop the proteases of microbes. Interestingly, there are some AMPs can only kill cells at 

specific growth stages, while others have multiple targets. Instead, the same AMP can 

trigger an autolysin protein inside the target cells, causing the autolysis of the cell (Bahar 

& Ren, 2013). 

These features, merged with the broad spectrum of activity and the short interaction 

time required to stimulate killing, have led to the consideration of AMPs as exceptional 
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candidates for development as novel therapeutic agents. Consequently, insights into the 

mechanisms used by AMPs will enable new methods to discover and develop pharmaceutic 

agents. 

1.7 AMPs Database History 

AMPs characteristics a remarkable diversity of structural motifs, resulting in a wide variety 

of the primary sequence, from the amino acid conformation to the total length. Because of 

this diversity, a complete dataset of active and inactive peptides is hard to obtain without 

initiating biases. For these points, in the last few years, different bioinformatics approaches 

were used to gather as much as possible data of natural and synthetic AMPs from literature. 

This method has the benefit to reduce the bias of current sequence selection and give 

detailed and uniform of peptide activity information. Likewise, complex prediction models 

frequently require many measured values of AMPs activity to fit the broad set of 

parameters. While the process of information collecting can be automated, because of the 

sensitivity and difficulty of the data process, manually collected datasets are more 

appreciated.  

In 1998, Antimicrobial Sequences Database (AMSDb) appeared to be the first 

database of AMPs available online in an intensive manner, covering the sequences of a 

gene-encoded AMP and proteins from animal and plant sequences. The information format 

of this database is identical to the SWISS-Prot (UniProt), and it includes 895 antimicrobial 

peptides (Maccari et al., 2013). 
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Synthetic Antibiotic Peptide Database (SAPD) was developed in 2002. This SAPD 

is formed on two pre-existing computer databases for naturally occurring peptide 

antibiotics, the Peptaibol Database, and the AMSDb, which contains both biological and 

chemical information on all published synthetic antibiotic peptides (Wade & Englund, 

2002). 

  Unfortunately, AMSDb is not updated, and the fast increase in natural AMPs makes 

it a challenging task to manage such data manually. As a consequence, three databases 

were released in 2004. The first one is ANTIMIC reported more than 1700 entries, while 

the last version of ANTIMIC called DAMPD contains 1232 entries (Maccari et al., 2013). 

The second database was Peptaibol database, which contains 307 peptides isolated from 

soil fungi (Wang, 2010). The third is APD. The first version of the APD reported 525 

peptide entries. These peptides were manually collected from the literature with the 

assistance of public search engines such as Pub-Med, Swiss-Prot, and PDB. By 2009, the 

peptide number reached 1228 entries in the second version of the APD (APD2). As of Jan 

7, 2017, the latest AMP database (APD3) contains 2767 AMPs and proteins, 98% of them 

are less than 100 amino acids and from living eukaryotic and prokaryotic organisms 

(Wang, 2016). These comprehensive APD databases provide helpful information on amino 

acidic frequency, the presence of conserved motifs, chemophysical properties, peptide 

discovery timeline, nomenclature, classification, glossary, calculation tools, and statistics 

(Maccari et al., 2013). 
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Consequently, several other databases for particular types of AMPs were 

constructed. Cybase is a database for cyclic polypeptides from animals, plants, and 

bacteria. PenBase is devoted to shrimp AMPs, defensins and bactibase knowledgebase 

were also founded. AMPer is an AMPs prediction tool based on the peptides collected from 

SwissProt and AMSDb. In 2008, a specialized database for recombinant AMPs (RAPD) 

was also created to document peptide expression, carrier, host, cleavage method and, by 

2009, PhytAMP database was established that specialized for plant AMPs, which contains 

271 peptides (Wang, 2010). In January 2010, collection of AMPs (CAMP) appeared. The 

CAMP database is the manually curated collection of AMPs, which includes further tools 

as a local BLAST query system and prediction tools that based on amino acid frequencies, 

Random Forest (RF) algorithm, biological activity against different strains and 

chemophysical and taxonomical characteristics (Maccari et al., 2013).  

These databases can be used to enable effective search, prediction, and design of peptides 

with antimicrobial activities, chemotactic, immune modulation, or anti-oxidative 

properties. Also, it makes predictions based on the database-defined parameter space and 

offers a list of the sequences most similar to natural AMPs. These comprehensive AMP 

databases (as table 1.1 below) are a useful tool for both research and education (Wang, 

2015). 

Table 1.1: Summary of the major databases of AMPs (Wang, 2015) 

Year Database Web site Content 

2002 AMSDb http://www.bbcm.univ.trieste.it/~tossi/amsdb.html Plant/ animal 
AMPs 

2002 SAPD http://oma.terkko.helsinki.fi:8080/~SAPD Synthetic 
AMPs 
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2004 Peptaibol http://www.cryst.bbk.ac.uk/peptaibol/home.shtml Fungal 
AMPs 

2004 APD http://aps.unmc.edu/AP Natural 
AMPs 

2004 ANTIMIC Not Active Natural 
AMPs 

2006 PenBase http://penbase.immunaqua.com Shrimp 
AMPs 

2006 Cybase http://research1t.imb.uq.edu.au/cybase Cyclotides 
2007 BACTIBASE http://bactibase.pfba-lab-tun.org/main.php Bacteriocins 
2007 Defensins http://defensins.bii.a-star.edu.sg Defensins 
2007 AMPer http://marray.cmdr.ubc.ca/cgi-bin/amp.pl Plant/ animal 

AMPs 
2008 RAPD http://faculty.ist.unomaha.edu/chen/rapd/index.php Recombinant 

AMPs 
2009 PhytAMP http://phytamp.pfba-lab-tun.org/main.php Plant AMPs 
2010 CAMP http://www.bicnirrh.res.in/antimicrobial All AMPs 

 
 
 
1.8 Role of Computation in AMP Classification and Predication 

The field of bioinformatics has impressively strengthened the ability to understand 

biological procedures and their mechanisms. Bioinformatics develops and uses data, 

computational tool, and algorithms to conduct biological research. In this dissertation, 

bioinformatics approach has been utilized specifically to classify and predict antimicrobial 

peptides (AMPs).  

While more and more pathogens continue to develop resistance toward previously 

effective antimicrobial drugs, it decreases the number of medical treatment options 

available, creating a potential to trigger a global health security emergency. New variations 

of antimicrobial-resistant infections are growing, especially in conditions with overused 

and misused antimicrobial drugs, poor sanitary conditions, unsatisfactory infection control 

or inappropriate food-handling. The failure of antimicrobial-resistant infections to counter 
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to previously effective drug treatments leads to prolonged infection as well as a higher 

threat of death. 

 Furthermore, antibiotic resistance places a heavy load on the world economy. By 

2050, due to antibiotic resistance, the world population is estimated to be between 11 

million and 444 million lower than it could have been otherwise, and the economy will 

lose between $2.1 trillion and $124.5 trillion (“Antibiotic / Antimicrobial Resistance | 

CDC,” n.d.). Research on substitutes for antibiotic drugs is still in the early stages, and 

only few of them approved for clinical use.  

Nevertheless, AMPs have been identified as promising candidates to combat drug-

resistant pathogens. Because microbes do not tend to modify their external membrane, it 

results in a decreased likelihood of AMPs targets developing resistance. Many of 

eukaryotic cells are not targeted by AMPs, due to the eukaryotic cells’ high level of 

cholesterol and low anionic charge. AMPs are extremely efficient killers, as it takes only 

seconds for them to kill the certain microbe after initial contact with the cell membrane.  

This study integrates alphabet reduction technique, N-gram analysis, and ML, three 

different approaches, to develop a computational model, which is able to accurately 

classify AMPs. This sequence-based method allowed to analyze how well N-gram 

frequencies can be used to train ML algorithms. 

Current predictors of AMP use multiple sequence alignments, PSI-BLAST 

sequence profiles, distinctive residue compositions, or secondary structure analyses. These 
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predictors require comparing and analyzing entire sequences and take longer time 

compared to N-grams, which decompose sequences into smaller parts, each of these parts 

can be readily analyzed quantitatively. Likewise, some of computational techniques used 

for predictions are generally “black-box” models like Artificial Neural Networks (ANN) 

and Support Vector Machines (SVM), and the features that these models utilize are not 

fully well-defined. To help with feature selection, N-gram frequency analysis can also be 

used to train decision trees, which can provide more vision into how the training dataset is 

actually used to create the decision-making process.  

Our goals in this project, were to uncover specific patterns within the sequence of 

AMPs, and effectively classify between AMPs and Non-antimicrobial peptides (Non-

AMPs) as well as the subclasses of AMPs. In addition, we aimed to help researcher to 

create new AMPs sequences based on the classification features discovered. These goals 

were accomplished using a novel method of analyzing the frequencies of N-grams 

combinations with ML algorithms. The frequencies of every N-gram were calculated, the 

complexity of data was reduced by using alphabet reduction to create clusters of specific 

amino acids with similar properties. This decreased the number of possible N-gram 

combinations and lowered the number of frequencies that were computed. The results from 

this thesis could be particularly interesting as applying the knowledge toward synthesizing 

pathogen-specific AMPs in the wet laboratory, focusing in a clearer direction when 

searching for replacements to antibiotic treatments. 
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1.9 Dissertation Structure 

We were having introduced AMPs and their primary biological activity and how these 

AMP work above, we begin in chapter two by providing related background information 

on AMP and overview of the current computational AMP classification using alphabet 

reduction technique. While chapter three displayed our sequence-based methodology using 

N-gram, reduced alphabet, and machine learning classifiers. In addition to the datasets that 

were used repeatedly throughout this work. In chapter four, we performed different 

experiments using our novel methodology to classify AMPs, uncover specific 

arrangements and interesting features throughout AMPs sequences, and how these features 

affect the accuracy of the models. After showing relations to be beneficial, Chapter 5 

leverages the power of our proposed algorithm by validating it using different evaluation 

metrics considered for model performance for prediction and classification of AMP. 

Chapter six details an application constructed to make this novel sequence-based method 

freely accessible to the AMP research community. This application contains many features 

that assist in model and dataset preparation to be ready for ML classifiers. This dissertation 

concludes with chapter seven, which presents a final overview and discussion of the work 

demonstrated and possible future research directions for this line of AMPs research.  
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Chapter 2: Background Information and Related Work 

2.1 Literature Review of AMPs 

Nowadays, most researchers in the bioinformatics field are focused on computational 

methods for screening and in silico modeling of novel AMPs, to accelerate the 

development of antimicrobial drug discovery and design (Hammami & Fliss, 2010). Many 

methods have been developed for predicting new AMPs with the potential therapeutic 

application. Some algorithms take benefit of data mining and high-throughput screening 

techniques to scan peptide and protein sequences (Lata et al., 2010). Most of the researches 

have been used QSAR descriptors together with ANN (Cherkasov & Artem, 2005; Fjell et 

al., 2009), SVM (Taboureau et al., 2006), or linear discriminant (Wang et al., 2011). In 

addition to K-mer, genetic programming, and sequence alignment for prediction of 

peptide’s activity.  

A study was done in 2009 (Fjell et al., 2009), demonstrated that the QSAR 

descriptors and ML techniques have successfully utilized in silico screening for potent 

antibiotic peptides. On the basis of over 1400 random peptides and an independent test set 

of 100,000 virtual peptides, the artificial network models predict and rank the relative 

activities of novel AMPs with 94% accuracy in identifying highly active peptides. In 

another study, Cherkasov & Artem showed the QSAR descriptors had also successfully 

recognized the antibacterial activities with up to 93% accuracy of correct separation of 
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compounds with- and without antibacterial activity from a large set of 657 chemical 

structures. With a limited number of AMPs datasets, a common obstacle of using QSAR 

descriptors is the high dimensionality of the input space that interrupts the estimation of 

internal parameters classifier. 

ML methodologies can significantly develop the progression and even relatively 

replace expensive wet laboratory trials by learning a predictor with an existing dataset or 

with a smaller quantity of data generation. In 2015, ML and kernel methods were used to 

assist the design of highly active peptides for drug discovery. Kernels methods are 

symmetric positive semi-definite similarity functions between strings (amino acids). These 

algorithms are exceptionally effective at offering accurate models for a broad range of 

biological and chemical problems such as anti-cancer activity and antimicrobial activity. 

A study was conducted using this method, two different datasets of 132 peptides were used 

for testing and validation. The highest predicted biological activity was generated by using 

the K-longest path algorithm and the predictors learned by Kernel Ridge Regression 

(KRR). As a result, this approach demonstrates the ability to predict peptides with the 

highest biological activity for ML predictors and potential functional motifs (Giguère et 

al., 2015). 

Integrating sequence alignment and SVM could also be used to predict AMPs. (Ng 

et al., 2015) proposed the new algorithm that was analyzed using jackknife test and 

independent test. The Jackknife test is used to measure the performance of a different 

version of the sequence alignment method (BLASTP). This algorithm is divided into two 
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main stages; by combining it with the sequence alignment method to predict AMPs 

sequences, and with SVMs Lempel-Ziv (LZ) pairwise algorithm. The positive training set 

consists of 2752 sequences and 10014 in the negative training set. The proposed algorithm 

obtained 95.28% and 87.59% of sensitivity in the jackknife test and in the independent test 

respectively. This declares that the pairwise similarity scores have significant development 

in the sensitivity measurement and helps to increase the prediction accuracy. 

Another study by using ML and genetic programming was done by (Veltri et al., 

2015). They explored a novel method for feature construction and selection to improve 

AMP recognition. They used k-mer or motif as a foundational building block (a construct 

similar to N-gram). The presence of such features allowed them to use an Evolutionary 

Feature Construction algorithm (EFC) based on genetic programming with the fast 

correlation-based filter selection (FCBF) algorithm, for discovering the potentially vast 

area in search of those that differentiate between AMPs and Non-AMPs classification 

setting. The EFC-FCBF features offer substantial developments in AMP recognition over 

state of the art. The FCBF provides a set of highly relevant features with low redundancy. 

A comparative analysis in two different experimental settings was conducted. The first 

displays the advantage of how wet laboratory researchers could combine their sequence-

based features with additional knowledge of AMPs to create better predictive models. In 

the second experiment, they used different datasets and compared the EFCFCBF method 

to several AMPs recognition methods, which validate the ability to identify target specific 

classes of AMPs. These outcomes suggest that the quality of the features found by EFC-

FCBF is much higher than that of k-mer features with more than 14%. 
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On the other hand, N-gram approach was   successfully utilized  for prediction of 

Human Immunodeficiency Virus (HIV) drug resistance. In 2011, Masso used the N-grams 

approaches for representing as feature vectors, two large datasets of V3 loop peptide 

sequences of HIV-1 viruses, and the RF algorithm is applied for classification. These 

datasets of gp120 V3 loop sequences, taken from patient HIV-1 viruses with known co-

receptor usage. The method starts by using a sliding window of size n on every V3 loop 

sequence to identify all subsequences of n consecutive amino acids residues. The RF 

algorithm creates multiple bootstrap datasets of size n from the original set, and each 

bootstrap dataset is used to train an unpruned classification tree that available with the 

WEKA suite. A comparison of the accuracy reported for those ML classifiers with the 

performance accomplished using relatively easier and more computationally efficient N-

grams. This reveals significant advantages for the prediction of HIV drug resistance 

(Masso, 2011). 

In the following year, Masso and Vaisman used N-gram for sequence and structure-

based models of HIV-1 protease (PR) and reverse transcriptase (RT) drug resistance. 

Statistical learning algorithms were implemented to develop structure and sequence-based 

models for predicting the effects of mutations in the PR and RT proteins. Relative 

frequencies or counts of N-grams were applied for developing a sequence-based model and 

generate vectors for representing mutant proteins. All algorithms were implemented using 

the WEKA for classifications. These models provided orthogonal and complementary 

prediction methodologies and were used to classify all pairs of RT inhibitors as part of an 

antiretroviral cocktail, or a combination that is to be avoided (Masso & Vaisman, 2013). 
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2.2 Reduced Alphabet Literature Review 

Reducing the alphabet without losing vital biochemical data unlocks the door to potentially 

faster data mining, ML, and optimization applications in the bioinformatics field. A cell 

requires many different proteins to regulate and perform cellular processes. On the atomic 

level, the structures of these proteins are highly diverse and complex. The fundamental 

building blocks of the proteins are the 20 naturally occurring amino acids. An amino acid 

contains both an amino group and a carboxylic group. Amino acids that have an amino 

group attached directly to the alpha-carbon are stated as alpha amino acids. From a 

combinatorial outlook, there is an almost infinite variety of sequences that can be created 

from a 20-letter code, for instance, for a polypeptide chain of length 100 can make 20100 

possible combinations (Melo & Marti-Renom, 2006). 

A large number of reduced amino acid alphabets have been proposed to simplify 

compositional representation of proteins. The resulting reduced amino acids alphabets have 

been applied to protein folding, protein structure prediction, generation of consensus 

sequences from multiple alignments and pattern recognition. Therefore, reducing the 

amino acids alphabet would permit a more detailed examination of other properties in 

protein structures that could become important but have not yet been studied due to the 

outlined limitations. 

Thus, the complex sequence of amino acids of a protein encodes for its specificity 

and diversity. There have been several attempts to reduce the naturally occurring amino 

acids alphabet because they share similar physicochemical properties and can be naturally 
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replaced by protein sequences of the same family. The problem lies in finding the proper 

grouping of amino acids that holds most of the information required for the integrity of the 

structure and function of proteins (Solis, 2015).  

Previously, some theoretical works have proposed that the minimum number of 

amino acids types required to encode for native proteins is less than 20. The usual way to 

design a reduced amino acids alphabet consists of bundling amino acids into groups 

according to certain features. These features include size, flexibility, hydrophobicity scale 

and common chemical groups at the side chains (Melo & Marti-Renom, 2006). 

In 1999, Wang and Wang derived clusters from the Miyazawa–Jernigan (MJ) 

interaction 20×20 matrix. They present a reduction method based on an analysis of the 

statistical contact potentials of the MJ matrix. By minimizing the mismatches score 

between a reduced matrix and the MJ matrix versus the number of residue types, they find 

three regions: (1) a polar dominated grouping (PDG) (2) a hydrophobic dominated 

grouping (HDG) and (3) a singlet dominated grouping (SDG) (Wang & Wang, 1999). In 

this work, the minimized mismatch finds a theoretical way to understand the process of 

reduction to schemes with different sets of residues. The plateaus in three regions provide 

suitable representations of proteins related to different interactions, such as polarity or 

hydrophobicity. Also, the comparison of results from sequences with 20 residue types and 

their reduced alphabet representations shows that the reduction by mismatch minimization 

is successful, e.g. sequences with five residues types have a good folding ability and kinetic 
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accessibility in model studies. Briefly, the five-letter scheme may be a form of simplified 

representation of natural proteins (Wang & Wang, 1999). 

Another study done by (Murphy et al., 2000), they make an analogy between 

sequence patterns that create foldable sequences and those which make it possible to find 

structural homologs by aligning sequences and use it to recommend the possible size of a 

reduced alphabet. This estimate that 10–12 reduced alphabets letters can be used to design 

foldable sequences of protein families. The estimation is based on the observation of a 

slight loss of the information required to pick out structural homologs in a clustered 

sequence of protein database when appropriate reduction from 20 to 10 of the amino acids 

alphabet letters is made. However, this information is ruined when additional reductions in 

the alphabet are made. The amino acids reduction scheme is formed on the analysis of 

correlations indicated by the Blocks Substitution Matrix (BLOSUM) 50 similarity matrix 

that used for sequence alignments. They find when the alphabet size is reduced, the 

information of the amino acid’s sequences responsible for protein fold recognition is 

degraded. Furthermore, they conclude that a minimum of three different amino acids types 

is necessary for protein folding, and the sequences constructed from 10-letter alphabets 

obtained by grouping amino acids appropriately hold approximately as much information 

as the natural sequences have (Murphy et al. , 2000). 

In 2002, Liu et al., propose an algorithm for amino acids alphabet reduction based 

on random background deviation of conditional probability and to compare results found 

from other schemes of reduction. They detected a sequence homology in SCOP database 
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with the derived coarse-grained BLOSUM similarity matrices and the clustering using 

residue counts of either BLOSUM or MJ is not completely hierarchical. Their results of 

homology recognition with reduced alphabets show that the percentage coverage retained 

is reduced by only 10% for 9-letters. Hence, there is no significant drop in the coverage if 

the number of letters is not smaller than 9. The 5-letters correlation coefficient and 

covariance are still reasonable even if the number of clusters is as small as 5. In the end, 

they conclude that the 9-letter reduced alphabet preserves most information of the original 

20-letter alphabet, and the 5-letter alphabet reduced is still a reasonable choice (Liu et al., 

2002). 

On the other hand, Li et al. demonstrated that ten types of residues may be the 

minimum number of letters needed to construct a rational folding model. They used a 

simplified BLOSUM62 matrix to perform a global sequence alignment and create coverage 

detection on the remotely related homologous proteins throughout the Structural 

Classification of Proteins (SCOP) 40 database for several levels of reduction. With these 

reduced alphabets, they achieve recognition of the protein folding based on the sequence 

alignment similarity score, which can reserve the maximal information on the original 

sequence. They found that groups more than N = 10 will not increase the efficiency of the 

description of the protein’s complexity from the feature of the sequence alignment. 

Consequently, 10-letters of amino acids may be the degree of freedom for characterizing 

the complexity in proteins and the maximum information that could make the protein closer 

to that consisting of 20 amino acids (Li et al., 2003). 
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Melo and Renom derived an amino acids substitution matrices and statistical 

potentials for the prediction of remote homologs of protein structure. These substitution 

matrices were based on several reduced amino acids alphabets, their sequence alignment 

and fold evaluation of protein structure models, which use as a reference frame the 20 

amino acids of standard alphabet. The results of this work showed that a large reduction in 

the total number of residue types does not indeed translate into an important loss of 

discriminative power for sequence alignment and fold assessment. However, few residue 

types can encode most of the significant sequence and structure information which is 

present in the 20-standard alphabet amino acids. In other words, reduced alphabets display 

a similar performance as the standard alphabet in the tasks of sequence alignment of remote 

homologs and fold assessment of protein structure models (Melo & Marti-Renom, 2006). 

Lately, automated methods to reduce the dimensionality of protein structure 

prediction datasets have been used. These methods are easier and faster learning process 

and generation of more compact and human-readable solutions. This simplification 

contains an alphabet reduction technique to map the 20 naturally occurring amino acids 

into the lower cardinality alphabet by grouping similar amino acids types. In 2007, a 

researcher performed experiments to reduce the amino acids alphabet into two, three, four, 

and five groups. They tested the performance of the reduction criteria found by this 

optimization procedure by learning the reduced dataset and comparing the predictive 

performance to the one obtained by learning the original 20 letters amino acids alphabet. 

Genetic algorithm was used, and the results were validated by learning the reduced dataset 

with a genetics-based ML algorithm (Bacardit et al., 2007). 
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This study indicated that it is possible to make a reduction into a new alphabet with 

only three letters, which lead to faster computation and more compact rules. Although, 

these three letters alphabet is not significantly different when compared to the performance 

obtained from the full 20 amino acids alphabet based on the protein-wise accuracy metric. 

Therefore, this automated alphabet reduction method showed some promising 

performance, and it has the potential to be a very valuable tool to simplify the learning 

procedure of several datasets associated with protein structure prediction (Bacardit et al., 

2007). 

Peterson et al. demonstrated that a reduced alphabet approach to building up protein 

profiles may advance the ability to detect proteins with structural homology by expanding 

the knowledge of the chemical prosperities of the amino acids to build up a physical image 

of a fold. In this study, over 150 of the amino acids clustering schemes were tested with 

all-versus-all pairwise sequence alignments of sequences in the matrix alignment database 

and combined it with several metrics as mean precision and area under the Receiver 

Operating Characteristic (auROC) curve. They also examined the statistical significance 

of the best matrices to determine whether the differences in performance are significant or 

not (Peterson et al., 2009).  

As a result, they found that reduced alphabets can perform at a level comparable to 

full 20 alphabets in correct pairwise alignment and can display increased sensitivity to pairs 

of sequences with structural similarity but low-sequence identity. The consensus from 

these methods is that performance enhancements can be made by correctly grouping the 
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amino acids into 9–12 clusters. In addition, they found that reduced alphabets can return 

more remotely related pairs of proteins comparable to full alphabets (Peterson et al., 

2009).This contrast with some earlier studies (Murphy et al., 2000; Liu et al., 2002; Li et 

al., 2003) which stated that reduced alphabets could only produce losses in performance 

relative to a full alphabet. 

In 2009, Bacardit et al., investigated automated and generic alphabet reduction 

procedures for protein structure prediction datasets by using a primary sequence 

representation of proteins. Two protein structural features were applied that are contact 

number and relative solvent accessibility. For both features, they generated alphabets of 

two, three, four, and five letters. The five-letter alphabet obtained to reduce a protein 

representation using evolutionary information and a position-specific scoring matrix 

(PSSM) representation. Besides, they compared the automatically designed alphabets -

quantitatively analyzed- against other reduced alphabets taken from the human-designed 

or literature, outperforming them. Their results indicate that the five-letter alphabets 

provided prediction accuracies within 1% of that obtained by full amino acids alphabet, 

and higher accuracy than the other reduced alphabets involved in the comparison. In this 

experiment, they found a reduced alphabet with a performance that is statistically equal to 

the performance obtained with the full amino acids type representation is possible, and this 

does not compromise accuracy and enhances interpretability (Bacardit et al., 2009). 

Recently, Solis has designed a fully automatic amino acids alphabet reduction 

algorithm. This algorithm has generated an optimal clustering of the 20 amino acids into 
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smaller cluster groups (from 2 to 19). The clustering design recovers amino acids properties 

such as hydrophobicity, charge, polarity, size, and aromaticity. 114 reduced alphabets were 

assembled (alphabet sizes ten and below) from the literature. Then, they classified them 

into four general categories based on physicochemical properties, multiple sequence 

alignments of structural homologs, similarities in local structure or backbone coding, and 

long-range interaction considerations (Solis, 2015). 

In this experiment, Solis found that a significant amount of mutual information 

around 75% is preserved by 2-letter reduction. Correspondingly, reduced alphabets less 

than10 can capture almost all the information residing in native contacts and may be 

sufficient for fold recognition, as demonstrated by extensive tests. He also found that much 

of the mutual information is preserved at significantly small alphabet sizes, e.g., 5-letter 

alphabet captures around 90%, whereas a 9-letter alphabet nearly 96%, and further 

information is achieved when expanding to higher alphabet sizes (Solis, 2015). 

Based on these studies, we figured out that reduced alphabets could derived from 

varying methods, including those derived from local structure considerations, 

physicochemical intuition, genetic code, and sequence alignments of remote homologs. All 

these different methods often led to highly divergent final results. Indicating that the 

definition of a reduced amino acids alphabet is very dependent on the clustering method 

and the information used. The most simplistic reduction alphabet of the amino acids 

explained to date consists of the definition of two residue types, which is identified as the 
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hydrophobic-polar or hydrophilic model. Lastly, reduced alphabets may also show 

performance gains with more sophisticated methods such as profile and pattern searches. 
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Chapter 3: Material and Methods 

3.1 Reduced Alphabets 

The 20-letter amino acid alphabets were reduced to significantly fewer letters of an 

alphabet to quicken and simplify the ML process, as the model would have to analyze fewer 

N-grams (attributes) during training and testing the model. Another issue with using the 

original 20-letter alphabet was that the total number of features (N-grams) would exceed 

the number of sequences, 7984 at most, which is not ideal considering that each instance 

(sequence) only contains a maximum of 120 amino acid residues. By decreasing the 

number of letters in the alphabet, and thus decreasing the number of possible N-grams, the 

number of sequences would be significantly larger than the total number of features, so it 

would be highly unlikely for the model to overfit.  

Residues can be clustered based on several properties, including chemical and 

genetic properties, as the table 3.1 below. Reduced alphabets cluster the residues in ways 

that prevent the loss of critical biochemical information. 

 
 

Table 3.1: Amino acids can be clustered according to hydrophobicity and polarity. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

C M F I L V W Y A G T S N Q D E H R K P 
Hydrophobic Polar 
CMFILVWY AGTSNQDEHRKP 
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In this study, over 45 reduced alphabets were collected from outside sources as 

shown in tables 3.2 to table 3.8 below. The reduced alphabets in the table named according 

to: 

RA-NAME:  

1- RA: Reduced Alphabet. 

2- First letter of Author last name. 

3- Year of publication. 

4- Number of groups of letters. 

5- Counting letter.
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Table 3.2: Two, three, and four-letters reduced alphabets and their sources. 

RA-Name 1. 2. 3 4 
RA-E07-2A STQNGPAHRED LIFVMYWCK   
RA-M00-2A LVIMCAGSTPFYW EDNQKRH   
RA-B07-2A ACFGHILMVWY DEKNPQRST   
RA-L03-2A CMFILVWY AGTSNQDEHRKP   
RA-B09-2A CLVIMAFYWGH TSNRKDEPQ   
RA-B09-2B AMWLYCFIV PGHTSDEKNQR   
RA-B09-2C LYMFIVCAWGHTS DEKNPQR   
RA-B09-2D HCILMVFWYAGSTNR DEKQP   
RA-L02-2A MFILVAW CYQHPGTSNRKDE   
RA-L02-2B IMVLFWY GPCASTNHQEDRK   
RA-M00-3A LASGVTIPMC EKRDNQH FYW  
RA-V98-3A MHVYNDI QLEKF WPRGSATC  
RA-B07-3A ACFILMVWY DEKNPQR GHST  
RA-L03-3A CMFILVWY AGTSP NQDEHRK  
RA-B09-3A CLVIMAFYW GHTS NRKDEPQ  
RA-B09-3B AMWLYCFIV PGHTS DEKNQR  
RA-B09-3C LYMFIV CAWGHTS DEKNPQR  
RA-B09-3D CIMFLVWY AGHTNSP RDEKQ  
RA-B09-3E CILMVFWY AGHSTP DEKNQR  
RA-B09-3F CILMVFWY AGHST EKDNRPQ  
RA-B09-3G HCILMVFWY AGSTNR DEKQP  
RA-W99-3A CMFILVWY ATHGPR DESNQK  
RA-S15-3A ACGPSTWY DEHKNQR FILMV  
RA-S15-3B AFILMVWY   C DEGHKNPQRST  
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RA-S15-3C CFILMVWY DEGKNQS AHPRT  
RA-L02-3A MFILVAW CYQHPGTSNRK DE  
RA-L02-3B IMVLFWY GPCAST NHQEDRK  
RA-M06-4A AGPST CILMV DEHKNQR FYW 
RA-P09-4A ADKERNTSQ YFLIVMCWH G P 
RA-M00-4A LVIMC AGSTP FYW EDNQKRH 
RA-B07-4A AFHTY CILMV DEKPQ GNRSW 
RA-L03-4A CFYW MLIV GPATS NHQEDRK 
RA-L03-4B CMFWY ILV AGTS NQDEHRKP 
RA-B09-4A CLVIM AFYHT WGSNR KDEPQ 
RA-B09-4B CALM VIFW YGH TSNRKDEPQ 
RA-B09-4C AMW LYC FIV GHTSDEKNQRP 
RA-B09-4D CALY MFIV WGHT SDEKNPQR 
RA-B09-4E ACIMHT FLVWY GNSR PDEKQ 
RA-B09-4F CILMVFWY AGHST EKD NRPQ 
RA-S15-4A FWY CILMV DEGKNQS AHPRT 
RA-S15-4B AFILMPVW CGNQSTY DE HKR 
RA-S15-4C AFILMVWY C DEKR GHNPQST 
RA-L02-4A MFILV ACW YQHPGTSNRK DE 
RA-L02-4B IMVLFWY G PCAST NHQEDRK 
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Table 3.3: Five-letters reduced alphabets and their sources 

RA-Name 1. 2. 3. 4. 5. 
RA-M06-5A AHT CFILMVWY DE GP KNQRS 
RA-M06-5B AEHKQRST CFILMVWY DN G P 
RA-M06-5C AG C DEKNPQRST FILMVWY H 
RA-E07-5A G P IVFYW ALMEQRK NDHSTC 
RA-M00-5A LVIMC ASGTP FYW EDNQ KRH 
RA-L03-5A FWYH MILV CATSP G NQDERK 
RA-L03-5B CFYW MLIV G PATS NHQEDRK 
RA-B09-5A CLVH IAS FWGM KNRT DEPQY 
RA-B09-5B AM WLY CFIV GHTS DEKNQRP 
RA-B09-5C ACIY MFLV GHTN SWDE PRKQ 
RA-B09-5D CILMVFWY A GHST EK DNRPQ 
RA-W99-5A CMFI LVWY ATGS NQDE HPRK 
RA-S15-5A AFILMVWY C DE GHNPQST KR 
RA-S15-5B FWY CILMV DEGKNS APQT HR 
RA-L02-5A MFILV ACW YQHPGTSN RK DE 
RA-L02-5B IMVL FWY G PCAST NHQEDRK 
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Table 3.4: Six-letters reduced alphabets and their sources 

RA-Name 1. 2. 3. 4. 5. 6 
RA-E07-6A MFILV W C KRQE DNASTPGH VILFY 
RA-M00-6A LVIM ASGT PHC FYW EDNQ KR 
RA-L03-6A CFYW MLIV G P ATS NHQEDRK 
RA-S15-6A A C DE FILMVWY GHNPQST KR 
RA-S15-6B FWY CILMV DE GKNQS APT HR 
RA-S15-6C AGPST C DENQ FWY HKR ILMV 
RA-S15-6B ADEGKNQRST C FILMVY H P W 
RA-S15-6D AGPST C DEKNQR FILMVY H W 
RA-S15-6E AST CP DEHKNQR FWY G ILMV 
RA-S15-6F ACST DEKNQR FHWY G ILMV P 
RA-S15-6J AEKQR CHST DN FIV GP LMWY 
RA-S15-6H AEFHIKLMQRVWY CT DN G P S 
RA-S15-6I ALM CHT DNS EKQR FIVWY GP 
RA-S15-6J ACGST DENQ FWY HKR ILMV P 
RA-L02-6A MFILV A C WYQHPGTSN RK DE 
RA-L02-6B IMVL FWY G P CAST NHQEDRK 

 

 

Table 3.5: Seven, eight, nine, and ten -letters reduced alphabets and their sources 

RA-Name 1. 2. 3. 4. 5. 6 7 8 9 10 
RA-L03-7A FWYH MILV CATS P G NQDE RK    
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RA-L03-7B CFYW MLIV G P ATS NHQED RK    
RA-S15-7A FWY CILLMV DE K GNPQS AT HR    
RA-S15-7B A C DE FILMVWY G HNPQST KR    
RA-L02-7A MFILV A C WYQHP GTSN RK DE    
RA-L02-7B IMVL FWY G P CAST NHQED RK    
RA-M00-8A LVIMC AG ST P FYW EDNQ KR H   
RA-L03-8A FWYH MILV CA NTS P G DE QRK   
RA-L03-8B CFYW MLIV G P ATS NH QED RK   
RA-S15-8A A C DE FILMV G HNPQST KR WY   
RA-S15-8B AGILV CM DE FWY HKR NQ P ST   
RA-S15-8C FWY ILMV C DE K GNPQS AT HR   
RA-L02-8A MFILV A C WYQHP G TSN RK DE   
RA-E07-9A G P IV FYW ALM EQRK ND HS TC  
RA-L03-9A FWYH ML IV CA NTS P G DE QRK  
RA-L03-9B CFYW ML IV G P ATS NH QED RK  
RA-S15-9A FWY ILMV C DE K GNQS PT A HR  
RA-S15-9B A C DE FILMV G HNQST KR P WY  
RA-L02-9A MF ILV A C WYQHP G TSN RK DE  
RA-L02-9B IMV L FWY G P C AST NHQED RK  

RA-M00-10A LVIM C A G ST P FYW EDNQ KR H 
RA-L03-10A FWY ML IV CA TS NH P G DE QRK 
RA-L03-10B C FYW ML IV G P ATS NH QED RK 
RA-S15-10A WY F ILMV C DE K GNQS PT A HR 
RA-S15-10B A C DE FILMV G HNQ KR P ST WY 
RA-S15-10C ACGS DE FWY HKR ILV M N P Q T 
RA-L02-10A MF ILV A C WYQHP G TSN RK D E 
RA-L02-10B IMV L FWY G P C A STNH RKQE D 
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Table 3.6: 11, 12, and 13- letters reduced alphabets and their sources. 

RA-Name 1. 2. 3. 4. 5. 6 7 8 9 10 11 12 13 
RA-E07-11A G P IV FYW A LM EQRK ND HS T C   
RA-L03-11A C FYW ML IV G P A TS NH QED RK   
RA-L03-11B FWY ML IV CA TS NH P G D QE RK   
RA-S15-11A WY F ILMV C DE K G NPQS T A HR   
RA-L02-11A MF IL V A C WYQHP G TSN RK D E   
RA-L02-11B IMV L FWY G P C A STNH RKQ E D   
RA-P09-12A A D KER N TSQ YF LIVM C W H G P  
RA-M00-12A LIVIM C A G ST P FY W EQ DN KR H  
RA-L03-12A FWY ML IV C A TS NH P G D QE RK  
RA-L03-12B C FYW ML IV G P A TS NH QE D RK  
RA-S15-12A WY F IL MV C DE K G NPQS T A HR  
RA-L02-12A MF IL V A C WYQHP G TS N RK D E  
RA-L02-12B IMV L FWY G P C A ST N HRKQ E D  
RA-E07-13A G P IV FYW A L M E QRK ND HS T C 
RA-L03-13A FWY ML IV C A T S NH P G D QE RK 
RA-L03-13B C FYW ML IV G P A T S NH QE D RK 
RA-S15-13A WY F IL MV C DE K G P NQS T A HR 
RA-L02-13A MF IL V A C WYQHP G T S N RK D E 
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RA-L02-13B IMV L F WY G P C A ST N HRKQ E D 

 

Table 3.7: 14, and 15 letters reduced alphabets and their sources 

RA-Name 1. 2. 3. 4. 5. 6 7 8 9 10 11 12 13 14 15 
RA-L03-14A C FYW ML IV G P A T S N H QE D RK  
RA-L03-14B FWY ML IV C A T S NH P G D QE R K  
RA-S15-14A W Y F IL VM C DE K G P NQS T A HR  
RA-L02-14A MF I L V A C WYQHP G T S N RK D E  
RA-L02-14B IMV L F WY G P C A S T N HRKQ E D  
RA-M00-15A LVIM C A G S T P FY W E D N Q KR H 
RA-L03-15A C FYW ML IV G P A T S N H QE D R K 
RA-L03-15B FWY ML IV C A T S N H P G D QE R K 
RA-S15-15A W Y F IL VM C DE K G P NQS T A H R 
RA-L02-15A MF IL V A C WYQ H P G T S N RK D E 
RA-L02-15B IMV L F WY G P C A S T N H RKQ E D 

Table 3.8: 16, 17, and 18- letters reduced alphabets and their sources 

RA-Name 1. 2. 3. 4. 5. 6 7 8 9 10 11 12 13 14 15 16 17 18 
RA-L03-16A C FY W ML IV G P A T S N H QE D R K   
RA-L03-16B W FY ML IV C A T S N H P G D QE R K   
RA-S15-16A W Y F IL M V C DE K G P NQS T A H R   
RA-L02-16A MF I L V A C WYQ H P G T S N RK D E   
RA-L02-16B IMV L F W Y G P C A S T N H RKQ E D   
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RA-L03-16A C FY W ML IV G P A T S N H QE D R K   
RA-L03-16B W FY ML IV C A T S N H P G D QE R K   
RA-S15-16A W Y F IL M V C DE K G P NQS T A H R   
RA-L02-16A MF I L V A C WYQ H P G T S N RK D E   
RA-L02-16B IMV L F W Y G P C A S T N H RKQ E D   
RA-L03-16A C FY W ML IV G P A T S N H QE D R K   
RA-P09-17A A D KE R N T S Q Y F LIV M C W H G P  
RA-L03-17A C FY W ML IV G P A T S N H Q E D R K  
RA-L03-17B W FY ML IV C A T S N H P G D Q E R K  
RA-S15-17A W Y F I L M V C DE K G P NQS T A H R  
RA-M00-18A LM VI C A G S T P F Y W E D N Q K R H 
RA-L03-18A C FY W M L IV G P A T S N H Q E D R K 
RA-L03-18B W FY M L IV C A T S N H P G D Q E R K 
RA-S15-18A W Y F I L M V C DE K G P N QS T A H R 

 

 

 

 

Table 3.9: 19, and 20- letters reduced alphabets and their sources 

RA-Name 1. 2. 3. 4. 5. 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
RA-L03-19A C F Y W M L IV G P A T S N H Q E D R K  
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RA-L03-19B W F Y M L IV C A T S N H P G D Q E R K  
RA-S15-19A W Y F I L M V C D E K G P N QS T A H R  
RA-P09-20A A D K E R N T S Q Y F L I V M C W H G P 
RA-M00-20A L V I M C A G S T P F Y W E D N Q K R H 
RA-L03-20A C F Y W M L I V G P A T S N H Q E D R K 
RA-L03-20B W F Y M L I V C A T S N H P G D Q E R K 
RA-W99-20A C M F I L V W Y A T H G P D E S N Q R K 
RA-S15-20A W Y F I L M V C D E K G P N Q S T A H R 
RA-L02-16B I M V L F W Y G P C A S T N H R K Q E D 
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In order to apply each alphabet reduction option to each set of peptide sequences, 

multiple java programs needed to be written. Each program is designed to traverse each 

sequence of each peptide set and express each amino acid by which cluster it is located in. 

A representative amino acid indicates which group the reduced amino acid is in. After the 

program is run, in 3 letters reduced alphabets, there are only three distinct letters, as 

opposed to the original 20. While in 4 letters reduced alphabet, there are only four distinct 

letters opposed to the original 20, as shown in table 3.10 below. The residue clusters were 

denoted by the letters (B, J, U, X, Z, and O) in this study. If the number of reduced alphabets 

exceeds these distinct letters, we combined it with numbers, e.g., B1J2U3 and so on. 

 
 

Table 3.10: The example of reduced alphabets. Each letter contains a cluster of amino 
acid residues. The residue clusters were denoted by the letters (B, J, U, X, Z, and O). 

Reduced 
Alphabet (B) (J) (U) (X) (Z) 

ra2-11 IMVLFWY 
GPCASTN
HQEDRK 

   

ra3-29 IMVLFWY GPCAST NHQEDRK   

ra4-47 IMVLFWY G PCAST NHQEDRK  

ra5-64 IMVL FWY G PCAST NHQEDRK 

 
 
 
3.2 N-grams 

This dissertation integrates N-gram analysis and ML, two different approaches, to develop 

a computational model that is able to accurately classify AMPs. These methods allowed to 

analyze how well N-gram frequencies can be used to train ML algorithms. N-grams are a 
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commonly used technique in computational probability, linguistics, text categorization, 

and biology. It is a sequence of N quantity characters from a given text or string. Depending 

on the size of the N-gram, it also named a unigram (1 letter), bigram (2 letters), or a trigram 

(3 letters).  

An N-gram has been denoted as a contiguous string of N amino acid residues in the 

protein sequence. The amino acid sequence, or the primary structure of a protein, 

determines the protein’s three-dimensional structure. This implies that disorder, or lack of 

stable structure, can also be encoded in the sequence. A sequence can be disintegrated into 

a list of overlapping N-grams. N-gram patterns have been previously used to show 

evolutionary relationships between protein sequences and to predict protein secondary 

structure (Masso, 2011). A key advantage of using N-gram frequencies is that they are a 

computationally low-cost way of analyzing complex patterns in protein sequences.  

N-gram algorithm is used to estimate the probability of relative frequency counts. 

It reads each sequence in the dataset and calculates the relative frequency of N-grams to 

show each sequence composition regarding feature vectors. These vectors representation 

generated by N-grams used by WEKA ML algorithms to make the classification model.  

Different sizes of N-grams were used in this work considering the computational 

expense, which leads to a different number of distinct combinations of amino acid 

sequences. For example, using a three-letters alphabet with N-gram of size three or trigram 

leads to 27 distinct combinations of amino acid residues (33 distinct letters), while N-gram 

of size four leads to 81 distinct combinations of amino acid residues (34 distinct letters). 
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The N-gram program reads in each sequence from the input dataset and calculates the 

frequency of occurrence of each gram. Now each sequence composition is merely 

represented regarding the frequency of occurrence of each of the distinct combinations of 

amino acid sequences. So, different AMPs have different N-gram frequencies. 

The frequency of each peptide sequence was calculated by determining how 

frequently this particular letter of amino acid sequence occurred in the entire peptide 

sequence, and to divide that by the total number of possible N-grams in the peptide 

sequence. The total number of possibilities is essentially two less than the length of the 

peptide, as every other amino acid should following it: 

	"!"# =	
$	!"#
$	%&%'(

 

Where f represents N-gram frequencies, $	!"#	is how often this three-letter (!"#) 

amino acid sequence occurred throughout the entire peptide sequence,	$	%&%'( is the total 

number of possible N-gram in the peptide sequence. 

n could not be made extremely large because the total number of possible N-grams 

would run the risk of surpassing the size of the dataset, which could cause model 

overfitting. N-gram frequencies were then normalized to prevent the frequency of a feature 

from skewing the decision process and allowing the comparison of different sized amino 

acid sequences. The normalized expression is called log-likelihood and for trigrams is 

given by: 
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%!"#	 = &'( ) "!"#
"!"""#

* 

where fijk is the frequency of occurrence of a particular trigram and fi, fj, fk is the 

frequency of occurrence of each amino acid in the trigram in the entire sequence. After 

using N-gram analysis to extract features from AMPs and Non-AMP and representing each 

sequence distinctively with a vector of N-gram combination frequencies, ML algorithms 

are then applied.  

3.3 Machine Learning (ML) Approach 

Machine Learning (ML) refers to computer algorithms and artificial intelligence 

applications dealing with the formation and evaluation of algorithms that assist pattern 

recognition, classification, and prediction, based on models originated from existing data 

(Tarca et al., 2007). ML uses the theory of statistics in the construction of mathematical 

models because the primary task is making the inference from a sample. When provided a 

series of features and observations as input, an algorithm tries to deduce rules or patterns 

which yield to an appropriate solution (Dietterich et al., n.d.).  

The history of relations between bioinformatics and the field of ML is long and 

complicated. Several ML approaches are applied to discover new meaningful knowledge 

from the biological databases, to investigate and predict diseases, to cluster similar genetic 

elements, and to find associations or relationships in the biological database, especially 
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when dealing with complex and high-dimensional data. (Tarca et al., 2007). Examples of 

ML techniques that have successfully been used in numerous bioinformatics applications: 

1. ANN have predicted protein cleavage sites. 

2. Genetic algorithms have been applied to determine gene expression levels and 

DNA promoter binding sites. 

3. Evolutionary algorithms have been utilized to microarray classification.  

4. Decision trees have been used for protein secondary structure prediction. 

5. RF and NB use training data to generate classifiers that can assign labels to new 

data. 

ML algorithms, such as RF and NB, can be trained using protein sequences’ N-

gram frequencies to decide whether a sequence is ordered or disordered. In the context of 

this dissertation, we use N-gram and ML methods to focus on classify and predict between 

positive (AMP) and negative (Non-AMP) observations. In other words, given an unknown 

peptide sequence, to classify and predict it as an AMP or Non-AMP appropriately.  

3.4 Machine Learning Classifiers 

In this study, seven machine learning algorithms Random Forest (RF), Support Vector 

Machine (SVM), Bagging, Decision tree (J48), Naïve Bayes (NB), Artificial Neural 

Network (ANN), and AdaBoost are consequently employed to learn from the N-gram 

frequencies of sequences to develop classification models. 
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3.4.1 Random Forest (RF) 

A new regression and classification tool, RF, is a meta-learner, meaning consisting of many 

individual trees and was introduced by Breiman (Livingston, 2005). RF is initiated and 

investigated for predicting a compound's quantitative or categorical biological activity 

based on the quantitative description of the compound's molecular structure (Svetnik et al., 

2003). The RF uses multiple random trees classifications to votes on an overall 

classification for the given data set. This algorithm was modified to achieve both 

unweighted and weighted voting. Then, the forest chooses the individual classification that 

holds the most votes. In general, this algorithm studies each attribute and shows the 

importance of the attribute in predicting the accurate classification of the RF machine 

learner. The user afterward could filter out unnecessary attributes that would save time 

during data collecting and experimental run time (Livingston, 2005). 

RF was the primary classifier used in this study. One advantage of using it over the 

decision tree is that it corrects the overfitting of the decision tree model. Basically, RF 

operates by constructing a certain quantity of decision trees, and it outputs the class that is 

the most frequently stated by the trees (Liaw & Wiener, 2002). 

3.4.2 Support vector machines (SVM) 

SVM is a classification method introduced in 1992 by Boser, Guyon, and Vapnik (Ben-

Hur & Weston, n.d.). SVM performs classification by finding a hyperplane which separates 

the N-dimensional data perfectly into its two categories or classes. However, since some 
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of the data are regularly not linearly separable, SVM’s introduce the concept of a “kernel 

induced feature space” that casts the data into high dimensional space where the data is 

separable (Boswell, 2002). Consequently, SVMs belong to the general category of kernel 

methods which is an algorithm that depends on the data only through dot-products. This 

SVM classifier is widely used in bioinformatics and other fields due to its high accuracy, 

ability to deal with high-dimensional data set such as gene expression, flexibility in 

modeling various sources of data, and employ sophisticated mathematical principles to 

avoid overfitting (Tarca et al., 2007). 

3.4.3 Decision tree (J48) 

A decision tree is a predictive model machine-learning approach that selects the target 

value of a new sample-based on several attribute values of the existing data. A J48 

algorithm is a simple form of the C4.5 decision tree developed by J. Ross Quinlan 

(Salzberg, 1994). In the classification process in decision trees, it first needs to generate a 

decision tree based on the attribute values of the existing training data. So, whenever it 

encounters a set of the training set, it classifies the attribute values that discriminate the 

different instances most clearly (Daraei & Hamidi, 2017). 

3.4.4 Naïve Bayes (NB) 

Naïve Bayes is a simple probabilistic classifier algorithm based on using Bayes theorem 

with strong an independence “naive” assumptions to produce independent feature model 

(Hu, 2017). This NB classifier assumes that the presence of a specific feature of a class 
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which is not related to the existence of any other feature. NB classifiers can be trained 

appropriately in a supervised learning setting, depending on the exact nature of the 

probability model. In several applications, NB models use the maximum likelihood 

method, which assumed to be Gaussian (Gao et al., 2016). 

3.4.5 Multilayer Perceptron (MLP) 

MLP is one type of artificial neural network (ANN) model. It consists of sets of an input 

layer that obtains data, computations are performed in the hidden layers, and sets of the 

output layer, which provides the classification result. The output sets represent hyper-plane 

in the space of the input patterns (Hoffman et al., 2012). 

Neural networks are capable of developing meaning from imprecise or complicated 

data and can be used to detect trends and extract patterns that are too complex to be 

identified by either computer techniques or humans. A trained neural network can be 

assumed as an "expert" in the category of data it has been given to analyze. This expert can 

then be utilized to provide predictions given new conditions of interest and answer "what 

if" questions (Gao et al., 2016). 

3.4.6 AdaBoost 

AdaBoost is a well-known ensemble algorithm learning-based classification, which was 

first proposed by Freund and Schapire (1997). AdaBoost produces the final output by 

weighting the instances in the dataset by how difficult or easy they are to classify using the 

majority vote method (Hu, 2017). 
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3.4.7 Bagging 

Bagging or Bootstrap Aggregating is an ensemble method that aims to sample data sets for 

an ensemble of classifiers. The Bagging ensemble commonly contains the procedures of 

aggregation and bootstrap sampling(Gao et al., 2016). This algorithm produces separate 

samples of the training dataset and produces a classifier for each sample. The outcomes of 

these multiple classifiers are then merged (such as majority voting or averaged) (Bashir 

etal., 2016).  

3.5 Randomization Features 

In this experiment, we did random shuffling of class labels, in order to further confirm and 

support the significance of results, control datasets with randomly shuffled (mislabeled) 

classes were generated using N-gram Classification application (mentioned below in 

chapter six). Theoretically, if the classification models are significantly accurate and able 

to detect differences between gene sequences of different classes, the randomly permuted 

class label dataset should achieve an accuracy about 50% or below. 

3.6 WEKA 

The Waikato Environment for Knowledge Analysis (WEKA) is a ML workbench that 

offers a general-purpose environment for automatic regression, classification, clustering, 

association rules, visualization, and feature selection-common data mining problems in the 

bioinformatics field. It covers an extensive collection of ML algorithms and data pre-
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processing approaches complemented by graphical user interfaces (GUI) for data 

exploration and comparison of different ML methods on the same problem. WEKA is able 

to process data given in the form of a single table. The primary objectives of WEKA are 

to: 

1. Assist users to extract useful information from data. 

2. Enable users to simply identify a suitable algorithm to generate an accurate 

predictive model (Frank et al., 2004). 

WEKA is open source software under the GNU General Public License. It is developed 

at the University of Waikato and has a collection of ML algorithms for data mining tasks 

(Frank et al., 2004). These algorithms can either be used directly to a dataset or called from 

user java code. The consistency of the N-gram methodology is validated by first testing its 

ability to confirm more existing information, evaluating the accuracy of which sequences 

from different subtypes can be classified. In this study, the output from N-gram java 

programs (N-gram Classification application) was converted to ARFF format, compatible 

with WEKA software version 3.8. The Explorer GUI in WEKA was used to classify 

sequences based on N-gram frequencies. 

3.7 Datasets Creation 

This study’s sequence-based approach of classification required peptide sequences to be 

obtained prior to any analysis of AMPs or any of its constituent subclasses. 
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• Positive (AMP) dataset: 

1- Positive set:7984 sequences, not necessarily of any specific class from 

databases APD, CAMP, Uniref-Uniprot, AVPdb, CancerPPD, BACTIBASE, 

PhytAMP, HIVdb, LAMP, BAGEL, DADP, EROP, YADAMP, Bagel-Joomla, 

and DBAASP. 

2- APD set:1794 Positive sequences from Antimicrobial Peptide Database (APD). 

These AMPs are from natural sources, demonstrate antimicrobial activities, and 

all amino acid sequences of the mature peptides have been elucidated (The 

Antimicrobial Peptide Database, n.d.). 

• Class-specific AMP sets: 

Class-specific AMP sets (antibacterial, antiviral, and antifungal) were 

downloaded from CAMP, AVPdb, BACTIBASE, HIVdb, BAGEL, and 

DBAASP. All these sets were mutually exclusive, verified subsets of the raw 

positive set. The number of sequences in each raw dataset are shown in table 

3.11. 

• Negative (Non-AMP) dataset: 

1- Neg set1:7984 sequences with less than 50% similarity from Uniprot-Uniref 

with UniRef 50, meaning that each sequence in the Non-AMP set was less than 

50% similar to the others. 

2- Neg set2:1600 Non-secretory proteins randomly searched from the UniProt 

database without annotation as ‘antimicrobial’. 
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Table 3.11: Number of AMP sequences in each class-specific AMP set. 

 
 
 
•    Redundant sequences and sequences containing ‘X’ were eliminated to obtain the final 

dataset. 

•    Control datasets: Random shuffling of class labels in order to further confirm and 

support the significance of results. 

•    Convert all sequence files into FASTA format. 

•    Non-duplicate sequences between 20 and 120 residues in length considered. 

•    Sequences below 20 residues in length were eliminated to ensure substantial N-gram 

and ML analysis. 

•    Sequences above 120 residues in length were not considered since most AMPs have 

fewer than 120 residues; even those AMP sequences containing more than 120 residues 

were eliminated since only a small part of the AMPs sequence may have the antimicrobial 

activity. 

•    Sequences were containing unknown, Non-natural amino acids removed. 

Antimicrobial 
peptides 
(AMPs) 

Antibacterial 
Peptides 
(ABPs) 

Antiviral 
peptides 
(AVPs) 

Antifungal 
Peptides 
(AFPs) 

APD 
positive 

set 

Neg set 1+2 
(Non-AMPs) 

7984 1914 1091 758 1794 7984 + 1600 
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•    Transduction: to balance our positive and negative sets. So that the AMP and Non-AMP 

datasets had the same number of sequences. 

•    To achieve transduction, a simple random subset of the larger set was taken so that 

datasets in each trial had precisely the same number of sequences. 

•    This technique was implemented in order to disregard the number of sequences as a 

confounding variable and decrease the probability of overfitting the data to one of the sets. 

In this dissertation, in each coming experiment, different datasets were used -from the 

above datasets- according to the experiment requirements with same exact steps of data 

arranging. 

3.7.1 Datasets length distribution 

• Positive (AMP) dataset: 

1. Positive set: 
 
 

Figure 3.1: The length distribution of the sequences of full AMP dataset. 
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2. APD set: 
 
 
 

Figure 3.2: The length distribution of the sequences of APD dataset. 
 
 
 
 
• Negative (Non-AMP) dataset: 

• 1- Neg set1: 
 
 
 

Figure 3.3: The length distribution of the sequences of Neg set1. 
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2- Neg set2: 
 
 
 

Figure 3.4: The length distribution of the sequences of Neg set2. 
 
 
 

3.7.2 Sequence Composition of each Dataset and Subsets 

In order to understand how each sequence worked with N-gram algorithm and the ML 

classification, sequence composition for each dataset and subset in this thesis was 

performed using three letters alphabet reduction (B, J and U) and unigram. 

 

 

 

Table 3.12: Sequence composition of each dataset using 3 letters alphabet reduction and 
unigram. 

Dataset name No of Seq B J U 
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Neg set1 7984 221,129 210,149 228,274 

Neg set2 1600 20.727 22,502 22,797 

Positive set 7984 92,353 120,385 101,763 

APD 1794 18,341 27,623 18,996 
 

Table 3.13: Sequence composition of each AMP dataset subclass using 3 letters alphabet 
reduction and unigram. 

Dataset name No of Seq B J U 
ABP 1914 23,509 33,084 23,626 

Non-ABP 1914 52,915 50,050 54,495 
AVP 1091 10,496 9,628 12,642 

Non-AVP 1091 30,003 28,317 31,370 
AFP 758 7,437 11,057 8,679 

Non-AFP 758 20,839 19,534 21,671 
 
 
 
Table 3.14: Sequence composition of each subset using 3 letters alphabet reduction and 
unigram. 

Dataset Seq No B J U 
Positive set (first half) 3992 41,846 57,271 47,769 

Positive set (Second half) 3992 50,517 63,114 53,994 
Positive set (Odd) 3992 45,858 59,772 50,982 
Positive set (Even) 3992 45,884 59,891 50,848 
Positive set (Odd) 1600 18,520 23,822 20,118 
Positive set (Even) 1600 18,116 23,696 19,816 

Positive set 100-120 53 776 1109 964 
Positive set 60-80 848 8,727 11,118 9,334 

Positive set 40-20 (1) 690 5,913 4,897 4,253 
Positive set 40-20 (2) 690 2,953 3,495 3,006 

Positive set 6190 74,012 92,762 82,767 
APD 1600 15,702 24,064 15,985 

Neg set1 1794 49,473 47,342 51,180 
Neg set1 (first half) 3992 110,118 104,640 113,181 

Neg set1(Second half) 3992 111,011 115,509 115,093 
Neg set1(Odd) 3992 110,420 104,561 114,227 
Neg set1(Even) 3992 110,709 105,498 114,047 

Neg set1 100-120 53 998 1,053 1,069 
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Neg set1 60-80 848 10,819 10,251 11,018 
Neg set1 40-20 (1, 2) 690 3,594 3,545 3,194 

Neg set1 1600 26,703 25,941 27,480 
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Chapter 4: AMPs Sequences Characteristics 

4.1 Selection of Alphabet Reduction 

After arranging the sequences datasets, alphabet reduction needed to occur. Over 40 

different alphabet reduction options of two, three and four letters were used from table 3.2 

to figure out which of all these reduced alphabets will give a higher accuracy in order to 

use it in most of our experiments in this thesis.  

4.1.1 Methods 

In order to apply each alphabet reduction option to each set of peptide sequences, several 

reduction programs were written for AMP positive set and Neg set1of each classification, 

as there are over 40 different reduction options. 

In this trial, N-gram of size three (trigram) is used, leading to 27 distinct 

combinations of amino acid sequences. The frequency of each sequence was calculated by 

determining how often this three-letter amino acid sequence occurred throughout the entire 

peptide sequence, and to divide that by the total number of possible N-grams in the peptide 

sequence. 

The output files, each containing N-gram frequencies for all reduced alphabets, 

were then inputted into WEKA. Seven different types of ML classification models were 
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used; RF, SVM, Bagging, J48, NB, ANN, and AdaBoost. The first three ML; RF, SVM, 

and Bagging, were used to run all reduced alphabet letters. RF produced the top three 

accurate results in each two, three, and four reduced letters. These nine, which provide the 

higher accuracies results, were used to run the other four ML algorithms. Ten-fold cross-

validation was used.  

4.1.2 Results 

The output (table 4.2) below shows the accuracy of each reduced alphabet (2,3, and 4) 

using the seven ML algorithms. From the results, the three higher accuracies in each group 

of the reduced alphabets using RF were in table 4.1: 
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Table 4.1: The higher three accuracies in each reduced alphabet that were used RF algorithms. 

 Counting No No of 
RA 1 2 3 4 RF% 

1 4 2 ACFGHILMVWY DEKNPQRST   79.9 

2 10 2 MFILVAW CYQHPGTSNRKDE   81.8 

3 11 2 IMVLFWY GPCASTNHQEDRK   82.7 

4 14 3 MHVYNDI QLEKF WPRGSATC  84.7 

5 27 3 CFILMVWY DEGKNQS AHPRT  84.7 

6 29 3 IMVLFWY GPCAST NHQEDRK  87 

7 37 4 CLVIM AFYHT WGSNR KDEPQ 85.8 

8 46 4 MFILV ACW YQHPGTSNRK DE 87.4 

9 47 4 IMVLFWY G PCAST NHQEDRK 87.7 
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From previous table we conclude the best reduced letter performance in each group: 

1- In two reduced alphabet letters: ra2-11: IMVLFWY – GPCASTNHQEDRK 

2- In three reduced alphabet letters: ra3-29: IMVLFWY – GPCAST – NHQEDRK 

3- In four reduced alphabet letters: ra4-47: IMVLFWY – G – PCAST – NHQEDRK 

4.1.3 Discussion 

All the previous three reduced amino acid alphabets based on the residue pair counts for 

BLOSUM50 matrix according to study conducted by Liu and his group on simplified 

amino acid alphabets based on a deviation of conditional probability from random 

background. They have detected sequence homology in the SCOP database with the 

derived coarse-grained BLOSUM similarity matrices. This study verified that the reduced 

alphabets achieved well preserve information found in the original 20-letter amino acid 

alphabet (Liu et al., 2002). In this dissertation, according to the accuracy value, ra3-29 and 

ra4-47 will be optimal to use in most of the experiments.
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Table 4.2: The accuracy of each reduced alphabets 2,3, and 4 letters that were used with seven ML algorithms 

RA 1 2 3 4 RF SVM Bagging J48 NB AdBo ANN 
2 STQNGPAHRED LIFVMYWCK   78.8 64.4 77.4     
2 LVIMCAGSTPFYW EDNQKRH   80.6 63.5 79.1     
2 ACFGHILMVWY DEKNPQRST   79.9 67.1 78.7 75.9 69.6 69.7 79.9 
2 CMFILVWY AGTSNQDEHRKP   81.7 68.2 80.5     
2 CLVIMAFYWGH TSNRKDEPQ   79.9 67.1 78.7     
2 AMWLYCFIV PGHTSDEKNQR   80.8 68.1 79.4     
2 LYMFIVCAWGHTS DEKNPQR   80.2 63.7 79.0     
2 HCILMVFWYAGSTNR DEKQP   79.8 61.2 78.4     
2 MFILVAW CYQHPGTSNRKDE   81.8 67.0 80.9 78.7 72.6 73.6 81.7 
2 IMVLFWY GPCASTNHQEDRK   82.7 68.5 80.9 78.7 70.8 73.6 82.2 
3 LASGVTIPMC EKRDNQH FYW  85.4 65.7 83.1     
3 MHVYNDI QLEKF WPRGSATC  84.7 70.7 83.2 80.1 77.8 78.3 80.5 
3 ACFILMVWY DEKNPQR GHST  85.3 70.5 82.9     
3 CMFILVWY AGTSP NQDEHRK  86.1 71.1 83.6     
3 CLVIMAFYW GHTS NRKDEPQ  85.3 70.5 83.0     
3 AMWLYCFIV PGHTS DEKNQR  85.5 70.8 83.0     
3 LYMFIV CAWGHTS DEKNPQR  86.5 73.6 84.6     
3 CIMFLVWY AGHTNSP RDEKQ  85.8 71.0 83.7     
3 CILMVFWY AGHSTP DEKNQR  86.1 71.4 83.7     
3 CILMVFWY AGHST EKDNRPQ  85.8 71.3 83.2     
3 HCILMVFWY AGSTNR DEKQP  85.7 70.6 83.0     
3 CMFILVWY ATHGPR DESNQK  84.8 71.7 82.8     
3 ACGPSTWY DEHKNQR FILMV  86.5 72.8 84.6     
3 AFILMVWY C DEGHKNPQRST  85.6 74.3 84.0     
3 CFILMVWY DEGKNQS AHPRT  84.8 69.5 82.2 78.2 74.7 75.7 79.3 
3 MFILVAW CYQHPGTSNRK DE  85.9 74.5 84.8     
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4 IMVLFWY GPCAST NHQEDRK  87.0 74.0 84.8 81.5 78.2 79.4 82.5 
4 AGPST CILMV DEHKNQR FYW 86.9 73.1 84.9     
4 ADKERNTSQ YFLIVMCWH G P 86.7 73.7 84.9     
4 LVIMC AGSTP FYW EDNQKRH 86.6 72.6 84.3     
4 AFHTY CILMV DEKPQ GNRSW 86.1 73.0 84.3     
4 CFYW MLIV GPATS NHQEDRK 87.2 75.6 85.2     
4 CMFWY ILV AGTS NQDEHRKP 87.3 75.2 85.1     
4 CLVIM AFYHT WGSNR KDEPQ 85.8 73.0 84.2 79.3 79.3 78.6 56.0 
4 CALM VIFW YGH TSNRKDEPQ 86.7 74.5 84.7     
4 AMW LYC FIV GHTSDEKNQRP 86.4 73.7 85.5     
4 CALY MFIV WGHT SDEKNPQR 87.0 73.7 85.0     
4 ACIMHT FLVWY GNSR PDEKQ 86.2 73.2 84.4     
4 CILMVFWY AGHST EKD NRPQ 86.7 73.1 85.0     
4 FWY CILMV DEGKNQS AHPRT 86.1 71.8 83.9     
4 AFILMPVW CGNQSTY DE HKR 87.0 75.1 85.2     
4 AFILMVWY C DEKR GHNPQST 87.3 75.6 85.1     
4 MFILV ACW YQHPGTSNRK DE 87.5 77.5 85.5 81.8 79.0 80.8 79.4 
4 IMVLFWY G PCAST NHQEDRK 87.7 75.0 85.7 82.0 77.9 78.9 76.9 
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4.2 AMPs Classification  

In this trial, we want to classify AMPs using a straightforward, sequence-based method 

that involved alphabet reduction, N-gram analysis with frequency, and ML. More 

sophisticated future goals of this study are classification between classes of AMPs and help 

the researcher to understand the AMPs' features in order to create of an artificial set of 

AMPs. Success rates in this experiment for some classification trials were comparable to 

that of previous studies by researchers conducting experiments with tangible AMPs in 

medical laboratories. 

4.2.1 Methods 

The 20-letter amino acid alphabet was reduced to fewer letters of an alphabet to simplify 

and quicken the machine learning process. From what we conclude from the previous 

study, ra3-29 and ra4-47 reduced alphabets were used. N-gram of size three or trigram is 

used, leading to 27 distinct combinations of amino acid sequences. After that, all the seven 

ML classification models were used. In order to apply each previous step N-gram 

Classification application were used.  

The datasets applied in this experiment as shown in table 4.3: 

1- 7984 of AMPs vs. 7984 Neg set1. 

2- 1914 of antibacterial peptides (ABPs) vs. 1914 Non antibacterial peptides (Non-

ABPs). 
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3- 1091 of antiviral peptides (AVPs) vs. 1091 Non antiviral peptides (Non-AVPs). 

4- 758 of antifungal peptides (AFPs) vs 758 Non antifungal peptides (Non-AFPs). 

5- 1091 of antibacterial peptides (ABPs) vs. 1091 of antiviral peptides (AVPs). 

6- 758 of antibacterial peptides (ABPs) vs. 758 of antifungal peptides (AFPs). 

7- 758 of antiviral peptides (AVPs) vs. 758 of antifungal peptides (AFPs). 

8- Control dataset. 

 
 
Table 4.3: Number of AMP sequences in each class-specific AMP set. 

 
 
 

• ra3-29 and ra4-47 reduced alphabets were used in all subclasses. 

• ra3-29 were used in control. 

• N-gram size: Trigram. 

• Convert all sequence files into FASTA format. 

• Non-duplicate sequences between 20 and 120 residues in length considered. 

• Sequences were containing unknown, Non-natural amino acids removed. 

• Transduction: to balance our positive and negative sets. 

• All of these pervious steps done by N-gram Classification application. 

• ML: RF, SVM, bagging, J48, NB, AdBo, and ANN. 

Antimicrobial 
peptides (AMPs) 

Neg set1 Antibacterial 
Peptides (ABPs) 

Antiviral 
peptides 
(AVPs) 

Antifungal 
Peptides 
(AFPs) 

7984 7948 1914 1091 758 
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4.2.2 Results 

The classification of AMPs against Non-AMPs was successful. Models reached a 

maximum accuracy of 87.7% using frequency of N-gram analysis, alphabet reduction 

option 47, and the RF model with 10 trees cross-validation. The 10 trees cross-validation 

is what were used in all of the trials in this study. Label randomization was utilized as a 

control to ensure the fidelity of the dataset. The model of the control accuracy was 50.1%, 

49.2% using RF and NB respectively. Implying that all models resulting from the non-

randomized label experiments for this dataset yielded reliable results as we see in table 4.4. 

Classification using more specific subclasses of AMPs was conducted next. First, 

classification of ABPs against Non-ABPs AMPs achieved a maximum accuracy of 86.8% 

using frequency N-gram analysis, alphabet reduction option 47, and RF model, while with 

bagging algorithm 84.3%. Second, classification of AVPs against Non-AVP AMPs 

achieved an accuracy of 92.7% and 92.3% using frequency N-gram analysis, alphabet 

reduction option 47 and 29 respectively, and with RF model.  

This experiment also consisted of many other successful trials. A third successful 

trial classifying AFPs against Non-AFPs yielded a maximum accuracy of 89.4% using N-

gram frequency analysis, alphabet reduction option 47, and the RF model with 10 trees and 

10-fold cross-validation. A fourth successful trial classifying ABPs against AVP AMPs 

had a maximum accuracy of 84.4% using N-gram frequency analysis, alphabet reduction 

option 29, and the RF model. A fifth successful trial the classification between AVPs 
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against AFPs and achieved a maximum accuracy of 82% using N-gram frequency analysis, 

alphabet reduction option 29, and the RF model as well. 
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Table 4.4: Performing classification tests, alphabet reductions, algorithms, and their respective accuracies. RF with 10-fold 
cross validation seems to be the best test for classifying AMPs. 

N-gram RA Classification test RF % SVM % BAGGING % J48 % NB % ADBO % ANN % 

3 ra3-29 AMPs vs Non-AMPs 87 74 84.8 81.5 78.2 79.4 82.5 

3 ra4-47 AMPs vs Non-AMPs 87.7 75 85.7 82 77.8 78.9 76.9 

3 ra3-29 ABP (1914) vs Non-ABP 86.2 80.8 83.5 80 80 78.7 82.3 

3 ra4-47 ABP vs Non-ABP 86.8 82.2 84.3 81.3 81.1 78.1 79.8 

3 ra3-29 AVP (1091) vs Non-AVP 92.3 71.9 89.6 85.7 83.6 84.6 86.2 

3 ra4-47 AVP vs Non-AVP 92.7 75.9 90.1 87 83.2 85.8 86.9 

3 ra3-29 AFP (758) vs Non-AFP 88.7 79.2 85.9 82.7 80.9 80.9 82.2 

3 ra4-47 AFP vs Non-AFP 89.4 80.3 87.5 82.4 81.9 81.9 84.4 

3 ra3-29 ABP vs AVP 84.4 78 80.8 78.3 73.2 75.2 79.2 

3 ra3-29 ABP vs AFP 51.8 63.2 59.1 62.9 64 64.5 55.6 

3 ra3-29 AVP vs AFP 82 74.7 78.8 77 71.4 74.2 78.5 

3 ra3-29 CONTROL 50.1 50.3 49.6 50.1 49.2 50.2 50.4 
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4.2.3 Discussion 

However, this trial contained less successful results as well. ABPs against AFP AMPs trial 

obtaining accuracy below 70%. The explanation of this inconsistency likely lies in many 

inherent similarities between AFPs and ABPs. First, some AMPs in the dataset may have 

been both an AFP and an ABP, slightly misrepresenting the model and lowering the 

accuracy. Moreover, some fungi, such as yeast, are unicellular and can reproduce 

asexually, similar to the bacteria. Likewise, bacteria and fungi share the role of supporting 

multiple food webs by bolstering the nutritive properties of the soil in the ecosystem. 

However, there were two trends present: 

1- RF significantly outperforms each of the other six learning algorithms. This may 

have occurred because RF utilizes several unique decision trees, each with its own 

parameters. Due to the mechanism of the RF algorithm, a reduced chance of overfitting 

was present, authenticating the obtained accuracies. On the other hand, the next most 

accurate model was the Bagging model, as shown in figure 4.1. 

2- Besides, alphabet reduction 47 most often yielded the highest classification 

accuracies. This finding implies that the 4-cluster alphabet is optimal for N-gram frequency 

analysis and ML. A 4-cluster alphabet reduces the alphabet so that amino acid sequences 

are simple enough for efficient ML but complicated enough to the extent that information 

losses in the original sequences are minor. Furthermore, alphabet reductions 29 yielded to 
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high classification accuracy above 86% in three letters reduced options for the sequence-

based method of analysis utilized in this study. 

 
 

Figure 4.1: RF outperforms each of the other six learning algorithm in ABPs against Non 

ABPs using ra3-29. 
 

 
 

4.3 Classification of AMPs with Different N-grams Size  

To better understand how the size of N-grams could affect the accuracy of the ML, with 

several numbers of alphabet reduction in three several trials. In this experiment, different 

numbers of N-grams (1 to 4) and the different numbers of reduced alphabets (2, 3, and 4) 

on the same dataset were used. 

4.3.1 Methods 

The datasets applied in this experiment: 

RF

SVM
J48

Bagging

NB

AdBo

ANN

76.0

78.0

80.0

82.0

84.0

86.0

88.0

90.0

RF
(%

)

ML Algorithms

ABPs against Non ABPs using 7 ML algorithms 
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1- 1914 of ABPs vs 1914 Non-ABPs. 

2- 1091 of AVPs vs 1091 Non-AVPs. 

3- 758 of AFPs vs 758 Non-AFPs. 

-Reduced alphabet letters: 

1- ra2-11: IMVLFWY – GPCASTNHQEDRK 

2- ra3-29: IMVLFWY - GPCAST - NHQEDRK 

3- ra4-47: IMVLFWY – G – PCAST – NHQEDRK 

-N-gram size: 

1- N-gram of size one: 31 = 3 possible combinations. 

2- N-gram of size two: 32 = 9 possible combinations. 

3- N-gram of size three: 33 = 27 possible combinations. 

4- N-gram of size four: 34 = 81 possible combinations. 

-Three different ML classification models were used: RF, SVM, and J48. 

-The next applied steps were mentioned in detail in the previous experiment. 

4.3.2 Results 

The classification of ABPs against Non-ABPs was successful. Models achieved a 

maximum accuracy of 86.8% and 87.2% with three and four reduced letters respectively, 

all using size 4 of N-gram analysis, and the RF model with ten trees cross-validation. 

According to the results from table 4.6 and 4.7, there is no significant change in the 
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accuracies when using three or four sizes of N-gram. On the other hand, there is a 

significant drop when using size one, and two of N-grams with two letters reduced 

alphabets as shown in table 4.5. 

Classification of AVPs against Non-AVP AMPs achieved an accuracy of 93.2% 

and 93% using N-gram size 4, alphabet reduction options 29 and 47, respectively, and with 

RF model while the model reaches 92.3% and 92.8% with N-gram size 3, and three and 

four reduced alphabets respectively. 

The other successful trials were classifying AFPs against Non-AFPs yielded a 

maximum accuracy of 89.9% using size 4 of N-gram, alphabet reduction option 47, and 

the RF model with ten trees and 10-fold cross-validation, and 82.7% using J48. Moreover, 

when using size 1 of N-grams with two letters of alphabet reduction, the accuracy drops to 

58.6% using the SVM model, as shown in table 4.5. 

Trial 1: ra2-11 
 

 
Table 4.5: Performing classification tests, alphabet reductions of ra2-11, N- grams size 1 

to 4, 3 algorithms, and their respective accuracies. 

N-grams Subclasses RF% SVM% J48% 

1 ABP vs Non-ABP 69.6 58.6 60.8 

2  75.3 60.0 65.5 
3  79.3 72.9 76.4 

4  82.4 72.9 78.7 
1 AVP vs Non-AVP 76.7 50.6 53.4 
2  82.9 63.8 76.3 

3  86.1 67.2 82.3 
4  89.6 68.4 85.7 

1 AFP vs Non-AFP 72.4 61.9 61.8 
2  78.9 61.8 73.1 

3  82.9 75.7 79.2 
4  86.3 77.0 84.0 
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Trial 2: ra3-29 
 

 
 

Table 4.6: Performing classification tests, alphabet reductions of ra3-29, N- grams size 1 

to 4, 3 algorithms, and their respective accuracies. 

N-grams Subclasses RF% SVM% J48% 

1 ABP vs Non-ABP 71.8 68.9 68.7 
2  77.6 70.3 73.3 

3  86.2 80.8 80.0 
4  86.8 81.4 80.5 

1 AVP vs Non-AVP 74.7 53.9 69.2 
2  82.4 67.5 78.3 

3  92.3 71.9 85.7 
4  93.2 75.6 87.6 

1 AFP vs Non-AFP 72.8 68.7 71.2 
2  78.6 68.7 73.9 

3  88.7 79.2 82.7 
4  89.4 80.2 82.7 

 
 
 
Trial 3: ra4-47 

 
 

 
Table 4.7: Performing classification tests, alphabet reductions of ra4-47, N- grams size 1 

to 4, 3 algorithms, and their respective accuracies. 

N-grams Subclasses RF% SVM% J48% 

1 ABP VS Non-ABP 75.5 72.7 75.3 
2  82.8 74.6 77.7 

3  86.8 82.2 81.4 
4  87.2 82.2 79.8 

1 AVP VS Non-AVP 80.1 56.4 76.9 
2  89.8 71.4 85.2 

3  92.8 75.9 87.0 
4  93.0 78.1 88.0 

1 AFP VS Non-AFP 79.6 72.6 76.7 
2  85.4 73.8 79.5 

3  89.5 80.3 82.5 
4  89.9 80.5 82.7 
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4.3.3 Discussion 

This study showed less successful results as well, with maximum accuracies ranging 

between 60% and 75% when using an N-gram size of 1 with two letters reduced alphabets. 

Like the previous experiment, RF significantly outperforms each of the other learning 

algorithms. On the other hand, the next most accurate model was the J48 model. 

Throughout all classification tests, the unigram and bigram with two-cluster 

alphabet reductions never achieved the highest accuracies for a given classification. 

However, using unigram and bigram resulted in a severe loss of information stored in the 

original amino acid sequence when combined with two letters reduced alphabet. The two-

cluster alphabets were grouped mainly by hydrophobicity, an important feature for AMPs. 

Thus, alphabet reductions with just two clusters were always outperformed by other 

alphabets. 

Also, the N-gram size of three and four most often yielded to a higher classification 

accuracy without significant differences between them. This finding implies that trigram 

with either three or four letters of alphabet reduction and RF is optimal for AMPs 

classification. 

N-gram size of four makes the amino acid sequences simple enough and efficient 

for ML without losing the original sequence information. Likewise, trigram yielded to high 

classification accuracy above 85% in three and four letters reduced alphabet see figure 4.2. 
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This result shows that even trigram are viable options for the sequence-based method of 

analysis utilized in this research. 

 
 

Figure 4.2: ABPs vs Non-ABPs using different size of N-grams (1 to 4) with 2, 3 and 4 
reduced alphabet letters by RF ML.  

 
 

 

4.4 Sums of N-grams 

In this experiment, sums of a different number of N-grams (2-3-4) with three letters 

reduced alphabet in the ABPs dataset. In order to figure out if there any hidden information 

that could be extracted from different sizes of N-gram. Also, if the accuracy will increase 

when adding several sizes of N-grams together. 

4.4.1 Methods 

The datasets applied in this experiment: 

-1914 of ABPs vs. 1914 Non-ABPs. 

69.6 71.8 75.575.3 77.6 82.879.3 86.2 86.882.4 86.8 87.2
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-3 alphabets reduce letters ra3-29 

- N-gram size: 

• N-gram of size one: 31 = 3 possible combinations. 

• N-gram of size two: 32 = 9 possible combinations. 

• N-gram of size three: 33 = 27 possible combinations. 

-The result of N2 will added to the result of N3.  

(N3 + N2) = 27 + 9 = 36 possible combinations. 

-Then, the result of N1 will added to the result of N3.  

(N3 + N1) = 27 + 3 = 30 possible combinations. 

-Finally, the result of N2 and N1 will added to the result of N3. 

 (N3 + N2 + N1) = 27 + 9 + 3 = 39 possible combinations. 

-Three different ML classification models were used: RF, SVM, and J48. 

-The next applied steps were mentioned in detail in 4.2 experiment. 

4.4.2 Results 

From table 4.8, we can realize that there is no significant change when sums the N-grams 

together. N-gram size of three still give us the highest accuracy around 85.8% using RF. 
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However, there was a slight increase in SVM and J48 when adding N-gram size of one to 

N-gram size of 3. 

 
 

Table 4.8: Summation of N-grams of ABPs vs Non-ABPs using ra3-29 and 3 ML 

N-grams RF% SVM% J4% 

N3 85.8 80.8 80.0 

N3 + N1 85.5 81.2 80.2 

N3 + N2 85.7 80.9 79.1 

N3 + N2 + N1 85.5 81.3 79.8 

 
 

 

4.4.3 Discussion 

Typically, N-gram size of 3 outperforms the other sizes of N-grams with RF, which means 

that N3 can hold all the amino acid sequences information that already found in N1 and 

N2. On the other hand, using SVM with sums of N1, N2, and N3 gives higher accuracy 

than N3 alone but with no significant differences between both accuracies. Moreover, N2 

+ N3 with J48 gives higher accuracy than N3 without any substantial differences in the 

accuracy rates. 

4.5 Different letters of alphabet reduction 

Amino acid alphabet reduction assists in cluster-specific amino acids together based on 

features, diminishing the 20 distinct amino acids down to the number of clusters. This 

reduction impressively aids in the calculation of N-gram frequencies as demonstrated in all 
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the previous experiments. In this study, we want to understand how the reduction of amino 

acids affect the accuracy of the model when diminishing the letters from 20 to 3 letters 

only. 

4.5.1 Methods 

The datasets applied in this experiment: 

-1914 of ABPs vs. 1914 Non-ABPs. 

-5 alphabets reduce were used: 

1- ra3-29: IMVLFWY – GPCAST – NHQEDRK 

2- ra6-81: IMVL – FWY – G – P – CAST – NHQEDRK 

3- ra10-110: IMV – L – FWY – G – P – C – A –STNH – RKQE - D 

4- ra15-149: IMV – L – F – WY – G - P – C – A – S – T – N – H – RKQ – E - D 

5- ra20-177: I – M – V – L – F – W - Y – G - P – C – A – S – T – N – H – R – K - Q – E – 

D 

-N-gram of size: Three 

-Three different ML classification models were used: RF, SVM, and J48. 

-The next applied steps were mentioned in detail in 4.2 experiment. 
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4.5.2 Results 

The results in table 4.9 show, diminishing the 20 letters amino acid to 3 letters is still 

holding most of the sequence information and complexity with accuracy around 85% with 

3 N-gram and RF. There are around 3% and 6% differences from decreasing the amino 

acid from 20 letters to 3 letters only with RF and J48 respectively. 

 
 

Table 4.9: ABPs vs Non-ABPs using 5 different alphabets reduction letters with 3 N-

gram and 3 ML. 

RA RF% SVM% J48% 

ra3-29 85.9 80.7 80 

ra6-81 87.6 83 81.5 

ra10-114 87.7 85.3 80.5 

ra15-149 87.8 84.9 81.5 

ra20-177 88.5 79.9 86.8 

 

 
 

4.5.3 Discussion 

Throughout all five classification tests, the three-cluster alphabet reductions achieved a 

good percentage of accuracy when comparing to others. Alphabet reduction 20 most often 

yielded the highest classification accuracies in RF and J48 because of its hold all the 

sequence info. While with SVM, the accuracy of 20 letters almost equal to 3 letters, thus, 

maybe the SVM use generally “black-box” models for predictions, which depends on the 

data only through dot-products. 
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As stated previously, this finding proof that the 3-cluster alphabet is optimal for N-

gram analysis and ML. A 3-cluster alphabet is simple enough for efficient ML and holds 

most of the data that encoded in the original sequences. Besides, this finding shows that 

even alphabet reductions with 6 or 10 clusters are viable options for the sequence-based 

method of analysis utilized in this study. 

4.6 Feature Selection 

Attribute or feature selection is a method that automatically searches for the best subset of 

attributes dataset to achieve the highest accuracy. The benefits of performing feature 

selection on this study to improves the model accuracy by reduce the misleading data, 

decrease overfitting by minimizing the opportunity to make decisions based on noise, and 

to lessen training time to train algorithms faster. 

WEKA offers an attribute selection tool which is divided into two parts: 

• Attribute Evaluator: Method to evaluate the attribute subsets. 

• Search Method: Method to search for possible space for the subsets. 

4.6.1 Methods 

In this experiment, two attributes selection of WEKA (CorrelationAttributeEval and 

InfoGainAttributeEval) were used. 
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1- CorrelationAttributeEval: This is to evaluate the value of an attribute by assessing the 

correlation between it and the class.  

2- InfoGainAttributeEval: This is to evaluate the value of an attribute by assessing the data 

gain with respect to the class. 

These two attributes are the most suitable to use on AMPs classification models. In 

the next section, both of CorrelationAttributeEval and InfoGainAttributeEval can only be 

used with a Ranker Search Method, which assesses each attribute and lists the results in 

rank order. 

The datasets applied in this experiment: 

-7984 AMPs vs. 7984 Neg set1. 

-4 alphabets reduce were used: 

1- ra3-29: IMVLFWY - GPCAST – NHQEDRK 

2- ra4-47: IMVLFWY – G – PCAST – NHQEDRK 

3- ra10-110: IMV - L – FWY – G – P – C – A - STNH – RKQE – D 

4- ra20-177: I – M - V – L – F – W - Y – G - P – C – A – S – T – N – H – R – K - Q – E – 

D 

-3 letters reduced alphabet with N-gram of size three: 33 = 27 possible combinations. 
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-4 letters reduced alphabet with N-gram of size three: 43 = 64 possible combinations. 

-10 letters reduced alphabet with N-gram of size three: 103 = 1000 possible combinations. 

-20 letters reduced alphabet with N-gram of size three: 203 = 8000 possible combinations. 

-Attribute evaluator: CorrelationAttributeEval and InfoGainAttributeEval. 

-Search method: Ranker. 

-The top 2,3,5,10 and 20 of higher ranked attributes (N-gram value) were calculated. 

-ML classification models were used: RF, SVM and J48. 

-The next applied steps were mentioned in detail in 4.2 experiment. 

4.6.2 Results 

After the selecting the model, we run the attribute evaluator with the Ranker search method. 

The attribute selection output arranged the dataset according to higher N-grams frequency 

on the dataset as an example, the output from N-grams size of three with three letters 

reduced alphabet shown below in table 4.10, which shows the top 20 of higher N-gram 

value in sequences of the model. 
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Table 4.10: The top 20 higher N-grams in the all sequences using ra3-29. 

The final result showed, as all previous studies, RF outperforms all other ML and achieved 

accuracy around 86% when using the top 20 in both attribute selection with three alphabet 

reduction. SVM displayed the lowest accuracy results of around 78%. Generally, we can 

say the accuracy drop when we increase the number of reduced alphabet letters in both 

feature selection. On the other hand, the accuracy rises by increasing the rank number from 

2 to 20. The is no significant change between rank 10 and 20. When using three and four 

alphabet reduction, the difference in the accuracy between rank 20 and using the full dataset 

 
Ranked attributes  

CorrelationAttributeEval InfoGainAttributeEval 
1 0.28998 1 BBB 0.229 3 BBU 

2 0.21416 5 BJJ 0.22 13 JJB 

3 0.20904 7 BUB 0.219 19 UBB 

4 0.18697 11 JBJ 0.216 7 BUB 

5 0.18567 13 JJB 0.214 6 BJU 

6 0.16016 27 UUU 0.213 8 BUJ 

7 0.14661 21 UBU 0.208 22 UJB 

8 0.1377 4 BJB 0.208 1 BBB 

9 0.12874 24 UJU 0.205 11 JBJ 

10 0.12744 15 JJU 0.199 16 JUB 

11 0.12087 14 JJJ 0.196 23 UJJ 

12 0.10709 6 BJU 0.194 26 UUJ 

13 0.08658 23 UJJ 0.192 5 BJJ 

14 0.07828 17 JUJ 0.191 15 JJU 

15 0.06537 20 UBJ 0.183 18 JUU 

16 0.06284 26 UUJ 0.182 12 JBU 

17 0.05811 22 UJB 0.179 17 JUJ 

18 0.04464 9 BUU 0.178 27 UUU 

19 0.04091 19 UBB 0.171 2 BBJ 

20 0.0378 16 JUB 0.169 20 UBJ 
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is minor. While it is considerable when using ten and twenty alphabet reduction in all of 

ML, as indicated in table 4.11.  
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Table 4.11: The accuracy results of using two attribute evaluators: CorrelationAttributeEval and InfoGainAttributeEval, 3 
different ML, 3,4 10, 20 reduced alphabet letters and size of 3 N-gram against AMPs and Neg set1 on top 2,3,5,10 and, 20 of 
N-gram frequency value. 

 

RA ML CorrelationAttributeEval InfoGainAttributeEval Full set   
2 3 5 10 20 2 3 5 10 20 27 

ra3-29 RF 79.7 81.5 83 85.2 86.3 79 79.6 82 85.2 86.3 87 
ra3-29 J48 77.5 79.5 80.5 81.4 81.1 75.5 77.7 79.4 81 81.3 81.5 
ra3-29 SVM 76.6 78.3 78.2 80.1 78.4 73.9 75.8 73.7 80.5 78.3 79.7             

64 
ra4-47 RF 80 81.2 82.9 85.1 86.5 78.8 79.9 81.5 85.2 86.7 87.7 
ra4-47 J48 78.3 79.9 80.5 82.4 82.3 77.8 79.4 80.5 81.4 81.2 82 
ra4-47 SVM 67.7 67.5 71.8 72 73.1 50.7 59.4 59.4 68.8 72.1 75             

1000 
ra10-114 RF 64.4 64.6 73 77.7 83 74.2 77.1 79.3 82.5 84.9 88.4 
ra10-114 J48 64.5 64.7 73.2 78.5 82.7 73.8 76.9 79.7 81 80.8 84.1 
ra10-114 SVM 63.3 60.6 64.6 67.3 70.9 52.7 53.1 54.5 58 61.3 84.3             

8000 
ra20-177 RF 54 55.6 58 62.6 67.2 54.1 55.4 56.8 62.2 70.1 89.6 
ra20-177 J48 54 55.6 58 62.8 67.4 54.1 55.4 56.9 62.4 70 85.2 
ra20-177 SVM 52.6 51.2 53.1 59.3 66.6 50 51.8 53.7 58.5 59.3 81.3 
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4.6.3 Discussion 

Discover feature selection to use it in AMPs and Non-AMPs classification as a suite of 

methods that can increase the model accuracy, decrease model training time, and reduce 

overfitting. From table 4.10 above, we can illustrate that each selection attribute has 

different N-grams rank with a different value according to how these attributes evaluate 

the model. 

Taking only the top two (BBB and BJJ) on CorrelationAttributeEval or (BBU and 

JJB) on InfoGainAttributeEval causes severe loss of information that encoded within the 

peptide sequence. While using the top 20 of the highest-ranked N-grams of the model 

achieved better accuracy.  

These results disclose that each of the N-gram in the sequence plays a role of 

holding some information of AMP characteristics that encoded within the sequences and 

discarded some of these N-grams could affect the model accuracy and cause the AMP to 

drop their antimicrobial activity. 
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4.7 Gaps Insertion Features 

In this experiment, we introduce novel gap insertion features between amino acid 

sequences. This will help the researcher to go beyond basic composition and recognize 

direct correlations between neighboring and non-neighboring amino acid motifs within 

AMP sequences.  

Many different trials of the gap insertion feature approach were made in this part. 

They were starting from zero gap to ten gaps inserted between amino acid with different 

sizes of N-gram and alphabet reduction. 

4.7.1 Methods 

Our method in this experiment is to understand the connections between neighboring and 

non-neighboring amino acids AMPs sequences and how these relationships will affect the 

accuracy of different ML algorithms. 

Trial 1: 

Introducing zero gap with N-gram size one using three and four alphabet reduced letters 

for AMPs and Non-AMPs datasets. Here no more gaps could add because there is only one 

N-gram. 
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Trial 2: 

Introducing zero to five gaps with N-gram size two using three and four alphabets reduced 

letters for AMPs and Non-AMPs datasets as explained below. 0 means zero gap, 1 means 

one amino acid in the sequences in two N-gram, and X means gap. 

- 0 

- 1 X 1 

- 1 XX 1 

- 1 XXX 1 

- 1 XXXX 1 

- 1 XXXXX 1 

Trial 3: 

Introducing zero to five gaps with N-gram size three. 

- 0 

- 2 X 1 

- 2 XX 1 

- 2 XXX 1 

- 2 XXXX 1 

- 2 XXXXX 1 
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Trial 4: 

Introducing zero to five gaps with N-gram size four. 

- 0  

- 2 X 2 

- 2 XX 2 

- 2 XXX 2 

- 2 XXXX 2 

- 2 XXXXX 2 

Trial 5: 

Introducing zero to 10 gaps with N-gram size three. 

- 0 

- 1 X 1 X 1 

- 1 XX 1 XX 1 

- 1 XXX 1 XXX1 

- 1 XXXX 1 XXXX 1 

- 1 XXXXX 1 XXXXX 1 
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Trial 6: 

Introducing zero to 6 gaps with N-gram size four. 

- 0  

- 2 X 1 X 1 

- 2 X 1 XX 1  

- 2 X 1 XXX 1 

- 2 XX 1 X 1 

- 2 XX 1 XX 1 

- 2 XXX 1 XXX 1 

- 1 X 1 X 1 X 1 

- 1 XX 1 X 1 X1 

Trial 7: 

Introducing zero and one gaps with N-gram size three using three and four alphabet reduced 

letters for AMPs, ABPs, AVPs, and AFPs datasets. 

- 0  

- 2 X 1 

- 1 X 2 

The datasets applied in this experiment: 

-7984 AMPs vs. 7984 Neg set1. 
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-1914 of ABPs vs. 1914 Non-ABPs. 

-1091 of AVPs vs. 1091 Non-AVPs. 

-758 of AFPs vs. 758 Non-AFPs. 

-Letters of alphabets reduce: ra3-29 and ra4-47 

-N-gram size: 1, 2, 3 and 4 

-Three different ML classification models were used: RF, SVM, and J48. 

-The next applied steps were mentioned in detail in 4.2 experiment. 

4.7.2 Results 

Insertion of gaps within the sequence-based model based on amino acid alphabet reduction, 

N-gram frequency calculation, and ML classifiers is a novel experiment. The primary goal 

of this study was to successfully understand the connection between AMPs' amino acid 

sequences and how the structure of amino acid of the AMPs could also play roles of giving 

any peptide the antimicrobial characteristics.  

The results from all seven trials were almost the same. Like all previous 

experiments, the N-gram size of one with no gap showed lower accuracy of 76.1% with 

RF on trial one as in table 4.12. While, the accuracy of RF increased to 85.2%, 87.7%, 

88.1% when N-gram size of two, three, and four, respectively, were used. SVM and J48 

displayed lower accuracy than RF in all numbers of N-gram.  



96 

 

The highest accuracy of AMPs resulted from four size N-gram and ra4-47 with RF 

around 88.3% by insertion of (1 XX 1 X 1 X1) gap on trial 6. In AMPs subclass, AVP 

obtained percent of classification rate of 93.7% by insertion of (1 X 2) gap. While 87.2% 

and 89.6 in ABPs and AFPs respectively, with a gap (2 X 1) on trial 7, see table 4.18. 

The primary comparison in this study was between the three ML classifiers and 

how the gaps insertion affects the accuracy rates of the models. Increasing gaps between 

amino acids rise the accuracies, especially in the SVM algorithm. RF and J48 showed a 

slight increase in accuracy rates. The SVM accuracy rates increased from 67.1% to 84.5% 

in two N-gram, from 75% to 85.3% in three N-gram, and from 77.3% to 85.5% in four N-

gram with ra4-47. On the other hand, the rates of the accuracy raised less than 5% in both 

RF, and J48 classifiers with an N-gram size of two see table 4.13. However, the accuracy 

rates drop for less than 1% in both RF and J48 ML when increasing the numbers of gaps 

between the amino acids, see tables 4.14, 4.15, 4.16, and 4.17. 

Trial 1: 

 

 

Table 4.12: The accuracy results of using zero gap with, 3,4 reduced alphabet letters, size 
of 1 N-gram and 3 different ML against AMPs and Neg set1.  

N-gram Class Gaps RF% SVM% J48% 

 7984 Seq  ra3-29 ra4-47 ra3-29 ra4-47 ra3-29 ra4-47 

1 AMP 0 74.5 76.1 63.3 65.6 70 73.4 
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Trial 2:  

 

 

 

Table 4.13: The accuracy results of using 1 to 5 gaps with, 3,4 reduced alphabet letters, 
size of 2 N-gram and 3 different ML against AMPs and Neg set1.  

N-gram Class Gaps RF% SVM% J48% 

 7984 Seq  ra3-29 ra4-47 ra3-29 ra4-47 ra3-29 ra4-47 

2 AMP 0 80.4 85.2 67.1 67.1 74.4 79 

2 AMP 1 X 1 82.3 85.8 77.3 77.3 78.5 80.8 

2 AMP 1 XX 1 82.2 85.3 82.7 82.7 77.2 79.6 

2 AMP 1 XXX 1 83.3 85.4 83.5 83.5 78.2 79.5 

2 AMP 1 XXXX 1 83.4 85.5 84.1 84.1 78.8 80.2 

2 AMP 1 XXXXX 1 84.3 85.7 84.5 84.5 79.6 80.6 
 

 

 

Trial 3: 

 

 

 

Table 4.14: The accuracy results of using 1 to 5 gaps with, 3,4 reduced alphabet letters, 
size of 3 N-gram and 3 different ML against AMPs and Neg set1.   

N-gram Class Gaps RF% SVM% J48% 

 7984 Seq  ra3-29 ra4-47 ra3-29 ra4-47 ra3-29 ra4-47 

3 AMP 0 87 87.7 74 75 81.5 82 

3 AMP 2 X 1 86.9 87.9 77.8 77.3 81.4 81.7 

3 AMP 2 XX 1 86.7 87.5 83.4 83.1 80.8 81.4 

3 AMP 2 XXX 1 86.9 87.7 84.2 84.2 80.9 81.2 

3 AMP 2 XXXX 1 86.7 87.4 84.8 85 80.9 81.5 

3 AMP 2 XXXXX 1 86.7 87.4 84.8 85.3 81.3 81.4 
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Trial 4:  

 

 

 

Table 4.15: The accuracy results of using 1 to 5 gaps with, 3,4 reduced alphabet letters, 
size of 4 N-gram and 3 different ML against AMPs and Neg set1.   

N-gram Class Gaps RF% SVM% J48% 

 7984 Seq  ra3-29 ra4-47 ra3-29 ra4-47 ra3-29 ra4-47 

4 AMP 0 87.9 88.1 74.8 77.3 81.8 82.8 

4 AMP 2 X 2 88 88.1 78.4 79.2 81.5 82.4 

4 AMP 2 XX 2 87.9 87.9 82.9 82.6 81.3 81.7 

4 AMP 2 XXX 2 87.8 87.9 84.3 84.5 81.1 81.5 

4 AMP 2 XXXX 2 87.6 88 85 85 81.4 81.8 

4 AMP 2 XXXXX 2 87.6 88 84.8 85.5 81.2 81.8 
 

 

 

Trial 5: 
 
 
 
Table 4.16: The accuracy results of using 1 to 10 gaps with, 3,4 reduced alphabet letters, 
size of 3 N-gram and 3 different ML against AMPs and Neg set1.   

N-

gram 
Class Gaps RF% SVM% J48% 

 7984 
Seq 

 ra3-
29 

ra4-
47 

ra3-
29 

ra4-
47 

ra3-
29 

ra4-
47 

3 AMP 0 87 87.7 74 75 81.5 82 

3 AMP 1 X 1 X 1 86.3 87.8 82.3 82.1 81.3 81.7 

3 AMP 1 XX 1 XX 1 86.4 87.1 84.3 84.4 80.4 80.9 

3 AMP 1 XXX 1 XXX1 86.7 87.4 84 84.7 80.7 81.4 

3 AMP 1 XXXX 1 XXXX 1 86.7 87.6 84.5 85 81.8 81.6 

3 AMP 1 XXXXX 1 
XXXXX 1 86.8 87.5 84.8 85.2 81.6 81.5 
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Trial 6: 

 

 

Table 4.17: The accuracy results of using 1 to 6 gaps with, 3,4 reduced alphabet letters, 
size of 4 N-gram and 3 different ML against AMPs and Neg set1.  

N-gram Class Gaps RF% SVM% J48% 
 7984 Seq  ra3-29 ra4-47 ra3-29 ra4-47 ra3-29 ra4-47 

4 AMP 0 87.9 88.1 74.8 77.3 81.8 82.8 

4 AMP 2 X 1 X 1 87.7 88.2 83 82.8 81.4 82.3 

4 AMP 2 X 1 XX 1 87.9 88 84.7 84.5 80.4 82.1 

4 AMP 2 X 1 XXX 1 88 88 85.1 85.5 81.4 82.3 

4 AMP 2 XX 1 X 1 87.9 88.2 84.8 85 81.2 82.4 

4 AMP 2 XX 1 XX 1 88 87.9 85.1 85.2 80.9 82.2 

4 AMP 2 XXX 1 XXX 1 87.5 88 85 85.7 81.2 82 

4 AMP 1 X 1 X 1 X 1 87.7 88 84.1 84.3 81.5 82.4 

4 AMP 1 XX 1 X 1 X1 87.9 88.3 84.7 85 81.2 82.2 

 

 

 

Trial 7:  
 
 
Table 4.18: The accuracy results of using 1 gap with, 3,4 reduced alphabet letters, size of 
3N-gram and 3 different ML on AMPs, ABPs, AVPs, and AFPs dataset.  

N-gram RA Class  RF%   SVM%   J48%  
   0 2 X 1 1 X 2 0 2 X 1 1 X 2 0 2 X 1 1 X 2 
3 ra3-29 AMP 87 86.9 86.9 74 77.8 77.5 81.5 81.4 81.5 
3 ra4-47  87.7 87.9 87.9 75 77.3 77.6 82 81.7 81.2 
3 ra3-29 ABP 86.2 86.2 85.1 80.8 80.9 80.7 80 79.1 79.3 
3 ra4-47  86.9 87.2 86.7 82.2 82.1 82.5 81.4 80 79.4 
3 ra3-29 AVP 92.3 92.5 92.4 72 77.7 76.8 85.7 85.8 86.3 
3 ra4-47  92.8 93.1 93.7 75.9 78.2 76 87 86.7 86.8 
3 ra3-29 AFP 88.7 88.4 88 79.2 80 80.2 82.7 81.7 81.5 
3 ra4-47  89.5 89.6 89.2 80.3 81.4 81.5 82.5 80.4 81 
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4.7.3 Discussion 

Insertion of gaps within reduced alphabet letters of amino acids with N-gram calculation 

and ML classifiers is a successful experiment that not only recognizes sequence motifs in 

AMPs but go beyond basic composition and capture related correlations between 

neighboring and non-neighboring amino acids motifs. This allows researchers to 

understand more about sequence features which can aid in the design of novel AMP 

sequences.  

There would be no significant change in the antimicrobial activity of the peptide 

with gaps insertion between the amino acid sequences since the accuracy rate of the ML 

classifiers did not change remarkably. This means that the secondary structure of AMPs, 

either β-sheet, α-helix, extended, or loop peptides play an essential role in this regard. Also, 

SVM outperforms the RF and J48 ML algorithms. Thus, maybe because that the SVM 

generally uses “black-box” methods which is lacking transparency in how features are 

being used to make predictions. 

Here, we can prove that the insertion of gaps within AMPs sequences could not 

play a significant role in the AMPs sequence-based model but may affect the secondary 

structure of the peptides and its activity. This result may uncover specific patterns within 

the primary structure of AMPs. Further studies about the linkage between the sequence and 

structure of a peptide to have its antimicrobial action need to be done. 
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From the results above, we conclude that the primary structure, or the amino acid 

sequence, of a protein, controls the protein’s three-dimensional structure. This implies that 

disorder, or lack of stable structure, can also be encoded in the sequence.  

More importantly, these new features of AMPs sequence-based models are more 

transparent compared to those of the previous studies by researchers conducting 

experiments. Likewise, provide an intuitive summary of what they are capturing. We hope 

this can also allow for more informed design choices for those designing novel AMPs 

sequences in silico. 

4.8 30 Residues AMPs 

Dividing the AMPs sequences to only 30 residue sequences may uncover unspecific 

sequence patterns. Since not the whole sequence of the AMPs showed the antimicrobial 

characteristics, by cut part of it may appeared as Non-AMP because the motif that gives 

the activity of the sequence was removed, especially in longer AMPs that contains more 

than 30 residues. 

The primary goal of this study was to successfully understand the location of the 

motif in AMPs' long and short sequences. Moreover, to realize how these 30 residues will 

be implemented by using our novel, straightforward, sequence-based method. The more 

advanced goal of this study is to assist in creating an artificial set of AMPs. 
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4.8.1 Methods 

To understand the performance of antimicrobial motifs in AMPs sequences, the AMPs and 

Non-AMPs were shopped to 30 residues. So, all sequences of the datasets were 30 residues 

or less. These 30 residues of AMPs and Non-AMPs were the test set of a model that has 

full sequences of AMPs and Non-AMPs. The ra3-29 and N-gram size of three were used. 

In this study, three trials had done in order to know the performance of these motifs in a 

shorter sequence. 

Trial 1: 

1- Full dataset (7984 Sequences) of AMPs and Neg set1were used to build the model, then 

each of them was shopped to 30 residues sequence as a test set. 

2- The first half (3992 Sequences) of the previous datasets of AMPs and Neg set1 were 

used to build the model, then each half was shopped to 30 residues sequence as a test set. 

3- Second half (3992 Sequences) of the full datasets of AMPs and Neg set1 were used to 

build the model, then each of the second halves was shopped to 30 residues sequence as a 

test set. 

Trial 2: 

Due to the variances of the accuracy rates that resulted from the previous halves as shown 

in table 4.18, new different halves of the same full dataset of AMPs were created: 
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1- First half: odd number of the full dataset (3992 Sequences) of AMPs and Neg set1were 

used to build the model, then each half of them were shopped to 30 residues sequence as a 

test set. 

2- The second half: even number of the full dataset (3992 Sequences) of AMPs and Neg 

set1 were used to build the model, then each half were shopped to 30 residues sequence as 

a test set. 

Trial 3: 

To uncover more features of our previous tests, the Neg set2 of Non-AMPs was used. Here 

the two halves of AMPs dataset were created as follow: 

1- The first half: (1600 sequences) of an odd dataset of AMPs and the Neg set2 to build the 

model, then each of them was shopped to 30 residues sequence as a test set. 

2- The second half: (1600 sequences) even dataset of AMPs and the Neg set2 to build the 

model, then each of them was shopped to 30 residues sequence as a test set. 

3- The model and the test set of the second half were used as a test set to the first half 

model. 

4- The model and the test set of the first half were used as a test set to the second half 

model. 

The datasets applied in this experiment: 
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Trial 1: 7984 AMPs vs. 7984 Neg set1. 

Trial 1 and 2: Half dataset: 3992 AMPs vs. 3992 Neg set1. 

Trial 3: Half dataset: 1600 AMPs vs. 1600 of the Neg set2. 

-Divide all the halve sets to 30 residues. 

-Letters of alphabets reduce: ra3-29  

-N-gram size: Three. 

-RF classifier was used. 

-The next applied steps were mentioned in detail in 4.2 experiment. 

4.8.2 Results 

Trial 1:  

The classification of AMPs against Neg set1 (Non-AMPs) was successful. The full dataset 

model achieved an accuracy of 87% using N-gram frequency analysis, alphabet reduction 

ra3-29, and the RF model with ten trees and 10-fold cross-validation. The model reached 

89% with AMPs 30 residues test set. The other halves of the dataset showed a slight 

difference in the accuracy rates of the models. In the first half set, the accuracy was 88.6% 

and dropped to 85.9% in the second half. Similarly, the first half test set was 93.7% and 

decreased to 84.6%. the Neg set1 datasets showed very low accuracy percentage, see table 

4.19 below. 
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Table 4.19: The accuracy results of using 30 residues test, 3 reduced alphabet letters, size 
of 3 N-gram and RF ML on AMPs dataset.  

 Model AMPs test set (30) Neg set1 test set (30) 

 All (AMPs + Neg set1) all AMPs all Neg set1 

No of Seq 7984 + 7984 104591 429896 

RF% 87 89.8 28.2 
    

First half set (AMPs + Neg set1) AMPs Neg set1 

No of Seq 3992+3992 41079 213227 

RF% 88.6 93.7 26.4 
    

Second half set (AMPs + Neg set1) AMPs Neg set1 

No of Seq 3992+3992 63512 216669 

RF% 85.9 84.6 35.5 
 

 

 

In trial 2:  

The odd and even halves dataset models achieved an accuracy of 86% and 86.2% 
respectively. And around 91.5 in both AMPs 30 residues test set. While the negative set 
showed very low accuracy as well around 24%, as shown below in table 4.20. 

 

Table 4.20: The accuracy results of using 30 residues test, 3 reduced alphabet letters, size 
of 3 N-gram and RF ML on AMPs dataset. 

 Model AMPs test set (30) Neg set1 test set (30) 

Half set (odd) All (AMPs + Neg set1) AMPs Neg set1 

No of Seq 3992+3992 51643 214542 

RF% 86 91.4 25.3 
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In trial 3:  

When we used the previous odd and even dataset with the Neg set2 (new negative set) the 

accuracy of the both 30 residue test sets significantly decreased to around 40%. However, 

the accuracy rate of this Neg set2 significantly increased to around 88%. The model 

accuracy of the full halves against the negative set dropped around 10% in comparison to 

the odd and even sets in the previous trial. 

Classification using test set of AMPs was conducted next. First, classification of 

AMPs against Non-AMPs achieved a maximum accuracy of 87.3% in the odd set and used 

the even set as test set and 41.7% with the even 30 residues as test set as well. Moreover, 

the model achieved 86.7% with the even set and the odd set as test set. See table 4.21. 

 
 
 

Table 4.21: The accuracy results of using 30 residues test with a Neg set2, 3 reduced 
alphabet letters, size of 3 N-gram and RF ML on AMPs dataset.  

 Model AMPs test set (30) Neg set2 test set (30) 

Half set (odd) (AMPs 1 + Neg set2) AMPs1 Neg set2 

No of Seq 1600+1600 20721 22345 

    

Half set (even) (AMPs + Neg set1) AMPs Neg set1 

No of Seq 3992+3992 52948 215354 

RF% 86.2 91.5 24.2 
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RF% 75.7 47.8 86.6 
    

Half set (even) (AMPs 2 + Neg set2) AMPs2 Neg set2 

No of Seq 1600+1600 19611 22345 

RF% 76 40 88.4 
    

Half set (odd) AMPs 2 / 87.3 AMPs 2 (30) / 41.7  

Half set (even) AMPs 1 / 86.7 AMPs 1 (30) / 41.9  

 
 
 
4.8.3 Discussion 

In general, shopped the amino acid sequences to small chunks changed the accuracy rate 

of RF. This because the longer sequences of AMPs contain a motif that gives the 

antimicrobial activity features to the to a certain peptide; once chopped to smaller pieces, 

one piece only holds the antimicrobial activity motif while others not. Which means that 

one piece only is AMP, while the other pieces are not AMPs anymore, and the accuracy 

value of the models will change. 

In the first trial, the full AMPs dataset arrange as most of the short sequences written 

at the beginning of the dataset, and most of the long sequences written at the end of the 

dataset. This arrangement explains the slight differences in the accuracy rates between the 

first and the second halves of the dataset. To overcome these variances, in the second trial, 

the first half were built by taking the odd number of the sequence from the full AMPs set, 

whereas the second half were created from the even number sequences. After this, the 

accuracy rates of both sets were almost equal. The figures (4.3, 4.4, 4.5, 4.6, and 4.7) below 
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show the distribution of the sequence length through all of the five datasets; full set of 

AMPs, first half, second half, odd set, and even set. 

 

Figure 4.3: The length distribution in full dataset of AMPs. 
 
 
 

Figure 4.4: The length distribution of the sequences in first half of the full dataset of AMPs. 

5257

1436

801
440

50
0

1000

2000

3000

4000

5000

6000

20-40 41-60 61-80 81-100 101-120

N
o.

 o
f t

he
 se

qu
en

ce
 

Sequence length

Full set of AMPs

2937

664

240 116 35
0

500

1000

1500

2000

2500

3000

3500

20-40 41-60 61-80 81-100 101-120

N
o.

 o
f t

he
 se

qu
en

ce
 

Sequence length

First half set of AMPs



109 

 

Figure 4.5: The length distribution of the sequences in second half of the full dataset of 
AMPs.  

 
 

Figure 4.6: The length distribution of the sequences in the odd half of the full dataset of 
AMPs.   
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Figure 4.7: The length distribution of the sequences in the even half of the full dataset of 
AMPs. 

 

4.9 The length feature of AMPs sequences 

As we conclude from the previous experiment, the length of the AMP plays a vital role in 

the AMPs classification accuracy rates. By using a straightforward sequence-based 

classification of AMPs, we want to uncover more specific patterns of AMPs sequence 

length features. The outcomes from this study could be particularly interesting as this 

knowledge could applied toward synthesizing AMPs from a short amino acid sequences in 

the laboratory. 
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4.9.1 Methods 

The method here was to classify the AMPs against Non-AMPs through using the sequence 

length. The datasets of the models were divided into three categories according to their 

length from:  

1- 100 to 120 residues. 

2- 60 to 80 residues. 

3- 20 to 40 residues. The number of AMPs sequences in this range exceeds the numbers of 

Non-AMPs sequences. To resolve this issue, those AMPs sequences were divided into two 

parts and used the same Non-AMPs set in both parts.  

Next, each of these sets was divided into 30 residue amino acid and test the models 

by using them as a test set. So, we ended up having four models, four positive AMPs of 30 

residues test set, and four negative Non-AMPs of 30 residues test set. 

The datasets applied in this experiment: 

1- 100 to 120 residues: 53 AMPs vs. 53 Neg set1. 

2- 60 to 80 residues: 848 AMPs vs. 848 Neg set1. 

3- 20 to 40 residues: 690 AMPs vs. 690 Neg set1. 

4- 20 to 40 residues: 690 AMPs vs. 690 Neg set1. 
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-Divide all the previous sets to 30 residues as a test set. 

-Letters of alphabet reduce: ra3-29  

-N-gram size: Three. 

-RF classification model was used. 

-The next applied steps were mentioned in detail in 4.2 experiment. 

4.9.2 Results 

The classification of AMPs against Non-AMPs was successful. Models achieved an 

average accuracy of 91.6 % using N-gram analysis, alphabet reduction ra3-29, and the RF 

model with ten trees and 10-fold cross-validation in the length of 20 to 40 residues 

sequences. The positive test set of this range achieved 100% accuracy, and the negative set 

99.5%.  

On the other hand, the accuracy decreased to 71.1% and 81.6 % in models 100-120 

and 60-80 residues, respectively. As presented in table 4.22 below, the longer sequence 

displayed lower accuracy value as the AMP motifs will not be in each divided part of the 

original sequences, which complicate the ML automation process. 
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Table 4.22: The accuracy results of using different length of residues, 3 reduced alphabet 
letters, size of 3 N-gram and RF ML on AMPs dataset.  

 Model Pos test set (30) Neg set1 test set (30) 

100 - 120 All (AMPs + Neg set1) AMPs Non-AMPs 
No of Seq 53+53 2095 2366 

RF% 71.2 88 41.3 
    

60 - 80 (AMPs + Neg set1) AMPs Non-AMPs 
No of Seq 848+848 61888 19792 

RF% 81.6 82.3 47.2 
    

20 - 40 (AMPs + Neg set1) AMPs Non-AMPs 
No of Seq 690+690 690 1285 

RF% 90.3 100 99.5 
    

20 - 40 (AMPs + Neg set1) AMPs Non-AMPs 
No of Seq 690+690 3177 1285 

RF% 93 96.5 88.1 
 
 
 
4.9.3 Discussion 

From this novel study, the result concludes that there is an inverse relationship between the 

length of the AMPs and the accuracy rate of a model. Each of AMP has its motif or motifs 

that give its antimicrobial activity characteristic of the particular sequence. Once this motif 

or these motifs removed from the sequence, the AMPs will lose their antimicrobial activity 

and become a natural peptide as stated earlier.  

In the first part of 20-40 residues, the model achieved 100% accuracy with 30 

residues test set this because all of the AMPs sequences in this range are less than 30 

residues, and none of them were cut it to a shorter piece. Consequently, the ML count all 
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of them as AMPs. While in the second part of 20-40 residues, some of the sequences were 

more than 30 residues and were chopped. 

4.10 The Antimicrobial Peptide Database (APD) 

In this study, we introduced a new positive dataset of AMPs from the Antimicrobial Peptide 

Database (APD). This dataset was used to build models as a test set and training sets. Here, 

we want to prove that our proposed straightforward method will work with any dataset 

models and provide reliable results, in order to use it soon, to classify any peptide using a 

simple and inexpensive way of alphabet reduction, N-gram analysis, and ML. 

4.10.1 Methods 

The method here was to classify the AMPs against Non-AMPs through using two different 

positive AMPs datasets and two different negative Non-AMPs datasets. All of those sets 

were used to build the models, test set, and training set. In this study, three trials were made 

to discover any concealed arrangements of this novel useful method. Furthermore, to 

realize how the length of the peptide affects the model’s accuracy of ML. 

Trial 1: 

1- APD dataset (1600 Sequences) of AMPs and Neg set1 were used to build the model.  

2- Each of them was shopped to 30, 40, 50, and 60 residues sequence as a test set. 

Trial 2: 
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1- APD dataset of AMPs and Neg set2 to build the model.  

2- Each of them was shopped to 30, 40, 50, and 60 residues sequence as a test set. 

Trial 3: 

1- APD dataset of AMPs and Neg set1 were used to build the model as trial 1.  

2- Our original full AMPs dataset and the Neg set2 were used as the test set. 

3- Each of the previous set was shopped to 30, 40, 50, and 60 residues sequence as a test 

set as well. 

Trial 4: 

To overcome the differences of the shopped 30 residues between the positive APD and the 

two negative sets, the negative sets were shorted to be equal to APD 30 residues. 

1- APD dataset of AMPs and Neg set1 to build the model.  

2- APD dataset of AMPs and Neg set2 to build the model. 

3- Each of them was shopped to 30 residues sequence as a test set. 

-The datasets applied in this experiment: 

Trial 1: 1600 APD AMPs vs. 1600 Neg set1. 

Trial 2: 1600 APD AMPs vs. 1600 Neg set2. 
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Trial 3: same models of trial 1and 2 with shorted 30 residues negative sets. 

Trial 4: 1794 APD AMPs vs. 1794 Neg set1. 

-Training set: 6190 AMPs and 1600 of Neg set2. 

-Divide all the of these sets to 30, 40, 50, and 60 residues. 

-Letters of alphabets reduce: ra3-29  

-N-gram size: three. 

-RF classification model was used. 

-The next applied steps were mentioned in detail in 4.2 experiment. 

4.10.2 Results 

From trial one and trial two, the test set of the full dataset of the positive and negative 

AMPs achieved maximum accuracy of around 100% using alphabet reduction ra3-29 and 

N-gram size of three and RF ML classifiers. The model reached an accuracy of 89.3% on 

trial three see table 4.25. The APD test set results of trial one decreased with an increase in 

the length of the sequences. However, the accuracy of the Non-AMPs test set increased 

with an increase in the sequence’s length, as in table 4.24. 

On trial two, the accuracy of both positive and negative test sets improved with 

increasing the number of residues length to reach 96.7% on the Neg set2 Non-AMPs see 

figure 4.9. While on trial three, our original AMPs dataset displayed a decline in the RF% 
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by increasing the number of amino acids per sequence. On the other hand, the opposite 

effect occurred to the Neg set2 test set through using APD and Neg set1 datasets as a model, 

as displayed in table 4.25. The result from trial four showed that there were no significant 

differences in the accuracy rate when shorted 30 residues were used, see table 4.26. the 

accuracy of RF increased from 74.9% to 75.6% on shorted neg set1, and from 89.5% to 

90.1% on shorted neg set2. 

Trial 1 results: 

 

 

 

Figure 4.8: The accuracy of each test set full, 30, 40, 50, and 60 using RF classification 
model of APD dataset and Neg set1. 
 
 
 
Table 4.23: The accuracy results of using different length of residues: full, 30, 40, 50, and 
60 (test sets), 3 reduced alphabet letters, size of 3 N-gram and RF ML on APD dataset 
and Neg set1. 

 Model APD Neg set1 
 Full (APD + Neg set1) test set (full) test set (full) 

No of Seq 1600+1600 1600 1600 
RF% 84.9 99.7 98.7 

  test set (30) test set (30) 
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Trial 2 results: 

 

Figure 4.9: The accuracy of each test set full, 30, 40, 50, and 60 using RF classification 
model of APD dataset and Neg set2. 
 

 No of Seq 13020 35081 
 RF% 73.5 74.9 
  test set (40) test set (40) 
 No of Seq 6855 22556 
 RF% 78 78.8 
  test set (50) test set (50) 
 No of Seq 4227 12145 
 RF% 71.2 90.6 
  test set (60) test set (60) 
 No of Seq 3083 4520 
 RF% 69 98.6 
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Table 4.24: The accuracy results of using different length of residues: full, 30, 40, 50, and 
60 (test sets), 3 reduced alphabet letters, size of 3 N-gram and RF ML on APD dataset 
and Neg set2. 

 
 

 

Trial 3 results: 

 

 

 

Table 4.25: The accuracy results of using different length of residues: full, 30, 40, 50, and 
60 (test sets), 3 reduced alphabet letters, size of 3 N-gram and RF ML on APD dataset, 
Neg set1, AMPs, and Neg set2.  

 Model AMPs Neg set2 
 Full (APD + Neg set1) test set (full) test set (full) 

No of Seq 1794 / 1794 6190 1600 
RF% 89.3 72.4 48.6 

  test set (30) test set (30) 
 No of Seq 87638 22345 
 RF% 79.3 32.4 
  test set (40) test set (40) 
 No of Seq 58214 14383 
 RF% 67.5 53.2 
  test set (50) test set (50) 

 Model APD Neg set2 
 Full (APD + Neg set2) test set (full) test set (full) 

No of Seq 1600+1600 1600 1600 
RF% 82.8 100 100 

  test set (30) test set (30) 
 No of Seq 13020 22345 
 RF% 55.7 89.5 
  test set (40) test set (40) 
 No of Seq 6855 14383 
 RF% 68.8 89.8 
  test set (50) test set (50) 
 No of Seq 4227 10215 
 RF% 74.6 90.7 
  test set (60) test set (60) 
 No of Seq 3083 7440 
 RF% 76.4 96.7 



120 

 

 No of Seq 39342 10215 
 RF% 53.6 70.9 
  test set (60) test set (60) 
 No of Seq 26342 7440 
 RF% 45.1 79.8 

 
 

Figure 4.10: The accuracy of each test set full, 30, 40, 50, and 60 using RF classification 
model of APD dataset and Neg set1. 
 

 

 

Trial 4 results: 

 

 

 

Table 4.26: The accuracy results of using shorted 30 residues negative sets, 3 reduced 
alphabet letters, size of 3 N-gram and RF ML on APD dataset, Neg set1, and Neg set2.  

 Model Pos test set (30) Neg test set (30) 

  All (APD + Neg set1)  APD seqs Neg set1 

No of Seq 1600+1600 13020 13020 
RF% 84.9 73.5 75.6 

    
 All (APD + Neg set2)  APD seqs Neg set2 

No of Seq 1600+1600 13020 13020 
RF% 82.8 55.7 90.1 

 
 
 

72.4
79.3

67.5

53.6
45.148.6

32.4

53.2

70.9
79.8

0

20

40

60

80

100

Test set (full) Test set (30) Test set (40) Test set (50) Test set (60)

RF
 %

Trial 3

AMPs Neg set 2



121 

 

4.10.3 Discussion 

In the study, the straightforward, sequence-based classification of antimicrobial peptides 

was successful. In addition, we learned several general trends in the obtained accuracies 

throughout all the three classification trials. 

From the figures above, illustrates this point on the model using peptide length as 

its only independent variable, AMP-activity can be seen as less probable as length 

increases. This is an important observation and corollary with known biological 

observations. AMPs tend to be short peptides compared to Non-AMPs. 

 One interesting result came from the attempted classification of smaller sized 

(specifically 30-60 amino acid) sequences between AMPs and Non-AMPs peptides. The 

antimicrobial region, in most cases, is commonly a short region of the peptide. 

Consequently, a smaller AMP would then have less “noise” coming from the region of the 

peptide that is not specifically antimicrobial. For this purpose, the original hypothesis was 

that this success rate would exceed that of the classification of unrestricted amino acid 

sequence size. While further studies need to be tested to account for potential experimental 

error, this test result could potentially provide the implication that the region of the peptide 

not specifically antimicrobial could actually be involved in antimicrobial response. 

Therefore, the model was able to classify longer peptides with higher accuracy than shorter 

peptides as in trial 2.  
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4.11 Effect of Dataset Contamination 

After we performed all the previous experiments, we discover that our Neg set1 was 

accidentally contaminated. Around 5% of this dataset has some of the sequences are 

positive AMPs that were over 70% identity from the CAMP database.  

4.11.1 Method 

In order to overcome this error, A Blast on the neg set1 (7984 sequences) against the CAMP 

database was run, and all the sequences that above 65% identity were removed. As a result, 

the clean Neg set1 (C. Neg set1) contains 7513 sequences, and 471 sequences were 

disregarded. 

To understand the effect of this contamination, this clean negative set was used to 

build a model with a positive AMPs dataset. Full dataset (7984 sequences) of AMPs was 

randomly reduced to 7513 sequences to balance between the positive and negative sets. 

Then these AMPs and the C. Neg set1 were shopped to 30 residues and used it as a test set. 

The ra3-29 and N-gram size of three were used.  

The datasets applied in this experiment: 

-7513 AMPs vs. 7513 C. Neg set1. 

-Divide the sets to 30 residues. 

-Letters of alphabets reduce: ra3-29  
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-N-gram size: Three. 

-RF classifier was used. 

-The next applied steps were mentioned in detail in 4.2 experiment. 

4.11.2 Result 

In this experiment, the result from using a clean negative set showed that the accuracy rate 

of the model increased about l% compared to the previous model that used the 

contaminated negative dataset (Neg set1). The RF of the model was 87%, as in table 4.19, 

and here elevated to 88%, as shown in table 4.27 below. 

 
 
Table 4.27: The accuracy of the c. Neg set1 using size 3 N-grams, 3 letters alphabet 
reduction, and RF on AMPs dataset. 

 
 
 
4.11.3 Dissection 

This experiment shows the effect of dataset contamination on the result. Moreover, this is 

very important because this contamination could happen any time during the testing phase, 

as in our case. However, it is possible that among those peptides in the negative set are not 

part of the CAMP database and may have some antimicrobial activity. Because these 

 Model Test set (30) Test set (30) 

  (AMPs +C. Neg set1)  AMPs C. Neg set1 

No of Seq 7513 + 7513 101619 405530 
RF% 88 90.2 27.3 
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sequences were selected randomly from random protein sequences, and nobody tested it or 

discovered their antimicrobial activity, and they may have it, and we knew this from the 

beginning. Here we have an experiment that tells us that if a small number of sequences of 

the negative set have an antimicrobial activity, this does not change the accuracy of the 

result that much. This finding is exciting because it is addressing a critical issue of what is 

the effect of the contamination that cannot be discovered.  

4.12 Real World Experiment 

In order to test our sequence-based method, in this experiment, unknown 71 sequences 

were received. Three of our models were used. These models are all RF, size 3 of N-gram, 

3-letter alphabet models based on different training sets. Model 1 uses all kinds of AMPs 

in a length range 20-40 residues (number of sequences=690), model 2 is all kinds of AMPs 

of length 20 (number of sequences =779), and model 3 is gram-negative AMPs only in a 

15-45 residue range (number of sequences =280). The results of each model as shown 

below in tables 4.28, 4.29, and 4.30. 

 
 
Table 4.28: The accuracy of unknown set on model 1, using size 3 N-grams, 3 letters 
alphabet reduction, and RF on AMPs dataset. 

 Model 1  

20-40 (AMPs + Non-AMPs)  AMPs 

No of Seq 690+690 71 
RF% 93.3 90 
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Table 4.29: The accuracy of unknown set on model 2, using size 3 N-grams, 3 letters 
alphabet reduction, and RF on AMPs dataset. 

 Model 2  

20 (AMPs + Non-AMPs)  AMPs 

No of Seq 779+779 71 
RF% 95.1 79.3 

 
 

Table 4.30: The accuracy of unknown set on model 3, using size 3 N-grams, 3 letters 
alphabet reduction, and RF on AMPs dataset. 

 Model 3 G-Neg AMP  

15-45 (AMPs + Non-AMPs)  AMPs 

No of Seq 280+280 71 
RF% 83.5 88.5 

 
 
 

After we ran this unknown dataset on our models, we got the actual type of each 

sequence in the dataset. 24 of these peptides were AMPs, while the other 34 sequences are 

controls. These controls denote various randomizations, mutations, or truncations of the 

respective peptides.   

As we can see from the results, models 2 and 3 predicted correctly all or almost all 

of the AMPs sequences as AMPs, and most randomized sequences as Non-AMPs. Model 

1 achieved 90% accuracy, which has a higher rate of false positives. In comparison, almost 

all randomizations of the control sequences were predicted Non-AMP by model 3 that 

achieved 88.5%, which seems to be the best model from the current stable. Since most of 

these positive AMPs sequences are anti-gram-negative bacterial peptides.  
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4.13 Conclusion and Chapter Summary 

This chapter has demonstrated that feature interactions of AMP sequences are essential and 

can help to improve AMP classification. The results of all experiments are indicative that 

the sequence-based classification of AMPs is a viable classification alternative with vast 

areas for additional research. This method allows for further differentiation into the 

subclasses of AMPs, specifically antibacterial, antiviral, and antifungal peptides. By 

continually improving the classification methods, biomedical researchers would be able to 

further advance the potential replacement of antibiotics with AMPs. Besides, by increasing 

the specificity of the model, there is a higher possibility that peptides can be found to 

combat specific classes of microbes. 

  The percent accuracies of most of the models were very high, around 80%, which 

indicates true positive rates as opposed to false positive rates. Alphabet reduction three or 

four letters in conjugation with trigram always demonstrates higher accuracy, and it is 

simple and enough for ML automation. RF significantly outperforms each of the other ML 

algorithms. The accuracy rate of SVM generally outperforms by RF and J48, thus maybe 

because, the SVM uses “black-box” method for prediction and these models are not clear 

as we mentioned previously. 

Attribute selection of AMPs improved our model accuracy by reducing the 

ambiguous data, decrease overfitting and noise, and lessens training time to train ML 

algorithms faster.  
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Increasing gaps between amino acids rise accuracies, especially in the SVM 

algorithm. This means that the secondary structure of AMPs plays an essential role in this 

regard. 

The length of the AMP plays a vital role in the AMPs classification accuracy rates. 

The probability of our model’s activity decreases with length. So, we successfully 

understand the connection between AMPs' amino acid sequences and how the structure of 

the amino acid of the AMPs is encoded within the sequence. And how this connection 

would help in capturing related correlations between neighboring and non-neighboring 

amino acids motifs. 

The contamination of the negative set could happen unintentionally and may occur 

at any time, and we should avoid it. Conversely, this contamination may not discover, and 

no one can identify it since not all the protein sequences were tested to check their 

antimicrobial activity. The effect of this contamination in our sequence-based method is 

minimal and insignificant. Basically, the need for a large dataset of confirmed Non-AMPs 

is appreciated. 

In a real-world experiment, our sequence-based method achieved a high accuracy 

rate, which gives our model credibility and viability for the AMPs researcher community. 

Consequently, they can test their sequences using our model to discover or design new 

AMPs. 
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Direct comparisons between our method and commonly used methods are difficult 

due to the use of different datasets and the availability of these different classifiers. We are 

here just compared reported accuracy for each method that used to predict AMPs as shown 

in table 4.31 to our model’s accuracies in table 4.32. 

 

Table 4.31: Reported accuracy for some commonly used methods to predict AMPs. 

Name Method Accuracy % Weakness Reference 

Generic 
string kernel 

ML 90 Only highly 
active AMPs 

(Giguère et 
al., 2014) 

SVM-LZ SVM 87.6  Take longer 
time 

(Ng et al., 
2014)  

AntiBP SVM  85.2 For ABPs only (Lata et al., 
2010)  

ANN  77.3 For ABPs only (Lata et al., 
2007) 

CAMP Discriminant 
Analysis 

87.5 Relies on 
similarity scores 

(Thomas et 
al., 2009)  

SVM 91.5 Relies on 
similarity scores 

(Thomas et 
al., 2009) 

Seq 
alignment 
and feature 
selection 

BLASTP + Nearest 
Neighbor 
Algorithm 

80.2 Complexity and 
lower accuracy 

(Wang et al., 
2011) 

 
 
 
Table 4.32: Our models accuracy for AMPs prediction. 

Our Models Accuracy % 

Length feature of AMPs 93.3 
AMPs with different N-grams size  93.0  

30 Residues AMPs 91.5  
Antimicrobial Peptide Database (APD)  89.3  
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However, further research would still greatly benefit this study in order to provide 

sufficient explanation for part of the interesting results, such as the varied success rates of 

the multiple alphabets for AMPs subclasses and how the insertion of many gabs would not 

affect the sequences feature. Finally, we conclude that the trigram with either three or four 

letters of alphabet reduction and RF is optimal for AMPs classification. 

In the next chapter, we demonstrate different evaluation metrics to validate our 

results in this chapter. Some common performance metrics used for classification are 

briefly outlined next. 
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Chapter 5: Evaluation Metrics Considered for Model 
Performance 

5.1 Introduction 

Evaluating the model performance is one of the fundamental steps in the model 

development process. It helps to find out the best model that represents data, shows how 

successful the predictions of a dataset that have built in the training phase, and how well 

the chosen model will work in the future. Many metrics are offered for quantifying 

prediction and classification performance. Determining the suitable performance metric 

and acceptable level of type I error (when a null hypothesis is incorrectly rejected) and type 

II error (when a null hypothesis is incorrectly accepted) depends on the given problem. 

Predictions with correct classified observations are referred to as “true positives” (TP) or 

“true negatives” (TN), while erroneously classified observations are known as “false 

positives” (FP) or “false negatives” (FN). Several common performance metrics used for 

prediction and classification and employed throughout this chapter: learning curve, 

Mathew's Correlation Coefficient, Sensitivity and Specificity, Balanced Error Rate, 

Accuracy, Receiver Operating Characteristic, Precision, and Precision Recall Curves are 

briefly defined in the next part. Those metrics were performed on 17 models using dataset 

sizes ranging from 250 to 7984 (the size of the full positive set) and the control. 
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5.2 Evaluation Metrics  

5.2.1 Learning Curve 

To ensure that a small sample size of peptide sequences would not be indicative of 

overfitting, a learning curve was constructed for one classification test. In this study, the 

learning curve was constructed for the classification of AMPs against Non-AMPs. The 

curves had increments of 500 sequences. The learning curve was created using dataset sizes 

ranging from 250 to 7500 sequences. 

5.2.2 Mathew's Correlation Coefficient (MCC) 

MCC is fundamentally the correlation coefficient between the observed and the predicted 

in the binary classification performance. The value range will be from -1 to 1. The 

correlation coefficient of 1 signifies completely correct predictions in the recommend data 

while the value of -1 represents a completely opposite prediction. Larger values equate to 

better classification performance (Liu et al., 2015). 

The formula of MCC defines as: 

!"" = 	 (TP	 × 	TN) −	(FN	 × 	FP)	
-(./ + 12)	×	(.2 + 1/) 	×	(./ + 1/)	×	(.2 + 12)

 

5.2.3 Sensitivity and Specificity 

Sensitivity and specificity analysis is used to evaluate the performance of a model. In the 

context of classification, sensitivity is the ability of an algorithm to correctly classify an 
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amino acid as ′AMP′. It is equivalent to the true positive rate and can assesses type II error 

(Parikh et al., 2008).  

The formula of sensitivity defines as: 

Sensitivity = 	 ./
./ + 12 

Whereas specificity is the ability of an algorithm to correctly classify an amino acid 

as “Non-AMP”. It is also called true negative rate and can assesses type I error (Parikh et 

al., 2008). 

The formula of specificity defines as: 

	Specificity = 	 .2
.2 + 1/ 

In both cases, values range from 0 to 1 and higher values associate to lower error 

rates. 

5.2.4 Accuracy (ACC) 

ACC represents the closeness of a measured value to a standard or known value when 

conditions remain constant. This refers to how well a method can predict sample classes. 

The values of ACC range from 0 to 100 percent. Larger values associate with better 

classification performance assumed that the number of positive and negative examples are 

similar in size (Taylor, 1997).  
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The formula of ACC defines as:  

>"" = 	 ./ + .2
./ + 1/ + .2 + 12	 

5.2.5 Balanced Error Rate (BER) 

BER is the complement of the accuracy metric, that calculate the average of the errors on 

each class. It’s used to measure the effectiveness of our algorithms. So, a classification 

model that heavily favors one class will have a high BER even with a low error rate (Zhao 

et al., 2013).  

The formula of BER defines as:  

?@A = 1 − >"" 

Both ACC and BER are sensitive to the imbalanced data. 

5.2.6 Receiver Operating Characteristic (ROC) 

ROC curves compare true positive rate (Sensitivity) versus false positive rate (Specificity) 

across a range of values for the ability to predict a classifier performance. Each point on 

the ROC curve represents a pair corresponding to a particular decision threshold (Hajian-

Tilaki, 2013). ROC curve provides a convenient graphical representation of classification 

and predictions accuracy. The closer the curve to the upper-left border of the ROC space, 

the more accurate classification. The ROC score is a summary statistic which refers to the 

area under the curve (auROC). If a classifier correctly predicts the class for all observations, 
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then the auROC score reaches 1 (or 100 percent) whereas a random guess would have an 

auROC of 0.5 and would be represented by a straight diagonal line from the lower left to 

top right of the chart (Bewick et al., 2004). 

5.2.7 Precision and Precision Recall Curves 

Precision are commonly used for evaluating the classification performance. Precision is 

the ratio of correctly classify an amino acid as ′AMP′ to the total predicted positive AMP. 

also known as positive predictive value (PPV).  

The formula of precision defines as: 

Percision = 	 ./
./ + 1/ 

The Precision Recall Curve (PRC) shows the relationship between Recall (sensitivity) and 

precision.  

5.3 Model-Performance Results 

The main goal of this study was to successfully classify AMPs using a straightforward, 

sequence-based method that involved N-gram analysis, and ML. More complex goals of 

this study were classification between subclasses of AMPs and creation of an artificial set 

of AMPs in silico. Success rates of the performance evaluation for the 17 models were 

comparable to that of previous studies by researchers conducting experiments with tangible 

AMPs in biochemistry laboratories. 
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The learning curves created showed that model accuracies varied minorly with 

respect to dataset size. The AMPs against Non-AMPs comparison yielded consistent 

accuracies above 1000 sequences. The curves had increments of 500 sequences, and ra3-

29 with an N-gram size of three were used. The curve was generally flat between these 

points, as in the figure 5.1 below.  

 
 

Figure 5.1: Model accuracies do not vary significantly with the size of the dataset, 
providing assurance that model accuracies will not be skewed as a result of small or large 
datasets. 
 
 
 
Next, the 17 models were compared in the context of classification performance, 

comparing the models in terms of sensitivity, specificity, and MCC values. The sensitivity 

and specificity of all models achieved above 0.84, while MCC reached 0.74 in the full size 

of the AMPs dataset. 
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The effect on classification performance on all models can be seen in figure 5.2, 

which shows that all models have high sensitivity, specificity, and MCC value. 

 
 

Figure 5.2: Classification performance of all 17 models on AMPs against Neg set1 
datasets are evaluated in terms of sensitivity, specificity, and MCC. 
 
 
 

Accuracies achieved a maximum at a dataset size of 250 sequences and a minimum 

at a dataset size of 5000 to 5500 sequences. ACC results showed good accuracy of 

classification between AMPs and Non-AMPs in all the models ranging between 97% to 

85% using N-gram analysis, alphabet reduction option ra3-29, and the RF model with ten 

trees-fold cross-validation. BER value indicated the misclassification rate in each model. 

As we can see from figure 5.3, low BER value in all models with a maximum error rate 

14.5% in 5500 sequence’s models. The control trial showed low accuracy about 50% and 

high BER, implying that all models resulting from this method yielded reliable results.  
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Figure 5.3: Classification performance of all 18 models on AMPs against Neg set1 
dataset are evaluated in terms of ACC and BER. 
 
 
 

A set of ROC (Receiver operating characteristic) area curves were created. ROC 

area is restricted to a real number between 0 and 1, with the area near 1 indicating few false 

positives in the data and with the area near 0.5 indicating truly random results. The area 

under the ROC curve (auROC) was 0.93 for a size of 7984 sequences (full dataset) to 5500 

sequences, 0.92 for 5000 sequences, 0.94 for 4500 sequences, 0.95 for 4000 to 2500 

sequences, 0.94 for 2000 to 1500 sequences, 0.99 for 500 to 250 sequences and 0.5 for the 

control trial with 7984 sequences. Figure 5.4 show the ROC curves for the full dataset and 

the control models. The ROC curves for the other 16 models available in the appendices, 

see figure A.1.  

The 17 success rates of our models and the control were supported by the high 
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rates, and lack of overfitting in the models. These success rates evince the classification 

power of alphabet reduction, N-gram, and ML models regarding differentiation between 

AMPs and Non-AMPs. 

 
 

Figure 5.4: ROC Curves of the full-size dataset (7984 sequences) and the control models 
on AMPs against Non-AMPs datasets using RF 10-fold cross validation, N-gram size of 
3, and reduced alphabet ra3-29 
 
 
 

Precision and recall (sensitivity) are two vital model evaluation metrics. The result 

is a value between 0.0 for no precision / no recall and 1.0 for perfect precision and recall. 

All of our models achieved above 0.85 of precision. the minimum rate of recall was 0.84 

as shown in figure 5.5 below, which indicates that our performance models have low false 

positives and high true positives rates of classification between AMPs and Non-AMPs. 
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Figure 5.5: Classification performance of all 17 models on AMPs against Non-AMPs 
datasets are evaluated in terms of precision and recall. 
 
 
 
5.4 Conclusion and Chapter Summary 

The performance of the 17 models and the control among all of evaluation metrics prove 

that an N-gram based approach to discriminate between AMPs and Non-AMPs is an 

effective and efficient method. The quantitative findings from the learning curve indicated 

that even a small dataset size would not cause a substantial difference in the accuracy value 

of the models, which adds credibility to the accuracies mentioned in this dissertation. 

The MCC, sensitivity, specify, precision, and recall displayed high success rate of 
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correctly classify AMPs against Non-AMPs with high actual positive observations and low 

BER value, lack of false-positives and potential overfitting of the models to a dataset. 

As mentioned before, 85.2% accuracy for this classification is comparable to the 

accuracies of previous studies utilizing more complex methods of classification. 

Furthermore, ROC area values are consistently high in all the models. Label randomization 

(control) verified the integrity of the dataset and implied that all models used in this 

comparison would yield reliable accuracies. 

The results propose that the classifiers produced high predictive power and can be 

used in several medical and biological applications, potentially saving thousands of lives. 

AMPs are useful for modification of existing AMPs and for designing new synthetic 

AMPs. Again, consistently high accuracy, high auROC values, and other evaluation 

metrics corroborate for successful classification. 
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Chapter 6: N-gram Classification Application 

6.1 Introduction 

To make our proposed straightforward, sequence-based method that involved alphabet 

reduction, N-gram frequency, and ML reproducible and reachable to the greater AMPs 

research community, “N-gram Classification” has created, a free AMPs classification and 

prediction application available at http://www.binf.gmu.edu/mothman/N-gram-

Classification-Application/. The Application is easy-to-use and simply requires the user to 

upload a FASTA or text file of sequences and reduced alphabet letters. 

This application calculates the N-gram frequencies of each sequence that has been 

reduced to a reduced alphabet of 2 or more letters, selected by  user. Also, the user can 

choose the way of reading the N-gram frequency, the range of the length of the sequences, 

remove redundancy, generate control of randomly labeled peptide, provide information 

about the sequence length and the number of sequences, and matching between the file of 

the original sequence and the chopped one. In this chapter, we will explain each of our 

application features in detail. 
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6.2 N-gram Application Methodology 

As mentioned previously, the 20-letter amino acid alphabet was reduced to an alphabet of 

significantly fewer letters to simplify and quicken the ML process. N-gram algorithm is 

used to estimate the probability from relative frequency counts. It reads each sequence in 

the dataset and calculates the relative frequency of N-grams to show each sequence 

composition regarding feature vectors. 

More details about how the alphabet reduction and N-gram frequency are 

implemented are available in Chapter 3. The performance results of ML classifiers that 

used in previous chapters had been reported using WEKA. A general workflow diagram 

for the application can be seen in figure 6.1.  
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Figure 6.1: A workflow diagram detailing the structure of the N-gram classification 
application. 

The system ask the user to 
select: 

Input file:

1- The cluster file (reduced alphabet 
letters)
2- Positive (AMPs) sequences
3- Negative (Non-AMPs) sequence

Select the output directory

to save the results

Additional prameters:

1- The output symbol for alphabet 
reduction
2- The size of N-gram

Select Run
Probability computations for 

each file of positive and 
negative AMPs

The output results in given 
directory:

1- Positive reduced letters

2- Negative reduced letters

3-Positive reduced with N-gram analysis

4-Negative reduced with N-gram analysis

5-Combine the probability results of pos 
and neg files into one ARFF file

Use ARFF file in WEKA for 
ML classifiers
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6.3 Application Features 

6.3.1 N-gram Classification  

The pipeline starts at the top left, as in figure 6.1 above when the user uploads their reduced 

letters text file, positive AMPs, and negative Non-AMPs sequences in FASTA file. After 

that, select where to save the output files. Then, select the output reduced letters and the 

size of N-gram. The program default size of N-gram is three and the reduced alphabet 

distinct letters are (BJUXZO)The user free use any letters or numbers that are not existing 

within the sequences. See figure 6.2. 

 
 

Figure 6.2: The main graphical user interference of N-gram classification application. 
 
 
 
One of the features of this application in advance setting button, which the user can 

specify the way of reading N-gram frequency from a given sequences. The user can add as 
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many as he wants from disregard and take chunks. For example, take the first two letters, 

then disregard one letter, and then take another one letter, and disregard two letters, and at 

the end, take one letter and so on see figure 6.3 below. This setting was used previously in 

chapter 4 as in gaps insertion features experiment.  

 
 

Figure 6.3: A screen shot of advance settings of N-gram classification application. 
 
 
 
Next, the system will generate possible combinations of the amino acids of each 

positive and negative sequence using only a given letters and will calculate the N-gram 

algorithm by determining how often these three or any number of letters of amino acid 
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sequence occurred throughout the entire peptide sequence. The outputs from the run button 

will be saved in the chosen directory. Five different files will be produced: 

1- Positive reduced letters in txt file. 

2- Negative reduced letters in txt file. 

3- Positive reduced with N-gram frequency values in CVS file. 

4- Negative reduced with N-gram frequency values in CVS file. 

5- Combine the probability results of positive and negative files into one ARFF file. This 

model file well be ready for WEKA. WEKA will be used to classify sequences based on 

N-gram frequencies using different ML algorithms as RF, SVM, and decision tree. 

6.3.2 Distinct Sequence 

The second tab in the application is a distinct sequence, which has two options: 

1- Remove duplicate: The user able to remove any duplication in the given file 

sequences to avoid redundancy in the dataset. The user will upload the fasta file of 

the sequence dataset from the selected directory, and then he will choose the 

location for the output file. This output file will contain distinct sequences without 

any duplication on the dataset. 

2- Remove by range: Choose the range of the sequence’s length. The output file will 

include all the sequences in a specific range of length or even one length. For 

example; as in this study, any sequence below 20 and above 120 was removed, or 
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from 40 to 40 sequences only, which means only sequences that have 40 residues 

will be in the output file. The outputs from each option will be saved in the chosen 

directory see figure 6.4. 

 
 

Figure 6.4: A screen shot of distinct sequence tab of N-gram classification application. 

 

6.3.3 Generate Sequence 

 
 
 
The third tab of the application is to generate sequences from a given sequence file and a 

length. In other words, the program will divide each sequence to a given length, and the 

rest of the sequence will be a new sequence with the same length. The output file will be 

one size of length for all sequences and will saved in the chosen file as shown in the figure 
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6.5 below. The user has the option to discard or keep any sequences that are less than the 

required length. This option was used in 30 residues AMPs experiment in chapter 4. 

Figure 6.5: A screen shot of generate sequences tab of N-gram classification application. 
 
 
 
6.3.4 Control 

This feature allows the user to create a control dataset. There are two preferences available 

in this tab: 

1- Make two controls set from two different files, positive and negative sets. The program 

will randomly shuffle the sequences in the two files in one list. Then, the program will 

generate a positive file and a negative file from the randomly shuffled sequences list. The 

size of each file will remain as the size of the original files. 

2- One control set from one file to be randomly shuffled to change the order of the 

sequences in that file.  

-The outputs from each option will be saved in the chosen directory, see figure 6.6. 
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Figure 6.6: A screen shot of control tab of N-gram classification application. 
 
 
 

6.3.5 Generate Status 

This tab will generate info about the sequence file. The output of this feature will be two 

files: 

1- The first file will show each sequence with its length. 

2- The second one will count how many sequences in the file have the same length. 

See figures 6.7 and 6.8 below. 
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Figure 6.7: A screen shot of generate status tab of N-gram classification application. 
  
 
 

Figure 6.8: A screen shot of the output files from generate status tab of N-gram 
classification application. 

 
 
 

6.3.6 Matching 

This tab in the application will match back the produced prediction file from WEKA with 

sequences file from the generate sequences tab that divided into a given length with the 

original dataset file, see figure 6.9 below.  
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The user should upload 3 files from the selected directory: 

1- Original sequence file: The main positive or negative AMP file before dividing it. 

2-Divided sequence file: The output file from generate sequence tab that divide the 

sequences to a given length.  

3- Predicted sequence file: This file is the output from WEKA after applying the ML 

algorithm. 

This option allows the user to realize the original type of each sequence, either 

AMPs or Non-AMPs and what the ML classifiers predict it, each part of the divide 

sequences either changed or remained the same type. 

  
 

Figure 6.9: A screen shot of matching tab of N-gram classification application. 
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The output file will show in the first column the original sequence and all of its 

shopped sequences below the original one. The second column will be the original type 

of the sequence either, AMP or not. The third column will be the ML prediction type. 

The last column will be the original name of the sequence. See figure below 6.10. 

 
 

 Figure 6.10: A screen shot of the output file from matching tab of N-gram classification 
application. 
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6.4 Conclusion and Chapter Summary 

This chapter has presented N-gram classification, a useful tool for the AMPs research 

community for classifying sequences and proteomes for potential new synthesized AMPs 

sequences. Current predictors of AMPs use secondary structure analyses, multiple 

sequence alignments, distinctive residue compositions, or PSI-BLAST sequence profiles. 

These predictors require analyzing and comparing entire peptides sequences and take 

relatively longer time compared to N-grams, which decompose sequences into smaller 

chunks or parts, each of which can be readily analyzed quantitatively. To the best of our 

knowledge, it is the first prediction application to make predictions using a sequence-based 

model that involved alphabet reduction and N-gram analysis and produce files that are 

ready for ML classifier through WEKA. The application can handle user-requests with 

hundreds of thousands of AMPs and Non-AMPs, and report results in a reasonable time 

frame (typically less than 30 seconds). 

The features of the application will assist the researcher in preparing the sequences 

file, remove redundancy, customize the length of the peptides, control the sequences length 

range, and get info of each peptide file. Of certain importance, is the need for a large dataset 

of confirmed Non-AMPs, so that the researcher of the medical field no longer has to rely 

on the negative datasets based on database keyword searches or homology as done in this 

dissertation.  
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Results from any experiments using this application, especially any incorrect 

predictions or classification, could help in making developments to our predictive models. 

In the meantime, the application will be continuously tested and improved, adding more 

features to be applied in the laboratory to synthesize AMPs targeting specific pathogens, 

directing us toward the more definite target when searching for alternatives to antibiotic 

treatments. We hope N-gram classification will be a beneficial tool for hypothesis 

generation in AMPs and antibiotics research. The application is currently available at 

http://www.binf.gmu.edu/mothman/N-gram-Classification-Application/. The application 

manual can be found at http://www.binf.gmu.edu/mothman/N-gram-Classification-

Application/N-gram%20Classification%20manual.pdf  
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Chapter 7: Discussion and Future Directions  

 

This dissertation has introduced a straightforward sequence method of AMP classification 

that would not only beat the success rates of earlier studies but also advance the sequence-

based classification of AMP subclasses. In chapter 3, a detailed material about alphabet 

reduction and the N-gram analysis methods were provided, and those methods 

implemented in N-gram classification application. 

In chapter 4, different experiments were made to uncover some of the AMPs 

sequential features. According to the results, the best-reduced alphabet letters to use for 

model classification was the ra3-29 that based on the residue pair counts for the 

BLOSUM50 matrix. Besides, the model performances of the ML algorithms indicate that 

an N-gram approach to differentiate between subclasses of AMPs, specifically 

antibacterial, antiviral, and antifungal peptides, is an efficient and effective method. RF 

significantly outperforms each of the other ML algorithms. This may have occurred 

because RF utilizes several unique decision trees, each with its own parameters. On other 

hands, some of ML algorithms like SVM and ANN have a significant issue with “black 

box” method, is a lack of transparency in how features are being applied to make 

predictions.  
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Furthermore, trigram with three-cluster alphabet reductions is simple enough for 

ML but sophisticated enough to the extent that loss of information in the original AMP 

sequences is minor. Feature selection of AMPs classification increased the model accuracy, 

decrease model training time, and reduce overfitting. Insertion of gabs between amino 

acids of AMPs captures some of the related correlations between neighboring and non-

neighboring motifs. 

The antimicrobial activity region of AMPs does not present in the entire sequence, 

and therefore longer peptide sequences have more extended regions missing AMP features. 

Nevertheless, the model for shorter length peptides had shown a higher percent accuracy 

than the unrestricted length of the peptides model. Consequently, AMPs tend to be short 

peptides compared to Non-AMPs. 

In a real-world experiment, this sequence-based method achieved a high accuracy 

rate, which gives our model credibility and viability for the AMPs researcher community. 

However, more computational experiments are necessary to extend and corroborate the 

previous finding. More research would significantly benefit this study by providing 

explanations for a number of the exciting results, including the reasonably low model 

accuracy classifying antibacterial peptides against antifungal peptides. One reason for this 

discrepancy may be because that many fungi and bacteria have some similarities, such as 

unicellularity and acting as decomposers in an ecosystem, that impair the capability of ML 

models to distinguish between these subclasses. 
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Likewise, the transduction procedure used to reduce the possibility of overfitting 

our ML models by balancing datasets may not have been successful in small sample sizes 

as antiparasitic peptides. Because of this reason, the antiparasitic peptides were excluded 

from this study and require obtaining larger datasets when it is available in the future to 

meet the model criteria. Moreover, the need for a large dataset of confirmed Non-AMPs is 

appreciated. Because some of contamination of the negative may not discover, and no one 

can identify it, since not all the protein sequences were test their antimicrobial activity. 

In this study, the models have much higher estimated accuracies than any other 

models that apply random guessing, and our maximum accuracies are comparable to those 

of previous studies by researchers running experiments with tangible AMPs in 

microbiological laboratories, as shown in chapter 5. These models consistently high in; 

auROC, MCC, sensitivity, specify, precision, and recall of over 80%, which validate the 

successful classification of the proposed method. 

By continually improving the classification methods, biomedical researchers 

collaborating with other medical professionals would be able to advance the potential 

replacement of antibiotics with AMPs. In addition, by assessing the models with increased 

specificity, the innovation or synthesis of peptides to combat particular microbes becomes 

promising.  

The outcomes of this research suggest that the classifiers produced a high predictive 

power and can be significantly used in numerous biological applications and saving 
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thousands of lives. However, further computational experiments are still needed to provide 

support for the results. 

Finally, through this work, we make the above contributions available online 

through the application “N-gram Classification”. This application has different features 

that assist in building the models to be ready for ML classification, as detailed in chapter 

6. Additional features can be added in the future, like finding class-specific motifs amongst 

different AMPs, and classification and prediction through AMPs secondary structure to 

combine it with the sequence classification. N-gram Classification is a free tool available 

at: http://www.binf.gmu.edu/mothman/N-gram-Cassification-Application/, which makes 

our novel method in this dissertation accessible and reproducible to all AMP researchers 

around the world.
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Figure A-1: ROC Curves of all 16 models on AMPs against Non-AMPs datasets using 
RF 10-fold cross validation, N-gram size of 3, and reduced alphabet ra3-29. 
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