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Abstract

ADAPTIVE BAYESIAN COVARIATE DEPENDENT SPECTRAL ANALYSIS OF MUL-
TIPLE TIME SERIES

Yakun Wang, PhD

George Mason University, 2022

Dissertation Director: Dr.Pramita Bagchi

The frequency-domain properties of time series have been found to contain valuable

information in many studies. It is often the case that biomedical time series are collected

from multiple participants in conjunction with multiple covariates in order to analyze the

association between the characteristics of biological processes and various clinical and be-

havioral outcomes. In this work, we propose flexible and adaptive nonparametric Bayesian

methods to estimate the association between multiple covariates and the power spectrum

of multiple time series. For stationary time series data, we introduce a Bayesian sum of

trees model to capture complex dependencies and interactions between covariates and the

power spectrum. Local power spectra corresponding to terminal nodes within trees are esti-

mated nonparametrically using Bayesian penalized linear splines. The trees are considered

to be random and fit using a Bayesian backfitting Markov chain Monte Carlo (MCMC)

algorithm that sequentially considers tree modifications via reversible-jump MCMC tech-

niques. For high-dimensional covariates, a sparsity-inducing Dirichlet hyperprior on tree

splitting proportions is considered, which provides a sparse estimation of covariate effects

and efficient variable selection. For nonstationary time series, Voronoi tessellation is used

as the partition model for the partition of both time and covariates spaces. The tessellation



is adaptively updated via the reversible-jump MCMC technique. The Bayesian penalized

linear splines model is used to estimate the local power spectra within each disjoint re-

gion of the tessellation. Empirical performance is evaluated via simulations to demonstrate

the proposed methods’ ability to accurately recover complex relationships and interactions.

The Bayesian sum of trees model is used to study gait maturation in young children by

evaluating age-related changes in power spectra of stride interval time series in the presence

of other covariates.



Chapter 1: Introduction

The frequency-domain properties of time series have often been found to contain valuable

information. For example, frequency-domain analysis of biomedical time series, such as

gait variability, heart rate variability (HRV), and electroencephalography (EEG), provides

interpretable information about underlying physiological processes (Hausdorff et al., 1999;

Hall et al., 2004; Klimesch, 1999). In many studies, biomedical time series are collected

from multiple participants in conjunction with multiple covariates to explore connections

between prominent oscillatory patterns in the time series and various clinical and behavioral

outcomes. These relationships are often complex and highly interactive. As a result, a flexi-

ble, adaptive method that can estimate the association between power spectra and multiple

covariates is needed to better understand the complex relationships between physiological

processes and important measures of health and functioning.

A prime example and motivating application for this research comes from a study of

maturation in gait dynamics in young children (Hausdorff et al., 1999). Immature gait

in very young children results in unsteady walking patterns and frequent falls (Shumway-

Cook and Williams, 1995). While gait is relatively mature by age 3, neuromuscular control

continues to develop well beyond this age (Preis et al., 2008). Accordingly, it is of interest

to assess if gait dynamics continue to become more steady and regular beyond age 3, in

conjunction with improving neuromuscular control. To assess gait variability and posture

control in younger children, stride interval time series consisting of stride times during

normal walking were observed in fifty children between the ages of 3 and 14 (Hausdorff

et al., 1999). For illustration, Figure 1.1 displays demeaned stride interval time series for

three participants age 4, 7, and 11 years old. In addition to age, other covariates were

also collected that may influence gait, such as gait speed and gender. In quantifying the

1



association between age and the power spectra of stride interval time series, we seek to better

understand the maturation of gait dynamics and variability associated with developing

neuromuscular control with age in the presence of other related covariates.

Figure 1.1: Demeaned stride interval time series for three participants in the gait maturation
study ages 4, 7, and 11 years old.

In the time series literature, spectral analysis of multiple time series has received much

attention in recent years. To quantify the association between a single covariate and power

spectra, Fiecas and Ombao (2017) and Krafty et al. (2017) propose methods that can cap-

ture a smooth covariate effect on the power spectrum. Bruce et al. (2018) proposes an

2



adaptive Bayesian method that can capture both smooth and abrupt changes in power

spectra across a covariate. Li et al. (2021) adapts the method of Bruce et al. (2018) for

covariate-dependent spectral analysis of replicated multivariate time series. However, these

methods are not readily extendable to incorporate multiple covariates, which hinders their

applicability to many important studies. Existing methods that can account for multiple

covariates are either parametric (Diggle and Al Wasel, 1997) or semi-parametric (Iannac-

cone and Coles, 2001; Qin et al., 2009; Stoffer et al., 2010; Krafty et al., 2011; Chau and von

Sachs, 2016). These approaches characterize covariate effects via design matrices within a

linear modeling framework, and thus can not immediately accommodate complex dependen-

cies and interactions among covariates and power spectra. One exception is the approach

proposed by Bertolacci et al. (2022), which introduces a mixture modeling approach with

covariate-dependent mixture weights to account for complex covariate effects. However, a

thin-plate Gaussian process prior is imposed on mixture weights, which is both smooth and

stationary, and may not be appropriate for modeling abrupt spectral dynamics. Moreover,

this method does not provide a means for variable selection when a large number of covari-

ates are observed. The goal of this work is to introduce a flexible method that can capture

both smooth and abrupt changes in power spectra across multiple covariates, without loss

of interpretation, and simultaneously provide a tool for variable selection.

For stationary time series data, to capture complex smooth, abrupt, and interaction

effects of covariates on power spectra in a parsimonious manner, we propose a tree-based co-

variate partitioning framework. Tree-based models are not new and have become extremely

popular in recent years (Breiman, 2001; Chipman et al., 2010). For example, Chipman et al.

(2010) propose a Bayesian additive regression tree (BART) model which can flexibly model

complex covariate effects and interactions and demonstrates outstanding predictive perfor-

mance (Chipman et al., 2013). Accordingly, BART has been widely applied in many differ-

ent scientific domains for various types of outcomes (Waldmann, 2016; Blattenberger and

Fowles, 2017; van der Merwe, 2018) including smooth functional response variables (Starling

et al., 2020). In this work, a sum of trees model for the covariate-dependent power spectrum
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is introduced to simultaneously partition multiple covariates parsimoniously. A penalized

linear spline model is used for local spectrum estimation within terminal nodes of the trees.

The framework is formulated in a fully Bayesian setting where the trees are random and fit

using an iterative Bayesian backfitting Markov chain Monte Carlo (MCMC) procedure and

reversible-jump techniques (Green, 1995) to evaluate various tree modifications.

For nonstationary time series data, a Voronoi tessellation structure (Green and Sibson,

1978; Møller, 1994; Boots et al., 2000) is used to capture both abrupt and smooth change

on time and covariates spaces. Similar with the tree-based model, this partition model is a

nonparametric method that can recover the relationship between response and covariates.

While, instead of a rectangular block of the tree-based model, the Voronoi tessellation

structure is more flexible that divides the covariate space into any shape of disjoint regions

such that the model is more computational efficient. Hol (2005) and Denison et al. (2002)

propose a Bayesian partition model with Voronoi tessellation structure for prediction on

continues covariates for regression and classification. Payne et al. (2020) uses this partition

to model conditional density estimation. In the proposed framework, we apply the Bayesian

penalized linear spline model within each region for power spectrum estimation.

The proposed methodology expands the scope of covariate dependent power spectra

that can be accurately recovered in three meaningful ways. First, the flexible partition

modeling framework can recover complex nonlinear relationships and interaction effects

without assuming a particular form of the relationship a priori. Second, by averaging

over the posterior distributions, the proposed method can recover both smooth and abrupt

covariate effects on the power spectrum. While methods that assume completely smooth or

completely abrupt changes will likely perform better when these assumptions are valid, the

proposed method generally outperforms these methods in the presence of both smooth and

abrupt covariate effects without prior knowledge of the nature of such effects. Third, for

the sum of trees model, the proposed method can automatically accommodate mixed-type

covariates (nominal, ordinal, discrete, continuous) through the underlying tree structures,

as well as high-dimensional covariates by placing a sparsity-inducing Dirichlet hyperprior
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on the splitting proportions of the regression tree prior (Linero, 2018) for sparse estimation

of covariate effects and variable selection.

The rest of the dissertation is organized as follows. Chapter 2 provides the methodolog-

ical background for the covariate-dependent power spectrum, and the tree-based modeling

framework for the stationary time series data. Chapter 3 presents the proposed adap-

tive Bayesian sum of trees model, the simulation results for various covariate effects (e.g.

linear, nonlinear, smooth, abrupt, high-dimensional) and interaction effects, and the appli-

cation results of the Gait maturation study. Chapter 4 presents the methodology of the

inverse regression framework to estimate unknown covariates for interpretable regression

and classification. Chapter 5 introduces the Voronoi tessellation modeling structure for

covariate-dependent power spectrum of nonstationary time series data and the simulation

results. Conclusions and future directions of this work are covered in Chapter 6.
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Chapter 2: Methodological Background

To better understand the proposed method for covariate-dependent power spectrum anal-

ysis, we first provide some preliminaries for power spectrum analysis of stationary and

nonstationary time series data, and the background knowledge of the tree-based model.

2.1 Single Stationary Time Series

The power spectrum represents a decomposition of variance over frequencies (Wei, 2006)

and characterizes the contribution of each frequency to the time series. It is the primary

tool for frequency-domain time series analysis.

Let {Xt} be a weakly stationary zero-mean time series, where t = 1, 2, . . . such that

µt = E(xt) =
∫∞
−∞ xft(x)dx is constant and does not depend on time t and γ(s, t) =

(xs, xt) = E[(xs − µs)(xt − µt)] depends on s and t only through their difference |s − t|

(Shumway and Stoffer, 2017, p. 20). The frequency domain characteristics can be obtained

from its spectral representation (Cramér, 1942)

Xt =

∫ 1
2

− 1
2

A(ν) exp(2πitν)dZ(ν), (2.1)

where A(ν) is a complex-valued function that is Hermitian A(ν) = A(−ν), and A(ν) =

A(ν + 2π). It is square-integrable over [−1/2, 1/2], and has period 1 as a function of

frequency. Z(ν) is a zero-mean orthogonal process that is independent of A(ν) such that

[dZ(ν), dZ(ν
′
)] =


0, if ν ̸= ν ′.

dν, otherwise.
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The power spectral density function f(ν) is defined as

f(ν) = |A(ν)|2 =
∞∑

h=−∞
γ(h) exp(−2πiνh) − 1

2
≤ ν ≤ 1

2
, (2.2)

where γ(h) = (Xt+h, Xt) is the autocovariance function of {Xt}. Note that we can obtain

γ(h) by applying the inverse Fourier transform from f(ν), which can be specified as

γ(h) =

∫ 1
2

− 1
2

f(ν) exp(2πiνh)dν. (2.3)

For the estimation of the power spectrum, the periodogram is a standard estimator that

has been well studied. Given a realization x1, x2, . . . , xT of a stationary time series {Xt},

assume T is even without loss of generality. The periodogram at frequency ν is then defined

as

I(νk) =
1

T

∣∣∣∣ T∑
t=1

xt exp(−2πiνkt)

∣∣∣∣2, (2.4)

where the frequencies νk = k/T for k = 1, . . . , ⌊T/2⌋−1 are known as the Fourier frequencies.

It can be shown that the periodogram is an asymptotically unbiased estimator of the

power spectrum. However, the variances of periodogram ordinates across frequencies do not

converge to 0 as T → ∞. In order to resolve this dilemma, there are some parametric and

non-parametric methods proposed to obtain a consistent estimation of the power spectrum.

A parametric approach would be to model the time series using an ARMA(p, q) process,

which has a closed-form expression for the power spectrum as a function of the coefficients

in this model. The choice of the orders p and q can be determined using standard model

selection criteria (e.g. AIC) (Wei, 2006, p. 318). Smoothed estimators have also been

proposed which nonparametrically smooth periodogram estimates using a window technique

(Shumway and Stoffer, 2017, p. 191).
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Likelihood-based power spectrum estimators have also been developed based on the

large-sample distribution of the periodogram (Whittle, 1957). Let n = ⌊T/2⌋ − 1 and

νk = k/T for k = 1, . . . , n be the Fourier frequencies. Assume T is large, the likelihood of

x = (x1, . . . , xT )
′ can be approximated by

p(x|f) ≈ (2π)−
n
2

n∏
k=1

exp{−[log f(νk) + I(νk)/f(νk)]}. (2.5)

This implies that the distribution of the periodogram ordinates can be approximated by a

log linear model of the form

log I(νk) = log f(νk) + ϵk, (2.6)

where ϵk for k = 1, . . . , ⌊T/2⌋−1 are asymptotically independent and identically distributed

as log(χ2
2/2), and ϵk

i.i.d.∼ log(χ2
1) for k = 0, T/2.

2.1.1 Bayesian Penalized Spline Estimator

Many estimators of the power spectrum have been developed based on this model (Wahba,

1980; Carter and Kohn, 1997). More recently, Rosen et al. (2012) propose a linear smoothing

spline model to estimate the log spectral density within a Bayesian framework. The log

spectrum estimator is displayed as

log f(ν) ≈ α+
S∑

s=1

βs cos(2πsν). (2.7)

where the functions cos(2πsν) are the Demmler–Reinsch basis functions for periodic even

splines observed on an evenly spaced grid (i.e. the Fourier frequencies) (Schwarz and

Krivobokova, 2016, Section 3). Only the first S < N basis functions are used to pro-

vide a low-rank approximation to the full linear smoothing spline (Eubank, 1999). Let Z

8



be a n× S matrix of the basis functions where Zis = cos(2πsνi). Prior distributions of the

vector of coefficients β is β = (β1, . . . , βS)
′ ∼ N(0, τ2DS) where DS = diag({

√
2πs}−2)

and τ is a smoothing parameter follows uniform prior p(τ2) = 1/τ2. DS is formulated such

that the distribution of the integrated squared first derivative of the log power spectrum is

regulated by the smoothing parameter τ (see Appendix A for more details). The prior dis-

tribution of α is N(0, σ2
α). The hyperparameter σ2

α is set to be a fixed, large constant. The

coefficients α and β are also independent a priori. The posterior distribution of parameters

α, β, and τ2 are then drawn from a two-step sampling scheme as follows

1. Given a realization of the log periodogram, log I = {log[I(ν1)], ..., log[I(νn)]}′ and

basis functions Z, α and β are sampled jointly via a Metropolis-Hastings (M-H) step

from

p(α,β|τ2, log I,Z) ∝ exp

{
−

n∑
k=1

[α+ z′kβ + exp(log[I(νk)])

− α− z′kβ]−
α

2σ2
α

− 1

2τ2
β′DS

−1β

}
,

(2.8)

where z′k is the kth row of Z.

2. τ2 is sampled from the inverse gamma distribution with density

p(τ2|β) ∝ (τ2)−
S
2 exp(− 1

2τ2
β′DS

−1β). (2.9)

2.2 Multiple Stationary Time Series

Many studies and methods focus on power spectrum analysis of multiple time series. As-

suming the multiple time series are independent realizations of the same underlying process,

the Bayesian smoothing spline model covered in the previous section can be easily extended

to multiple time series.
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Let Xℓt be a collection of stationary time series with length t = 1, . . . , T from ℓ =

1, . . . , L independent subjects. The frequency domain characteristics can be obtained from

its spectral representation (Cramér, 1942)

Xℓt =

∫ 1
2

− 1
2

A(ν) exp(2πitν)dZℓ(ν). (2.10)

where Zℓ and the A(ν) are defined the same as in Section 2.1. The periodogram at frequency

ν is then defined as

I(νk) =
1

T

∣∣∣∣ T∑
t=1

xℓt exp(−2πiνkt)

∣∣∣∣2, (2.11)

where the frequencies νk = k/T for k = 1, . . . , ⌊T/2⌋−1 are known as the Fourier frequencies.

The overall Whittle likelihood can then be approximated by the product of individual

Whittle likelihood

p(x|f) ≈
L∏

ℓ=1

(2π)−
n
2

n∏
k=1

exp{−[log f(νk) + I(νk)/f(νk)]}, (2.12)

and the sampling scheme for the model coefficients α, β, and τ2 of Bayesian penalized spline

estimator can be extended as follows:

1. Given a set of realizations of the log periodogram, log Iℓ = {log[Iℓ(ν1)], . . . , log[Iℓ(νn)]}′

and basis functions Z, α and β are sampled jointly via a Metropolis-Hastings (M-H)

step from

p(α,β|τ2, log I,Z) ∝ exp

{
−

L∑
ℓ=1

n∑
k=1

[α+ z′kβ + exp(log[Iℓ(νk)])− α− z′kβ]

− α

2σ2
a

− 1

2τ2
β′DS

−1β

}
,

(2.13)
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where n = ⌊T/2⌋ − 1 and z′k is the kth row of Z.

2. τ2 is sampled from the inverse gamma distribution with density

p(τ2|β) ∝ (τ2)−
S
2 exp(− 1

2τ2
β′DS

−1β). (2.14)

However, assuming a common stationary underlying process for multiple time series may

not be realistic in practice. Diggle and Al Wasel (1997) note this limitation and introduce

random effects models to account for the between-subject variability of the periodogram for

multiple time series. Cadonna et al. (2019) construct a Bayesian modeling approach using a

mixture of Gaussian distributions to estimate the log-periodogram distribution for a single

time series and propose a hierarchical model for multiple time series. These methods can

identify groups of time series with similar spectral characteristics and provide an appropriate

estimation of the power spectrum in the presence of such clustering effects.

2.2.1 Covariate-dependent Multiple Stationary Time Series

When additional covariates that may be associated with the power spectrum are available,

we can directly incorporate covariates under the assumption that the covariates modulate

the dependence across multiple time series, i.e. time series with similar covariate values

have similar underlying power spectra.

More specifically, we consider modeling a collection of stationary time series Xℓt of

length t = 1, . . . , T and p-dimensional covariates ωℓ = {ω1ℓ, . . . , ωpℓ} for ℓ = 1, . . . , L

independent subjects. Consider the following covariate-dependent extension of the Cramér

representation

Xℓt =

∫ 1/2

−1/2
A(ωℓ, ν) exp(2πitν)dZℓ(ν). (2.15)

where A(ωℓ, ν) is a time-varying complex-valued function of covariate ωℓ, and frequency

ν ∈ R that is Hermitian A(ωℓ, ν) = A(ωℓ,−ν), and A(ωℓ, ν) = A(ωℓ, ν + 2π). It is square

11



integrable with respect to frequencies over [−1/2, 1/2], and has period 1 as a function

of frequency. Zℓ are zero-mean mutually independent orthogonal processes that are also

independent of A(ωℓ, ν). Hence, the covariate-dependent power spectrum is defined as

f(ω, ν) = |A(ω, ν)|2. (2.16)

The power spectrum f(ω, ν) can be interpreted as the contribution to the variance

at frequency ν, conditional on covariate values ω. We assume that A, and subsequently

the spectrum f , are continuous functions of frequency ν, but can have a finite number of

discontinuities as functions of covariates in ω. This flexibility allows for modeling abrupt

changes over the covariate space. For the power spectrum estimation with the Bayesian

penalized spline model, we employ the piecewise stationary approximation method to create

a locally stationary partition corresponding to the covariate space which is introduced in

the following Section.

2.2.2 Piecewise Stationary Approximation of Covariate Space

A locally stationary time series for covariate space can be approximated by a piecewise

stationary process

Xℓt ≈
j=M∑
j=1

X
(j)
ℓt δj(ωℓ), (2.17)

where suppose we have M disjoint blocks, δj(ωℓ) is a indicator function that δj(ωℓ) = 1

if the ωℓ ∈ (ξj−1, ξj ] and is zero otherwise. ξ = (ξ0, . . . , ξM ) form a partition of [0, 1]

into approximately stationary segments, and X
(j)
ℓt are stationary process (Adak, 1998a).

Similarly, let n = ⌊T/2⌋ − 1 and νk = k/T for k = 1, . . . , n be the Fourier frequencies,

and let Ij(ν) be the local periodogram within the jth segment. The likelihood can then be
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approximated by a product of local Whittle likelihood

L(f1, . . . , fM |x, ξ) ≈
L∏

ℓ=1

M∏
j=1

(2π)−
n
2

n∏
k=1

exp{−δj [log fj(νk) + Ij(νk)/fj(νk)]}. (2.18)

where the periodogram Ij(ν) is the same as Equation 2.11.

2.3 Multiple Nonstationary Time Series

Amodel for the spectrum analysis of nonstationary time series can be defined by allowing the

transfer function in the Cramér spectral representation to vary with time (Priestley, 1965).

We consider modeling a collection of nonstationary time series Xℓt of length t = 1, . . . , T

and p-dimensional covariates ωℓ = {ω1ℓ, . . . , ωpℓ} for ℓ = 1, . . . , L independent subjects.

The covariate-dependent extension of the Cramér representation follows as

Xℓt =

∫ 1/2

−1/2
A(t/T,ωℓ, ν) exp(2πitν)dZℓ(ν). (2.19)

where A(u,ωℓ, ν) is a time-varying complex-valued function of covariate ωℓ, scaled time u ∈

[0, 1], and frequency ν ∈ R that is Hermitian A(u,ωℓ, ν) = A(u,ωℓ,−ν), and A(u,ωℓ, ν) =

A(u,ωℓ, ν+2π). It is square integrable with respect to frequencies over [−1/2, 1/2], and has

period 1 as a function of frequency. Zℓ are zero-mean mutually independent orthogonal pro-

cesses that are also independent of A(u,ωℓ, ν). Hence, the time-varying covariate-dependent

power spectrum is defined as

f(u,ω, ν) = |A(u,ω, ν)|2. (2.20)

The power spectrum f(u,ω, ν) can be interpreted as the contribution to the variance

at frequency ν, conditional on covariate values ω. We assume that A, and subsequently

the spectrum f , are continuous functions of frequency ν, but can have a finite number of
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discontinuities as functions of covariates ω and scaled time u. This flexibility allows for

modeling abrupt changes over the covariate and time space.

2.3.1 Piecewise Stationary Approximation of Time and Covariate Space

For nonstationary time series data, a piecewise stationary process can be expressed as

Xℓt ≈
j=M∑
j=1

X
(j)
ℓt δj(t,ωℓ), (2.21)

where δj(t,ωℓ) is a indicator function that δj(t,ωℓ) = 1 if both time t and the covariates

ωℓ falls into the jthe block, and X
(j)
ℓt are stationary process (Adak, 1998a). Let Tj be

the number of observations in the jth segment. Also let nj = ⌊Tj/2⌋ − 1 and νkj = k/Tj

for k = 1, ..., nj be the Fourier frequencies for thr jth segment, and let Ij(ν) be the local

periodogram within the jth segment. The likelihood can then be approximated by a product

of local Whittle likelihood

L(f1, . . . , fM |x, ξ) ≈
L∏

ℓ=1

M∏
j=1

(2π)−
nj
2

nj∏
k=1

exp{−δj [log fj(νkj) + Ij(νkj)/fj(νkj)]}. (2.22)

where the periodogram Ij(νkj) at frequency νkj is defined as

Ij,ℓ(νk) =
1

Tj

∣∣∣∣ Tj∑
t=1

δj(t)xℓt exp(−2πiνkt)

∣∣∣∣2, (2.23)

where the frequencies νk = k/T for k = 1, . . . , ⌊T/2⌋ − 1.
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2.4 Tree-Based Modeling of the Power Spectrum

2.4.1 Tree-Based Piecewise Partition

Our method begins by assuming time series with similar covariate values have similar un-

derlying power spectra and can be partitioned by a tree structure accordingly. It should be

noted that methods have been proposed to approximate nonstationary time series through

piecewise stationary time series, where time series are divided into approximately stationary

intervals for time-dependent spectral analysis (Adak, 1998b; Rosen et al., 2012). Our model

is different from these approaches as it partitions the covariate space instead of time. More

recently, Bruce et al. (2018) introduced a time- and covariate-based piecewise stationary

approximation for time- and covariate-dependent spectral analysis using a two-dimensional

grid. However, directly extending a two-dimensional grid to higher dimensions to accommo-

date multiple covariates can easily lead to over-parameterization and undue computational

complexity. In particular, a grid-based partition tends to produce a finer partition than is

necessary, since partition points for each covariate do not depend on the other covariate.

This results in less efficient information sharing across series with similar covariates and

less accurate estimation. Tree-based approaches represent a more flexible and parsimonious

alternative for partitioning multiple covariates. If the true partition does have a grid struc-

ture, a tree-based model can still well-approximate the partition and is thus preferable.

Figure 2.1 illustrates how tree structures correspond to a partition of multiple covariates.

In this illustration, if we assume that this partition represents the underlying truth of the

dependence structure, Figure 2.2 shows the best possible fit using a grid-based partition (a)

vs. the true tree structure (b). The grid partition requires six blocks to approximate the

true underlying structure. While, if the underlying grid structure in Figure 2.2(b) is true,

the tree-based model can still well approximate this structure.

For the tree-based partition, each terminal node is defined through a collection of split-

ting rules corresponding to the tree structure and represents an region of the covariate space
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Figure 2.1: Illustration of transforming tree structure to grid structure blocks

(a) Grid partition (b) Tree partition

Figure 2.2: Illustration of two different partitioning methods
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that shares the power spectrum. Given a tree U with B terminal nodes, the tree-based par-

tition of the covariate-dependent Cramér spectral representation is given by

Xℓt ≈
∫ 1/2

−1/2

B∑
b=1

δ(ωℓ;U, b)Ab(ν) exp(2πitν)dZℓ(ν), (2.24)

where X
(b)
t is stationary process with power spectrum fb(ν) = |Ab(ν)|2 for the bth terminal

node, and δ is a function that identifies terminal node membership for each observation

based on covariates such that δ(ωℓ;U, b) = 1 if the ℓth observation falls into the bth terminal

node and δ(ωℓ;U, b) = 0 otherwise.

2.4.2 Local Power Spectrum Estimation

We now introduce an estimator for local power spectra within terminal nodes of the tree. Let

N = ⌊T/2⌋−1 and νk = k/T for k = 1, . . . , N be the Fourier frequencies. The periodogram

estimator of the power spectrum for the ℓth time series is Iℓ(νk) =
1
T

∣∣∣∑T
t=1Xℓt exp(−2πiνkt)

∣∣∣2 .
The Whittle likelihood (Whittle, 1952), derived from the large sample distribution of the pe-

riodogram, can then be used to approximate the overall likelihood for the tree as a product

of individual likelihoods, assuming T is sufficiently large,

L(I1, . . . , IL|f1, . . . , fB) ≈

L∏
ℓ=1

B∏
b=1

(2π)−N/2
N∏
k=1

exp{−δ(ωℓ;U, b)[log fb(νk) + exp(log Iℓ(νk)− log fb(νk))]} (2.25)
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for Iℓ = {Iℓ(ν1), Iℓ(ν2), . . . , Iℓ(νN )}. Log power spectra within each terminal node log fb(ν)

are modeled using a Bayesian penalized linear spline model (Rosen et al., 2012)

log fb(ν) ≈ αb +

S∑
s=1

β(b)
s cos(2πsν), (2.26)

where the functions cos(2πsν) are the Demmler–Reinsch basis functions. In order to

achieve good computational efficiency without sacrificing estimation accuracy (Krafty et al.,

2017), S = 7 basis functions are used for subsequent simulations and real data analy-

ses, which provide good empirical performance. Gaussian priors are assumed such that

αb ∼ N(0, σ2
α) where σ2

α is a constant value, and β(b) = (β
(b)
1 , . . . , β

(b)
S )′ ∼ N(0, τ2bDS),

where DS = diag({
√
2πs}−2). τ2b is a smoothing parameter that controls the roughness of

the log spectrum. The scaling for the smoothing parameter, {
√
2πs}−2, provides regular-

ization of the integrated squared first derivative of the log power spectrum (Li and Krafty,

2019). Instead of uniform prior used in Rosen et al. (2012), A half-t prior is placed on τb

(Gelman, 2006) such that p(τb) ∝ [1 + (τb/Aτ )
2/ξτ ]

−(ξτ+1)/2 for τb > 0 where Aτ and ξτ

are scale and degrees of freedom parameters respectively to complete the Bayesian model

specification. A two-step MCMC sampling scheme for αb, β
(b), and τb following Rosen et al.

(2012) is presented below.

1. Let Zb be a N×S matrix of basis functions for bth terminal node such that {Zb}k,s =

cos(2πsνk). Given τb, basis functions Zb, and periodogram ordinates Iℓ for ℓ =

1, . . . , L, αb and β(b) are sampled jointly in a Metropolis-Hastings (M-H) step from

p(αb,β
(b)|τ2b , Iℓ,Zb) ∝ exp

{
−

L∑
ℓ=1

N∑
k=1

[αb + z′bkβ
(b) + exp

(
log Iℓ(νk)

− αb − z′bkβ
(b)
)
]− αb

2σ2
a

− 1

2τ2b
β(b)′D−1

S β(b)
}
.

(2.27)
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2. By representing the half-t prior as a scale mixture of inverse gamma distributions

(Wand et al., 2011), we efficiently obtain draws of τb from its full conditional distri-

bution by sampling from

(ab|τ2b ) ∼ IG
(ξτ + 1

2
,
ξτ
τ2b

+
1

A2
τ

)
, (2.28)

and

(τ2b |ab,β(b)) ∼ IG
(ξτ + S + 1

2
,
β(b)′β(b)

2
+

ξτ
ab

)
(2.29)

where ab is a latent variable, and ξτ and A2
τ are fixed hyperparameters of the inverse

gamma distribution.

2.5 Introduction of BART

Poor mixing of single tree models has been noted in many applications such that the MCMC

algorithm becomes stuck in subsets of the covariate space representing local optima and can-

not efficiently traverse the entire parameter space (Wu et al., 2007). This can happen when

single tree models grow very large in an effort to approximate more complex relationships,

thus restricting possible modifications due to low sample size and an abundance of other

splits. Chipman et al. (2010) proposed the Bayesian additive regression model which can

solve the poor mixing problem by constructing many shallow trees as “weak learners” for

estimation. The Bayesian additive regression tree model is a non-parametric regression tree

model with a Bayesian MCMC sampling scheme that can recover complex dependencies be-

tween a set of predictor variables and a response variable. The basic idea of BART model is

to build a sum-of-trees model and impose a prior such that the effect of any individual tree

is regularized to be small. It shows an excellent ability to model non-linearity and complex

interaction effects (Chipman et al., 2010).
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2.5.1 A sum-of-trees model

First, we consider to model an unknown function f with output Y and a p dimensional

inputs x = (x1, . . . , xp), which can be expressed as

Y = f(x) + ϵ, ϵ ∼ N(0, σ2). (2.30)

where Y is a scalar response and the function f(x) = E(Y |x) is the mean of Y given x. In

order to approximate f(x), a sum of M regression trees is used such that f(x) ≈
∑M

j=1 gj(x)

where gj denotes a regression tree for j = 1, . . . ,M . Then, the sum-of-trees model can be

approximated as

Y =

M∑
j=1

gj(x) + ϵ, ϵ ∼ N(0, σ2). (2.31)

For each gj , let Uj denote the tree structure which can be defined by the depth of the

tree, the collection of internal nodes and terminal nodes, and split rules for all internal

nodes. The set of parameters for the estimated value at the terminal nodes is denoted

by Φj = {µj1, . . . , µjbj}, where bj is the number of terminal nodes of jth tree, µjb for

b = 1, . . . , bj is the parameter to be estimated in bth terminal node. Each node of the tree

is grown with the binary splits on a single predictor in the predictor space. Note that for a

given observation, it can only be associated with a single terminal node within the jth tree.

Then, the observation’s predicted value is the sum of the M terminal nodes’ values from

the M trees individually. We illustrate the process with an example. Suppose there are two

predictors in the data to be split X1 and X2, and the tree model is described in Figure 2.3.

For the ℓth observation with xℓ1 = 103 and xℓ2 = 54, the prediction is µ̂12+ µ̂21+ . . .+ µ̂M2.
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Figure 2.3: Illustration of the sum of regression trees

Unlike other tree-based models, BART is formulated within a Bayesian framework, which

can then provide statistical inference on the estimated responses and covariate relation-

ships. By imposing priors on the tree depth, split rules, and node parameters, BART can

penalize overly complex tree structures for any single tree and can incorporate the previous

experiments’ information into the regression model through the priors.

2.5.2 BART Priors

Chipman et al. (2010) introduce three types of priors: priors for the tree structure, priors

for the set of terminal parameters’ µ and the variance σ2 of the error term.

For the tree structure, the priors include (1) the probability of a node to be split. We

have

Pr(SPLIT) = γ(1 + d)−θ, γ ∈ (0, 1), θ ∈ [0,∞), (2.32)

where d = 0, 1, . . . is the depth of the given node. The prior is a regularization of the

tree depth to keep the tree structure to be small. For the hyperparameters in Pr(SPLIT),

Chipman et al. (2010) suggest γ = 0.95 and θ = 2 which are the most widely used settings

(Kapelner and Bleich, 2016; Linero and Yang, 2018a). (2) The probability for selecting a
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covariate for splitting. A uniform prior is used such that all covariates have the same prior

probability to be selected for splitting; (3) The probability for the possible cutpoints to be

selected for a given covariate. A uniform prior is used such that it is invariant for monotone

transformations of the corresponding covariate.

For the terminal node parameters, a conjugate normal distributionN(µµ, σ
2
µ) is proposed

for the prior of µjb|Uj , where µjb is the parameter in the bth terminal node of jth tree for j =

1, . . . ,M and b = 1, 2, . . . , bj . A data-driven method is used to specify the hyperparameters

µµ and σ2
µ. Assume the µjb’s are independent and identically distributed, for a given

observation, the induced prior on the sum of trees
∑M

j=1 gj is N(Mµµ,Mσ2
µ). The values of

µµ and σµ can then be specified in a data-driven fashion by the following two relationships:

Mµµ − k
√
Mσµ = ymin and Mµµ + k

√
Mσµ = ymax where ymin and ymax are the minimum

and maximum values of the observed Y values for all observations in the data. k = 2 is the

common choice to induce a 95% prior probability that E(Y |x) is in the interval (ymin, ymax).

Chipman et al. (2010) suggests to center the prior of µjb at µµ = 0 and rescale Y so that

ymin = −0.5 and ymax = 0.5. This yields the prior distribution of µjb as

µjb ∼ N(0, σ2
µ), where σµ = 0.5/k

√
M. (2.33)

This distribution indicates that when M is large, the deviation of µjb from 0 will be small,

and then the effect of each tree is regularized by shrinking µjb towards zero.

In terms of the variance σ2 of the error term, the prior is the inverse chi-square distri-

bution σ2 ∼ νλ/χ2
ν . Chipman et al. (2010) suggests the value of ν to be between 3 to 10 to

obtain an appropriate shape, and λ to be selected such that there is a high probability that

the variance is smaller than the residual variance from the least square linear regression

estimate. The probability is suggested as 0.75, 0.90 or 0.99. Cross validation could also be

used to select appropriate values.

Based on the above settings, the priors for both the tree structure and the parameters

22



are specified as

p((U1,Φ1), ..., (UM ,ΦM ), σ) =

[ ∏
j

p(Uj ,Φj)

]
p(σ) =

[ ∏
j

p(Φj |Uj)p(Uj)

]
p(σ), (2.34)

where

p(Φj |Uj) =
∏
j

p(µjb|Uj). (2.35)

This expression follows from the assumption trees that are independent of each other and

of the error variance σ, and the terminal nodes within each tree are independent of each

other also. With these assumptions, the prior can be simplified such that it is a product of

the priors for terminal nodes, tree structures, and the error variance.

2.5.3 Posterior Distribution

In order to approximate the target function with a sum-of-trees model, BART employs a

Bayesian back-fitting MCMC algorithm which considers modifications to individual trees

based on the residual of the fitted response from other trees rather than the observed values

directly. This is because for each individual tree, say jth tree, the MCMC sampler of Uj ,

Φj and σ follows

(Uj ,Φj)|U(j),Φ(j), σ, y, (2.36)

σ|U1, . . . , UM ,Φ1, . . . ,ΦM , y. (2.37)

The posterior of σ2 follows inverse gamma distribution. U(j) is the set of all trees in the

sum except Uj , and Φ(j) is defined in the same way. Observing the relationship between y

and U(j),Φ(j), it is easily obtained that the conditional distribution p(Uj ,Φj |U(j),Φ(j), σ, y)

depends on (U(j),Φ(j), y) only through

Rj = y −
∑
k ̸=j

g(x;Uk,Φk), (2.38)
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where Rj is the remaining residuals of y fit with a sum of trees model across all trees except

for the jth tree. For the posterior distribution

p((U1,Φ1), . . . , (UM ,ΦM ), σ|y), (2.39)

the backfitting MCMC algorithm samples from this distribution using the two-step sampling

scheme in (2.36) and (2.37) which is replaced with (Uj ,Φj)|Rj , σ and σ|U1, . . . , UM ,Φ1, . . . ,ΦM , y.

Specifically, the first step can be elaborated to draw Uj and Φj separately for each tree.

When we calculate the marginal distribution of p(Uj |Rj , σ), we can get

p(Uj |Rj , σ) =

∫
p(Uj ,Φj |Rj , σ)dΦj

∝ p(Uj)

∫
p(Rj |Uj ,Φj , σ)p(Φj |Uj , σ)dΦj .

(2.40)

By using a conjugate prior on Φj , the integral above turns out to have a closed form up to a

norming constant. This is good for posterior sampling such that instead of jointly sampling

(Uj ,Φj), we can draw them in two successive steps as

Uj |Rj , σ, (2.41)

Φj |Uj , Rj , σ. (2.42)

Next, we would like to clarify the way to build a single tree. In Chipman et al. (2010),

four moves are suggested to construct the tree. (1)BIRTH: growing a terminal node to

generate two new child nodes. (2) DEATH: pruning the two child nodes from their parent

node. The parent node will be a new terminal node. (3) CHANGE: changing the split rule

of a selected internal node including which variable to be cut on and the corresponding

cutpoint. (4) SWAP: swapping the split rule between a pair of parent and child nodes.

Kapelner and Bleich (2016) omit the SWAP move and simplify the CHANGE move to only
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consider those internal nodes with two terminal nodes to reduce computational complexity.

To complete the Bayesian estimation, the MCMC procedures are repeated many times

until convergence. Then, we will remove the “burn-in” iterations and average over draws

from the posterior distribution to obtain our final estimator

f̂(x) =
1

k

K∑
k=1

f∗
k (x), (2.43)

where f∗
k (x) =

∑M
j=1 g(x;U

∗
j ,Φ

∗
j ) is the estimated value from the kth iteration.
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Chapter 3: Adaptive Bayesian Sum of Trees Model for

Stationary Time Series Data

In Chapter 2, we extend the simplistic i.i.d. model to a covariate-dependent stationary and

nonstationary multiple time series data. In this chapter, we propose an adaptive Bayesian

sum of trees method for covariate-dependent multiple stationary time series data that we

employ the structure of the Bayesian additive regression tree (BART) model but modify

it for power spectrum analysis which is a functional response data. Also, it represents an

extension of a method for adaptive partitioning of a single covariate proposed in Bruce

et al. (2018). We also describe the Bayesian back-fitting MCMC algorithm and reversible-

jump MCMC algorithm needed to sample from the posterior distribution to estimate the

covariate-dependent power spectrum.

3.1 Adaptive Bayesian Sum of Trees Model

To adjust the BART model for the power spectrum estimation, we specify the form of

terminal parameters according to the coefficients in the Bayesian penalized spline model and

employ both the backfitting MCMC sampler and the reversible-jump MCMC (RJMCMC)

procedure to sample new tree structures and node parameters. More details are presented

in the following sections.

3.1.1 Sum of Trees Model

Let M be the number of trees. A sum of trees model for the log power spectrum is then

constructed as

log f(ω, ν) ≈
M∑
j=1

Bj∑
b=1

δ(ω;Uj , b) log fbj(ν), (3.1)
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where Uj represents the jth tree that has Bj terminal nodes for j = 1, . . . ,M . Model

specification for local power spectra log fbj(ν) within each tree then follows directly from

the specification for the single tree model introduced in Section 2.4.2.

It is important to note that the number of trees and hyperparameters for priors intro-

duced in Section 2.4.2 should be selected to ensure a collection of “weak learners”. More

specifically, m should be sufficiently large to avoid overly complex individual tree structures,

and estimates of log fbj(ν) should be shrunk toward zero by selecting hyperparameters σ2
α

and Aτ sufficiently small. Particular selections used in simulation studies and applications

are discussed in subsequent corresponding sections, and as recommended in Chipman et al.

(2010).

3.1.2 Prior Specification

Let Φj = {log f1j(ν), . . . , log fBjj(ν)} be the collection of log power spectra across terminal

nodes for the jth tree. To complete the Bayesian model specification, priors are imposed

on Uj and Φj in order to allow the trees to be random and fit from the data. Assum-

ing independence across terminal node parameters and trees a priori, priors can be spec-

ified as p((U1,Φ1), ..., (UM ,ΦM )) =
∏

j p(Uj ,Φj) =
∏

j p(Φj |Uj)p(Uj), where p(Φj |Uj) =∏
b p(log fbj(ν)|Uj). The priors for Φj |Uj then correspond to the priors of αb, β

(b) and τb

for the local power spectrum estimator introduced in Section 2.4.2. For the priors on the

tree structure Uj , three probabilities need to be considered.

1. The probability of a node to be split is the same as function 2.32. Ročková and

Saha (2019) propose a minor modification Pr(SPLIT) ∝ γd for some 0 ≤ γ < 1/2 to

achieve the optimal posterior convergence rate, which can also be adopted within the

proposed framework.

2. The probability of selecting the pth covariate for splitting is denoted as sp for p =

1, . . . , P . The proposed model allows for two possible prior specifications: a uniform

prior, sp = P−1, such that all covariates have the same probability to be selected,
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and a sparsity-inducing Dirichlet prior (s1, . . . , sP ) ∼ D
(

σ
P , . . . ,

σ
P

)
(Linero, 2018).

For the Dirichlet prior, σ determines the degree of sparsity and Linero (2018) offer

multiple approaches for modeling this parameter. We set σ = 1 as suggested by Linero

(2018) for computational convenience.

3. The probability of selecting a particular cutpoint for a given covariate is uniform

across all cutpoints. For continuous, discrete, and ordinal covariates, cutpoints are

selected from a fixed number of evenly spaced points over the range of possible values.

For categorical covariates without an intrinsic ordering, a cutpoint represents a par-

ticular mapping of categories to the left and right child nodes created by the split. A

categorical variable with q categories then has 2q − 2 cutpoints that can be selected.

3.1.3 Bayesian Backfitting MCMC

It is important to note that each tree captures particular features of the covariate-dependent

power spectrum and depends on the features captured by other trees. While this provides

considerable flexibility and adaptive estimation, it presents significant computational chal-

lenges in estimating the trees. Following Chipman et al. (2010), we develop a Bayesian

backfitting MCMC algorithm for proposing and evaluating modifications to each tree se-

quentially.

For the jth tree, the posterior distribution p
(
(U1,Φ1), ..., (UM ,ΦM )|I1, . . . , IL

)
can be

sampled through M successive draws from p
(
(Uj ,Φj)|U−j ,Φ−j , I1, . . . , IL

)
where U−j is

the set of all trees except Uj , and Φ−j is defined similarly. Note the conditional distribution

p
(
(Uj ,Φj)|U−j ,Φ−j , I1, . . . , IL

)
depends on

(
U−j ,Φ−j , I1, I2, . . . , IL

)
only through Rℓj =

log Iℓ−
∑

i ̸=j

∑Bi
b=1 δ(ωℓ;Ui, b) log f bi, where log f bi = {log fbi(ν1), log fbi(ν2), . . . , log fbi(νN )}

and Rℓj is the residual of the log periodogram after removing the fit from the sum of trees

across all trees except for the jth tree. Therefore, drawing from the posterior equates to M

successive draws from p
(
(Uj ,Φj)|R1j , . . . ,RLj

)
. Hence, the local power spectrum estimator

for the jth tree is then fit by replacing log Iℓ with Rℓj in Equations (2.25) and (2.27).
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3.1.4 Reversible-jump MCMC Sampling

To sample new tree structures, a reversible-jump MCMC (Green, 1995) procedure is devel-

oped to jointly propose and evaluate new draws of U and Φ for each tree. The proposed

modification takes the form of one of three possible moves: BIRTH, DEATH and CHANGE,

as described in Section 2.5.3, with probabilities 0.25, 0.25 and 0.5 respectively. New model

parameters for the proposed modification are drawn, and the proposed modification is then

accepted or rejected using a Metropolis–Hastings (M-H) step. Each tree is considered in

turn for updating within each iteration. Draws using this RJMCMC sampler are averaged

over post burn-in draws to obtain the final estimator. Technical details for the RJMCMC

sampling scheme are available in Appendix B.

3.1.5 Comparison with Bayesian additive regression model

In this section, we compare our proposed modeling framework with that of the BART model.

The first important difference is in the nature of the response variable. In the proposed

method, the response variable is the power spectrum, which is a functional parameter,

rather than a scalar response as in BART. Additionally, the power spectrum has special

properties (periodicity, non-negativity, etc.) that need to be considered in the modeling

approach. While BART has been adapted to model generic functional responses (Starling

et al., 2020), the proposed method is specifically designed to model the power spectrum

and retain these properties using a specially-designed set of basis functions. Second, BART

does not use RJMCMC sampling. This is due to the use of conjugate Gaussian priors for

terminal node means, which allows these parameters to be integrated out when drawing

new tree structures, thus avoiding the need for reversible jumps between continuous spaces

of varying dimensions. The proposed model does not have such conjugacy, and thus uses

RJMCMC for sampling. Third, for the general regression model in (2.30), there is a need

to estimate the variance σ2 of error term. While, the error term ϵ of the log-linear model

in (2.6) follows log(χ2
2/2) such that no parameters need to be estimated.
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3.2 Simulations of Bayesian Sum of Trees Model

We consider three simulation settings representing abrupt and smoothly varying dynamics

with complex covariate effects and interactions in order to demonstrate strong finite-sample

estimation accuracy, as well as the ability to adapt to sparse covariate effects and conduct

variable selection.

3.2.1 Settings

1. Abrupt+Smooth: Let ω = [ω1, ω2]
′ where ω1, ω2

i.i.d.∼ U(0, 1). An AR(1) process for

the ℓth time series is specified as xℓt = ϕℓxℓt−1 + ϵℓt, ϵℓt ∼ N(0, 1), where ϕℓ =

−0.7 + 1.4ω2 when 0 ≤ ω1 < 0.5 and ϕℓ = 0.9− 1.8ω2, when 0.5 ≤ ω1 ≤ 1.

2. AR-Friedman: Let ω = [ω1, . . . , ω5]
′ where ω1, . . . , ω5

i.i.d.∼ U(0, 1). An AR(1) process

for the ℓth time series is specified as xℓt = ϕℓxℓt−1 + ϵℓt, ϵℓt ∼ N(0, 1), where ϕℓ =

0.5 sin(πωℓ1ωℓ2)− (ωℓ3 − 0.5)2 + 0.35sign(ωℓ4 − 0.5)− 0.15ωℓ5.

3. Adjusted-AdaptSPEC-X: Let ω = [ω1, ω2]
′, where ω1, ω2

i.i.d.∼ U(0, 1). Each covariate

vector ω is mapped to a latent variable zℓ ∈ {1, 2, 3, 4}. Figure D.2 shows the mapping

from ω to z. An AR(2) process is then specified as xℓt = ϕzℓ1xℓt−1 + ϕzℓ2xℓt−2 +

ϵℓt, ϵℓt ∼ N(0, 1), where the coefficients for the four latent region are defined as

follows. If zℓ = 1, (ϕzℓ1, ϕzℓ2) = (1.5,−0.75); if zℓ = 2, (ϕzℓ1, ϕzℓ2) = (−0.8, 0); if

zℓ = 3, (ϕzℓ1, ϕzℓ2) = (−1.5,−0.75); if zℓ = 4, (ϕzℓ1, ϕzℓ2) = (0.2, 0).

The first setting represents an AR(1) process in which the coefficient varies smoothly

across one covariate and abruptly across another. The second setting contains complex lin-

ear and nonlinear covariate effects and interactions (Friedman, 1991) adapted for time series

data. The third setting represents an abruptly-changing process over two dimensions, simi-

lar to that of Bertolacci et al. (2022). Power spectra for covariate-dependent AR(1) processes

from the first two settings can be represented as f(ωℓ, ν) =
[
1− 2ϕℓ cos(2πν) + ϕ2

ℓ

]−1
where
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(a) Latent variable mapping (b) Model estimation

Figure 3.1: (a) presents the mapping of covariate values ω1 and ω2 to latent variable values
z for the Adjusted-AdaptSPEC-X simulation setting. D1 and D2 denote two simulated
time series with similar covariate values that are mapped to different latent variable values
corresponding to different power spectra. For these two realizations, (b) displays the true log
power spectra (red lines), log periodogram ordinates (gray points), and estimated log power
spectra using the proposed Bayesian sum of trees model (blue lines) and the AdaptSPEC-X
model (green lines).
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ωℓ represents the covariate vector for the ℓth time series and ϕℓ depends on ωℓ as defined

above. For the third setting, covariate-dependent AR(2) processes can similarly be repre-

sented as f(ωℓ, ν) =
[
1 + 2(−ϕzℓ1 + ϕzℓ1ϕzℓ2) cos(2πν)− 2ϕzℓ2 cos(4πν) + ϕ2

zℓ1
+ ϕ2

zℓ2

]−1
.

3.2.2 Results: Estimation Accuracy

Hyperparameters are specified as σ2
α = 100 for the prior variance of αb in Equation (2.26)

and ξτ = 2 and Aτ = 10 for the prior on τb in Equation (2.28) and Equation (2.29). We

use both M = 5 trees and M = 50 trees for estimation, and different numbers (L) and

lengths (T ) of time series are considered. The MCMC procedure is run for a total of 10,000

iterations with the first 5,000 discarded as burn-in. In order to assess convergence, trace

plots for summary measures of the mean squared residuals, estimated log power spectrum,

and tree structures for all settings are available in Appendix D. These diagnostics appear

to show convergence after approximately 5,000 iterations across all settings.

Estimates of the covariate-dependent power spectrum for a single run are presented in

Figure 3.2 to visually illustrate the ability of the proposed method to capture abrupt and

smooth changes in power spectra. The smooth change in the conditional power spectrum

over ω2 is captured by averaging over the posterior distribution of tree structures, which

contains many splits across the range of possible values of ω2. On the other hand, splits

on ω1 are concentrated around the true abrupt change at ω1 = 0.5, and the posterior

mean estimator of the conditional power spectrum over ω1 appropriately reflects the abrupt

change in the conditional power spectrum.

Given an estimate of the covariate-dependent log power spectrum, f̂(ω, ν), the MSE,

MSE = (NL)−1
L∑

ℓ=1

N∑
k=1

[
log f̂(ωℓ, νj)− log f(ωℓ, νj)

]2
, (3.2)

will be used to evaluate estimation accuracy. True covariate-dependent log power spectra,

log f(ω, ν) for all settings can be fully determined by the representations and coefficients
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Figure 3.2: Estimated and true covariate-dependent conditional log power spectrum for
one run of the Abrupt+Smooth simulation setting. The first two columns contain the
estimated and true covariate-dependent power spectrum conditional on ω1 < 0.5 and ω1 ≥
0.5 respectively; The last two columns display the estimated and true covariate-dependent
power spectrum conditional on ω2 = 0 and ω2 = 1 respectively.
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presented in Section 3.2.1. The mean and standard deviation of the mean squared er-

ror (MSE) is presented in Table 3.1 for 100 replications of all settings. For comparison,

AdaptSPEC-X (Bertolacci et al., 2022) is also used to estimate the covariate-dependent

power spectrum. It is important to note that AdaptSPEC-X allows for modeling of time-

and covariate-varying power spectra with time-varying means, which is a more general set-

ting than what is considered in this work. Accordingly, we implement a simplified version

of the AdaptSPEC-X mixture model without the time-varying mean and power spectra

components to enable more accurate comparisons. We applied C = 50 mixture components

to ensure sufficient flexibility in estimating covariate effects on power spectra.

These results show that both methods see improved estimation accuracy as the number

(L) and length (T ) of time series increase. For the proposed method, using 50 trees provides

slight improvements in estimation accuracy compared to using 5 trees when L > 100 and

T > 100 since the additional trees provide more flexibility to capture complexities in the

covariate-dependent power spectra. However, the proposed method using either 5 or 50 trees

produces smaller MSEs than AdaptSPEC-X for comparable settings. This can be partially

attributed to the presence of abrupt changes across one or more covariates in all settings,

which are better captured by the proposed tree-based approach. To illustrate this point,

Figure 3.1(b) shows the estimated power spectra for two simulated time series with similar

covariate values separated by an abrupt change from the Adjusted-AdaptSPEC-X setting.

As noted in Bertolacci et al. (2022), the thin-plate Gaussian process prior on the mixture

weights, while flexible, is both smooth and stationary. Accordingly, the AdaptSPEC-X

power spectrum estimates for these two time series are similar due to smoothing across

similar covariate values induced by the thin-plate Gaussian process prior. On the other

hand, the proposed Bayesian sum-of-trees model is able to accurately distinguish the abrupt

change in the power spectra. Moreover, averaging over the posterior distribution of trees

enables the proposed method to recover smooth changes well (Figure 3.2). Taken together,

this results in superior estimation accuracy across all settings seen in Table 3.1.
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Table 3.1: Mean and standard deviation of MSE over 100 replications for three simulation
settings with different lengths (T ) and number (L) of time series. Results are presented
for the proposed Bayesian sum of trees model (top) with number of trees M = 50 and the
AdaptSPEC-X model (bottom) with mixture components C = 50.

Abrupt+Smooth AR-Friedman Adj. AdaptSPEC-X

L T Proposed Bayesian Sum of Trees Model (5 trees)

100 100 0.04(0.01) 0.04(0.01) 0.15(0.02)
100 250 0.02(0.00) 0.02(0.00) 0.08(0.01)
100 500 0.01(0.00) 0.02(0.00) 0.05(0.01)
200 100 0.03(0.01) 0.03(0.00) 0.14(0.02)
200 250 0.02(0.00) 0.02(0.00) 0.07(0.01)
200 500 0.01(0.00) 0.01(0.00) 0.05(0.01)
500 100 0.02(0.00) 0.03(0.00) 0.13(0.01)
500 250 0.01(0.00) 0.02(0.00) 0.07(0.01)
500 500 0.01(0.00) 0.01(0.00) 0.05(0.01)

L T Proposed Bayesian Sum of Trees Model (50 trees)

100 100 0.04(0.01) 0.04(0.00) 0.153(0.02)
100 250 0.02(0.00) 0.02(0.00) 0.07(0.02)
100 500 0.01(0.00) 0.01(0.00) 0.05(0.01)
200 100 0.03(0.00) 0.03(0.00) 0.14(0.02)
200 250 0.01(0.00) 0.02(0.00) 0.07(0.01)
200 500 0.01(0.00) 0.01(0.00) 0.05(0.01)
500 100 0.02(0.00) 0.02(0.00) 0.13(0.01)
500 250 0.01(0.00) 0.01(0.00) 0.07(0.01)
500 500 0.01(0.00) 0.01(0.00) 0.05(0.00)

L T AdaptSPEC-X Model

100 100 0.06(0.01) 0.05(0.01) 0.63(0.13)
100 250 0.04(0.01) 0.04(0.00) 0.56(0.12)
100 500 0.04(0.01) 0.04(0.01) 0.54(0.12)
200 100 0.05(0.01) 0.05(0.01) 0.52(0.07)
200 250 0.04(0.01) 0.04(0.01) 0.45(0.07)
200 500 0.04(0.01) 0.04(0.01) 0.42(0.06)
500 100 0.05(0.01) 0.04(0.00) 0.46(0.04)
500 250 0.04(0.01) 0.03(0.00) 0.40(0.04)
500 500 0.04(0.01) 0.03(0.00) 0.399(0.04)
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3.2.3 Comparison with Generalized Additive Model

When the number of covariates is small, the proposed method can also be compared with

a generalized additive model (GAM) approach (Wood, 2017) for estimating the covariate-

dependent power spectrum. This is an important benchmark for comparison, since the

GAM modeling approach is frequently used in practice, and its smooth additive structure

is well-equipped to characterize smooth covariate effects.

We consider two simulation settings representing 1) a combination of abrupt and smoothly

varying dynamics, and 2) entirely smoothly varying dynamics in order to compare finite-

sample estimation accuracy.

1. Abrupt+Smooth: Let ω = (ω1, ω2) where ω1, ω2
i.i.d.∼ U(0, 1). An AR(1) process for

the ℓth time series is specified as xℓt = ϕℓxℓt−1 + ϵℓt, ϵℓt ∼ N(0, 1), where ϕℓ =

−0.7 + 1.4ω2 when 0 ≤ ω1 < 0.5 and ϕℓ = 0.9− 1.8ω2, when 0.5 ≤ ω1 ≤ 1.

2. AR-Friedman-Smooth: Let ω = (ω1, ω2) where ω1, ω2
i.i.d.∼ U(0, 1). An AR(1) process

for the ℓth time series is specified as xℓt = ϕℓxℓt−1 + ϵℓt, ϵℓt ∼ N(0, 1), where ϕℓ =

0.5 sin(πωℓ1ωℓ2).

The first setting is exactly as appears in the simulation studies Section 3.2.1, and the second

setting is a simplification of the AR-Friedman setting in Section 3.2.1 removing all but the

first two important covariates, which influence the power spectra in a smooth manner.

Since the power spectrum for the covariate-dependent AR(1) processes can be represented

as f(ωℓ, ν) =
[
1− 2ϕℓ cos(2πν) + ϕ2

ℓ

]−1
where ωℓ represents the covariate vector for the

ℓth time series and ϕℓ is defined as above, plugging in the corresponding expressions for ϕℓ

leads to the following covariate-dependent power spectra for the above settings.

1. f(ωℓ, ν) =


[
1.49− 1.96(ω2 − ω2

2) + (1.4− 2.8ω2) cos(2πν)
]−1

0 ≤ ω1 < 0.5[
1.81− 3.24(ω2 − ω2

2)− (1.8− 3.6ω2) cos(2πν)
]−1

0.5 ≤ ω1 ≤ 1

2. f(ωℓ, ν) =
[
1− sin(πω1ω2) cos(2πν) + 0.25 sin2(πω1ω2)

]−1
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From this representation, complex interactions among covariates and frequency, as well

as nonlinear effects, are observed, so a general modeling approach using GAMs to approxi-

mate covariate-dependent log power spectra must go beyond univariate additive smooths to

include multi-dimensional smooths as well. Here is one such possible model for the above

simulation settings with two covariates.

E[log f(ωℓ, ν)] = g0(ν) + g1(ω1) + g2(ω2) + g3(ω1, ω2) + g4(ω1, ν) + g5(ω2, ν) + g6(ω1, ω2, ν)

(3.3)

where g0, g1, . . . , g6 are functions that vary over the input parameters smoothly. This type of

model is well-equipped to capture smooth changes in covariate-dependent log power spectra

and can be estimated using the mgcv R package (Wood, 2017; R Core Team, 2022).

Given a collection of stationary time series Xℓt of length t = 1, . . . , T and P -dimensional

covariate vectors ωℓ = (ω1ℓ, . . . , ωPℓ)
′ for ℓ = 1, . . . , L independent subjects, let N =

⌊T/2⌋−1 and νk = k/T for k = 1, . . . , N be the Fourier frequencies. The periodogram esti-

mator of the power spectrum for the ℓth time series is Iℓ(νk) =
1
T

∣∣∣∑T
t=1Xℓt exp(−2πiνkt)

∣∣∣2 .
The log periodogram ordinates, log Iℓ(νk), can then be used as the observed response vari-

able values within the GAM modeling framework above to smooth periodogram ordinates

over covariate and frequency in order to estimate the covariate-dependent log-power spec-

trum.

It is important to note that this approach is only feasible when the number of covariates is

small, as in these two settings. Directly extending this modeling approach to accommodate

many covariates without simplifying assumptions about the impact of covariates on the

log power spectrum would require significantly more terms and multi-dimensional smooths.

This would significantly increase computational complexity and hamper interpretability.

Given an estimate of the covariate-dependent log power spectrum from either the GAM

model or the proposed model, f̂(ω, ν), the MSE will be used to evaluate estimation accuracy.

For the proposed method, hyperparameters are specified as σ2
α = 100, ξτ = 2, and Aτ = 10.
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M = 5 trees are used for estimation, and different numbers (L) and lengths (T ) of time

series are considered. The MCMC procedure is run for a total of 10,000 iterations with

the first 5,000 discarded as burn-in. Table 3.2 displays the mean and standard deviation

for the MSE over 100 replicates using both the proposed method and the GAM modeling

approach.

Table 3.2: Mean and standard deviation of MSE over 100 replications for two simulation
settings with different lengths (T ) and number (L) of time series. Lower mean MSEs for
each setting are bolded for ease of comparison.

Abrupt+Smooth AR-Friedman-Smooth

L T Proposed (5 trees) GAM Proposed (5 trees) GAM

100 100 0.04(0.01) 0.10(0.01) 0.02(0.00) 0.03(0.01)
100 250 0.02(0.00) 0.06(0.01) 0.01(0.00) 0.01(0.00)
100 500 0.01(0.00) 0.05(0.01) 0.01(0.00) 0.01(0.00)
200 100 0.03(0.01) 0.08(0.01) 0.02(0.00) 0.02(0.00)
200 250 0.02(0.00) 0.06(0.01) 0.01(0.00) 0.01(0.00)
200 500 0.01(0.00) 0.05(0.01) 0.00(0.00) 0.00(0.00)
500 100 0.02(0.00) 0.08(0.01) 0.01(0.00) 0.02(0.00)
500 250 0.01(0.00) 0.06(0.01) 0.01(0.00) 0.01(0.00)
500 500 0.01(0.00) 0.06(0.00) 0.00(0.00) 0.00(0.00)

For the Abrupt+Smooth setting, both methods perform well in estimating the power spec-

trum under all settings, but the proposed method outperforms the GAM approach. This is

expected and can be attributed to the presence of both abrupt (ω1) and smooth (ω2) covari-

ate effects, for which our model can approximate reasonably well. The GAMmodel’s smooth

approximation leads to biased estimation of abrupt changes, which leads to increased MSEs

compared to the proposed sum-of-trees model.
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For the AR-Friedman-Smooth setting, again both models perform well in estimating

the power spectrum, but performance depends on the number L and length T of time

series available for modeling. For smaller L and T values, the proposed method performs

slightly better than the GAM model. This could be attributed to a lack of sufficient signal

strength in the smaller datasets to accurately estimate the numerous parameters in the GAM

model. Also, since the complexity (i.e. tree size) of the model for the proposed method can

vary depending on the signal strength, this may offer a slight advantage to the proposed

approach. This is not unexpected, as sum of tree style models have recently been shown to

offer superior performance in low signal to noise ratio settings (Mentch and Zhou, 2020).

However, as L and T increase, the GAM model outperforms the proposed model. This is

very much expected, since the smooth GAM model structure is more efficient in learning

the covariate-dependent power spectrum when the smoothness assumption is correct.

These results show that methods assuming completely smooth effects, like GAM, can

outperform the proposed method when smoothness assumptions are valid and sufficient

data are available. However, the proposed method generally outperforms these methods in

the presence of both smooth and abrupt covariate effects without prior knowledge of the

nature of such effects.

3.2.4 Results: Computation Time

Simulations were carried out on a Windows 10 machine with an 8-core Intel i7 3.6 GHz

processor and 64 GB RAM using R version 4.0.3 (R Core Team, 2021). The R code for

implementing the proposed model is provided as a zip file in Supporting Information and

is described in Web Appendix C. Computationally-intensive aspects of the methodology

are written in C++ using RcppArmadillo (Eddelbuettel and Sanderson, 2014) for more

efficient computation and reduced run times. Replications were run in parallel across six

cores. For the simulation settings considered herein, the mean run time for each tree update

after burn-in ranges from 0.02 to 0.43 seconds, depending on the number (L) and length

(T ) of time series, which is shown in Figure 3.3.
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Figure 3.3: The distribution of mean run times in seconds for a single tree update over 100
replicates of the three simulations with M = 5 trees.

While run times generally increase as the number and length of time series increase, length

increases have a bigger impact on run times relative to increases in the number of time

series. Increasing T from 100 to 500 while holding L constant increases mean run times by

a multiple of approximately 3.5, while increasing L from 100 to 500 while holding T con-

stant increases mean run times by a multiple of approximately 2.1. This is expected since

the number of Fourier frequencies grows with the length of the series and increases both

the number of terms being summed in the log Whittle likelihood and the dimension of the

cosine basis used to approximate local log power spectra. However, increasing the number

of time series does not change the number of Fourier frequencies and only requires adding

40



more terms in the log Whittle likelihood and posterior distribution for the spline coeffi-

cients, which is less computationally expensive. See Equations (2.25)-(2.27) and sampling

scheme details in Appendix B for more details.

Tree size also plays an important role in determining run times for tree updates. Larger

trees tend to have fewer time series belonging to each terminal node, which reduces the

computational burden and run times for evaluating modifications to a single terminal node.

This is why the Adjusted-AdaptSPEC-X setting, which requires larger trees to recover the

complex covariate effects, has faster mean run times compared to other settings. Addi-

tionally, tree size tends to increase as both L and T increase. For illustration, Figure 3.4

shows the total number of bottom nodes for different combinations of L and T for the

AR-Friedman simulation.

Figure 3.4: The total number of bottom nodes over iterations for four runs with different
L and T for the AR-Friedman simulation setting using 5 trees.
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The total number of bottom nodes for L = 500, T = 500 is over 50 while it is about 13

for L = 100, T = 100. This can help explain why the mean run times grow more slowly

in L compared to T , as the mean number of time series belonging to each terminal node

increases modestly.

3.2.5 Results: Sparse Covariate Effects

To demonstrate the capability of the proposed method in providing efficient variable selec-

tion by adapting to sparse covariate effects for high-dimensional covariates, we introduce

additional noise covariates into the simulation settings described in Section 3.2.1. Con-

sider augmenting the original covariate vector, ω, with additional noise covariates indepen-

dently drawn from a standard normal distribution such that ω̃ ∼ N(0, I) where I is the

identity matrix and ω∗ = [ω′, ω̃′]′ is the augmented covariate vector used for estimating

the covariate-dependent power spectrum. We consider augmented covariate vectors of size

P = 100, 200, and 1000 using L = 500 time series of length T = 250. Since the original

simulation settings only have 2-5 important covariates, this results in highly sparse covariate

vectors in which noise covariates constitute 95% to 99.8% of the total covariates. Variable

selection efficiency can be investigated by assessing the estimated posterior probability for

model inclusion of each covariate, which is the proportion of posterior draws where the

covariate appears in at least one split rule for at least one tree. Table 3.3 displays the MSE

and posterior probabilities of model inclusion for the AR-Friedman setting using both the

uniform and Dirichlet hyperpriors for tree splitting proportions introduced in Section 3.1.2

with M = 50 trees. Tables for all simulation settings for the two different hyperpriors using

different numbers of trees (M = 5, 50) and visualizations of the posterior model inclusion

probabilities are available in Appendix D.
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Table 3.3: Mean and standard deviation of MSE and posterior probability of model inclusion
for AR-Friedman setting with L = 500 time series of length T = 250 over 100 replications
with different number of covariates (P ) and hyperpriors (Uniform and Dirichlet). Posterior
probabilities for model inclusion are reported for important variables, ω1, . . . , ω5, individ-
ually and noise variables ω6, . . . , ωP in aggregate. Results are presented for the proposed
Bayesian sum of trees model using M = 50 trees.

P=100 Uniform Dirichlet

MSE 0.02(0.00) 0.01(0.00)

Noise 0.27(0.35) 0.13(0.33)

ω1 1.00(0.00) 1.00(0.00)

ω2 1.00(0.00) 1.00(0.00)

ω3 1.00(0.00) 1.00(0.00)

ω4 1.00(0.00) 1.00(0.00)

ω5 1.00(0.00) 1.00(0.00)

P=200 Uniform Dirichlet

MSE 0.02(0.00) 0.01(0.00)

Noise 0.21(0.32) 0.08(0.26)

ω1 1.00(0.00) 1.00(0.00)

ω2 1.00(0.00) 1.00(0.00)

ω3 1.00(0.00) 1.00(0.00)

ω4 1.00(0.00) 1.00(0.00)

ω5 1.00(0.00) 0.99(0.06)

P=1000 Uniform Dirichlet

MSE 0.03(0.01) 0.02(0.01)

Noise 0.13(0.29) 0.07(0.23)

ω1 0.96(0.17) 0.89(0.32)

ω2 0.94(0.20) 0.83(0.37)

ω3 0.68(0.44) 0.50(0.48)

ω4 1.00(0.00) 1.00(0.00)

ω5 0.63(0.46) 0.47(0.49)

From this table, some important trends should be noted. First, there is a slight improve-

ment in estimation accuracy when using the Dirichlet hyperprior. This can be attributed to

the proposed method’s ability to recover important variables with high posterior probability
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and the Dirichlet hyperprior’s superior ability to adapt to the sparse covariate vectors con-

sidered. This can be seen in Table 3.3 by comparing model inclusion posterior probabilities

for important and noise variables. Important variables are included in models with high

posterior probability ranging from 46.9% to 100% on average. However, the Dirichlet hyper-

prior shrinks posterior probabilities for noise variables closer to zero for all covariate vector

sizes considered by 47%-62% on average compared to the uniform hyperprior. Second, both

estimation accuracy and variable selection are negatively impacted by increasing covariate

vector size P . This is expected since the additional noise covariates result in sparser co-

variate vectors, for which resolving important variables is relatively more difficult. Also,

additional noise covariates inject additional randomness into the proposed model which

leads to implicit regularization (Mentch and Zhou, 2020).

3.3 Gait Maturation Analysis

We now present the analytical results of applying the proposed method to the motivating

gait maturation study described in the introduction (Goldberger et al., 2000), and the

inverse regression for the estimating of unknown covariates.

3.3.1 Estimation Results of Gait Maturation Analysis

The current analysis considers the effect of age on gait variability to better understand gait

maturation in young children in the presence of other factors that may influence gait, such as

gender and gait speed. The data contains stride interval time series from 50 healthy children

with equal numbers of girls and boys between 3 and 14 years old. The time series consist of

T = 256 stride times during normal walking after removing the first 60 seconds and last 5

seconds to avoid warm-up and ending effects (Figure 1.1). More details of data processing

can be found in Hausdorff et al. (1999). The proposed Bayesian sum of trees model was

used to estimate the covariate-dependent power spectrum of stride interval time series using

5 trees and 10,000 total iterations with the first 5,000 iterations discarded as burn-in. See

Appendix D for convergence diagnostics and Appendix E for graphical posterior predictive
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checks for this application, which demonstrate stable estimation and model adequacy.

Partial dependence (PD) (Friedman, 2001) is the most widely used method for evaluating

covariate effects in machine learning models. However, there is an issue with multicollinear-

ity in this dataset, as age and gait speed are significantly correlated (r = 0.653, p < 0.0001),

which can render PD unreliable due to extrapolation of the response at predictor values far

outside the multivariate envelope of the data (Apley and Zhu, 2020). Therefore, we use ac-

cumulated local effects (ALE) (Apley and Zhu, 2020) to characterize covariate effects. ALE

presents the effect in a small interval of the interested feature, which can mitigate issues

with multicollinearity by localizing the estimated effect within the envelope of the data. Let

ω = (ωj ,ω\j) where ωj denotes the jth covariate and ω\j denotes all other covariates. The

ALE for ωj = x on the power spectrum at frequency ν is defined as

fj,ALE(x, ν) =

∫ x

z0,j

Eω\j |ωj

[
δf(ω, ν)

δωj

∣∣∣∣ωj = zj

]
dzj − constant (3.4)

where Zj = {z0,j , . . . , zH,j} is a collection of H + 1 partition points over the effective

support of ωj . The constant is a value to vertically center the plot. Let f̂(zh,j , x\j ; ν) be

the estimated power spectrum from a single posterior draw for ωj = zh,j , h = 1, . . . ,H and

ω\j = x\j on frequency ν, the uncentered ALE can then be estimated by

ĝj,ALE(x, ν) =

hj(x)∑
h=1

1

nj(h)

∑
{i:x(i)

j ∈Nj(h)}

[
f̂(zh,j , x

(i)
\j ; ν)− f̂(zh−1,j , x

(i)
\j ; ν)

]
(3.5)

where hj(x) is the index for the interval of the partition Zj to which the value x belongs,

n is the total number of observations and nj(h) is the number of observations in the hth

segment of the partition for ωj such that
∑H

h=1 nj(h) = n. Nj(h) = (zh−1,j , zh,j ] represents
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the hth interval of the partition for ωj . Then the estimated centered ALE is

f̂j,ALE(x, ν) = ĝj,ALE(x, ν)−
1

n

n∑
i=1

ĝj,ALE(x
(i), ν). (3.6)

The estimated centered ALE above can be computed for each of the posterior draws

from the RJMCMC sampler, and the posterior mean and 95% credible intervals can provide

the desired inference on the covariate effects. By partitioning covariates intoH = 5 intervals

containing equal numbers of observations, Figures 3.5(a) and 3.5(b) show the posterior mean

of the ALE for age and gait speed on the power spectrum. Corresponding 95% credible

intervals are available in Appendix D. Two findings can be concluded from these plots.

First, power over all frequencies decreases as age increases. This indicates variability in

stride times decreases with age, which is consistent with previous findings (Hausdorff et al.,

1999). Second, we can observe that power in low frequencies (LF) (0.05-0.25 stride−1)

decreases much more with age relative to higher frequencies (HF) (0.25-0.5 stride−1), which

is also expected as low frequency power corresponds to fluctuations over relatively longer

time scales and is indicative of less mature neuromuscular control (Hausdorff et al., 1999).

It should be noted that Hausdorff et al. (1999) discretizes age as a categorical variable

and then considers an ANOVA model to test for age effects. Our model, on the other

hand, considers the age-dependent ALE as a continuous surface, which provides a more

comprehensive assessment of the association between frequency patterns of gait variability

time series and age without subjectively categorizing age into different bins.

Figures 3.5(c) and 3.5(d) present the posterior mean of the ALE of age and gait speed on

the LF/HF ratio LF
HF(ω) =

∫ 0.25
0.05 f(ω, ν)dν/

∫ 0.5
0.25 f(ω, ν)dν along with 95% pointwise credi-

ble intervals. This can be computed by replacing the power spectrum f(ω, ν) and estimated

power spectrum f̂(zh,j , x\j ; ν) in Equations (3.4)-(3.6) with the LF
HF(ω) and its correspond-

ing estimates L̂F
HF(ω) =

∑
νk∈(0.05,0.25) f̂(ω, νk)/

∑
νk∈(0.25,0.5) f̂(ω, νk) where L̂F

HF(ω) can be
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expressed as L̂F
HF(zh,j , x\j) when calculating the ALE for the jth covariate. While LF/HF(ω)

decreases significantly with age, we see relatively larger decreases beyond 7 years of age.

Previous analyses of gait variability time series have produced contradictory results. Haus-

dorff et al. (1999) show that the LF/HF ratio presents a significant decrease in children 7-14

years of age. However, Preis et al. (1997) show that gait maturation occurs more rapidly in

children 3-7 years of age and changes slowly after 7 years. Our results are more consistent

with analyses suggesting LF/HF ratio decreases beyond 7 years of age.

For gait speed, we observe significantly less low frequency (< 0.1 stride−1) power (and

lower LF/HF ratio) among faster walkers with speeds above 1.1 m/sec. Gender appears to

have a much less effect on power spectra (see Appendix D), with only a very small frequency

range from 0.05 stride−1 to 0.15 stride−1 significantly different in power between males and

females. There are no significant differences in LF/HF ratio between males and females

with a posterior mean ALE of -0.1680 and 95% credible interval (-0.39,0.06).

We provide some possible extensions of the proposed method which can be used to

accomplish other goals of analyzing gait variability time series. First, other gait maturation

studies have focused on classifying subjects into different groups based on the covariates and

gait variability time series through support vector machines (Wu and Krishnan, 2009a,b; Wu

and Shi, 2011). Second, if disease status is considered as a covariate, then this extension can

potentially aide in diagnosing certain diseases, such as Parkinson’s disease, which is another

goal of many gait studies (Daliri, 2012; Khorasani and Daliri, 2014). Third, visualization of

covariate effects is a major advantage of tree-based models. In Appendix D, a visualization

of the tree structures for the gait maturation analysis are presented.
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(a) (b)

(c) (d)

Figure 3.5: Posterior mean of ALE for age (a) and gait speed (b) effects on the power
spectrum and posterior mean of ALE for age (c) and gait speed (d) on LF/HF ratio (blue
dotted line) with 95% pointwise credible intervals (shaded gray region).
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Chapter 4: Inverse Regression Framework

One of the primary advantages of tree-based methods, like the proposed one, over less

transparent machine learning methods, like support vector machines (SVM), is the ability

to visualize covariate effects through the tree structures. Appendix D demonstrates this

capability for the proposed method in how covariates are associated with the characteristics

of the log power spectrum for two different participants in the gait maturation study.

Now suppose instead that we have a realization of a time series and are missing one

or more of the covariate values. We can certainly estimate the log power spectra from

the individual time series realization, without using the proposed method, via standard

techniques such as periodogram smoothing (Shumway and Stoffer, 2017). Can we then use

the proposed method’s characterization of the relationship between the log power spectra

and covariates to then inversely estimate appropriate values for the unknown covariates? In

this way, we can use the proposed method for regression and classification, like SVM, but

with the added advantage of interpretability of the covariate effects offered by the proposed

method.

To demonstrate a possible framework for such an inverse regression using the proposed

method, we use the gait maturation study data to estimate the age of participants via leave-

one-out cross-validation (LOOCV). This involves fitting the proposed model using all but a

single participant, estimating the age for the single participant left out, and then repeating

this process for each of the participants. In this way, we can evaluate the methods ability

to serve as a classification/regression algorithm for estimating covariate values.
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4.1 Inverse Regression Procedure

Given an estimator of the covariate-dependent log power spectrum log f(ω, ν), from the

proposed model, and a new individual time series realization for which we wish to predict

the unknown age, the algorithm begins by first estimating the log power spectrum using

only the new time series realization. Many methods exist, but we use a modified Daniell

smooth of periodogram ordinates such that

f̃(νk) =
1

2m

[Iℓ(νk−m)

2
+ Iℓ(νk−m+1) + . . .+ Iℓ(νk) + . . .+ Iℓ(νk+m−1) +

Iℓ(νk+m)

2

]
(4.1)

where Iℓ(νk) are the periodogram ordinates for the new time series realization, N = ⌊T/2⌋−

1, νk = k/T for k = 1, . . . , N are the Fourier frequencies T = 256 is the length of time series.

We use a span of m = 10 to encourage smoothing, but this parameter can also be selected

via cross-validation from a reasonable set of choices.

Second, the age-dependent log power spectrum can be obtained by integrating out other

covariates in the model of the covariate-dependent log power spectrum obtained from the

RJMCMC draws from the proposed method to construct the partial dependence on age

log f(ωage, ν) = Eω−age [log f([ωage,ω−age], ν)] =

∫
log f([ωage,ω−age], ν)dP (ω−age) (4.2)

which gives an average value of the log power spectrum for a fixed age ωage and the other

covariates ω−age vary over their marginal distribution, dP (ω−age) (Breiman, 2001). This

can be approximated using the proposed method as

log f̂(ωage, ν) =
1

L

L∑
ℓ=1

log f̂([ωage,ω−age,ℓ], ν) (4.3)

where ω−age,ℓ are the covariates for the L time series used to train the model except for
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age and log f̂([ωage,ω−age,ℓ], ν) is the posterior mean estimator of the covariate-dependent

log power spectrum from the proposed method.

Third, we compute log f̂(ωage, ν) for a reasonable range of possible ages. In what follows,

we consider 20 evenly spaced values of ages between 3 and 14 years old, representing the

range of ages found in the gait maturation study data. Finally, we estimate the age by

finding the age that minimizes the sum of squared difference over frequencies between the

individually estimated log power spectrum for the new time series and the age-dependent

estimated log power spectra from the proposed method such that

ω̂age = argmin
ωage

1

N

N∑
k=1

[
log f̂(ωage, νk)− f̃(νk)

]2
. (4.4)

Figure 4.1 shows the comparison between the estimated age using LOOCV from the

proposed approach and the true age for each participant. The plot indicates generally good

estimation of age with a root mean squared error of 2.408 years, and we can conclude

that this is a viable approach for inverse regression using the proposed method to estimate

unknown covariate values.

This method can be generalized for estimation of the other covariates such as gait

speed and gender very well. If the unknown covariate of interest is categorical rather than

continuous, the above framework extends easily. The only modification is with respect

to the covariate values for which the estimated log power spectrum is computed. In this

case, we only consider covariate values observed in the training dataset as candidates for

estimation. The remaining components of the framework extend directly.
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Figure 4.1: Scatter plot of estimated age and the true age of 50 participants with LOOCV
algorithm. The red reference line shows the line y = x.
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Chapter 5: Covariate-dependent Multiple Nonstationary

Time Series

In Chapter 3, we introduce the methodology of the Bayesian sum of trees model for sta-

tionary time series data and provide the results of simulated data and the Gait maturation

study. In this chapter, we propose a Bayesian Voronoi tessellation framework for the analysis

of nonstationary time series data.

5.1 Voronoi Tessellation Modeling Structure

The Voronoi tessellation modeling framework is constructed by dividing the covariate space

into different disjoint regions. Compared with the tree-based model, Voronoi tessellation

can construct irregular shapes of the partition which is more flexible than the tree structure.

Figure 5.1 shows the comparison between the Voronoi tessellation and the tree structure.

Assuming the true partition is the Voronoi tessellation, it is efficient for the Voronoi tessel-

lation framework to fit the structure by calculating the distance between the observations

and the two centers and assigning the observations to the closest center. However, for the

tree-based model, we only can repeat the procedure many times around the diagonal line

to approximate the partition.

Consider modeling a collection of nonstationary time series Xℓt of length t = 1, . . . , T

and p-dimensional covariates ωℓ = {ω1ℓ, . . . , ωpℓ} for ℓ = 1, . . . , L independent subjects,

Voronoi tessellation structure is to construct a partition by dividing the time T and p-

dimensional covariates space into M disjoint regions V1, . . . , VM with M centers c1, . . . , cM .

Each region Vi consists of all the observed θℓ = (ωℓ, t) that are closest to center ci for ℓ ∈ Li
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where Li is the set of time series within Vi, such that

Ri = {θ ∈ D : ||θ − ci|| < ||θ − cj || i ̸= j} (5.1)

where ||θ|| =
∑p+1

i=1 w2
i θ

2
i , w = {wt, w1, . . . , wp} is a normalized weighting vector such that∑p+1

k=1wk = 1, and D = Rp × T where Rp is the p-dimensional real-valued space and

T = {1, 2, . . . , T} is the finite set of time index points.

(a) Voronoi tessellation partition (b) Tree partition

Figure 5.1: Comparison of Voronoi tessellation structure and tree-based model

For the priors of the Voronoi tessellation structure, we follow Payne et al. (2020) and

assume that the possible location of the centers are selected from the observed data θ. The

prior can be expressed as

p(c,M,w) = p(c|M)p(M)p(ω) (5.2)
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where

p(M) = DU(M |1, . . . ,Mmax) (5.3)

p(c|M) = DU
(
c|1, . . . ,

(
n

M

))
(5.4)

p(w) = Di(w|1, . . . , 1) (5.5)

that DU(x|1, . . . , n) is the discrete uniform on 1, . . . , n and Mmax is the maximum possible

number of centers which is a fixed value. Di(w|1, . . . , 1) is a Dirichlet prior for vector w.

5.2 Local Power Spectrum Estimation

Consider we have M centers, the local periodogram for the ℓth time series of ith cell is

Iiℓ(ν) =
1

Tiℓ

∣∣∣ ∑
t∈Ψiℓ

xℓt exp(−2πiνt)
∣∣∣2 (5.6)

Ψiℓ = {t ∈ T : ||θℓ − ci|| < ||θℓ − cj || ∀ i ̸= j} where θℓ = (wℓ, t). Note that the cardinality

of the set |Φiℓ| = Tiℓ. Assuming Tiℓ is sufficiently large, the Whittle likelihood is then can

be derived as

L(I1, . . . , IL|f1, . . . , fM ) ≈

M∏
i=1

L∏
ℓ=1

(2π)−
niℓ
2

niℓ∏
k=1

exp
{
− δΦiℓ

[log fi(νiℓk) + Ii,ℓ(νiℓk)/fi(νiℓk)]
}

(5.7)

where niℓ = ⌊Tiℓ/2⌋−1 is the number of Fourier frequencies for the ℓth time series in the ith

cell, δΦiℓ
is the indicator function that δΦiℓ

= 1 if Φiℓ ̸= ∅ and 0 otherwise. Similar with the

analysis of covariate-dependent stationary time series data, the local log power spectrum

within ith cell log fi(ν) are modeled using a Bayesian penalized linear spline model (Rosen
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et al., 2012)

log fi(ν) ≈ αi +
S∑

s=1

β(i)
s cos(2πsν), (5.8)

where the functions cos(2πsν) are the Demmler–Reinsch basis functions. Also, following

the previous stationary time series analysis, Gaussian priors are assumed such that αi ∼

N(0, σ2
α) where σ2

α is a constant value, and β(i) = (β
(i)
1 , . . . , β

(i)
S )′ ∼ N(0, τ2i DS), where

DS = diag({
√
2πs}−2). τ2i is a smoothing parameter that controls the roughness of the log

spectrum. The scaling for the smoothing parameter, {
√
2πs}−2, provides regularization of

the integrated squared first derivative of the log power spectrum (Li and Krafty, 2019). A

half-t prior is placed on τi (Gelman, 2006) which is the same as specified in Chapter 3. A

two-step MCMC sampling scheme for αi, β
(i), and τi is presented as

1. Let Zi be a niℓ × S matrix of basis functions for ℓth time series of ith center such

that {Zi}ks = cos(2πsνk). Given the value of τ2i and the realization of local log

periodogram Iiℓ(ν). The posterior of αi and β(i) is,

p(αi,β
(i)|τ2i , logIi,Zi) ∝ exp

{
−

L∑
ℓ=1

niℓ∑
k=1

[αi + z′ikβ
(i) + exp

(
log Iiℓ(νiℓk)

− αi − z′ikβ
(i)
)
]− α2

i

2σ2
a

− 1

2τ2i
β(i)′D−1

B β(i)
}
.

(5.9)

2. For the posterior of τ2i , we assume a latent variable ai for the ith center which has

the following prior distribution with τ2i

(τ2i |ai) ∼ IG
(ντ
2
,
ντ
ai

)
, ai ∼ IG

(1
2
,
1

A2
τ

)
, (5.10)
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then the full conditional posterior distributions are

(ai|τ2i ) ∼ IG
(ντ + 1

2
,
ντ
τ2i

+
1

A2
τ

)
, (5.11)

and

(τ2i |ai,β(i)) ∼ IG
(ντ + S + 1

2
,
β(i)′β(i)

2
+

ντ
ai

)
. (5.12)

The MCMC algorithm draws ai first and then updates τ2i .

5.3 Sampling Scheme

To sample Voronoi tessellation structure, reversible-jump MCMC is developed to jointly

propose and evaluate new draws of 1) the number of centers M ; 2) the collection of centers

c; 3) the vector of weights w; and 4) the parameters for Bayesian penalized linear spline

model.

The proposed modification takes the form of one of four possible steps: BIRTH, DEATH,

MOVE, and CHANGE, with an equal probability of 0.25 for each step. The BIRTH move

grows a new center that is randomly selected from the rest of the observations except the

current centers, the DEATH move deletes one of the current center randomly, the MOVE

step changes the location of one of the current centers, and the CHANGE move updates one

of the vector weights w. New model parameters for the proposed modification are drawn,

and the proposed modification is then accepted or rejected using a Metropolis–Hastings (M-

H) step. By using this reversible-jump MCMC sampler, we average the posterior probability

over post burn-in draws to obtain the final estimator. Technical details for the sampling

scheme are available in Appendix C.
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5.4 Simulation Results

We consider the following time-varying abrupt-slowly simulation setting representing abrupt

and smoothly varying dynamics in order to demonstrate the performance of the Bayesian

Voronoi tessellation model.

Let ω = [ω1, ω2]
′ where ω1ℓ = ℓ/L for ℓ = 1, . . . , L, ω2ℓ = ℓ/(L/2) for ℓ = 1, . . . , L/2, and

ω2ℓ = (ℓ−L/2)/(L/2) for ℓ = (L/2+ 1), . . . , L. An AR(1) process for the ℓth time series is

specified as xℓt = ϕℓxℓt−1 + ϵℓt, ϵℓt ∼ N(0, 1) where

ϕ(U) =



ϕℓ = −0.3 + (t/T ) ∗ 0.6, if ω1ℓ ≤ 0.5 and ω2ℓ ≤ 0.5

ϕℓ = 0.3− (t/T ) ∗ 0.6, if ω1ℓ ≤ 0.5 and ω2ℓ > 0.5

ϕℓ = 0.7− (t/T ) ∗ 1.4, if ω1ℓ > 0.5 and ω2ℓ ≤ 0.5

ϕℓ = −0.7 + (t/T ) ∗ 1.4, if ω1ℓ > 0.5 and ω2ℓ > 0.5

(5.13)

for t = 1, . . . , T , such that the simulated data changes abruptly on four different covariate

regions and smoothly on time space within each region. Figure 5.2 shows the estimated

power spectrum (the first row) and the true power spectrum (the second row) for L = 20,

T = 1000 time series data. We start the Voronoi tessellation with M = 80, and set

Mmax = 200. The MCMC procedure is run for a total of 10,000 iterations with the first

5,000 discarded as burn-in. In order to assess convergence, trace plots for summary measures

are available in Figure 5.3. We can observe that the MCMC procedure converged after 5,000

iterations. To confirm the performance of the model, Table 5.1 presents the MSE over 20

replicates for various time length T for L = 20. The accuracy of the proposed model

performs increases when we increase the length of the time series.
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Figure 5.2: Estimated and true covariate-dependent conditional log power spectrum for
one run of the time-varying sbrupt-slowly simulation setting conditional on four different
covariate spaces respectively.The 1st, 6th, 11th, and 16th observations are selected from
each region separately.
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(a) (b)

(c) (d)

Figure 5.3: Convergence diagnostic plots for the time-varying abrupt-slowly simulation for
one replication: (a) average β across time length T and all time series L; (b) average τ2

across time length T and all time series L; (c) number of centers; (d) weights w for time
and two covariates ω1 and ω2.

60



Table 5.1: Mean and standard deviation of MSE for time-varying abrupt-slowly simulation
setting with L = 20 time series with different length T . Results are presented for the
proposed Voronoi tessellation model starting with M = 5 centers.

L=20 Time-varying Abrupt-slowly

250 0.2039(0.0173)

500 0.1651(0.0244)

1000 0.1251(0.0233)
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Chapter 6: Conclusion and Future Work

This paper describes two novel adaptive Bayesian covariate-dependent models for the power

spectrum estimation of multiple stationary time series and nonstationary time series data.

For multiple stationary time series data, we use a Bayesian sum of trees model to char-

acterize covariate effects. This model is flexible and can automatically recover complex

nonlinear associations and interactions as well as provide efficient variable selection. For

multiple nonstationary time series data, we use the Voronoi tessellation structure instead to

create the partition for both time and covariates, which is more flexible than the Bayesian

sum of trees model and can recover the time and covariates effects very well.

This work is one of the first approaches to analyzing the power spectrum of multiple

time series with multiple covariates in a completely nonparametric manner, but it is not

without limitations. For the Bayesian sum of trees model, soft-decision trees (Linero and

Yang, 2018b) that better adapt to smooth effects may also be considered for capturing

covariate effects in an even more flexible and parsimonious manner. The current method

can be extended to conduct the extra spectral variability due to clustering effects (Krafty,

2016) and missingness in time series data. For the Voronoi tessellation modeling framework,

we may have the multiple modes problem since the diagnostic plots can stick to a certain

value after burn-in iterations, and the performance of the model varies according to different

start numbers of centers. Due to the multiple modes, the current collection of moves can’t

effectively reach and explore these modes due to getting stuck in local modes. To solve

the problem, we can develop some new moves that can dramatically change the partition

structure and allow for getting to other modes without having to traverse the area of low

posterior probability separating the modes.
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Appendix A: Proof of the Smoothing Parameter τ 2

The calculation of
∫ 1

2

− 1
2

(log′ f(ν))2dν is presented as below. Since

log f(ν) = α+
B∑
b=1

βb cos(2πbν), (A.1)

we have

log′ f(ν) = 0 +
B∑
b=1

[βb(− sin(2πbν))2πb], (A.2)

and

[log′ f(ν)]2 =
B∑
b=1

[4π2b2β2
b sin

2(2πbν)] + 2
∑
i ̸=j

[4π2ijβiβj sin(2πjν) sin(2πjν)]. (A.3)

So,

∫ 1
2

− 1
2

(log′ f(ν))2dν =

∫ 1
2

− 1
2

B∑
b=1

[4π2b2β2
b sin

2(2πbν)]dν

+ 2

∫ 1
2

− 1
2

∑
i ̸=j

[4π2ijβiβj sin(2πiν) sin(2πjν)]dν.

(A.4)

Now we first deal with the second term of the integration

Since sin(x) sin(y) = 1
2 [cos(x−y)+cos(x+y)], we have sin(2πiν) sin(2πjν) = 1

2 [cos(2πν(i−
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j)) + cos(2πν(i+ j))]. The integration of the second term can be rewritten as

2

∫ 1
2

− 1
2

∑
i ̸=j

[4π2ijβiβj sin(2πjν) sin(2πjν)]dν = 4π2ijβiβj

∫ 1
2

− 1
2

cos(2πν(i− j))

− cos(2πν(i+ j))dν

= 2π2ijβiβj

[
sin[2π(i− j)ν]× 1

2π(i− j)

∣∣∣∣ 12
− 1

2

− sin[2π(i+ j)ν]× 1

2π(i+ j)

] ∣∣∣∣ 12
− 1

2

= 0.

(A.5)

Because i− j and i+ j are integers and sin(cπ) = 0 if c is a integer.

So

∫ 1
2

− 1
2

(log′ f(ν))2dν =

∫ 1
2

− 1
2

B∑
b=1

[4π2b2β2
b sin

2(2πbν)]dν

=
B∑
b=1

4π2b2β2
b

∫ 1
2

− 1
2

sin2(2πbν)dν.

(A.6)
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Since sin2(x) = 1
2 [1− cos(2x)]

∫ 1
2

− 1
2

sin2(2πbν)dν =

∫ 1
2

− 1
2

1

2
− 1

2
cos(4πbν)dν

=
1

2
ν

∣∣∣∣ 12
1
2

−1

2

∫ 1
2

− 1
2

cos(4πbν)dν

=
1

2
ν

∣∣∣∣ 12
1
2

−1

2
sin(4πbν)

1

4πb

∣∣∣∣ 12
1
2

=
1

2
(
1

2
− (−1

2
))− 0

=
1

2
,

(A.7)

1
2 sin(4πbν)

1
4πb

∣∣∣∣ 12
1
2

= 0 because sin(2πb) = 0 for b = 0,±1,±2... So

∫ 1
2

− 1
2

(log′ f(ν))2dν =
B∑
b=1

4π2b2β2
b ×

1

2
. (A.8)

Let Z1, .., Zb ∼ N(0, 1),where b = 1, ..., B. So βb =
τ√
2πb

Zb

∫ 1
2

− 1
2

(log′ f(ν))2dν =
B∑
b=1

2π2b2
τ2

(
√
2πb)2

Z2
b ∼ τ2χ2

B. (A.9)

Hence, it can be concluded that the distribution of
∫ 1

2

− 1
2

(log′ f(ν))2dν is controlled by the

smoothing parameter τ2.
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Appendix B: Sampling Scheme Details for Bayesian Sum of

Trees Model

The sampling scheme for the proposed Bayesian sum of trees model for the covariate-

dependent power spectrum is presented in this section. Suppose we have M trees for the

sum of trees model. Let (Uj ,Φj) and (U∗
j ,Φ

∗
j ) be the current and proposed tree structure

and terminal node parameter estimates respectively for the jth tree, and let Rj denote

the residuals of the log periodogram ordinates from the fit corresponding to the sum of

all trees except the jth tree for all time series. More details about the types of proposals

developed in this work are provided herein. For ease of exposition, the subscript j is dropped

in what follows. We implement the reversible jump Markov chain Monte Carlo (MCMC)

sampling scheme by using a Metropolis-Hastings algorithm in which the acceptance ratio α

is formulated as

α = min
{
1, A

}
,

where

A =
p(U∗,Φ∗|R)× q(U,Φ|U∗,Φ∗)

p(U,Φ|R)× q(U∗,Φ∗|U,Φ)
.

More details on the individual components of the acceptance ratio introduced above are

provided below.
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i. Distribution of p(U,Φ|R) and p(U∗,Φ∗|R)

The joint posterior distribution p(U,Φ|R) can be expressed as a product of the following

terms

p(U,Φ|R) = p(R|U,Φ)× p(Φ|U)× p(U)

= p(R|U,Φ)× p(β, τ2|U)× p(U)

= p(R|U,Φ)︸ ︷︷ ︸
likelihood

× p(β|U, τ2)× p(τ2|U)× p(U)︸ ︷︷ ︸
prior

,

where the prior of Φ is determined by the joint prior of (β, τ2). Here, β represents the

intercept and basis coefficients in Equation (1) of the manuscript. Suppose there are nb

observations in the bth terminal node of jth tree for b = 1, . . . , B, the likelihood can be

expressed as the product of individual Whittle likelihoods

p(R|U,Φ) =
B∏
b=1

p(Rb1, . . . ,Rbnb
|fjb) ≈

B∏
b=1

nb∏
i=1

(2π)−n/2
n∏

k=1

exp{log fjb(νk) + exp
(
Rbi(νk)

)
/fjb(νk)}, (B.1)

where n = ⌊T/2⌋− 1, νk = k/T for k = 1, . . . , n are the Fourier frequencies, T is the length

of time series, and Rbi is the residual of the log periodogram ordinates for the ith time

series belonging to the bth terminal node.

The prior for β is a normal distribution such that p(β|U, τ2) ∼ N(0, (σ2
α, τ

2DS)) as

described in Section 3.2 of the manuscript. The prior distribution for τ2, p(τ2|U), is a

half-t distribution. We follow Wand et al. (2011) and express the half-t distribution as a
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scale mixture of inverse gamma distributions with latent variable a such that

p(τ2|a) ∼ IG

(
ξτ
2
,
ξτ
a

)
, p(a) ∼ IG

(
1

2
,
1

A2
τ

)
.

The prior for the tree structure p(U) is

p(U) =
∏

η∈terminals

[1− psplit(η)]
∏

η∈internals
psplit(η)

∏
η∈internals

prule(η),

where η is the node of the current tree. The psplit(η) = γ(1 + d)−θ is the probability of

node η to be split into two child nodes with γ ∈ (0, 1), θ ∈ [0,∞) and d = 0, 1, . . . which

is the depth of the given node η. The prule(η) = 1
nadj(η)

× 1
ncutpoint(η)

is the probability of

the available variables and the cutpoints to be chosen for node η, where nadj(η) denotes

the number of predictors available for the node and ncutpoint(η) is the number of available

cutpoints for the selected variable. The posterior distribution p(U∗,Φ∗|R) is similar with

p(U,Φ|R) by plugging in U∗ and Φ∗ instead.

ii. Distribution of q(U∗,Φ∗|U,Φ) and q(U,Φ|U∗,Φ∗)

The proposed density q(U∗,Φ∗|U,Φ)) is defined as

q(U∗,Φ∗|U,Φ) = q(Φ∗|U∗, U,Φ)× q(U∗|U,Φ)

= q(β∗, τ2∗|U∗, U,Φ)× q(U∗|U)

= q(τ2∗|U∗, U,Φ)× q(β∗|τ2∗, U∗, U,Φ)× q(U∗|U),
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and similarly, the density q(U,Φ|U∗,Φ∗) is

q(U,Φ|U∗,Φ∗) = q(Φ|U∗,Φ∗, U)× q(U |U∗,Φ∗)

= q(β, τ2|U∗,Φ∗, U)× q(U |U∗)

= q(τ2|U∗,Φ∗, U)× q(β|τ2, U∗,Φ∗, U)× q(U |U∗).

From part i and part ii, A can be written as

p(R|U∗,Φ∗)

p(R|U,Φ)︸ ︷︷ ︸
likelihood ratio

× p(β∗|U∗, τ2∗)p(τ2∗|U∗)

p(β|U, τ2)p(τ2|U)︸ ︷︷ ︸
prior ratio

× p(U∗)

p(U)︸ ︷︷ ︸
tree structure

ratio

× q(β, τ2|U∗,Φ∗, U)

q(β∗, τ2∗|U,Φ, U∗)︸ ︷︷ ︸
proposed probability

ratio

× q(U |U∗)

q(U∗|U)︸ ︷︷ ︸
transition ratio

.

(B.2)

Proposed modifications to the tree structures can take the form of one of three possible

moves: BIRTH, DEATH and CHANGE. The BIRTH move grows the tree by splitting a

terminal node into two child nodes, the DEATH move prunes the tree by dropping two

terminal child nodes belonging to the same internal node, and the CHANGE move modifies

the variable and cut point associated with an internal node with two terminal child nodes.

Noticing that the prior ratio is the same for all BIRTH, DEATH, and CHANGE moves, the

other ratios will be described individually for each of the three types of moves.

B.1 BIRTH

For the BIRTH move, the bth terminal node of the jth tree is selected to be split into two

new child nodes. The proposed tree differs from the original tree only through the change

from this terminal node to new child nodes. Therefore, the likelihood ratio becomes

p(R|U∗,Φ∗)

p(R|U,Φ)
=

p(Rbl1, . . . ,Rblnl
|fjbl)p(Rbr1, . . . ,Rbrnr |fjbr)

p(Rb1, . . . ,Rbnb
|fjb)

,
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where bl denotes left child node, br is for the right child node, nl is the number of series

corresponding to the proposed left child node, nr is the number of series corresponding to

the proposed right child node, Rbli are residuals of the log periodogram ordinates for the

ith series corresponding to the proposed left child node, and Rbri defined similarly for the

proposed right child node. The likelihood within the terminal node is as shown in Equation

(B.1). The tree structure ratio is expressed as

p(U∗)

p(U)
=

(1− psplit(bl))(1− psplit(br))psplit(b)prule(b)

1− psplit(b)
.

For the transition probability q(U |U∗) and q(U∗|U), they can be expressed as

q(U∗|U) = p(GROW)× p(selecting the bth terminal node to grow from)

× p(selecting the qth predictor to split on)

× p(selecting the wth value to split on)

= p(GROW)
1

B

1

nadj(b)
× 1

ncutpoint(b)
,

and

q(U |U∗) = p(PRUNE)× p(selecting node η to prune from)

= p(PRUNE)
1

ninternal∗
,

where p(GROW) = 0.25 and p(PRUNE) = 0.25 are the probability of BIRTH and DEATH

move to be selected, and ninternal∗ is the total number of internal nodes that has two terminal

child nodes. Thus, we can derive the transition ratio to be

q(U |U∗)

p(U∗|U)
=

p(PRUNE)Bnadj(b)ncutpoint(b)

q(GROW)ninternal∗
.
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Then, we follow Rosen et al. (2012) to draw the proposed terminal parameters β∗, τ2∗

and latent variable a∗. For τ2(a), let τ2b (ab) denote the current τ2(a) for the bth terminal

node and a uniform distribution is used to generate new parameters τ2∗bl (a
∗
bl
) and τ2∗br (a

∗
br
)

for the left and right child. Specifically,

τ2∗bl = τ2b × uτ
1− uτ

, τ2∗br = τ2b × 1− uτ
uτ

a∗bl = ab ×
ua

1− ua
, a∗br = ab ×

1− ua
ua

where uτ , ua ∼ U [0, 1]. For β, an approximated normal distribution is proposed to generate

the new parameters β∗
bl
and β∗

br . Specifically, (β
∗
b∗ |τ2∗b∗ , U∗, U,Φ) ∼ N(βmax

b ,Σmax
b ), where

βmax
b = argmaxβ∗

b∗
p(β∗

b∗ |Rb, τ
2∗
b∗ , U

∗), (B.3)

and

Σmax
b =

{
−(∂2 log p(β∗

b∗ |Rb, τ
2∗
b∗ , U

∗))/(∂β∗
b∗∂β

∗′
b∗)|β∗

b∗=βmax
b∗

}−1

, (B.4)

where p(β∗
b∗ |Rb, τ

2∗
b∗ , U

∗) is presented in Section 3.2, and b∗ represents the left or right child

of node b. We then have the proposed probability ratio

q(β, τ2|U∗,Φ∗, U)

q(β∗, τ2∗|U,Φ, U∗)
=

q(β|τ2, U∗,Φ∗, U)q(τ2|U∗,Φ∗, U)q(a|U∗,Φ∗, U)

q(β∗|τ2∗|U,Φ, U∗)q(τ2∗|U∗,Φ∗, U)q(a∗|U∗,Φ∗, U)

=
q(βb)

q(β∗
bl
)q(β∗

br)p(u)
×

∣∣∣∣ ∂(τ2∗bl , τ2∗br )∂(τ2b , uτ )

∣∣∣∣ × ∣∣∣∣ ∂(a∗bl , a∗br)∂(ab, ua)

∣∣∣∣,

where p(uτ ), p(ua) = 1, q(βb), q(β∗
bl
) and q(β∗

br) are the densities of the approximately

normal distribution N(βmax
b ,Σmax

b ) with the corresponding current and proposed τ2 values.
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The Jacobian of τ2 and a are

∣∣∣∣ ∂(τ2∗bl , τ2∗br )∂(τ2b , uτ )

∣∣∣∣= 2τ2b
uτ (1− uτ )

,

∣∣∣∣ ∂(a∗bl , a∗br)∂(ab, ua)

∣∣∣∣= 2ab
ua(1− ua)

.

B.2 DEATH

The DEATH move is the inverse of the BIRTH move. Suppose b is the selected internal to

be pruned by deleting the two child nodes bl and br, the likelihood ratio for the proposed

tree and the current tree is hence expressed as

p(R|U∗,Φ∗)

p(R|U,Φ)
=

p(Rb1, . . . ,Rbnb
)|fjb

p(Rbl,1, . . . ,Rbl,nl |fjbl)p(Rbr,1, . . . ,Rbr,nr |fjbr)
,

which is the change from the two child nodes to the internal b node. The ratio of tree

structure is presented as

p(U∗)

p(U)
=

1− psplit(b)

(1− psplit(bl))(1− psplit(br))psplit(b)prule(b)
,

and the ratio of transition

p(U |U∗)

p(U∗|U)
=

q(GROW)ninternal∗

q(PRUNE)(B − 1)nadj(b)ncutpoint(b)
,

where B− 1 is the number of terminal nodes for the proposed prune tree. For the proposed

probability ratio, we draw terminal node parameters τ2∗b and a∗b by taking the inverse of the

corresponding BIRTH move

τ2∗b =
√
τ2blτ

2
br
, a∗b =

√
ablabr .
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The vector β∗
b is drawn from the approximately normal distribution N(βmax

b ,Σmax
b ) given

the proposed τ2∗ value. Hence, the proposed probability ratio is

q(β, τ2|U∗,Φ∗, U)

q(β∗, τ2∗|U,Φ, U∗)
=

q(βbl
)q(βbr)p(u)

q(β∗
b)

×
∣∣∣∣ ∂(τ2∗b , uτ )

∂(τ2bl , τ
2
br
)

∣∣∣∣ × ∣∣∣∣ ∂(a∗b , ua)

∂(abl , abr)

∣∣∣∣,

where the Jacobian of τ2 and a are

∣∣∣∣ ∂(τ2∗b , uτ )

∂(τ2bl , τ
2
br
)

∣∣∣∣= uτ (1− uτ )

2τ2∗b
= 2(τbl + τbr)

2,

∣∣∣∣ ∂(a∗b , ua)

∂(abl , abr)

∣∣∣∣= ua(1− ua)

2a∗b
= 2(

√
abl +

√
abr)

2.

B.3 CHANGE

A CHANGE move is to change two terminal nodes to a pair of new child nodes by changing

the split rule of their parent node. The observations within each terminal node of the

proposed tree can be different from the current tree. Thus, the likelihood ratio is

p(R|U∗,Φ∗)

p(R|U,Φ)
=

p(Rl,1, . . . ,Rl,nl∗ |fjbl∗ )p(Rr,1, . . . ,Rr,nr∗ |fjbr∗ )
p(Rl,1, . . . ,Rl,nl |fjbl)p(Rr,1, . . . ,Rr,nr |fjbr)

,

where nl∗ and nr∗ are the number of observations in the new left and the new right child

nodes. The tree structure ratio for the CHANGE move is

p(U∗)

p(U)
=

(1− psplit(bl∗))(1− psplit(br∗))psplit(b
∗)prule(b

∗)

(1− psplit(bl))(1− psplit(br))psplit(b)prule(b)
,

since the depth of the children nodes does not change, the split probability for each node

stays the same. The only change is the number of the available cutpoints of the new variable,
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which can be different from the current variable. Therefore, the tree structure ratio is

p(U∗)

p(U)
=

ncutpoint(b)

ncutpoint(b∗)
,

where ncutpoint(b
∗) is the number of available cutpoints for the proposed variable. The

transition probability from current tree to the proposed tree is

p(U∗|U) = p(CHANGE)× p(selecting node b to change)

× p(selecting the new predictor to split on)

× p(selecting the new cutpoint to split on).

The calculation of the p(U |U∗) is similar with p(U∗|U) except that the number of available

cutpoints can be different. So the transition ratio is

p(U |U∗)

p(U∗|U)
=

ncutpoint(b
∗)

ncutpoint(b)
.

From the results above, the transition ratio and the tree structure ratio are cancelled in the

representation of Equation (C.1). So the acceptance ratio for the CHANGE step is only

related to the likelihood, prior probability and the proposed probability of terminal node

parameters. Two-step Gibbs sampling is used to draw new terminal node parameters. The

β∗
b∗ is drawn from the normal approximation N(βmax

b ,Σmax
b ) given the current τ2b∗ , and ab∗

and τ2b∗ are draw from their full conditional distributions. The MCMC algorithm draws ab∗

first and then updates τ2b∗ .
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Appendix C: Sampling Scheme Details for Voronoi

Tessellation

The sampling scheme for the proposed Bayesian modeling with Voronoi tessellation struc-

ture for the covariate-dependent nonstationary time series analysis is presented in this

section. Suppose we have M centers for the Voronoi tessellation structure. Let Φ = {β, τ2}

be the collection of all the parameters for the Bayesian spline model. Here, β represents the

intercept and basis coefficients in Equation 5.8 of the manuscript. Let U = {M, c,w} be

the collection of parameters for Voronoi tessellation. We define that (U,Φ) and ((U∗,Φ∗))

are the current and proposed Voronoi tessellation structure and parameter estimates re-

spectively, and log I denotes the log periodogram ordinates for all time series. More de-

tails about the types of proposals developed in this work are provided herein. We imple-

ment the reversible jump Markov chain Monte Carlo (MCMC) sampling scheme by using a

Metropolis-Hastings algorithm in which the acceptance ratio α is formulated as

α = min
{
1, A

}
,

where

A =
p(U∗,Φ∗| log I)× q(U,Φ|U∗,Φ∗)

p(U,Φ| log I)× q(U∗,Φ∗|U,Φ)
.

More details on the individual components of the acceptance ratio introduced above are

provided below.
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i. Distribution of p(U,Φ| log I) and p(U∗,Φ∗| log I)

The joint posterior distribution p(U,Φ| log I) can be expressed as a product of the following

terms

p(U,Φ| log I) = p(log I|U,Φ)× p(Φ|U)× p(U)

= p(log I|U,Φ)× p(β, τ2|U)× p(U)

= p(log I|U,Φ)︸ ︷︷ ︸
likelihood

× p(β|U, τ2)× p(τ2|U)× p(U)︸ ︷︷ ︸
prior

,

where the prior of Φ is determined by the joint prior of (β, τ2). The likelihood can be

expressed as the product of individual Whittle likelihoods is shown in Equation 5.7.

The prior for the Voronoi tessellation p(U) is

p(U) = p(c|M)p(M)p(ω)

The prior of the p(c|M), p(M), and the p(ω) are the same as described in Section 5.1. The

distribution of p(U∗,Φ∗| log I) is the same as p(U,Φ| log I).

ii. Distribution of q(U∗,Φ∗|U,Φ) and q(U,Φ|U∗,Φ∗)

The proposed density q(U∗,Φ∗|U,Φ)) is defined as

q(U∗,Φ∗|U,Φ) = q(Φ∗|U∗, U,Φ)× q(U∗|U,Φ)

= q(β∗, τ2∗|U∗, U,Φ)× q(U∗|U)

= q(τ2∗|U∗, U,Φ)× q(β∗|τ2∗, U∗, U,Φ)× q(U∗|U),
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and similarly, the density q(U,Φ|U∗,Φ∗) is

q(U,Φ|U∗,Φ∗) = q(Φ|U∗,Φ∗, U)× q(U |U∗,Φ∗)

= q(β, τ2|U∗,Φ∗, U)× q(U |U∗)

= q(τ2|U∗,Φ∗, U)× q(β|τ2, U∗,Φ∗, U)× q(U |U∗).

From part i and part ii, A can be written as

p(log I|U∗,Φ∗)

p(log I|U,Φ)︸ ︷︷ ︸
likelihood ratio

× p(β∗|U∗, τ2∗)p(τ2∗|U∗)

p(β|U, τ2)p(τ2|U)︸ ︷︷ ︸
prior ratio

× p(U∗)

p(U)︸ ︷︷ ︸
tessellation
prior ratio

× q(β, τ2|U∗,Φ∗, U)

q(β∗, τ2∗|U,Φ, U∗)︸ ︷︷ ︸
proposed probability

ratio

× q(U |U∗)

q(U∗|U)︸ ︷︷ ︸
transition ratio

.

(C.1)

The likelihood ratio is expressed as

p(log I|U∗,Φ∗)

p(log I|U,Φ)
=

L(I1, . . . , IL|f1, . . . , fM∗)

L(I1, . . . , IL|f1, . . . , fM )
(C.2)

The calculation of prior ratio follows that the prior for β is a normal distribution such

that p(β|U, τ2) ∼ N(0, (σ2
α, τ

2DS)) as described in Section 2.1.1 of the manuscript. The

prior distribution for τ2, p(τ2|U), is a half-t distribution. We follow Wand et al. (2011) and

express the half-t distribution as a scale mixture of inverse gamma distributions with latent

variable a such that

p(τ2|a) ∼ IG

(
ξτ
2
,
ξτ
a

)
, p(a) ∼ IG

(
1

2
,
1

A2
τ

)
.
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The Voronoi tessellation structure ratio is

p(U∗)

p(U)
=

p(c∗|M∗)

p(c|M)
(C.3)

since the prior probability of p(M) and p(w) are 1 as described in Section 5.1.

The proposed probability ratio q(β,τ2|U∗,Φ∗,U)
q(β∗,τ2∗|U,Φ,U∗) and the transition ratio q(U |U∗)

q(U∗|U) are dif-

ferent for the four proposed BIRTH, DEATH, MOVE, and CHANGE steps which will be

described individually in the following sections.

C.1 BIRTH

For the BIRTH step, we randomly select one of the rest of observations as a new center

cnew. For drawing of τ2new(anew) for the new center, we select the most closest center

cc to the new center cnew with the τ2(a) denoted as τ2c(ac). We assume τ2new(anew) =

τ2c(ac), and the proposed τ2 is a combination of current and new τ2 such that τ2∗(a∗) =

{τ2(a), τ2new(anew)}. Then, an approximated normal distribution is proposed to generate

the new parameters β∗ (Rosen et al., 2012). Specifically, (β∗|τ2∗, U∗, U,Φ) ∼ N(βmax,Σmax),

where

βmax = argmaxβ∗ p(β∗| log I, τ2∗, U∗), (C.4)

and

Σmax =

{
−(∂2 log p(β∗| log I, τ2∗, U∗))/(∂β∗∂β∗′)|β∗=βmax

}−1

, (C.5)

where p(β∗| log I, τ2∗, U∗) is presented in Section 2.1.1.
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We then have the proposed probability ratio

q(β, τ2|U∗,Φ∗, U)

q(β∗, τ2∗|U,Φ, U∗)
=

q(β|τ2, U∗,Φ∗, U)

q(β∗|τ2∗, U,Φ, U∗)

=
q(β)

q(β∗)
,

where q(β∗) are the densities of the approximately normal distribution N(βmax,Σmax) with

the corresponding current and proposed τ2 values.

For the transition ratio q(U |U∗)
q(U∗|U) , for most non-boundary cases, q(U |U∗) and q(U∗|U) can

be cancelled. When M = 1 and we propose a birth, the ratio is 3
4 , and when M = Mmax−1,

the ratio is 4
3 .

C.2 DEATH

For the DEATH step, we randomly delete one of the current centers which is denoted as

cdelete. We correspondingly remove the τ2delete(adelete) from the current τ2(a) as the proposed

τ2∗a∗. An approximated normal distribution is proposed to generate the new parameters

β∗ (Rosen et al., 2012) which is exactly the same as in the BIRTH step.

For the transition ratio q(U |U∗)
q(U∗|U) , for most non-boundary cases, q(U |U∗) and q(U∗|U)

can be cancelled. When M = 2 and we propose a death step, the ratio is 4
3 , and when

M = Mmax. the ratio is 3
4 .

C.3 MOVE

For the MOVE step, we randomly delete one of the current centers and remove the cor-

responding τ(a). Then we select a new center from the rest of observations denoted as

cnew. For drawing of τ2new(anew) for the new center, the same as BIRTH step, we select the

most closest center cc to the new center cnew with the τ2(a) denoted as τ2c(ac). We assume
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τ2new(anew) = τ2c(ac). An approximated normal distribution is proposed to generate the

new parameters β∗ (Rosen et al., 2012) which is exactly the same as in the BIRTH step.

The transition ratio q(U |U∗)
q(U∗|U) is 1 in this situation.

C.4 CHANGE

For the CHANGE step, we randomly select one of the weights denoted as wselect and update

the proposed value by w∗
select = wselect + u where u ∼ N(0, σ), and σ is a predefined fixed

value. By default, we assume σ = 0.1. Then, we normalized all the weights to guarantee∑p+1
i=1 w∗ = 1. For the proposed τ∗(a∗), let τ∗(a∗) = τ(a). Then, we update the parameters

β∗ from the approximated normal distribution (Rosen et al., 2012).

Since the Voronoi tessellation structure does not changed in this step, the transition

ratio q(U |U∗)
q(U∗|U) only depends on q(w|w∗)

q(w∗|w) , where

q(w∗|w) = q(u) (C.6)

and

q(w|w∗) = q(v) (C.7)

that v =
(
(wselect + u)/(1 + u)− wselect

)
/(wselect − 1).
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Appendix D: Additional Simulation and Application Results

for Bayesian Sum of Trees Model

Additional results for the simulations and gait maturation analysis along with convergence

diagnostics are shown in the following section. The ordering of the sections follows that of

the manuscript in Sections 4 and 5.

D.1 Additional Results: Estimation Accuracy

In this section, set M = 5, L = 100, and T = 250 and use 10,000 total iterations with the

first 5,000 discarded as burn-in. For the AR-Friedman simulation setting, where covariates

influence the power spectrum in more complicated ways, we randomly selected eight ob-

servations for illustration, and Figure D.1 shows the true and estimated log power spectra

for selected observations. For the Adjusted-AdaptSPEC-X simulation, two observations are

randomly selected within each of the four regions shown in Figure D.2. The corresponding

estimation results for the eight observations are shown in Figure D.3. We observe that the

proposed model performs very well in capturing the true behavior of the power spectrum

in both simulation settings.

D.2 Additional Results: Sparse Covariate Effects

To visualize the effect on variable selection of the sparsity-inducing Dirichlet hyperprior

on the splitting proportions of the regression tree prior, effects on high-dimensional data

as described in Section 3.2.5, posterior probabilities of model inclusion under the uniform

and Dirichlet priors for important variables and noise variables from a single run of the

AR-Friedman setting with L = 500, T = 250, and M = 50 is presented in Figure D.4.
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Figure D.1: The estimated (blue line) and the true (red line) log power spectrum of the
eight randomly selected time series for the AR-Friedman simulation. The corresponding log
periodogram ordinates are shown with gray dots.
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Figure D.2: The mapping of the covariates ω1 and ω2 to the latent variable z for the
Adjusted-AdaptSPEC-X simulation setting with eight specific time series (red dots).
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Figure D.3: The estimated (blue line) and the true (red line) log power spectrum of the
eight time series denoted in Figure D.2. The corresponding log periodogram ordinates are
shown with gray dots.
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Figure D.4: Posterior probabilities of model inclusion under the uniform (left) and Dirichlet
(right) priors for important variables (red) and noise variables (black).

Both forms of the prior correctly estimate the posterior probabilities of model inclusion

to be 1 for all five important variables, but the Dirichlet prior accurately achieves a sparser

solution, with the posterior probability of inclusion for noise variables being much closer

to 0. For sparse, high-dimensional covariates, the Dirichlet prior provides more accurate

selection of important covariates.

Tables D.1 - D.3 displays the MSE and posterior probabilities of model inclusion for all

three settings from Section 3.2.1 of the manuscript using both the uniform and Dirichlet

hyperpriors for tree splitting proportions and using M = 5 and M = 50 trees. For the

Abrupt+Smooth and Adjusted-AdaptSPEC-X settings, the hyperparameter for the prior

on tree depth is increased to θ = 25 to encourage shallower trees, since these settings are

relatively sparser with only two important variables compared to the AR-Friedman setting

with five important variables.
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Table D.1: Mean and standard deviation of MSE and posterior probability of model in-
clusion for Abrupt+Smooth setting with L = 500 time series of length T = 250 over 100
replications with different number of covariates (P ) and hyperpriors (Uniform and Dirich-
let). Posterior probabilities for model inclusion are reported for important variables, ω1, ω2,
individually and noise variables ω3, . . . , ωP in aggregate. Results are presented for the pro-
posed Bayesian sum of trees model using M = 5 and M = 50 trees.

M=5 M=50

P=100 Uniform Dirichlet Uniform Dirichlet

MSE 0.0930(0.0220) 0.0645(0.0261) 0.0308(0.0111) 0.0192(0.0060)

Noise 0.4465(0.4547) 0.2903(0.4482) 0.4023(0.4148) 0.1220(0.3086)

ω1 1.0000(0.0000) 0.9900(0.1000) 1.0000(0.0000) 1.0000(0.0000)
ω2 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

P=200 Uniform Dirichlet Uniform Dirichlet

MSE 0.1228(0.0174) 0.0836(0.0314) 0.0470(0.0141) 0.0258(0.0154)

Noise 0.3484(0.4427) 0.2235(0.4088) 0.3806(0.4353) 0.1319(0.3175)

ω1 0.9632(0.1825) 0.8800(0.3266) 0.9998(0.0018) 0.9800(0.1407)
ω2 0.9825(0.1116) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

P=1000 Uniform Dirichlet Uniform Dirichlet

MSE 0.1425(0.0105) 0.1383(0.0212) 0.0648(0.0056) 0.0535(0.0199)

Noise 0.0984(0.2799) 0.0740(0.2603) 0.1413(0.3331) 0.0995(0.2926)

ω1 0.3521(0.4562) 0.2003(0.4019) 0.5769(0.4766) 0.4615(0.5009)
ω2 0.7383(0.4206) 0.5900(0.4943) 1.0000(0.0000) 1.0000(0.0000)
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Table D.2: Mean and standard deviation of MSE and posterior probability of model inclu-
sion for AR-Friedman setting with L = 500 time series of length T = 250 over 100 repli-
cations with different number of covariates (P ) and hyperpriors (Uniform and Dirichlet).
Posterior probabilities for model inclusion are reported for important variables, ω1, . . . , ω5,
individually and noise variables ω6, . . . , ωP in aggregate. Results are presented for the pro-
posed Bayesian sum of trees model using M = 5 and M = 50 trees

M=5 M=50

P=100 Uniform Dirichlet Uniform Dirichlet

MSE 0.0407(0.0060) 0.0353(0.0067) 0.0162(0.0019) 0.0141(0.0016)

Noise 0.7267(0.3861) 0.5544(0.4897) 0.2681(0.3457) 0.1287(0.3284)

ω1 1.0000(0.0000) 0.9900(0.1000) 1.0000(0.0000) 1.0000(0.0000)
ω2 1.0000(0.0000) 0.9800(0.1407) 1.0000(0.0000) 1.0000(0.0000)
ω3 0.9812(0.1090) 0.9100(0.2876) 1.0000(0.0000) 1.0000(0.0000)
ω4 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
ω5 0.9056(0.2589) 0.8903(0.2972) 1.0000(0.0000) 1.0000(0.0000)

P=200 Uniform Dirichlet Uniform Dirichlet

MSE 0.0451(0.0042) 0.0416(0.0059) 0.0188(0.0030) 0.0143(0.0017)

Noise 0.5807(0.4338) 0.4386(0.4906) 0.2098(0.3224) 0.0787(0.2631)

ω1 0.9667(0.1491) 0.9170(0.2734) 1.0000(0.0000) 1.0000(0.0000)
ω2 0.9668(0.1606) 0.9100(0.2876) 1.0000(0.0000) 1.0000(0.0000)
ω3 0.7878(0.3579) 0.6400(0.4824) 1.0000(0.0000) 1.0000(0.0000)
ω4 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
ω5 0.7503(0.3985) 0.6538(0.4755) 0.9999(0.0002) 0.9942(0.0612)

P=1000 Uniform Dirichlet Uniform Dirichlet

MSE 0.0501(0.0029) 0.0480(0.0042) 0.0285(0.0060) 0.0221(0.0069)

Noise 0.1949(0.3578) 0.1411(0.3459) 0.1259(0.2908) 0.0660(0.2319)

ω1 0.4736(0.4820) 0.4403(0.4963) 0.9584(0.1692) 0.8859(0.3158)
ω2 0.3894(0.4499) 0.3800(0.4878) 0.9441(0.2013) 0.8349(0.3713)
ω3 0.2577(0.4206) 0.2400(0.4292) 0.6782(0.4358) 0.5005(0.4796)
ω4 0.7976(0.3816) 0.7300(0.4462) 1.0000(0.0000) 1.0000(0.0000)
ω5 0.2988(0.4386) 0.2652(0.4393) 0.6312(0.4583) 0.4690(0.4859)
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Table D.3: Mean and standard deviation of MSE and posterior probability of model in-
clusion for Adjusted-AdaptSPEC-X setting with L = 500 time series of length T = 250
over 100 replications with different number of covariates (P ) and hyperpriors (Uniform and
Dirichlet). Posterior probabilities for model inclusion are reported for important variables,
ω1, ω2, individually and noise variables ω3, . . . , ωP in aggregate. Results are presented for
the proposed Bayesian sum of trees model using M = 5 and M = 50 trees

M=5 M=50

P=100 Uniform Dirichlet Uniform Dirichlet

MSE 0.2864(0.0236) 0.2921(0.0273) 0.1501(0.0081) 0.1487(0.0080)

Noise 0.9153(0.2237) 0.8222(0.3792) 0.9526(0.1791) 0.9237(0.2637)

ω1 1.0000(0.0000) 0.9900(0.1000) 1.0000(0.0000) 1.0000(0.0000)
ω2 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

P=200 Uniform Dirichlet Uniform Dirichlet

MSE 0.2983(0.0245) 0.2986(0.0280) 0.1511(0.0075) 0.1493(0.0087)

Noise 0.7174(0.3865) 0.6008(0.4872) 0.7853(0.3637) 0.7196(0.4471)

ω1 0.9908(0.0918) 0.9400(0.2387) 1.0000(0.0000) 1.0000(0.0000)
ω2 0.9924(0.0553) 0.9400(0.2387) 1.0000(0.0000) 1.0000(0.0000)

P=1000 Uniform Dirichlet Uniform Dirichlet

MSE 0.3125(0.0267) 0.3138(0.0257) 0.1525(0.0080) 0.1535(0.0077)

Noise 0.2313(0.3792) 0.1728(0.3765) 0.2689(0.4103) 0.2285(0.4186)

ω1 0.5449(0.4807) 0.4300(0.4976) 0.9528(0.2091) 0.9216(0.2702)
ω2 0.5434(0.4674) 0.4300(0.4976) 0.9259(0.2559) 0.9118(0.2850)

As in the results in Table 3.3 in the manuscript, there is a slight improvement in estimation

accuracy when using the Dirichlet hyperprior, as it better regularizes noise variables without

losing the ability to recover important variables, and both estimation accuracy and variable

selection are negatively impacted by increasing covariate vector size P . Additionally, using

more trees results in improvements in MSE, increases in posterior probabilities of model

inclusion for important variables, and generally reduced posterior probabilities of model

inclusion for noise variables.
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D.3 Additional Results: Gait Maturation Analysis

D.3.1 Visualization of Tree Structures

Visualization of covariate effects is one of the major advantages of tree-based models.

Complex covariate effects can be translated into a collection of simple rules that translate

transparently into actions. For the proposed method, this type of visualization is a bit

more difficult due to the sum-of-trees structure of the model and the multiple draws of the

tree structures from the posterior distribution using the RJMCMC sampler. However, for

a small number of trees, we can visualize a single draw from the posterior by selecting the

single draw that maximizes the posterior distribution, known as the maximum a posteriori

(MAP) estimate. We demonstrate such a visualization for the gait maturation analysis for

two participants (see Figures D.5 and D.6).

From these figures, you can see the tree structures and how they work together to

produce the final estimate of the covariate-dependent log power spectrum. For example,

the first participant (Figure D.5) is a male age 3.3 years with gait speed of 1.04 m/sec.

This participant’s male gender, young age, and lower gait speed result in components with

relatively higher low frequency power coming from trees 1, 2, and 3. Components from trees

4 and 5 are relatively flat, thus increasing total variability in the power spectrum across

all frequencies. Figure D.7 displays the sum of these components for the first participant,

which carries relatively more low frequency power compared to high frequency power.

Alternatively, the 50th participant (Figure D.6) is a male age 13.6 years with gait speed

of 1.22 m/sec. Compared to the first participant, this participant’s older age results in a

flatter component of the log spectrum with less overall power from tree 3. This results in

less power over all frequencies compared to the younger first participant seen in the sum of

these components as the final estimator of the log power spectrum in Figure D.7

89



Figure D.5: Sum of trees visualization for 1st participant in the gait maturation study (age
3.3 years, gait speed 1.04 m/sec, male). The left column is an illustration of the sum of
trees structure. Terminal nodes outlined in red correspond to the 1st participant. The right
column shows the estimated component of log power spectrum for the 1st participant from
each tree.
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Figure D.6: Sum of trees visualization for 50th participant in the gait maturation study
(age 13.6 years, gait speed 1.22 m/sec, male). The left column is an illustration of the sum
of trees structure. Terminal nodes outlined in red correspond to the 50th participant. The
right column shows the estimated component of log power spectrum for the 50th participant
from each tree.
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Figure D.7: The final log power spectrum estimates for the 1st (age 3.3 years, gait speed 1.04
m/sec, male) and 50th (age 13.6 years, gait speed 1.22 m/sec, male) participants summing
over the components from five trees from Figures D.5 and Figures D.6 respectively. Each
line corresponds to the addition of another tree component in the sum to see how the
components come together to produce the final estimate (dark blue).

D.3.2 Credible Intervals for ALE of Power Spectrum

95% pointwise credible intervals for (a) and (b) in Figure 3.5 of the manuscript are provided

here (see Figure D.8), along with a similar ALE plot for gender (see Figure D.9). These plots

help explore covariate effects on power spectra and make inferences about which covariates

significantly influence power spectra and which particular frequencies are significantly in-

fluenced. For example, age has a significantly non-zero ALE for participants under 4 years

of age and above 8 years of age for low frequencies (< 0.1 stride−1). This indicates that

participants under 4 years of age have significantly more low frequency power (and higher

LF/HF ratio) than other participants, and participants above 8 years of age have signifi-

cantly less low frequency power (and lower LF/HF ratio) than other participants. For gait
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speed, we observe significantly less low frequency power (and lower LF/HF ratio) among

faster walkers with speeds above 1.1 m/sec. Gender appears to have a much less effect on

power spectra, with only a very small frequency range from 0.05 stride−1 to 0.15 stride−1

significantly different in power between males and females. There are no significant differ-

ences in LF/HF ratio between males and females with a posterior mean ALE of -0.1680 and

95% credible interval (-0.3887,0.0551).

(a) (b)

(c) (d)

Figure D.8: 95% pointwise credible intervals of ALE for age (a,b) and gait speed (c,d)
effects on the power spectrum.
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Figure D.9: Posterior mean (blue) and 95% pointwise credible intervals (shaded gray re-
gions) of ALE for Gender.

D.4 Convergence Diagnostics

Convergence diagnostic plots for all three simulation settings using M = 5 trees are shown

in Figures D.10-D.12, which appear to converge after 5000 burn-in iterations. Convergence

diagnostic plots for all three simulation settings using M = 50 trees are shown in Figures
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D.13-D.15, which also appear to converge after 5000 burn-in iterations. Convergence diag-

nostics for the gait maturation data analysis are shown in Figure D.16 using M = 5 trees.

While the sampler appears to converge slower than the simulation settings, the sampler still

appears to converge after 5,000 burn-in iterations.
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(a) (b)

(c) (d)

Figure D.10: Convergence diagnostic plots for the Abrupt+Smooth simulation for one
replication: (a) average mean squared residuals across frequencies and all time series; (b)
average estimated log power spectrum across frequencies and all time series; (c) total number
of nodes for each of the five trees; (d) total number of bottom nodes across all five trees.
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(a) Average mean of squared residuals (b) Average of the estimated log spectrum

(c) Number of nodes of each tree (d) Number of bottom nodes across all trees

Figure D.11: Convergence diagnostics for the AR-Friedman simulation for one replication.
Plot (a) contains trace plots of the average mean squared residuals across all time series;
Plot (b) shows the average estimated log power spectrum across frequencies and all time
series for each iteration; Plot (c) is the trace plots of the total number of nodes for each
of the five trees separately (c); Plot (d) is the total number of bottom nodes across all five
trees.
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(a) Average mean of squared residuals (b) Average of the estimated log spectrum

(c) Number of nodes of each tree (d) Number of bottom nodes across all trees

Figure D.12: Convergence diagnostics for the Adjusted-AdaptSPEC-X simulation for one
replication. Plot (a) contains trace plots of the average mean squared residuals across all
time series; Plot (b) shows the average estimated log power spectrum across frequencies and
all time series for each iteration; Plot (c) is the trace plots of the total number of nodes for
each of the five trees separately (c); Plot (d) is the total number of bottom nodes across all
five trees.
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(a) (b)

(c) (d)

Figure D.13: Convergence diagnostic plots for the Abrupt+Smooth simulation for one
replication for 50 trees. (a) average mean squared residuals across frequencies and all time
series; (b) average estimated log power spectrum across frequencies and all time series; (c)
total number of nodes for each of the five trees; (d) total number of bottom nodes across
all 50 trees.
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(a) Average mean of squared residuals (b) Average of the estimated log spectrum

(c) Number of nodes of each tree (d) Number of bottom nodes across all trees

Figure D.14: Convergence diagnostics for the AR-Friedman simulation for one replication
for 50 trees. Plot (a) contains trace plots of the average mean squared residuals across all
time series; Plot (b) shows the average estimated log power spectrum across frequencies and
all time series for each iteration; Plot (c) is the trace plots of the total number of nodes for
each of the five trees separately (c); Plot (d) is the total number of bottom nodes across all
50 trees.
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(a) Average mean of squared residuals (b) Average of the estimated log spectrum

(c) Number of nodes of each tree (d) Number of bottom nodes across all trees

Figure D.15: Convergence diagnostics for the Adjusted-AdaptSPEC-X simulation for one
replication for 50 trees. Plot (a) contains trace plots of the average mean squared residuals
across all time series; Plot (b) shows the average estimated log power spectrum across
frequencies and all time series for each iteration; Plot (c) is the trace plots of the total
number of nodes for each of the five trees separately (c); Plot (d) is the total number of
bottom nodes across all 50 trees.
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(a) Average mean of squared residuals (b) Average of the estimated log spectrum

(c) Number of nodes of each tree (d) Number of bottom nodes across all trees

Figure D.16: Convergence diagnostics for the gait maturation data analysis. Plot (a)
contains trace plots of the average mean squared residuals across all time series; Plot (b)
shows the average estimated log power spectrum across frequencies and all time series for
each iteration; Plot (c) is the trace plots of the total number of nodes for each of the five
trees separately (c); Plot (d) is the total number of bottom nodes across all five trees.
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Appendix E: Graphical Posterior Predictive Diagnostics

We use posterior predictive checks to diagnose proper model fit for the gait maturation

analysis. The idea is that if a model is a good fit for the data, then it should be able to

generate data similar to that which we observed originally (Gabry et al., 2019). Using the

posterior draws of the covariate-dependent log power spectrum from the proposed RJMCMC

sampler, in conjunction with the large-sample distribution of the log-periodogram, we can

generate draws from the posterior predictive distribution of the log-periodogram for each

time series to assess fit to the data.

Using our RJMCMC sampler, we are able to generate draws from the posterior dis-

tribution of the covariate-dependent log power spectrum, p(log f(ω, ν)| log I1, . . . , log IL),

where log Iℓ = {log Iℓ(ν1), log Iℓ(ν2), . . . , log Iℓ(νN )} is the log periodogram for time series

Xℓt such that

log Iℓ(νk) = log
1

T

∣∣∣∣∣
T∑
t=1

Xℓt exp(−2πiνkt)

∣∣∣∣∣
2

(E.1)

where N = ⌊T/2⌋ − 1, νk = k/T for k = 1, . . . , N are the Fourier frequencies and T is

the length of time series. Additionally, the large-sample properties of the log-periodogram

provide the following data model (Pawitan and O’Sullivan, 1994)

log Iℓ(νk) = f(ωℓ, νk) + log(χ2
2/2) (E.2)

for large T . Taken together, we can then generate draws from the posterior predictive

distribution

p
(
log Ĩ1, . . . , log ĨL| log I1, . . . , log IL

)
=

∫
p (log I1, . . . , log IL| log f(ω, ν)) p (f(ω, ν)| log I1, . . . , log IL) df(ω, ν) (E.3)
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by obtaining S draws of log f(ωℓ, νk) from its posterior distribution, and then using the

data model above to obtain S draws of log Ĩℓ(νk) for ℓ = 1, . . . , L and k = 1, . . . , N.

To demonstrate appropriate model fit for the gait maturation analysis, Figures E.1-E.7

display the observed log periodograms and S = 250 draws from the posterior predictive

distribution of log periodograms for all 50 participants in the gait maturation study. All

observed log-periodograms and densities are well covered by their respective draws from the

posterior predictive distribution without any obvious indications of systematic or egregious

lack of fit. Thus, we conclude that the model appears to adequately characterize the data

from the gait maturation study.
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(a) Participant 1 (age 3.3, speed

1.04, male)

(b) Participant 2 (age 3.8, speed

1.05, female)

(c) Participant 3 (age 3.9, speed

0.99, female)

(d) Participant 4 (age 4, speed

1.02, male)

(e) Participant 5 (age 4.1, speed

0.82, male)

(f) Participant 6 (age 4.1, speed

1.01, female)

(g) Participant 7 (age 4.3, speed

1.02, female)

(h) Participant 8 (age 4.3, speed

0.90, female)

Figure E.1: Posterior predictive plots for participants 1-8 of gait maturation study. Left:
Observed log-periodogram (black line) and posterior predictive log-periodogram draws
(light blue). Right: Density plots for observed (black line) and posterior predictive log-
periodogram draws (light blue) across frequencies. Age is in years and speed is in meters
per second.
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(a) Participant 9 (age 4.5, speed

1.14, female)

(b) Participant 10 (age 4.5, speed

1.05, male)

(c) Participant 11 (age 4.8, speed

0.91, male)

(d) Participant 12 (age 5.1, speed

0.88, female)

(e) Participant 13 (age 5.2, speed

0.91, female)

(f) Participant 14 (age 5.7, speed

1.10, male)

(g) Participant 15 (age 6.6, speed

1.49, male)

(h) Participant 16 (age 6.6, speed

1.18, male)

Figure E.2: Posterior predictive plots for participants 9-16 of gait maturation study.
Left: Observed log-periodogram (black line) and posterior predictive log-periodogram draws
(light blue). Right: Density plots for observed (black line) and posterior predictive log-
periodogram draws (light blue) across frequencies. Age is in years and speed is in meters
per second.

106



(a) Participant 17 (age 6.7, speed

1.33, male)

(b) Participant 18 (age 6.7, speed

1.27, male)

(c) Participant 19 (age 6.8, speed

1.01, male)

(d) Participant 20 (age 6.8, speed

1.23, female)

(e) Participant 21 (age 6.9, speed

1.10, male)

(f) Participant 22 (age 7.1, speed

1.26, female)

(g) Participant 23 (age 7.1, speed

1.29, female)

(h) Participant 24 (age 7.3, speed

1.14, female)

Figure E.3: Posterior predictive plots for participants 17-24 of gait maturation study.
Left: Observed log-periodogram (black line) and posterior predictive log-periodogram draws
(light blue). Right: Density plots for observed (black line) and posterior predictive log-
periodogram draws (light blue) across frequencies. Age is in years and speed is in meters
per second.
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(a) Participant 25 (age 7.3, speed

1.11, male)

(b) Participant 26 (age 7.3, speed

1.23, female)

(c) Participant 27 (age 7.4, speed

1.12, male)

(d) Participant 28 (age 7.4, speed

1.05, male)

(e) Participant 29 (age 7.5, speed

1.09, male)

(f) Participant 30 (age 7.6, speed

1.28, female)

(g) Participant 31 (age 7.6, speed

1.36, female)

(h) Participant 32 (age 7.7, speed

1.15, female)

Figure E.4: Posterior predictive plots for participants 25-32 of gait maturation study.
Left: Observed log-periodogram (black line) and posterior predictive log-periodogram draws
(light blue). Right: Density plots for observed (black line) and posterior predictive log-
periodogram draws (light blue) across frequencies. Age is in years and speed is in meters
per second.
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(a) Participant 33 (age 7.7, speed

1.27, female)

(b) Participant 34 (age 7.8, speed

1.08, female)

(c) Participant 35 (age 8.4, speed

1.07, female)

(d) Participant 36 (age 10.8, speed

1.41, female)

(e) Participant 37 (age 10.8, speed

1.18, male)

(f) Participant 38 (age 10.8, speed

1.31, female)

(g) Participant 39 (age 11.1, speed

1.26, female)

(h) Participant 40 (age 11.2, speed

1.20, female)

Figure E.5: Posterior predictive plots for participants 33-40 of gait maturation study.
Left: Observed log-periodogram (black line) and posterior predictive log-periodogram draws
(light blue). Right: Density plots for observed (black line) and posterior predictive log-
periodogram draws (light blue) across frequencies. Age is in years and speed is in meters
per second.
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(a) Participant 41 (age 11.5, speed

1.11, female)

(b) Participant 42 (age 11.5, speed

1.32, male)

(c) Participant 43 (age 11.6, speed

1.29, male)

(d) Participant 44 (age 11.6, speed

1.36, female)

(e) Participant 45 (age 11.8, speed

1.33, male)

(f) Participant 46 (age 12.3, speed

1.35, male)

(g) Participant 47 (age 12.3, speed

1.48, male)

(h) Participant 48 (age 12.8, speed

1.23, male)

Figure E.6: Posterior predictive plots for participants 41-48 of gait maturation study.
Left: Observed log-periodogram (black line) and posterior predictive log-periodogram draws
(light blue). Right: Density plots for observed (black line) and posterior predictive log-
periodogram draws (light blue) across frequencies. Age is in years and speed is in meters
per second.
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(a) Participant 49 (age 13.2, speed 1.26,

male)

(b) Participant 50 (age 13.6, speed 1.22,

male)

Figure E.7: Posterior predictive plots for participants 49-50 of gait maturation study.
Left: Observed log-periodogram (black line) and posterior predictive log-periodogram draws
(light blue). Right: Density plots for observed (black line) and posterior predictive log-
periodogram draws (light blue) across frequencies. Age is in years and speed is in meters
per second.
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