
 
 

 
 
 
 
 

Spatial Associations between Land Use and Infectious Disease: 
WNV in the United States and Zika in Colombia 

 
A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at George Mason University 

 
 
 

By 
 
 
 

Josh S. Weinstein 
Master of Science 

George Mason University, 2003 
Bachelor of Science 

George Mason University, 1998 
 
 
 

Director: Timothy F. Leslie, Associate Professor 
Department of Geography and GeoInformation Sciences 

 
 
 

Fall Semester 2017 
George Mason University 

Fairfax, Virginia 
 



 

ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2017, Josh S. Weinstein 
All Rights Reserved 

  



 

iii 
 

 
 
 
 

DEDICATION 
 
 
 
To my incredible family in Trish, Ethan, and Hailey, whose encouragement and 
patience fueled the completion of this research. A special thank you to my 
committee in Dr. Timothy Leslie, Dr. Cara Frankenfeld, Dr. Arie Croitoru, and Dr. 
Anthony Stefanidis. Dr. Leslie, in particular, never served answers on a platter, but 
rather advised in such a way that I discovered answers myself. 
  



 

iv 
 

 
 
 
 
 

TABLE OF CONTENTS 
 

 Page 

LIST OF TABLES ............................................................................................................................................ vi 

LIST OF FIGURES........................................................................................................................................... ix 

LIST OF ABBREVIATIONS ......................................................................................................................... xi 

ABSTRACT ...................................................................................................................................................... xii 

1. INTRODUCTION .................................................................................................................................... 1 

2. BACKGROUND AND LITERATURE REVIEW ............................................................................ 5 

2.1 Social and Economic Impacts ................................................................................................ 7 

2.2 Scales of VBID Transmission.................................................................................................. 8 

2.3 VBID Dynamics .......................................................................................................................... 10 

2.4 LULC and VBID Dynamics..................................................................................................... 12 

2.4.1 Agricultural Development ........................................................................................... 14 

2.4.2 Urbanization ...................................................................................................................... 15 

2.4.3 Deforestation ..................................................................................................................... 16 

2.5 VBID Monitoring ....................................................................................................................... 17 

2.6 Measuring LULC and VBID Associations ....................................................................... 21 

2.6.1 Review of Existing Research ...................................................................................... 21 

2.6.2 Field Research ................................................................................................................... 22 

2.6.3 Remote Sensing ................................................................................................................ 22 

2.6.4 LULC Classification ......................................................................................................... 23 

2.6.5 LULC Uncertainty ............................................................................................................ 25 

2.6.6 Geographic and Thematic Scales ............................................................................. 28 

2.7 Research Opportunity ............................................................................................................ 30 

3 METHODOLOGY ................................................................................................................................. 32 



 

v 
 

3.1 Consolidation of LULC Classes ........................................................................................... 33 

3.1.1 Landscape Metrics .......................................................................................................... 34 

3.1.2 Principal Component Analysis .................................................................................. 39 

3.1.3 Regression Analysis ....................................................................................................... 40 

3.2 Spatial Associations over Time .......................................................................................... 42 

3.3 Spatial Associations across Space..................................................................................... 43 

4 DATA ........................................................................................................................................................ 44 

4.1 VBID ................................................................................................................................................ 45 

4.1.1 West Nile Virus ................................................................................................................. 47 

4.1.2 Zika ......................................................................................................................................... 49 

4.2 Land Use ........................................................................................................................................ 51 

4.3 Average Temperature and Elevation .............................................................................. 53 

4.4 Population .................................................................................................................................... 54 

4.5 Gross Domestic Product ........................................................................................................ 54 

4.6 Administrative Units ............................................................................................................... 54 

4.7 Variable Visualization ............................................................................................................ 55 

5 RESULTS................................................................................................................................................. 60 

5.1 Spatial Associations (RQ1) ................................................................................................... 68 

5.2 Spatial Associations over Time (RQ2) ............................................................................ 74 

5.3 Spatial Associations across Space (RQ3) ...................................................................... 80 

5.4 Summary of Research Question Results ........................................................................ 83 

6 CONCLUSION ....................................................................................................................................... 86 

7 APPENDIX I ........................................................................................................................................... 91 

8 APPENDIX II ......................................................................................................................................... 93 

9 APPENDIX III..................................................................................................................................... 103 

REFERENCES ............................................................................................................................................. 105 

 

  



 

vi 
 

 
 
 
 

LIST OF TABLES 
 
 
Table Page 
 
Table 1. Major transitions in human interaction with the land increased frequency of 
contact with pathogenic vectors (McMichael 2004). ................................................................ 12 
 
Table 2. Human behaviors and activities manifest as VBID emergence drivers 
(McMichael 2004)....................................................................................................................................... 13 
 
Table 3. VBIDs and associated emergence driver (Wilcox and Ellis 2006). ................... 14 
 
Table 4. GlobCovers extensive class set accounts for gradual LU transitions 
compared to GLC-SHARE. ....................................................................................................................... 24 
 
Table 5. Temporal alignment of data and data sources each study area. ........................ 44 
 
Table 6. Consolidation of 23 GlobCover classes into eight Research Classes. ............... 52 
 
Table 7. Consolidation of 11 GLC-SHARE classes into eight Research Classes. ............ 53 
 
Table 8. Correlation matrix for Colombian independent variables. ................................... 59 
 
Table 9. Proportion abundance of each Research Class in the contiguous United 
States during 2014. .................................................................................................................................... 68 
 
Table 10. PCA component matrix based on the linear density landscape metric. ...... 69 
 
Table 11. PCA eigenvalues based on the linear density landscape metric...................... 69 
 
Table 12. Negative binomial regression table based on the linear density landscape 
metric................................................................................................................................................................ 70 
 



 

vii 
 

Table 13. Incidence ratios with WNV (2014) for each independent variable and each 
landscape metric. ........................................................................................................................................ 74 
 
Table 14. PCA component matrix based on the linear density landscape metric. ...... 76 
 
Table 15. PCA component matrix based on the proportion abundance landscape 
metric................................................................................................................................................................ 76 
 
Table 16. PCA component matrix based on the patch density landscape metric. ....... 76 
 
Table 17. PCA eigenvalues for each LULC dataset and landscape metric combination.
.............................................................................................................................................................................. 77 
 
Table 18. Average incidence ratios with WNV for each independent variable and 
landscape metric using the GlobCover LULC datasets (2003-2011). ................................ 78 
 
Table 19. Average incidence ratios with WNV for each independent variable and 
landscape metric using the GLC-SHARE LULC dataset (2012-2014). ............................... 78 
 
Table 20. PCA component matrix based on the proportion abundance landscape 
metric................................................................................................................................................................ 91 
 
Table 21. PCA eigenvalues based on the proportion abundance landscape metric. .. 91 
 
Table 22. Negative binomial regression table based on the proportion abundance 
landscape metric. ........................................................................................................................................ 91 
 
Table 23. PCA component matrix based on the patch density landscape metric. ....... 92 
 
Table 24. PCA eigenvalues based on the patch density landscape metric. ..................... 92 
 
Table 25. Negative binomial regression table based on the patch density landscape 
metric................................................................................................................................................................ 92 
 
Table 26. Negative binomial regression output table based on the linear density 
landscape metric for RQ2, WNV in the contiguous United States during 2003 
through 2014. ............................................................................................................................................... 93 



 

viii 
 

 
Table 27. Negative binomial regression output table based on the proportion 
abundance landscape metric for RQ2, WNV in the contiguous United States during 
2003 through 2014. ................................................................................................................................... 97 
 
Table 28. Negative binomial regression output table based on the patch density 
landscape metric for RQ2, WNV in the contiguous United States during 2003 
through 2014. ............................................................................................................................................ 100 
 
Table 29. Negative binomial regression table based on the linear density landscape 
metric............................................................................................................................................................. 103 
 
Table 30. Negative binomial regression table based on the proportion abundance 
landscape metric. ..................................................................................................................................... 104 
 
Table 31. Negative binomial regression table based on the patch density landscape 
metric............................................................................................................................................................. 104 
  



 

ix 
 

 
 
 
 

LIST OF FIGURES 
 
 
Figure Page 
 
Figure 1. VBID hotspots based on frequency of human-vector contact (Jones et al. 
2008).................................................................................................................................................................... 5 
 
Figure 2. Transmission models share commonalities in local spillover and increasing 
scales of transmission. ................................................................................................................................. 9 
 
Figure 3. Relationship between linear density, proportion abundance, and patch 
density. ............................................................................................................................................................. 38 
 
Figure 4. Population Density in the contiguous United States during 2014. ................. 55 
 
Figure 5. Average Temperature in the contiguous United States during 2014. ........... 56 
 
Figure 6. Grassland Linear Density (Top), Proportion Abundance (Middle), and 
Patch Density (Bottom) in the contiguous United States during 2014. ........................... 56 
 
Figure 7. Population Density (Left), Average Elevation (Middle), and Per Capita GDP 
(Right) in Colombia during 2016. ....................................................................................................... 57 
 
Figure 8. Cropland Linear Density (Left), Proportion Abundance (Middle), and Patch 
Density (Right) in Colombia during 2016. ...................................................................................... 57 
 
Figure 9. Tree-Covered Linear Density (Left), Proportion Abundance (Middle), and 
Patch Density (Right) in Colombia during 2016. ......................................................................... 58 
 
Figure 10. Grassland Linear Density (Left), Proportion Abundance (Middle), and 
Patch Density (Right) in Colombia during 2016. ......................................................................... 58 
 



 

x 
 

Figure 11. U.S. county examples of incremental increase in Grassland linear density
.............................................................................................................................................................................. 63 
 
Figure 12. U.S. county examples of incremental increase in Grassland proportion 
abundance. ..................................................................................................................................................... 65 
 
Figure 13. U.S. county examples of incremental increase in Grassland patch density.
.............................................................................................................................................................................. 67 
 
Figure 14. While proportion abundance and patch density remain constant, the 
simple (left) linear density value of 0.40 is nearly half of the complex (right) linear 
density value of 0.78. ................................................................................................................................ 85 
  



 

xi 
 

 
 
 
 

LIST OF ABBREVIATIONS 
 
 
 
Akaike Information Criterion Correlation……………………………………………………….. AICC 
Bayesian Information Criterion………………………………………………………………………… BIC 
Centers for Disease Control and Prevention……………………………………………………… CDC 
Database of Global Administrative Areas……………………………………………………… GADM 
Food and Agriculture Organization………………………………………………………………….. FAO 
Geographic Information System……………………………………………………………………….. GIS 
Global Administrative Unit Layers…………………………………………………………………. GAUL 
Global Forest Watch……………………………………………………………………………………….. GFW 
Global Land Cover SHARE……………………………………………………………………. GLC-SHARE 
Gross Domestic Product………………………………………………………………………………….. GDP 
Health and Human Services…………………………………………………………………………….. HHS 
International Geosphere Biosphere Programme……………………………………………… IGBP 
Land Cover Classification System…………………………………………………………………… LCCS 
Land Use / Land Cover………………………………………………………………………………….. LULC 
Local Administrative Unit……………………………………………………………………………….. LAU 
Moderate Resolution Imaging Spectrometer………………………………………………… MODIS 
Modifiable Areal Unit Problem……………………………………………………………………… MAUP 
Normalized Difference Vegetation Index………………………………………………………… NDVI 
National Institute of Allergy and Infectious Diseases……………………………………… NIAID 
National Institutes of Health…………………………………………………………………………….. NIH 
Population Estimates Program………………………………………………………………………… PEP 
Principal Component………………………………………………………………………………………… PC 
Principal Component Analysis…………………………………………………………………………. PCA 
Research Class………………………………………………………………………………………………….. RC 
Research Question……………………………………………………………………………………………. RQ 
Severe Acute Respiratory Syndrome………………………………………………………………. SARS 
Shuttle Radar Topography Mission……………………………………………………………….. SRTM 
Simian Immunodeficiency Virus……………………………………………………………………….. SIV 
Statistical Package for the Social Sciences……………………………………………………….. SPSS 
United Nations………………………………………………………………………………………………….. UN 
United States Geological Survey…………………………………………………………………….. USGS 
Vector-Borne Infectious Disease…………………………………………………………………….. VBID 
World Health Organization……………………………………………………………………………. WHO 
West Nile Virus……………………………………………………………………………………………… WNV 



 

xii 
 

 
 
 
 

ABSTRACT 
 
 
 
SPATIAL ASSOCIATIONS BETWEEN LAND USE AND INFECTIOUS DISEASE: 
WNV IN THE UNITED STATES AND ZIKA IN COLOMBIA 
 
Josh S. Weinstein, PhD 
 
George Mason University, 2017 
 
Dissertation Director: Dr. Timothy F. Leslie 
 
 
 
This dissertation seeks to address three research questions through the context of 

spatial associations between land use / land cover (LULC) and vector-borne 

infectious disease (VBID). These research questions are: (1) Do spatial associations 

exist between the linear (edge) density of LULC boundaries and VBID occurrence? (2) 

Do patterns of spatial associations repeat over time? (3) Do patterns of spatial 

associations repeat across space? 

Understanding how LULC change influences disease emergence informs the 

prevention and mitigation of local disease outbreaks prior to transmission growth 

into regional epidemics or global pandemics. Close and frequent human contact with 

infected arthropod vectors near local-level LULC boundaries drives VBID emergence. 

Increasingly dense and fragmented LULC boundaries result from human activities in 
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the expansion of urban, pastoral, and agricultural areas. Fragmentation increases the 

likelihood of pathogen spillover at local-level LULC boundaries, the human-physical 

interface. Unmitigated and uncontrolled local spillover events can grow in spatial 

scale and result in significant social and economic impacts. Measuring the human-

physical interface to identify spillover hotspots prior to VBID emergence and 

increasing levels of disease transmission is paramount to protecting public health. 

Methods that measure the human-physical interface influence our ability to identify 

areas with elevated risk of VBID emergence. Prior research used remote sensing, field 

research, or literature reviews to identify substantive associations between LULC and 

VBID emergence. The research within this dissertation focuses on the spatial 

association between the linear density of LULC boundaries and VBID occurrence 

through spatial statistical methods, to include Principal Component Analysis and 

negative binomial regression. Proportion abundance and patch density are 

supplemental landscape metrics that add context to linear (edge) density. Case 

studies involve West Nile Virus in the contiguous United States from 2003 through 

2014 and Zika in Colombia, South America during 2016. The goal is a method that can 

make use of land development plans to identify areas that could experience elevated 

VBID occurrence. 
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1. INTRODUCTION 
 
 
 

Unmitigated and uncontrolled VBID outbreaks result in significant social and 

economic impacts. In 2003, the global economy incurred an estimated $30-50 billion 

loss due to a Severe Acute Respiratory Syndrome (SARS) outbreak originating from a 

live-market in Guangdong province, China (Karesh et al. 2012). While this single SARS 

outbreak killed 775, malaria kills roughly 2.7 million and infects nearly 400 million 

people annually (Wilcox and Ellis 2006). 

More recently, nearly 50 Central- and South-American countries experienced 

their first Zika occurrence (WHO 2016). Argentine, Bolivia, Brazil, Ecuador, and Peru 

have reported an average of 1,246 weekly cases since early 2017 (PAHO WHO 2017) 

and transmission of the disease is progressing further into temperate zones (WHO 

2016). During the first half of 2017, vector-to-human WNV transmission spans 18 U.S. 

states and severe neuro-invasive diseases, such as meningitis and encephalitis, 

account for 57 percent of the reported cases (CDC Preliminary 2017). 

Close and frequent human contact with infected vectors at local-level LULC 

boundaries drives VBID emergence (Morse 2004, Morse et al. 2012, Pike et al. 2010, 

Wilcox and Ellis 2006, Woolhouse et al. 2012). Understanding how and where the 
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human modification of LULC boundaries adversely influences VBID emergence will 

enable prevention and mitigation before local disease outbreaks grow in spatial scope 

(McFarlane et al. 2013, Murray and Daszak 2013). 

LULC boundaries – the human-physical interface – are fragmenting at an 

increasing rate as the resource demands of a growing global population drives 

expansion of urban, pastoral, and agricultural areas (Patz et al. 2008, Walsh et al. 

1993, Wilcox and Ellis 2006, Vittor et al. 2006). Agricultural development in parallel 

with urbanization and population growth represents the most significant reason for 

LULC change and is the major driver of deforestation and forest fragmentation in the 

tropics (Patz et al. 2008). In fact, roughly half of all global infectious disease 

emergence events are associated with changes in LULC for agriculture and food 

production (McFarlane et al. 2013). 

Monitoring local-level emergence through VBID surveillance and predictive 

analytics is necessary to protect public health. However, the seven leading 

epidemiology journals evaluated by Auchincloss et al. (2012) cited spatial 

methodologies in roughly one percent of all articles and the complex spatial 

association between LULC and VBID is known only for a few diseases (Ezenwa et al. 

2007, Jones et al. 2008, Patz et al. 2004). Backed by even less research is the 

epidemiological impact of LULC fragmentation, which increases the linear (edge) 

density of LULC boundaries. 
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This dissertation seeks to address three research questions (RQ) in the context of 

the spatial association between the linear density of LULC boundaries and West Nile 

Virus (WNV) in the contiguous United States and Zika in Colombia, South America. 

Spatial statistical methods aid in the discovery of associations. Proportion abundance 

and patch density are supplemental landscape metrics that will add context to the 

spatial associations discovered through the linear density landscape metric. 

Quantifying such spatial associations sheds light on the degree to which alteration of 

the land influences the magnitude of VBID occurrence. 

Data that spans narrow temporal periods are snapshots that could include 

uncertainty borne from confounding environmental events. Iteration of regression 

models over multiple years will mitigate the effect of confounding environmental 

events, such as El Niño and La Niña (McClintock et al. 2010). Temporal comparisons 

of the density of LULC boundaries and VBID occurrence for WNV in the contiguous 

United States over a 12-year period will help identify patterns of spatial associations 

over time while mitigating the influence of El Niño or La Niña. Comparisons of spatial 

associations between WNV in the United States and Zika in Colombia, a different 

study area and VBID, will provide support to or the rejection of patterns across space. 

Identifying the magnitude of associations between LULC and VBID will benefit 

policy makers and spatial epidemiologists alike. McFarlane et al. (2013) and Murray 

and Daszak (2013) recommend development of a strategy to define high-risk regions 

so land development plans may be adapted to mitigate future VBID risk. Further, 
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identification of high-risk areas will provide spatial epidemiologists another tool in 

the allocation of resources. Such an early warning tool could aid in prevention and 

mitigation, thus dampening the social and economic impacts of VBID. 
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2. BACKGROUND AND LITERATURE REVIEW 
 
 
 

LULC is associated with roughly half of all global infectious disease emergence 

(McFarlane et al. 2013). The demands of a rapidly growing global population drives 

LULC change through agricultural development, urbanization, and deforestation. 

These drivers place humans in close and frequent contact with vectors at local LULC 

boundaries, increasing the risk of VBID emergence (Jones et al. 2008). Measurement 

of LULC has enabled the identification, quantification, and mapping of vector range 

and abundance and the prediction of VBID hotspots (Figure 1). 

 

 

Figure 1. VBID hotspots based on frequency of human-vector contact (Jones et al. 2008). 
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Vanwambeke et al. (2011), Ezenwa et al. (2007), and Allan et al. (2003) performed 

field studies that identified strong associations between LULC and increased risk of 

VBID, such as dengue, WNV, and Lyme respectively. Vector range, prevalence, and 

abundance discovered using mosquito traps informed the development of vector-to-

host ratio maps (Vanwambeke et al. 2011) or the analysis of landscape influence on 

VBID occurrence (Ezenwa et al. 2007, Allan et al. 2003). Ratmanov et al. (2013) and 

De La Rocque et al. (2004) exceed the spatial scope and collection frequency of field 

studies while reducing the time required to collect data by using remotely sensed 

imagery to identify LULC and VBID associations. 

Regardless of research method, an understanding of the complex associations 

between LULC and VBID exists for only a few diseases (Ezenwa et al. 2007, Jones et 

al. 2008, Patz et al. 2004). Murray and Daszak (2013), McFarlane et al. (2013), Morse 

(2012), and Eisenberg et al. (2007) cite the pressing need to increase research into 

these associations to prevent and mitigate the impact of VBID. This pressing need 

exists because the “replacement and removal” of natural flora – LULC change – is the 

most significant influencer of disease emergence (McFarlane at al. 2013). Through 

LULC change, humans created what Eisenberg at al. (2007) describe as a landscape of 

human disease and we must now develop early warning methods that examine this 

landscape to reduce disease outbreaks (Morse 2012). 
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2.1 Social and Economic Impacts 

VBID outbreaks that grow into epidemic or pandemic proportions generate social 

and economic impacts that resonate globally. More than 2.5 billion humans, nearly 36 

percent of the global population, are at risk of dengue, and roughly 390 million people 

are infected annually (Bhat et al. 2013). Similarly, malaria has annual morbidity and 

mortality rates of nearly 400 million and 2.7 million respectively (Wilcox and Ellis 

2006). The 2003 outbreak of SARS killed 775; a low number relative to malaria, yet 

panic across financial markets resulted in an estimated $30 to $50 billion hit to the 

global economy (Karesh et al. 2012). 

Social and economic impacts of dengue, malaria, and other VBIDs, compounded 

by slow government response, can breed regional instability. VBID response by 

national and international health organizations cannot always diffuse volatile 

environments in enough time to maintain social and economic stability. As such, the 

United States National Security Council, Department of Defense, and Department of 

State cited the need for increased collaboration with the World Health Organization 

(WHO) and international partners to strengthen detection and response to emerging 

infectious diseases (Nuzzo and Gronvall 2011). 

The 2014 Ebola outbreak in Sierra Leone, Liberia, Guinea, Nigeria, and Senegal 

exemplifies VBID-borne regional instability. These West African countries, already 

among the world’s poorest yet positioned to leave behind years of civil war and enter 

Africa’s resource extraction economic boom, experienced setbacks in social and 
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economic stability due to increased public fear and reduced levels of tourism, trade, 

agriculture, and mining (MacDougall and Farge 2014). Starting at local LULC 

interfaces, unmitigated VBID emergence can produce impacts at various scales. 

2.2 Scales of VBID Transmission 

Approximately 75 percent of all known infectious diseases are, or once were, 

transmitted by vectors at the local LULC boundaries – the human-physical interface 

(Wilcox and Ellis 2006). Understanding interface dynamics is critical to the mitigation 

of downstream impacts at increased scales of disease transmission. As illustrated in 

Figure 2, numerous models portray the scales of infectious disease transmission, 

from local emergence, or spillover, to transmission at the global scale. 

Local-level disease transmission begins with disease spillover at the physical 

interface between humans and pathogenic vectors. An increase in the spatial scope of 

disease occurrence characterizes each step up the transmission ladder. Continued 

and unchecked transmission at the local-level can lead to a regional epidemic or 

global pandemic. 
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Figure 2. Transmission models share commonalities in local spillover and increasing scales of 

transmission. 

 

The Morse (2004) two-stage infectious disease transmission model entails 

spillover, where an infectious disease jumps from pathogenic vector to host at the 

local interface, followed by transmission within the human host population at an 

increased spatial scale. The Daszak three-stage model subdivides the post-spillover 

stage of transmission within the human population into two parts – local area 

transmission and continued transmission from the local- to the global-level (Bogich 

et al. 2012). The United States Agency for International Development PREDICT 

program, designed to detect pathogens at the interface between humans and wildlife, 

adopted the Daszak three-stage model of local spillover followed by local, then global 

transmission (USAID 2014). 
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Woolhouse et al. (2012) adds a fourth stage between local and global 

transmission, where transmission expands in spatial scope. The Morse et al. (2012) 

and Pike et al. (2010) five-stage models include the Woolhouse transitional stage that 

connects local to global transmission, along with a pre-spillover stage where the 

disease pathogen is found solely within non-human animal populations. 

Commonalities between these models include a progressive increase in spatial 

scales of transmission and initial spillover at the human-physical interface. 

Developed through academic rigor, these models are high-level representations of 

complex dynamics between pathogens, vectors, hosts, and the environment. 

2.3 VBID Dynamics 

Complex dynamics between pathogens, vectors, and hosts at the human-physical 

interface influence spillover and makes the tasks of targeted VBID prevention and 

mitigation difficult (Wilcox and Colwell 2005). Arthropod vectors typically become 

infected by a pathogen while feeding on infected reservoir hosts, such as birds, 

rodents, and other larger animals. After feeding on a reservoir host, vectors can pass 

pathogens to susceptible humans. An increase in contact frequency with infected 

vectors at the human-physical interface accelerates pathogen evolution, which 

increases infectivity and transmission risk (Wilcox and Ellis 2006). Unpredictable and 

uneven levels of contact between humans and pathogens contributes to both the 

dynamism and complexity of forecasting, let alone measuring, pathogen evolution 

and infectivity, and the association between LULC and VBID. 
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LULC change further alters the pathogen-vector-host relationship by providing 

pathogens an opportunity to expand their range and exploit new habitat niches 

(Murray and Daszak 2013). Malarial outbreaks in the tropics often spike after forest 

felling for road and ditch construction creates new mosquito breeding habitats. In the 

northeast United States, the reduction of predator species due to LULC change 

resulted in a population explosion of tick host species, such as deer and mice, which 

in turn led to the resurgence in tick-borne Lyme disease (McMichael 2004). 

The increase in tsetse fly borne sleeping sickness in East Africa is yet another 

example of the human influence on vector abundance. Tsetse flies, the sleeping 

sickness vector, shifted feeding patterns from cattle and wildebeests to humans when 

the introduction of the rinderpest rapidly depleted the cattle and wildebeest 

populations. In this example, an invasive species introduced by humans resulted in a 

change to pathogen dynamics followed by an increase of sleeping sickness 

occurrences (Karesh et al. 2012). 

LULC change and encroachment into vector habitats alters pathogen dynamics, 

which amplifies the pathogen transmission cycle through an increase in the 

frequency of human contact with infected vectors (Wilcox and Ellis 2006). 

Identification of potential disease hotspots through greater understanding of the 

association between LULC and VBID is critical in the protection of public health. 
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2.4 LULC and VBID Dynamics 

Spatial epidemiologists have identified strong associations between LULC and 

VBID despite the significant knowledge gaps in our understanding of the complex 

dynamics at the human-physical interface. Table 1 depicts the major transitions in 

human interaction with the land and corresponding infectious disease emergence. 

 

Table 1. Major transitions in human interaction with the land increased frequency of contact with 
pathogenic vectors (McMichael 2004). 

 

Transition Description Infectious Disease 

8,000 – 3,000 BC Early settlements Early versions of cholera, typhus, 
influenza, smallpox, malaria 

1,000 BC – 500 AD Early Eurasian civilization Bubonic plague 
500 – 1,900s European exploration Measles, yellow fever, dengue 
Modern day Globalization & rapid population growth SARS, Ebola, Zika 

 

The transition from hunting and gathering to agrarian- and pastoral-based 

societies produced significant and widespread changes at the human-physical 

interface (McMichael 2004). Such changes to these early settlements resulted in the 

emergence of cholera, typhus, smallpox, and other infectious diseases (Wilcox and 

Ellis 2006). Accelerated expansion of our global footprint expressed as rapid and 

extensive LULC change to meet the demands of unprecedented population growth 

characterizes the modern transition (McMichael 2004), resulting in the emergence of 

VBIDs such as Ebola, SARS, and Zika. 

McMichael (2004) cited 12 drivers (Table 2) derived from the 2002 Working 

Group on Land Use Change and Infectious Disease Emergence. The working group, 
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composed of international experts across epidemiologic and environmental 

disciplines, investigated the association between environmental changes and disease 

emergence. All emergence drivers are associated with human activities and 

behaviors, compelled by the need to support a rapidly growing global population. 

 

Table 2. Human behaviors and activities manifest as VBID emergence drivers (McMichael 2004). 

• Agricultural Development 
• Urbanization 
• Deforestation 
• Population Movement 
• Introduced Species / Pathogens 
• Biodiversity Loss 
• Habitat Fragmentation 
• Water and Air Pollution 
• Road Building 
• Impact of HIV/AIDS 
• Climate Changes 
• Hydrological Changes and Dams 

 

VBID transmission drivers entail LULC change to expand settlements and urban 

areas, farm the land, and extract resources for human consumption (Foley 2005). 

Grace et al. (2012) associated the human-physical interface, specifically agricultural 

and pastoral LULC, with roughly 1.7 million annual VBID deaths. Largely overlapping 

with the 2002 working group findings are the transmission drivers Wilcox and Ellis 

(2006) associated with specific VBID, as illustrated in Table 3. 
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Table 3. VBIDs and associated emergence driver (Wilcox and Ellis 2006). 
 

Disease Emergence Drivers 
Dengue Urbanization 
Ebola Hunting, Logging, Agriculture, and Others 
Leishmaniosis Deforestation, Human Expansion into Forest 
Leptospirosis Watershed Altercation 
Lyme Disease Deforestation, Habitat Fragmentation 
Malaria Deforestation, Human Expansion into Forest 
Nipah Virus Pig and Fruit Production at Forest Border 
Rabies Human Expansion into Forest 
SARS Wildlife Trade, Mixing of Bats and Civet Cats 
SIV Deforestation, Hunting, Settlement Expansion 
Yellow Fever Deforestation, Hunting, Settlement Expansion 

 

Many of these drivers produce LULC fragmentation and/or environmental 

changes that influence vector, host, and reservoir range and abundance (Patz et al. 

2008). Such is the case with the three primary drivers in agricultural development, 

urbanization, and deforestation (McMichael 2004). While these drivers are highly 

interrelated and often inseparable in practice, the following sections separate these 

three primary drivers to aid in the description of their associations with VBID. 

2.4.1 Agricultural Development 

The daily addition of roughly 275,000 people to the global community created our 

need to encroach into new landscapes for agricultural development (Lambin et al. 

2003), the most frequently cited driver of VBID emergence (Grace et al. 2012, 

Woolhouse 2011). McFarlane et al. (2013) claim that LULC change for agriculture and 

food production is responsible for roughly half of all global VBID occurrences. 

Agricultural development increases the frequency of contact with vectors at the 

human-physical interface. The creation of new habitats around irrigation systems and 
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ditches during agricultural development increases vector range and accelerates the 

mosquito lifecycle. Construction of irrigation systems and ditches around the Aswan 

Dam in Egypt resulted in an explosion of the mosquito population and a 

corresponding increase of Bancroftian filariasis occurrence (Patz et al. 2008). 

Munga et al. (2006) found that mosquito lifecycles accelerate within agricultural 

LULC compared to natural habitats, such as swamps and forests. These artificial 

habitats encourage mosquito breeding and pupation because additional sunlight cast 

on the agricultural ground surface compared to the prior, naturally vegetated (thus 

shaded) LULC, translates into higher air and water temperatures, both of which 

accelerate the mosquito lifecycle. 

Patterns in Ebola outbreaks led to the hypothesis that spillover is due to changes 

in natural fauna associated with agricultural LULC change adjacent to forests. Many 

Ebola spillover events have occurred along LULC boundaries, where people are in 

close and frequent contact with pathogenic vectors from forested areas due to 

agricultural and settlement expansion (Morvan et al. 2000, Patz et al. 2004). 

2.4.2 Urbanization 

In the context of global population growth of 100 million people annually (King 

2004) and growing numbers of megacities in Africa, South America, and Asia 

(Arinaminpathy et al. 2009), humanity is unwittingly increasing VBID emergence 

risk. Urbanization and settlement expansion go hand-in-hand with agriculture and 

food production (Wilcox and Gubler 2005), where humans, animal reservoirs, and 
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vectors co-inhabit urban areas and the surrounding peri-urban, pastoral grassland, 

and cropland at densities that elevate VBID risk (Arinaminpathy et al. 2009). 

Crowded cities and the urban adaptation of the Aedes aegypti mosquito is 

associated with an increase of dengue in Asia and Latin America. Similar to malaria’s 

resurgence in deforested areas, dengue, which is rapidly emerging in impoverished 

regions of the developing world, transmits via vectors that rely on people to create 

conditions conducive to vector breeding (Wilcox and Ellis 2006). Such is the case with 

Zika’s primary vectors in the Aedes aegypti and Aedes albopictus species of mosquito. 

Marcondes et al. (2016) discovered that urban water storage and residential vessels 

in Brazil represent the majority of mosquito breeding sites. Mosquitos are now 

adapted to breed in vessels such as pots and gutters and even refuse such as a bottle 

cap can store enough water to allow mosquito breeding. 

2.4.3 Deforestation 

Deforestation that results from urbanization and the expansion of agricultural and 

pastoral areas fragments LULC, in turn increasing vector range and hastening vector 

reproduction. Emergence of the first plague-causing pathogens in tropical Asia was a 

product of such a deforestation and VBID association. 

Associations exist between elevated malaria occurrence in many African, South 

American, and Southeast Asian regions and road and irrigation ditches built during 

deforestation (Vittor et al. 2006, Walsh et al. 1993). Deforestation-driven road and 

ditch construction involves the felling of trees. This activity reduces faunal shade and 
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increases the pooling of water, both of which promote mosquito breeding and an 

acceleration of larval development from one to two weeks to as quickly as 4.5 days 

(Afrane et al. 2005, de Castro et al. 2006, McMichael 2004). 

In addition to the change in natural fauna, deforestation can result in the depletion 

of predator species. An explosion of small mammal and arthropod vector populations 

fill these human-induced voids in the natural flora. The 1998 Nipah virus outbreak in 

Malaysia is an example of predator depletion due to deforestation. A reduction of 

predator species resulted in greater populations of and interaction between fruit bats 

and pigs, followed by disease spillover to humans (Pike et al. 2010). While LULC 

change and VBID emergence both occur at the local-level, impacts of their association 

increase alongside the scale of transmission. 

2.5 VBID Monitoring 

Monitoring of local-level VBID emergence to prevent an increase in the scale of 

transmission via disease surveillance is necessary to protect public health. VBID 

surveillance is defined by the Centers for Disease Control and Prevention (CDC) as 

the “ongoing, systematic collection, analysis, interpretation, and dissemination” of 

public health data with the goal of improving health and reducing morbidity and 

mortality (Thacker et al. 2012). 

VBID surveillance falls into two broad categories in event-based and indicator-

based. Traditional, event-based VBID surveillance systems rely on authoritative 

updates about disease occurrences from official sources, typically clinics or medical 
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laboratories. While highly accurate, these event-based surveillance systems exhibit 

slow response times. In contrast, indicator-based VBID surveillance systems offer 

rapid detection of emerging outbreaks, but suffer from a perceived lack of quality due 

to reliance on unreliable, unvetted, and unofficial data sources. 

Laboratory testing provides the accurate, specific, and authoritative VBID and 

serotype diagnosis that forms the foundation of traditional, event-based surveillance. 

This authoritative data informs the mitigation, intervention, and response decisions 

of public health agencies (Feng and Varma 2011). 

Calvo-Cano et al. (2014) cite the specificity event-based surveillance afforded 

medical practitioners investigating the high temperature, lethargy, myalgia, and 

headache symptoms described by a traveler who spent two weeks in Thailand. The 

elimination of conditions thought to be responsible for the traveler’s ailments, to 

include various hepatitis serotypes, chikungunya, and dengue was possible through 

laboratory testing, which diagnosed Leptospira as the culprit. 

Authoritative data also affords accurate trend and pattern analysis, as exemplified 

through a German study that analyzed trends of Campylobacteriosis, the most 

common gastrointestinal disease. Schielke et al. (2014) analyzed event-based data 

gathered over multiple years to reveal spikes of Campylobacteriosis cases in January 

and the summer months. Analysis also revealed higher rates of occurrence in adults 

in their twenties and children under four years of age, specifically those living in rural 

areas. This retrospective trend and pattern analysis gave German public health 
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professionals accurate insight into temporal and demographic patterns of 

Campylobacteriosis emergence, enabling a tailored and targeted response. 

While accuracy and specificity of laboratory testing enables tailored and targeted 

response activities by public health agencies, the retrospective nature of event-based 

surveillance comes at the sake of the temporal benefits needed address emerging 

outbreaks. Drawbacks of event-based VBID surveillance also include limited 

pathogenic scope, spatial scale, and health care participation. Further, 

disproportionately few VBID surveillance systems surveille developing countries, 

which are at the greatest risk of disease emergence. The lack of detailed data (disease 

or otherwise) within developing countries, particularly those in tropical regions, 

compounds this problem (Wilcox and Ellis 2006). 

Sutherst (2004) suggests that infectious diseases endemic to tropical and 

subtropical regions will expand their latitudinal range in the decades ahead. This 

regional expansion combined with accelerating LULC change will increase infectious 

disease risk in temperate zones (Arinaminpathy et al. 2009). However, disease 

specialization and the limited spatial scope of event-based VBID surveillance 

prevents systems from surveilling many of the diseases within or on the doorstep of 

the systems surveillance range (Morse 2012). An assessment of 115 event-based 

surveillance systems from countries in five continents contends that the fragmented 

spatial coverage of event-based surveillance is due to the limited spatial range and 

single-disease focus of most systems (Bravata et al. 2004). Even within the spatial 
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range of a surveillance system, inaccessibility of remote rural areas and the sheer 

number of inhabitants can limit surveillance effectiveness (Feng and Varma 2011). 

The spatial and content quality of the surveillance hinges on the assumption that 

all actors within the system have the necessary resources to perform surveillance and 

are working collaboratively. Phalkey et al. (2013) evaluated the Integrated Disease 

Surveillance system across all 34 districts in Maharashtra, India to discover limited 

capacity at the lab-, district-, and national-level. Only 53 percent of districts could 

confirm all priority diseases and all performance factors scored worse at the lab-level 

than the district-level. Irrespective of the reason, failures in surveillance at the lower 

levels negatively influences public health decisions of officials at the highest levels. 

Similar reporting issues exist within the United States, where each county is 

responsible for reporting infectious disease occurrences that fall within the 

parameters of the National Notifiable Disease list through the state to the CDC. Each 

county handles the reporting of surveillance information differently and not every 

county or state participates in every surveillance program (Woolhouse 2011). 

Further, underreporting to the CDC is a major challenge created by inadequate 

resource levels and policies (Woolhouse 2011). Underreporting could also be a 

product of the disincentives associated with the potential negative economic impacts 

an incident report might elicit at the local-level (Bogich et al. 2012). 

These capacity and underreporting factors produce inconsistent spatial and 

content coverage, which adversely influences identification of accurate trends and 
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patterns (Morse 2007). Inference of VBID hotspots, trends, and patterns through 

measurement of LULC can supplement disease surveillance. 

2.6 Measuring LULC and VBID Associations 

Evaluation of existing literature, field research, and remote sensing are common 

methods by which spatial epidemiologists measure associations between LULC and 

infectious disease. VBIDs are ecological diseases due to vector reliance on particular 

vegetation, temperature ranges, and other environmental variables (Ceccato et al. 

2005). The methods used to measure these variables influence the identification of 

associations between LULC and VBID. 

2.6.1 Review of Existing Research 

As the corpus of LULC and environmental data expands, so does the amount of 

epidemiological research that could leverage the spatial information therein. 

McFarlane et al. (2013) conducted a systematic review of the association between 

LULC change and infectious disease emergence within Australia. Research 

encompassed a review of literature published between 1973 through 2010 using 

keywords pertaining to emerging infectious disease and Australia. Twenty-two 

percent of the 90 emerging infectious disease events were associated with LULC 

change, and the strongest associations involved agricultural LULC change. Further, 

significant LULC change events were associated with highly clustered infectious 

disease occurrences. 
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2.6.2 Field Research 

Vanwambeke et al. (2011) conducted field research to discover an association 

between LULC and dengue risk from the Aedes albopictus mosquito vector in select 

areas within Hawaii. In another field research example, Ezenwa et al. (2007) studied 

the spatial association between LULC and WNV prevalence in St. Tammany Parish, 

Louisiana. This research found a strong association between wetland LULC and WNV 

host abundance and range, suggesting that larger unbroken tracts of wetland would 

result in greater control of hosts by predators, thus naturally controlling WNV 

outbreaks. Field research provides robust and invaluable ground-truths of vector 

habitat characteristics and spatial associations. However, this method does not scale 

as efficiently or cost-effectively as remote sensing. 

2.6.3 Remote Sensing 

Remote sensing provides epidemiologists a spectrally fine and spatially broad 

view of LULC interfaces at ever increasing temporal resolution. Data from satellite, 

aerial, and ground-based remote sensors has unlocked applications at scales beyond 

that of localized field research. 

Unlike the identification of vectors through field studies, remote sensing infers the 

existence, range, and abundance of vectors through measurement of elevation and 

environmental variables such as LULC, vegetation type and health, and land 

temperature (Kalluri et al. 2007). When validated by or combined with vector habitat 
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characteristics discovered via field research, remotely sensed data can be used to 

predict disease risk on a broad spatial scale (De La Rocque et al. 2004). 

Temperature, humidity, rainfall, and vegetation variables derived from remote 

sensing aid in the creation of prediction models for malaria based on the preference 

of many mosquito species to deposit larvae in specific, identifiable LULC classes (Hay 

et al. 1998). De La Rocque et al. (2004) analyzed tree canopy patterns from high-

resolution SPOT imagery to classify vegetation type and evaluated Normalized 

Difference Vegetation Index (NDVI) to classify vegetative health. Analysis of these 

countrywide datasets in Burkina Faso identified habitats of six tsetse fly species. This 

remote sensing method enabled frequent updates of regional-level disease risk maps, 

a spatiotemporal achievement that leverages findings from and compliments the 

precision of smaller scale field studies. 

2.6.4 LULC Classification 

LULC classification from remotely sensed imagery occurs through categorization 

of physical features and processes based on spectral properties. Similar to the 

gradient characterized by most climate variables, the physical transition between 

different LULC classes range from abrupt to gradual. The imagery-derived 

classification of gradual transitional boundaries between LULC classes results in 

pixels that contain the spectral signature of more than one land type. Mixed or 

mosaicked LULC classes mitigate uncertainties in pixel assignment, as attempted by 

the extensive range of classes within the GlobCover dataset (Table 4). 
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Table 4. GlobCovers extensive class set accounts for gradual LU transitions compared to GLC-SHARE. 

GlobCover GLC-SHARE  
Post-Flooding or Irrigated  Artificial Surfaces 
Rain-fed Croplands Croplands 
Mosaic Croplands  Grasslands 
Mosaic Forest/Shrubland  Tree-Covered 
Mosaic Grassland  Shrub-Covered 
Mosaic Vegetation  Herbaceous 
Closed to Open Broadleaved  Mangroves 
Closed to Open Mixed  Sparse 
Closed to Open Shrubland Bare Soil 
Closed to Open Grassland Snow and Glacier 
Closed to Open Vegetation  Inland Water 
Closed Broadleaved Deciduous  
Closed Needleleaved Evergreen  
Closed Forest Regularly Flooded  
Closed Semi-Deciduous  
Open Broadleaved Deciduous  
Open Deciduous or Evergreen  
Sparse Vegetation  
Waterlogged Soil  
Artificial Surfaces  
Bare Areas  
Water Bodies  
Permanent Snow and Ice  

 

A trade-off exists between the addition of classes that depict gradual LULC 

transitions and the complexity of analysis (Wang and Howarth 1993). Compared to 

the 11-class GLC-SHARE, GlobCover’s 23 classes can increase complexity and bloat 

compute time. Consolidation of LULC classes considered duplicative within the lens 

of a research topic reduces the computational and analytic load. 
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2.6.5 LULC Uncertainty 

LULC datasets are the product of human-derived classification schemas and the 

abstracted definitions therein (Wang and Howarth 1993), factors that introduce 

uncertainty through ambiguity and vagueness (Leyk et al. 2005). The lack of schema 

standardization (Buyantuyev and Wu 2007) and the unintentional, yet often 

unavoidable inclusion of co-occurrences, also contribute to uncertainties in LULC 

datasets (Altizer et al. 2006, McClintock et al. 2010). 

Ambiguity 

Classification schemas with slightly different definitions for the same physical 

feature produce ambiguity when comparing LULC datasets. Slight definition 

differences exists between the International Geosphere Biosphere Programme 

(IGBP) and United Nations (UN) LCCS classification schemas. The LCCS criteria for the 

snow and glacier LULC class includes snow or glacial coverage for at least ten months 

out of the year (Latham et al. 2014). The IGBP criteria is slightly different in the 

requirement of snow or glacial coverage throughout the year (FRA 2000). The two-

month difference in the LULC definition could result in ambiguity when comparing 

digital representations of the same physical features from different sources (Leyk et 

al. 2005). The looser threshold for feature inclusion in the LCCS snow and glacier class 

will produce a corresponding LULC footprint more spatially extensive relative to the 

more stringent IGBP threshold. The delta between these two LULC definitions are 

physical features that fall within different classes depicted in a LULC dataset. 
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Vagueness 

Vagueness is a product of poorly defined classification criteria that create 

confusion as to which class a pixel belongs (Leyk et al. 2005). The unsupervised 

Global Forest Watch (GFW) classification algorithm compares the visible and infrared 

signature of each pixel in an image and the corresponding pixel in subsequent images 

to assign each pixel a ‘forested’ or ‘not forested’ value. Vagueness in the classification 

criteria and LULC definitions used by GFW could produce uncertainty within a 

portion of the datasets 143 billion pixels, assuming vague criteria in the definition of 

mosaic forests that reside in between forested or not-forested LULC (Global Forest 

Watch 2014). Vagueness is a product of definitions that allow for flexible 

interpretation. Leyk et al. (2005) suggest mitigation of vagueness via semantic model 

to compare all definitions. 

Estimation of a datasets ambiguity and vagueness should account for the number 

of contributors listed in the metadata lineage (Leyk et al. 2005). Each additional 

contributor potentially propagates the influence of different, ‘imperfect’ definitions 

or semantics during feature classification. Fewer contributors translates into a 

greater likelihood that LULC definitions and criteria produce methodological 

uniformity. 

Standardization 

Buyantuyev and Wu (2007) express that standardization of LULC classification 

schemas would enable greater application of analytic methodologies through 



 

27 
 

accurate spatial and temporal comparisons of LULC datasets. The lack of 

standardization makes apples-to-apples comparison of datasets impossible. Even 

with datasets from the same data producer, improvements in classification 

definitions and algorithms result in different pixel values for the same physical 

feature under the same environmental conditions. The comparison limitations 

combined with the infrequent creation of LULC datasets adversely influences 

outcomes when using multiple LULC datasets within a single research project. 

Co-Occurrences 

LULC, environmental, and climate variables derived from remotely sensed data 

aid the successful prediction of tick abundance in North America (Ratmanov et al. 

2013). While measuring such variables with remote sensors offers many benefits, co-

occurrences such as seasonal changes in temperature, rainfall, and resource 

availability can add uncertainty to the research of LULC and VBID associations. 

Seasonal changes influence influenza transmission, which is typically more prevalent 

during winter months, and malaria transmission, which increases during periods of 

seasonal rain. Co-occurrences such as El Niño and La Niña can result in longer-term 

deviations of environmental and climate variables (Altizer et al. 2006). 

McClintock et al. (2010) suggest repeating research methodologies over time and 

space will reduce uncertainties borne through seasonal and multi-year co-

occurrences. Mitigation of uncertainties through iteration of methodologies over time 

and space improves reliability when using LULC, environmental, and climate 
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measurements to locate and quantify vector range and abundance, and predict 

hotspots of human risk for VBID. Be it through evaluation of existing literature, field 

studies, or remote sensing, spatial epidemiological research is leading to the 

discovery of associations between LULC and VBID at multiple scales. 

2.6.6 Geographic and Thematic Scales 

The geographic and thematic scales of analysis influence research findings (Beale 

et al. 2008), to include the strength of associations discovered between LULC and 

VBID. Under optimal conditions, research requirements will dictate scale. In practice, 

theory-based scale criteria dissolves when faced with poor data quality and sparse 

data availability. 

Arsenault et al. (2013) convey that dynamic epidemiological processes collected, 

analyzed, and communicated at one scale might be insignificantly represented or 

omitted altogether at another scale. Low-resolution, broad area collection might not 

capture processes that occur at the local-level while high-resolution, narrow-area 

collection might contain too much noise to discern regional-scale processes. 

Arsenault et al. (2013) applied a set of measurable criteria to select the geographic 

scale of analysis. Criteria included intra-unit homogeneity, compactness, variation in 

areal size, and the percentage of areas with sufficient population size. Such criteria 

led to the identification of municipality as the appropriate scale for their research into 

Campylobacteriosis within Quebec, Canada. This scale selection methodology proved 
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successful in a developed country with the wealth of population, epidemiologic, and 

LULC data seldom found in developing countries. 

In addition to the geographic scale of analysis, the scale at which data is mapped 

– thematic scale – requires consideration. Thematic scale determines the amount of 

information cartographically depicted, serving as a filter that either represents 

physical features as pixels or ignores physical features smaller than the scale value. 

As an example, imagery derived maps at a 1:10,000 scale produce significantly denser 

abstractions of physical features than maps at 1:100,000 scale. 

If analysis at the regional, national, or global scale leverages local-level data, 

aggregation could transform the data into a scale appropriate for a larger area study. 

However, the modifiable areal unit problem (MAUP) often results from data 

aggregation (Arsenault et al. 2013). Aggregation of local data to the state- or nation-

level can strip associations discoverable at the county-level and produce MAUP-

related uncertainty and biases (Beale et al. 2008). 

Selection of geographic- and thematic-scales should occur through the lens of the 

research questions and associated data needs. If fortunate enough to research a topic 

flush with data at various scales, the selection of scale should compromise between 

the content richness and noise of local-level data and the generalization and broad 

spatial coverage of regional-level data. 
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2.7 Research Opportunity 

McFarlane et al. (2013), Murray and Daszak (2013), Morse (2012), and Eisenberg 

et al. (2007) are among the contingent of spatial epidemiologists whom have called 

for additional research into the association between LULC and infectious disease to 

detect potential hotspots of increased human transmission risk. 

The social and economic impacts of the 2003 SARS outbreak and the 2014 Ebola 

outbreak underpins the UN Millennium Development Goal to halt and reverse 

occurrences of major infectious diseases (United Nations 2014). However, 

understanding of the complex spatial association between LULC and VBID exists for 

only a few diseases (Ezenwa et al. 2007, Jones et al. 2008, Patz et al. 2004). 

Although the spatial component of infectious disease received more attention 

during the 2000's, just one percent of all articles within seven leading epidemiology 

journals evaluated by Auchincloss et al. (2012) cited a spatial methodology, 

regardless of type. The spatial associations between VBID and LULC fragmentation 

received even less research attention than the general LULC associations conveyed 

by Ezenwa et al. (2007), Jones et al. (2008), and Patz et al. (2004). 

Fragmentation increases the linear density of LULC boundaries, also known as 

transitions, ecotones, edges, or interfaces. A Rhode Island field study by Finch et al. 

(2014) associated the linear density of shrub LULC boundaries with increased 

densities of tick nymphs and elevated rates of tick related diseases. Lambin et al. 

(2010) found a strong association between WNV and the density of LULC boundaries 
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produced by fragmentation in southern France. Fragmentation increases the 

frequency of human contact with vectors, in turn increasing the rate of VBID 

emergence (McMichael 2004). 

Fragmented LULC contains high densities of vectors relative to larger, unbroken 

blocks of LULC. In Belgium, the probability of tick-borne Lyme disease is greater in 

areas with a high level of forest and peri-urban LULC fragmentation (Wilcox and Ellis 

2006). A southeastern New York field study of a Lyme disease reservoir host in white-

footed mice identified similar results in the association between forest fragmentation 

and Lyme disease whereby the greatest risk of Lyme occurred in settlements adjacent 

to forest fragments (Allan et al. 2003). 

Identifying the point at which the density of LULC boundaries become associated 

with increased VBID occurrence will benefit policy makers and health professionals 

alike. McFarlane et al. (2013) and Murray and Daszak (2013) recommend policy 

makers mitigate VBID risk through strategies that modify land development plans 

and policies based on identification of high-risk areas. Health care professionals can 

supplement existing methods to assess the targeted allocation of their overburdened 

resources. The goal for both user groups is an early warning methodology to aid in 

targeted VBID prevention and mitigation, thus dampening the social and economic 

impacts of infectious disease. 
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3 METHODOLOGY 
 
 
 

A disproportionate amount of VBID are transmitted near LULC edges, where the 

human-physical interface is greatest (Patz et al. 2008, Wilcox and Ellis 2006). This 

spatial relationship between LULC and VBID is the foundational concept driving the 

research in this dissertation. 

This dissertation seeks to address three research questions through the context 

of spatial associations between LULC and VBID. These research questions are: (RQ1) 

Do spatial associations exist between the linear density of LULC boundaries and VBID 

occurrence; (RQ2) Do patterns of spatial associations repeat over time; and (RQ3) Do 

patterns of spatial associations repeat across space? 

RQ1 examines WNV occurrences in the contiguous United States during 2014. 

RQ2 expands the temporal breadth of RQ1 through examination of WNV occurrences 

in the contiguous United States between 2003 through 2014. RQ3 shifts VBID and 

study area to examine Zika in Colombia, South America during 2016. 

The high-level methodology includes constituent steps, such as the collection, 

preparation, and processing of unstructured, semi-structured, and structured data 

from official and unofficial sources (described in Section 4). As an example, 
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conversion of temperature and elevation raster files into vector points enables a 

spatial join with second-order administrative unit polygons to calculate average 

values per unit. 

The high-level methodology applied in part or in full to the three RQs include: 

• Consolidation of LULC classes from GlobCover and GLC-SHARE datasets into 

Research Classes (RC) to reduce compute time and analytic complexity. 

• Calculation of landscape metrics in linear density, proportion abundance, and 

patch density to create LULC independent variables. 

• Derivation of Principal Components to reduce the complexity presented through 

inclusion of multiple RCs in regression analysis. 

• Calculation of incidence rate ratio and other negative binomial regression factors 

to assess the spatial associations between LULC and VBID. 

3.1 Consolidation of LULC Classes 

Identification of LULC areas occurs through the categorization of remotely sensed 

physical features and the associated human activities as defined in LULC classification 

schemas (Hay et al. 1998). However, LULC datasets can contain upwards of 20 classes, 

many of which are indistinguishable for the purposes of this research. Further, 

inclusion of the full breadth of LULC classes bloats compute time and adds 

unnecessary complexity to analysis. 
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Wang and Howarth (1993) suggest a trade-off evaluation between the number of 

LULC classes and the complexity of analysis. To this end, LULC classes defined as 

similar through the lens of this research are consolidated into fewer, often broader 

RCs. The RCs created for this research include: 

• Artificial Surfaces 
• Cropland 
• Grassland 
• Tree-Covered 
• Waterlogged 
• Bare Soil 
• Water Bodies 
• Snow and Glacier 

 

Classification schemas define the characteristics of each LULC class and guide the 

consolidation (Section 4.2) of similar LULC classes into RCs. As an example, the Tree-

Covered RC is a consolidation of Closed Broadleaved Deciduous and Closed 

Needleleaved Evergreen classes from the GlobCover dataset. The resultant eight RC 

classes will reduce compute time and analytic complexity. 

3.1.1 Landscape Metrics 

Linear (edge) density serves as the primary landscape metric in the examination 

of spatial associations between LULC and VBID occurrence. Supplemental landscape 

metrics in proportion abundance and patch density add context to linear density. 

LULC Linear Density 

An increase in the linear density of LULC boundaries occurs when a large LULC 

patch is broken, or fragmented, into smaller patches. Fragmentation increases the 
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density of LULC boundaries within a given area, which increases the amount of 

human-physical interface and produces a greater likelihood of VIBD emergence 

compared to larger, unbroken patches (McMichael 2004). Spatial associations exist 

between fragmentation and emergence of VBIDs, such as Lyme (Wilcox and Ellis 

2006, Patz et al. 2004, Allan et al. 2003) and WNV (Lambin et al. 2010). 

The calculation of LULC boundary density provides a landscape metric akin to 

fragmentation, and one in which the spatial unit of the linear density calculation is 

equal to that of the VBID dataset, the second-order administrative unit. Arsenault et 

al. (2013) identified municipality as the appropriate scale for VBID research within 

Quebec, Canada. Similarly, the municipality within Colombia and the county within 

the United States, both second-order administrative units, are appropriate scales for 

Zika and WNV research, respectively. 

Designation of the Local Administrative Unit (LAU) at the second-order reduces 

uncertainties caused by the spatial variation between VBID transmission and report 

locations. Data at a scale more granular than the second-order administrative unit is 

not possible because such VBID information is not publically available. Further, a 

more granular research unit increases the likelihood that reports of disease 

occurrence will fall outside of the unit where transmission took place. Conversely, 

aggregation of data into administrative units larger than the second-order would 

introduce the MAUP, whereby spatial detail and insight is lost. 
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Geographic Information System (GIS) functionality intersects LULC areas where 

they cross LAU areas. After intersecting LULC and LAU areas, geometry calculations 

derive LULC boundary length for each RC within each LAU. Dividing boundary length 

by area determines the linear density (length per area) for each set of RC boundaries. 

The following equation calculates the linear, or edge, density of LULC boundaries: 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐷𝐷𝐿𝐿𝐿𝐿𝐷𝐷𝐿𝐿𝐷𝐷𝐷𝐷 =
(∑ 𝐿𝐿𝑖𝑖 𝑛𝑛

𝑖𝑖=1 )
𝐴𝐴

 ,  

where L = length of boundary within a LAU, A = LAU area 

 

LULC Proportion Abundance 

Proportion abundance is a landscape metric that measures the area of a single RC 

compared to the area of all RCs in the same second-order administrative unit. 

Proportion abundance is independent from the two other landscape metrics since 

patch shape (linear density) and patch count (patch density) do not necessarily 

correlate to proportion abundance. 

The proportion abundance of a given RC will increase as its area increases within 

an administrative unit. However, the shape and complexity of these RC patches might 

not result in a corresponding increase in linear density. Simply stated, natural patches 

with complex boundaries replaced by larger patches with simpler geometric 

boundaries (e.g. cropland) will increase proportion abundance while decreasing 

linear density. 
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LULC Patch Density 

Patch density is a landscape metric that measures patch count of a single RC in a 

unit compared to the total patch count of all RCs in the same unit. Like proportion 

abundance, this landscape metric is independent from the other landscape metrics. 

Due to variability in patch shape and area, the patch density landscape metric does 

not correlate to linear density or proportion abundance. 

The patch density of a given RC will increase as the number of its patches increase 

within an administrative unit. While fragmentation increases the amount of patches 

within a unit, the shape and complexity of the RC patches within the same unit might 

not result in a corresponding increase in linear density. 

Figure 3 depicts the relationship between the three landscape metrics. The linear 

density of the gray patches within the first row remain constant, as does proportion 

abundance in the second row, and patch density in the third row. 
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Figure 3. Relationship between linear density, proportion abundance, and patch density. 



 

39 
 

3.1.2 Principal Component Analysis 

Principal Component Analysis (PCA), or dimension reduction, maximizes data 

variance while reducing the number of original variables into a lesser amount of 

components. The Principal Component explains the greatest amount of data variance 

with subsequent components explaining progressively less data variance. 

The PCA Correlation Matrix validates selection of the original variables. In 

addition to the variable correlations within the Correlation Matrix, eigenvalue 

percent variance and cumulative variance aids downstream analysis by quantifying 

the variance explained by the original variables. Eigenvalues greater than 0.5 signify 

that the component’s original variables explain a significant amount of data variance. 

PCA is performed on targeted RCs using IBMs Statistical Package for the Social 

Sciences (SPSS) to examine RQ1 and RQ2. RCs used to examine the spatial association 

between LULC and VBID within the contiguous United States include Cropland, Tree-

Covered, Artificial Surface, Water Bodies, and Waterlogged. 

Cropland is included in PCA because 86 percent of all 3,107 counties in the 

contiguous United States have linear density values greater than zero for this RC. 

Cropland is not just widespread; it is associated with roughly half of all global VBID 

occurrences (McFarlane et al. 2013). Similarly, Tree-Covered is widespread due to 

non-zero presence in 74 percent of all counties. 
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Artificial Surface is included in PCA because this RC represents high densities of 

humans living adjacent to non-urban RCs. In addition, Arinaminpathy et al. (2009) 

identified associations between urban areas and the surrounding LULC in peri-urban, 

grassland, and cropland with elevated VBID risk. Wilcox and Ellis (2006) associated 

urbanization with specific VBIDs in dengue, SIV, and yellow fever. Water Bodies and 

Waterlogged are included in PCA because they represent ideal locations for mosquito 

breeding sites (EPA 2004). 

Grassland was initially included in PCA because it accounts for 42.05 percent of 

all LULC in the contiguous United States. Removal of this RC from PCA and its addition 

as a stand-alone independent variable was necessary because Grassland is highly 

associated with VBID regardless of PCA and regression permutation. 

3.1.3 Regression Analysis 

Negative binomial regression, used across all research questions, reveals spatial 

associations (or lack thereof) between LULC and VBID. Unlike Ordinary Least 

Squares, Poisson, and other Generalized Linear Regression methods, negative 

binomial determines the incidence rate ratio of dependent variables characterized by 

small numbers. 

Although VBID presents a significant and growing threat to public health, 

occurrence rates are relatively low when compared to the general population. 

Further, a significant number of Colombian municipalities and US counties are devoid 

of occurrences. The WNV occurrence data indeed represents small numbers. Based 
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on the available data (2003 through 2014) that met the selection criteria of this 

research, WNV peaked in the contiguous United States in 2003. During this year, 

2,036 out of 3,107 counties, 65.5 percent, did not experience a single reported WNV 

occurrence. Further, the 9,755 confirmed occurrences out of a total population of 

288,208,365 results in an occurrence rate of 0.0034 percent, or 3.4 out of 100,000. 

Zika in Colombia during 2016 also represents small numbers. Forty-five percent 

or 509 out of 1,1,21 municipalities did not experience a single Zika occurrence while 

the occurrence count of 501,970 in a population of 48,881,635 results in an 

occurrence rate of 1 percent or 1,027 out of 100,000. Negative binomial appropriately 

accounts for VBID occurrence characteristics, such as low counts, a significant 

number of zero values, and dissimilarity between the variance and mean. 

The negative binomial regression models use VBID occurrence counts as the 

dependent variable. Independent variables for the contiguous United States study 

area include population density, average temperature, Grassland, and the RC-derived 

Principal Components. Average rainfall, similar to average temperature, is an 

environmental factor associated with VBID occurrence. However, removal of the 

rainfall variable was necessary due to collinearity with temperature. 

Independent variables for the Colombia study area include population density, 

average elevation, per capita Gross Domestic Product (GDP), and three RCs in 

Cropland, Grassland, and Tree-Covered. These three RCs account for more than 98 
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percent of all LULC within Colombia during 2016. GPD was included to normalize the 

spatial association for an economic variable. 

The primary regression model examines the linear density landscape metric. 

Supplemental regression models examine the proportion abundance and patch 

density landscape metrics. These supplemental landscape metrics add context to the 

linear density landscape metric results. 

Output tables from the regression model for RQ1 includes the minimum, 

maximum, mean, standard deviation, incidence rate ratio (expB), and the 95 percent 

confidence interval. ExpB, the incidence rate ratio, indicates that a one-unit increase 

in the independent variable will increase (if expB > 1.0) or decrease (if expB < 1.0) 

the relative risk of the dependent variable, VBID occurrence, by the expB value. 

3.2 Spatial Associations over Time 

The methods described in Section 3.1 examined a temporal snapshot of 2014 

WNV data in the contiguous United States. Examination of a single years’ worth of 

data could inadvertently introduce uncertainties borne via co-occurrences such as 

seasonal or long-term confounding environmental events. 

Long-term confounding environmental events, such as El Niño and La Niña, result 

in global climate changes that can last for years. El Niño or La Niña -driven increases 

or decreases to a regions average temperature and rainfall unevenly influences the 

range and abundance of VBID hosts and vectors across LULC classes. Due to multi-
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year aftereffects, a weak La Niña event in 2011-2012 introduces potential uncertainty 

in the analysis of 2014 WNV data (Null 2015). 

McClintock et al. (2010) assert that the comparison of multiple temporal 

snapshots mitigates the influence of co-occurrences. As a result, negative binomial 

regression is iterated using WNV data within the contiguous United States for each 

year between 2003 through 2014. Averaging each variables’ incidence ratio derived 

from negative binomial regression will provide a more reliable and robust analysis of 

spatial associations between LULC and VBID than any one year can offer. 

3.3 Spatial Associations across Space 

Comparison of negative binomial regression results for two study areas and 

infectious diseases will help answer RQ3. This RQ examines spatial associations 

between LULC and the Zika VBID within Colombia during 2016. 

McClintock et al. (2010) not only suggest the repetition of research methodologies 

over time, they recommend repeating methodologies over space to reduce 

uncertainty borne through confounding environment variables. The comparison of 

incidence ratios derived from two geographically disparate study areas in the United 

States and Colombia and two different diseases in WNV and Zika will advance our 

understanding of the spatial associations between LULC and VBID. 
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4 DATA 
 
 
 

Data requirements for research into the spatial associations between LULC and 

VBID includes disease occurrences, land use, administrative units, and environmental 

and demographic variables. Data source dates are similar (Table 5) to ensure that 

VBID occurrences temporally align with the population impacted by said VBID. The 

data requirements and criteria outlined in this section narrows the focus of this 

research to WNV in the contiguous United States between 2003 through 2014 and 

Zika in Colombia during 2016. 

 

Table 5. Temporal alignment of data and data sources each study area. 

 WNV in the contiguous United States 
  Admin  Population Temp VBID LULC 

2003 GAUL US Census PRISM CDC/USGS   
2004 GAUL US Census PRISM CDC/USGS  
2005 GAUL US Census PRISM CDC/USGS GlobCover 
2006 GAUL US Census PRISM CDC/USGS  
2007 GAUL US Census PRISM CDC/USGS   
2008 GAUL US Census PRISM CDC/USGS   
2009 GAUL US Census PRISM CDC/USGS GlobCover 
2010 GAUL US Census PRISM CDC/USGS   
2011 GAUL US Census PRISM CDC/USGS  
2012 GAUL US Census PRISM CDC/USGS   
2013 GAUL US Census PRISM CDC/USGS   
2014 GAUL US Census PRISM CDC/USGS GLC-SHARE 

      
 Zika in Colombia 
 Admin  Population Elevation VBID LULC 

2016 GADM Dept. Statistics SRTM GitHub GLC-SHARE*1 
           1. GLC-SHARE produced in 2014 
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4.1 VBID 
 

Data availability and alignment, spatial resolution, occurrence count and scope, 

transmission type, and relevancy criteria funneled the breadth of potential VBIDs to 

the selection of WNV in the contiguous United States between 2003 through 2014 and 

Zika in Colombia during 2016. 

Data Availability and Alignment 

This dissertation relies on publically available VBID data. Further, all VBID data 

must be in temporal alignment with the other data sources to ensure the research 

accurately captures spatial associations. 

Spatial Resolution 

The spatial resolution of VBID data must be at or more granular than the second-

order administrative unit. Nearly all publically available infectious disease data is at 

the state or nation level. Similar to Arsenault et al. (2013) identification of 

municipality as the optimal resolution to research VBID in Quebec, the spatial 

resolution for this WNV and Zika research is the United States county and Colombian 

municipality, respectively. VBID data aggregated to the state or national-level would 

increase spatial uncertainty and decrease analytic accuracy (Arsenault et al. 2013). 

Occurrence Count and Scope 

VBIDs must represent a significant number of occurrences and broad spatial 

scope. Schneider et al. (2010) assert that discovery of associations requires a number 

of observations at least 20 times the number of independent variables. Independent 
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variables include population density, average temperature or elevation, up to three 

LULC variables, and in the Colombia study area, GDP per capita. The inclusion of up 

to six independent variables requires at least 120 occurrences per study area. 

This minimum occurrence requirement excludes Anthrax, a VBID transmitted by 

the Bacillus anthracis bacterium, as there are only one to two naturally occurring 

deaths annually within the United States (CDC 2009). While Anthrax and other rare 

diseases do not meet the occurrence count minimum, 120 occurrences is achievable 

for a broad range of VBIDs. The fewest WNV occurrences between 2003 through 2014 

in the contiguous United States occurred in 2011, with 705 occurrences. Zika in 

Colombia during 2016 reached 501,970 confirmed occurrences. 

Transmission Type 

The preferred VBID for study does not pass from human-to-human. The VBID 

occurrence data assessed for this research does not differentiate between vector-to-

human and human-to-human modes of disease transmission. Elimination of 

contagious diseases from this research is necessary to maintain focus on the human-

physical interface and the influence of land use on VBID. 

Relevancy 

VBIDs should be relevant through the lens of our current public health landscape. 

The WHO, CDC, Health and Human Services (HHS), National Institute of Health’s 

(NIH) National Institute of Allergy and Infectious Diseases (NIAID), and other 

national and international organizations fund and resource VBID prevention and 
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mitigation (NIH 2015, NIH News 2009, WHO 2013). Despite the attention priority 

diseases receive, austere budget environments result in funding levels below what is 

required for full preparedness, reducing the capacity for proactive VBID mitigation. 

The International Working Group on Financing Pandemic Preparedness cited the 

recent Ebola outbreak as an example of the global health community’s common 

practice of reactive response and truncated funding (World Bank 2017). 

The need for proactive VBID detection and mitigation in an underfunded 

environment underscores the relevancy criteria, which focus this dissertations 

research on VBIDs that produce current social and economic impacts. 

4.1.1 West Nile Virus 

Over 30 species of mosquitos serve as the WNV vector, carrying the pathogen to 

humans after feeding on an infected bird. WNV vectors exist across Africa, Europe, 

Middle East, North America, and West Asia (WHO Media Centre 2011). 

WNV mosquito vectors rarely use healthy wetlands as breeding habitats due to 

the abundance of natural predators. However, degraded wetlands, altered by organic 

material and contaminant runoff produce algal blooms, which foster mosquito 

reproduction. Further, mosquito species that serve as WNV vectors, particularly Culex 

salinarius and Culex tarsalis, thrive in urban and suburban areas where they use 

stagnant water as breeding sites (EPA 2004). The greatest concentrations of 

mosquitos occur in temporary pools of water, such as ditches, tires, gutters, and 

abandoned swimming pools, which lack the mosquito’s natural predators and often 



 

48 
 

contain organic material. Under ideal warm weather conditions, these mosquito-

breeding sites can foster reproduction cycles in as quickly as 4.5 days. As such, nearly 

any warm-weather standing temporary body of water can serve as a productive 

mosquito-breeding habitat (Gaines 2014). 

The first documented case in the Western Hemisphere occurred in 1999. Since the 

initial outbreak in New York City, WNV has spread across the 48 contiguous states 

(USGS WNV 2013) and was responsible for nearly 40,000 infections and 2,000 deaths 

in the United States between 2003 through 2014 (CDC MMWR 2014). Roughly one 

percent of humans bitten by an infected mosquito will develop severe symptoms, to 

include encephalitis or meningitis (USGS WNV 2013) and no vaccine or antiviral drug 

exists to treat a WNV infection. As of October 2017, 7 deaths, 5 cases of paralysis, and 

74 cases of encephalitis or meningitis have been attributed to WNV in Los Angeles 

County (Karlamangla 2017). 

The Border Infectious Disease Surveillance program considers WNV a priority 

disease due to the northern trend of WNV vectors into the United States (Arizona 

Department of Health Services 2013). The CDC’s Division of Vector-Borne Diseases, 

the US HHS Global Health Strategy, and the WHO consider WNV a priority disease. In 

addition, the NIH NIAID designated WNV a Category B pathogen, which are relatively 

easy to transmit and result in moderate morbidity (NIH 2015). 

This research utilizes WNV data from the United States Geological Survey (USGS) 

WNV Human Provisional Data website (USGS 2014), which provides county-level 
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WNV occurrences annually from 2003 through 2014. The USGS WNV website updates 

weekly with data from the CDC through state health departments (USGS WNV 2013). 

4.1.2 Zika 

The Aedes aegypti and Aedes albopictus species of mosquito are the predominant 

Zika virus vector. The WHO describes the Aedes aegypti mosquito species as 

opportunistic in its ability to adapt to rapidly changing ecologies, including 

urbanization. The Aedes aegypti mosquito can reproduce in environments ranging 

from forests to densely populated urban areas (WHO Mosquito Control 2016). 

While roughly 80 percent of those infected with the Zika virus will not exhibit 

symptoms, there is no vaccine or cure for those who do manifest symptoms, such as 

fever, rash, joint pain, and red eyes. Further, health professionals are finding potential 

associations between Zika and increased risk of microcephaly, a condition that results 

in smaller than expected head size and abnormal brain development of a fetus while 

in utero, along with Guillain-Barré Syndrome, a condition that causes the immune 

system to attack the nervous system (CDC Zika 2016). 

The first Zika case occurred in 1947 within the Zika Forest, Uganda, near the west 

shore of Lake Victoria where scientists were researching yellow fever in rhesus 

monkeys. The virus largely remained in Africa with small outbreaks in Asia for 

decades after the first human infections in Uganda and the United Republic of 

Tanzania in 1952. In 2007, a major epidemic occurred on the island of Yap in 

Micronesia, where nearly 75 percent of the population were infected. In 2013, Zika 
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emerged in French Polynesia, sending 28,000 people, 11 percent of the population, to 

seek medical care. In March 2014, Chile notified the WHO with confirmation of 

indigenous transmission on Easter Island, with 72 of the cases deemed severe, 40 of 

whom suffered through Guillain-Barré Syndrome. Since May 2015, when health 

professionals in Brazil confirmed transmission of Zika, the virus has spread through 

Central and South America, with local transmission identified in Texas and south 

Florida (WHO 2017). 

Case counts are increasing due to the ongoing nature of the Zika epidemic. As of 

June 2017, the virus exists in 78 countries (Department of Health, 2017), with 224 

locally acquired mosquito transmission cases in the United States, and nearly 37,000 

across United States territories (CDC 2017). 

The CDC’s Division of Vector-Borne Diseases considers Zika a priority disease, 

resulting in greater levels of prevention and mitigation funding and resources. In 

April 2016, the Food and Drug Administration added Zika to the list of diseases for 

priority review to spur the development of a vaccine (CDC Zika 2016). 

The GitHub data repository provides publically available Zika data across a 

breadth of Central and South American countries (Rodriguez et al. 2016). Although 

contributors to this repository claim the data is not exhaustive or official, it is the most 

comprehensive publically available and centralized data repository of Zika cases at 

the second-order administrative unit. 
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Data availability through GitHub is possible through translation of and 

information extraction from official Epidemiological Bulletins created by local-level 

health departments or ministries across Central and South America. The earliest 

weekly Epidemiological Bulletin is dated late November 2015 (Rodriguez et al. 2016) 

and the repository maintains currency through the continuous addition of new data. 

4.2 Land Use 

WNV and Zika occurrences are associated with human-modified LULC classes, 

specifically urban, agricultural, and pastoral grassland (Kilpatrick 2011), adjacent to 

natural vegetation (McMichael 2004, Wilcox and Ellis 2006). Due to the infrequency 

of LULC dataset creation and the corresponding infrequency of source date alignment 

between all datasets (Table 5), this research must leverage two GlobCover LULC 

datasets and one GLC-SHARE LULC dataset. 

The GlobCover and GLC-SHARE classification schemas and class definitions 

inform the consolidation of LULC classes to RCs. Table 6 depicts the consolidation of 

23 GlobCover LULC classes to eight RCs and the corresponding rationale. 
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Table 6. Consolidation of 23 GlobCover classes into eight Research Classes. 

 

 

While both GLC-SHARE and GlobCover adhere to the Land Cover Classification 

System (LCCS), GLC-SHARE is a more streamlined subsection of the full LCCS. GLC-

SHARE is a best-of-breed, centralized, mosaicked, and harmonized database of 

regionally produced LULC datasets, each adhering to different classification schemas. 

GlobCover 2009, Moderate Resolution Imaging Spectrometer (MODIS) 2010, and 

Cropland Database 2012 supplement GLC-SHARE in areas where higher resolution 

authoritative national or regional data is not available. Fitness-for-use for GLC-SHARE 

sources are determined through imagery and ground-truth comparison with the best 

available source determined at the pixel level (Latham et al. 2014). 
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Table 7 depicts the consolidation of 11 GLC-SHARE classes to eight RCs and the 

corresponding class consolidation rationale, informed by the GLC-SHARE 

classification schema and class definitions. 

 

Table 7. Consolidation of 11 GLC-SHARE classes into eight Research Classes. 

 

 

4.3 Average Temperature and Elevation 

Similar to LULC, air temperature (Ceccato et al. 2005, Hay et al. 1998, Kalluri et al. 

2007) and elevation (Kalluri et al. 2007) influence vector range and abundance. 

Average temperature data from the United States Department of Agriculture funded 

PRISM Climate Group is publically available through Oregon State University. The 

most current municipality-level temperature dataset in Colombia is dated 1980. Due 

to this data vintage, average elevation replaces average temperature for the 

Colombian environmental variable. Average elevation is derived from the 250-meter 

Shuttle Topography Radar Mission (STRM) dataset. 
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4.4 Population 

The US Census Bureau Population Estimates Program (PEP), publically available 

through the Census American Fact Finder website, provides the United States county-

level population data for intercensal years. The Census Bureau annually adjusts 

decennial census data based on birth, death, and migration data to produce PEP data. 

The inclusion rate is 90.9 percent with a margin of error of 0.2 (Census 2012). 

The CityPopulation.com website provides Colombian municipality-level 

population data. CityPopulation data is derived from the National Department of 

Statistics, Republic of Colombia (CityPopulation 2017). 

4.5 Gross Domestic Product 

DANE, the Colombian National Statistics Office, makes municipality-level GDP 

data publically available. This data, gathered from datlascolombia.com, divided by the 

municipality-level population counts produces per capita GDP. 

4.6 Administrative Units 

The UNs Food and Agriculture Organizations (FAO) Global Administrative Unit 

Layers (GAUL) initiative is the source of second-order administrative units within the 

contiguous United States study area. GAUL is a global scale administrative unit 

dataset updated annually by the UN Cartographic Unit (GAUL 2014). 

GAUL does not include every municipality listed by the Colombian Statistics 

Department. As a result, Colombian boundaries are from the Database of 
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Administrative Areas (GADM). Robert Hijimans produces this dataset with support 

from colleagues at the University of California, Berkeley Museum of Vertebrate 

Zoology, the International Rice Research Institute, and the University of California, 

Davis. GADM is in complete alignment with the Colombian municipality names from 

the Colombian Statistics Department and the CityPopulation website. 

4.7 Variable Visualization 

Figures 4 through 10 visualize the spatial variation for the independent variables 

in each study area. Specifically, population density, average temperature, and each 

grassland landscape metric in the contiguous United States during 2003 and 

population density, average elevation, per capita GDP, and each landscape metric for 

tree-covered, cropland, and grassland in Colombia during 2016. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Population Density in the contiguous United States during 2014. 
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Figure 5. Average Temperature in the contiguous United States during 2014. 

Figure 6. Grassland Linear Density (Top), Proportion Abundance (Middle), and Patch Density 
(Bottom) in the contiguous United States during 2014. 
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Figure 7. Population Density (Left), Average Elevation (Middle), and Per Capita GDP (Right) in 
Colombia during 2016. 

Figure 8. Cropland Linear Density (Left), Proportion Abundance (Middle), and Patch Density (Right) 
in Colombia during 2016. 
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Visual analysis of the Colombian variables reveal potential variable correlations. 

While most correlations (Table 8) are weak to not meaningful, a perfect correlation 

exists between the cropland proportion abundance and the grassland proportion 

Figure 9. Tree-Covered Linear Density (Left), Proportion Abundance (Middle), and Patch Density 
(Right) in Colombia during 2016. 

Figure 10. Grassland Linear Density (Left), Proportion Abundance (Middle), and Patch Density 
(Right) in Colombia during 2016. 



 

59 
 

abundance. An association exists between cropland proportion abundance and 

cropland linear density while a negative association exists between grassland 

proportion abundance and tree-covered proportion abundance. 

 

Table 8. Correlation matrix for Colombian independent variables. 

 

Grass LD
 

Crop LD
 

Tree LD
 

Grass PA 

Crop PA 

Tree PA 

Grass PD
 

Crop PD
 

Tree PD
 

Elevation 

Pop D
ensity 

Ave GDP 0.04 0.01 0.03 0.11 0.01 (0.08) (0.04) (0.03) 0.10 (0.05) 0.00 
Pop Den. 0.12 0.00 0.03 0.13 0.47 (0.13) (0.01) (0.08) 0.07 0.03  
Elevation 0.08 0.20 0.32 (0.11) 0.03 0.06 0.18 0.08 0.07   
Tree PD 0.09 0.12 0.05 0.37 0.00 (0.46) (0.45) (0.27)    
Crop PD (0.12) 0.31 0.13 (0.11) (0.03) 0.12 (0.39)     
Grass PD 0.20 (0.14) 0.07 (0.17) 0.01 0.21      
Tree PA (0.62) (0.47) (0.34) (0.78) (0.50)       
Crop PA 0.23 0.81 0.45 1.00        
Grass PA 0.58 0.04 0.13         
Tree LD 0.61 0.67          
Crop LD 0.44           
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5 RESULTS 
 
 
 

The following section contemplates the results through the context of each 

research question – Do spatial associations exist between the linear density of LULC 

boundaries and VBID occurrence (RQ1); do these spatial associations repeat over 

time (RQ2); and do these spatial associations repeat across space (RQ3)? 

RQ1 focuses on WNV within the contiguous United States during 2014. RQ2 

temporally expands RQ1 to focus on WNV between 2003 through 2014. This broader 

temporal scope will mitigate the influence of confounding environmental events, an 

important task since El Niño events occurred in 2003, 2007, and 2011, and La Niña 

events occurred in 2008, 2011, and 2012 (ESRI 2017). RQ3 shifts geographic study 

area and VBID type to focus on Zika in Colombia, South America during 2016. 

Examination of two infectious diseases, each in a different study area, will increase 

the reliability of analytic outcomes. 

RQ1 and RQ2 take advantage of PCA to reduce the number of RC variables into a 

more manageable amount of Principal Components, reducing the complexity of 

regression modeling. Removal of Grassland from PCA in RQ1 and RQ2 and inclusion 

in regression as a stand-alone independent variable was due to its overwhelming 
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spatial significance. To achieve optimal model results, the RCs used to create Principal 

Components for RQ1 and RQ2 varied across each of the three landscape metrics. 

However, the RCs used in PCA remained consistent across study years. This PCA and 

regression method results in a focused analysis of the association between WNV and 

Grassland in the contiguous United States, with nuanced analysis of the RCs that 

comprise each Principal Component. RQ3 does not leverage PCA due to the use of 

fewer RCs. As such, the spatial association between Zika and LULC in Colombia 

focuses on three primary RCs in Grassland, Cropland, and Tree-Covered. 

Research into the spatial associations between land use and infectious disease 

occurs through the lens of three landscape metrics in linear density, proportion 

abundance, and patch density. The methodology results described within this section 

depict a range of landscape metrics values that are often difficult to conceptualize. 

Figure 11, Figure 12, and Figure 13 visualize incremental increases in the landscape 

metrics within the contiguous United States during 2003. 
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Figure 11. U.S. county examples of incremental increase in Grassland linear density 
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Figure 12. U.S. county examples of incremental increase in Grassland proportion abundance. 
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Figure 13. U.S. county examples of incremental increase in Grassland patch density. 
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5.1 Spatial Associations (RQ1) 

Research into the spatial association between LULC and VBID occurrence (RQ1) 

made use of 2014 WNV data in the contiguous United States. Spatial associations were 

assessed through the lens of three landscape metrics in linear density, proportion 

abundance, and patch density. Linear density serves as the primary landscape metric 

to evaluate the spatial association between LULC and VBID. Supplemental landscape 

metrics in proportion abundance and patch density add context to the linear density 

results. The geometric complexity of LULC patches and, to a lesser extent, patch area 

and count influences linear density. Proportion abundance compares the area of a 

LULC type to the total area of all LULC. Similarly, patch density compares the patch 

count of a LULC type to the total patch count. 

Linear Density 

Cropland, Tree-Covered, Artificial Surface, Waterbodies, and Waterlogged are the 

RC variables in the PCA dimension reduction process. Originally included in PCA, 

Grassland was removed and added to regression as a stand-alone independent 

variable due to the spatial significance of this RC compared to all other RCs (Table 9). 

 
Table 9. Proportion abundance of each Research Class in the contiguous United States during 2014. 

Research Class Proportion Abundance 
Grassland 42.05 % 
Tree-Covered 27.11 % 
Cropland 26.18 % 
Artificial Surface 2.51 % 
Water Bodies 1.39 % 
Bare Soil 0.65 % 
Snow and Glacier 0.09 % 
Waterlogged 0.02 % 
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The PCA component matrix (Table 10) depicts strong correlations between all 

original variables save Waterlogged, resulting in a primary Principal Component that 

accounts for a large amount of data variance, indicated by values greater than 0.5. 

 

Table 10. PCA component matrix based on the linear density landscape metric. 

Principal 
Component Cropland Tree-Covered Water Bodies Artificial 

Surface Waterlogged 

Primary 0.526 0.799 0.537 0.682 0.016 
Secondary (0.599) (0.248) 0.489 0.362 0.593 

 

The five original RC variables in Cropland, Tree-Covered, Water Bodies, Artificial 

Surface, and Waterlogged reduce to these two underlying Principal Components, 

which explain 56.42 percent of the data variance (Table 11). 

 

Table 11. PCA eigenvalues based on the linear density landscape metric. 

Principal 
Component Eigenvalue % Variance Cumulative 

Variance 
Primary 1.679 33.573 33.573 
Secondary 1.142 22.847 56.420 

 

VBID occurrence counts serve as the dependent variable in negative binomial 

regression (Table 12). Independent variables include population density, average 

temperature, and the linear density of Grassland and the primary and secondary 

Principal Components. Negative minimum values for the Components are a function 

of negative variance by one or more of the original variables. 
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Table 12. Negative binomial regression table based on the linear density landscape metric. 

Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
WNV Occurrence (Cases) 0.000 263.000 0.709 7.484 - - 
Ave. Temp (°C) (1.440) 24.660 11.463 4.800 1.082 1.068, 1.096 
Pop Density (People/Sq. Mi.) 0.000 71609.103 261.666 1788.746 1.001 1.001, 1.001 
Grassland (Mi/Sq. Mi) 0.000 1.482 0.307 0.346 6.045 4.887, 7.478 
Primary PC (Mi/Sq. Mi) (1.537) 5.790 0.000 1.000 0.487 0.488, 0.529 
Secondary PC (Mi/Sq. Mi) (2.302) 20.747 0.000 1.000 1.583 1.418, 1.767 

 

The decision to use the independent variables listed in Table 12 occurred through 

multiple model iterations. Model tests prompted the removal of elevation as an 

independent variable due to collinearity with temperature. Model tests such as 

Akaike Information Criterion Correlation (AICC) and Bayesian Information Criterion 

(BIC) validated inclusion or removal of the RCs deemed relevant via prior research. 

These RCs were modeled individually and in combination with other RCs, the latter 

to quantify the spatial significance of neighboring (adjacent) RCs. 

Eleven of the twelve lowest scoring models based on AICC and BIC values included 

Grassland, Tree-Covered, Cropland, and Artificial Surface, either individually or in 

combination with other RCs. The Artificial Surface / Grassland adjacency model 

scored the lowest AICC and BIC in 11 of the 12 study years for WNV in the contiguous 

United States. Persistently optimal AICC and BIC scores for the Artificial Surface / 

Grassland adjacency compared to all other RC adjacency models is not a surprise 

given the association of urban areas and the surrounding grassland and cropland with 

elevated VBID risk (Arinaminpathy et al. 2009). 
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Cropland is present in 86 percent of all (3,107) counties within the contiguous 

United States, an important measurement since agricultural LULC is responsible for 

roughly half of all global VBID (McFarlane et al. 2013). Similarly, Tree-Covered is 

present in 74 percent of contiguous US counties and, when adjacent to Cropland or 

Artificial Surface, is associated with increased risk of VBID occurrence (Morvan et al. 

2000, Patz et al. 2004). 

Although the Water Bodies and Waterlogged RCs did not produce AICC and BIC 

scores as low as models with Cropland, Grassland, Tree-Covered, and Artificial 

Surface, these two RCs remained in the regression models. The Water Bodies and 

Waterlogged RCs represent ideal locations for mosquito breeding (EPA 2004). Model 

tests, adjacency evaluation, and lack of documented associations via prior research 

eliminated the Bare Soil and Snow/Glacier RCs. 

Negative binomial regression reveals that, in 2014, the linear density of Grassland 

boundaries exhibits a positive association with WNV occurrence in the contiguous 

United States. Controlling for all other independent variables, each mile per square 

mile increase in Grassland linear density is associated with a 6.045-fold increase in 

WNV risk. Waterlogged also displays a positive association with WNV. Each mile per 

square mile increase in Waterlogged linear density is associated with a 58.3 percent 

increase in WNV risk. Each one degree Celsius increase in average temperature is 

associated with an 8.2 percent increase in WNV occurrence while each one-person 

increase in population density is associated with a 0.1% increase in WNV occurrence. 
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Proportion Abundance 

Proportion abundance measures the area of a single RC compared to the area of 

all RCs. Appendix I depicts the PCA component matrix, PCA eigenvalue table, and 

negative binomial output table based on the proportion abundance landscape metric. 

The primary Principal Component, largely comprised of the Tree-Covered RC, and 

the secondary Principal Component, largely comprised of the Artificial Surface RC, 

account for a combined 54.15 percent of the data variance from the original variables. 

VBID occurrence counts served as the dependent variable for binomial regression. 

Population density, average temperature and RCs in Grassland and the Principal 

Components served as independent variables. 

Negative binomial regression reveals that, in 2014, a positive association exists 

between the proportion abundance of Grassland and WNV occurrence. Controlling 

for all other independent variables, each one percent increase in Grassland 

proportion abundance is associated with a 2.4 percent increase in WNV risk. The 

incidence rate of 1.024 is in stark contrast to the significant association exhibited by 

Grassland linear density. While the shape (geometry) of Grassland patches influence 

VBID occurrence, the relative area Grassland occupies has only minor influence.  

Each one percent increase in Artificial Surface proportion abundance is associated 

with a 75.9 percent increase in WNV risk. The average temperature and population 

density variables repeat their linear density pattern with marginal influence in the 

proportion abundance model. 
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Patch Density 

Patch density measures patch count of a single RC compared to the total patch 

count of all RCs. Appendix I depicts the PCA component matrix, PCA eigenvalues, and 

negative binomial output tables based on patch density. The primary Principal 

Component, largely comprised of the Tree-Covered RC, and secondary Principal 

Component, largely comprised of the Water Bodies RC, accounts for a combined 55.66 

percent of the data variance from the original variables. 

Negative binomial regression reveals that, in 2014, a positive association exists 

between the patch density of Grassland and WNV occurrence. Controlling for all other 

independent variables, each one percent increase in Grassland patch density is 

associated with a 2.9 percent increase in WNV risk. Similar to proportion abundance, 

the patch density of Grassland marginally influences WNV occurrence. 

Landscape Metric Summary 

In the contiguous United States during 2014, average temperature and population 

density display a marginal positive association with WNV occurrence across all 

landscape metrics. Grassland patch density and proportion abundance exhibit a 

positive association with WNV occurrence while the Grassland linear density exhibits 

a positive association. The negative binomial incidence ratios (Table 13) illustrates 

that relative the risk of WNV occurrence increases significantly in relation to an 

increase in the linear density of Grassland boundaries. 
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Table 13. Incidence ratios with WNV (2014) for each independent variable and each landscape metric. 

 Linear  
Density 

Proportion 
Abundance 

Patch 
Density 

Ave. Temperature (°C) 1.082 1.068 1.085 
Pop. Density (People/Sq. Mi.) 1.001 1.000 1.001 
Primary PC  0.487 0.561 0.825 
Secondary PC  1.583 1.759 1.307 
Grassland 6.045 1.024 1.029 

 

RC variables used in PCA for each landscape metric were adjusted based on model 

results. Tree-Covered, included in PCA for each landscape metric, exhibits a negative 

association with WNV occurrence. Waterlogged linear density exhibits a positive 

association with WNV occurrence, as does Artificial Surface proportion abundance, 

and Water Body patch density. Stated another way, in 2014, the shape (geometry) of 

Grassland, the relative area of Artificial Surface, and the quantity of Water Body 

patches exhibited positive associations with WNV occurrence while the shape 

(geometry) of Tree-Covered patches exhibited a negative association. This single year 

analysis represents a snapshot, potentially influenced by multi-year aftereffects of the 

2011 El Niño and 2011-2012 La Niña events. 

5.2 Spatial Associations over Time (RQ2) 

Research into the spatial association between LULC and VBID occurrence over 

time (RQ2) made use of 2003 through 2014 WNV data in the contiguous United 

States. Incidence ratios averaged across a longer duration of time provides a robust 

measure that mitigates uncertainty borne through seasonal and long-term co-

occurrences. This temporally focused research question leverages the same 
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independent variables and landscape metrics assigned in RQ1. Similar to RQ1, 

original variables for PCA include Cropland, Tree-Covered, Artificial Surface, 

Waterbodies, and Waterlogged. 

The twelve-year period between 2003 through 2014 spans three LULC datasets. 

As depicted in Table 5, GlobCover 2005/2006 is used to assess associations between 

2003 through 2007, GlobCover 2009 for associations between 2008 through 2011, 

and GLC-SHARE 2014 for associations between 2012 through 2014. Slight differences 

in LULC classification schemas result in analytic outcome differences when shifting 

from GlobCover 2009 to GLC-SHARE 2014, as evidenced in the PCA Component 

Matrices for each landscape metric (Table 14, Table 15, and Table 16). 

 



 

 

76 

Table 14. PCA Component matrix based on the linear density landscape metric. 

LULC 
Dataset Year Principal 

Component Cropland Tree-
Covered 

Water 
Bodies 

Artificial 
Surface Waterlogged 

GlobCover 2003 - Primary (0.192) 0.284  0.801  0.537  0.724  
2005/2006 2007 Secondary 0.795  0.801  0.064  0.072  (0.227) 
GlobCover 2008 - Primary 0.055  0.456  0.778  0.539  0.678  

2009 2011 Secondary 0.877  0.771  (0.179) (0.054) (0.341) 
GLC-SHARE 2012 - Primary 0.536  0.799  0.537  0.682  0.016  

2014 2014 Secondary (0.599) (0.248) 0.489  0.362  0.593  
 

Table 15. PCA Component matrix based on the proportion abundance landscape metric. 

LULC 
Dataset Year Principal 

Component Cropland Tree-
Covered 

Water 
Bodies 

Artificial 
Surface Waterlogged 

GlobCover 2003 - Primary (0.955) 0.919  0.259  0.117  0.156  
2005/2006 2007 Secondary 0.085  (0.275) 0.718  0.265  0.751  
GlobCover 2008 - Primary (0.947) 0.910  0.275  0.124  0.163  

2009 2011 Secondary 0.097  (0.281) 0.716  0.211  0.764  
GLC-SHARE 2012 - Primary (0.895) 0.834  0.203  0.198  0.014  

2014 2014 Secondary (0.025) (0.358) 0.603  0.756  0.259  
 

Table 16. PCA Component matrix based on the patch density landscape metric. 

LULC 
Dataset Year Principal 

Component Cropland Tree-
Covered 

Water 
Bodies 

Artificial 
Surface Waterlogged 

GlobCover 
2005/2006 

2003 – 
2007 Primary (0.764) (0.447) 0.812  0.531  0.596  

GlobCover 2008 - Primary (0.633) (0.307) 0.777  0.555  0.637  
2009 2011 Secondary (0.603) 0.880  (0.162) (0.080) 0.092  

GLC-SHARE 2012 - Primary (0.887) 0.597  0.442  0.468  0.115  
2014 2014 Secondary 0.055  (0.684) 0.714  0.196  0.441  
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Although PCA results are measurably different between the GlobCover and GLC-

SHARE datasets, negative binomial regression results are largely consistent. 

Additionally, for each LULC dataset and landscape metric combination, the first two 

Principal Components individually account for significant data variance (eigenvalues 

greater than 0.5) and collectively account for greater than 54 percent of the 

cumulative variance from all original variables (Table 17). 

 

Table 17. PCA eigenvalues for each LULC dataset and landscape metric combination. 

  Linear Density Proportion Abundance Patch Density 

Year Principal 
Component Eigenvalue Cum. 

Variance Eigenvalue Cum. 
Variance Eigenvalue Cum. 

Variance 
2003 - Primary 1.572  31.445  1.862  37.232  2.081  41.610  
2007 Secondary 1.335  58.137  1.233  61.894  0.914  59.898  

2008 - Primary 1.566  31.319  1.841  36.813  1.811  36.224  
2011 Secondary 1.516  61.638  1.228  61.377  1.179  59.800  

2012 - Primary 1.679  33.573  1.577  31.543  1.570  31.408  
2014 Secondary 1.142  56.420  1.131  54.159  1.213  55.663  

 

Iteration of negative binomial regression for each year between 2003 through 

2014 used VBID occurrence counts as the dependent variable and, similar to RQ1, 

population density, average temperature, Grassland, and the Principal Components 

as independent variables. Table 18 and Table 19 depict average incidence ratios with 

WNV for each independent variable and landscape metric combination using the 

GlobCover and GLC-SHARE LULC datasets, respectively. Appendix II contains the 

complete regression results for each year and landscape metric combination. 
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Table 18. Average incidence ratios with WNV for each independent variable and landscape metric using 
the GlobCover LULC datasets (2003-2011). 

 Linear  
Density 

Proportion 
Abundance 

Patch 
Density 

Ave. Temperature (°C) 1.013 0.995 1.015 
Pop. Density (People/Sq. Mi.) 1.001 1.001 1.001 
Primary PC 0.907 0.952 0.747 
Secondary PC 0.520 1.140 1.466 
Grassland 1.749 1.032 0.970 

 

Table 19. Average incidence ratios with WNV for each independent variable and landscape metric using 
the GLC-SHARE LULC dataset (2012-2014). 

 Linear  
Density 

Proportion 
Abundance 

Patch 
Density 

Ave. Temperature (°C) 1.043 1.031 1.046 
Pop. Density (People/Sq. Mi.) 1.001 1.000 1.001 
Primary PC 0.653 0.616 0.860 
Secondary PC 1.376 1.940 1.199 
Grassland 4.712 1.020 1.024 

 

Separation of the annual averages into two tables visualizes the difference in 

negative binomial results when transitioning from GlobCover (2003 through 2011) 

to GLC-SHARE (2012 through 2014). Despite the dissimilarities in how the European 

Space Agency (GlobCover) and the UN FAO (GLC-SHARE) collect and depict LULC, 

analytic value exists when averaging outcomes from and across both data sources. 

Across both sets of averages (2003 through 2011 and 2012 through 2014), 

regression reveals that the linear density of Grassland boundaries is positively 

associated with WNV occurrence. Controlling for all other independent variables, 

each mile per square mile increase in Grassland linear density is associated with a 

2.489-fold increase in WNV risk across the entire study timeframe. 
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The proportion abundance of Grassland reflects a positive association with WNV 

occurrence. Each one percent increase in Grassland proportion abundance is 

associated with a 2.9 percent increase in WNV risk. The patch density of Grassland 

reflects a negative association with WNV occurrence between 2003 through 2011 and 

a positive association with WNV occurrence between 2012 through 2014. The 

average incidence ratio of 0.984 reflects a negative association across the entire study 

timeframe. Each one percent increase in Grassland patch density is associated with a 

1.6% decrease in WNV risk. When comparing the incidence ratios for each Grassland 

landscape metric it becomes evident that the geometric complexity of Grassland 

patches, rather than their size or count, produces a greater influence on WNV. 

Similar to the RQ1 results, average temperature and population density exhibit 

marginal positive associations with WNV occurrence when averaged from 2003 

through 2014. Based on the PCA Component Matrices (Table 14, Table 15, and Table 

16), the linear density and patch density of Artificial Surface and Water Bodies exhibit 

a negative association with WNV occurrence. However, the proportion abundance of 

Water Bodies is positively associated with WNV occurrence. In the case of Water 

Bodies, the total area, rather than patch complexity or count, is associated with 

greater VBID risk. The proportion abundance of Tree-Covered is negatively 

associated with WNV occurrence while patch density for this RC exhibits a positive 

association. In the case of Tree-Covered, patch count, rather than area, is associated 

with greater VBID risk. 
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Patterns of spatial associations between LULC and VBID repeat over time. The 

marginal influence of average temperature and population density during 2014 

across each landscape metric repeats during the 2003 through 2014 timeframe. 

Further, Grassland linear density exhibits a positive association during the single year 

snapshot, averaged within each LU source, and averaged across the entire study. 

5.3 Spatial Associations across Space (RQ3) 

Research into the spatial association between LULC and VBID across space (RQ3) 

made use of 2016 Zika data in Colombia. This analysis leverages Zika occurrences as 

the dependent variable and six independent variables in population density, per 

capita GDP, average elevation, and the Cropland, Grassland, and Tree-Covered RCs. 

There is no need to leverage dimension reduction through PCA since the Cropland, 

Grassland, and Tree-Covered RCs clearly represent the majority of Colombian LULC. 

Combined, these three RCs account for more than 98 percent of LULC in Colombia. 

For the purpose of study area comparison, Colombia has 36 percent of second-

order administrative units found within the contiguous United States – 1,121 

municipalities compared to 3,107 counties. Further, Colombia is 8.7 percent of the 

total area of the contiguous United States. Whereas the maximum annual WNV 

occurrences in the contiguous United States (between 2003 through 2014) occurred 

in 2003 with 9,755 occurrences, Colombia experienced 501,970 lab- and clinic-

confirmed Zika cases during 2016. Due to the significantly smaller area, yet a Zika 
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occurrence count 52 times greater than that of WNV in the United States, Colombia is 

a valuable study area for the comparison of spatial associations across space. 

Appendix III presents the negative binomial output tables for each landscape 

metric in the examination of Zika in Colombia during 2016. A positive association 

exists between the linear density of each RC and Zika occurrence. Controlling for all 

other independent variables, each mile per square mile increase in the linear density 

of these RCs is associated with an average 170.6 percent increase in Zika risk. The 

specific incidence ratio for each RC includes: 

• Cropland = 1.083 
• Grassland = 1.553 
• Tree-Covered = 2.481 

The Grassland incidence ratio for the linear density landscape metric exhibits a 

positive association with VBID in both study areas. While the 2.489 average incidence 

ratio in the contiguous United States and the 1.553 incidence ratio in Colombia are 

both positive, the difference is potentially a result of land use composition within each 

study area. Grassland accounts for 19.21 percent of the total LULC within Colombia, 

42.05 percent in the contiguous United States, an important factor since pastoral 

grassland is associated with increased VBID risk due to the rural co-inhabitance of 

humans and vectors (Arinaminpathy et al. 2009). 

The Tree-Covered incidence ratio for the linear density landscape metric exhibits 

a negative association for WNV in the contiguous United States and, at 2.481, a 
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positive association for Zika in Colombia. A few factors could contribute to the delta 

between these incidence ratios, to include differences in tree-covered abundance 

(27.11 percent in the US, 74.03 percent in Colombia) and vector abundance, along 

with the infectivity rate differences between WNV and Zika. Morvan et al. (2000) and 

Patz et al. (2004) assert that frequent contact with pathogenic vectors from forested 

areas due to settlement expansion increases VBID risk, a factor exacerbated by the 

significant amount of deforestation driven fragmentation that occurs in Colombia due 

to settlement expansion (Armenteras et al. 2011). 

The proportion abundance of Cropland, Grassland, and Tree-Covered RCs are 

associated with Zika occurrence. Controlling for all other independent variables, each 

one percent increase in proportion abundance is associated with an average 5.3 

percent increase in Zika risk. Specific incidence ratios include: 

• Cropland = 1.040 
• Grassland = 1.066 
• Tree-Covered = 1.054 
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A positive association also exists between the patch density of Cropland, 

Grassland, and Tree-Covered RCs and Zika occurrence. Controlling for all other 

independent variables, each one percent increase in patch density is associated with 

an average 2.6 percent increase in Zika risk. The incidence ratio for each RC includes: 

• Cropland = 1.026 
• Grassland = 1.029 
• Tree-Covered = 1.023 

Across each Colombian landscape metric, average elevation exhibits an incidence 

ratio of 0.999. Each meter increase in elevation is associated with a 0.1 percent 

decrease in WNV risk. With an incidence ratio of 1.000, per capita GDP has no 

influence on Zika occurrence in Colombia. Similar to Grassland examined in RQ1 and 

RQ2, the linear density of Grassland displays a positive association with VBID while 

the proportion abundance and patch density of this RC exhibits a nominal influence. 

Such patterns support that, to a significant extent, spatial associations between LULC 

and VBID repeat across space. In addition to these patterns, an interesting association 

was discovered within the Colombian study area in the marginal influence of LULC 

proportion abundance and patch density on Zika occurrence. 

5.4 Summary of Research Question Results 

Patterns exist between Zika in Colombia during 2016 and WNV in the contiguous 

United States between 2003 through 2014. Across both study areas and VBIDs, the 

linear density of particular LULC boundaries exhibit positive associations with VBID 

occurrence, specifically Grassland in the contiguous United States and Grassland and 
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Tree-Covered in Colombia. The associations between VBID and the proportion 

abundance and patch density landscape metrics neither supports nor calls to 

question the linear density results. Further, population density, per capita GDP, 

temperature, and elevation do not significantly influence VBID occurrence. 

The positive spatial association between the density of Grassland boundaries and 

VBID occurrence exists for each year individually and for the average across all 12-

years in the contiguous United States study area. A positive association also exists 

between the linear density of Grassland and, to a greater extent, Tree-Covered 

boundaries and Zika despite the RQ3 shift of geographic study area and VBID. This 

pattern of association between the VBID and the linear density of LULC exists 

alongside marginal associations exhibited by the proportion abundance and patch 

density landscape metrics. 

Geometric complexity of LULC patches determines linear density. Linear density, 

however, is driven by human behaviors and activities to meet the demands of a 

growing population and is expressed through urban morphology and corresponding 

land development plans and policies. The shape complexity factor plays a more 

critical role in determining the magnitude of VBID and LULC association than does 

the relative area or patch count of a single LULC. Urban morphology and land 

development plans and policies that emphasize simple and compact rather than 

complex and irregular (Figure 14) patch geometries will reduce linear density and 

thus reduce the spatial breadth over which humans and vectors come in contact. 



 

85 
 

 

 

Figure 14. While proportion abundance and patch density remain constant, the simple (left) linear 
density value of 0.40 is nearly half of the complex (right) linear density value of 0.78. 

 

In addition, a simple and compact geometry increases a patches core area. This 

boundary related factor, more so than patch area or count, is associated with habitat 

health, to include the preservation of species at each link of the food chain. While a 

patch may be large enough to support a given species, it still may not contain a core 

area large enough to support a diverse range of species (McGarigal 2017). 

Preservation of species diversity reduces the likelihood that pathogens can exploit 

vacant ecological niches (McMichael 2004, Murray and Daszak 2013, Pike et al. 2010). 
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6 CONCLUSION 
 
 
 

Research into the spatial relationships between LULC and VBID is limited, though 

field studies and remote sensing methods have successfully identified associations, 

predominately within developed countries. In addition to a new methodology, this 

dissertations broad spatial scope encompasses two countries while the temporal 

scope spans 12 years, mitigating for confounding environmental variables that could 

influence smaller scale or temporally limited research. Further, examination of the 

spatial association between LULC and VBID occurs through the lens of three 

landscape metrics in linear (edge) density, proportion abundance, and patch density. 

This dissertation reveals that spatial associations exist between the linear density 

of specific LULC boundaries and occurrences of WNV and Zika. Within the contiguous 

United States, an increase of Grassland linear density exhibits a positive association 

with WNV occurrence while proportion abundance exhibits a marginal positive 

association. In Colombia, South America, an increase in Grassland or Tree-Covered 

linear density exhibits positive associations with Zika occurrence while proportion 

abundance and patch density of these classes exhibit a marginal positive association. 

The significance of LULC boundaries, linear density in particular, on VBID 

emergence is in line with prior research performed by spatial epidemiologists, to 
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include Morse et al. (2012), Woolhouse et al. (2012), Pike et al. (2010), Wilcox and 

Ellis (2006), and Morse (2004). However, this dissertation reveals two significant 

points. First, the cropland landscape metrics displayed a minor positive association 

with VBID in both study areas, at least when compared to Grassland and Tree-

Covered. This marginal association is contrary to the 2002 Working Group 

(McMichael 2004) designation of agricultural development as the primary driver of 

VBID emergence. In addition, the significance of LULC boundary linear density on 

VBID occurrence concurrent with the marginal influence of both proportion 

abundance and patch density represents an important finding. The landscape factor 

that influences disease emergence is the amount of specific LULC boundaries (linear 

density), not the overall area or number of patches. 

Patch shape (geometry) determines LULC linear density. Shape and linear density 

are products of urban morphology and the corresponding land development plans 

and policies – behaviors and activities that result from our need to support a rapidly 

growing population. Patch shapes that are simple and compact produce linear density 

values lower than complex and irregular shapes (Figure 14). As a result, simple and 

compact patches will reduce VBID occurrences, a potential outcome of the larger core 

area that characterizes simple and compact patches. Core area is associated with 

habitat health and preservation of species, including predator species, the lack of 

which spikes populations of vectors and hosts and provides pathogens niches to 
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exploit. Larger unbroken patches result in greater control of hosts and vectors by 

predators, thus naturally controlling VBID outbreaks (Ezenwa et al. 2007). 

An opportunity exists to mitigate the impact of VBID through changes to land 

development policies related to zoning and planning. Changes that emphasize the 

simplification of patch shape (geometry) will reduce LULC linear density within a 

given area and result in an associated decrease in VBID occurrence. Based on the RQ1 

and RQ2 outcomes, such actions applied to Grassland will reduce WNV occurrences 

within the contiguous United Stated. Similarly, based on the results of RQ3, such 

actions applied to Grassland or Tree-Covered will reduce Zika occurrence in 

Colombia. Based on these results, policy/decision makers within local governments 

can reduce future VBID occurrences through alteration of land development plans. 

Such proactive avoidance will reduce the social and economic impacts of VBID, along 

with the burden borne by local health agencies. Consideration of VBID risk based on 

the impact of land development plans represents a shift in urban morphology 

practices and the corresponding modification of the environment. 

Epidemiologists within the public health community can supplement their 

prevention and mitigation toolbox through the identification of areas that could 

experience an increase in VBID occurrences. These potential benefits to policy 

makers and the health community answers the call for additional research into the 

association between LULC and infectious disease from spatial epidemiologists such 

as McFarlane et al. (2013), Murray and Daszak (2013), and Morse (2012). 
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This dissertation enables research that incorporates additional landscape 

metrics, areas of interest, and VBIDs. Data availability and quality factors restricted 

this study to WNV in the United States and Zika in Colombia. Research into the same 

VBID across two disparate study areas would provide a more robust comparison that 

improves the assessment of spatial association patterns across space. This 

dissertation includes the uncertainty inherent in the comparison of a single year 

snapshot from one geographic region (Colombia – 2016) to 12 years from a different 

geographic region (US – 2003-2014). Research that utilizes data that spans multiple 

years across multiple study areas can improve the assessment of spatial association 

patterns over time. In addition, research outcomes could be further refined through 

incorporation of additional landscape measurement methods, such as perimeter-area 

methods to assess fractal dimension, core area methods to assess the core to edge 

ratio, and contrast methods to assess the magnitude of difference in LULC along patch 

edges (McGarigal 2017). 

The use of second-order administrative units to evaluate LULC and VBID 

associations offers benefits and drawbacks. Spatial granularity reveals associations 

hidden at state, regional, or national scales (Arsenault et al. 2013). Conversely, 

uncertainty arises when VBID transmission occurs outside of the unit where the 

patient receives health care. Similar to the transmission/report uncertainty, the 

location of labs and clinics in relation to the patient seeking a diagnosis introduces 

uncertainty. Factors such as drive time, convenience, and insurance could influence a 
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patient’s decision to seek medical attention outside of the VBID transmission unit 

(Schuurman et al. 2006). However, VBID occurrence data that includes the probable 

transmission location would allow for an increase in the spatial granularity of 

analysis, perhaps at the sub-county level. While the aforementioned uncertainties and 

limitations hinder the accurate identification disease hotspots at the sub-county level, 

the evaluation of land development plans using the methodology described within 

this dissertation will reveal counties that could experience greater risk of VBID. 
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7 APPENDIX I 
 
 
 

Table 20, Table 21, and Table 22 present the PCA component matrix, PCA 

eigenvalues, and negative binomial output tables based on proportion abundance. 

 

Table 20. PCA Component matrix based on the proportion abundance landscape metric. 

Principal 
Component Cropland Tree-Covered Water 

Bodies 
Artificial 
Surface Waterlogged 

1 (0.985) 0.835 0.203 0.194 0.014 
2 (0.026) (0.355) (0.603) 0.757 0.261 

 

Table 21. PCA eigenvalues based on the proportion abundance landscape metric. 

Principal 
Component Eigenvalue % Variance Cumulative 

Variance 
1 1.577 31.537 31.537 
2 1.131 22.616 54.153 
3 0.993 19.868 74.021 
4 0.910 18.209 92.231 
5 0.388 7.769 100.000 

 

Table 22. Negative binomial regression table based on the proportion abundance landscape metric. 

Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
WNV Occurrence (Cases) 0.000 263.000 0.709 7.488 - - 
Ave. Temperature (°C) (1.440) 24.660 11.466 4.799 1.068 1.053, 1.083 
Pop Density (People/Sq. Mi.) 0.000 71609.103 257.239 1782.790 1.000 1.000, 1.001 
Grassland (Percent) 0.000 99.943 21.142 30.272 1.024 1.022, 1.026 
Primary PC (Percent) (1.741) 2.367 0.000 1.000 0.561 0.513, 0.614 
Secondary PC (Percent) (1.115) 13.065 0.000 1.000 1.759 1.584, 1.952 
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Table 23, Table 24, and Table 25 display the PCA component matrix, PCA 

eigenvalues, and negative binomial outputs based on patch density. 

 

Table 23. PCA Component matrix based on the patch density landscape metric. 

Principal 
Component Cropland Tree-

Covered 
Water 
Bodies 

Artificial 
Surface Waterlogged 

1 (0.887) 0.597 0.442 0.468 0.155 
2 0.055 (0.684) 0.714 0.196 0.441 

 

Table 24. PCA eigenvalues based on the patch density landscape metric. 

Principal 
Component Eigenvalue % Variance Cumulative 

Variance 
1 1.570 31.408 31.408 
2 1.213 24.255 55.663 
3 0.971 19.413 75.076 
4 0.874 17.473 92.549 
5 0.373 7.451 100.00 

 

Table 25. Negative binomial regression table based on the patch density landscape metric. 

Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
WNV Occurrence (Cases) 0.000 263.000 0.709 7.484 - - 
Ave. Temperature (°C) (1.440) 24.660 11.464 4.800 1.085 1.071, 1.098 
Pop Density (People/Sq. Mi.) 0.000 71609.103 261.666 1788.746 1.001 1.001, 1.001 
Grassland (Percent) 0.000 98.214 22.987 22.210 1.029 1.026, 1.032 
Primary PC (Percent) (2.487) 3.194 0.000 1.000 0.825 0.762, 0.894 
Secondary PC (Percent) (2.353) 14.340 0.000 1.000 1.307 1.200, 1.423 
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8 APPENDIX II 
 
 
 

Table 26. Negative binomial regression output table based on the linear density landscape metric for RQ2, WNV in the contiguous United States 
during 2003 through 2014. 

Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence (Cases) 0.000  546.000  3.140  18.395  - - 
 Ave. Temperature (°C) (1.390) 24.560  12.082  4.586  0.881  0.872, 0.889 
2003 Pop Density (People/Sq. Mi.) 0.106  68,365.602  242.297  1,690.168  1.001  1.001, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  6.523  2.396  1.469  2.282  2.103, 2.476 
 Primary PC (Mi/Sq. Mi) (1.093) 11.367  0.000  1.000  0.886  0.835, 0.941 
 Secondary PC (Mi/Sq. Mi) (3.409) 2.635  0.000  1.000  0.337  0.300, 0.378 
 WNV Occurrence (Cases) 0.000  355.000  0.804  9.885  - - 
 Ave. Temperature (°C) (2.120) 24.130  12.290  4.658  1.096  1.082, 1.110 
2004 Pop Density (People/Sq. Mi.) 0.081  68,706.652  243.446  1,691.856  1.001  1.001, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  6.523  2.396  1.469  1.400  1.245, 1.574 
 Primary PC (Mi/Sq. Mi) (1.093) 11.367  0.000  1.000  0.729  0.673, 0.789 
 Secondary PC (Mi/Sq. Mi) (3.410) 2.635  0.000  1.000  0.541  0.456, 0.642 
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Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence (Cases) 0.000  163.000  0.956  5.794  - - 
 Ave. Temperature (°C) (1.450) 24.110  12.616  4.519  1.043  1.031, 1.056 
2005 Pop Density (People/Sq. Mi.) 0.103  68,865.339  244.566  1,691.283  1.001  1.001, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  6.523  2.396  1.469  2.158  1.962, 2.375 
 Primary PC (Mi/Sq. Mi) (1.093) 11.367  0.000  1.000  0.950  0.887, 1.016 
 Secondary PC (Mi/Sq. Mi) (3.410) 2.635  0.000  1.000  0.448  0.389, 0.515 
 WNV Occurrence (Cases) 0.000  251.000  1.346  8.115  - - 
 Ave. Temperature (°C) (1.560) 24.190  12.990  4.493  0.937  0.928, 0.947 
2006 Pop Density (People/Sq. Mi.) 0.111  69,066.565  245.808  1,692.597  1.001  1.001, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  6.523  2.396  1.469  1.865  1.692, 2.056 
 Primary PC (Mi/Sq. Mi) (1.093) 11.367  0.000  1.000  0.944  0.886, 1.005 
 Secondary PC (Mi/Sq. Mi) (3.410) 2.635  0.000  1.000  0.460  0.399, 0.529 
 WNV Occurrence (Cases) 0.000  140.000  1.116  5.708  - - 
 Ave. Temperature (°C) (1.220) 24.550  12.644  4.604  0.934  0.925, 0.943 
2007 Pop Density (People/Sq. Mi.) 0.117  69,207.965  247.475  1,697.527  1.001  1.000, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  6.523  2.396  1.469  1.688  1.533, 1.858 
 Primary PC (Mi/Sq. Mi) (1.093) 11.367  0.000  1.000  0.924  0.863, 0.990 
 Secondary PC (Mi/Sq. Mi) (3.410) 2.635  0.000  1.000  0.605  0.525, 0.697 
 WNV Occurrence (Cases) 0.000  156.000  0.426  3.974  - - 
 Ave. Temperature (°C) (2.190) 24.230  11.803  4.871  1.074  1.058, 1.090 
2008 Pop Density (People/Sq. Mi.) 0.090  69,453.917  249.498  1,707.513  1.001  1.001, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  6.133  1.944  1.506  1.741  1.581, 1.917 
 Primary PC (Mi/Sq. Mi) (1.059) 10.949  0.000  1.000  0.789  0.728, 0.854 
 Secondary PC (Mi/Sq. Mi) (5.413) 3.302  0.000  1.000  0.520  0.446, 0.607 
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Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence (Cases) 0.000  27.000  0.228  1.423  - - 
 Ave. Temperature (°C) (2.000) 24.290  11.812  4.873  1.021  1.004, 1.039 
2009 Pop Density (People/Sq. Mi.) 0.114  69,296.761  251.741  1,715.247  1.000  1.000, 1.000 
 Grassland (Mi/Sq. Mi) 0.000  6.133  1.944  1.506  1.831  1.633, 2.054 
 Primary PC (Mi/Sq. Mi) (1.059) 10.949  0.000  1.000  0.735  0.667, 0.809 
 Secondary PC (Mi/Sq. Mi) (5.413) 3.302  0.000  1.000  0.414  0.342, 0.502 
 WNV Occurrence (Cases) 0.000  115.000  0.332  2.766  - - 
 Ave. Temperature (°C) (1.510) 23.420  12.284  4.422  1.056  1.037, 1.075 
2010 Pop Density (People/Sq. Mi.) 0.000  69,518.337  253.601  1,726.330  1.001  1.000, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  6.133  1.944  1.506  1.579  1.426, 1.748 
 Primary PC (Mi/Sq. Mi) (1.059) 10.949  0.000  1.000  1.023  0.944, 1.109 
 Secondary PC (Mi/Sq. Mi) (5.413) 3.302  0.000  1.000  0.551  0.471, 0.646 
 WNV Occurrence (Cases) 0.000  58.000  0.228  1.772  - - 
 Ave. Temperature (°C) (2.030) 24.570  12.537  4.911  1.071  1.050, 1.092 
2011 Pop Density (People/Sq. Mi.) 0.000  70,460.700  255.875  1,748.637  1.001  1.000, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  6.133  1.944  1.506  1.194  1.064, 1.340 
 Primary PC (Mi/Sq. Mi) (1.059) 10.949  0.000  1.000  1.180  1.081, 1.289 
 Secondary PC (Mi/Sq. Mi) (5.413) 3.302  0.000  1.000  0.803  0.676, 0.953 
 WNV Occurrence (Cases) 0.000  396.000  1.760  11.480  - - 
 Ave. Temperature (°C) (0.280) 24.720  13.590  4.467  1.090  1.078, 1.102 
2012 Pop Density (People/Sq. Mi.) 0.000  71,124.639  258.099  1,767.009  1.001  1.001, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  1.482  0.309  0.346  3.766  3.244, 4.371 
 Primary PC (Mi/Sq. Mi) (1.537) 5.790  0.000  1.000  0.893  0.846, 0.943 
 Secondary PC (Mi/Sq. Mi) (2.302) 20.747  0.000  1.000  1.230  1.141, 1.327 
        
        
        
        



 

 
 

96 

Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence (Cases) 0.000  158.000  0.788  4.290  - - 
 Ave. Temperature (°C) (1.650) 24.780  11.802  4.764  0.957  0.946, 0.968 
2013 Pop Density (People/Sq. Mi.) 0.000  71,422.538  260.097  1,779.854  1.001  1.000, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  1.482  0.307  0.346  4.324  3.633, 5.147 
 Primary PC (Mi/Sq. Mi) (1.537) 5.790  0.000  1.000  0.578  0.540, 0.619 
 Secondary PC (Mi/Sq. Mi) (2.302) 20.747  0.000  1.000  1.315  1.203, 1.438 
 WNV Occurrence (Cases) 0.000  263.000  0.709  7.484  - - 
 Ave. Temperature (°C) (1.440) 24.660  11.463  4.800  1.082  1.068, 1.096 
2014 Pop Density (People/Sq. Mi.) 0.000  71,609.103  261.666  1,788.746  1.001  1.001, 1.001 
 Grassland (Mi/Sq. Mi) 0.000  1.482  0.307  0.346  6.045  4.887, 7.478 
 Primary PC (Mi/Sq. Mi) (1.537) 5.790  0.000  1.000  0.487  0.448, 0.529 
 Secondary PC (Mi/Sq. Mi) (2.302) 20.747  0.000  1.000  1.583  1.418, 1.767 
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Table 27. Negative binomial regression output table based on the proportion abundance landscape metric for RQ2, WNV in the contiguous United 
States during 2003 through 2014. 

Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence (Cases) 0.000  546.000  3.137  18.401  - - 
 Ave. Temperature (°C) (1.390) 24.560  12.077  4.583  0.876  0.868, 0.884 
2003 Pop Density (People/Sq. Mi.) 0.106  68,365.602  242.322  1,690.707  1.000  1.000, 1.001 
 Grassland (Percent) 0.000  97.575  25.039  18.141  1.033  1.030, 1.036 
 Primary PC (Percent) (2.617) 2.690  0.000  1.000  0.723  0.687, 0.761 
 Secondary PC (Percent) (0.846) 12.917  0.000  1.000  1.231  1.165, 1.301 
 WNV Occurrence (Cases) 0.000  306.000  0.688  7.571  - - 
 Ave. Temperature (°C) (2.120) 24.130  12.286  4.656  1.039  1.025, 1.053 
2004 Pop Density (People/Sq. Mi.) 0.081  68,706.652  243.468  1,692.396  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  97.575  25.039  18.141  1.045  1.041, 1.048 
 Primary PC (Percent) (2.617) 2.690  0.000  1.000  1.274  1.166, 1.393 
 Secondary PC (Percent) (0.846) 12.917  0.000  1.000  1.080  1.020, 1.144 
 WNV Occurrence (Cases) 0.000  163.000  0.929  5.630  - - 
 Ave. Temperature (°C) (1.450) 24.110  12.612  4.517  1.013  1.000, 1.025 
2005 Pop Density (People/Sq. Mi.) 0.103  68,865.339  244.584  1,691.822  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  97.575  25.039  18.141  1.027  1.024, 1.031 
 Primary PC (Percent) (2.617) 2.690  0.000  1.000  0.731  0.683, 0.782 
 Secondary PC (Percent) (0.846) 12.917  0.000  1.000  1.162  1.095, 1.234 
 WNV Occurrence (Cases) 0.000  251.000  1.322  8.007  - - 
 Ave. Temperature (°C) (1.560) 24.190  12.986  4.492  0.933  0.924, 0.943 
2006 Pop Density (People/Sq. Mi.) 0.111  69,066.565  245.823  1,693.137  1.001  1.000, 1.001 
 Grassland (Percent) 0.000  97.575  25.039  18.141  1.029  1.025, 1.032 
 Primary PC (Percent) (2.617) 2.690  0.000  1.000  0.738  0.696, 0.783 
 Secondary PC (Percent) (0.846) 12.917  0.000  1.000  1.343  1.269, 1.421 
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Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence (Cases) 0.000  140.000  1.140  5.578  - - 
 Ave. Temperature (°C) (1.220) 24.550  12.639  4.602  0.923  0.914, 0.933 
2007 Pop Density (People/Sq. Mi.) 0.117  69,207.965  247.488  1,698.068  1.000  1.000, 1.001 
 Grassland (Percent) 0.000  97.575  25.039  18.141  1.040  1.036, 1.044 
 Primary PC (Percent) (2.617) 2.690  0.000  1.000  1.028  0.959, 1.101 
 Secondary PC (Percent) (0.846) 12.917  0.000  1.000  1.130  1.064, 1.201 
 WNV Occurrence (Cases) 0.000  156.000  0.425  3.975  - - 
 Ave. Temperature (°C) (2.190) 24.230  11.801  4.871  1.048  1.033, 1.063 
2008 Pop Density (People/Sq. Mi.) 0.090  69,453.917  249.562  1,707.784  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  98.300  21.045  21.004  1.033  1.030, 1.037 
 Primary PC (Percent) (2.507) 2.824  0.000  1.000  1.044  0.945, 1.155 
 Secondary PC (Percent) (0.797) 13.218  0.000  1.000  1.062  0.988, 1.142 
 WNV Occurrence (Cases) 0.000  27.000  0.228  1.413  - - 
 Ave. Temperature (°C) (2.000) 24.290  11.810  4.873  1.026  1.009, 1.044 
2009 Pop Density (People/Sq. Mi.) 0.114  69,296.761  251.805  1,715.520  1.000  1.000, 1.000 
 Grassland (Percent) 0.000  98.300  21.045  21.004  1.029  1.024, 1.033 
 Primary PC (Percent) (2.507) 2.824  0.000  1.000  0.893  0.803, 0.994 
 Secondary PC (Percent) (0.797) 13.218  0.000  1.000  1.062  0.965, 1.169 
 WNV Occurrence (Cases) 0.000  115.000  0.319  2.763  - - 
 Ave. Temperature (°C) (1.510) 23.420  12.283  4.423  1.037  1.019, 1.055 
2010 Pop Density (People/Sq. Mi.) 0.000  69,518.337  253.665  1,726.605  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  98.300  21.045  21.004  1.030  1.026, 1.034 
 Primary PC (Percent) (2.507) 2.824  0.000  1.000  0.886  0.796, 0.986 
 Secondary PC (Percent) (0.797) 13.218  0.000  1.000  1.161  1.077, 1.253 
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Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence (Cases) 0.000  58.000  0.227  1.772  - - 
 Ave. Temperature (°C) (2.030) 24.570  12.536  4.912  1.062  1.043, 1.081 
2011 Pop Density (People/Sq. Mi.) 0.000  70,460.700  255.940  1,748.915  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  98.300  21.045  21.004  1.022  1.018, 1.027 
 Primary PC (Percent) (2.507) 2.824  0.000  1.000  1.255  1.103, 1.428 
 Secondary PC (Percent) (0.797) 13.218  0.000  1.000  1.033  0.951, 1.122 
 WNV Occurrence (Cases) 0.000  396.000  1.760  11.480  - - 
 Ave. Temperature (°C) (0.280) 24.720  13.590  4.467  1.092  1.079, 1.104 
2012 Pop Density (People/Sq. Mi.) 0.000  71,124.639  258.099  1,767.009  1.000  1.000, 1.000 
 Grassland (Percent) 0.000  99.943  21.115  30.262  1.011  1.010, 1.013 
 Primary PC (Percent) (1.743) 2.371  0.000  1.000  0.725  0.683, 0.770 
 Secondary PC (Percent) (1.122) 13.019  0.000  1.000  2.301  2.117, 2.501 
 WNV Occurrence (Cases) 0.000  158.000  0.788  4.290  - - 
 Ave. Temperature (°C) (1.650) 24.780  11.802  4.764  0.932  0.921, 0.944 
2013 Pop Density (People/Sq. Mi.) 0.000  71,422.538  260.097  1,779.854  1.000  1.000, 1.000 
 Grassland (Percent) 0.000  99.943  21.115  30.262  1.024  1.022, 1.026 
 Primary PC (Percent) (1.743) 2.371  0.000  1.000  0.559  0.519, 0.602 
 Secondary PC (Percent) (1.122) 13.019  0.000  1.000  1.740  1.583, 1.912 
 WNV Occurrence (Cases) 0.000  263.000  0.709  7.484  - - 
 Ave. Temperature (°C) (1.440) 24.660  11.463  4.800  1.068  1.054, 1.083 
2014 Pop Density (People/Sq. Mi.) 0.000  71,609.103  261.666  1,788.746  1.000  1.000, 1.000 
 Grassland (Percent) 0.000  99.943  21.115  30.262  1.024  1.022, 1.027 
 Primary PC (Percent) (1.743) 2.371  0.000  1.000  0.563  0.514, 0.616 
 Secondary PC (Percent) (1.122) 13.019  0.000  1.000  1.779  1.603, 1.975 
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Table 28. Negative binomial regression output table based on the patch density landscape metric for RQ2, WNV in the contiguous United States 
during 2003 through 2014. 

Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence (Cases) 0.000  546.000  3.140  18.395  - - 
 Ave. Temperature (°C) (1.390) 24.560  12.082  4.586  0.887  0.878, 0.895 
2003 Pop Density (People/Sq. Mi.) 0.106  68,365.602  242.297  1,690.168  1.000  1.000, 1.000 
 Grassland (Percent) 0.000  95.735  48.984  15.533  0.968  0.965, 0.971 
 Primary PC (Percent) (1.555) 6.253  0.000  1.000  0.701  0.661, 0.744 
 WNV Occurrence (Cases) 0.000  355.000  0.804  9.885  - - 
 Ave. Temperature (°C) (2.120) 24.130  12.290  4.658  1.089  1.076, 1.102 
2004 Pop Density (People/Sq. Mi.) 0.081  68,706.652  243.446  1,691.856  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  95.735  48.984  15.533  0.949  0.944, 0.953 
 Primary PC (Percent) (1.555) 6.253  0.000  1.000  0.616  0.597, 0.669 
 WNV Occurrence (Cases) 0.000  163.000  0.956  5.794  - - 
 Ave. Temperature (°C) (1.450) 24.110  12.616  4.519  1.019  1.007, 1.030 
2005 Pop Density (People/Sq. Mi.) 0.103  68,865.339  244.566  1,691.283  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  95.735  48.984  15.533  0.969  0.965, 0.973 
 Primary PC (Percent) (1.555) 6.253  0.000  1.000  0.661  0.615, 0.710 
 WNV Occurrence (Cases) 0.000  251.000  1.346  8.115  - - 
 Ave. Temperature (°C) (1.560) 24.190  12.990  4.493  0.948  0.939, 0.958 
2006 Pop Density (People/Sq. Mi.) 0.111  69,066.565  245.808  1,692.597  1.000  1.000, 1.001 
 Grassland (Percent) 0.000  95.735  48.984  15.533  0.965  0.962, 0.969 
 Primary PC (Percent) (1.555) 6.253  0.000  1.000  0.702  0.656, 0.750 
 WNV Occurrence (Cases) 0.000  140.000  1.166  5.708  - - 
 Ave. Temperature (°C) (1.220) 24.550  12.644  4.604  0.940  0.930, 0.949 
2007 Pop Density (People/Sq. Mi.) 0.117  69,207.965  247.475  1,697.527  1.000  1.000, 1.001 
 Grassland (Percent) 0.000  95.735  48.984  15.533  0.960  0.956, 0.964 
 Primary PC (Percent) (1.555) 6.253  0.000  1.000  0.626  0.581, 0.675 
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Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence (Cases) 0.000  156.000  0.426  3.974  - - 
 Ave. Temperature (°C) (2.190) 24.230  11.803  4.871  1.074  1.059, 1.089 
2008 Pop Density (People/Sq. Mi.) 0.090  69,453.917  249.498  1,707.513  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  96.679  44.462  15.387  0.976  0.970, 0.981 
 Primary PC (Percent) (1.593) 6.477  0.000  1.000  0.690  0.635, 0.751 
 Secondary PC (Percent) (3.034) 4.321  0.000  1.000  1.371  1.269, 1.483 
 WNV Occurrence (Cases) 0.000  27.000  0.228  1.423  - - 
 Ave. Temperature (°C) (2.000) 24.290  11.812  4.873  1.044  1.027, 1.062 
2009 Pop Density (People/Sq. Mi.) 0.114  69,296.761  251.741  1,715.247  1.000  1.000, 1.000 
 Grassland (Percent) 0.000  96.679  44.462  15.387  0.987  0.980, 0.993 
 Primary PC (Percent) (1.593) 6.477  0.000  1.000  0.776  0.696, 0.864 
 Secondary PC (Percent) (3.034) 4.321  0.000  1.000  1.742  1.595, 1.903 
 WNV Occurrence (Cases) 0.000  115.000  0.322  2.766  - - 
 Ave. Temperature (°C) (1.510) 23.420  12.284  4.422  1.060  1.042, 1.078 
2010 Pop Density (People/Sq. Mi.) 0.000  69,518.337  253.601  1,726.330  1.001  1.000, 1.001 
 Grassland (Percent) 0.000  96.679  44.462  15.387  0.971  0.965, 0.977 
 Primary PC (Percent) (1.593) 6.477  0.000  1.000  0.910  0.844, 0.980 
 Secondary PC (Percent) (3.034) 4.321  0.000  1.000  1.575  1.447, 1.714 
 WNV Occurrence (Cases) 0.000  58.000  0.228  1.772  - - 
 Ave. Temperature (°C) (2.030) 24.570  12.537  4.911  1.071  1.052, 1.090 
2011 Pop Density (People/Sq. Mi.) 0.000  70,460.700  255.875  1,748.637  1.001  1.000, 1.001 
 Grassland (Percent) 0.000  96.679  44.462  15.387  0.986  0.980, 0.993 
 Primary PC (Percent) (1.593) 6.477  0.000  1.000  1.042  0.965, 1.125 
 Secondary PC (Percent) (3.034) 4.321  0.000  1.000  1.174  1.064, 1.295 
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Year Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
 WNV Occurrence. (Cases) 0.000  396.000  1.760  11.480  - - 
 Ave. Temperature (°C) (0.280) 24.720  13.590  4.467  1.101  1.089, 1.113 
2012 Pop Density (People/Sq. Mi.) 0.000  71,124.639  258.099  1,767.009  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  98.214  22.987  22.210  1.022  1.019, 1.024 
 Primary PC (Percent) (2.487) 3.194  0.000  1.000  0.992  0.935, 1.053 
 Secondary PC (Percent) (2.353) 14.340  0.000  1.000  1.066  1.001, 1.134 
 WNV Occurrence (Cases) 0.000  158.000  0.788  4.290  - - 
 Ave. Temperature (°C) (1.650) 24.780  11.802  4.764  0.952  0.942, 0.963 
2013 Pop Density (People/Sq. Mi.) 0.000  71,422.538  260.097  1,779.854  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  98.214  22.987  22.210  1.022  1.019, 1.025 
 Primary PC (Percent) (2.487) 3.194  0.000  1.000  0.764  0.717, 0.814 
 Secondary PC (Percent) (2.353) 14.340  0.000  1.000  1.225  1.141, 1.315 
 WNV Occurrence (Cases) 0.000  263.000  0.709  7.484  - - 
 Ave. Temperature (°C) (1.440) 24.660  11.463  4.800  1.085  1.071, 1.098 
2014 Pop Density (People/Sq. Mi.) 0.000  71,609.103  261.666  1,788.746  1.001  1.001, 1.001 
 Grassland (Percent) 0.000  98.214  22.987  22.210  1.029  1.026, 1.032 
 Primary PC (Percent) (2.487) 3.194  0.000  1.000  0.825  0.762, 0.894 
 Secondary PC (Percent) (2.353) 14.340  0.000  1.000  1.307  1.200, 1.423 
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9 APPENDIX III 
 
 
 

Table 29, Table 30, and Table 31 present additional negative binomial outputs for each landscape metric in the 

examination of Zika in Colombia during 2016. 

 

Table 29. Negative binomial regression table based on the linear density landscape metric. 

Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
Zika Occurrence (Cases) 0.000  72,900.000  447.788  2,982.191  - - 
Population Density (People/Sq. Mi.) 0.234  31,754.989  402.433  1,715.979  1.000  1.000, 1.000 
Per Capita GDP (Annual Income/Person) 984.425  889,550.410  12,033.233  32,643.741  1.000  1.000, 1.000 
Average Elevation (Meters) 2.990  6,167.250  1,326.178  1,006.648  0.999  0.999, 0.999 
Cropland (Mi/Sq. Mi) 0.000  1.523  0.334  0.311  1.083  1.071, 1.095 
Grassland (Mi/Sq. Mi) 0.000  1.419  0.398  0.292  1.553  1.534, 1.571 
Tree-Covered (Mi/Sq. Mi) 0.000  1.835  0.489  2.750  2.481  2.442, 2.521 
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Table 30. Negative binomial regression table based on the proportion abundance landscape metric. 

Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
Zika Occurrence (Cases) 0.000  72,900.000  447.788  2,982.191  - - 
Population Density (People/Sq. Mi.) 0.234  31,754.989  402.433  1,715.979  1.001  1.001, 1.002 
Per Capita GDP (Annual Income/Person) 984.425  889,550.410  12,033.233  32,643.741  1.000  1.000, 1.000 
Average Elevation (Meters) 2.990  6,167.250  1,326.178  1,006.648  0.999  0.999, 0.999 
Cropland (Percent) 0.000  93.553  12.735  17.719  1.040  1.030, 1.049 
Grassland (Percent) 0.000  100.000  21.356  23.994  1.066  1.055, 1.076 
Tree-Covered (Percent) 0.000  100.00  63.614 29.698 1.054  1.045, 1.063 

 

Table 31. Negative binomial regression table based on the patch density landscape metric. 

Variable Minimum Maximum Mean Standard 
Deviation Exp(B) 

95% 
Confidence 

Interval 
Zika Occurrence (Cases) 0.000  72,900.000  447.788  2,982.191  - - 
Population Density (People/Sq. Mi.) 0.234  31,754.989  402.433  1,715.979  1.000  1.000, 1.000 
Per Capita GDP (Annual Income/Person) 0.815  159,753.000  582.509  5,126.290  1.000  1.000, 1.000 
Average Elevation (Meters) 2.990  6,167.250  1,326.178  1,006.648  0.999  0.999, 0.999 
Cropland (Percent) 0.000  88.889  30.043  19.441  1.026  1.025, 1.026 
Grassland (Percent) 0.000  100.000  38.223  20.086  1.029  1.029, 1.029 
Tree-Covered (Percent) 0.000  100.000  22.986  18.395  1.023  1.022, 1.023 
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