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Abstract

TOPICS IN HIGH-ENERGY ASTROPHYSICS: X-RAY TIME LAGS AND GAMMA-RAY
FLARES

John J. Kroon, PhD

George Mason University, 2016

Dissertation Director: Dr. Peter A. Becker

The Universe is host to a wide variety of high-energy processes that convert gravitational

potential energy or rest-mass energy into non-thermal radiation. Arguably two of the most

prevalent non-thermal emission mechanisms are bremsstrahlung and synchrotron radiation

from charged particles, and the Comptonization of these radiation �elds. Prevailing models

of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously �t

the quiescent X-ray spectrum and the transients which result in the phenomenon known

as X-ray time lags. And similarly, classical models of di�usive shock acceleration in pulsar

wind nebulae fail to explain the extreme particle acceleration in very short timescales as is

inferred from recent γ-ray �ares from the Crab nebula. In this dissertation, I develop new

exact analytic models to shed light on these intriguing processes.

I take a fresh look at the formation of X-ray spectra and time lags in compact sources

using a new mathematical approach in which I obtain the exact solution to the Fourier trans-

formed transport equation. The resulting Green's function allows one to explore a variety

of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed

photon injection. I obtain essentially the exact solution for the dependence of the time lags

on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model



can successfully reproduce both the observed time lags and the quiescent X-ray spectrum

using a single set of coronal parameters, based on the impulsive injection of bremsstrahlung

seed photons instead of monochromatic radiation. I show that the implied coronal radii in

the new model are signi�cantly smaller than those obtained in the Monte Carlo simulations,

hence greatly reducing the coronal heating problem.

Recent bright γ-ray �ares from the Crab nebula observed by AGILE and Fermi reach-

ing GeV and even TeV energies and lasting several days challenge the contemporary model

for particle acceleration in pulsar wind nebulae, speci�cally the di�usive shock acceleration

model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must

be accelerated up to PeV energies in the presence of ambient magnetic �elds with strength

B ∼ 100µG. No comprehensive model has been presented that simultaneously and self-

consistently explains the energetic and temporal properties of the observed �ares. In this

component of my dissertation research, I revisit the problem based on an analytical ap-

proach using a transport equation that includes terms describing electrostatic acceleration,

stochastic wave-particle acceleration, synchrotron losses, and particle escape. I obtain an

exact solution and use it to compute the resulting γ-ray synchrotron spectrum. I �nd that

the spectra of all the Fermi-LAT �ares from the Crab nebula can be reproduced with this

model using magnetic �elds that are in agreement with multi-wavelength observations.



Chapter 1: Introduction

The sky has been observed from the beginning of human civilization. Over the centuries,

the observations have become more systematic and scienti�c. The development of telescopes

facilitated great progress, but for centuries, astronomy remained limited to the optical and

radio bands due to atmospheric absorption. In the 1960s, the development of space astron-

omy made it possible to access the entire electromagnetic spectrum, revealing for the �rst

time the existence of a very active and dynamic universe. There are a variety of astrophysical

objects (e.g. active galactic nuclei, pulsars, supernova, galactic black holes, planetary nebu-

lae, etc.) which are host to many high-energy processes that produce non-thermal radiation

extending over a broad range of photon energies.

Non-thermal radiation is far more common than Planck radiation (e.g. blackbody) in

many high-energy astrophysical objects. In these sources, the electron distribution is able

to reach equilibrium at temperature Te, but there is generally not enough time or energy

available to fully equilibrate the radiation �eld to a Planck distribution. This situation is

referred to as �local thermodynamic equilibrium� (LTE), in which the electrons (and protons)

have a Maxwellian distribution, but the radiation �eld is non-thermal, meaning that it

deviates strongly from a black-body (Planck) distribution. In many cases, the high-energy

radiation spectrum displays a characteristic power-law form, extending up to a maximum

energy where recoil losses cause an exponential turnover.

Radiative processes such as bremsstrahlung, Compton scattering, and synchrotron are

known to operate in high-energy astrophysical environments depending on what object is

speci�cally being studied. Observational studies of a particular source allow one to develop

models, which can be used to interpret observational data and extract source parameters

for a given object. Hence, theoretical models for non-thermal processes can be used as

important tracers of the relevant physics. Detailed theoretical models will be developed

1



in Chapters 2-4. In this chapter, I summarize and outline the observational history and

characteristics of accreting X-ray Binaries (XRBs), Active Galactic Nuclei (AGNs), and the

Crab nebula. For the XRBs and AGNs, the observations are separated into spectral and

temporal variability categories. In the case of the Crab nebula, I discuss the γ-ray emission

detected during a sequence of strong �ares from 2007-2013.

1.1 Historical Summary of Black Hole Binaries and AGNs

Black holes are de�ned by only three parameters, namely, mass, spin, and charge (this is

referred to as the �no-hair� theorem). They range in mass by as much as nine orders of

magnitude, with the supermassive black holes occupying the centers of quasars and AGNs

at the high mass end of the distribution, with a mass range of about 106−10M⊙. Super-

massive black holes, that are actively accreting, can be very luminous (from radio to hard

X-rays) and were known as quasars when they were �rst discovered. Gravity is the �prime

mover,� governing the wide variety of behaviors observed from black holes of any mass,

and the associated phenomena are thought to be largely scale-invariant. The less massive

(galactic) black hole counterparts to AGNs include XRBs, Black Hole Binaries (BHBs), and

the galactic center, Sgr A∗. Here I will primarily focus on XRBs and BHBs, which are

sometimes referred to as microquasars.

A prime example of a well-studied galactic X-ray source is the canonical XRB Cyg X-1,

which has a wealth of observational data accumulated from a variety of X-ray observatories,

starting with the launch of UHURU and later Skylab, ROSAT, and RXTE. Observations

revealed Cyg X-1 to be a very bright source of X-rays that is variable on short timescales,

strongly suggesting the presence of an accreting black hole. The rapid X-ray variability

indicates activity on spatial scales comparable to the radius of the event horizon in a∼ 10M⊙

black hole. Accretion onto a black hole is a very e�cient means of producing large quantities

of energy, and is even more e�cient per unit mass than nuclear fusion!

The Eddington luminosity is the maximum luminosity an accreting black hole (or star)
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can achieve before radiation pressure generates a strong wind that blows away the infalling

matter. This limit is set at a point of hydrostatic equilibrium where the outward radia-

tion pressure balances the inward gravitational force on the accreting matter. In spherical

symmetry, it is given by

LEdd ≡ 4πGMmpc

σT
= 1.38× 1038

M

M⊙
ergs s−1 . (1.1)

For comparison, the Sun's luminosity is 3.9× 1033 ergs−1, which is �ve orders of magnitude

below its Eddington luminosity. The high-energy emission from a black hole is ultimately

powered by the accretion of matter, which occurs at the rate Ṁ . The dimensionless accretion

rate, ṁ, plays a major role in the structure of the accretion disk and the resulting high-energy

radiation spectrum, where

ṁ ≡ Ṁ

ṀEdd

, (1.2)

and the Eddington accretion rate, ṀEdd, is de�ned by

ṀEdd ≡ LEdd
c2

. (1.3)

Accreting black holes with mass ∼ 10 M⊙, such as Cyg X-1, will have an Eddington lu-

minosity on the order of 1039 ergs s−1. We review the observational history for XRBs and

AGNs in turn below.

XRBs display a variety of spectral states, the most commonly studied are known as

the high/soft and low/hard states (Tananbaum et al. 1972). These states are classi�ed

based on the relative luminosity observed in the soft and hard X-ray energy bands, typically

0.2 − 2 keV and 2 − 10 keV, respectively, although these energy channels are sometimes

delineated as emission below and above 2 keV. UHURU had an energy range sensitive to

2− 20 keV, which encompasses the X-ray emission from the high-temperature region of the
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disk, but does not include the soft X-ray and UV emission from the cooler part of the disk.

However, subsequent generations of X-ray telescopes had the capability of observing soft

energies. Classically, the high/soft state was de�ned as the spectral state in which UV and

X-ray disk emission dominates (peaking around 1 keV) over the power-law component, which

extends out to 100 keV (see Figure 1.1).

On the commonly used log-log plots the spectra of XRBs show a non-thermal power-law

whose slope is known as the photon index, Γ. The spectra usually extend to energies far

above the thermal component and can also exhibit a break or an exponential turnover, but

are usually well-described by the power-law phenomenology. Although a variety of state

classi�cation nomenclature has developed over the decades of X-ray astronomy, ultimately

the spectral state is based on the relative �ux ratio of the soft and hard channels which is

quanti�ed by the value of the power-law photon index, Γ.

Using the soft energies as a probe of the inner accretion disk, the observed spectra imply

the presence of an accretion �ow that extends down to, or very near, the innermost stable

circular orbit (ISCO). However, state transitions have been observed in which the bolometric

luminosity decreases by a factor of at least a few and a prevalent radio component appears.

In this state, the disk emission dramatically decreases, and a signi�cant increase in the hard

energy �ux is observed (Nowak et al. 2012 arXiv:1107.2391). Therefore, this state is called

the low/hard state, characterized by a photon index of Γ ∼ 1.7.

At accretion rates even lower than those found in the hard state (ṁ ∼ 0.001− 0.01), we

�nd the quiescent state. In quiescence, as the term implies, the black hole is not accreting

signi�cantly and thus its luminosity is very faint (L ∼ 1030−34 ergs s−1, for a 10M⊙ black

hole). Additionally, the photon index is usually hard, Γ = 1.5 − 2. This implies both a

lack of thermal �ux from the disk, and the presence of a comparatively higher �ux in the

power-law component. It isn't clear if the quiescent state is distinct from the hard state or

if it is a special case of the hard state in a lower Eddington ratio regime.

A surprisingly luminous state of GX 339-4 was observed with the Ginga satellite. It was

characterized by a high luminosity and a steep power-law component, with a photon index

4



Figure 1.1: Comparison of the soft and hard state spectra for Cyg X-1.

Γ ∼ 2.5 (Miyamoto et al. 1993 403-L39) and in addition, a strong thermal component. Due

to the steep photon index and the high luminosity, this state was called the �very high�

state. As the observational data accumulated, new state classi�cations rapidly proliferated,

such as the intermediate, strong very high, and weak very high states.

Of particular interest in the study of XRBs is the wealth of data showing rapid variability

on timescales down to seconds and even milliseconds (e.g. Nowak et al. 1999). A popular

way to analyze the time variability is to generate a power spectral density (PSD) plot which

shows the power generated as a function of Fourier frequency. Broad peaks in the PSD are

known as quasi-periodic oscillations (QPOs) which occur at some characteristic frequency,

and generally appear in certain states. The soft state is usually characterized by a lack of

QPOs and a general decrease in the amplitude of the rms power (Remillard & McClintock
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2006). The very high state usually has an rms power a few times larger than that in the

soft state, and exhibits weak QPOs in the 0.1− 30Hz frequency range. In contrast to these

states, the hard state generally displays strong QPOs and large rms amplitudes.

Remillard & McClintock (2006) combine spectral and timing properties of an accreting

black hole to de�ne a more detailed state classi�cation scheme than the former �soft" and

�hard" prescription. Their classi�cation is based on four parameters, comprising 1) the disk

fraction f which is the ratio of the disk luminosity to the total luminosity in the 2− 20 keV

band, 2) the power-law index, Γ, 3) the rms power, r, in the PSD from 0.1− 10 Hz, and 4)

the integrated rms amplitude a of any QPOs in the frequency range 0.1− 30 Hz. They also

rename the traditional high/soft, low/hard, and very soft states as thermal, hard, and steep

power-law, respectively. The disk fraction f in the thermal state is greater than 75%, in the

hard state is less than 20%, and in the steep power-law (SPL) is less than 50%. These state

de�nitions are thought to correspond to speci�c physical conditions in the accreting black

hole system.

A temporal phenomenon known as time lags has been observed in which the hard energy

data stream lags behind the soft energy channel (hard lag). Light curves are often Fourier

transformed and timing analysis is conducted in the Fourier domain. The magnitude of

the time lags increase for a given source as the separation between low and hard energy

channels increases (Nowak et al. 1999). The Comptonization of soft seed photons in a hot

di�use corona is thought to be the primary mechanism (barring any intrinsic variability in the

source) for the observed hard X-ray �ux out to∼ 100 keV. The �Compton reverberation� idea

set forth by Payne (1980) describes the time delay of the hard component as being due to the

upscattering time from an initially soft population of seed photons. The upscattering time

is inversely proportional to both the electron number density and the (constant) electron

temperature. It is also directly proportional to the natural logarithm of the ratio of the

hard and initial photon energies. The statistical nature of the di�usion process allows some

photons to undergo fewer scattering events than others. The photons which have spent

more time di�using through the cloud will escape the system with a hard energy and thus
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the hard time lag distribution can be qualitatively described. Cyg X-1 has been observed

to produce a time lag pro�le (as a function of Fourier frequency) that displays a power-law

with a negative slope on the order of 1.4− 1.7 (Nowak et al. 1999).

Analysis of time-dependent data from accreting black holes can provide important details

regarding the nature of the accretion �ow such as the geometry and morphology of the system

as well as the nature of the transient that produces the variability and resulting time lag

signal. However, due to the inherent complexity of the phenomenon, as well as a list of

unknown constraints on relevant physical parameters, studies are often forced to make a

variety of simplifying assumptions. A spherical homogeneous distribution of hot electrons

is a reasonable starting point for a coronal model.

The injection spectrum, location, and physical extent of the spontaneous transient has

also been simpli�ed. Miyamoto et al. (1988) employed the Compton reverberation scenario

(Payne 1980) to produce theoretical time lags applied to Cyg X-1 while it was observed

in its hard state. The injection spectrum was assumed to be monochromatic to model the

relatively cool blackbody spectrum from the inner accretion disk. They found a �at time

lag pro�le (independent of Fourier frequency) whose magnitude depended on the electron

number density. It was interesting to see that they concluded from this study that the

Compton reverberation process may not be the underlying physical mechanism producing

the observed time lag pro�les since their resulting time lag pro�le, δt, was independent of

Fourier frequency, in stark contrast to the δt ∝ f−1.7 power-law in the data.

AGNs are known to be galaxies with an accreting supermassive black hole in the galactic

center which produces copious quantities of electromagnetic radiation across a wide range

of frequencies, and can have bolometric luminosities around ∼ 1046−49 ergs s−1. Although

most of the accretion physics from XRBs transfer to AGNs, there are some additional

observational di�culties that arise when studying AGNs. Firstly, the hundreds of billions of

stars that compose a galaxy, as well as the intervening dust and gas, contaminate the nuclear

emission. The observed �ux at the detector is also much lower than XRBs, because although

supermassive black holes can be 6 to 9 orders of magnitude more massive than microquasars,
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they are very distant and since the �ux observed varies according to the inverse square law,

the observed AGN �ux is much lower than that of a typical XRB.

There are a variety of spectral features that have resulted in a list of di�erent source

types such as Seyfert I and II galaxies, radio galaxies, LINERs, quasars, BL Lacs, and OVV

galaxies. Some of these classi�cations depend on the presence of broad or narrow emission

lines, highly polarized optical emission, and the ratio of radio to X-ray luminosities. A

uni�cation has taken place in which type I and II Seyfert galaxies have been proposed to

be the same type of object with di�erent inclination angles to the line of sight (Bianchi,

Maiolino, Risaliti 2012).

In general, AGNs operate on much longer timescales than XRBs. State transitions

can last at least a century and so a complete state change has never been observed. For

example, the PSD of NGC 5506 in the 2− 10 keV band shows a plateau feature (red noise)

from frequencies 10−9−10−6 where the spectrum turns over to a power-law of slope negative

one extending down to frequencies of about 10−2. This implies an X-ray emitting region of

about 1013 cm. For a supermassive black hole with a mass of about 108M⊙ this corresponds

to only several gravitational radii.

The idea that AGNs are scaled-up versions of XRBs has been considered (e.g. Hardy et

al. 2006). If this is true, then it provides a means of indirectly, but legitimately, studying

the very long timescales in which AGNs operate. The very low-frequency, ∼ 10−10−10−7Hz

(although the frequency range is dependent on the black hole mass), portion of some super-

massive black holes' PSDs are di�cult, if not nearly impossible, to observe due to the long

observation time that would be required (∼ 101−2 years). Several decades of frequency in

PSDs are readily observed in the brighter and more rapidly varying XRBs. If conclusions

drawn from careful analysis of time variability of XRBs can inform the study of AGNs, then

it is important to establish con�dence in the idea of scale-invariance.

This scale-invariance hypothesis tested by Hardy et al. (2006) references other studies

(i.e. McHardy 1988, Edelson & Nandra 1999, Uttley, McHardy, Papadakis 2002) which

showed that the PSDs contained characteristic timescales. In the study, Hardy et al. 2006,
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possible correlations between this break timescale, TB, and other relevant parameters in the

high-frequency portion of the PSDs where the slope changed from −2 to −1, was studied.

They performed a parameter correlation study relating the break timescale, TB, black hole

mass,MBH, and the bolometric luminosity, Lbol. By using a simple parameter grid search re-

lating these quantities logarithmically, they constrained the scaling coe�cients which would

be used to map observational data from XRBs to AGNs. After obtaining these coe�cients,

they tested their hypothesis by including two bright XRBs (Cyg X-1 and GRS 1915+105)

and found that the high-frequency portion of the PSDs were well described by the same

model that �t a sample of AGNs. After statistical analysis of these results, they concluded

that variability properties between AGNs and XRBs can be seen to be scale-invariant.

The time lag properties of AGNs reveal important information about the mass of the

black hole when one considers the magnitude and frequency at which the hard (positive)

lag becomes soft (negative; DeMarco et al. 2013). Hard lags are generally found below the

break frequency in the PSDs where the red noise turns over into a power-law. At higher

frequencies, the time lags can be negative indicating a �re�ection� or �reverberation� in which

the (soft photon) re�ecting region responds to a change in continuum radiation. The lag

corresponds to the light crossing time from the source to the re�ector (DeMarco et al. 2013).

These reverberation lags provide a mechanism to probe the shortest characteristic distance

scale which in turn allows estimates on the mass of the black hole. However, this method

may be limited by the spectral state and other parameters that are either poorly constrained

observationally or whose signi�cance in the framework of this mass-determination model is

not understood well.

Fabian et al. (2009) published the �rst signi�cant observation of such a negative (soft)

lag from the source 1H0707-495. They found negative lags at frequencies higher than 6×10−4

Hz with a magnitude of 30 s. By considering the break frequency and the magnitude of the

negative lag, they estimate a black hole mass on the order of 7× 106M⊙. The width of Iron

L and K lines suggest a dimensionless spin parameter, a, of about 0.98 and they therefore

posit that most of the re�ected emission originates from within a few gravitational radii.
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Over a dozen AGN sources have observed soft lags (Zoghbi & Fabian 2011, 418, 2642).

What is curious, but perhaps sensible, is the remarkable qualitative parallels between the

time lags and PSDs of AGNs and microquasars. Soft lags have also been observed from the

microquasar GX 339-4 (Uttley et al. 2011, 414, L60). In the reverberation scenario, high-

energy power-law emission from the Compton corona can impinge upon the �cold� accretion

disk and down scatter to soft energies which is a possible explanation for soft lags in AGNs

and microquasars.

Alternatively, the plasma may cool in response to the upscattering of the radiation,

which may also lead to soft lags. Such behavior was seen in Centaurus A (Cen A) using the

Monitor of All-sky X-ray Image (MAXI) in three energy bands (2-4, 4-10, and 10-20) keV.

They discovered a 5 day lag between the 2-4 and 4-10 keV bands (Tachibana et al. 2016).

They interpret these soft lags as due to cooling of Comptonizing electrons in a corona over

the disk.

The fundamental plane (Merloni et al. 2003) relates the X-ray luminosity, the black

hole mass, and the radio luminosity. The radio luminosity is thought to originate from

synchrotron emission from the jet which is thought to be generated by the spin of the black

hole. The fundamental plane, however, does not imply an additional free parameter to

consider (i.e. black hole spin) due to the little scatter in the plot. It is possible that black

hole spin rates are con�ned to a narrow range which would not provide su�cient variance

in the data that populates the fundamental plane (Yuan & Narayan 2014). There are two

classes of jets to consider: steady and episodic (Fender & Belloni 2004). Episodic jets are

formed during the hard to soft state transition when the accretion rate increases, and the

resulting jet is composed of discrete blobs. The steady jets form a continuous jet stream

and are formed in the low luminosity hard state of XRBs such as Cyg X-1 (Fender et al.

2006). Therefore, there would be no jet power-black hole spin correlation if episodic jets are

powered by the disk mechanism (Yuan et al. 2009a).
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1.2 Radiative Processes

As discussed above, the radiative processes producing all the observations associated with X-

ray emission from accreting XRBs can be attributed to bremsstrahlung (free-free) radiation

as well as the inverse Compton scattering process. Technically the latter is a scattering

phenomenon as opposed to a radiative process, however the Compton energy exchange can

be classi�ed as an emissivity. Although blackbody radiation (Planck radiation) is relevant

for some of the observations presented, this phenomenon is largely irrelevant to the high

energy production mechanisms of interest in the models to be presented here and so will not

be discussed.

1.2.1 Compton Scattering

Compton scattering is an inelastic collision between a photon and electron. If the electron

is at rest and a high energy photon collides with it, then the electron will recoil and the

incident photon will lose energy and be de�ected at some angle. Inverse Compton scattering

can be thought of Compton scattering taking place in reverse. Since a photon cannot be

at rest, consider a photon with less energy than a moving electron. In these instances, the

scattering cross-section is the classical Thomson cross-section if the photon energy is much

less than the electron rest mass energy. For inverse Compton scattering, the collision will

transfer energy from the electron to the photon.

The astrophysical environments of interest in this application are populated by countless

quantities of photons and electrons and usually with some distribution of energy for each

species and each of which is assumed to have an isotropic spatial distribution. The time-

independent Comptonization process has been solved and the corresponding di�erential

equation that describes the energization process is known as the Kompane'ets equation and

is given by

∂n

∂t
= 0 =

kBTe
mec2

NeσTc
1

x2
∂

∂x

[
x4
(∂n
∂x

+ n+ n2
)]

, (1.4)
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where n is the photon number density, x is dimensionless photon energy de�ned as

x ≡ E

mec2
, (1.5)

kB is Boltzmann's constant, me is the electron rest mass, c is the speed of light, Ne is the

electron number density of the corona, and σT is the Thompson scattering cross-section,

and E is the photon energy. The terms in the square bracket correspond to energy di�usion,

electron recoil, and stimulated non-linear emission, respectively.

Payne (1980) solved this equation neglecting the non-linear term and adding a source

term and a probabilistic escape formalism that depends on a geometric factor denoted by α

giving

1

x2
∂

∂x

[
x4
(∂n
∂x

+ n
)]

− 4α

y
+ q(x) = 0 , (1.6)

where q(x) is the photon source function and

y ≡ 4kBTe
mec2

τ2 = NeσT c

(
4
kBTe
mec2

)
tesc , (1.7)

τ is the optical depth of the electron cloud, tesc is the mean escape timescale, and y is the

Compton y-parameter. The Compton y-parameter quanti�es the e�ciency of Comptoniza-

tion and is the average fractional energy change per scattering times the mean number of

scatterings (before escape). There are three regimes to consider: y ≪ 1, y ≈ 1, and y ≫ 1.

In the �rst instance, the total energy of the injected radiation �eld is not signi�cantly al-

tered. Due to the product of optical depth and electron thermal energy, this regime could

either be composed of an optically thin cloud or a very low temperature electron plasma,

or both. In the case where the y-parameter is of order unity, the resulting spectrum will be

unsaturated characterized by a power-law spectrum with a turnover energy. Lastly, if the

y-parameter is signi�cantly larger than unity, then the spectrum can be saturated and will
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display a Wein bump where pileup has occurred. In either case, we restrict our attention to

non-relativistic thermal distributions of electrons. For a treatment of the relativistic case,

see Rybicki & Lightman (1976).

The solution above the source energy is composed of a power-law, an exponential, and

Kummer functions U (see Abramowitz and Stegun 1965) and is given by

n(x) ∝ x−(3+p)e−xU(−3− p,−2− 2p, x) , (1.8)

where p ≡ −1.5 +
√

9
4 + 4α

y . The asymptotic forms for the radiation intensity I(E) = E3n,

where E is the photon energy, are given by

I(E) ∝ E−p , (1.9)

for E ≪ kBTe and

I(E) ∝ E3e
− E

kBTe , (1.10)

if and only if y & 1. In this regime, one �nds that the spectral slope depends on the

y-parameter and a �knee� around E ∼ kBTe. The time-dependent solution has also been

analytically solved (Payne 1980) to show the evolution of the input spectrum as it di�uses

and broadens in energy space. The Kompaneet's equation is actually a special case of the

Fokker-Planck equation which considers the time-dependent evolution of an input spectrum

based o� the physical process that modify it.

1.2.2 Thermal Bremsstrahlung Radiation

In the previous subsection we considered, brie�y, the time-independent behavior of the

solution to the seminal Comptonization study of the classical Kompaneet's equation. In

the summary, we focused on blackbody or quasi-blackbody input spectra (the latter de�ned

loosely by the presence of thermal spectra emitted by each annulus of an accretion disk, for
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example). As alluded to earlier, we wish to present the basic quantitative and qualitative

aspects of thermal bremsstrahlung which play a signi�cant role in the production of time-

dependent phenomenon (to be outlined in the body of this work). The plasma that often

characterize high-energy environments are composed of electrons and ions. Although most

(if not all) prior models of temporal phenomenon such as time lags and PSDs rely on

the injection spectrum being blackbody, it is instructive to develop a broadband injection

scenario where bremsstrahlung radiation is the injected radiation �eld.

Bremsstrahlung comes from a German word meaning �breaking radiation� and is, in

its essence, free-free emission. In this summary, we restrict our attention to nonrelativis-

tic bremsstrahlung and consider only an isothermal �nite plasma. In general, the plasma

surrounding an accreting black hole, for example, will be composed of electrons and ions

(protons). However, due to the signi�cantly larger mass of a proton, its radiative contribu-

tions are negligible. Therefore, without loss of generality we consider a plasma composed

purely of non-relativistic electrons.

The emission per unit time per unit volume per unit frequency is given in Rybicki &

Lightman (1976) for the emission of bremsstrahlung as

dW

dωdV dt
=

16πe6

3
√
3c3m2

ev
n2egff , (1.11)

where the electron and ion number densities are equal, the ion charge factor, Z = 1, and

the Gaunt factor is given by

gff (v, ω) =

√
3

π
ln
(bmax
bmin

)
. (1.12)

The b quantities in the logarithm are the impact parameter for an electron's interaction with

an ion.

Consider an isothermal Maxwellian distribution of electrons in velocity space such that
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the di�erential probability, dP , of �nding an electron in the velocity interval d3v is

dP = e
− mev

2

2kBTe d3v . (1.13)

Before integrating this, one must consider the lower limit of integration. The kinetic energy

of the electron must be at least equal to the photon energy that it will create. By equating

these two energies and solving for the velocity we obtain vmin =
√

2hν
me

where h is Planck's

constant. The integration can now be performed and is expressed as

dW

dV dtdω
=

∫∞
vmin

dW

dωdV dt
v2e

−mv2

2kT dv∫∞
0 v2e

−mv2

2kT dv
, (1.14)

where dω = 2πdν. The result obtained from Rybicki & Lightman is

dW

dV dtdω
=

25πq6

3mec3

√
2π

3kBme
T−1/2n2ee

− hν
kBT gff . (1.15)

The Gaunt factor is usually of order unity, but does depend on the energy of the electron and

the frequency of emission. For the applications in this study, the Gaunt factor can largely

be ignored. The bremsstrahlung spectrum at low frequencies will be �at all the way down

to the cut-o� frequency if the medium is optically thin. For a review of bremsstrahlung

absorption as well as relativistic bremsstrahlung emission, see Rybicki & Lightman (1976).

1.2.3 Blackbody Radiation

A body in thermodynamic equilibrium will emit a spectrum depending only on the equi-

librium temperature. The radiated spectrum is known as blackbody radiation or a Planck

spectrum, but since this spectrum depends only on the thermal temperature of the radi-

ating body this spectrum is also sometimes referred to as thermal radiation. For a given
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temperature, the Planck spectrum will have a peak at a characteristic photon frequency. In

this subsection, we summarize the features of this radiative process and present the relevant

equations.

This subsection is motivated by the anticipated application of blackbody radiation to

the hottest portion (innermost region) of an accretion disk around XRBs. Matter orbiting

a black hole in the accretion disk will have orbital velocities as a function of radius from

the black hole. Therefore, adjacent orbital annuli would have di�erent orbital speeds which

will cause viscous dissipation of angular momentum. This friction causes matter to radiate

some of its orbital energy in the form of electromagnetic energy thereby falling inward and

accreting onto the black hole.

As the gravitational force increases closer to the black hole, orbital velocities also increase

according to Kepler's laws (Newtonian mechanics provide a decent approximation even in

the inner regions of the accretion disk). Therefore, the hottest part of the disk will be in

the innermost region. The hottest part of the disk will also be the most luminous and so

disk seed photons will be dominated by the spectrum of the inner region. We now quantify

the blackbody radiation spectrum.

Planck's law states that the power radiated per unit area of an emitting surface per unit

solid angle, per unit frequency by a blackbody at temperature T is given by,

I(ν, T ) =
2hν3

c2
1

e
hν

kBT − 1
, (1.16)

where h is Planck's constant, ν is the photon frequency, c is the speed of light, kB is

Boltzmann's constant, and I is the spectral radiance. There is a useful relationship between

the peak photon wavelength, λpeak, and the blackbody temperature. This relationship is

known as Wien's displacement law and is given by

λpeak =
0.289 cmK

T
, (1.17)
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where the temperature is given in Kelvin units and the photon wavelength is in centimeters.

The temperature of the innermost region of an accretion disk around a M ∼ 10M⊙

black hole is about 106 K which corresponds to a peak photon wavelength of λpeak = 2.89

nm which is a 0.43 keV photon. In the X-ray model developed in Chapter 2, we will

assume that the quiescent spectrum is produced by time-independent Comptonization of

continual injection of monochromatic radiation of energy ϵ ≈ 0.1 keV which is roughly

equal to the peak photon energy in a 106 K blackbody spectrum when one considers the

fact that a blackbody spectrum is quite narrow. In other words, the vast majority of energy

radiated per second by a blackbody is tightly constrained near the peak photon energy.

Therefore, the monochromatic injection paradigm is a decent and useful approximation to

model Comptonization of disk seed photons.

1.3 Black Hole Accretion Models

As observational data of canonical XRBs accumulated in the early years of space-based X-

ray astronomy, a wealth of theoretical models developed which attempted to explain what

was being observed. Arguably one of the most impactful theoretical studies was presented

in 1973 by Shakura and Sunyaev. Starting with fundamental laws of conservation of energy

and angular momentum, these authors derived the structure of the blackbody-dominant

accretion disk. They found angular momentum is transferred outward allowing matter to

accrete via viscous dissipation, but also brie�y considered roles of strong magnetic �elds

threading the disk. Their solutions show an optically thick, geometrically thin disk, where

�thin� is de�ned as the limit H/R ≪ 1, where H is the disk half-thickness and R is the

accretion disk radius. They derive the disk parameters (temperature, velocity, optical depth,

etc.) and compute the radiative emissivity throughout the disk for di�erent accretion rates.

The Shakura-Sunyaev model focuses on the accretion disk and the radiation produced

therein. They brie�y consider a corona composed of hot evaporated disk particles that

surround the disk with a slab-geometry. In general, they do not restrict their attention to a
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speci�c limiting Eddington ratio (very high or low). It is interesting to consider the accretion

�ow in the small Eddington ratio regime, because the disk component of the observed �ux

accounts only for the soft X-rays up to or around 2 keV.

The production of high-energy (2 − 100 keV) X-rays is generally thought to come from

the Comptonization of soft seed disk photons in a surrounding hot tenuous medium known

as a corona. A relatively early model for the corona was presented in 1977 by Ichimaru

who builds o� previous models (Thorne and Price 1975, Eardley, Lightman, Shapiro 1975)

by attempting to posit an origin for the change between soft and hard spectral states. The

transition from soft to hard states occurs under conditions in which the viscous heating rate

is greater than the radiative cooling via bremsstrahlung.

Bremsstrahlung cooling is a two-body process and so its e�ciency depends on the gas

density. When viscous heating overwhelms the cooling rate the disk, at some critical radius,

expands into a hot tenuous con�guration which is geometrically thick and optically thin.

This radiatively ine�cient state is known as RIAF. In the case where the accretion of coronal

matter onto the black hole is dominated by advection (the so-called ADAF), the energy

contained in the plasma from viscous heating is lost into the black hole and so does not

contribute to the total observed luminosity. Hence, observations have shown the low/hard

state to be less luminous than the high/soft state which exists at higher accretion rates.

As accretion rates approach the Eddington ratio the gas becomes optically thick and

is therefore unable to radiate the energy acquired from viscous dissipation of gravitational

potential. In this scenario, the di�usion timescale for radiation in an optically thick accretion

�ow will exceed the advection timescale and so will be lost to the black hole. The Eddington

accretion ratio is a function of both the Eddington Luminosity and the radiative e�ciency

which is a free parameter that is state and model-dependent. As the e�ciency in this scenario

is small, the luminosity becomes less than 0.1Ṁc2 (Begelman 1979, Begelman & Meier 1982).

This is the slim disk model. The slim disk and the thin disk represent radiatively ine�cient

�ows, but for di�erent physical mechanisms. The thin disk is advection-dominated due to

a long cooling time (or heating that dominates over bremsstrahlung radiative cooling). In
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this case, the inner accretion �ow becomes an ADAF and is optically thin and geometrically

thick. However, in the case of the slim disk model, the accretion �ow is advection dominated,

but due to long radiative di�usion time.

ADAFs are expected to have two temperatures, an ion and electron temperature (Ichi-

maru 1977). The more massive ions (protons for the case of fully ionized hydrogen) cannot

radiate their energy nearly as e�ciently as electrons. The hot low-density plasma cannot

thermalize through Coulomb interactions especially since the advection timescale is much

shorter than the cooling timescale in this radiatively ine�cient state. Although this ADAF

material that comprises the Compton corona is largely accepted as the quantity responsible

for the power-law spectral component, a comprehensive spectral state classi�cation scheme

does not follow from considerations of ADAF physics alone.

Instead, the variety of observed spectral states has been categorized as a function of the

Eddington ratio, ṁ ≡ Ṁ/ṀEdd. A simple model was presented by Esin et al. (1997) where

the relevant features of the accretion disk and corona are qualitatively de�ned and represent

a gradual or modular transition between the �ve distinct states (quiescent, low/hard, in-

termediate, high/soft, and very high). This model also de�nes a �critical� accretion rate

ṁcrit = 0.08 which de�nes the approximate accretion rate at which the ADAF disap-

pears. The authors posit that this critical rate is related to the viscosity parameter, α,

via ṁcrit ∼ 1.3α2.

Starting with the quiescent state the accretion rate in Eddington units, ṁ is around

0.001 or at most ṁ < 0.01 and has an accretion �ow composed of an inner two-temperature

ADAF which extends to the disk truncation radius, rtr ∼ 102−104 Schwarzschild radii, after

which exists the standard thin accretion disk. This state is marked by ultra-low luminosity.

As the accretion rate increases up to about 0.01 the black hole enters the low state, yet is still

below the critical value of 0.08 and so an ADAF region is still present. However, Esin et al.

(1997) classi�es the low state as existing in the domain for which 0.01 ≤ ṁ ≤ ṁcrit = 0.08

and as the accretion rate increases the radiative e�ciency of the ADAF increases which

increases the luminosity. The spectrum in this state is very hard and extends up to about
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100 keV.

As ṁ increases past ṁcrit the ADAF shrinks due to increasingly e�cient bremsstrah-

lung cooling and the truncation radius of the disk correspondingly decreases (moves inward

toward the black hole). As the inner disk is replenished and the corona dissipates, the

spectrum enters the intermediate state characterized by a hard power-law yet with increased

soft emission from the disk. After the accretion rate continues to increase, the ADAF cools

su�ciently to disappear and the geometrically thin disk replaces it, moving all the way down

to the ISCO (or of that order). With the corona depleted and the ADAF gone, the spectrum

is dominated by soft disk emission and a weak high energy tail above 10 keV. This is the

soft state.

Lastly, Esin et al. (1997) discuss the very high state in which the spectrum is char-

acterized by extraordinary luminosity (compared with the other states) and a high energy

tail that extends well past 100 keV and shows no signs of breaks or turnovers even up to 1

MeV, but has a photon index of about 2.5. Although the ADAF is absent in this state, the

signi�cant high-energy emission in the tail is proposed to be due to Compton upscattering

of soft seed photons in an optically thick corona (Sunyaev & Titarchuck 1980). However,

Esin et al. (1997) hypothesize that the corona is denser and has a higher accretion rate in

this very high state than in the high spectral state. The signi�cant soft �ux is likely due to

the thin disk in a state of high accretion very close to the black hole.

A rather useful mathematical tool was presented by van der Klis et al. (1987) and was

applied to Cyg X-2 and GX 5-1. The time lags were computed using a cross-spectrum or a

complex cross-spectral technique in which the soft and hard energy channels are treated as

data streams in the Fourier domain. The phase lag is computed by multiplying the Fourier

transforms of the complex conjugate of the soft channel with the hard channel and then

performing the argument operation on that product. The time lag is computed by simply

dividing the phase lag by the corresponding Fourier frequency. They applied this timing

analysis routine to two sources.

The time lag pro�le produced by Cyg X-1 in its hard state was previously modeled using
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the Compton reverberation idea by Miyamoto et al. (1988) and they prematurely concluded

that Comptonization could not likely be the underlying mechanism since their results did not

agree with the observational data. Future studies employed numerical simulations to revisit

this problem with the added complexity of an electron number density that depended on

radius (an inhomogeneous Compton cloud) under the prediction that the relaxation of the

homogeneous corona would more successfully explain the data. This simulational study was

conducted and published by Hua, Kazanas, and Cui (1999) (hereafter HKC). Furthermore,

they conducted the simulation in an optically thin cloud and studied the resulting time lags

as a function of the radial dependence of electron number density.

They found that the time lags from Cyg X-1 could be reproduced well if the num-

ber density was inversely proportional to the radius. Their injection spectrum was quasi-

monochromatic, employing an approximation of a blackbody spectrum emitted close to

the black hole from the inner disk. They studied homogeneous coronae and con�rmed the

Miyamoto result and also studied the resulting time lags when the electron number den-

sity fell o� quickly with a −3/2 radial dependence. They found that this produced a time

lag pro�le that was less steep than the data and so rejected it. The optically thin cloud

that they used to model the corona of Cyg X-1 was considerably large (∼ 104 gravitational

radii) which raises concerns regarding a mechanism for su�cient heating to sustain the very

hot, optically thin corona at those distances. Nonetheless, their model con�rmed and then

expanded on the Miyamoto study by introducing an inhomogeneous corona whose number

density is inversely proportional to radius. However, no author had (until now) considered

the resulting time lags from an impulsive injection of broadband radiation from, for example,

thermal bremsstrahlung radiation.

1.4 The Crab Nebula

In the year 1054 AD Chinese astronomers noticed a new star which suddenly appeared

and was bright enough to be seen during the day for a few weeks. Although they did not
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know what they were seeing, we know it was a supernova explosion. Today the expanding

supernova remnant is known as the Crab nebula. There is a rotating neutron star, or pulsar,

at the center which powers the nebula. It is active across the electromagnetic spectrum and

has been observed with a variety of di�erent telescopes such as radio observations using the

Very Large Array (VLA), Spitzer telescope for infrared observations, optical observations

from the Hubble Space Telescope (HST), the Chandra X-ray observatory, and the Fermi

γ-ray telescope to name a few. The Crab nebula is perhaps one of the most studied objects

in the night sky. It has been studied in great detail lending to its relative close proximity of

about 2 kpc and its serves as a laboratory to study particle acceleration processes in such

high- energy environments.

The structure can be described by a few basic components which are the pulsar in the

center, a synchrotron region or 'bubble', and a bright expanding shell of gas that makes

up the well-known 'wisps' or '�laments'. Near the pulsar there are polar jets as well as

a torus that have been resolved. The size of the nebula has been seen to decrease with

increasing photon energy (Buehler & Blandford (2014)). This is likely the result of high-

energy electrons cooling as they di�use and are advected outward. In the optical band the

nebula is elongated along the southeast-northwest direction and is about 4.6 arcminutes by

7 arcminutes which corresponds to about 2.7 by 4.1 parsecs (pc) in physical size.

The central pulsar is known to rotate with a period of 33.6 milliseconds and is slowing

down by 4.2×10−13 (Buehler & Blandford (2014)). The loss of rotational energy is estimated

to be Ė = 5 × 1038ergs s−1, however only about 1% of this energy goes into the observed

electromagnetic radiation. The spectral energy distribution (SED), shown in the �gure

below, shows radio emission, X-rays, and very high energy γ-rays from 100 MeV out to

several TeV. The SED shows a strong peak in the UV band around a few electronvolts. A

notable feature is the lower luminosity second peak at very high energy (VHE) γ-rays near

a TeV which is due to inverse-Compton scattering of synchrotron emission (the so-called

synchrotron self-Compton or SSC). Polarization measurements (Hester 2008) show that the

observed radiation is due to synchrotron emission of high-energy electrons cooling in an
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Figure 1.2: The SED of the Crab nebula found in Buehler & Blandford (2014). The black
data is phase averaged emission of the pulsar and the blue is the average emission of the
Crab nebula. A distance of 2 kpc is used to compute the luminosity.
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ambient magnetic �eld.

The Crab nebula is in contrast to �shell-like� supernova remnants (SNRs) which have an

obvious expanding shell whose kinetic energy is the energy source for the observed emission.

The Crab, on the other hand, is powered by a �cold� (radiationless) wind of magnetized

electrons and positrons generated by the pulsar. For this reason, the Crab nebula is known

as a Pulsar Wind Nebula (PWN). This wind propagates outward until it interacts with the

ambient medium which will create a standing shock. The torus or �inner ring� is thought

to be a likely site for the production of some of the observed X-ray emission (Weisskopf et

al. 2000). There are thin arcs or �wisps� past the inner ring which move outwards into the

expanding nebula with speeds around half the speed of light which produce radio, optical,

and X-ray emission (Buehler& Blandford 2014). These out�ows are only mildly relativistic

and so no signi�cant boosting is thought to occur.

Three regions of interest are the magnetosphere extending out to the light cylinder radius

(∼ 108 cm), the cold pulsar wind which extends out to the termination shock (∼ 1017 cm),

and the synchrotron bubble which extends far out into the expanding nebula. The pulsar

itself is not directly observable, being only about 12 km in diameter. Its spin axis and

magnetic �eld polar axis are not aligned which is a general feature of pulsars. The magnetic

�eld near the surface of the neutron star is thought to be on the order B ≈ 1012 G which

induces a large electric potential between the equator and the poles of about ∆V ≈ 1016

V. The precise nature of the magnetosphere is, at this time, unknown due in part to the

complicated and non-linear nature of the electrodynamic equations.

Due to the misaligned spin axis and magnetic pole axis (the �oblique� rotator) the pulsar

produces alternating current sheets known as a �striped wind� that propagate outward until

interacting with the ambient medium where a termination shock forms. This cold wind is

described by the magnetization parameter σ which is the ratio of the magnetic energy to the

kinetic energy and is thought to be much larger than unity. However, spectral modeling of

the synchrotron emission produced at or near the termination shock implies a magnetization

parameter much less than unity. An unsolved problem known as the �σ-problem� is how to
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reconcile these vast di�erences in the inferred value of σ.

The synchrotron bubble which starts downstream from the termination shock and ex-

tends out into the nebula is predominantly composed of radio emission. The morphology

of this radio bubble is complex due in part to the large size and randomized �laments.

A population of cooling electrons radiate in an ambient magnetic �eld of average strength

100−300 µG. Rigorous multiwavelength studies have constrained this value to about 160 µG

(Aharonian et al. 2004). They included seed photons from a variety of sources including

CMB photons, infrared emission from dust and gas, as well as inverse-Compton from syn-

chrotron. They varied the magnetic �eld as a free parameter until a best �t with the data

was obtained, including normalization and break energies.

Usually, the Crab nebula has been a very constant source of X-rays, so stable in fact that

instruments are often calibrated using certain wavebands emitted by the nebula. However,

in recent years the Crab has produced extraordinary transients that have challenged our

understanding of particle acceleration mechanisms. These transients take place very rapidly,

showing variability on day and sub-day timescales (Abdo et al. 2011) and have spectral peaks

around 400 MeV and emission as high as several GeV. Spectral analysis of the �are suggests

the γ-rays are produced by synchrotron emission of a population of PeV electrons. The

problem is how to explain the very short timescales in which these very high-energy electrons

are accelerated. Classical shock acceleration models such as di�usive shock acceleration

operate on much longer timescales. It appears the Crab has much to teach us regarding

non-thermal acceleration mechanisms hitherto unconsidered.

The GeV photon energies observed are di�cult to explain on energetic grounds if syn-

chrotron losses are the mechanism for the emissivity of the electrons. The Larmor timescale

represents the minimum timescale for acceleration. If one equates the Larmor timescale with

synchrotron loss timescale one can obtain the theoretical maximum (peak) synchrotron en-

ergy which is about 158MeV. Obviously this is far below what is observed. If standard MHD

conditions apply, then it is di�cult to explain the ample radiation above this synchrotron

�burn-o�� limit. More troublesome these �ares become when considering the very rapid
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variability at these excessive γ-ray energies.

Some simple ideas have been invoked to study mechanisms that are likely the cause for

these γ-ray �ares. Simulation studies such as the particle-in-cell (PIC) simulations conducted

by a variety of groups, such as Cerutti & Begelman, have analyzed the e�ects of electrostatic

acceleration on the injected electrons. Disordered magnetic �elds from the striped wind can

be compressed at the termination shock leading to magnetic reconnection zones where an

electrostatic �eld is induced. Electrons can be e�ciently accelerated in these reconnection

zones where synchrotron losses are minimal due to the vanishing magnetic �eld deep in the

reconnection zone (Cerutti & Begelman 2011, 2012a, 2012b, 2013, 2014a, 2014b). Their

focus is on the magnetic reconnection mechanism itself and the momentum distribution

of electrons resulting from this acceleration paradigm. Thus, they do not reproduce the

observed �are spectrum, however a solid basis for the mechanism was established.

It is unlikely that magnetic reconnection is the sole mechanism driving these �ares. How-

ever, as more physics is included in a model the more complex it would become. Theoretical

models could easily include a variety of physics whose analytic solutions (if they exist) can

be applied to the γ-ray �are spectra. Interactions with MHD waves provide a likely ac-

celeration component to include in an analytic study. Additionally, the resulting electron

distribution would need to be computed self-consistently, taking into account synchrotron

losses and particle escape from the acceleration site. In this dissertation, I present a �rst

self-consistent and fully analytic model to explain the temporal and energetic parameters

surrounding these bright γ-ray �ares from the Crab nebula. The model will implement

physical parameters such as the magnetic �eld strength that are in agreement with values

obtained from rigorous observational campaigns.

1.5 Research Plan

It can be seen from this brief review of spectral and timing observations over the past several

decades of X-ray astronomy that despite the complicated nature of accretion dynamics in

these high-energy environments, signi�cant progress has been made. Although where there is
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a plethora of observational campaigns on a variety of XRBs and AGNs, the phenomenological

and numerical studies have been straining to keep up with the increasingly complex picture

of accretion dynamics. It is often more insightful to apply a theoretical model to a class of

observations in order to have explicit control over the physical parameters. In this fashion, it

is easy to discern the signi�cance and role that a particular quantity plays in the phenomenon

under study. Throughout this dissertation, I will develop and present fully analytic solutions

to a variety of observable phenomena and test the models against data.

The data with which I test my models are borrowed from previous authors' publica-

tions. Of interest here is the spectral properties of Cyg X-1 and GX 339-4 in their hard

state as well as the time lags in the soft and hard energy channels. The appeal of the

Comptonization model developed here is 1) an integrated model is derived in which the

same set of cloud parameters are used to compute both the quiescent X-ray spectrum and

the time lags which allows for a self-consistent model that explains the time-dependent and

time-independent phenomena simultaneously 2) the models are fully analytic which makes

for intimate analysis of the relevant physical parameters e�ortless and unambiguous 3) the

technique for solving the time-dependent Compton scattering process is novel in the sense

that the Fourier transformed solution does not need to be inverted before the time lags are

computed, because time lag data are often presented in the Fourier frequency domain.

The rest of this document is organized as follows. First, in Chapter 2, we present a

derivation of the time-dependent and time-independent photon distribution function pro-

duced from di�usion and Comptonization of seed photons in a homogeneous and inhomo-

geneous irrotational corona. In Chapter 3, we present the homogeneous rotating corona

model. And lastly, in Chapter 4 we present an additional study of the γ-ray transients

observed from the Crab nebula and develop an analytic model describing the acceleration

and synchrotron losses of electrons near the termination shock of the pulsar wind nebula.
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Chapter 2: X-Ray Time Lags in Accreting Galactic Black

Hole Binaries

Many accretion-powered X-ray sources display rapid variability, coupled with a time-averaged

spectrum consisting of a power law terminating in an exponential cuto� at high energies.

The ubiquitous nature of the observations suggests a common mechanism for the spectral for-

mation process, regardless of the type of central object (e.g. black hole, neutron star, AGNs,

etc.). Over the past few decades, the interpretation of the spectral data using steady-state

models has demonstrated that the power-law component is most likely due to the thermal

Comptonization of soft seed photons in a hot (∼ 108K) coronal cloud (Sunyaev & Titarchuk

1980). While the spectral models yield estimates for the coronal temperature and optical

depth, they do not provide much detailed information about the geometry and morphology

of the plasma. On the other hand, observations of variability, characterized by time lags

and power spectral densities (PSDs), can supplement the spectral analysis, yielding crucial

additional information about the structure of the inner region in the accretion �ow, where

the most rapid variability is generated.

In particular, the study of X-ray time lags, in which the hard photons associated with a

given Fourier component arrive at the detector before or after the soft photons, provides a

unique glimpse into the nature of the high-frequency variability in the inner region. Fourier

time lags o�er an ideal tool for studying rapid variability because, unlike short-timescale

spectral snapshots, which become noisy due to the shortage of photons in small time bins,

the Fourier technique utilizes all of the data in the entire observational time window, which

could extend over hundreds or thousands of seconds. Hence the resulting time lag informa-

tion usually has much higher signi�cance than can be achieved using conventional spectral

analysis.
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2.0.1 Fourier Time Lags

The Fourier method for computing time lags from observational data streams in two energy

channels was pioneered by van der Klis et al. (1987), who proposed a novel mathematical

technique for extracting time lags by creating a suitable combination of the hard and soft

Fourier transforms for a given value of the circular Fourier frequency, ω. The method utilizes

the Complex Cross-Spectrum, denoted by C(ω), de�ned by

C(ω) ≡ S∗(ω)H(ω) , (2.1)

where S and H are the Fourier transforms of the soft and hard channel time series, s(t)

and h(t), respectively, and S∗ denotes the complex conjugate. The Fourier transforms are

calculated using

S(ω) =

∫ ∞

−∞
eiωts(t)dt , (2.2)

and likewise for the hard channel,

H(ω) =

∫ ∞

−∞
eiωth(t)dt . (2.3)

The phase lag between the two data streams is computed by taking the argument of C(ω),

which is the argument angle in the complex plane, and the associated time lag, δt, is obtained

by dividing the phase lag by the Fourier frequency. Hence we have the relations

δt =
arg(C)

2πνf
=

arg(S∗H)

2πνf
, (2.4)

where the Fourier frequency, νf , is related to the circular frequency ω via

νf =
ω

2π
. (2.5)
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As a simple demonstration of the time lag concept, it is instructive to consider the case

where the hard and soft channels, h(t) and s(t), are shifted in time by a precise interval ∆t,

so that the two signals are related to each via

h(t) = s(t−∆t) , (2.6)

where ∆t > 0 would indicate a hard time lag. Next we take the Fourier transform of the

hard channel time series to obtain

H(ω) =

∫ ∞

−∞
eiωth(t)dt =

∫ ∞

−∞
eiωts(t−∆t)dt . (2.7)

Introducing a new time variable, t′ = t−∆t with dt′ = dt, allows us to transform the integral

in Equation (2.7) to obtain

H(ω) =

∫ ∞

−∞
eiω(t

′+∆t)s(t′)dt′ = eiω∆tS(ω) . (2.8)

It follows from Equation (2.1) that the resulting complex cross-spectrum is given by

C(ω) = S∗(ω)eiω∆tS(ω) = eiω∆t|S(ω)|2 , (2.9)

and hence the resulting time lag is (cf. Equation (2.4))

δt =
ω∆t

ω
= ∆t . (2.10)

This simple calculation con�rms that the time lag computed using the Fourier method gives

the correct answer when a perfect delay is introduced between the two channels, as expected.

It is also important to note that time lags are only produced during a transient. We can see

this by setting the hard and soft signals equal to the constants h0 and s0, respectively, so
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that h(t) = h0 and s(t) = s0. In this case, the resulting Fourier transforms H and S have

the same phase, and consequently there is no phase lag or time lag. Hence observations of

time lags necessarily imply the presence of variability in the observed signal.

2.0.2 X-Ray Time Lag Phenomenology

The fundamental physical mechanism underlying the X-ray time lag phenomenon has been

debated for decades, but it is generally accepted that the time lags re�ect the time-dependent

scattering of a population of seed photons that are impulsively injected into an extended

corona of hot electrons (e.g., van der Klis et al. 1987; Miyamoto et al. 1988). This initial

population of photons gain energy as they Comptonize in the cloud, and the hard time

lags are a natural consequence of the extra time that the hard photons spend in the cloud

gaining energy via electron scattering before escaping. In contrast with the time lags, the

time-averaged (quiescent) spectra are thought to be created as a result of the Compton

scattering of continually injected seed photons. The time-dependent upscattering of soft

input photons is discussed in detail by Payne (1980) and Sunyaev & Titarchuk (1980), who

present fundamental formulas for the resulting X-ray spectrum. Since that time, many

detailed models have been proposed, most of which focus on a single aspect of radiative

transfer, usually by making assumptions about the physical conditions in the disk/corona

system regarding the electron temperature, the input photon spectrum, and the size and

optical depth of the scattering corona.

The Fourier time lags observed from accreting black-hole sources generally decrease with

increasing Fourier frequency, νf . In the case of Cyg X-1, for example, the time lags decrease

from ∼ 0.1− 10−3 sec as νf increases from ∼ 0.1Hz - 102Hz . Early attempts to interpret

this data using simple Compton scattering models resulted in very large, hot scattering

clouds, which required very e�cient heating at large distances (∼ 105−6 GM/c2) from the

central mass (Poutanen & Fabian 1999, Hua et al. 1999, hereafter HKC). Furthermore, the

observed dependence of the time lags on the Fourier frequency was di�cult to explain using

a homogeneous Compton scattering model. For example, van der Klis et al. (1987) and
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Miyamoto et al. (1988) found that a homogeneous corona combined with monochromatic

soft photon injection resulted in time lags that are independent of the Fourier frequency, νf ,

in contradiction to the observations. This led Miyamoto et al. (1988) to conclude, somewhat

prematurely, that thermal Comptonization could not be producing the lags. However, in the

next decade, HKC and Nowak et al. (1999) developed more robust Compton simulations

that successfully reproduced the observed time lags, although the large coronal radii ∼

104.5−5.5 GM/c2 continued to raise concerns regarding energy conservation and heating.

HKC computed the time lags and the time-averaged spectra for a variety of electron

number density pro�les, based on the injection of low-temperature blackbody seed photons

at the center of the coronal cloud. They employed a two-region structure, comprising a

central homogeneous zone, connected to a homogeneous or inhomogeneous outer region that

extends out to several light-seconds from the central mass. In the inhomogeneous case, the

electron number density, ne(r), in the outer region varied as ne(r) ∝ r−1 or ne(r) ∝ r−3/2. In

the HKC model, the injection spectrum and the injection location were both held constant,

and a zero-�ux boundary condition was adopted at the center of the cloud. HKC found

that only the model with ne(r) ∝ r−1 in the outer region was able to successfully reproduce

the observed dependence of the time lags on the Fourier frequency. On the other hand,

in the homogeneous case, HKC con�rmed the Miyamoto et al. (1988) result that the time

lags are independent of the Fourier frequency, in contradiction to the observational data.

This result was also veri�ed later by Kroon & Becker (2014, hereafter KB) for the case of

monochromatic photon injection into a homogenous corona.

2.0.3 Dependence on Injection Model

Despite the progress made by HKC and other authors, no successful �rst-principles theo-

retical model for the production of the observed X-ray time lags has yet emerged. In the

absence of such a model, one is completely dependent on Monte Carlo simulations, which

are somewhat inconvenient since the resulting time lags are not analytically connected with

the parameters describing the scattering cloud. Monte Carlo simulations are also noisy at
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high Fourier frequency, which is the main region of interest in many applications, although

this can be dealt with by adding more test particles. Compared with an analytical cal-

culation, the utilization of Monte Carlo simulations makes it more challenging to explore

di�erent injection scenarios, such as the variation of the injection location and the seed

photon spectrum.

The situation changed recently with the work of KB, who presented a detailed analytical

solution to the problem of time-dependent thermal Comptonization in spherical, homoge-

neous scattering clouds. By obtaining the fundamental photon Green's function solution to

the problem, they were able to explore a wide variety of injection scenarios, leading to a

better understanding of the relationship between the observed time lags and the underlying

physical parameters. KB veri�ed the Miyamoto result, namely that monochromatic injec-

tion in a homogeneous cloud produces time lags that are independent of Fourier period.

The magnitude of this (constant) lag depends primarily on the radius of the cloud, R, its

optical thickness, τ∗, and the electron temperature, Te. Following HKC, they employed a

zero-net �ux boundary condition at the center of the corona (essentially a mirror condition),

so that injection could occur at any radius inside the cloud. The photon transport at the

outer edge of the cloud was treated using a free-streaming boundary condition in order to

properly account for photon escape. KB demonstrated that the injection radius and the

shape of the injected photon spectrum play a crucial role in determining the dependence of

the resulting time lags on the Fourier frequency. In particular, they established for the �rst

time that the reprocessing of a broadband injection spectrum (e.g., thermal bremsstrahlung)

can successfully reproduce most of the time lag data for Cyg X-1 and other sources.

In the study presented here, we expand on the work of KB to obtain the radiation Green's

function for inhomogeneous scattering clouds. We also present a more detailed derivation of

the homogeneous Green's function discussed by KB. The analytical solutions for the Fourier

transform of the time-dependent Green's function in the homogeneous and inhomogeneous

cases are then used to treat localized bremsstrahlung injection via integral convolution, as an

alternative to the essentially monochromatic injection scenario studied by HKC. In addition
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to modeling the transient time lags as a result of impulsive soft photon injection, we also

compute the time-independent X-ray spectrum radiated form the surface of the cloud as a

result of continual soft photon injection. We show that acceptable �ts to both the time-lag

data and the X-ray spectral data can be obtained using a single set of cloud parameters

(temperature, density, cloud radius) via application of our integrated model.

The remainder of the paper is organized as follows. In Section 2.1 we introduce the

time-dependent and steady-state transport equations in spherical geometry, and we map

out the general solution methods to be applied in the subsequent sections. In Section 2.2 we

obtain the solution for the Fourier transform of the time-dependent photon Green's function

and also the solution for the time-averaged Green's function in a homogeneous corona. In

Section 2.3, we repeat the same steps for the case of an inhomogeneous corona with electron

number density pro�le ne(r) ∝ 1/r. We discuss the reprocessing of thermal bremsstrahlung

radiation in Section 2.4, and we apply the integrated model to Cyg X-1 and GX 339-04 in

Section 2.5. Our main conclusions are reviewed and further discussed in Section 2.6 as well

as Section 5.1.

2.1 Fundamental Equations

Our focus here is on understanding how time-dependent Compton scattering a�ects a popu-

lation of seed photons as they propagate through a spherical corona of hot electrons overlying

a geometrically thin, standard accretion disk. This problem was �rst explored using an exact

mathematical approach by KB, who studied the radiative transfer occurring in a homoge-

neous corona. We provide further details of that work here, and we also extend the model

to treat inhomogeneous spherical scattering clouds.

2.1.1 Time-Dependent Transport Equation

The time-dependent transport equation describing the di�usion and Comptonization of an

instantaneous �ash of N0 monochromatic seed photons injected with energy ϵ0 at radius r0

and at time t0 as they propagate through a spherical scattering corona is given by (e.g.,
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Becker 2003),

∂fG
∂t

=
1

r2
∂

∂r

[
κ(r) r2

∂fG
∂r

]
+
ne(r)σTc

mec2
1

ϵ2
∂

∂ϵ

[
ϵ4
(
fG + kTe

∂fG
∂ϵ

)]

+
N0δ(t− t0)δ(r − r0)δ(ϵ− ϵ0)

4πr20ϵ
2
0

, (2.11)

where me, ne, Te, k, σT, c, and κ denote the electron mass, the electron number density,

the electron temperature, Boltzmann's constant, the Thomson cross section, the speed of

light, and the spatial di�usion coe�cient, respectively, and fG(ϵ, r, t) is the radiation Green's

function, describing the distribution of photons inside the cloud. The �rst term on the right-

hand side of Equation (2.11) represents the spatial di�usion of photons through the corona,

and the second term describes the redistribution in energy due to Compton scattering. The

Green's function is related to the photon number density, nr, via

nr(r, t) =

∫ ∞

0
ϵ2 fG(ϵ, r, t) dϵ , (2.12)

and the spatial di�usion coe�cient κ(r) is related to the electron number density ne(r) and

the scattering mean free path ℓ(r) via

κ(r) =
c

3ne(r)σT
=
c ℓ(r)

3
. (2.13)

Klein-Nishina corrections are important when the incident photon energy in the electron's

rest frame approaches ∼ 500 keV. In our model, the electrons are essentially non-relativistic,

with temperature Te ∼ 4− 7× 108K, and therefore the 0.1− 10 keV photons of interest here

will not be boosted into the Klein-Nishina energy range in the typical electron's rest frame.

We will therefore treat the electron scattering process using the Thomson cross section

throughout this study. However, we revisit this issue is Section 2.6.1 where we compare our
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results with previous studies that utilized the full Klein-Nishina cross section to treat the

electron scattering.

2.1.2 Density Variation

In many cases of interest, the electron number density ne(r) has a power-law dependence

on the radius r, which can be written as

ne(r) = n∗

( r
R

)−α
, (2.14)

where R is the outer radius of the cloud, α is a constant, and n∗ ≡ ne(R) is the number

density at the outer edge of the cloud. The two cases we focus on here are

α =


0, homogeneous ,

1, inhomogeneous .

(2.15)

The homogeneous case was treated by Miyamoto (1988) and the inhomogeneous case by

HKC. By combining Equations (2.13) and (2.14), we can rewrite the electron number density

and the spatial di�usion coe�cient as

ne(r) =
1

σTℓ∗

( r
R

)−α
, κ(r) =

c ℓ∗
3

( r
R

)α
, (2.16)

where

ℓ∗ ≡ ℓ(R) =
1

ne(R)σT
(2.17)
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denotes the scattering mean free path at the outer edge of the corona. Substituting Equa-

tions (2.16) into Equation (2.11) yields

∂fG
∂t

=
cℓ∗
3r2

∂

∂r

[( r
R

)α
r2
∂fG
∂r

]
+

1

ℓ∗mec

( r
R

)−α 1

ϵ2
∂

∂ϵ

[
ϵ4
(
fG + kTe

∂fG
∂ϵ

)]

+
N0δ(t− t0)δ(r − r0)δ(ϵ− ϵ0)

4πr20ϵ
2
0

. (2.18)

The electron temperature Te is determined by a balance between gravitational heating

and Compton cooling, and one typically �nds that Te does not vary signi�cantly in the

region where most of the X-rays are produced (You et al. 2012; Schnittman et al. 2013).

We therefore assume that the cloud is isothermal with Te = constant. In this case, it is

convenient to rewrite the transport equation in terms of the dimensionless energy

x ≡ ϵ

kTe
. (2.19)

We also introduce the dimensionless radius z, time p, and temperature Θ, de�ned, respec-

tively, by

z ≡ r

R
, p ≡ c t

ℓ∗
, Θ ≡ kTe

mec2
. (2.20)

The various functions involved in the derivation can be written in terms of either the di-

mensional energy and radius, (ϵ, r), or the corresponding dimensionless variables (x, z), and

therefore we will use these two notations interchangeably throughout the remainder of the

paper. Incorporating Equations (2.19) and (2.20) into the transport equation (2.18) yields,
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after some algebra,

∂fG
∂p

=
1

3η2z2
∂

∂z

(
z2+α∂fG

∂z

)
+

Θ

zαx2
∂

∂x

[
x4
(
fG +

∂fG
∂x

)]

+
N0δ(x− x0)δ(p− p0)δ(z − z0)

4πz20R
3x20Θ

3(mec2)3
, (2.21)

where we have introduced the dimensionless �scattering parameter,�

η ≡ R

ℓ∗
= ne(R)σTR . (2.22)

Equation (2.21) is the fundamental partial di�erential equation that we will use to treat

time-dependent scattering in a homogeneous spherical corona with α = 0 in Section 2.2, and

time-dependent scattering in an inhomogeneous spherical corona with α = 1 in Section 2.3.

2.1.3 Optical Depth

The scattering optical depth τ measured from the inner edge of the coronal cloud at radius

r = rin out to some arbitrary local radius r is computed using

τ(r) =

∫ r

rin

ne(r
′)σTdr

′ =

∫ r

rin

dr′

ℓ(r′)
, (2.23)

where the variation of the mean-free path is given by (see Equations (2.13) and (2.14))

ℓ(r) = ℓ∗

( r
R

)α
. (2.24)

Combining relations, and transforming the variable of integration from r to z = r/R, we

obtain

τ(z) = η

∫ z

zin

dz′

z′α
, (2.25)
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where

zin ≡ rin
R

(2.26)

denotes the dimensionless inner radius of the cloud.

There are three cases of interest here,

τ(z) =


η (z1−α − z1−α

in )/(1− α) , α ̸= 1 ,

η (z − zin) , α = 0 ,

η ln(z/zin) , α = 1 .

(2.27)

The overall optical thickness of the scattering cloud, denoted by τ∗, as measured from the

inner radius r = rin (z = zin) to the outer radius r = R (z = 1), is therefore given by

τ∗ =


η (1− z1−α

in )/(1− α) , α ̸= 1 ,

η (1− zin) , α = 0 ,

η ln(1/zin) , α = 1 .

(2.28)

2.1.4 Steady-State Transport Equation

The time-averaged (quiescent) X-ray spectra produced in accretion �ows around black holes

are generally interpreted as the result of the thermal Comptonization of soft seed photons

continually injected into a hot electron corona from a cool underlying disk (see e.g. Sunyaev

& Titarchuk 1980 for a review). In our interpretation, the associated X-ray time lags are the

result of the time-dependent Comptonization of seed photons impulsively injected during

a brief transient. Our goal in this paper is to develop an integrated model that accounts

for the formation of both the time-averaged spectrum and the time lags using a single set

of cloud parameters (temperature, density, radius). In our calculation of the time-averaged
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spectrum, we assume that Ṅ0 seed photons with energy ϵ0 are injected per unit time into

the hot corona between the inner cloud radius rin and the outer cloud radius r = R with a

rate that is proportional to the local electron number density ne(r). The radial variation of

the number density depends on whether the cloud is homogeneous, with ne =constant, or

inhomogeneous, with ne(r) ∝ r−1.

In this scenario, the fundamental time-independent transport equation can be written

as

∂fSG
∂t

= 0 =
1

r2
∂

∂r

[
κ(r)r2

∂fSG
∂r

]
+
ne(r)σTc

mec2
1

ϵ2
∂

∂ϵ

[
ϵ4
(
fSG + kTe

∂fSG
∂ϵ

)]
+
Ṅ0 δ(ϵ− ϵ0)ne(r)

ϵ20Ne
,

(2.29)

where fSG(ϵ, r) denotes the steady-state (quiescent) photon Green's function, and

Ne =

∫ R

rin

4πr2ne(r) dr (2.30)

represents the total number of electrons in the region rin ≤ r ≤ R. Substituting for ne(r)

and κ(r) in Equation (2.29) using Equations (2.16) yields

0 =
cℓ∗
3r2

∂

∂r

[( r
R

)α
r2
∂fSG
∂r

]
+

1

ℓ∗mec

( r
R

)−α 1

ϵ2
∂

∂ϵ

[
ϵ4
(
fSG + kTe

∂fSG
∂ϵ

)]

+
Ṅ0 δ(ϵ− ϵ0)(r/R)

−α

σTℓ∗ϵ
2
0Ne

. (2.31)

This expression can be rewritten in terms of the dimensionless parameters x, z, Θ, and η to

obtain

0 =
1

3η2z2−α

∂

∂z

(
z2+α∂f

S
G

∂z

)
+

Θ

x2
∂

∂x

[
x4
(
fSG +

∂fSG
∂x

)]
+

Ṅ0 δ(x− x0)(3− α)

4πR2ηcΘ3(mec)3x20(1− z3−α
in )

,

(2.32)
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where we have also substituted for Ne using

Ne =
4πR3

σTℓ∗

1− z3−α
in

3− α
, (2.33)

which follows from Equations (2.16) and (2.30). We assume here that α = 0 or α = 1.

The derivative ∂fSG/∂x exhibits a step-function discontinuity at the injection energy,

x = x0, due to the appearance of the function δ(x− x0) in Equation (2.32). By integrating

Equation (2.32) with respect to x over a small region surrounding the injection energy, we

conclude that the derivative jump is given by

lim
δ→0

[
dfSG
dx

] ∣∣∣∣∣
x0+δ

x0−δ

= − Ṅ0(3− α)

4πR2ηcΘ4(mec)3x40(1− z3−α
in )

. (2.34)

We will utilize Equations (2.32) and (2.34) in Sections 2.2.1 and 2.3.1 when we compute the

time-averaged X-ray spectra produced via electron scattering in homogeneous and inhomo-

geneous scattering coronae, respectively.

2.1.5 Fourier Transformation

In principle, all of the detailed spectral variability due to time-dependent Comptonization

in the scattering corona can be computed by solving the fundamental transport equation

(2.21) for a given initial photon energy/space distribution (Becker 2003). However, complete

information about the variability of the spectrum is not required, or even desired, if the

goal it to compare the theoretically predicted time lags δt with the observational data.

Computation of the predicted time lags using Equation (2.4) requires as input the Fourier

transforms of the soft and hard data streams. It is therefore convenient to analyze the time-

dependent transport Equation (2.21) directly in the Fourier domain, rather than in the time

domain. Hence one of our goals is to derive the exact solution for the Fourier transform,

FG, of the time-dependent radiation Green's function, fG. We de�ne the Fourier transform
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pair, (fG, FG), using

FG(x, z, ω̃) ≡
∫ ∞

−∞
eiω̃pfG(x, z, p) dp , (2.35)

fG(x, z, p) ≡
1

2π

∫ ∞

−∞
e−iω̃pFG(x, z, ω̃) dω̃ , (2.36)

where the dimensionless Fourier frequency is de�ned by

ω̃ = ω

(
ℓ∗
c

)
= ωt∗ . (2.37)

Here, t∗ = ℓ∗/c is the �scattering time,� which equals the mean-free time at the outer edge

of the corona, at radius r = R.

We can obtain an ordinary di�erential equation satis�ed by the Fourier transform, FG,

by operating on Equation (2.21) with
∫∞
−∞ eiω̃pdp, to obtain

− iω̃zαFG =
1

3η2z2−α

∂

∂z

(
z2+α∂FG

∂z

)
+

Θ

x2
∂

∂x

[
x4
(
FG +

∂FG
∂x

)]

+
N0δ(x− x0)δ(z − z0)e

iω̃p0

4πx20z
2
0z

−αΘ3(mec2)3R3
, (2.38)

where i2 = −1. Further progress can be made by noting that Equation (2.38) is separable

in the energy and spatial coordinates (x, z). The technical details depend on the value of α,

which determines the spatial variation of the electron number density ne(r). We therefore

treat the homogeneous and inhomogeneous cases separately in Sections 2.2.2 and 2.3.2,

respectively.

Due to the function δ(x − x0) appearing in the source term in Equation (2.38), the

energy derivative ∂FG/∂x displays a jump at the injection energy x = x0, with a magnitude

determined by integrating Equation (2.38) with respect to x in a small region around the
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injection energy. The result obtained is

lim
δ→0

[
dFG
dx

] ∣∣∣∣∣
x0+δ

x0−δ

= − N0 δ(z − z0)e
iω̃p0

4πx40 z
2
0z

−αΘ4(mec2)3R3
. (2.39)

This expression will be used later in the computation of the expansion coe�cients for the

Fourier transform of the radiation Green's function resulting from time-dependent Comp-

tonization in Sections 2.2 and 2.3.

2.1.6 Boundary Conditions

In order to obtain solutions for fSG(ϵ, r) and FG(ϵ, r, ω̃), we must impose suitable spatial

boundary conditions at the inner edge of the cloud, r = rin, and at the outer edge, r = R,

which correspond to the dimensionless radii z = zin and z = 1, respectively. The boundary

conditions we discuss below are stated in terms of the fundamental time-dependent photon

Green's function, fG(ϵ, r, t), but they also apply to the time-averaged spectrum fSG(ϵ, r).

Furthermore, we can show via Fourier transformation that the same boundary conditions

also apply to the Fourier transform FG(ϵ, r, ω̃). Note that we can write the time-averaged

X-ray spectrum fSG and the Fourier transform FG as functions of either the dimensional

energy and radius, (ϵ, r), or in terms of the dimensionless variables (x, z), and therefore we

will use the appropriate set of variables depending on the context.

In the Monte Carlo simulations performed by HKC, the time lags result from the repro-

cessing of blackbody seed photons impulsively injected at the center of the Comptonizing

corona. In order to avoid unphysical sources or sinks of radiation at the center of the cloud,

r = 0, they employed a zero-�ux �mirror� inner boundary condition, which can be expressed

as

lim
r→0

−4πr2κ(r)
∂fG(ϵ, r, t)

∂r
= 0 . (2.40)

This condition simply re�ects the fact that no photons are created or destroyed at the center
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of the cloud after the initial �ash. Following HKC, we will employ the mirror boundary

condition at the center of the corona (r = 0) in our calculations involving a homogeneous

cloud.

The scattering corona has a �nite extent, and therefore we must impose a free-streaming

boundary condition at the outer surface (r = R). Hence the distribution function fG must

satisfy the outer boundary condition

−κ(r)∂fG(ϵ, r, t)
∂r

∣∣∣∣∣
r=R

= c fG(ϵ, r, t)

∣∣∣∣∣
r=R

, (2.41)

which implies that the di�usion �ux at the surface is equivalent to the outward propagation

of radiation at the speed of light.

When the electron distribution is inhomogeneous (ne(r) ∝ r−1), the mirror condition

cannot be applied at the center of the cloud due to the divergence of the electron number

density ne(r) as r → 0. In this case, we must truncate the scattering corona at a non-zero

inner radius, r = rin, where we impose a free-streaming boundary condition. Physically, the

inner edge of the cloud may correspond to the edge of a centrifugal funnel, or the cusp of a

thermal condensation feature (Meyer & Meyer-Hofmeister 2007). The inner free-streaming

boundary condition can be written as

−κ(r)∂fG(ϵ, r, t)
∂r

∣∣∣∣∣
r=rin

= −c fG(ϵ, r, t)

∣∣∣∣∣
r=rin

, (2.42)

which is only applied in the inhomogeneous case. All of the boundary conditions considered

here are satis�ed by the fundamental time-dependent photon Green's function fG(ϵ, r, t),

and also by the time-averaged spectrum fSG(ϵ, r), and the Fourier transform FG(ϵ, r, ω̃).

We will apply these results in Sections 2.2 and 2.3 where we consider homogeneous and

inhomogeneous cloud con�gurations, respectively.
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2.2 Homogeneous Model

The simplest electron number density distribution of interest here is ne =constant (α = 0),

which was �rst studied by Miyamoto et al. (1988). In this case we apply the mirror inner

boundary condition at the center of the cloud, and hence we set zin = 0. We consider the

homogeneous case in detail in this section, and obtain the exact solutions for the Fourier

transform of the time-dependent photon Green's function, FG(ϵ, r, ω̃), and also for the asso-

ciated time-averaged radiation spectrum, fSG(ϵ, r). These results were originally presented

by KB in an abbreviated form. Note that KB utilized the scattering optical depth τ mea-

sured from the center of the cloud as the fundamental spatial variable, whereas we use the

dimensionless radius z. However, the two quantities are simply related via Equations (2.27)

and (2.28), which yield, for α = 0 and zin = 0,

τ(z) = η z , τ∗ = η , (2.43)

where τ∗ is the optical thickness measured from the center of the cloud to the outer edge at

z = 1.

2.2.1 Quiescent Spectrum for α = 0

In the homogeneous case (α = 0), the time-independent transport equation (2.32) repre-

senting the thermal Comptonization of seed photons continually injected throughout the

scattering corona can be simpli�ed by substituting the separation functions

fλ = K(λ, x) Y (λ, z) , (2.44)

which yields, for x ̸= x0,

−1

Y η2z2
d

dz

(
z2
dY

dz

)
=

3Θ

K x2
d

dx

[
x4
(
K +

dK

dx

)]
= λ , (2.45)
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where λ is the separation constant. The corresponding ordinary di�erential equations satis-

�ed by the spatial and energy functions Y and K are, respectively,

1

z2
d

dz

(
z2
dY

dz

)
+ λ η2Y = 0 , (2.46)

1

x2
d

dx

[
x4
(
K +

dK

dx

)]
− λ

3Θ
K = 0 , (2.47)

which has been considered previously by such authors as Payne (1980), Shapiro, Lightman,

and Eardley (1976), Sunyaev & Titarchuk (1980), etc.

The fundamental solution for the energy function K is given by (see Becker 2003)

K(λ, x) = (xx0)
−2e−(x+x0)/2M2,σ(xmin)W2,σ(xmax) , (2.48)

where M2,σ and W2,σ are Whittaker functions,

xmax ≡ max(x, x0) , xmin ≡ min(x, x0) , (2.49)

and

σ ≡
√

9

4
+

λ

3Θ
. (2.50)

The speci�c form in Equation (2.48) represents the solution satisfying appropriate boundary

conditions at high and low energies, and it is also continuous at the injection energy, x = x0,

as required.

In the homogeneous con�guration under consideration here, the spatial function Y must

satisfy the inner �mirror� boundary condition at the origin (cf. Equation (2.40)), which can

be written in terms of z as

lim
z→0

z2
dY (λ, z)

dz
= 0 . (2.51)
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The fundamental solution for Y satisfying this condition is given by

Y (λ, z) =
sin(ηz

√
λ)

ηz
. (2.52)

By virtue of Equation (2.41), the spatial function Y must also satisfy the outer free-streaming

boundary condition, written in terms of the z coordinate as

lim
z→1

[
1

3η

dY (λ, z)

dz
+ Y (λ, z)

]
= 0 . (2.53)

Substituting the form for Y given by Equation (2.52) into Equation (2.53) yields a tran-

scendental equation for the eigenvalues λn that can be solved using a numerical root-�nding

procedure. The resulting eigenvalues λn are all real and positive, and the corresponding val-

ues of σ are computed by setting λ = λn in Equation (2.50). The associated eigenfunctions,

Yn and Kn, are de�ned by

Yn(z) ≡ Y (λn, z) , Kn(x) ≡ K(λn, x) . (2.54)

According to the Sturm-Liouville theorem, the eigenfunctions Yn form an orthogonal

basis with respect to the weight function z2, so that (see Appendix A)

∫ 1

0
z2 Yn(z)Ym(z) dz = 0 , n ̸= m . (2.55)

The related quadratic normalization integrals, In, are de�ned by

In ≡ η3
∫ 1

0
z2Y 2

n (z)dz =
η

2
− sin(2η

√
λn)

4
√
λn

, (2.56)

where the �nal result follows from Equation (2.52).
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Based on the orthogonality of the Yn functions, we can express the time-averaged photon

Green's function using the expansion

fSG(x, x0, z) =
∞∑
n=0

bnKn(x)Yn(z) , (2.57)

where the expansion coe�cients bn are computed using the derivative jump condition in

Equation (2.34). In the case of interest here, we set α = 0 and zin = 0 to obtain

lim
δ→0

[
dfSG
dx

] ∣∣∣∣∣
x0+δ

x0−δ

= − 3Ṅ0

4πR2ηcΘ4(mec)3x40
. (2.58)

Substituting the series expansion for the steady-state Green's function (Equation (2.57))

into Equation (2.58) yields

lim
δ→0

∞∑
n=0

bnYn(z)[K
′
n(x0 + δ)−K ′

n(x0 − δ)] = − 3Ṅ0

4πR2ηcΘ4(mec)3x40
. (2.59)

We can make further progress by eliminating K using Equation (2.48) to obtain, after

some algebra,

∞∑
n=0

bn Yn(z)W2,σ(x0) = − 3Ṅ0e
x0

4πR2ηcΘ4(mec)3
, (2.60)

where we have de�ned the Wronskian of the Whittaker functions using

W2,σ(x0) ≡M2,σ(x0)W
′
2,σ(x0)−W2,σ(x0)M

′
2,σ(x0) . (2.61)
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The Wronskian can be evaluated analytically to obtain (Abramowitz & Stegun 1970)

W2,σ(x0) = − Γ(1 + 2σ)

Γ(σ − 3/2)
. (2.62)

Combining Equations (2.60) and (2.62), we obtain

∞∑
n=0

bnYn(z)
Γ(1 + 2σ)

Γ(σ − 3/2)
=

3Ṅ0e
x0

4πR2ηcΘ4(mec2)3
. (2.63)

Next we exploit the orthogonality of the Yn functions with respect to the weight function

z2 by applying the operator
∫ 1
0 η

3z2Ym(z)dz to both sides of Equation (2.63). According to

Equation (2.55), all of the terms on the left-hand side vanish except the term with m = n.

The result obtained for the expansion coe�cient bn is therefore

bn =
3Ṅ0e

x0Γ(σ − 3/2)Pn

4πR2ηcΘ4(mec2)3Γ(1 + 2σ)In
, (2.64)

where the integrals In are computed using Equation (2.56) and the integrals Pn are de�ned

by

Pn ≡
∫ 1

0
η3z2Yn(z)dz =

3η sin(η
√
λn)

λn
, (2.65)

and the �nal result follows from application of Equation (2.53).

Combining Equations (2.57) and (2.64) yields the exact analytical solution for the time-

independent photon Green's function evaluated at dimensionless energy x and dimensionless

radius z resulting from the continual injection of seed photons throughout the cloud. We

obtain

fSG(x, x0, z) =
9Ṅ0e

x0

4πR2cΘ4(mec2)3

∞∑
n=0

Γ(σ − 3/2) sin(η
√
λn)

λnΓ(1 + 2σ)In
Kn(x)Yn(z) , (2.66)
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where σ is computed using Equation (2.50), and Yn and Kn are de�ned in Equation (2.54).

This is the same result as Equation (27) from KB, once we make the identi�cations τ∗ = η

and Gn(τ) = Yn(z), which arise due to the change in the spatial variable from the di-

mensionless radius z used here, to the scattering optical depth τ = ηz used by KB. The

time-averaged X-ray spectrum computed using Equation (2.66) is compared with the ob-

servational data for Cyg X-1 and GX 339-04 in Section 2.5.1. In Section 2.5.1, we also use

asymptotic analysis to derive a power-law approximation to the exact radiation distribu-

tion given by Equation (2.66), and we show that the resulting approximate X-ray spectrum

agrees closely with that obtained using the exact solution.

2.2.2 Fourier Transform for α = 0

In the homogeneous case (α = 0), we can substitute for the Fourier transform FG in Equa-

tion (2.38) using the separation functions

Fλ ≡ H(λ, x)Y (λ, z) , (2.67)

to obtain, for x ̸= x0,

− 1

Y

1

η2z2
d

dz

(
z2
dY

dz

)
=

3Θ

Hx2
d

dx

[
x4
(
H +

dH

dx

)]
+ 3iω̃ = λ , (2.68)

where λ =constant. This relation can be broken into two ordinary di�erential equations

satis�ed by the spatial and energy functions Y and H. We obtain

1

z2
d

dz

(
z2
dY

dz

)
+ λ η2Y = 0 , (2.69)

1

x2
d

dx

[
x4
(
H +

dH

dx

)]
− s

3Θ
H = 0 , (2.70)
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where

s ≡ λ− 3iω̃ . (2.71)

In the Fourier transform case under consideration here, the spatial function Y must

satisfy the mirror condition at the origin (cf. Equation (2.51)),

lim
z→0

z2
dY (λ, z)

dz
= 0 . (2.72)

Since Equation (2.69) is identical to Equation (2.46), which we previously encountered in

Section 2.2.1 in our consideration of the time-averaged spectrum produced in a homogeneous

spherical corona, we conclude that the fundamental solution for Y is likewise given by (cf.

Equation (2.52))

Y (λ, z) =
sin(ηz

√
λ)

ηz
. (2.73)

Furthermore, Y must also satisfy the outer free-streaming boundary condition, and therefore

the eigenvalues λn are the roots of the equation (cf. Equation (2.53))

lim
z→1

[
1

3η

dY (λ, z)

dz
+ Y (λ, z)

]
= 0 . (2.74)

It follows that in a homogeneous corona, the Fourier eigenvalues λn and spatial eigenfunc-

tions Yn are exactly the same as those obtained in the treatment of the time-averaged spec-

trum. Hence we can also conclude that the spatial eigenfunctions Yn form an orthogonal set,

which motivates the development of a series expansion for the Fourier transformed radiation

Green's function, FG.

Comparison of Equations (2.70) and (2.47) allows us to immediately obtain the solution

for the energy function H as (cf. Equation (2.48))

H(λ, x) = (xx0)
−2e−(x+x0)/2M2,µ(xmin)W2,µ(xmax) , (2.75)
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where xmax and xmin are de�ned in Equations (2.49), and

µ ≡
√

9

4
+

s

3Θ
=

√
9

4
+
λ− 3iω̃

3Θ
. (2.76)

Following the same steps used in Section 2.2.1 for the development of the solution for the

time-averaged radiation Green's function fSG, we can construct a series representation for

the Fourier transform FG by writing

FG(x, z, ω̃) =
∞∑
n=0

anHn(x)Yn(z) , (2.77)

where the eigenfunctions Yn and Hn are de�ned by

Yn(z) ≡ Y (λn, z) , Hn(x) ≡ H(λn, x) . (2.78)

To solve for the expansion coe�cients, an, we substitute Equation (2.77) into Equation (2.39)

with α = 0 to obtain

lim
δ→0

∞∑
n=0

anYn(z)[H
′(x0 + δ)−H ′(x0 − δ)] = − N0 δ(z − z0)e

iω̃p0

4πz20x
4
0Θ

4(mec2)3R3
, (2.79)

or, equivalently,

∞∑
n=0

an Yn(z)W2,µ(x0) = −N0 δ(z − z0)e
iω̃p0ex0

4πz20Θ
4(mec2)3R3

, (2.80)

where the Wronskian is given by

W2,µ(x0) ≡M2,µ(x0)W
′
2,µ(x0)−W2,µ(x0)M

′
2,µ(x0) = − Γ(1 + 2µ)

Γ(µ− 3/2)
. (2.81)
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Substituting for the Wronskian in Equation (2.80) using Equation (2.81) and applying the

operator
∫ 1
0 η

3z2Ym(z)dz to both sides of the equation, we can utilize the orthogonality of

the spatial eigenfunctions Yn to obtain for the expansion coe�cients an the result

an =
N0 e

iω̃p0ex0η3Γ(µ− 3/2)Yn(z0)

4πΘ4(mec2)3R3Γ(1 + 2µ)In
, (2.82)

where the quadratic normalization integrals In are de�ned in Equation (2.56).

By combining Equations (2.77) and (2.82), we �nd that the exact solution for the Fourier

transformed radiation Green's function, FG, is given by the expansion

FG(x, z, ω̃) =
N0 e

iω̃p0ex0η3

4πR3Θ4(mec2)3

∞∑
n=0

Γ(µ− 3/2)

Γ(1 + 2µ)In
Yn(z0)Yn(z)Hn(x) , (2.83)

with µ computed using Equation (2.76), and Yn and Hn given by Equations (2.78). This

result agrees with Equation (16) from KB once we note the change in the spatial variable

from z to τ = ηz, with Gn(τ) = Yn(z), τ∗ = η, and ℓ0 = R/η. In the case of the exact

solution for the time-averaged electron distribution derived in Section 2.2.1, we are able to

derive an accurate approximation using asymptotic analysis (see Section 2.5.1). However,

due to the complex nature of the series in Equation (2.83), it is not possible to extract

useful asymptotic representations for the Fourier transform. Hence Equation (2.83) is the

key result that will be utilized to compute the Fourier transform and the associated time

lags for a spherical homogeneous cloud in Section 2.5.2.

2.3 Inhomogeneous Model

In the previous section, we have presented detailed solutions for the time-averaged spectrum

and for the Fourier transform of the time-dependent photon Green's function describing the
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di�usion and Comptonization of photons in a spherical, homogeneous scattering cloud. An-

other interesting possibility is a coronal cloud with an electron number density distribution

that varies as ne(r) ∝ r−1, which was considered by HKC, and corresponds to α = 1 in

Equations (2.16). In this case, the dimensionless radius z is related to the scattering optical

depth τ via (see Equations (2.27) and (2.28))

τ(z) = η ln(z/zin) , τ∗ = η ln(1/zin) , (2.84)

where τ∗ is the optical thickness measured from the inner radius r = rin (z = zin) to the

outer radius r = R (z = 1). In this section, we obtain the analytical solutions for the

time-averaged spectrum fSG and for the Fourier transform FG for the case with ne(r) ∝ r−1.

2.3.1 Quiescent Spectrum for α = 1

The steady-state transport equation (2.32) describes the formation of the time-averaged X-

ray spectrum via the thermal Comptonization of seed photons continually injected through-

out a scattering corona with an electron number density pro�le given by ne(r) ∝ r−α. In

the inhomogeneous case with α = 1, this equation can be solved using the separation form

fλ = K(λ, x) y(λ, z) , (2.85)

to obtain, for x ̸= x0,

−1

yη2z

d

dz

(
z3
dy

dz

)
=

3Θ

K x2
d

dx

[
x4
(
K +

dK

dx

)]
= λ , (2.86)

where λ =constant. The associated ordinary di�erential equations in the spatial and energy

coordinates are, respectively,

1

z

d

dz

(
z3
dy

dz

)
+ λ η2y = 0 , (2.87)
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1

x2
d

dx

[
x4
(
K +

dK

dx

)]
− λ

3Θ
K = 0 . (2.88)

Since Equation (2.88) is identical to Equation (2.47), it follows that the solution for the

energy function K is given by (cf. Equation (2.48))

K(λ, x) = (xx0)
−2e−(x+x0)/2M2,σ(xmin)W2,σ(xmax) , (2.89)

where

σ ≡
√

9

4
+

λ

3Θ
. (2.90)

The fundamental solutions for the spatial functions, y, are given by the power-law forms

y(λ, z) = C1z
−1−

√
1−η2λ + z−1+

√
1−η2λ , (2.91)

where C1 is a superposition constant determined by applying the outer free-streaming bound-

ary condition given by Equation (2.41). For the inhomogeneous case with α = 1, the outer

boundary condition implies that y must satisfy the equation

lim
z→1

[
z

3η

dy(λ, z)

dz
+ y(λ, z)

]
= 0 . (2.92)

The corresponding result obtained for C1 is

C1 =
3η − 1 +

√
1− η2λ

1− 3η +
√

1− η2λ
. (2.93)
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The next step is to apply the inner free-streaming boundary condition, given by Equa-

tion (2.42). Stated in terms of z, we obtain for α = 1 the condition

lim
z→zin

[
z

3η

dy(λ, z)

dz
− y(λ, z)

]
= 0 , (2.94)

where zin = rin/R is the dimensionless inner radius of the cloud. Equation (2.94) is satis�ed

only for certain discrete values of λ, which are the eigenvalues λn. The eigenvalues obtained

are all positive real numbers. The resulting global functions y therefore satisfy both the inner

and outer free-streaming boundary conditions. Once the eigenvalues λn are determined, the

corresponding spatial and energy eigenfunctions are de�ned by

yn(z) ≡ y(λn, z) , Kn(x) ≡ K(λn, x) . (2.95)

We show in Appendix A that the spatial eigenfunctions yn form an orthogonal set with

respect to the weight function z, so that

∫ 1

zin

z yn(z) ym(z) dz = 0 , n ̸= m . (2.96)

We can therefore express the steady-state photon Green's function fSG using the expansion

fSG(x, x0, z) =

∞∑
n=0

cnKn(x) yn(z) . (2.97)

To solve for the expansion coe�cients, cn, we substitute Equation (2.97) into Equation (2.34),

with α = 1, to obtain

lim
δ→0

∞∑
n=0

cnyn(z)[K
′
n(x0 + δ)−K ′

n(x0 − δ)] = − Ṅ0

2πR2ηcΘ4(mec)3x40(1− z2in)
. (2.98)
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Eliminating K using Equation (2.48) yields

∞∑
n=0

cnyn(z)W2,σ(x0) = − Ṅ0e
x0

2πR2ηcΘ4(mec)3(1− z2in)
, (2.99)

where the Wronskian W2,σ(x0) is de�ned in Equation (2.61). By combining Equations (2.99)

and (2.62) we obtain

∞∑
n=0

cnyn(z)
Γ(1 + 2σ)

Γ(σ − 3/2)
=

Ṅ0e
x0

2πR2ηcΘ4(mec)3(1− z2in)
. (2.100)

We can exploit the orthogonality of the spatial basis functions yn(z) with respect to the

weight function z by operating on Equation (2.100) with
∫ 1
zin
z ym(z)dz to obtain

cn =
Ṅ0e

x0Γ(σ − 3/2)Ln

2πR2ηcΘ4(mec2)3JnΓ(1 + 2σ)(1− z2in)
, (2.101)

where we have made the de�nitions

Jn ≡
∫ 1

zin

z y2n(z)dz , Ln ≡
∫ 1

zin

z yn(z)dz . (2.102)

The �nal result for the steady-state (quiescent) photon Green's function in the inhomo-

geneous case with α = 1 is obtained by combining Equations (2.97) and (2.101), which

yields

fSG(x, x0, z) =
Ṅ0e

x0

2πR2ηcΘ4(mec2)3

∞∑
n=0

Γ(σ − 3/2)Ln

JnΓ(1 + 2σ)(1− z2in)
Kn(x) yn(z) , (2.103)
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with σ computed using Equation (2.90), and yn andKn given by Equations (2.95). The time-

averaged X-ray spectrum computed using Equation (2.103) is compared with observational

data for two speci�c sources in Section 2.5.1, and an accurate asymptotic approximation is

also derived in that section.

2.3.2 Fourier Transform for α = 1

In the inhomogeneous case with α = 1, we can substitute for the Fourier transform in

Equation (2.38) using the separation functions

Fλ ≡ K(λ, x) g(λ, z) , (2.104)

to obtain, for x ̸= x0,

−1

g

1

η2z

d

dz

(
z3
dg

dz

)
− 3iω̃z =

3Θ

Kx2
d

dx

[
x4
(
K +

dK

dx

)]
= λ , (2.105)

where λ is the separation constant. This relation yields two ordinary di�erential equations

satis�ed by the spatial and energy functions g and K, given by

1

z

d

dz

(
z3
dg

dz

)
+ η2

(
λ+ 3iω̃z

)
g = 0 , (2.106)

1

x2
d

dx

[
x4
(
K +

dK

dx

)]
− λ

3Θ
K = 0 . (2.107)

Equation (2.107) is identical to Equation (2.47), and therefore we can immediately conclude

that the solution for the energy function K is given by

K(λ, x) = (xx0)
−2e−(x+x0)/2M2,σ(xmin)W2,σ(xmax) , (2.108)
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where

σ ≡
√

9

4
+

λ

3Θ
. (2.109)

One signi�cant new feature in the inhomogeneous case with α = 1 under consideration

here is that the eigenvalues λn are now functions of the Fourier frequency ω̃, which stems

from the appearance of ω̃ in Equation (2.106). It follows that σ is also a function of ω̃ through

its dependence on λ (see Equation (2.50)). This inconvenient mixing of variables forces us to

generate a separate list of eigenvalues for each sampled frequency. The fundamental solution

for the spatial function g is given by the superposition

g(λ, z) =
1

z

[
C2J−ν(2η

√
3iω̃z) + Jν(2η

√
3iω̃z)

]
, (2.110)

where Jν(z) denotes the Bessel function of the �rst kind, and we have made the de�nition

ν ≡ 2
√

1− η2λ . (2.111)

The superposition constant C2 is computed by applying the outer free-streaming boundary

condition, which can be written as (cf. Equation (2.92))

lim
z→1

[
z

3η

dg(λ, z)

dz
+ g(λ, z)

]
= 0 . (2.112)

The result obtained for C2 is

C2 =
(2− 6η + ν)Jν(2η

√
3iω̃)− 2η

√
3iω̃Jν−1(2η

√
3iω̃)

(6η − 2 + ν)J−ν(2η
√
3iω̃) + 2η

√
3iω̃J−ν−1(2η

√
3iω̃)

. (2.113)
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Next we must apply the inner free-streaming boundary condition given by (cf. Equa-

tion (2.94))

lim
z→zin

[
z

3η

dg(λ, z)

dz
− g(λ, z)

]
= 0 , (2.114)

where zin = rin/R. The roots of Equation (2.114) are the eigenvalues λn, and the associated

global functions g satisfy both the inner and outer free-streaming boundary conditions. The

corresponding spatial and energy eigenfunctions are given by

gn(z) ≡ g(λn, z) , Kn(x) ≡ K(λn, x) . (2.115)

As demonstrated in Appendix A, the spatial eigenfunctions gn are orthogonal with re-

spect to the weight function z, and therefore

∫ 1

zin

z gn(z) gm(z) dz = 0 , n ̸= m . (2.116)

It follows that we can express the Fourier transformed radiation Green's function, FG, using

the expansion (cf. Equation (2.77))

FG(x, z, ω) =

∞∑
n=0

dnKn(x) gn(z) . (2.117)

The expansion coe�cients dn can be computed by applying the derivative jump condition

given by Equation (2.39), which yields for α = 1

lim
δ→0

[
dFG
dx

] ∣∣∣∣∣
x0+δ

x0−δ

= − N0 δ(z − z0)e
iω̃p0

4πx40 z
2
0z

−1Θ4(mec2)3R3
. (2.118)
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Combining Equations (2.117) and (2.118) gives the result

lim
δ→0

∞∑
n=0

dngn(z)[K
′(x0 + δ)−K ′(x0 − δ)] = − N0 δ(z − z0)e

iω̃p0

4πx40 z
2
0z

−1Θ4(mec2)3R3
, (2.119)

or, equivalently,

∞∑
n=0

dngn(z)W2,σ(x0) =

∞∑
n=0

−dngn(z)
Γ(1 + 2σ)

Γ(σ − 3/2)
= − N0 δ(z − z0)e

iω̃p0ex0

4πz20z
−1Θ4(mec2)3R3

, (2.120)

where we have utilized Equations (2.61) and (2.62) for the Wronskian W2,σ(x0).

We can solve for the expansion coe�cients dn by utilizing the orthogonality of the spatial

eigenfunctions gn with respect to the weight function z. Applying
∫ 1
zin
zgm(z)dz to both sides

of Equation (2.120), we obtain, after some algebra,

dn =
N0e

iω̃p0ex0Γ(σ − 3/2)gn(z0)

4πΘ4(mec2)3R3Γ(1 + 2σ)Kn
, (2.121)

where the quadratic normalization integrals, Kn, are de�ned by

Kn ≡
∫ 1

zin

zg2n(z)dz . (2.122)

The �nal result for the Fourier transform FG of the photon Green's function fG obtained

by combining Equations (2.117) and (2.121) is

FG(x, z, ω̃) =
N0 e

iω̃p0ex0

4πR3Θ4(mec2)3

∞∑
n=0

Γ(σ − 3/2)

Γ(1 + 2σ)Kn
gn(z0) gn(z)Kn(x) , (2.123)

with σ evaluated using Equation (2.109), and gn and Kn given by Equations (2.115). This
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exact analytical solution can be used to generate theoretical predictions of the Fourier trans-

formed data streams in two di�erent energy channels in order to simulate the time lags cre-

ated in a spherical scattering corona with an electron number density pro�le that varies as

ne(r) ∝ r−1. As in the case of the homogeneous Fourier transform discussed in Section 2.2.2,

it is not possible to extract useful asymptotic representations for the inhomogeneous Fourier

transform due to the complex nature of the sum appearing in Equation (2.123).

2.4 Bremsstrahlung Injection

The investigations carried out by Miyamoto (1988), HKC, and KB show that the impulsive

injection of monochromatic seed photons into a homogeneous Comptonizing corona cannot

produce the observed dependence of the X-ray time lags on the Fourier frequency. A major

advantage of the analytical method we employ here is that the radiation Green's function

we obtain can be convolved with any desired seed photon distribution as a function of radius

r, energy ϵ, and time t. This �exibility stems from the fact that the transport equation is

a linear partial di�erential equation. A source spectrum of particular interest is a �ash of

bremsstrahlung seed photons injected on a spherical shell at radius r = r0. We may expect

the observed variability in this case to be qualitatively di�erent from the behavior associated

with a monochromatic �ash of seed photons, because the bremsstrahlung �ash represents

broadband radiation. We anticipate that the prompt escape of high-energy photons from

the bremsstrahlung seed distribution may cause a profound shift in the dependence of the

observed X-ray time lags on the Fourier period.

Since the fundamental transport equation governing the radiation �eld is linear, it fol-

lows that we can compute the time-dependent spectrum f resulting from any seed photon

distribution Q that is an arbitrary function of time, energy, and radius using the integral

convolution

f(ϵ, r, t) =

∫ ∞

0

∫ R

rin

∫ ∞

0
4πr20ϵ

2
0fG(ϵ, ϵ0, r, r0, t, t0)Q(ϵ0, r0, t0)N

−1
0 dϵ0 dr0 dt0 , (2.124)
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where 4πr20ϵ
2
0Q(ϵ0, r0, t0) dr0 dt0 dϵ0 gives the number of photons injected in the energy range

dϵ0, radius range dr0, and time range dt0 around the coordinates (ϵ0, r0, t0). In the case of

optically thin bremsstrahlung injection, the seed photons are created as a result of a local

instability in the coronal plasma, due to, for example, a magnetic reconnection event, or the

passage of a shock. It follows that the photon distribution resulting from localized, impulsive

injection of bremsstrahlung radiation at radius r = r0 can be written as

fbrem(ϵ, r, t) =

∫ ∞

ϵabs

fG(ϵ, ϵ0, r, r0, t, t0)Qbrem(ϵ0)N
−1
0 dϵ0 , (2.125)

where ϵabs denotes the low-energy cuto� due to free-free self-absorption in the source plasma,

and the bremsstrahlung source function, Qbrem, for fully-ionized hydrogen is given by (Ry-

bicki & Lightman 1979)

Qbrem(ϵ0) =
A0

ϵ0
e−ϵ0/kTe , (2.126)

where

A0 =
25πq6

3hmec3

(
2π

3kme

)1/2

V0 trad T
−1/2
e n2e(r0) . (2.127)

Here, V0 denotes the radiating volume, trad is the radiating time interval, and q is the electron

charge. The bremsstrahlung source function is normalized so that Qbrem(ϵ0) dϵ0 gives the

number of photons injected in the energy range between ϵ0 and ϵ0 + dϵ0.

The low-energy self-absorption cuto�, ϵabs, appearing in Equation (2.125), depends on

the temperature and density of the plasma experiencing the transient that produces the

�ash of bremsstrahlung seed photons. The density of the unstable plasma is expected to be

higher than that in the surrounding corona, due to either shock compression or a thermal

instability. We do not analyze this physical process in detail here, and instead we treat

ϵabs as a free parameter in our model, although a more detailed physical picture could be

developed in future work.
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Changing variables from (ϵ, r, t) to (x, z, p) and applying Fourier transformation to both

sides of Equation (2.125), we obtain

Fbrem(x, z, z0, ω̃) = A0N
−1
0

∫ ∞

xabs

FG(x, x0, z, z0, ω̃)x
−1
0 e−x0 dx0 , (2.128)

where xabs = ϵabs/(kTe) is the dimensionless self-absorption energy. The function FG

in Equation (2.128) represents the Fourier transformation of the time-dependent photon

Green's function for either the homogeneous or inhomogeneous cases, given by either Equa-

tion (2.83) or Equation (2.123), respectively. The integral with respect to x0 can be carried

out analytically, and the exact solutions are given by

Fbrem(x, z, z0, ω̃) =
eiω̃p0η3A0 e

−x/2

4πR3Θ4(mec2)3x2

∞∑
n=0


Γ(µ− 3/2)Yn(z0)Yn(z)

Γ(1 + 2µ)In
B(µ, x), α = 0,

Γ(σ − 3/2)gn(z0)gn(z)

Γ(1 + 2σ) η3Kn
B(σ, x), α = 1,

(2.129)

where σ and µ are given by Equations (2.50) and (2.76), respectively, and the integral

function B(λ, x) is de�ned by

B(λ, x) ≡
∫ ∞

xabs

e−x0/2x−3
0 M2,λ(xmin)W2,λ(xmax) dx0 . (2.130)

We show in Appendix B that B(λ, x) can be evaluated analytically to obtain the closed-form

result

B(λ, x) =


W2,λ(x)[IM (λ, x)− IM (λ, xabs)]−M2,λ(x)IW (λ, x) , x ≥ xabs ,

−M2,λ(x)IW (λ, xabs) , x ≤ xabs ,

(2.131)
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where the functions IM and IW are de�ned by

IM (λ, x) ≡ x−2e−x/2

λ+ 3
2

(
M1,λ(x)+

3

λ+ 1
2

{
M0,λ(x)+

2

λ− 1
2

[
M−1,λ(x)+

1

λ− 3
2

M−2,λ(x)

]})
,

(2.132)

and

IW (λ, x) ≡ x−2e−x/2

[
−W1,λ(x) + 3W0,λ(x)− 6W−1,λ(x) + 6W−2,λ(x)

]
. (2.133)

Section 2.5.2, we will use this result to study the implications of broadband (bremsstrahlung)

seed photon injection as an alternative to monochromatic injection for the production of the

observed X-ray time lags in homogeneous and inhomogeneous scattering coronae.

2.5 Astrophysical Applications

In the previous sections, we have obtained the exact mathematical solution for the steady-

state photon Green's function, fSG, describing the X-ray emission emerging from a scatter-

ing corona as a result of the continual distributed injection of monochromatic seed pho-

tons. We have also obtained the exact solution for the Green's function, FG, describing

the Fourier transform of the X-ray spectrum resulting from the impulsive localized injec-

tion of monochromatic seed photons into the corona. By convolving the solution for FG

with the bremsstrahlung source term, we were also able to derive the exact solution for the

bremsstrahlung Fourier transform, Fbrem.

The availability of these various solutions for the steady-state X-ray spectrum and for the

Fourier transform resulting from impulsive injection allows us to explore a wide variety of

injection scenarios, while maintaining explicit control over the physical parameters describing

the astrophysical objects of interest, such as the temperature, the electron number density,

and the cloud radius. Our goal here is to develop �integrated models,� in which the coupled

calculations of the time-averaged X-ray spectrum and the transient Fourier X-ray time lags
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are based on the same set of physical parameters (temperature, density, radius) for the

scattering corona. We believe that this integrated approach represents a signi�cant step

forward by facilitating the study of a broad range of parameter space using an analytical

model.

2.5.1 Comparison with Observed Time-Averaged Spectra

The time-averaged X-ray spectrum emanating from the outer surface of the cloud results

from the continual distributed injection of soft photons from a source with a rate that is

proportional to the local electron number density. Thus, there is no speci�c injection radius

for the time-averaged model. The detailed solutions we have obtained describe the radiative

transfer occurring in either a homogeneous cloud, or in an inhomogeneous cloud in which

the electron number density varies with radius as ne(r) ∝ r−1.

Application of the integrated model begins with a comparison of the observed time-

averaged X-ray spectrum with the theoretical steady-state photon �ux measured at the

detector, Fϵ(ϵ), computed using the relation

Fϵ(ϵ) =

(
R

D

)2

c ϵ2fSG

(
ϵ

kTe
, x0, z

) ∣∣∣∣
z=1

, (2.134)

where D is the distance to the source, R is the radius of the corona, c is the speed of light,

and the solution for the steady-state spectrum, fSG(x, x0, 1), at the surface of the cloud is

evaluated using either Equation (2.66) for the homogeneous case or Equation (2.103) for

the inhomogeneous case. In our computations of the time-averaged X-ray spectra, the seed

photon energy is frozen at ϵ0 = 0.1 keV in order to approximate the e�ect of the continual

injection of blackbody photons from a �cool� accretion disk with temperature T ∼ 106K.

The temperature parameter Θ = kTe/mec
2 (Equation (2.20)) and the scattering pa-

rameter η = R/ℓ∗ (Equation (2.22)) determine the slope of the power-law component of the

time-averaged spectrum, and also the frequency of the high-energy exponential cuto� created
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by recoil losses. In the inhomogeneous case, the shape of the time-averaged spectrum also

depends on the dimensionless inner radius, zin = rin/R, at which the inner free-streaming

boundary condition is imposed. We vary the values of Θ, η, and zin until good qualitative

agreement with the shape of the observed steady-state X-ray spectrum is achieved. Once

the values of Θ, η, and zin are determined, the photon injection rate, Ṅ0, is then computed

by matching the theoretical �ux level with the observed time-averaged spectrum.

Exact Time-Averaged X-ray Spectra

In Figure 2.1, we plot the theoretical time-averaged (quiescent) X-ray spectra measured at

the detector, Fϵ(ϵ), computed using the homogenous corona model, with distributed seed

photon injection, evaluated by combining Equations (2.66) and (2.134). The plots also in-

clude a comparison with the observed X-ray spectra for Cyg X-1 and GX 339-04. The data

for Cyg X-1 were reported by Cadolle Bel et al. (2006) and cover the observation period

MJD 52617-52620, and the data for GX 339-04 were reported by Cadolle Bel et al. (2011)

and cover the observation period MJD 55259.9-55261.1. Both sources were observed by IN-

TEGRAL in the low/hard state. The model parameters are summarized in Table 2.1, and

the corresponding homogeneous eigenvalues are plotted in Figure 2.3. The time-averaged

X-ray spectra obtained for the inhomogeneous corona model, computed by combining Equa-

tions (2.103) and (2.134), are plotted and compared with the observational data in Figure 2.2,

and the corresponding inhomogeneous eigenvalues are depicted in Figure 2.7.

We �nd that the observed time-averaged spectra can be �t equally well using either

the homogeneous or inhomogeneous cloud models. Furthermore, the homogeneous and

inhomogeneous models have similar temperatures and cloud radii. This behavior illustrates

the fact that the time-averaged spectrum mainly depends on the cloud temperature and the

Compton y-parameter, and is not directly dependent on the accretion geometry, as discussed

in detail by Sunyaev & Titarchuk (1980).

It is interesting to compare our model parameters with those used by HKC, who com-

puted the time-averaged spectra of Cyg X-1 for a variety of electron density pro�les, similar

67



Figure 2.1: Theoretical quiescent X-ray spectra observed at the detector, for a homogeneous
corona, with constant electron number density, ne, computed by combining Equations (2.66)
and (2.134). Results are presented for Cyg X-1 (left panel) and GX 339-04 (right panel),
along with observational data taken from Cadolle Bel et al. (2006) and Cadolle Bel et al.
(2011), respectively. Both sources were observed in the low/hard state using INTEGRAL.
To analyze the convergence of the series, we plot the results obtained using only the �rst
term in the series, or using the �rst 7 terms. The convergence is extremely rapid for both
sources.

to the homogeneous and inhomogeneous cloud con�gurations studied here. They employed

a scattering cloud with a homogeneous central region, coupled with either a homogeneous or

inhomogeneous outer region. The HKC cloud has a scattering optical thickness τ∗ = 1 and

an electron temperature of kTe = 100 keV, whereas we obtain τ∗ ∼ 2− 3 and kTe ∼ 60 keV

(see Table 2.1). The di�erences between our model parameters and theirs could be due

to the fact that the observational data analyzed here corresponds to the low/hard state of

Cyg X-1, whereas HKC compared their model with spectral data from Ling et al. (1997),

acquired while Cyg X-1 was in its high/soft state, when the source is known to have a lower

optical depth (e.g., Frontera et al. 2001; Malzac 2012; Del Santo et al. 2013). Furthermore,

the values of τ∗ and Te that we obtain are very close to those found by Malzac et al. (2008),

who also considered the low/hard state of Cyg X-1.

In Tables 2.2 and 2.3 we compare the energy injection rate for the seed photons in our

model, Linj, with the time-averaged X-ray luminosity, LX, observed in the low/hard state
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Table 2.1: Input Model Parameters

Source Model η Θ kTe(keV) ϵabs(keV) zin z0 t∗(s)

Cyg X1 Homogeneous 2.50 0.120 61.3 1.60 0.00 1.00 0.04
Cyg X1 Inhomogeneous 1.40 0.122 62.4 1.60 0.12 0.91 0.065
GX 339 Homogeneous 4.00 0.064 32.7 0.01 0.00 0.78 0.038
GX 339 Inhomogeneous 2.20 0.064 32.7 0.01 0.10 0.60 0.090

Table 2.2: Auxillary Model Parameters

Source Model Ṅ0 (s
−1) ye� τe� τ∗ λ0 R (cm) D (kpc)

Cyg X1 Homogeneous 2.00× 1046 1.20 1.58 2.50 1.20 3.00× 109 2.4
Cyg X1 Inhomogeneous 2.70× 1046 1.17 1.55 2.97 1.25 2.73× 109 2.4
GX 339 Homogeneous 5.75× 1046 1.48 2.40 4.00 0.52 4.56× 109 8.0
GX 339 Inhomogeneous 7.00× 1046 1.51 2.43 5.07 0.51 5.94× 109 8.0

Table 2.3: Luminosity Values

Source Model Linj (ergs s
−1) LX (ergs s−1)

Cyg X1 Homogeneous 3.20× 1036 2.20× 1037

Cyg X1 Inhomogeneous 4.33× 1036 2.20× 1037

GX 339 Homogeneous 9.21× 1036 6.28× 1037

GX 339 Inhomogeneous 1.12× 1037 6.28× 1037
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Figure 2.2: Same as Figure 2.1, except we plot the quiescent X-ray spectra emanating from
an inhomogeneous corona, with electron density pro�le ne(r) ∝ r−1. The results were
obtained by combining Equations (2.103) and (2.134). The convergence is very rapid.

for the two sources studied here, Cyg X-1 and GX 339-04. The injection luminosity is

computed using Linj = ϵ0 Ṅ0, where Ṅ0 is the photon injection rate and the seed photon

energy is ϵ0 = 0.1 keV. The values for LX were taken from Cadolle Bel et al. (2006) for

Cyg X-1, and from Cadolle Bel et al. (2011) for GX 339-04. We see that the injection

luminosity is ∼ 10% of the observed X-ray luminosity, which is consistent with the values

we have obtained for the e�ective Compton y-parameter.

Approximate Power-Law X-ray Spectra

The X-ray spectra plotted in Figures 2.1 and 2.2 have a power-law form that extends up

to the exponential cuto�, where electron recoil losses become signi�cant. This suggests the

existence of an approximate, asymptotic power-law solution, valid in the domain x . 1

(Rybicki & Lightman 1979). Figures 2.1 and 2.2 also include a convergence study, where we

compare the results obtained for the steady-state spectra, fSG, using only the �rst (n = 0)

term in the series with the fully-converged result obtained using the �rst 7 terms in the series.

The results are essentially indistinguishable, which establishes that the convergence of the

series is extremely rapid. The power-law shape observed for x . 1, combined with the rapid
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Figure 2.3: Real eigenvalues, λn, for the quiescent spectrum radiated by a homogeneous
corona (left panel), and an inhomogeneous corona (right panel). All of the eigenvalues are
positive.

convergence, suggest that we can derive an asymptotic power-law solution by analyzing the

�rst term in the expansion for the observed �ux. By analogy with previous work on thermal

Comptonization, we expect that the properties of the approximate analytical solution will

shed light on the relationship between the �rst eigenvalue, λ0, which determines the spectral

slope, and the e�ective Compton y-parameter for the model. We derive the approximate

asymptotic power-law solution below, for both the homogeneous and inhomogeneous cloud

con�gurations.

We are interested in photon energies well above the injection energy, ϵ0 = 0.1 keV, and

therefore it follows that x > x0. In this case, we can combine Equations (2.48) and (2.66)

to express the time-averaged X-ray spectrum in the homogeneous corona as

fSG(x, x0, z) =
9Ṅ0e

(x0−x)/2(xx0)
−2

4πR2cΘ4(mec2)3

∞∑
n=0

Γ(σ − 3/2) sin(η
√
λn)

λnΓ(1 + 2σ)In
Yn(z)M2,σ(x0)W2,σ(x) .

(2.135)
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The corresponding result obtained by combining Equations (2.89) and (2.103) in the inho-

mogenous case is

fSG(x, x0, z) =
Ṅ0e

(x0−x)/2(xx0)
−2

2πR2ηcΘ4(mec2)3

∞∑
n=0

Γ(σ − 3/2)Ln

JnΓ(1 + 2σ)(1− z2in)
yn(z)M2,σ(x0)W2,σ(x) .

(2.136)

Based on Figure 2.2, we observe that the domain of the power-law shape is x0 < x . 1.

This suggests that we can employ Equations (13.1.32), (13.1.33), (13.5.5), and (13.5.6) from

Abramowitz & Stegun (1970) to implement the small-argument asymptotic form for the

Whittaker functions M and W .

We will only evaluate the n = 0 term in the sum, since it represents a converged result,

according to the results plotted in Figure 2.1. After some algebra, the approximate solution

obtained in the homogeneous case is

fSG(x, x0, z) ≈
9Ṅ0 x

σ0−3/2
0

8πR2cΘ4(mec2)3
sin(η

√
λ0)

λ0σ0I0

sin(ηz
√
λ0)

ηz
x−σ0−3/2 , (2.137)

where (see Equation (2.50))

σ0 ≡
√

9

4
+
λ0
3Θ

. (2.138)

Likewise, in the inhomogeneous case, we obtain

fSG(x, x0, z) ≈
Ṅ0 x

σ0−3/2
0

4πR2ηcΘ4(mec2)3
L0 y0(z)

J0σ0(1− z2in)
x−σ0−3/2 . (2.139)

By substituting either Equation (2.137) or (2.139) into Equation (2.134), and setting z = 1,

we can compute the corresponding approximate X-ray spectrum, Fϵ(ϵ), observed at the

detector. These results are plotted and compared with the exact solutions in Figure 2.4,

and it is clear that the power-law approximation is extremely accurate below the exponential
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cuto� energy, as expected.

We can obtain further insight into the physical signi�cance of our approximate power-

law solutions by comparing our work with previous results. First, we note that within the

regime of interest here, x . 1, and therefore electron recoil losses are negligible. This suggests

that we can de�ne an e�ective y-parameter by comparing our work with the corresponding

analytical solutions that neglect recoil losses. This situation was treated by Rybicki &

Lightman (1979), who obtained power-law solutions to the Kompaneets equation by utilizing

an escape-probability formalism for the spatial photon transport, as an alternative to the

spatial di�usion operator employed here. In our solutions, given by Equations (2.137) and

(2.139), the power-law index is equal to −σ0 − 3/2. Setting our result equal to the index m

given by Equation (7.76) from Rybicki & Lightman (1979) yields

−σ0 −
3

2
= −3

2
−
√

9

4
+

4

yeff
, (2.140)

where yeff is the e�ective Compton y-parameter and Θ is the dimensionless temperature

ratio. Using Equation (2.138) to substitute for σ0 and solving for yeff , we �nd that

yeff =
12Θ

λ0
. (2.141)

The values obtained for yeff and λ0 in our calculations of the time-averaged X-ray spectra re-

sulting from distributed (density-weighted) seed photon injection are reported in Table 2.2.

We generally �nd that yeff ∼ 1, corresponding to unsaturated Comptonization, which is con-

sistent with the power-law spectra plotted in Figures 2.1 and 2.2 (e.g., Sunyaev & Titarchuk

1980).

It is also interesting to relate the �rst eigenvalue, λ0, to the e�ective optical depth, τeff ,

traversed by the photons as they propagate through the scattering corona, and ultimately es-

cape. Referring to the simpli�ed escape-probability model analyzed by Rybicki & Lightman
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(1979), we can apply their Equation (7.41a) to write, in the optically thick case,

y = 4Θ τ2eff . (2.142)

Setting y = yeff and combining Equations (2.141) and (2.142), we �nd that τeff and λ0 are

related via

τe� =

√
3

λ0
. (2.143)

The results obtained for τeff are listed in Table 2.2. Comparing the values of τeff with the

values for τ∗ in Table 2.1, we conclude that τeff ∼ 0.5 τ∗, which re�ects the fact that the

seed photon injection is density weighted, rather than being localized at the center of the

cloud. Hence, on average, photons traverse less optical depth than is given by τ∗, which is

measured from the cloud center.

Figure 2.4: Approximate power-law X-ray spectra computed using Equation (2.134) com-
bined with Equation (2.137) for the homogeneous corona (blue �lled circles) or Equa-
tion (2.139) for the inhomogeneous corona (red solid lines). The results are compared
with the observational data for Cyg X-1 (left panel) and GX 339-04 (right panel). See the
discussion in the text.
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2.5.2 Comparison with Time Lag Data

In the time-dependent case, the time lags are computed using the Fourier transforms evalu-

ated at the surface of the cloud, after an impulsive localized transient injects seed photons

with a speci�ed spectrum at a speci�c radius. This represents a sudden, low-luminosity

�ash of radiation that subsequently scatters and Comptonizes throughout the cloud before

the �nal signal escapes to the observer. In Appendix C, we present a proof showing that

the time lags are the same as computed in either the source frame or observer's frame for a

non-rotating cloud as is considered in this chapter. The Fourier-transformed signal emanat-

ing from the surface of the cloud can be transformed into the observer's frame to compute

the time lags. When this is done one �nds that there is no energy-dependent phase that is

introduced through this transformation. Therefore, for simplicity, we compute the time lags

in the source frame.

The theoretical prediction for the time lag observed between hard channel energy ϵhard

and soft channel energy ϵsoft at Fourier frequency νf is computed using the van der Klis et

al. (1987) formula (cf. Equation (2.4)),

δt =
arg[S∗(xsoft, ω̃)H(xhard, ω̃)]

2πνf
, (2.144)

where the dimensionless energies xsoft and xhard are de�ned by

xsoft ≡
ϵsoft
kTe

, xhard ≡ ϵhard
kTe

. (2.145)

The Fourier transforms of the soft and hard channel time series are computed using

S(xsoft, ω̃) = F (xsoft, ω̃) , H(xhard, ω̃) = F (xhard, ω̃) , (2.146)

where F represents the Fourier transform radiated at the surface of the coronal cloud,

at radius r = R (z = 1). We assume that the observed time lags are the result of the
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time-dependent Comptonization of seed photons injected with either a monochromatic or

bremsstrahlung initial energy distribution. Our results for the homogeneous and inhomo-

geneous Fourier transforms in the case of monochromatic photon injection are given by

Equations (2.83) and (2.123), respectively, and our results for the homogeneous and inho-

mogeneous Fourier transforms in the case of bremsstrahlung injection are both covered by

Equation (2.129). In the case of bremsstrahlung injection, we must also impose a low-energy

self-absorption cuto� at energy ϵ = ϵabs in order to avoid producing an in�nite number of

seed photons.

All of our analytical formulas for the Fourier transform are expressed in terms of the

dimensionless Fourier frequency, ω̃, which is related to the dimensional Fourier frequency,

νf , measured in Hz, via (see Equation (2.37))

ω̃ = 2πνf t∗ , (2.147)

where the scattering time, t∗ = ℓ∗/c, is equal to the mean-free time at the outer edge of

the cloud. The value of t∗ is related to the cloud radius R and the value of η via (see

Equation (2.22))

t∗ =
ℓ∗
c

=
R

η c
. (2.148)

Once the values for the temperature parameter Θ, the scattering parameter η, and the

inner radius zin have been tied down via comparison of the observed time-averaged spectrum

with the theoretical steady-state spectrum for a given source, the next step is to vary the

values of the cloud radius, R, and the bremsstrahlung self-absorption energy, ϵabs, until we

achieve reasonable qualitative agreement between the theoretical time lags and the observed

time lags. This allows us to translate between the dimensionless Fourier frequency ω̃ and

the dimensional frequency νf using Equation (2.147), with the scattering time t∗ computed

using Equation (2.148). We consider several di�erent scenarios for the calculation of the

X-ray time lags below and compare the results with the observational data for Cyg X-1 and
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GX 339-04.

Monochromatic Injection in Inhomogeneous Corona

When the injected spectrum is monochromatic, or nearly so, and the injection takes place

in a homogeneous cloud, all of the authors who have examined the problem agree that the

resulting time lags are independent of Fourier frequency, in contradiction to the observations

(e.g. Miyamoto 1988, HKC, KB). Hence it is interesting to explore the consequences of

altering the cloud con�guration in our model to treat monochromatic seed photon injection

in an inhomogeneous corona, with electron number density distribution ne(r) ∝ r−1, which

was also considered by HKC. Since the injected seed photons are monochromatic, with energy

ϵ0 = 0.1 keV, we must use the Fourier transform Green's function, FG, to compute the time

lags by combining Equations (2.123), (2.144), and (2.146). The time lags resulting from

monochromatic injection in an inhomogeneous cloud are plotted as a function of the Fourier

frequency νf and compared with the Cyg X-1 data from Nowak et al. (1999) in Figure 2.5

for both large and small cloud radii. The channel energy values used are ϵsoft = 2 keV and

ϵhard = 11 keV, which correspond to the channel-center energies used in the analysis of the

observational data. It is clear that the model results do not �t the data very well for either

value of the cloud radius. Note that the shape of the time lag curves exhibits the same trend

as the data, but the magnitude is too large. This is a result of the long upscattering time

required for the soft disk seed photons to reach the soft and hard channel energies.

HKC also computed time lags for monochromatic injection in an inhomogeneous cloud,

but they were able to �t the observational data, in contrast to our results. However, in order

to qualitatively match the observed time lags, HKC had to adopt an outer cloud radius of

∼ 1 light-second (3 × 1010 cm), which is an order of magnitude larger than the cloud radii

implied by our model. The discrepancy between the model results may be due to the fact

that their cloud is optically thin, whereas our cloud is optically thick. The values for the

optical depth derived here are consistent with those obtained during the low/hard state of

Cyg X-1 by Malzac et al. (2008), Malzac (2012), Del Santo et al. (2013), and Frontera et
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al. (2001). Unfortunately, we can't use our model to explore the region of parameter space

studied by HKC because the corona must be optically thick in order to justify the di�usion

approximation employed in our approach.

Figure 2.5: Theoretical time lag pro�les resulting from monochromatic injection in an in-
homogeneous cloud, with electron number density pro�le ne(r) ∝ r−1, compared with the
Cyg X-1 time lag data from Nowak et al. (1999). The time lags are computed by combining
Equations (2.123), (2.144), and (2.146), and the channel energies used in the theoretical
calculations are ϵsoft = 2 keV and ϵhard = 11 keV.

Variation of Seed Photon Distribution

It is apparent from Figure 2.5 that monochromatic injection into an inhomogeneous corona

is unable to generate good agreement with the time lag data. Furthermore, it has been

previously established by Miyamoto (1988), HKC, and KB that monochromatic injection

into a homogeneous cloud also fails to agree with the data. Hence, it is interesting to use

our new formalism to explore the alternative hypothesis of broadband (bremsstrahlung) seed

photon injection, rather than monochromatic injection.

The bremsstrahlung-injection time lags are computed by combining Equations (2.129),
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(2.144), and (2.146), and the model parameters are varied until reasonable qualitative agree-

ment with the observational data is achieved. We plot the theoretical bremsstrahlung-

injection time lags as a function of the Fourier frequency νf in Figure 2.6, using both the

homogeneous and inhomogeneous coronal cloud models. The results are compared with

the observational data for Cyg X-1 and GX 339-04 taken from Nowak et al. (1999) and

Cassatella et al. (2012), respectively. The corresponding physical parameters are listed in

Table 1, and the channel energies used in the theoretical calculations are ϵsoft = 2 keV and

ϵhard = 11 keV for Cyg X-1, and ϵsoft = 2 keV and ϵhard = 10 keV for GX 339-04, which

correspond to the channel-center energies used in the observational calculations of the time

lags. The low-energy self-absorption cuto� is set at ϵabs = 1.6 keV for Cyg X-1 and at

ϵabs = 0.01 keV for GX 339-04. In the case of the homogeneous corona, the eigenvalues λn

for the Fourier transform solution are the same real values obtained in the analysis of the

time-averaged (quiescent) spectrum, which are plotted in the left-hand panel in Figure 2.3.

In the case of the inhomogeneous corona, the eigenvalues λn are complex, and are plotted

in Figure 2.7.

We �nd that in order to match the observational time lag data, the impulsive injection

of the bremsstrahlung photons must occur near the outer edge of the cloud, with z0 . 1.

The transient that produces the soft seed photons is not treated in detail here, but we note

that the outer edge of the corona is a region which the disk suddenly expands in the vertical

direction, possibly leading to various types of plasma instabilities. In particular, the abrupt

change in magnetic topology may generate rapid reconnection events that can result in the

injection of a signi�cant population of soft seed photons via bremsstrahlung emission (e.g.,

Poutanen & Fabian 1999).

In contrast with the behavior of the monochromatic injection scenario studied by Miya-

moto et al. (1988), the results depicted in Figure 2.6 show that in the case of broadband

(bremsstrahlung) seed photon injection into either a homogeneous or inhomogeneous cloud,

Comptonization can produce Fourier frequency-dependent time lags that agree with the

observational data for both Cyg X-1 and GX 339-04. The diminishing time lags at high
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Fourier frequency are explained as a natural results of the prompt escape of broadband seed

photons, combined with the delayed escape of upscattered Comptonized photons over longer

timescales.

Figure 2.6: Theoretical time lag pro�les for bremsstrahlung seed photon injection in a
homogeneous corona (red) and an inhomogeneous corona (blue), compared with the data
for Cyg X-1 (left panel) from Nowak et al. (1999), and the data for GX 339-04 (right
panel) from Cassatella et al. (2012). See Section 6.2.3 and Figure 2.8 for a discussion of the
convergence properties.

This indicates that the critical quantities for determining the shape of the time-lag pro�le

are the overall optical thickness of the cloud and its temperature, which have nearly the same

values in the homogeneous and inhomogeneous corona models. We therefore conclude that

the actual con�guration of the cloud (i.e. the detailed radial variation of the electron number

density) is not well constrained by either the observations of the time lags or the observations

of the time-averaged X-ray spectrum, and indeed, either cloud con�guration works equally

well, although there is a slight di�erence in the resulting cloud radius R, as indicated in

Table 2.2.

Convergence of Time Lags

In our model, the time lags are computed based on analytical expressions for the Fourier

transform of the emitted radiation spectrum. Since these expressions are stated in terms
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Figure 2.7: Complex eigenvalues, λn, for the Fourier transform in the inhomogeneous case.
Left panel is for Cyg X-1 and right panel is for GX 339-04. Note that the imaginary part
of λn is always negative, and therefore we change the sign before taking the log. The colors
refer to the indicated values of the dimensionless Fourier frequency ω̃, and the sequences
running from left to right represent the values of λ0 through λ10.

of series expansions, it is important to examine the convergence of the results obtained for

the time lags as one increases the truncation level of the series. Obviously, rapid smooth

convergence is desirable.

In Figure 2.8, we present a convergence study of the theoretical time lags computed using

the models for Cyg X-1 and GX 339-04, based on both the homogeneous and inhomogeneous

cloud con�gurations. In each panel, the black curves represent the time lags evaluated using

only the �rst term in the expansions, and the red and blue curves represent fully converged

results, where no signi�cant change will occur upon the addition of another term. The red

and blue curves are the same as the �nal results for the time lags plotted in Figure 2.6. The

time lags generally require about 20 terms to fully converge, whereas the expansions for the

time-averaged spectra converge immediately (see Figures 2.1 and 2.2).

2.6 Discussion and Conclusion

We have obtained the exact analytical solution for the problem of time-dependent thermal

Comptonization in a spherical scattering corona, based on two di�erent electron density
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Figure 2.8: Convergence study of the theoretical time lags for Cyg X-1 and GX 339-04
computed using either the homogeneous or the inhomogeneous cloud model. The number
of terms used in the series expansions for the Fourier transforms is indicated for each curve.
The red and blue curves correspond to the �nal results plotted in Figure 2.6.

pro�les. By working in the Fourier domain, we have obtained a closed-form expression for

the Green's function corresponding to the injection of monochromatic seed photons into a

cloud at a single radius and time. The radiated Fourier transform, evaluated at the surface

of the cloud, can be directly substituted into the time lag formula introduced by van der

Klis et al. (1987) in order to compute the predicted dependence of the lags on the Fourier

frequency for any selected X-ray channel energies. In our approach, the time-averaged X-ray

spectrum and the time lags are both computed using the same set of physical parameters

to describe the properties of the scattering cloud, and therefore our formalism represents an
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integrated model that fully describes the high-energy spectral and timing properties of the

source.

2.6.1 Relation to Previous Work

The study presented by HKC is similar to ours, although their methodology and input as-

sumptions are somewhat di�erent. HKC focused exclusively on a single injection scenario,

namely the injection of essentially monoenergetic, low-temperature blackbody seed photons

at the center of the scattering cloud. Based on this injection spectrum, they concluded that

the observed time lag behavior in Cyg X-1 could not be reproduced unless the electron num-

ber density pro�le was inhomogeneous, with ne(r) ∝ r−1 for example. In this case, although

the predicted time lags �t the observed dependence on the Fourier period, the resulting di-

mensions of the cloud are so large that the requisite heating is di�cult to accomplish based

on any of the standard dissipation models.

Another notable di�erence between the work of HKC and the results developed here is

that we have obtained a set of exact mathematical solutions, whereas HKC utilized a numer-

ical Monte Carlo simulation method. This distinction is important, because by exploiting

the exact solution for the Fourier transform of the Green's function, we are able to explore a

much wider range of injection scenarios, in which we can vary both the location of the initial

�ash of seed photons, and its spectral distribution. Based on our analytical formalism, we

are able to con�rm the results of HKC regarding monochromatic injection, but we have also

generalized those results by exploring the implications of varying the seed photon injection

radius and spectrum. We �nd that the injection of broadband (bremsstrahlung) seed photons

relatively close to the surface of a homogeneous or inhomogeneous cloud can �t the observed

time lag pro�les at least as well as the HKC model does, but with a cloud size an order of

magnitude smaller. In Section 2.6.2 we discuss the physical reasons underlying the success

of the bremsstrahlung injection scenario.

The treatment of electron scattering in our work di�ers from that utilized by HKC, since

we have adopted the Thomson cross section, whereas HKC implemented the full expression
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for the Klein-Nishina cross section. In principle, utilization of the Klein-Nishina cross sec-

tion would be expected to a�ect the hard time lags, due to the quantum reduction in the

scattering probability at high energies. However, for the photon energy range of interest

here, ∼ 0.1 − 10 keV, combined with our maximum electron temperature, kTe = 62.4 keV,

not many photons are likely to sample the reduced cross section, which requires an incident

photon energy exceeding 500 keV as seen in the rest frame of the electron. Hence it seems

surprising that HKC observed a signi�cant change in the normalization of their computed

time lags when they adopted the Klein-Nishina cross section instead of the Thomson value.

We suspect that this may be due to the somewhat higher electron temperature they used,

kTe = 100 keV.

To explore this question quantitatively, we can compute the fraction of electrons such

that an incident photon of a given energy in the lab frame exceeds 500 keV in the electron's

rest frame. The relevant thermal distribution function for the calculation is the relativistic

Maxwell-Jüttner distribution, given by (e.g., Ter Haar & Wergeland 1971; Hua 1997)

fMJ(γ) ≡
γ
√
γ2 − 1

ΘK2(1/Θ)
exp

(
− γ

Θ

)
(2.149)

where Θ ≡ kTe/(mec
2) and K2 denotes the modi�ed Bessel function of the second kind.

The probability that a randomly-selected electron has a Lorentz factor in the range between

γ and γ + dγ is equal to fMJ(γ)dγ.

In order to compute an upper bound on the probability of generating a scattering in the

Klein-Nishina regime, we shall focus on the most energetic possible collision scenario, which

is a head-on collision between the electron and the photon. In this case, the incident photon

energy in the electron's rest frame, E′
0, is given by

E′
0 = E0

(
1 + β

1− β

)1/2

, β2 = 1− 1

γ2
, (2.150)
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where E0 is the incident photon energy in the lab frame. By integrating the Maxwell-

Jüttner distribution, we can compute the probability, P , that a randomly-selected electron

has su�cient energy to create the required incident photon energy of at least 500 keV in the

rest frame. The probability is given by

P =

∫ ∞

γ0

fMJ(γ) dγ , (2.151)

where the lower bound γ0 is the root of the equation

500 keV = E0

(
2γ20 − 1 + 2γ0

√
γ20 − 1

)1/2

. (2.152)

Setting the incident photon energy E0 = 100 keV as an extreme example, we �nd that

the lower bound is γ0 = 2.6. Adopting the HKC temperature value, kTe = 100 keV, we

obtain Θ = 0.2, in which case the probability given by Equation (2.151) is P = 3.1× 10−3.

This probability may be large enough to explain the variation of the HKC time lag results

observed when they switched between the Thomson cross section and the Klein-Nishina cross

section, if some of the photons inverse-Compton scatter up to high enough energies to sample

the Klein-Nishina regime, before returning to lower energies via Compton scattering. We

can also compute the scattering probability P based on the maximum electron temperature

that we have adopted in our applications, kTe = 62.4 keV, which yields Θ = 0.122. In this

case, one �nds that the Maxwell-Jüttner integration gives P = 2.6 × 10−5, which is much

smaller than the HKC result. Hence we conclude that utilization of the Klein-Nishina cross

section would probably not make a signi�cant di�erence in our applications. However, we

can't reach any de�nitive conclusions about this question using the model developed here

since it is based on the assumption of Thomson scattering in the electron's rest frame.
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2.6.2 Formation of the Light Curves

The somewhat surprising di�erence between the time lag pro�les produced when the in-

jection spectrum has a monoenergetic shape versus a broadband shape can be explored by

using the inverse Fourier transform to compute the time-dependent light curves for the hard

and soft energy channels in the two cases. To accomplish this, we must make use of the

inversion integral (cf. Equation (2.36))

f(x, z, p) =
1

2π

∫ ∞

−∞
e−iω̃pF (x, z, ω̃) dω̃ , (2.153)

where F is the Fourier transform computed using either the monochromatic injection Green's

function solution (Equation (2.83) for the homogeneous cloud, or Equation (2.123) for the

inhomogeneous cloud), or the bremsstrahlung injection solution (the homogeneous and inho-

mogeneous cases are both computed using Equation (2.129)). Evaluation of Equation (2.153)

requires numerical integration since the inversion integral cannot be performed analytically.

We therefore focus on a few simple examples in order to illustrate the dependence of the

light curves on the injection model.

In Figure 2.9, we plot the hard and soft channel light curves computed using Equa-

tion (2.153) for the case of a homogeneous cloud experiencing impulsive injection of either

low-energy monochromatic seed photons or broadband (bremsstrahlung) seed photons. The

parameters describing the monochromatic injection scenario are temperature Θ = 0.12, in-

jection location z0 = 1, injection energy ϵ0 = 0.1 keV, soft channel energy ϵsoft = 2 keV, and

hard channel energy ϵhard = 10 keV. In the case of bremsstrahlung injection, we set Θ = 0.12,

z0 = 1, ϵabs = 0.1 keV, ϵsoft = 2 keV, and ϵsoft = 10 keV. One can immediately identify the

characteristic Fast Rise Exponential Decay (FRED) shape (e.g., Sunyaev & Titarchuk 1980)

for each channel signal. As expected, the hard channel curve is delayed in time relative to

the soft channel curve due to upscattering, but the detailed relationship between the two

light curves depends qualitatively on whether the injection spectrum is monochromatic or
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Figure 2.9: FRED curves from monochromatic and bremsstrahlung injection in a homoge-
neous cloud. In each case, the red curve represents the soft energy channel, set at 2 keV,
and the blue curve denotes the hard channel, set at 10 keV. The normalized intensity in
each channel shows the relative lag.

broadband.

One clearly observes that the two FRED curves resulting from monochromatic injection

in a homogeneous cloud are of the same shape, and are simply shifted by a perfect delay

with respect to one another on all timescales (see Figure 2.9). This yields a constant time

lag across all Fourier frequencies (or periods), in agreement with the Miyamoto result that

HKC and KB have con�rmed. Our physical understanding of this behavior is as follows.

Since all of the initial photons start with the same energy in the monochromatic case,

the time lag is purely a result of Compton reverberation, where the upscattering timescale

is proportional to the logarithm of the ratio of the hard to soft energies (Payne 1980).

Based on this simple example, we conclude that monochromatic injection anywhere in a

homogeneous cloud cannot produce Fourier frequency-dependent time lags, in contradiction

with the observational data.

The relationship between the two FRED light curves plotted in Figure 2.9 for the case of

bremsstrahlung injection is qualitatively di�erent from the monochromatic example. In this

case, the initial fast rise in both channels is coherent, meaning that the hard and soft channel
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signals track each other relatively closely. This results in a small time lag at high Fourier

frequencies, because the fast rise portion of each curve represents the most rapid variation

in the system. Physically, this part of the process corresponds to the prompt escape of

�pristine� bremsstrahlung seed photons that are almost una�ected by scattering. Because

bremsstrahlung is a broadband emission mechanism, both hard and soft photons exist in the

initial distribution, and the prompt escape is therefore coherent across the energy channels.

This is, of course, not true in the case of low-energy monochromatic injection, because in

that scenario, photons require su�cient time to upscatter into both the soft and hard energy

channels.

At longer timescales (smaller Fourier frequencies) in the bremsstrahlung case, the hard

light curve approaches a delayed version of the soft light curve, re�ecting the time it takes

for the photons to Compton upscatter to the hard channel energy. This part of the process

is similar to the monochromatic case, and indeed, we see that the time lags level o� to a

plateau at small Fourier frequencies, just as in the monochromatic example. To summa-

rize, the overall behavior of the bremsstrahlung injection model matches the observational

data much more closely then does the monochromatic injection scenario because of the

combination of prompt escape (the fast rise part of the light curves) along with Compton

reverberation (exponential decay) on longer timescales. This explains the origin of the qual-

itative di�erence in the behavior of the time lags at high Fourier frequencies exhibited in

the monochromatic and bremsstrahlung injection scenarios, depicted in Figures 2.5 and 2.6,

respectively.

2.6.3 Coronal Temperature

Both our model and that analyzed by HKC require the presence of hot electrons with

temperature Te ∼ 108K at distances r ∼ 103GM/c2 from the black hole. This temperature

distribution is consistent with a substantial number of studies that focus on energy transport

in ine�cient accretion �ows, with accretion rates that are signi�cantly sub-Eddington, as

�rst established by Nayaran & Yi (1995) in the context of the original, self-similar Advection
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Dominated Accretion Flow (ADAF) model. Similar results for the temperature distribution

were later obtained using more complex numerical simulations by Oda et al. (2012), Rajesh

& Mukhopadhyay (2010), Yuan et al. (2006), Mandal & Chakrabarti (2005), Liu et al.

(2002), Ró»a«ska & Czerny (2000), and You et al. (2012). In these hot ADAF �ows, the

density in the outer region is so low that bremsstrahlung and inverse-Compton cooling are

very ine�cient. The lack of e�cient cooling drives the electron temperature in the corona

close to the virial value, out to distances of hundreds or thousands of gravitational radii

from the black hole, in agreement with the temperature pro�les assumed here.

In the study presented here, we have assumed that the electron scattering corona is

isothermal in order to accomplish the separation of variables that is required to obtain

analytical solutions to the radiation transport equation. The resulting analytical solutions

allow us to determine the physical properties of the scattering corona in a given source by

computing the time-averaged X-ray spectrum and the time-lag pro�le and comparing the

theoretical results with the observational data. The assumption of an isothermal corona is

roughly justi�ed by studies indicating that the temperature does not vary by more than a

factor of a few across the corona (e.g., You et al. 2012; Schnittman et al. 2013). Nonetheless,

it is worth asking whether our results would be signi�cantly modi�ed in the presence of a

coronal temperature gradient.

If the electron temperature varied across the corona, then in general one would expect

the plasma to be hotter in the inner region, where the density is likely to be higher as well.

In this scenario, the photons in the hot inner region would Compton upscatter faster than

those in the cooler outer region, but they would spend more time (on average) scattering

through the cloud before escaping due to the greater optical depth in the inner region. We

estimate that these two e�ects would roughly o�set each other, leaving the time lag pro�le

close to the isothermal result derived here, if the temperature were set equal to the average

value in the corona. Hence we predict that the results obtained for the time lags in the

presence of a temperature gradient would be qualitatively similar to those obtained here

using the isothermal assumption. Moreover, while the electrons may approach the virial
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temperature in the outer region, it is likely that in the inner region, the electron tempera-

ture is thermostatically controlled by Compton scattering (e.g., Sunyaev & Titarchuk 1980;

Shapiro, Lightman & Eardley 1976). The combination of these two e�ects will tend to pro-

duce a relatively high, but uniform, electron temperature distribution, as we have assumed

here.

2.6.4 Time Varying Coronal Parameters

If the transients responsible for producing the observed X-ray time lags in accreting black

hole sources are driven by the deposition of a large amount of energy, then the properties of

the corona (temperature, density) would be expected to respond. If this response occurs on

time scales comparable to the di�usion time for photons to escape from the corona, then the

resulting time lag pro�les would be modi�ed compared with the results obtained here, since

we assume that the properties of the corona remain constant. Malzac & Jourdain (2000)

have considered the possible variation of the coronal properties during X-ray �ares using a

non-linear Monte Carlo simulation to study the �are evolution as a function of time, along

with the associated variation of the temperature and optical depth in the corona. They do

not compute Fourier time lags, but they do present simulated light curves in the soft and

hard energy channels. In their model, the �ares are driven by a sudden increase in the disk's

internal dissipation, which produces a large quantity of soft photons. The temperature and

optical depth of the corona change self-consistently during the transient, and then return

to the equilibrium state. They �nd that hard time lags are produced during the �are if the

energy deposition is substantial.

The approach taken by Malzac & Jourdain (2000) is based on the pulse-avalanche model

of Poutanen & Fabian (1999). The model does not explicitly include Compton upscatter-

ing as a contributor to the time-lag phenomenon, nor was the signi�cance of the injection

spectrum considered. The simulated light curves generated by Malzac & Jourdain (2000)

sometimes display temporal dips, but the time dependence doesn't seem to resemble that

observed during the transients in Cyg X-1. Since these authors do not compute Fourier
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time lags, it is di�cult to directly compare their results with ours. However, we note that

the transients under study here represent relatively small variations in the X-ray luminosity,

which suggests that the energy deposition may not be large enough to signi�cantly alter the

large-scale properties of the scattering corona during the time it takes the photons to di�use

out of the cloud (Nowak et a. 1999; Cassatella et al. 2012). This supports our assump-

tion that the temperature and density of the corona remain essentially constant during the

formation of the observed time lags.
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Chapter 3: Rotating Homogeneous Corona Model

3.1 Model Set-up

In the preceding chapter, we presented an integrated model for the production of X-ray time

lags in a spherical hot accretion corona around a black hole. The model assumed an isother-

mal spherical corona which is irrotational. The static cloud model was able to reproduce the

observed quiescent X-ray spectrum as well as the Fourier frequency dependent time lags.

Additionally, the electron number density as a function of radius was studied in both the

homogeneous and inhomogeneous models. These models were applied to observational data

for two accreting sources (Cyg X-1 and GX 339).

In this chapter, we wish to study the e�ects of uniform rotation of the corona, but restrict

our attention to the homogeneous model. This study will be applied to Cyg X-1 without

loss of generality since we have seen that the resulting time lags are the same in each of the

static homogeneous and static inhomogeneous clouds. The simpler homogeneous model will

provide a clear framework within which to test any e�ects that a rotating cloud may have

on the resulting time lags. In Appendix C, we show that for a static (irrotational) cloud,

the time lags can be computed in any reference frame. However, in this chapter we �nd that

the time lags must be computed in the cloud frame.

We de�ne the geometry of the system in the �gure below. The spherical cloud is set

to rotate at a constant rate given by Ω0. The vertical axis is set to be coincident with

the rotation axis. We place the observer at some distance D from the black hole and in

the equatorial plane of the accreting system. The inclination angle is de�ned as the angle

between the rotation axis and the line of sight to the observer which in this case is set at

π/2 radians and is given by Ψ. The angular velocity at a point on the surface of the cloud

will be a function of latitude, given by the polar angle θ which is measured from the north
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Figure 3.1: Diagram where the azimuthal angle ϕ is not able to be shown. The angle Ψ is
the angle between the polar axis and the line of sight. In this example, Ψ = π/2.

pole. In the frame of the observer radiation emanating from the surface of the cloud will

be Doppler shifted either blue or red depending on which part of the surface it came from.

The radial Doppler shift will have a magnitude that depends on both θ and ϕ. Maximual

blue shifting will be seen at the coordinates (θ, ϕ) = (π/2,−π/2) if we take the plane of the

page to be the x− z plane as shown in the �gure.

The distance between any point on the cloud surface and the observer is given by r as

shown in the �gure. We can write this in terms of the radius of the cloud, R, distance from

the observer to the black hole, D, and the spherical angle coordinates, (θ, ϕ), as

r =
√
R2 +D2 − 2DR (cosψ cos θ + sinψ sin θ cosϕ) . (3.1)

This can be simpli�ed by setting Ψ = π/2 giving

r =
√
R2 +D2 − 2DR sin θ cosϕ . (3.2)

In order to perform transformations between frames of reference, we �rst present a diagram

showing the relative layout between the possible frames.
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Figure 3.2: The local and distant observers have synchronized clocks and so only a prop-
agation delay transforms between those frames. However, the moving frame of the source
will have a Lorentz trasformation to go into either of the other two frames.

The two stationary observers are situation nearby and far from the rotating frame. Their

clocks tick at the same rate, but are separated in time by the propagation delay, r/c. The

di�erential time relationship between these two frames is given by

dt = dt0 (3.3)

Integrating this gives

t = t0 +
r

c
(3.4)

The transformation from the rotating frame to the local stationary observer is only a Lorentz

transformation which is expressed as

dt′ =
dt0
γ

→ γt′ = t0 , (3.5)

where the �nal expression results from integration and γ is the Lorentz factor and is given

by

γ =
1√

1−
(
RΩ0 sin θ

c

)2
. (3.6)
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We can substitute Equation (3.5) into Equation (3.4) which results in

t = γt′ +
r

c
. (3.7)

The energy transforms according to

ϵ′ = ϵ

√
c−RΩ0 sin θ sinϕ

c+RΩ0 sin θ sinϕ
, (3.8)

and we note a Lorentz invariant in terms of the intensity in either frame as

I ′

ϵ′3
=

I

ϵ3
, (3.9)

where I ′ is the intensity in the source frame and is related to the occupation number, f , via

I ′ =
ϵ′3cf

4π
. (3.10)

We can write the �ux in terms of the intensity from Rybicki & Lightman, however, for an

observer located at in�nity, there will be a reduction in apparent �ux from the di�erential

solid angle dΩ. We have in the source frame

g =

∫
IdΩ =

∫
I
dAband

D2
, (3.11)

where

dAband = R2 sin θdθdϕ . (3.12)

The di�erential area given in Equation (3.12) is exact, provided it is computed in the source

frame. Additional observational e�ects are introduced when viewing the emitting band from
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an arbitrary angle. To get the �ux in the direction of the observer subtended by di�erential

solid angle dΩ we take the dot product of the radial unit vector, (r̂), in the source frame and

the direction to the observer (x̂). From standard spherical coordinates we have the following

modi�ed solid angle,

dΩ (r̂ · x̂) = dAband

D2
sin θ cosϕ . (3.13)

To obtain the observed �ux from the di�erential �ux, we must integrate over this modi�ed

solid angle in order to include the e�ects of apparent reduced di�erential area at the edges

of the spherical cloud according to the observer. By substituting Equations (3.9), (3.10),

(3.12), and (3.13) into Equation (3.11) we obtain

gobs(ϵ, t) =
( R2

4πD2

)∫ π/2

−π/2

∫ π

0
ϵ3cfsource(ϵ

′, t′) sin2 θ cosϕdθdϕ . (3.14)

The standard Fourier transform in the observer frame is de�ned as,

Gobs(ϵ, ω) ≡
∫ ∞

−∞
eiωtgobs(ϵ, t)dt . (3.15)

By applying (3.15) to (3.14) yields,

Gobs(ϵ, ω) =
R2

4πD2

∫ π

0

∫ π/2

−π/2

∫ ∞

−∞
sin2 θ cosϕeiωtϵ3cfsource(ϵ

′, t′)dtdϕdθ . (3.16)

Since frequency and time transform inversely we can write

ω′t′ = ωt0 = ω(t− r

c
) , (3.17)
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then Equation (3.16) becomes

Gobs(ϵ, ω) =
R2ϵ3c

4πD2

∫ π

0

∫ π/2

−π/2

∫ ∞

−∞
eiωr/c sin2 θ cosϕeiω

′t′fsource(ϵ
′, t′)dtdϕdθ . (3.18)

We substitute dt = γdt′ which gives

Gobs(ϵ, ω) =
R2ϵ3c

4πD2

∫ π

0

∫ π/2

−π/2
γeiωr/c sin2 θ cosϕdϕdθ

∫ ∞

−∞
eiω

′t′fsource(ϵ
′, t′)dt′ . (3.19)

The de�nition of the Fourier transform in the source frame can be substituted into Equation

(3.19) which gives

Gobs(ϵ, ω) =
R2ϵ3c

4πD2

∫ π

0

∫ π/2

−π/2
γeiωr/c sin2 θ cosϕFsource(ϵ

′, ω′)dϕdθ , (3.20)

and γ depends only on θ as seen in Equation (3.6) and ϵ′ is given by Equation (3.9). The

transformation of frequencies is given by

ω′ = γω . (3.21)

3.2 Application and Results

In this section we will apply the time lag theory to observations from Cyg X-1 as a test of

the rotating homogeneous corona model. The quiescent X-ray spectra would also be tested

here, but we have seen in the previous chapter that the spectra are trivial to reproduce

and have been studied in the past by numerous groups who found that the slope of the

quiescent spectrum is determined by the Compton y-parameter and so is insensitive to

dynamic properties of the cloud. This chapter will focus on the time-dependent X-ray time

lag phenomenon for the rotating cloud model.
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In Chapter 2 we presented the homogeneous model with a static corona based o� the

time-dependent transport equation describing the spatial di�usion and inverse Comptoniza-

tion of a population of injected seed photons. The transport equation was Fourier trans-

formed and the resulting analytic solution was obtained in the Fourier domain. This Fourier

transformed Green's function represented the resulting transformed signal emanating from

the surface of the cloud after a transient process injected a monochromatic population of

seed photons. The Green's function allows for a wide variety of injection scenarios. We

found that a monochromatic injection spectrum anywhere in a homogeneous optically thick

cloud cannot reproduce the observed time lags as a function of Fourier frequency.

Instead, a broadband injection paradigm was implemented to model a thermal bremsstrahlung

�ash due to a plasma instability in the ADAF. The bene�t of the Green's function allows for

a variety of injection scenarios such as the bremsstrahlung paradigm employed here. The

Green's function can be convolved with a bremsstrahlung source term (see Appendix B)

to produce the particular solution for bremsstrahlung injection. The notation used in the

previous section describes the Fourier transformed �ux in either of two reference frames, but

without regard to the injection spectrum that produced it. Based o� of the results in Chap-

ter 2, namely the monochromatic injection paradigm being rejected, we can interpret the

generalized transformed �ux in each frame presented in the previous section as being due to

the preferred bremsstrahlung injection paradigm. Speci�cally, Gobs and Gsource represent the

Fourier transformed �ux in each reference frame (observer and source, respectively) due to

a bremsstrahlung transient. Since the source-frame solutions have been derived analytically,

we will simply substitute the source-frame Fourier transform, Fbrem, given by the �rst case

seen in Equation (2.129), directly into Equation (3.20) we can compute the time lags for

this rotating corona model using Equation (2.4). However, in the case of the static cloud

the solution was frame-independent, we must be sure to substitute Fbrem into the RHS of

Equation (3.20) in order to compute the observed time lags.
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3.2.1 Results

The time lags computed from the rotating cloud model depend on the rotation rate, Ω0.

The non-rotating homogeneous model will be recovered in the limit of vanishing rotation

rate. In order to study the e�ects that rotation has on the resulting time lags, we set all

model parameters equal to those used in the non-rotating homogeneous model. As we vary

the rotation rate the resulting time lags show noticeable features that di�er from the non-

rotating cloud. For comparison purposes we plot the Cyg X-1 data along with each of the

homogeneous models.

The Compton reverberation idea can be clearly seen in the long timescales (low fre-

quency) portion of the time lag plots shown in Figure 3.3 where the theory curves are the

same from the plateau and past the break frequency where the curve becomes a power-law.

This suggests that the dynamical properties of the cloud are not directly dependent upon

coronal rotation. The long time-scales are set by the upscattering time from the soft to hard

channels and represent the Compton reverberation idea. The time lag spectrum has a break

where it turns over from the plateau to a power-law with a roughly constant slope of about

negative 1.27 which agrees with the trend in the observational data.

We treat the rotation rate as a free parameter since there is no way to directly or even

indirectly measure coronal rotation rates. However, by varying the rotation rate as a model

parameter we can study the e�ects on the resulting time lags for Cyg X-1 and GX 339. It

is important to use the Keplerian angular velocity, ΩKep, as a starting point of this study.

We assume that the corona rotates uniformly and compute the Keplerian velocity at the

equator given mass estimates for the central mass and the radius of the cloud computed in

each model. We apply this model only to the homogeneous corona, because we found that

the time lags are the same in the homogeneous and inhomogeneous corona models.

Figure 3.3 shows a comparison of two models with the Cyg X-1 time lag data. The red

dashed curve corresponds to the non-rotating homogeneou corona presented in Chapter 2

while the blue dashed curve represents the maximally rotating cloud where the angular

velocity is set to the Keplerian velocity. The same convergence level was applied to each
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model and they agree exactly. There is no di�erence in the time lag at any Fourier frequency

implying that a Keplerian rotation rate does not change the time lags. At the equator of a

maximally rotating cloud, the linear velocity is βeq = 0.022 which is hardly relativistic. We

list the equatorial β-factors for each source and each value of Ω0 in Tables 3.1. Note that

although the same rotation rates are used in each source, the cloud radii are di�erent with

that of GX 339 being slightly larger than Cyg X-1. The Lorentz transformations performed

on the Fourier frequency and energy are not signi�cantly altered from the rest frame values

which leads to the same result as the non-rotating cloud.

Although it would be unphysical to simulate a super-Keplerian rotation rate, it is in-

teresting to perform a parameter-space study of Ω0 for values signi�cantly above ΩKep. In

order to see any deviations from the �standard� (i.e. baseline time lags seen in the non-

rotating homogeneous model) we must set Ω0 ≫ ΩKep. In this computational regime we do

not provide a physical mechanism for the super-Keplerian rate since those results are not

subsumed by the primary focus of this model. In Figure 3.4 we present four plots that show

the modi�cations to the time lags as the rotation rate is steadily and signi�cantly increased

past the Keplerian rate.

The low Fourier frequency portion of the plot and up to intermediate values show ex-

cellent agreement between the rotating and non-rotating cloud models. This is interesting,

because the Fourier frequency corresponds to long timescales in which the injected popu-

lation of seed photons from a bremsstrahlung �ash upscatter to the hard energy channel.

This is the Compton reverberation idea and is set by the plateau feature on the plots where

the time lags level o� to a constant value below a certain Fourier frequency.

Deviations from the standard time lag pro�le for Cyg X-1 can be seen at high Fourier

frequencies where the lags are increased relative to the non-rotating model. As the rota-

tion frequency is increased, this feature becomes more pronounced. The e�ects of Lorentz

boosting become important as the rotation rate increases beyond the Keplerian rate. The

blue-shifted photons on the leading hemisphere increase the energy of any photon, but the
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amount of blue-shift is dependent on the location of the cloud surface. Maximum blue-

shifting will occur on the equator for ϕ ≈ −π/2. Correspondingly, there will be maximum

red-shifting on the opposite hemisphere (western hemisphere is red-shifted, eastern hemi-

sphere is blue-shifted) at ϕ ≈ π/2. The red and blue-shifts decrease as one looks closer to

the poles where the linear velocity diminishes. In Figure 3.4 we plot the super-Keplerian

Figure 3.3: The spinning homogeneous model (blue) compared with the static homogeneous
model (red) for Cyg X-1 time lag data from Nowak et al. (1999), for the Keplerian angular
velocity Ω0 = ΩKep.

rotation time lags in order to study the e�ects of rotation on the resulting time lags for Cyg

X-1. Next, we will apply this model to GX 339.

Rotating Cloud Model Applied to GX 339

The time lag data for GX 339 seems to have better data characterized by a clear trend and

small error bars at high and low Fourier frequencies. It is interesting to plot theoretical time
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Figure 3.4: The spinning homogeneous model (blue) compared with the static homogeneous
model (red) for Cyg X-1 time lag data from Nowak et al. (1999), for various values of
angular velocity Ω0.

lag curves using the rotating cloud model and compare it against the observational data. In

Figure 3.5 we plot the time lags for a corona rotating at the Keplerian rate. The value for

the Keplerian angular velocity can be found in Table 3.1 along with various super-Keplerian

rotation rates. The super-Keplerian rotation rate scenarios are plotted in Figure 3.6 for GX

339 and one can see the di�erent behavior than was seen in the case of Cyg X-1.

Using the homogeneous model parameters found in Chapter 2 (see Tables 2.1 and 2.2),

we apply the rotating cloud model to GX 339. The Keplerian rotation rate is plotted �rst

and then a panel of super-Keplerian rotation modes are also shown and compared with the

observational data for this source as well as the non-rotating cloud case. As we saw with Cyg

X-1, the Keplerian rotation rate is slow and there is no signi�cant boosting between frames
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Table 3.1: Input Model Parameters: Cyg X-1 and GX 339

Model # Source Θ R (cm) z0 βeq ΩKep (rad/s) Ω0 (rad/s)

1a Cyg X-1 0.120 3.00× 109 1.00 0.022 0.22 0.22
2a Cyg X-1 0.120 3.00× 109 1.00 0.150 0.22 1.50
3a Cyg X-1 0.120 3.00× 109 1.00 0.200 0.22 2.00
4a Cyg X-1 0.120 3.00× 109 1.00 0.245 0.22 2.45
5a Cyg X-1 0.120 3.00× 109 1.00 0.285 0.22 2.85
1b GX 339 0.064 4.56× 109 0.78 0.018 0.12 0.12
2b GX 339 0.064 4.56× 109 0.78 0.228 0.12 1.50
3b GX 339 0.064 4.56× 109 0.78 0.304 0.12 2.00
4b GX 339 0.064 4.56× 109 0.78 0.372 0.12 2.45
5b GX 339 0.064 4.56× 109 0.78 0.433 0.12 2.85

and so the time lags agree exactly with the non-rotating model. The Keplerian rotation is the

only case that is physically valid. However, we also wish to study the resulting theoretical

time lags in the super-Keplerian rotation regime without regard to the mechanism that

would produce such extraordinarily high rotation speeds. In Figure 3.6 we plot the a series

time lags with ever increasing super-Keplerian rotation rates. What is interesting in the this

case for GX 339 is there is a noticeable qualitative di�erence than is seen in the Cyg X-1

study for super-Keplerian rotation. There was an excess of time lag above the non-rotating

cloud at the highest Fourier frequencies. However, for GX 339 we notice that the time lags

for the rapidly rotating cloud fall below the time lag curve corresponding to the non-rotating

cloud. What is more is that the divergence between the two models in Figure 3.6 occurs

at lower Fourier frequencies and have the same power-law slow as the non-rotating time lag

curve (they are parallel).

The time lags are identical to those of the non-rotating case if the cloud is rotating at

or below the Keplerian velocity (sub-Keplerian rotation rates are not presented) for either

source. This must imply that the radiated �ux at the surface of the cloud is not signi�cantly

boosted to higher or lower energies and so no deviation from the static case are discernible.

The Comptonized signal is essentially una�ected by the Keplerian rotation rate of the cloud
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Figure 3.5: The spinning homogeneous model (blue) compared with the static homogeneous
model (red) for GX 339 time lag data from Nowak et al. (1999), for the Keplerian angular
velocity Ω0 = ΩKep.

in each source and hence we recover the results from the static cloud.
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Figure 3.6: The spinning homogeneous model (blue) compared with the static homogeneous
model (red) for GX 339 time lag data from Nowak et al. (1999), for various values of angular
velocity Ω0.

105



Chapter 4: Crab Nebula Gamma-Ray Flares

From 2010 September through 2013 March, the Crab nebula displayed a remarkable series of

six short-duration �ares in the ∼ 100−500GeV energy range. During the peak of the �super

�are� of 2011 April, the Crab nebula was the brightest γ-ray source in the sky, with an

observed �ux exceeding that of the Vela pulsar or any of the γ-ray emitting active galaxies.

The spectral shape of the transient emission is a broad hump in the energy range from 0.1-

1GeV, and the �are showed a rapid increase over a few days, from April 13-15, with a total

duration of about 9 days (Buehler at al. 2012). At its brightest, the �are luminosity reached

about 30 times the average value, corresponding to ∼ 1% of the spin-down luminosity of

the rotating neutron star. The second-brightest �are was observed in 2013 March (Buehler

& Blandford 2014), and the statistics were similar to the 2011 �are, except that in this case,

some evidence was found for sub-day variability (Striani et al. 2013). These observation of

γ-rays from the Crab nebula with energies at least an order of magnitude above the radiation

reaction limit, ∼ 200MeV, presents serious challenges to the standard astrophysical particle

acceleration mechanisms.

The observation of transient GeV emission from the Crab nebula implies the presence of

intense particle acceleration in the vicinity of the pulsar wind termination shock, which is a

standing shock generated where the wind encounters dense material in the outer region of

the nebula (Montani & Bernadini 2014). The pulsar wind termination shock is located at

radius r ∼ 1017 cm, which is about an order of magnitude less than the size of the nebula

itself (Rees & Gunn 1974). On the upstream side of the termination shock, the wind is

ultrarelativistic, with bulk Lorentz factor Γu
>∼ 103 − 106 (Lyubarsky 2003; Aharonian et

al. 2004). Conversely, the �ow exiting the shock on the downstream side is only mildly

relativistic, with speed c/3 and bulk Lorentz factor Γd ∼ 1.1 (Achterberg et al. 2001). The
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very large value of the upstream Lorentz factor Γu implies that relativistic shock acceler-

ation may play an important role in the formation of the high-energy γ-rays observed by

Fermi-LAT and AGILE (Buehler & Blandford 2014). Di�usive acceleration of electrons at

a standing shock, whether relativistic or non-relativistic, is mediated by MHD waves, and

therefore the maximum acceleration rate is limited to the Bohm rate (Lemoine & Waxman

2009). Relativistic shocks can be less e�cient accelerators than non-relativistic shocks, once

the increase in the scattering time in the relativistic case is included (Sironi et al. 2015).

Hence, one �nds that the particle acceleration rate is limited to the Bohm rate whether

the acceleration occurs via the �rst-order Fermi process operating at a shock, or via the

second-order Fermi process due to stochastic wave-particles interactions. In either case, the

maximum particle energy that can be achieved is ultimately limited by synchrotron losses,

and the value of the maximum energy is obtained by equating the Bohm acceleration rate

with the synchrotron loss rate. This yields the radiation-reaction, or �synchrotron burno�,�

limit for the electron energy (see Section 4.1). In the end, the limited e�ciency of shock

acceleration and stochastic wave-particle acceleration leads to the conclusion that these

processes are unable to explain the observed high-energy transient emission from the Crab

nebula, even when one includes the mild Doppler boost that occurs on the downstream side

of the shock (e.g., Komissarov & Lyutikov 2011).

A number of authors have attempted to explain the observed GeV transients from the

Crab nebula by circumventing the synchrotron burno� limit using a variety of physical mech-

anisms. This limit can be violated (1) for emission regions with bulk relativistic motion, (2)

by acceleration in a low magnetic-�eld region and radiation in a high-�eld region, and (3) if

an accelerating electric �eld is present, as produced, for example, by magnetic reconnection.

We consider possibility (3) by examining the particle di�usion equation with an accelerating

electric �eld, stochastic and shock acceleration, shock-regulated escape (SRE), and escape

from the nebula via Bohm di�usion. An exact solution is obtained for the resulting electron

distribution.
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Signi�cant progress has been made on this problem using particle-in-cell (PIC) simula-

tions (Cerutti et al. 2013a, 2014), but a complete understanding of the particle acceleration

phenomenon occurring in the Crab nebula pulsar wind is still lacking. In particular, it is

not clear whether the level of magnetic suppression required in the reconnection models can

be achieved. We review some of the key observational diagnostics below and discuss the

implications for the theoretical models.

4.1 Flare Energetics

The characteristic peak synchrotron energy emitted by an isotropic distribution of relativistic

electrons with Lorentz factor γ spiraling in a magnetic �eld with strength B is (e.g., Rybicki

& Lightman 1979)

ϵpk(γ) = ξ
B

Bcrit
γ2mec

2 = 231.5 MeV ξ
( γ

1010

)2( B

200µG

)
, (4.1)

where me is the electron mass, c is the speed of light, the constant ξ ∼ 1, and the critical

magnetic �eld is de�ned by

Bcrit ≡
2πm2

ec
3

eh
= 4.41× 1013 G . (4.2)

Observational estimates of the magnetic �eld strength in the Crab nebula are typically close

to B ∼ 200 µG (e.g., Aharonian et al. 2004). The generation of synchrotron emission with

an energy of ∼ 1 GeV by an isotropic electron distribution in the presence of such a �eld

therefore requires a Lorentz factor γ ∼ 2× 1010.

The synchrotron lifetime of the relativistic electrons producing the �are can be estimated

using

tsyn = − γ

<γ̇>syn
, (4.3)
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where the synchrotron energy loss rate per electron, averaged over an isotropic distribution

of pitch angles, is given by

<γ̇>syn mec
2 = −4

3
γ2σTc

B2

8π
. (4.4)

Combining Equations (4.3) and (4.4) yields for the synchrotron lifetime

tsyn =
6πmec

2

σTcB2γ
= 22.4 days

(
B

200µG

)−2 ( γ

1010

)−1
. (4.5)

We can also express the synchrotron lifetime as a function of the peak �are photon energy,

ϵpk, by using Equation (4.1) to eliminate the Lorentz factor γ in Equation (4.5), obtaining

tsyn = 10.8 days

(
B

200µG

)−3/2 ( ϵpk
GeV

)−1/2
ξ1/2 . (4.6)

For a peak photon energy ϵpk ∼ 1GeV, and �eld strength B ∼ 200µG, we obtain roughly the

observed �are duration. This fact has lent support to the interpretation that the observed

γ-ray �ares are the result of synchrotron emission (e.g., Abdo et al. 2011). However, the

radiation reaction (synchrotron burno�) limit places severe constraints on the particle accel-

eration mechanism required to power the observed emission, as discussed below. Variability

on shorter timescales (∼ 1 day) may have also been observed (Buehler et al. 2012; Mayer et

al. 2013; Striani et al. 2013), perhaps as a consequence of instabilities in the structure of

the termination shock and the strength of the associated magnetic �eld.

109



4.1.1 Synchrotron Burno�

The minimum timescale for the acceleration of relativistic electrons via energetic collisions

with MHD waves is the Larmor timescale,

tL = ζ
rL
c

= ζ
mec

qB
γ , (4.7)

where rL is the Larmor radius, ζ is an order unity constant, and q denotes the magnitude

of the electron charge. The synchrotron burno� limit is obtained by equating the Larmor

timescale with the synchrotron loss timescale, given by Equation (4.5), which yields an

expression for the maximum Lorentz factor, γMHD , that can be achieved via MHD wave

acceleration in the presence of a magnetic �eld of strength B. The result obtained is

γMHD =

√
6πq

B ζ σT
= 8.25× 109

(
B

200µG

)
ζ−1/2 . (4.8)

We can substitute Equation (4.8) into Equation (4.1) to obtain the radiation reaction-limited

peak synchrotron energy, given by

ϵMHD ≡ ϵpk(γMHD) =
6π ξqmec

2

Bcritζ σT
= 158 MeV ξ ζ−1 , (4.9)

where ξ ∼ 1 and ζ >∼ 1. This is far below the highest energy observations which are in

excess of 1GeV. Hence, the synchrotron burno� limit implies that particle acceleration via

interaction with MHD waves is insu�cient to explain the energetics of the observed Crab

nebula γ-ray �ares.

The observation of gamma rays with energies exceeding the radiation reaction limit given

by Equation (4.9) has motivated speculation that the radiating electrons are accelerated elec-

trostatically in a magnetic reconnection region where electric �elds are induced (e.g., Buehler
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at al. 2012; Cerutti et al. 2012). However, numerical simulations based on electrostatic ac-

celeration in a magnetic reconnection region require the presence of a ∼ 5mG magnetic �eld

and PeV electrons (Cerutti et al. 2012, 2013a, 2014) . This �eld strength is substantially

higher than that indicated by the multi-wavelength observations of the quiescent spectrum,

which suggest that the ambient �eld has strength B ∼ 200µG (e.g., Aharonian et al. 2004;

Meyer & Horns 2010). These studies focused on the comprehensive broad-band (from radio

through hard γ-rays) spectrum to infer the average ambient magnetic �eld responsible for

the observed synchrotron emission from the Crab nebula.

In this paper, we seek to determine whether a theoretical framework can be developed

that accounts for all of the Crab nebula γ-ray �are spectra detected by Fermi-LAT, while

adopting the lower, ambient magnetic �eld value, B ∼ 200µG. Our model is based on

a one-zone electron transport equation that includes terms describing particle injection,

stochastic acceleration, electrostatic acceleration, shock acceleration, radiative losses, and

particle escape. The model should be interpreted as a spatial average over the acceleration

and emission regions, which may either be co-located or separate regions. The transport

equation is solved to obtain a closed-form expression for the energy distribution of the

relativistic electrons, which is then used to compute the γ-ray spectrum produced via direct

synchrotron emission.

The remainder of the paper is organized as follows. In Section 4.2, we provide an

overview of the physical background and develop the speci�c terms to be employed in the

electron transport equation. In Section 4.3 we obtain the exact solution for the electron

Green's function, and we develop expressions for computing the corresponding synchrotron

spectrum. In Section 4.4 we make a speci�c application to modeling the γ-ray emission

observed from the Crab nebula, and in Sections 4.5 and 5.2 we review our main conclusions

and discuss their astrophysical signi�cance.
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4.2 Particle Transport Formalism

Since the energy range of the GeV �ares observed from the Crab nebula exceeds the syn-

chrotron burno� limit by at least an order of magnitude, a natural conclusion seems to be

that the radiating electrons must be accelerated, at least in part, by a strong electrostatic

e�ect produced by the electric �eld created in a region of magnetic reconnection on the

downstream side of the pulsar wind termination shock. Although numerical simulations

have been employed to model this phenomenon, they have not been entirely successful at

explaining the shape of the observed γ-ray spectrum, and furthermore they tend to invoke

a magnetic �eld strength that does not agree very well with the observational estimates for

the Crab nebula (Cerutti et al. 2012, 2013a, 2014).

The synchrotron lifetime given by Equation (4.6) provides a rough estimate for the

time it takes the electron distribution to reach equilibrium. The fact that the synchrotron

timescale is comparable to the �are duration suggests that the particle distribution during

the peak of the �are is close to equilibrium. In this case, we are justi�ed in setting the time

derivative in Equation (4.10) equal to zero, and solving the steady-state transport equation.

Hence the steady-state particle distribution we will obtain is best interpreted as the electron

distribution during the peak of the �are.

The uncertainties regarding the numerical simulations have motivated us to revisit the

problem using an analytical approach based on a transport equation that includes terms de-

scribing electrostatic acceleration, stochastic acceleration, shock acceleration, synchrotron

losses, and particle escape. Since synchrotron losses are included in the transport equation,

the subsequent calculation of the γ-ray synchrotron spectrum is self-consistent. It is always

preferable to describe the particle distribution, and the resulting radiation spectrum, using

an analytical expression because it facilitates the study of a wide range of parameter val-

ues, and it also allows us to maintain complete control over the relative importance of the

various physical processes. Conversely, complex numerical simulations can sometimes make

it di�cult to pinpoint the speci�c e�ect of each process, and they are usually not amenable

to �tting observational data. Another advantage of closed-form analytical models it that
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they can often be evaluated in real-time, allowing one to perform quantitative �ts to the

observational data, and they are also useful for benchmarking more sophisticated numerical

simulations.

4.2.1 Particle Distribution and Transport Equation

The spatial transport of the electrons in the environment surrounding the pulsar wind ter-

mination shock is governed by a combination of advection in the wind and spatial di�usion

relative to the wind. In the Crab nebula, the particle acceleration and the production of

the observed γ-rays may occur in separate geometrical regions (e.g., Cerutti et al. 2012),

but it is not clear whether this is the case. Therefore, in the present paper, we will develop

a one-zone spatial model, which represents an average over the acceleration and emission

regions. In this approach, the spatial aspects of the problem are modeled using a simple

escape-probability formalism, with escape timescale tesc. The energy dependence of tesc

depends on the nature of the mechanism transporting electrons out of the acceleration re-

gion. In our application, the dominant escape mechanism is expected to be a combination of

shock-regulated escape on small scales, and Bohm di�usion on large scales, as discussed in

Section 4.4.5. Based on these physical considerations, the transport equation we will utilize

to model the evolution of the relativistic electron momentum distribution, f , in the pulsar

wind nebula is given by (e.g., Becker et al. 2006; Park & Petrosian 1995)

∂f

∂t
= − 1

p2
∂

∂p

{
p2
[
−D(p)

∂f

∂p
+ <ṗ>gain f+ <ṗ>loss f

]}
− f

tesc(p)
+ ḟsource(p) , (4.10)

where p is the particle momentum, and the terms on the right-hand side represent stochastic

(second-order) Fermi acceleration (i.e., momentum di�usion); systematic gains due to elec-

trostatic acceleration and �rst-order Fermi acceleration at the shock; systematic losses due to

synchrotron emission; particle escape; and particle injection, respectively. The distribution
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function f is related to the total number of electrons, Ne, via

Ne(t) =

∫ ∞

0
4πp2f(p, t) dp . (4.11)

4.2.2 Stochastic MHD Acceleration

The γ-rays emitted during the Fermi-LAT �ares are apparently produced in the vicinity of

the Crab nebula pulsar wind termination shock. The relativistic electrons ejected from the

central pulsar will have cooled substantially via synchrotron emission by the time they reach

the shock, at a distance of ∼ 1017 cm, and therefore the production of the observed γ-ray

emission at that distance implies the existence of an e�cient acceleration mechanism. The

acceleration is thought to occur in the vicinity of the shock via a variety of mechanisms,

including �rst-order Fermi acceleration due to multiple shock crossings, second-order Fermi

acceleration due to stochastic interactions with a random �eld of MHD waves, and direct

electrostatic acceleration in the electric �eld generated in the magnetic reconnection region

surrounding the shock. In this section, we derive the spatial and momentum di�usion

coe�cients describing the stochastic interaction with the random �eld of MHD waves.

The strongest possible MHD acceleration occurs in the Bohm regime, when the particle

mean-free path is comparable to the Larmor radius (Krall & Trivelpiece 1986),

rL =
pc

qB
, (4.12)

where c is the speed of light, q is the magnitude of the electron charge, and B is the local

magnetic �eld strength. We therefore parameterize the mean-free path, ℓ, relative to the

Larmor radius by writing

ℓ = η rL , (4.13)

where the constant η >∼ 1. The associated spatial di�usion coe�cient, κ, for Bohm di�usion
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is given by (Dermer & Menon 2009)

κ =
ηcrL
3

. (4.14)

The general relation between the spatial di�usion coe�cient κ and the momentum di�usion

coe�cient D can be written as (e.g., Reif 1965)

D(p)κ(p) =
p2v2A
9

, (4.15)

where vA represents the Alfvén velocity of the MHD waves. Combining Equation (4.12),

(4.14), and (4.15), we �nd that in the Bohm scenario, the momentum dependence of D(p)

is given by

D(p) = D0mec p , (4.16)

where the constant D0 has units of s
−1. The value of D0 is constrained by the requirement

that the acceleration timescale must exceed the gyroperiod of the accelerated electrons, as

discussed in Section 4.4.1.

4.2.3 Synchrotron Losses

The relativistic electrons in the Crab nebula loss energy primarily via the emission of syn-

chrotron radiation. Assuming an isotropic electron distribution, the momentum loss rate

due to synchrotron radiation can be written as

<ṗ>loss= − B0

mec
p2 , (4.17)

where the constant B0 ∝ s−1 is given by

B0 =
σTB

2

6πmec
. (4.18)
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The synchrotron energy loss rate per relativistic electron obtained by combining Equa-

tions (4.17) and (4.18) is (cf. Equation (4.4))

<ε̇>loss= −4

3

σTUB

m2
ec

3
ε2 , (4.19)

where ε = pc is the relativistic electron energy and UB = B2/(8π) is the magnetic energy

density.

4.2.4 Electrostatic and Shock Acceleration

In addition to the second-order Fermi acceleration discussed in Section 4.2.2, which the

electrons experience as a result of stochastic wave-particle interactions, the particles also

experience a combination of electrostatic and shock acceleration in the vicinity of the ter-

mination shock ?. Electrostatic acceleration in an electric �eld of strength E, generated in

the magnetic reconnection region around the shock, results in a constant momentum gain

rate given by

<ṗ>elec= qE . (4.20)

The electrostatic acceleration modeled by Equation (4.20) is extremely important in the

pulsar wind application because it has the potential to accelerate electrons to energies far

exceeding the conventional synchrotron burno� limit, which is required in order to account

for the observations of GeV γ-rays produced during the �ares observed from the Crab nebula

(Cerutti et al. 2012; Montani & Bernadini 2014).

The shape of the electron energy distribution resulting from �rst-order Fermi acceleration

at the pulsar wind termination shock depends on the amount of time the particles spend in

the acceleration region, which is regulated by the combined action of spatial di�usion and

advection. The Crab pulsar termination shock is ultrarelativistic, with upstream Lorentz

factor Γu ∼ 103− 106 (Lyubarsky 2003; Aharonian et al. 2004). On the downstream side of

the shock, the �ow is mildly relativistic, with speed c/3 in the shock frame (Achterberg et
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al. 2001). Since the termination shock is a standing shock, the shock frame is equivalent to

the frame at in�nity. Gallant & Achterberg (1999) show that the minimum cycle time, tcyc,

required for a particle to cross the shock and return to the upstream side can be estimated,

in the optimal case of Bohm di�usion, using

tcyc =
rL
Γuc

, (4.21)

where rL is the Larmor radius (see Equation (4.12)). Particles crossing the shock for the �rst

time will experience an energy gain on the order of Γ2
u in the frame of the upstream gas, but

subsequent crossings will increase the particle energy by a much smaller factor due to the

dynamics of escape and acceleration. The �rst-order Fermi acceleration rate experienced by

the electrons due to multiple shock crossings is computed in the laboratory (shock) reference

frame using (e.g., Dermer & Menon 2009)

<ṗ>shock= βeff
2p

tcyc
= 2βeffΓuqB , (4.22)

where the �nal result follows from Equations (4.12) and (4.21), and βeff is an e�ciency factor

re�ecting the fact that the particle acceleration rate cannot exceed the Bohm rate, even in a

relativistic shock (Lemoine & Waxman 2009). The maximum value for the e�ciency factor

βeff can be computed by setting |< ṗ>shock | equal to the synchrotron loss rate |< ṗ>loss |

given by Equation (4.17) at the maximum Lorentz factor, γMHD, given by Equation (4.8).

The result obtained is

2βmax
eff ΓuqB =

σTB
2γ2MHD

6π
. (4.23)

Solving this relation for βmax
eff , we conclude that in the pulsar wind application, the shock
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acceleration e�ciency parameter βeff must satisfy the constraint

βeff ≤ βmax
eff ≡ 1

2ζΓu
. (4.24)

Using this result to eliminate βeff in Equation (4.22), we �nd that the shock acceleration

rate in the ultrarelativistic case is given by

<ṗ>shock= q ζ−1ρB , (4.25)

where we have de�ned the relative e�ciency parameter, ρ, using

ρ ≡ βeff
βmax
eff

. (4.26)

The problem of estimating the value of ρ depends on many unknown physical details, such

as the obliquity of the shock, and the distribution and mean coherence length of the MHD

turbulence (Lemoine & Waxman 2009). Here, we will treat ρ as a free parameter in the

range 0.1 <∼ ρ < 1. We will set ρ = 0.1 in our numerical examples.

Based on Equations (4.20) and (4.25), we conclude that in the pulsar wind application,

the �rst-order momentum gain rate, <ṗ>gain, appearing in the transport equation (4.10) is

actually composed of two constant components, with one describing electrostatic acceleration

(Equation (4.20)), and the other describing shock acceleration (Equation (4.25)), so that

<ṗ>gain=<ṗ>elec + <ṗ>shock , (4.27)

or, equivalently,

<ṗ>gain= qE + qBρ ζ−1 = A0mec , (4.28)
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where the acceleration rate constant, A0 ∝ s−1, is de�ned by

A0 ≡
q(E +Bρ ζ−1)

mec
. (4.29)

4.2.5 Particle Escape

The one-zone model considered here represents an average over the acceleration and emission

regions, and therefore the spatial di�usion of the particles through the nebula is treated

implicitly using an escape-probability formalism. In this scenario, the electrons remain in

the acceleration region for a mean time tesc before escaping. In order for the model to

accurately re�ect the geometry of the pulsar-wind environment, the energy dependence of

tesc needs to be carefully considered, so that the dominant spatial transport processes on

large and small scales are properly treated.

The nature of the electron's propagation through the pulsar wind nebula depends on

its momentum, p, as depicted in Figure 4.1. For electrons with small momentum, the

associated Larmor radius, rL = pc/(qB), is much smaller than the pulsar wind termination

shock radius, rt = 1017 cm. In this case, the electrons are �trapped� in the �ow, and the

escape of the electrons from the acceleration region is regulated by advection in the outward

direction (e.g., Becker & Begelman 1986). This is called �Shock-Regulated Escape� (SRE;

see Steinacker & Schlickeiser 1989). Conversely, for electrons with large momentum, so that

rL ∼ rt, the escape occurs via Bohm di�usion, with a mean-free path, ℓ, that is comparable

to the Larmor radius rL (see Equation (4.13)). This is called �Bohm di�usive escape� (e.g.,

Dermer & Menon 2009). Electrons with an intermediate momentum value tend to di�use

back into the upstream region, so that they are recycled through the shock, and experience

additional acceleration.

In a proper three-dimensional numerical transport model, the large- and small-scale

dependences of the particle propagation would automatically be taken into consideration as

part of the simulation. Since we are using a simpli�ed one-zone model here, representing an
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average over the acceleration/radiation regions, we must approximate the correct transport

behavior by using a suitable expression for the dependence of the escape timescale tesc(p)

on the particle momentum p, taking into account both the large- and small-scale behaviors.

The remainder of this Section focuses on the derivation of the correct functional form for

tesc(p).

Shock-Regulated Escape

In the shock-regulated escape model, the electron escape timescale, tesc, is proportional to

the cycle timescale, tcyc, and the mean-free path is equal to the Larmor radius, corresponding

to the limit of Bohm di�usion. It follows that particles with higher momentum take longer

to cycle back from the downstream to the upstream side of the shock, and they also take

longer to escape. We can use Equation (4.21) to write the momentum dependence of the

shock-regulated escape timescale, tSRE, as (Jokipii 1987)

tSRE(p) ∝
rL
c

∝ p , (4.30)

where we have used the fact that rL ∝ p. We can quantify this relation by writing

tSRE(p) ≡
p

C0mec
, (4.31)

where C0 ∝ s−1 is the rate constant for shock-regulated escape. In the shock-regulated

escape model, we �nd that tSRE ∝ p, and therefore electrons with lower momenta tend

to be trapped in the �ow, and escape from the shock by advecting to larger radii on the

downstream side of the shock (see Figure 4.1). The shock-regulated escape process therefore

tends to harden the particle distribution, and enhance the high-energy component of the

resulting synchrotron spectrum. In Section 4.3.2, we demonstrate that in the case of pure

shock/electrostatic acceleration, the escape rate parameter C0 de�ned in Equation (4.31) is

linked with the acceleration rate parameter A0 de�ned in Equation (4.29) via the relation
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mshock = −C0/A0, where mshock is the power-law spectral index of the electron number

distribution for the case of pure electrostatic/shock acceleration.

Bohm Di�usive Escape

On spatial scales that are much larger than the thickness of the shock, the escape of particles

is regulated by Bohm di�usion, which was discussed in Section 4.2.5. In this process, the

electron di�usion mean-free path is given by ℓ = ηrL, where rL = pc/(qB) is the electron's

Larmor radius and η is an order-unity constant (see Equation (4.13)). The mean timescale

for ultrarelativistic particles to escape into the outer region of the nebula (beyond the ter-

mination shock radius rt) via this process, denoted by tBohm, is therefore a function of the

particle momentum, p, given by

tBohm(p) ≡
rt
vdiff

, vdiff =
c

rt/ℓ
, (4.32)

where vdiff is the Bohm di�usion velocity. The quantity tBohm represents the self-consistent

timescale for escape via di�usion through a random �eld of MHD waves with wave index

q = 1 (Becker et al. 2006; Dermer et al. 1996). Combining relations, we �nd that

tBohm(p) =
r2t qB

ηc2p
≡ mec

F0p
, (4.33)

where F0 ∝ s−1 is the rate constant for Bohm di�usive escape, de�ned by

F0 ≡
ηmec

3

r2t qB
= 2.56× 10−17 s−1 η

( rt
1017 cm

)−2
(

B

200µG

)−1

. (4.34)

It follows from Equation (4.33) that electrons with su�ciently large momenta have a very

small timescale for di�usive escape from the acceleration region. Of course, the escape

timescale cannot be less than the light-crossing time for the termination shock radius, rt,
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which corresponds to setting the di�usion velocity vdiff = c. This is also equivalent to setting

the mean-free path ℓ = rt, which is the Hillas (1984) condition, that can be used to calculate

the Hillas upper limit, γH, for the Lorentz factor of the electrons accelerated in the nebula.

Using Equations (4.12) and (4.13), we obtain

γH =
rtqB

ηmec2
= 1.17× 1010 η−1

( rt
1017 cm

)( B

200µG

)
. (4.35)

For the magnetic �eld assumed here, B = 200µG, and the termination shock radius rt =

1017 cm, we �nd that the limiting Lorentz factor is γH ∼ 1010. The associated maximum

synchrotron energy computed by substituting γH into Equation (4.1) is in the GeV range,

in agreement with the observed γ-ray emission from the Crab nebula.

Net Escape Rate

Taking into consideration Equations (4.31) and (4.33), we see that particles in the vicinity

of the pulsar wind termination shock have two avenues available for escape from the acceler-

ation region. Particles with small momentum p are like to advect away into the downstream

region, since the shock-regulated escape timescale, tSRE, is small in this case according to

Equation (4.31). On the other hand, particles with large momentum are likely to rapidly

di�use out of the nebula via Bohm di�usion, since in this case the Bohm di�usion timescale,

tBohm, is small, according to Equation (4.33). These two expressions can be combined to

write down an expression for the net escape rate, given by

t−1
esc(p) = t−1

SRE(p) + t−1
Bohm(p) , (4.36)

where tesc(p) is the net escape timescale, taking both mechanisms into account. By combin-

ing Equations (4.31), (4.33), and (4.36), we �nd that the net escape timescale tesc(p) can be
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written as

tesc(p) =

(
C0mec

p
+
F0p

mec

)−1

. (4.37)

This is the form for the escape timescale that will be substituted into the transport equa-

tion (4.10) in Section 4.2.6 in order to ensure that both the large- and small-scale behaviors

are properly accounted for. The cross-over momentum, pc, and Lorentz factor, γc, be-

tween the regions of dominance of the two escape mechanisms are computed by setting

tSRE = tBohm, which yields

γc =
pc
mec

=

√
C0

F0
. (4.38)

In our numerical calculations, discussed in Section 4.4, we �nd that γc ∼ 1010 − 1011, which

corresponds to a Larmor radius comparable to the termination-shock radius, rt = 1017 cm.

4.2.6 Steady-State Transport Equation

The synchrotron lifetime given by Equation (4.6) provides a rough estimate for the time it

takes the electron distribution to reach equilibrium. The fact that the synchrotron timescale

is comparable to the �are duration suggests that the particle distribution during the peak of

the �are is close to equilibrium. In this case, we are justi�ed in setting the time derivative

in Equation (4.10) equal to zero, and solving the steady-state transport equation. Hence

the steady-state particle distribution we will obtain is best interpreted as the electron dis-

tribution during the peak of the �are.

Since Equation (4.10) is linear, it is su�cient to determine the steady-state Green's

function, fG(p, p0), resulting from the reprocessing of monoenergetic seed particles, with

source term

ḟsource(p) =
Ṅ0 δ(p− p0)

4πp20
, (4.39)

corresponding to the continual injection of Ṅ0 electrons per unit time with momentum
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p0. Once the solution for fG(p, p0) is known, the steady-state particular solution, f(p),

corresponding to an arbitrary source term, ḟsource(p), can be obtained using the convolution

f(p) =

∫ ∞

0

4πp20
Ṅ0

fG(p, p0) ḟsource(p0) dp0 . (4.40)

By combining Equations (4.10), (4.16), (4.17), (4.28), (4.37), and (4.39), we �nd that in the

pulsar wind nebula, the fundamental steady-state transport equation given by

∂f

∂t
= − 1

p2
∂

∂p

[
p2
(
−D0mec p

∂f

∂p
+A0mecf − B0p

2

mec
f

)]

−
(
C0mec

p
+
F0p

mec

)
f +

Ṅ0 δ(p− p0)

4πp20
= 0 , (4.41)

where p0 is the momentum of the injected electrons and Ṅ0 is the injection rate.

It is convenient to transform from the variables (p, t) to the dimensionless momentum,

x, and the dimensionless time, y, de�ned by

x ≡ p

mec
, x0 ≡

p0
mec

, y ≡ D0t . (4.42)

In general, the relationship between x and the Lorentz factor γ is given by x =
√
γ2 − 1.

Hence, for the ultrarelativistic (x ≫ 1) electrons responsible for creating the γ-rays from

the Crab pulsar wind nebula, we can write x = γ without making any signi�cant error. In

terms of the new coordinates (x, y), the steady-state transport equation can be written as

∂fG
∂y

=
1

p2
∂

∂x

[
x2
(
x
∂fG
∂x

− ÃfG + B̃x2fG

)]
− C̃fG

x
− F̃ xfG+

Ṅ0 δ(x− x0)

4πD0(mec)3x20
= 0 , (4.43)
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where we have de�ned the dimensionless constants Ã, B̃, C̃, and F̃ , using

Ã ≡ A0

D0
, B̃ ≡ B0

D0
, C̃ ≡ C0

D0
F̃ ≡ F0

D0
. (4.44)

4.2.7 Fokker-Planck Equation

It is instructive to rewrite Equation (4.43) in the form of a Fokker-Planck equation by

de�ning the electron number distribution, NG, using

NG(x, x0, y) ≡ 4π(mec)
3x2fG(x, x0, y) . (4.45)

Note that the total number of electrons, Ne, is related to NG via (cf. Equation (4.11))

Ne(y) =

∫ ∞

0
NG(x, x0, y) dx . (4.46)

Using Equation (4.45) to substitute for fG in Equation (4.43) and rearranging terms yields

the steady-state Fokker-Planck equation,

∂NG

∂y
=

∂2

∂x2

(
1

2

dσ2

dy
NG

)
− ∂

∂x

(⟨dx
dy

⟩
NG

)
− C̃

x
NG− F̃ xNG+

Ṅ0 δ(x− x0)

D0
= 0 , (4.47)

where the �broadening� and �drift� coe�cients are given, respectively, by

1

2

dσ2

dy
= x ,

⟨dx
dy

⟩
= 3 + Ã− B̃ x2 . (4.48)

These expressions for the Fokker-Planck coe�cients will be used in Section 4.4 to help us

analyze the energy budget of the observed �ares, and to determine the relative importance of

electrostatic and stochastic acceleration in creating the distribution of relativistic electrons.
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4.3 Particle Distribution and Radiation Spectrum

In this section, we obtain the closed-form solution for the steady-state electron Green's func-

tion, NG, representing the number distribution of electrons in dimensionless momentum x

space (or equivalently, in Lorentz factor space γ). We also convolve the particle distribu-

tion with the synchrotron emission function to obtain the γ-ray spectrum emitted by the

relativistic electrons accelerated at the pulsar wind termination shock.

4.3.1 Electron Green's Function

In a steady-state situation, NG satis�es the ordinary di�erential equation

x
d2NG

dx2
+ (B̃ x2 − 1− Ã)

dNG

dx
+
(
2B̃ x− C̃

x
− F̃ x

)
NG = −Ṅ0 δ(x− x0)

D0
. (4.49)

The Green's function NG must be continuous at the injection momentum, x = x0, and its

derivative displays a jump there, which can be evaluated by integrating Equation (4.49)

with respect to x over a small region surrounding x0. The result obtained is

lim
δ→0

dNG

dx

∣∣∣∣∣
x0+δ

− dNG

dx

∣∣∣∣∣
x0−δ

= − Ṅ0

D0x0
. (4.50)

The fundamental solutions to the homogeneous equation obtained when x ̸= x0, satisfying

appropriate boundary conditions at large and small values of x, can be expressed in terms

of the Whittaker functions Mκ,µ and Wκ,µ using

NG(x, x0) ∝ e−B̃x2/4 xÃ/2


Mκ,µ(B̃x

2/2) , x ≤ x0 ,

Wκ,µ(B̃x
2/2) , x ≥ x0 ,

(4.51)
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where the parameters κ and µ are de�ned by

κ ≡ 1 +
Ã

4
− F̃

2B̃
, µ ≡

√
(2 + Ã)2 + 4 C̃

4
. (4.52)

The continuity of the Green's function at x = x0 implies that we can express the global

solution for NG using

NG(x, x0) = Q0

(
x

x0

)Ã/2

e−B̃(x2−x2
0)/4Mκ,µ

(
B̃x2min

2

)
Wκ,µ

(
B̃x2max

2

)
, (4.53)

where the normalization constant Q0 is determined by applying the derivative jump condi-

tion, and we have made the de�nitions

xmin ≡ min(x, x0) , xmax ≡ max(x, x0) . (4.54)

Substituting Equation (4.53) into Equation (4.50) yields

B̃x0Q0

[
Mκ,µ

(
B̃x20
2

)
W ′

κ,µ

(
B̃x20
2

)
−Wκ,µ

(
B̃x20
2

)
M ′

κ,µ

(
B̃x20
2

)]
= − Ṅ0

D0x0
. (4.55)

We can evaluate the Wronskian in the square brackets using (Abramowitz & Stegun 1970)

Mκ,µ(z)W
′
κ,µ(z)−Wκ,µ(z)M

′
κ,µ(z) = − Γ(1 + 2µ)

Γ(µ− κ+ 1/2)
. (4.56)

Combining Equations (4.55) and (4.56), we obtain for the normalization coe�cient

Q0 =
Ṅ0Γ(µ− κ+ 1/2)

B̃D0Γ(1 + 2µ)x20
, (4.57)
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which can be substituted into Equation (4.53) to obtain the �nal result for the electron

Green's function,

NG(x, x0) =
Ṅ0Γ(µ− κ+ 1/2)

B̃D0Γ(1 + 2µ)x20

(
x

x0

)Ã/2

e−B̃(x2−x2
0)/4Mκ,µ

(
B̃x2min

2

)
Wκ,µ

(
B̃x2max

2

)
,

(4.58)

where κ and µ are given by Equations (4.52) and xmin and xmax are given by Equa-

tions (4.54). The solution to the steady-state transport equation given by Equation (4.58)

represents the electron distribution resulting from a balance between particle injection, ac-

celeration, energy losses, and particle escape.

The general shape of the particle distribution is a peak around the injection momen-

tum x0, surrounded by power-law sections, and terminating in a high-energy exponential

cuto� where synchrotron losses overwhelm particle acceleration. Examples of the parti-

cle distribution for the Crab nebula application are plotted and discussed in Section 4.5.

The electron distribution given by Equation (4.58) can be used to compute the theoretical

synchrotron spectrum produced from a population of radiating relativistic electrons acceler-

ated in the nebula under the combined action of stochastic MHD wave-particle interactions,

electrostatic acceleration, shock acceleration, particle escape, and synchrotron losses. In

Section 4.5, we will compare the model predictions with the observational γ-ray data and

analyze the energetics of the �ares.

4.3.2 Approximate Power-Law Solution for NG

Equation (4.58) for the electron number distribution, NG, represents the exact solution to

the steady-state Fokker-Planck equation (4.47). It is interesting to note that for values of

the particle momentum p far below the onset of the synchrotron losses in Equation (4.47),

and also below the cross-over momentum indicating the onset of Bohm di�usion (see Equa-

tion (4.38)), we �nd that Equation (4.47) reduces to an equidimensional equation, which
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implies the existence of power-law solutions of the form

NG(x, x0) = H0x
m , (4.59)

whereH0 is a normalization constant andm is an unknown power-law index. By substituting

the power-law form NG(x) ∝ xm into Equation (4.49) and simplifying, we can obtain a

quadratic equation for m, given by

m2 − (2 + Ã)m− C̃ = 0 , (4.60)

with corresponding solutions

m± =
2 + Ã±

√
(2 + Ã)2 + 4C̃

2
. (4.61)

Here, the positive power-law index m+ applies at low energies (x < x0), and the negative

index m− applies at high energies (x > x0). The global solution for NG can now be written

as

NG(x, x0) = H0


(

x
x0

)m+

, x ≤ x0 ,(
x
x0

)m−
, x ≥ x0 ,

(4.62)

where the normalization constant H0 can be determined via application of the derivative

jump condition given by Equation (4.50). After some algebra, the result obtained is

H0 =
Ṅ0

4D0µ
. (4.63)
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This normalization coe�cient can be substituted back into Equation (4.62) to obtained the

properly normalized global solution for NG, given by

NG(x, x0) =
Ṅ0

4D0µ


(

x
x0

)m+

, x ≤ x0 ,(
x
x0

)m−
, x ≥ x0

(4.64)

The broken power-law solution given by Equation (4.64) is valid if we restrict attention to

values of x below the exponential turnover created by synchrotron losses, and also below

the cross-over Lorentz factor, γc, where the transition to Bohm di�usive escape occurs (see

Equation (4.38)). We will compare the approximate power-law solution with the exact

solution in our applications to the Crab nebula �ares in Section 4.5.

4.3.3 Power-Law Index for Electrostatic/Shock Acceleration

We have demonstrated that for energies below the onset of synchrotron losses, the particle

distribution is well represented by a broken power-law. A case of particular interest is

the case of pure electrostatic/shock acceleration, which corresponds to the limit D0 → 0,

where D0 is the momentum di�usion rate coe�cient. Physically, momentum di�usion is the

result of stochastic wave-particle interactions. In the limit D0 → 0, the contribution to the

acceleration due to the random motions of the MHD waves vanishes, and we are left with

only the contribution due to electrostatic/shock acceleration. We can explore this limit in

detail by using Equations (4.44) to make the substitutions Ã = A0/D0 and C̃ = C0/D0 in

Equation (4.61) for the power-law index m±. The result obtained for the high-energy index,

m−, is

m− =
(
1 +

A0

2D0

)
− 1

2

√(
2 +

A0

D0

)2
+

4C0

D0
, (4.65)
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which can be rewritten as

m− =
(
1 +

A0

2D0

)[
1−

√
1 +

4D0C0

A2
0

(2D0

A0
+ 1
)−2

]
. (4.66)

Making an expansion in terms of the small parameter D0/A0 and keeping only the highest-

order term yields the power-law index of the electron number distribution for the case of

pure electrostatic/shock acceleration. After some algebra, the result obtained is

mshock ≡ lim
D0→0

m− = −C0

A0
= − C̃

Ã
. (4.67)

In the case of strong electrostatic/shock acceleration, we expect to �nd that the high-energy

power-law index mshock is in the range −3 <∼ mshock
<∼ −2, as is typically found in PIC simu-

lations of acceleration in regions of magnetic reconnection near the Crab pulsar termination

shock (e.g., Cerutti et al. 2014).

4.3.4 Synchrotron Spectrum

The γ-rays emitted during the recent �ares observed from the Crab nebula are thought

to represent direct synchrotron radiation produced by the relativistic electrons accelerated

at the pulsar wind termination shock (Buehler at al. 2012; Abdo et al. 2011). Since

synchrotron losses are included in the transport equation we have solved (Equation (4.41)),

we are now in a position to self-consistently calculate the resulting γ-ray spectrum. Assuming

an isotropic distribution of electrons, the theoretical synchrotron spectrum can be computed

by convolving the electron Green's function (Equation (4.58)) with the synchrotron emission

function, Pν , which gives the power emitted per electron per Hz. The isotropic synchrotron
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emission function is given by (e.g., Rybicki & Lightman 1979)

Pν(ν, γ) =

√
3 q3B

mec2
R

(
ν

γ2νs

)
∝ erg s−1 Hz−1 , (4.68)

where

νs ≡
3qB

4πmec
, (4.69)

and

R(x) ≡ x2

2
K4/3

(x
2

)
K1/3

(x
2

)
− 3x3

20

[
K2

4/3

(x
2

)
−K2

1/3

(x
2

)]
, (4.70)

Crusius & Schlickeiser (1986). Here, K4/3(x) and K1/3(x) denote modi�ed Bessel functions

of the second kind. The synchrotron spectrum emitted by the entire electron distribution is

computed by performing the integral convolution

P tot
ν (ν) =

∫ ∞

1
NG(γ, γ0)Pν(ν, γ)dγ ∝ erg s−1 Hz−1 , (4.71)

where NG is evaluated using the analytic solution for the electron distribution given by

Equation (4.58). The corresponding observational �ux levels are given by

Fν(ν) =
1

4πD2

∫ ∞

1
NG(γ, γ0)Pν(ν, γ)dγ ∝ erg s−1 cm−2 Hz−1 , (4.72)

where D is the distance to the source and NG is given by Equation (4.58), and we remind

the reader that γ = x for the ultrarelativistic electrons of interest here.
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4.4 Application to the Crab Nebula Flares

In this section, we test our model for the transport and acceleration of relativistic electrons at

a pulsar wind termination shock by making an application to the interpretation of the γ-ray

�ares observed from the Crab nebula using Fermi-LAT. We also examine the constraints on

the model parameters required in order to ensure that the computational results we obtain

are physically reasonable.

4.4.1 Parameter Constraints

In the model considered here, the stochastic acceleration is due to repeated interactions

between the relativistic electrons and a random �eld of MHD waves propagating with the

Alfvén velocity vA in the local magnetic �eld. In this scenario, discussed in Section 4.2.2,

the momentum di�usion coe�cient D(p) is given by D(p) = D0mec, where the di�usion rate

constant D0 can be computed explicitly by combining Equations (4.12), (4.14), and (4.15)

to obtain

D0 =
qBσmag

3ηmec
= 1172 s−1 σmag

(
B

200µG

)
η−1 , (4.73)

where the constant η >∼ 1, and the magnetization parameter, σmag, is de�ned using (e.g.,

Sironi & Spitkovsky 2014)

σmag ≡
(vA
c

)2
. (4.74)

As discussed in Section 4.1.1, the radiation-reaction (synchrotron burno�) limit places

severe constraints on the stochastic particle acceleration rate resulting from collisions be-

tween electrons and MHD waves. We can use this fact to develop a quantitative restriction

on the value of the di�usion rate constant, D0. We begin by writing the mean stochastic
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momentum gain rate as (e.g., Becker et al. 2006)

<ṗ>stoch=
1

p2
∂

∂p

[
p2D(p)

]
= 3D0mec , (4.75)

where the �nal result follows from Equation (4.16). The synchrotron momentum loss rate

is likewise obtained by combining Equations (4.17) and (4.18), which yields

<ṗ>syn= −σTB
2p2

6πm2
ec

2
. (4.76)

The maximum possible momentum that can be achieved via stochastic MHD acceleration

in the presence of synchrotron losses was found to be (see Equation (4.8))

pMHD = mec

√
6πq

B ζ σT
, (4.77)

where ζ is an order unity constant. This result was obtained by equating the synchrotron

loss timescale with the Larmor timescale. The synchrotron burno� limit requires that the

stochastic gain rate cannot exceed the synchrotron loss rate at the highest energy of interest

in the problem, which implies that

(
<ṗ>stoch + <ṗ>syn

)∣∣∣∣
p=p

MHD

≤ 0 . (4.78)

We can use this inequality to constrain the value of the momentum di�usion constant, D0.

Combining Equations (4.75), (4.76), (4.77), and (4.78), we obtain

D0 ≤ Dmax
0 , (4.79)
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where

Dmax
0 ≡ qB

3mecζ
= 1172 s−1

(
B

200µG

)
ζ−1 (4.80)

represents the maximum value of D0 such that the synchrotron burno� limit is not violated

at the maximum momentum for MHD acceleration, given by Equation (4.77). We point out

that the value of D0 calculated using the MHD model (Equation (4.73)) will automatically

satisfy the synchrotron burno� constraint given by Equation (4.79) provided ζ ∼ 1, η ∼ 1,

and vA ∼ c, which are all reasonable expectations in the pulsar wind nebula. However, in

our applications, we will check to ensure that D0 satis�es Equation (4.79).

4.4.2 Maximum Radiation Energy

We have con�rmed that when the synchrotron burno� limit is taken into consideration, the

maximum Lorentz factor, γMHD , resulting from MHD wave acceleration (Equation (4.8))

yields a maximum photon energy, ϵMHD ∼ 158MeV (Equation (4.9)), that is too low to

account for the GeV γ-ray emission observed using the Fermi-LAT instrument during the

Crab nebula �ares. This motivates the incorporation of electrostatic acceleration into the

model, since this process can extend the maximum particle energy into the range required

to reproduce the observations (Buehler at al. 2012; Cerutti et al. 2012).

The transport equation considered here includes electrostatic and stochastic acceleration,

as well as synchrotron losses and particle escape. We can estimate the maximum particle

energy achieved in our model by examining the Fokker-Planck �drift� coe�cient given by

Equation (4.48). This yields for the mean rate of change of the momentum

⟨dp
dt

⟩
= D0mec

⟨dγ
dy

⟩
= D0mec (3 + Ã− B̃ γ2) , (4.81)

where we have used the fact that γ = x ≡ p/(mec) for the ultrarelativistic electrons con-

sidered here. We can compute the maximum Lorentz factor, corresponding to a balance
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between acceleration and synchrotron losses, by setting <dp/dt>= 0, which yields

γ2max =
Ã+ 3

B̃
=
A0 + 3D0

B0
. (4.82)

This result can be rewritten as

γ2max = γ2elec + γ2shock ρ+ γ2
MHD

D0

Dmax
0

, (4.83)

where γMHD is the maximum Lorentz factor for pure MHD acceleration given by Equa-

tion (4.8), Dmax
0 is the maximum value of D0 de�ned by Equation (4.80), and ρ is the shock

acceleration e�ciency parameter de�ned by Equation (4.26). The quantities γelec and γshock

represent the maximum Lorentz factors for pure electrostatic acceleration and pure shock

acceleration (at the Bohm rate), respectively, de�ned by

γ2elec ≡
6πqE

σTB2
, (4.84)

and

γ2shock ≡ 6πq

B ζ σT
= γ2

MHD
, (4.85)

where we have made use of Equations (4.18) and (4.29). Note that γshock = γMHD , as

expected, since both the shock acceleration rate and the stochastic wave-particle acceleration

rate are limited by synchrotron burno�.

Cerutti et al. (2013a) also derived an expression for the maximum Lorentz factor for pure

electrostatic acceleration, and it is interesting to compare their result with ours. They give

the maximum Lorentz factor as a function of the particle pitch angle θ in their Equation (1),

which can be written as

γ2elec(θ) =
4πqE

σTB2 sin2 θ
. (4.86)
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In the present paper, we are assuming an isotropic distribution of electron velocities. We

can average the Cerutti et al. (2013a) result with respect to pitch angle by noting that

< sin2 θ >= 2/3, in which case we obtain our result given by Equation (4.84). Hence the

two results for the maximum Lorentz factor for pure electrostatic acceleration are consistent.

Using Equations (4.83), (4.84), and (4.85) to substitute for γ in Equation (4.1) yields an

expression for the peak photon energy during the �are, taking into account stochastic MHD

acceleration, shock acceleration, and electrostatic acceleration. The result obtained is

ϵmax ≡ ϵpk(γmax) =
6π ξqmec

2

BcritσT

[
E

B
+
ρ

ζ
+

1

ζ

D0

Dmax
0

]
, (4.87)

which can be rewritten as

ϵmax = 158 MeV ξ

[
E

B
+
ρ

ζ
+

1

ζ

D0

Dmax
0

]
. (4.88)

In the absence of electrostatic and shock acceleration, we regain the peak energy given by

Equation (4.9), which is not adequate to explain the highest energy photons emitted during

the γ-ray �ares from the Crab nebula. A maximum photon energy of ∼ 1GeV can be

obtained if E/B >∼ 5, but it is not clear whether this can be achieved if the magnetic �eld

is equal to the ambient value in the nebula, B ∼ 200µG. This led Cerutti et al. (2012) to

hypothesize that the magnetic �eld is reduced in the reconnection region, where the particle

acceleration is thought to occur, and therefore a larger ratio of E/B may be possible. In

the model considered here, we have adopted the ambient �eld value, B ∼ 200µG, but the

required electric �eld value is reduced by the shock acceleration contribution.
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4.4.3 Electrostatic Acceleration Versus Shock Acceleration

We have found that in the pulsar wind termination shock, the systematic �rst-order mo-

mentum gain rate is given by (see Equations (4.20), (4.25), and (4.28))

< ṗ >gain=< ṗ >elec + < ṗ >shock= qE + qBρ ζ−1 . (4.89)

It is interesting to compare the relative contributions from shock acceleration and electro-

static acceleration in the vicinity of the termination shock. We have

< ṗ >shock

< ṗ >elec
=
ρB

ζE
. (4.90)

The e�ciency factor ρ is set at 0.1 while ζ = 1. Adopting these values in Equation (4.90)

yields

< ṗ >shock

< ṗ >elec
≈ 0.10

B

E
, (4.91)

In our numerical results for the Crab nebula �ares, we generally �nd that B/E ∼ 0.2, and

therefore we can conclude from Equation (4.91) that the �rst-order systematic momentum

gain at the termination shock is dominated by electrostatic acceleration, rather than shock

acceleration. However, it should be emphasized that despite the negligible role of shock

acceleration, the shock nonetheless plays a crucial role in regulating the escape of particles

from the acceleration region, and therefore the shock is an essential ingredient in the model.

4.4.4 Crab Nebula γ-Ray Flare Spectra

Application of our model requires the speci�cation of the dimensionless theory parameters

Ã, B̃, C̃, and F̃ , the magnetic �eld strength, B, the Lorentz factor of the injected electrons,

x0, and the electron injection rate, Ṅ0. We remind the reader that the parameters Ã, B̃, C̃,

and F̃ describe, in turn, the e�ects of electrostatic/shock acceleration, synchrotron losses,
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shock-regulated particle escape, and Bohm di�usive particle escape. Using Equations (4.18),

(4.29), (4.34), (4.44), and (4.60), we �nd that the dimensionless parameters are related to

the physical properties of the plasma via

Ã =
q(E +Bρ ζ−1)

mecD0
, B̃ =

σTB
2

6πmecD0
, C̃ = m2

− − (2 + Ã)m− , F̃ =
6πηm2

ec
4

r2t qB
3σT

B̃ ,

(4.92)

where m− is the high-energy electron power-law index discussed in Section 4.3.2. In our

approach, we treat Ã, B̃, and C̃ as free parameters, and then compute m− and F̃ using

the �nal two relations in Equations (4.92). Hence F̃ and m− are not free parameters in our

model.

In our consideration of the γ-ray �ares from the Crab nebula, the magnetic �eld strength

is set to the value B = 200µG, in agreement with multiple studies of the quiescent emission

from the Crab nebula (e.g., Aharonian et al. 2004; Meyer et al. 2010). The termination

shock radius is set to the value rt = 1017 cm (Montani & Bernadini 2014). In the present

paper, we do not perform detailed quantitative �ts, because our goal is to make general

comparisons between the model and the spectral data. We plan to develop quantitative �ts

in future work. The remaining model free parameters Ã, B̃, C̃, x0, and Ṅ0 are varied until

a reasonable qualitative �t to the γ-ray spectral data is obtained for a given �are. We set

ζ = 1, η = 1, and ρ = 0.1 in all of our numerical calculations.

Once the theory parameters have been estimated by using the model to qualitatively �t

the γ-ray spectrum for a given �are, the value of the momentum di�usion parameter D0 and

the value of the electric �eld E are computed by rearranging Equations (4.92) to obtain

D0 =
σTB

2

6πmecB̃
, E =

σTB
2Ã

6πB̃q
− Bρ

ζ
. (4.93)

In Figure 4.2, we plot the γ-ray spectra computed using Equation (4.72) along with the data

for the �ve �ares observed by Fermi-LAT and AGILE and discussed by Abdo et al. (2011),
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Buehler et al. (2012), Buehler & Blandford (2014), and Striani et al. (2013). The theory

parameters have been varied to obtain a reasonably good qualitative �t to the γ-ray data for

each �are. It is clear from Figure 4.2 that the analytical electron transport model considered

here is able to roughly reproduce the observed γ-ray spectra for each of the observed Fermi-

LAT �ares. The corresponding model parameters are reported in Table 2.1. We have set

ζ = 1, η = 1, and ρ = 0.1 in all of the �are spectrum computations. The magnetic �eld

strength is consistent for all of the models, B = 200µG, and therefore the maximum value

for D0 computed using Equation (4.80) is the same, Dmax
0 = 1172. In each case, we observe

that D0 < Dmax
0 , as required, which con�rms that our model is not violating the synchrotron

burno� limit.

Table 2.1 also includes the cross-over Lorentz factor, γc, computed using Equation (4.38),

which represents the energy at which the transition occurs between shock-regulated escape

at low energies and Bohm di�usive escape at high energies. In our applications to the Crab

nebula �ares, we �nd that γc ∼ 1010 − 1011. The Hillas (1984) condition implies that the

maximum particle Lorentz factor in the nebula is γH ∼ 1010 (see Equation (4.35)), and

therefore we conclude that when γc ∼ 1011, Bohm di�usion is not a signi�cant contributor

to the particle escape. We also list in Table 2.1 the values obtained for the high-energy

power-law index, m−, computed using Equation (4.61).

The corresponding electron distributions for each �are are plotted in Figures 4.3 and

4.4. The plots include a comparison of the exact solution for NG computed using Equa-

tion (4.58) with the approximate power-law solution given by Equation (4.64). We note

that the agreement between the asymptotic and exact solutions is excellent, up to the en-

ergy where synchrotron losses become dominant, and the electron distribution transitions

into an exponential turnover. The electron distributions for the 2009 February, 2010 Septem-

ber, and 2013 March �ares are plotted in Figure 4.3. In each of these cases, the electron

distribution closely resembles the broken power-law solution, with the break occurring at

the injection Lorentz factor γ0. On the high-energy side, the spectrum extends as a straight

power-law until the exponential turnover begins, at γ ∼ 1010, and there is no particle pile-up
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visible. We note that the maximum value of γ is in good agreement with the predicted upper

limit γH ∼ 1010 set by the Hillas condition (see Equation (4.35)).

The electron distributions for the 2007 September and 2011 April �ares are plotted in

Figure 4.4. In these two cases, the electron distributions resemble the approximate broken

power-law solution at low energies, but it displays a distinctive pile-up at the maximum

Lorentz factor γ ∼ 1010, resulting in the sharply peaked γ-ray spectra for these two �ares,

as depicted in Figure 4.2. The maximum particle energy is in agreement with the Hillas

upper limit γH ∼ 1010 given by Equation (4.35). The 2007 September and 2011 April �ares

also have the �attest high-energy power-law index for the electron distribution, with m− ∼

−0.3 (see Table 2.1), suggesting that extremely e�cient electrostatic/shock acceleration is

occurring during these two �ares. Hence we view the 2007 September and 2011 April �ares

as indicative of the strongest particle acceleration ever observed in the Crab nebula.

We can determine the speci�c amount of acceleration associated with the shock and the

electric �eld by writing the acceleration parameter Ã as the sum

Ã = Ãshock + Ãelec , (4.94)

where the electric �eld and shock acceleration parameters, Ãelec and Ãshock, respectively, are

given by

Ãelec ≡
qE

mecD0
, Ãshock ≡ qBρ

mecD0ζ
. (4.95)

The results for Ãelec and Ãshock are included in the Crab nebula γ-ray �are parameters

listed in Table 2.1, and one can see that electrostatic acceleration dominates in each �are

model, as expected. It is apparent that the production of the γ-ray �ares requires substan-

tial electrostatic acceleration, as expected. The inferred electric �eld values in the magnetic

reconnection layer found using Equation (4.93) falls in the range E ∼ 50− 600µG in Gaus-

sian units for an ambient magnetic �eld B = 200µG. These values generally satisfy the
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condition E >∼ B, which is consistent with rapid magnetic reconnection, giving rise to e�-

cient electrostatic acceleration. The only exception is the weakest �are, observed in 2009

February, for which we obtain E/B ∼ 0.25. However, this particular �are barely exceeded

the level of the quiescent nebular emission, so our results are reasonable in the sense that

strong electrostatic acceleration is not required to explain the spectrum observed during

that �are.

The values for the magnetization parameter σmag obtained by substituting B, η, and

D0 into Equation (4.73) are reported in Table 4.1. We �nd that 0.04 <∼ σmag
<∼ 0.1, which is

within the range deduced by Mori et al. (2004) in their analysis of the asymmetry of the X-

ray brightness between the far and near sides of the equatorial region of the nebula. However,

it should be emphasized that the value of σmag is not well constrained by the observations

or the models, and could range from σmag ∼ 10−3 in the magnetohydrodynamical models

(e.g., Kennel & Coroniti 1984) up to σmag ∼ 1 in the striped wind models (e.g., Komissarov

2013). Table 2.1 includes the values used in each �are model for the Lorentz factor of the

injected electrons, γ0 = x0, and the particle injection rate, Ṅ0. The associated power in the

injected particles is given by L0 = γ0mec
2Ṅ0, assuming isotropic emission. We con�rm in

each case that the injected power L0 does not exceed the pulsar spin-down power, which

is ∼ 5 × 1038 ergs s−1. In general, we set γ0 = 106 in order to simulate the e�ect of the

injection of electrons from the �cold� pulsar wind, in which the electrons have a high bulk

Lorentz factor but a small random component (Lyubarsky 2003). However, in the case of

the 2013 March �are, we �nd it necessary to set γ0 = 5× 108 in order to avoid an injection

power L0 that exceeds the spin-down power. The value γ0 = 5 × 108 is much higher

than expected for the cold pulsar wind, but it is in the expected range if one considers the

absorption of the electromagnetic Poynting �ux by the electrons near the termination shock,

leading to a �hot� input distribution rather than a cold one (Rees & Gunn 1974). This is

essentially the scenario considered by Cerutti et al. (2103b), who assumed that the injected

electrons were sampled from an ultrarelativistic Maxwellian distribution with temperature
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kT/(mec
2) = 108. Similarly, Cerutti et al. (2013a) assumed the injection of a power-law

electron distribution extending up to a maximum Lorentz factor equal to 4× 108.

4.4.5 Synchrotron Afterglow

Although the γ-ray �ares observed from the Crab nebula are intrinsically time-dependent

phenomenon, in this paper, we have employed a steady-state approach to model the un-

derlying electron distribution, under the assumption that the electrons reach equilibrium

during the peak of the �are. This is reasonable provided the �are duration timescale is

comparable to the synchrotron loss timescale, which is in fact the case, according to Equa-

tion (4.6). In our one-zone model, the electrons that create the observed γ-ray synchrotron

�ares are accelerated and radiate in the same region, which is in the vicinity of the pulsar

wind termination shock.

The electrons that produce the peak level of γ-ray emission observed during a given �are

eventually escape into the downstream (outer) region, at radius r > rt, where rt = 1017 cm is

the pulsar wind termination shock radius. The escape of the electrons into the outer region

of the nebula occurs via a combination of advection for the low-energy electrons that are

�trapped� in the out�ow, and Bohm di�usion for the high-energy electrons. The transition

between these two escape channels occurs at the cross-over Lorentz factor, γc ∼ 1010 − 1011

(see Equation (4.38) and Table 2.1).

Once the electrons escape, they are subject to continued synchrotron cooling in the outer

region of the nebula, but they do not experience any additional acceleration. Since this is a

non-equilibrium situation, the synchrotron spectrum emitted by the cooling electrons varies

with time, and therefore the electrons in the cooling region produce a variable �synchrotron

afterglow� spectrum that gradually fades away and shifts to lower frequencies. We can use

our model to compute the time-dependent synchrotron afterglow spectrum, and to make

predictions that can be compared with multi-wavelength observations of future γ-ray �ares

from the Crab nebula.

The transport equation for the escaping electrons in the cooling region is quite simple,
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since they only experience losses. Here, we will focus solely on the synchrotron losses, in

order to obtain an upper limit on the afterglow radiation. If adiabatic losses are also taken

into consideration, that will reduce the level of the resulting spectrum below that predicted

here. As an escaping electron cools in response to synchrotron losses, its Lorentz factor γ

varies according to (see Equation (4.4))

− 1

γ2
dγ

dt
=
σTB

2
cool

6πmec
, (4.96)

where Bcool is the magnetic �eld in the cooling region. We can rewrite Equation (4.96) as

−dγ
γ2

= B0dt , (4.97)

where the constant B0 ∝ s−1 is given by (cf. Equation (4.18))

B0 =
σTB

2
cool

6πmec
. (4.98)

The solution obtained for the time variation of the Lorentz factor is

γ(γ∗, t) =

(
1

γ∗
+ B0t

)−1

, (4.99)

where γ∗ is the initial value of the electron's Lorentz factor at time t = 0 as it enters the

downstream cooling region and begins the cooling phase of its evolution in the nebula. The

initial Lorentz factor γ∗ can be computed in terms of the Lorentz factor γ at time t by

inverting Equation (4.99) to obtain

γ∗(γ, t) =

(
1

γ
− B0t

)−1

. (4.100)
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This result implies that the maximum possible Lorentz factor at time t is equal to 1/(B0t).

The time-dependent electron distribution in the cooling region, denoted by NG(t, γ),

evolves under the in�uence of synchrotron losses according to the relation

NG(t, γ) = J(t)NG(0, γ∗) , (4.101)

where NG(0, γ∗) is the initial distribution at time t = 0, and the normalization function

J(t) can be determined by requiring that the total number of electrons is conserved during

the cooling phase. Conservation of electron number during the cooling phase implies the

di�erential relation

NG(t, γ) dγ = NG(0, γ∗) dγ∗ , (4.102)

or, equivalently,

NG(t, γ) = NG(0, γ∗)

(
∂γ∗
∂γ

)
t

, (4.103)

where γ∗ is computed using Equation (4.100). The required partial derivative is given by

J(t) ≡
(
∂γ∗
∂γ

)
t

=
γ2∗
γ2

. (4.104)

By combining this result with Equation (4.101), we �nd that the electron distribution in the

cooling region after time t is related to the electron distribution at time t = 0 using

NG(t, γ) = γ−2

(
1

γ
− B0t

)−2

NG

[
0,

(
1

γ
− B0t

)−1
]
, (4.105)

where the value of γ at time t cannot exceed the limit γ < 1/(B0t).

Equation (4.105) relates the electron distribution NG(t, γ) in the cooling region to the

starting distribution NG(0, γ) at time t = 0. Our remaining task is to compute the initial
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distribution at t = 0. This can be accomplished by recognizing that the initial distribution

in the downstream cooling region is equal to the population of electrons that escapes from

the acceleration region. Hence we can write

NG(0, γ) = t∗NG(γ, γ0) t
−1
esc(γ) , (4.106)

where γ0 is the Lorentz factor of the monoenergetic electrons injected into the acceleration

region, the acceleration-region particle distribution NG is computed using Equation (4.58),

and t∗ is the timescale for electrons to accumulate in the downstream cooling region, before

advection sweeps them into the outer part of the nebula. The advection timescale is inde-

pendent of the particle energy. In our application to the Crab nebula, we set t∗ equal to 7

days since this is the approximate �are duration. The escape timescale, tesc(γ), appearing

in Equation (4.106) is given by (see Equation (4.37))

tesc(γ) =

(
C0

γ
+ F0γ

)−1

, (4.107)

which exhibits the variation between shock-regulated escape at low particle energies and

Bohm di�usive escape at high particle energies (see Section 4.2.5). The transition between

the two escape mechanism occurs at the cross-over Lorentz factor, γc, computed using Equa-

tion (4.38). In our models, we �nd that γc ∼ 1010 − 1011 (see Table 2.1).

By combining Equations (4.105), (4.106), and (4.107), we �nd that the advanced-time

electron distribution in the cooling region can be written in the explicit form

NG(t, γ) =

(
1

γ
− B0t

)−3

t∗ γ
−2

[
C0

(
1

γ
− B0t

)2

+ F0

]
NG

[(
1

γ
− B0t

)−1

, γ0

]
,

(4.108)

where NG is computed using Equation (4.58). The synchrotron afterglow spectrum gener-

ated at time t by the population of electrons that have escaped into the downstream (cooling)
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region is computed using (see Equation (4.72))

F cool
ν (t, ν) =

1

4πD2

∫ (B0t)−1

1
NG(t, γ)Pν(ν, γ)dγ ∝ erg s−1 cm−2 Hz−1 , (4.109)

where D is the distance to the source, NG is evaluated using Equation (4.108), and Pν(ν, γ)

is given by Equation (4.68). Note that the upper bound for the integration over γ at time t

is equal to (B0t)
−1 due to the action of synchrotron cooling.

In Figure 4.5 we plot the synchrotron afterglow spectrum for the �ares calculated using

Equation (4.109), and varying the accumulation timescale value t∗ until the �ux magnitude of

the afterglow immediately after the �are equals that of the �are spectrum. This is a temporal

continuity condition that we apply which allows t∗ to vary. The spectrum is plotted as a

series of �snapshots� at times t = 1 s, t = 9 days, and t = 21 days. The magnetic �eld strength

in the downstream (cooling) region, Bcool, is likely to be lower than that in the upstream

acceleration region, B, so that Bcool ≤ B. In Figure 4.5, we have set Bcool = B = 200µG,

and we have also ignored the e�ect of adiabatic losses in the expanding wind. Hence, the

spectral snapshots plotted in Figure 4.5 represent upper limits on the predicted level of the

afterglow emission. It is clear that the synchrotron afterglow is not much less luminous than

the primary γ-ray �are observed in 2011 April, even if the magnetic �eld in the cooling

region has the relatively high value Bcool = 200µG, in which case Figure 4.5 suggests that

the afterglow may be detectable above the quiescent background for a period of at least 3

weeks. However, the levels of emission reported in Figure 4.5 will be reduced by adiabatic

losses in the wind, and also by the decreasing magnetic �eld strength experienced by the

electrons as they advect to larger radii in the wind and so our afterglow spectral snapshots

represent the upper limit on the observable �ux levels for each �are's afterglow.

4.4.6 Conservation of Energy

It is important to analyze the energy budget of the �are by computing the energy loss

and gain rate for each term in the transport equation. The gains are the injection energy,
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shock and electrostatic acceleration, and the energy gain rate from stochastic wave-particle

acceleration via interactions with MHD waves. The sum of these energy gain channels

should be equal to the loss rate channels given by synchrotron losses and particle escape.

We compute each one below and summarize the results in Tables 4.3 and 4.4.

The �ares have a luminosity that is on the order of a few percent of the pulsar spin-down

power which is a constraint that the model satis�es. However, it is instructive to compute

the synchrotron energy loss rate due to the total electron population after being accelerated.

We de�ne the synchrotron power, Psynch. We have,

Psynch =
4

3
σTcUB

∫ ∞

1
NG(γ)γ

2dγ , (4.110)

where NG is given by Equation (4.58) and UB is the magnetic energy density. The value of

Lsynch should be about 1% the pulsar spin-down power.

Another energy loss channel is particle escape. The Bohm di�usive escape and shock-

regulated escape scenarios both occur in the nebula and we must take into account both of

these processes to get the total energy losses due to particle escape. The escaped particle

power, Pesc, is given by

Pesc =

∫ ∞

1
(t−1
SRE + t−1

Bohm)γmec
2NG(γ)dγ =

∫ ∞

1

(
C0

γ
+ F0γ

)
γmec

2NG(γ)dγ , (4.111)

where C0 and F0 are the escape rates for the shock-regulated and Bohm di�usive escape

scenarios, respectively.

The energy gains due to electrostatic and shock acceleration are combined and the model

parameter Ã sets the strenght for the total �rst order energy gain rate. The stochastic MHD

acceleration process is second order and so is treated separately. We have the power gained
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from �rst order acceleration processes, Pelec, given by

Pelec =

∫ ∞

1
qEcNG(γ)dγ , (4.112)

where E is the electric �eld. The energy gain rate due to only shock acceleration is given by

Pshock =

∫ ∞

1

ρqB

ζ
cNG(γ)dγ , (4.113)

where ρ is the fractional shock e�ciency, q is the charge of an electron, and ζ is of order

unity. The energy gain rate due to only the stochastic MHD acceleration process, PMHD, is

given by

PMHD =

∫ ∞

1
3D0mec

2NG(γ)dγ , (4.114)

where D0 is given by the �rst case in Equation (4.93).

We can compute the power gain and loss contributions from each term in the transport

equation and demonstrate that the total energy budget can be accounted for. Additionally,

it will be insightful to connect the �are spectral shape with where most of the energy is

being channeled. The magnitude of each channel is reported in Tables 4.3 and 4.4. The

synchrotron loss column is seen to be 1− 5% of the pulsar spin-down power as expected.

E�cient Gamma-Ray Flares

The April 2011 and September 2007 �ares are the most similar to each other than any

other. This is to be expected since even the �are spectra have similar shapes and peak

�ux magnitudes. Additionally they each display particle distribution functions with peaks

at very high Lorentz factors. Furthermore, these two �ares have the highest values of Ã

and the lowest values of C̃ indicating that the accelerating region during these �ares were

characterized by very e�cient conversion of magnetic energy to electrostatic �elds. The
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low value of C̃ indicates that the nature of the termination shock was such that shock-

regulated escape was very ine�cient. This could be due to a change in the obliquity of

the shock to the out�owing pulsar wind which increased the probability of additional shock

crossings instead of shock-regulated escape for particles with low momentum. These shock-

recycled particles could survive long enough at the termination shock to undergo additional

electrostatic acceleration as well. The escaped particle power for these two �ares have the

smallest magnitude (by a factor of one hundred) as is seen in Table 4.4.

Ine�cient Gamma-Ray Flares

The weakest �are on February 2009 displays a peak below the synchrotron burn-o� limit

and �ux levels similar to that of the quiescent background emission. The values for the

energy gain and loss rates reported in Tables 4.3 and 4.4 shows that the escaping power

represents a signi�cant fraction of all the energy gain rates. We note that Pesc for this �are

is twice the pulsar spin-down power. There could be mild bulk boosting which could explain

this. Additionally, the emission could be anisotropic yet in this model we assume isotropic

emission. This implies that during this �are the accelerating mechanisms were weak and the

escape mechanisms were very e�cient. Most of the injected particles underwent insigni�cant

acceleration and then escaped e�ciently without further acceleration. Figure 4.3 shows

γ2NG plots and it can be seen that the February 2009 �are spectrum resulted from the least

amount of very high energy electrons as is seen by the fact that the peak occurs at the lowest

values of γ.

The second weakest �are occured in September 2010. Table 4.4 shows that the escaping

particle power is comparable to the energy gain rate due to electrostatic acceleration and

shock acceleration. However, the fractional (Pesc compared with Pgain) particle escape power

is not as signi�cantly high as it is in the February 2009 �are. Correspondingly, the �are

spectrum for September 2010 has a peak slightly above or comparable to the synchrotron

burn-o� limit and displays �ux levels su�ciently above background levels.

Lastly, the March 2013 �are has escaped particle power that is comparable to the two
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weakest �ares, despite being characterized by signi�cant �ux above the synchrotron burn-

o� limit and being the most broad spectrum. Namely, the theoretical spectrum predicts

γ-ray �ux signi�cantly above any other �are at energies in excess of that reported by the

Fermi observational data. This �are is reproduced by the model with the largest induced

electrostatic �elds and the smallest dimensionless gain parameter Ã, but it has one of the

largest values of C̃ meaning shock-regulated escape was e�cient. This could imply a unique

termination shock morphology which more e�ciently ejects low momenta particles. We note

that as the synchrotron afterglow fades in the synchrotron nebula the spectrum seems to

approach the well-known quiescent spectrum of the nebula. This suggests that the electrons

accelerated at the termination shock in our model may merge with the native electron

population in the nebula.

4.5 Discussion

We have developed and applied a new analytical model for the acceleration and transport

of relativistic electrons in pulsar wind termination shocks, including the e�ects of stochastic

wave-particle acceleration, electrostatic acceleration, shock acceleration, particle escape, and

radiative losses via the production of synchrotron emission. Since losses are included in our

transport equation, the synchrotron �are γ-ray spectra that we obtain are self-consistent.

The model considered here di�ers signi�cantly from that developed by previous authors such

as Cerutti et al. (2012, 2013a, 2014) in that we do not explicitly treat the spatial transport,

and instead, we focus on a one-zone model in which the the electron energy distribution

is interpreted as an average over the acceleration/emission region. However, the spatial

geometry of the problem is treated implicitly through the utilization of a realistic dependence

of the escape timescale, tesc, on the particle momentum, p, expressed by Equation (4.37).

At low energies, the electrons are trapped in the �ow, and the escape of the particles is

regulated by advection in the vicinity of the shock; at high energies, the particles are able to

escape into the outer region of the nebula because the Larmor radius becomes comparable
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to the termination shock radius, rt = 1017 cm. The transition between the dominance of

the two escape mehanisms occurs at the cross-over Lorentz factor, γc (Equation (4.38)), and

the highest-energy electrons accelerated in our model reach a peak Lorentz factor of ∼ 1010,

which is consistent with the Hillas condition for the Crab nebula termination shock radius

rt ∼ 1017 cm (see Equation (4.35)).

In the model of Cerutti et al. (2012), the acceleration occurs in a thin layer of magnetic

reconnection, and the electrons leave that region as a tightly focused beam, to enter a

separate radiation region where the electrons generate synchrotron emission in the presence

of a stronger magnetic �eld than that in the acceleration region. While this scenario is

plausible, it relies on two assumptions that may not be warranted. The �rst assumption is

that the acceleration occurs in a region of greatly suppressed magnetic �eld, where the �eld

strength is far below the observed ambient value. The second assumption is the imposition

of a magnetic guide �eld, which is required in order to render the simulations stable, so

that the electrons can reach the energies required to explain the observed γ-ray emission.

Furthermore, the γ-ray spectra obtained by Cerutti et al. (2012) do not �t the observed

γ-ray spectra very well. We demonstrated in Figure 4.2 that the model developed here is

able to �t reasonably well the γ-ray spectra for all �ve of the γ-ray �ares from the Crab

nebula observed by Fermi-LAT and AGILE, up to photon energies of ∼ 1GeV. We have also

reported computations of the synchrotron afterglow emission produced by the accelerated

electrons after they escape into the downstream (outer) cooling region in Figures 4.5. We

predict that the afterglow should be observable for approximately 3 weeks, at a maximum.

However, this estimate neglects the e�ects of adiabatic cooing and the decreasing magnetic

�eld that the escaping particles will experience as that advect through the outer region of

the pulsar wind nebula.
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Table 4.1: Input Model Parameters

Flare σmag Ãshock Ãelec B̃ C̃ F̃

September 2007 0.0802 3.740 32.26 5.50× 10−19 10.0 2.89× 10−21

February 2009 0.0401 7.480 17.52 1.10× 10−18 45.0 1.16× 10−20

September 2010 0.0980 3.060 32.94 4.50× 10−19 53.0 1.94× 10−21

April 2011 0.1026 2.925 46.80 4.30× 10−19 15.0 1.77× 10−21

March 2013 0.6784 0.440 13.56 6.50× 10−19 40.0 4.04× 10−23

Table 4.2: Additional Parameters
Flare m− D0(s

−1) E
B γc γ0 Ṅ0(s

−1)

September 2007 −0.261 94.00 0.862 1.12× 1011 1× 106 4.50× 1033

February 2009 −1.575 47.00 0.234 5.58× 1010 1× 106 4.50× 1038

September 2010 −1.347 114.9 1.076 1.36× 1011 1× 106 4.32× 1037

April 2011 −0.288 120.2 1.600 9.21× 1010 1× 106 8.10× 1033

March 2013 −2.198 795.4 3.065 5.89× 1011 5× 108 8.00× 1035

Table 4.3: Energy Budget: Gains

Flare L0(ergs s
−1) Pelec(ergs s

−1) Pshock(ergs s
−1) PMHD(ergs s

−1)

September 2007 3.68× 1033 5.54× 1036 6.44× 1035 1.08× 1036

February 2009 3.68× 1038 3.69× 1038 1.58× 1038 6.34× 1037

September 2010 4.91× 1037 1.10× 1038 1.02× 1037 1.01× 1037

April 2011 6.63× 1033 1.02× 1037 6.39× 1035 1.29× 1036

March 2013 3.28× 1038 1.89× 1038 6.17× 1036 4.21× 1037

Table 4.4: Energy Budget: Losses

Flare Psynch(ergs s
−1) Pesc(ergs s

−1)

September 2007 1.04× 1037 3.66× 1036

February 2009 2.25× 1036 9.51× 1038

September 2010 1.75× 1036 1.78× 1038

April 2011 1.62× 1037 6.52× 1036

March 2013 3.24× 1036 5.61× 1038
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Figure 4.1: Diagram summarizing the geometry of the pulsar wind termination shock and
the associated particle acceleration and transport.
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Figure 4.2: Gamma-ray synchrotron �are spectra computed using Equation (4.72) are plot-
ted using the parameters listed in Tables 4.1 and 4.2 (solid lines). The associated electron
distributions are computed using Equation (4.58). Also plotted are the corresponding data
for each of the γ-ray �ares observed by Fermi-LAT and AGILE, taken from Abdo et al.
(2011), Buehler et al. (2012), and Buehler & Blandford (2014).
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Figure 4.3: The electron number distributions given by the exact solution (Equation (4.58),
solid lines) are compared with the approximate broken power-law solution (Equation (4.64),
�lled circles). Here we consider the electron distributions for the 2009 February, 2010
September, and 2013 March �ares, which agree closely with the corresponding power-law
distributions up to the exponential turnover created by synchrotron losses.
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Figure 4.4: Same as Figure 4.3, except here we plot the electron distributions corresponding
to the 2011 April and 2007 September �ares. In these two cases, a distinctive particle
pile-up occurs at the energy where synchrotron losses produce an exponential turnover. At
lower energies, the exact solutions agree with the approximate power-law solution given by
Equation (4.64).
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Figure 4.5: Synchrotron afterglow spectra computed using Equation (4.109) for the �ares
are plotted along with the Fermi-LAT and AGILE data for all of the �ares, as well as the
quiescent emission. Here we set the magnetic �eld in the cooling region on the downstream
(outer) side of the pulsar wind termination shock equal to Bcool = 200µG as an upper limit.
We also vary the particle accumulation timescale t∗ which is also an upper limit based on
�ux continuity between the �are and the instant the cooling spectrum begins. Adiabatic
losses in the expanding wind have been neglected. Under these assumptions, the afterglow
would be detectable above the quiescent emission for about 3 weeks depending on the �are.
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Chapter 5: Conclusions

In this dissertation I have developed analytic models describing a variety of high-energy

astrophysical phenomenon for which there is a wealth of observational data. These models

were tested by comparison with the data and the validity of the underlying assumptions

that compose them were evaluated. The convenience and versatility of developing analytic

models stems from the explicit control of the model parameters as well as the potential for

the models to be ported into standard data analysis software. Furthermore, this dissertation

research represents a signi�cant improvement in the current understanding of several pro-

cesses of interest in modern high-energy astrophysics. In the remaining sections I summarize

the detailed conclusions reached in the two major projects that I have focused on in this

dissertation.

5.1 X-Ray Time Lags and Spectra

Our goal in Chapter 2 was to develop an integrated model, based on the di�usion and thermal

Comptonization of seed photons in an optically thick scattering cloud, that can naturally

reproduce both the observed X-ray spectra and the time lags for Cyg X-1 and GX 339-04

using a single set of cloud parameters (density, radius, temperature). We have derived and

presented a new set of exact mathematical solutions describing the Comptonization of seed

photons injected into a scattering cloud of �nite size that is either homogeneous, or possesses

an electron number density that varies with radius as ne(r) ∝ r−1. The results developed

there include new expressions for (a) the Green's function describing the radiated quiescent

X-ray �ux (corresponding to the reprocessing of continually injected monochromatic seed

photons), (b) the Green's function for the Fourier transform of the time-dependent radiation

159



spectrum resulting from the impulsive injection of monochromatic seed photons, and (c) the

associated X-ray Fourier time lags.

By exploiting the linearity of the fundamental transport equation, we used our results

for the Green's function to explore a variety of seed photon injection scenarios. One of our

main conclusions is that the integrated model can successfully explain the data regardless

of the cloud con�guration (homogeneous or inhomogeneous), provided the optical thickness

and the temperature are comparable in the two models, as expected based on the Compton

reverberation scenario (Payne 1980). Our results demonstrate that the bremsstrahlung

injection model �ts the observational time-lag data reasonably well for both Cyg X-1 and

GX 339-04, whether the scattering corona is homogeneous or inhomogeneous. We therefore

conclude that the constant time lags found by HKC in the homogeneous cloud con�guration

were the result of their utilization of a quasi-monochromatic (low-temperature blackbody)

injection spectrum for the seed photon distribution.

The injection location in our model is di�erent from that considerd by HKC, who assumed

that the seed photons were always injected at the center of the spherical cloud. In our model,

the injection location is arbitrary, and we �nd that the best agreement with the time lag

data is obtained when the injection is relatively close to the surface of the cloud, so that the

prompt escape of some of the unprocessed bremsstrahlung seed photons is able to explain

the diminishing time lags observed at high Fourier frequencies. At longer timescales, the

standard thermal Comptonization process sets the delay between the soft and hard channels,

and this naturally leads to the observed plateau in the time lags at low Fourier frequencies.

In Chapter 3 we developed a fully relativistic time lag model based o� of the same

Comptonization processes studied in Chapter 2, but with the addition of a uniform rotation

component. We found that the time lags in the rotating cloud model are frame-dependent

lending, in part, to the Lorentz transformations of the relevant variables (e.g. Fourier

frequency, energy, etc.). We implemented the same injection paradigm in this rotating

cloud model whereby seed photons are injected on the surface of the homogeneous cloud

and with a broadband injection spectrum due to a bremsstrahlung �ash. We found that
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the resulting theoretical time lags reproduce the observational data just as well as the non-

rotating cloud model provided the rotation angular velocity is the Keplerian rotation rate.

In fact, we found that the rotating cloud model agrees exactly with the non-rotating cloud

model indicating that any bulk rotation of coronae does not modify the resulting time lags,

provided the rotation is Keplerian.

As an academic demonstration, we produce plots of the time lags produced from a ho-

mogeneous cloud when the rotation is super-Keplerian yet without regard to the mechanism

driving such rapid rotation rates. It was interesting to see deviations from the non-rotating

case at high Fourier frequency. Additionally, we saw di�erent behavior in the Fourier fre-

quency regimes between the sources Cyg X-1 and GX 339-04. Namely, the Cyg X-1 super-

Keplerian model showed longer lags at high Fourier frequency than the non-rotating model

and the reverse was true for GX 339-04 for the same rotation rates. It is likely that these

deviations from the �base-line� time lags (i.e. the non-rotating model) result from signi�cant

boosting of the radiated �ux emanating from the surface of a relativistically rotating cloud.

In future work, we plan to develop a more general Green's function in which the injection

occurs on a ring or a point, rather than on a spherical shell as in the model considered here.

As in the presesent study, the resulting Fourier transform of the time-dependent Green's

function in the general case will allow us to investigate a variety of seed photon energy

distributions (e.g., blackbody or bremsstrahlung). The additional geometric �exibility in

the general model should allow us to further improve the agreement between the model

predictions and the data, hence providing new insights into the structure of the scattering

corona and the underlying accretion disk. We also plan to examine scenarios in which the

electrons cool during the transient in response to the upscattering of the injected photons.

This may help to explain the soft time lags observed in some accreting black-hole sources

(e.g., Fabian et al. 2009).
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5.2 Gamma-Ray Flares from the Crab Nebula

The model developed to quantitatively reproduce the γ-ray �are spectra from the Crab

nebula represents a �rst ever fully analytic and self-consistent model which incorporates a

wide range of relevant physics likely at work in the accelerating region of the Crab. The

�ts to the observational data are excellent and will allow future studies to glean information

surrounding the nuances of the high-environment in the Crab near the termination shock.

Although transients are, by de�nition, a time-dependent phenomenon their spectra are

time-averaged and can be studied using a time-independent model as was done in the γ-ray

�are model developed in Chapter 4. The electron distribution function resulting from a vari-

ety of gains and losses is computed self-consistently, because the transport equation includes

synchrotron losses as well as particle escape formalisms at high and low momenta. With

the analytic solution for the particle distribution function resulting from acceleration, syn-

chrotron losses, and escape we computed the exact synchrotron spectrum via a synchrotron

convolution integral.

With explicit control over the model parameters that determine the relative contribu-

tion of each physical process (i.e. acceleration, losses, escape) we can produce unique �ts

to the observational data and draw conclusions from the parameter values that produce the

�ts. Furthermore, this model was capable of �tting the spectra of all the major super-�ares

thereby lending con�dence to the model. We found that the electrostatic acceleration mecha-

nism from the magnetic reconnection zone dominates over the relativistic shock acceleration

mechanism.

Lastly, we provided a physical picture to constrain the size of the accelerating region

by application of a dual escape formalism that includes Bohm di�usive escape and shock-

regulated escape. The former describes high energy particles that escape from the system

when their Larmor radius is large and approaches the size of the accelerating region. This is

quanti�ed through the Hillas condition. On the other hand, shock-regulated escape describes

low-energy particles whose Larmor radius is small so they have a small probability of being

recycled back through the shock. Instead they advect downstream and leave the vicinity of
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the accelerating region. By including both of these escape scenarios, each of which operates

at either high or low energies, we provide both a great �t to the observed �are spectra and

a comprehensive physical model.

In addition to the application of the model to the �are spectra, we also provided predic-

tions of the after-glow spectrum. As particles escape from the accelerating region and enter

the expanding nebula they cool via synchrotron losses with no further acceleration. This

population of electrons were found to emit synchrotron radiation above quiescent levels for

up to three weeks. It would be interesting if future observational studies could look for such

a signature in the weeks following a major �are event. This auxillary model component

should provide an upper limit on the �ux levels due its simplicity, for we have neglected adi-

abatic losses and have little information regarding the strength and nature of the magnetic

�eld topology in this region.

The model developed for the Gamma-Ray Flare phenomenon in the Crab Nebula is

analytical in nature, and therefore it provides a very �exible tool with which to conduct a

broad range of parameter studies. It should be straight forward to port the model into any

of the standard data analysis packages to perform quantitative �ts, which we do not pursue

in this dissertation. In future work, we intend to pursue a fully time-dependent solution, as

well as the analysis of the spectrum resulting from the acceleration of an injected power-law

distribution of electrons, rather than the monoenergetic injection considered here.

163



Appendix A:

A.1 Appendix A

In order to use the series expansions developed in Sections 3 and 4 to represent the Green's

functions for the quiescent spectrum and for the Fourier transform of the time-dependent

spectrum, it is necessary to establish the orthogonality of the various spatial eigenfunctions.

In this section, we present a global proof of orthogonality of the spatial eigenfunctions for

both the homogeneous case (utilizing the mirror inner boundary condition) and for the

inhomogeneous case (utilizing the dual free-streaming boundary condition). First we de�ne

the generic spatial ODE, encompassing Equations (2.46), (2.69), (2.87), and (2.106), by

writing

1

z2−α

d

dz

(
z2+αdΓn

dz

)
+ η2ξnΓn(z) = 0 , (A.1)

such that,

α =


0, homogeneous (quiescent & Fourier transform) ,

1, inhomogeneous (quiescent & Fourier transform) ,

(A.2)

Γn(z) =


Yn(z), homogeneous (quiescent & Fourier transform) ,

yn(z), inhomogeneous (quiescent) ,

gn(z), inhomogeneous (Fourier transform) ,

(A.3)

and

ξn =


λn, homogeneous (quiescent & Fourier transform) ,

λn, inhomogeneous (quiescent) ,

λn + 3iω̃z, inhomogeneous (Fourier transform) .

(A.4)
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To establish orthogonality, we multiply Equation (A.1) by Γm(z) and then duplicate

it with the indices exchanged, after which we subtract the second equation from the �rst,

yielding

Γm
d

dz

(
z2+αdΓn

dz

)
− Γn

d

dz

(
z2+αdΓm

dz

)
= −η2z2−α(ξn − ξm)Γn(z)Γm(z) . (A.5)

Next, we integrate by parts with respect to z over the computational domain zin ≤ z ≤ 1 to

obtain, after simpli�cation,

(
z2+αΓm

dΓn

dz
− z2+αΓn

dΓm

dz

) ∣∣∣∣1
zin

= −η2(ξn − ξm)

∫ 1

zin

z2−αΓn(z)Γm(z) dz . (A.6)

The left-hand side of Equation (A.6) needs to be evaluated separately for the homogeneous

and inhomogeneous cases, since the spatial boundary conditions are di�erent in the two

situations. We consider each of these cases in turn below.

For the homogeneous cloud con�guration, with α = 0 and zin = 0, the inner and outer

spatial boundary conditions can be written as (cf. Equations (2.51) and (2.53))

lim
z→0

z2
dΓn

dz
= 0 , lim

z→1

1

3η

dΓn

dz
+ Γn = 0 . (A.7)

Likewise, in the inhomogeneous case, with α = 1, we can express the inner and outer

boundary conditions as (cf. Equations (2.92) and (2.94))

lim
z→zin

z

3η

dΓn

dz
− Γn = 0 , lim

z→1

z

3η

dΓn

dz
+ Γn = 0 . (A.8)

Using either the homogeneous or inhomogeneous boundary conditions given by Equations (A.7)

and (A.8), respectively, we �nd that the left-hand side of Equation (A.6) vanishes, which
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establishes the required orthogonality of the spatial eigenfunctions. The orthogonality con-

dition can be written in general as

∫ 1

zin

z2−α Γn(z) Γm(z) dz = 0 , n ̸= m . (A.9)

A.2 Appendix B

As shown in Section 5, the particular solution for the Fourier transform in the case of

bremsstrahlung, Fbrem, injection is given by the convolution (see Equation (2.128))

Fbrem(x, z, z0, ω̃) =

∫ ∞

xabs

FG(x, x0, z, z0, ω̃)A0 x
−1
0 e−x0N−1

0 dx0 , (A.10)

where xabs is the dimensionless self-absorption cuto� energy, the constant A0 is given

by Equation (2.127), and the Fourier transform Green's function, FG, is given by Equa-

tions (2.83) and (2.123) in the homogeneous and inhomogeneous cases, respectively. In

general, we can write FG in the generic form

FG(x, x0, z, z0, ω̃) = N0 e
(x0−x)/2(xx0)

−2
∞∑
n=0

M2,λ(xmin)W2,λ(xmax)An(z, z0, ω̃) , (A.11)

where xmin = min(x, x0), xmax = max(x, x0), and An is a composite function containing the

expansion coe�cients and the spatial eigenfunctions, given by

An(z, z0, ω̃) =
eiω̃p0η3

4πR3Θ4(mec2)3


Γ(µ− 3/2)Yn(z0)Yn(z)

Γ(1 + 2µ)In
, homogeneous ,

Γ(σ − 3/2)gn(z0)gn(z)

Γ(1 + 2σ) η3Kn
, inhomogeneous .

(A.12)
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In the homogeneous case, µ is computed using Equation (2.76), and in the inhomogeneous

case, σ is computed using Equation (2.109). Combining Equations (A.10) and (A.11), and

reversing the order of summation and integration, we obtain

Fbrem(x, z, z0, ω̃) = A0 e
−x/2x−2

∞∑
n=0

An(z, z0, ω̃)B(λ, x) , (A.13)

where

B(λ, x) ≡
∫ ∞

xabs

e−x0/2x−3
0 M2,λ(xmin)W2,λ(xmax) dx0 , (A.14)

and we set λ = µ to treat the homogeneous case, and we set λ = σ to treat the inhomoge-

neous case.

Our remaining task is to evaluate the integral function B analytically, if possible. The

expression for B can be broken into two integrals by writing, for x ≥ xabs,

B(λ, x) = IM (λ, x0)

∣∣∣∣∣
x

xabs

W2,λ(x) + IW (λ, x0)

∣∣∣∣∣
∞

x

M2,λ(x) , (A.15)

and, for x ≤ xabs,

B(λ, x) = IW (λ, x0)

∣∣∣∣∣
∞

xabs

M2,λ(x) , (A.16)

where we have de�ned the inde�nite integrals IM (λ, x0) and IW (λ, x0) using

IM (λ, x0) ≡
∫
e−x0/2x−3

0 M2,λ(x0)dx0 , IW (λ, x0) ≡
∫
e−x0/2x−3

0 W2,λ(x0)dx0 . (A.17)

It is convenient to rewrite the Whittaker functions in the integrands for IM and IW using
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the Kummer function identities (Abramowitz & Stegun 1970),

Mα,β(z) = e−z/2z
1
2
+βM

(1
2
+ β − α, 1 + 2β, z

)
, (A.18)

Wα,β(z) = e−z/2z
1
2
+βU

(1
2
+ β − α, 1 + 2β, z

)
, (A.19)

which yield

IM (λ, x) =

∫
e−xxb−a−5M(a, b, x)dx , IW (λ, x) =

∫
e−xxb−a−5U(a, b, x)dx , (A.20)

where

a = λ− 3

2
, b = 2λ+ 1 . (A.21)

The integral IW (λ, x) can be carried out analytically using Slater's (1960) identity,

∫
e−xxb−a−2U(a, b, x)dx = −e−xxb−a−1U(a+ 1, b, x) . (A.22)

Integrating Equation (A.20) by parts once yields

∫
x−3e−xxb−a−2U(a, b, x)dx = −x−3e−xxb−a−1U(a+ 1, b, x)

− 3

∫
x−4e−xxb−a−1U(a+ 1, b, x)dx . (A.23)
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Integrating by parts again gives

∫
x−3e−xxb−a−2U(a, b, x)dx = −x−3e−xxb−a−1U(a+ 1, b, x)

− 3
[
− x−2e−xxb−a′−1U(a′ + 1, b, x)− 2

∫
x−3e−xxb−a′−1U(a′ + 1, b, x)dx

]
, (A.24)

where a′ = a+ 1. Integrating by parts a third time yields

∫
x−3e−xxb−a−2U(a, b, x)dx = −x−3e−xxb−a−1U(a+ 1, b, x)

− 3
{
− x−2e−xxb−a′−1U(a′ + 1, b, x)− 2

[
− x−1e−xxb−a′′−1U(a′′ + 1, b, x)

−
∫
x−2e−xxb−a′′−1U(a′′ + 1, b, x)dx

]}
, (A.25)

where a′′ = a′ + 1. The remaining integral can be evaluated directly using Equation (A.22)

to obtain, after some algebra,

∫
x−3e−xxb−a−2U(a, b, x)dx = e−xxb−a−4

[
− U(a+ 1, b, x) + 3U(a+ 2, b, x)

− 6U(a+ 3, b, x) + 6U(a+ 4, b, x)
]
. (A.26)

By converting the Kummer functions to Whittaker functions, we obtain the �nal expression

IW (λ, x) = e−x/2x−2
[
−W1,λ(x) + 3W0,λ(x)− 6W−1,λ(x) + 6W−2,λ(x)

]
. (A.27)

Likewise, the integral IM (λ, x) in Equation (A.20) can be evaluated using Slater's (1960)

identity ∫
e−xxb−a−2M(a, b, x)dx =

e−xxb−a−1

b− a− 1
M(a+ 1, b, x) . (A.28)
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Following the same iterative procedure used to evaluate IW (λ, x), we eventually arrive at

the result

IM (λ, x) =
e−xxb−a−4

b− a− 1

(
M(a+ 1, b, x) +

3

b− a− 2

{
M(a+ 2, b, x)

+
2

b− a− 3

[
M(a+ 3, b, x) +

1

b− a− 4
M(a+ 4, b, x)

]})
, (A.29)

which can be rewritten in terms of the Whittaker functions as

IM (λ, x) =
x−2e−x/2

λ+ 3
2

(
M1,λ(x)+

3

λ+ 1
2

{
M0,λ(x)+

2

λ− 1
2

[
M−1,λ(x)+

1

λ− 3
2

M−2,λ(x)
]})

.

(A.30)

Our �nal expression for the integral function B(λ, x) is obtained by rewriting Equa-

tions (A.15) and (A.16) as

B(λ, x) =


W2,λ(x)[IM (λ, x)− IM (λ, xabs)]−M2,λ(x)IW (λ, x) , x ≥ xabs ,

−M2,λ(x)IW (λ, xabs) , x ≤ xabs ,

(A.31)

where IW (λ, x) and IM (λ, x) are evaluated using Equations (A.27) and (A.30), respectively.

We can now combine Equations (A.12) and (A.13) to express the bremsstrahlung injection

Fourier transform Fbrem as

Fbrem(x, z, z0, ω̃) =
eiω̃p0η3A0 e

−x/2

4πR3Θ4(mec2)3x2

∞∑
n=0


Γ(µ− 3/2)Yn(z0)Yn(z)

Γ(1 + 2µ)In
B(µ, x), α = 0,

Γ(σ − 3/2)gn(z0)gn(z)

Γ(1 + 2σ) η3Kn
B(σ, x), α = 1,

(A.32)

where B(µ, x) and B(σ, x) are evaluated using Equation (A.31).
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A.3 Appendix C

The time lags computed using the homogeneous and inhomogeneous models presented in

Chapter 2 are based o� the exact solution to the Fourier transformed transport equa-

tion. The solution is the Fourier transformed Green's function which is convolved with

a bremsstrahlung source distribution which yields the Fourier transformed particular solu-

tion for a bremsstrahlung injection spectrum. We found that the observed dependence of

the time lags on Fourier frequency cannot be reproduced with a monochromatic injection

spectrum, but rather a broadband spectrum. This �ash occurs near the outer edge of the

corona.

The corona is modeled by a sphere of constant temperature with the black hole at the

center. The corona is found to have a size on the order of 109 cm depending on which

model and source. Obviously, this presents a large surface area through which radiated �ux

emanates. The success of the time lag model produced in Chapter 3 makes the assumption

that there are no time lag e�ects introduced when considering propagation delays from

di�erent parts of the extended cloud surface. In this Appendix we will provide a proof

showing this assumption to be correct.

We wish to obtain the Fourier transform of the signal �ux at the detector by performing a

transformation between reference frames of the cloud and the observer. The observed intrin-

sic occupation number, fobs, is related to the intrinsic occupation number in the reference

frame of the source, fsource, via

fobs(ϵ, tobs) = fsource(ϵ, tobs −
r

c
) (A.33)

where

tsource = tobs −
r

c
, (A.34)

and r is found from an application of the law of cosines. An emitting band has di�erential
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area given by

dAband = R2 sin θdθdϕ = 2πR2 sin θdθ . (A.35)

The observed �ux at the detector is expressed di�erentially in terms of the observed intrinsic

occupation number as

dgobs(ϵ, tobs) ≡ ϵ2cfsource(ϵ, tsource)
( 1

4πD2

)
dAband ∝ s−1cm−2erg−1 . (A.36)

By substituting Equation (A.34) into Equation (A.36) and integrating we obtain

gobs(ϵ, tobs) = ϵ2c
( R2

4πD2

)∫ π/2

0
fsource(ϵ, tobs −

r

c
)2π sin θdθ . (A.37)

The standard Fourier transform is de�ned as,

G (ϵ, ω) ≡
∫ ∞

−∞
eiωtobsgobs(ϵ, tobs)dtobs . (A.38)

By applying (A.38) to (A.37) yields,

Gobs(ϵ, ω) = ϵ2c
R2

2D2

∫ π/2

0

∫ ∞

−∞
sin θeiωtobsfsource(ϵ, tobs −

r

c
)dθdtobs . (A.39)

Next, let's substitute Equation (A.34) into the Equation (A.39) giving

Gobs(ϵ, ω) = ϵ2c
R2

2D2

∫ π/2

0

∫ ∞

−∞
sin θeiωr/ceiωtsourcefsource(ϵ, tsource)dθdtsource . (A.40)

According to the geometry of the �gure and by simple application of the law of cosines we
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obtain the expression for r given by

r =
√
R2 +D2 − 2DR cos θ . (A.41)

Substituting this result into Equation (A.40) gives

Gobs(ϵ, ω) = ϵ2c
R2

2D2

∫ π/2

0
sin θeiω

√
R2+D2−2DR cos θ/cdθ

∫ ∞

−∞
eiωtsourcefsource(ϵ, tsource)dtsource .

(A.42)

Substituting the de�nition for the Fourier transform for fsource gives

Gobs(ϵ, ω) = ϵ2cFsource(ϵ, ω)
R2

2D2

∫ π/2

0
sin θeiω

√
R2+D2−2DR cos θ/cdθ . (A.43)

This can be written as

Gobs(ϵ, ω) =
R2

2D2
ϵ2cFsource(ϵ, ω)H(ω) , (A.44)

where

H(ω) ≡
∫ π/2

0
sin θeiω

√
R2+D2−2DR cos θ/cdθ , (A.45)

Time Lag Set-up

We wish to prove that there are no time lags introduced from consideration of propagation

delays from di�erent parts of the cloud surface. If the cloud is static (not rotating), then

the time lags can be computed from either the source frame or from an observer's frame.

To show this we �rst de�ne the complex cross spectrum, C̃ from van der Klis et al. (1987)

C̃(ω) ≡ G ∗
obs(ϵs, ω)Gobs(ϵh, ω) . (A.46)
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The phase lags are given by taking the argument of this cross spectrum. The time lags are

computed by dividing the phase lag by the corresponding frequency given by

δt =
Arg(C̃(ω))

ω
. (A.47)

We can rewrite Equation (A.46) by substituting in Equation (A.44) giving

C̃(ω) =

(
R2

2D2
ϵ2scF

∗
source(ϵs, ω)H

∗(ω)

)(
R2

2D2
ϵ2hcFsource(ϵh, ω)H(ω)

)
, (A.48)

which can be rearranged to obtain

C̃(ω) =

(
R2

2D2

)2

ϵ2sϵ
2
hc

2|H(ω)|2F ∗
source(ϵs, ω)Fsource(ϵh, ω) . (A.49)

We de�ne the complex cross spectrum at the surface of the cloud

C̃source(ω) ≡ F ∗
source(ϵs, ω)Fsource(ϵh, ω) , (A.50)

which can be substituted back into Equation (A.50) giving

C̃(ω) =

(
R2

2D2

)2

ϵ2sϵ
2
hc

2|H(ω)|2C̃source(ω) . (A.51)

Since the multiplier on the right hand side is a real number, we �nd that the observed time

lag is given by

δt =
Arg(C̃(ω))

ω
=

Arg(C̃source(ω))

ω
= δtsource . (A.52)

Hence the observed time lags are not in�uenced by light propagation delays across the surface

of the non-rotating cloud.
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