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ABSTRACT 

NETWORK ANALYSIS OF CORRELATED MUTATIONS IN INFLUENZA 

Uday Yallapragada, Ph.D. 

George Mason University, 2017 

Dissertation Director: Dr. Iosif Vaisman 

 

Influenza A Virus (IAV) is remarkably adept at surviving in human populations. 

IAV thrives even among populations with wide spread access to vaccines and anti-viral 

drugs, and continues to be a major cause of morbidity and mortality. Correlated mutations 

are an important factor in IAV’s evolution and are critical for host adaptation and 

pathogenicity. Large sets of publicly available sequences of IAV combined with its rapid 

and complex evolutionary dynamics present interesting opportunities and unique 

challenges to analyze correlated mutations in influenza proteomes. In this work, we 

performed a comprehensive analysis of correlated mutations in IAV using a network theory 

approach where residues in each protein act as nodes in the graph and edges in the graph 

are created based on inter-residue correlated mutations. Our approach used ‘maximal 

information coefficient’ (MIC) to compute correlations between residues and we created 

edges between nodes if MIC exceeds a threshold. We created a modular and robust pipeline 

and applied it to multiple datasets belonging to H1N1, H3N2, H5 and H7N9 subtypes. We 
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studied structural dynamics of IAV sub-systems based on topological properties of their 

networks resulting in several important conclusions. We identified nodes with highest 

degree along with edges and triplets with strongest weight for each network. To 

contextualize our results, we performed entropy analysis to gain a global view of sequence 

variation and computed solvent accessibility profiles to identify statistical differences in 

correlation profiles between surface and buried residues. We computed residue 

cooccurrence counts to understand the internal mechanics behind MIC. Additionally, we 

applied our pipeline to gradually increasing datasets of human H1N1 and human H3N2 

over the past 10 years and elucidated their evolutionary patterns. As part of our overall 

pipeline, we took specific measures to eliminate phylogenetic and stochastic background 

noise. We created a web application to allow users to comprehend results of our analysis 

and to search for correlated mutations. 
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CHAPTER 1 - INTRODUCTION 

Dynamic Nature of Influenza A Virus 
 
Influenza A Virus (IAV) is remarkably adept at surviving in the human population over a 

long-time scale. The human IAV continues to thrive even among populations with 

widespread access to vaccines and continues to be a major cause of morbidity and mortality 

[1]. According to World Health Organization, influenza occurs globally with an annual 

attack rate estimated at 5%-10% in adults and 20%-30% in children and it is estimated to 

result in about 3 to 5 million cases of severe illness and about 250000 to 500000 deaths 

annually [2]. The virus mutates from year to year making the existing vaccines ineffective 

on a permanent basis and requiring that new strains be chosen for a new vaccine. Less 

frequent major changes known as antigenic shift create new strains against which human 

population has little protective immunity thereby causing pandemics. These high 

evolutionary rates are also responsible for gradually increasing resistance exhibited by the 

virus to existing antiviral drugs. 

Correlated Mutations 
 

‘Correlated Mutations’ in the structural context were first introduced in 1987 [3]. In 1994 

Shindyalov et al. [4] hypothesized that three-dimensional contacts can be predicted by 

analyzing correlated mutations. This study was immediately followed by [5] where the 

term “correlated mutation” with a protein context was formally defined as ‘tendency of 
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positions in proteins to mutate coordinately’. This tendency is measured by analyzing the 

correlation between changes in pairs of positions in multiple sequence alignment. Sequence 

correlation/covariance analysis is an area that has gained significant traction over the last 

two decades and is widely used for identifying correlated sites in proteins. In this context, 

it is important to note that correlated mutations between residues in proteins have initially 

been linked primarily to probable physical contact in three-dimensional space but more 

recent studies have demonstrated that coevolution of amino acids may originate not only 

from structural contacts but also from a much broader range of biological reasons. More 

specifically, studies in this field have suggested that  

(a) correlated mutations may also occur due to reasons related to protein function [6] 

(b) coevolution between amino acid residues is necessary and sufficient to specify 

sequences that fold into native structures [7] 

(c) and residues highly correlated with others are indeed more likely to be associated 

with disease [8]. 

Correlated Mutation Analysis in IAV Sequences 
 

Changes in the genetic makeup of IAV are primarily attributed to antigenic drift 

that results in accumulation of mutations both within the genes that code for anti-body 

binding sites and sites that are not directly targeted by anti-bodies. Proteins in IAV are a 

natural fit for comprehensive correlation analysis because of the large sets of publicly 

available sequences available, and this observed (fast) rate of mutations in these proteins.  

Majority of the correlation studies on influenza up to date have focused on 

identifying pairwise mutations within the transmembrane proteins HA and NA using 



3 

 

specific statistical and/or machine learning techniques. Moreover, some of these studies 

have been conducted at a time when there were only limited sequences available. A 

comprehensive analysis of pairwise and higher-order correlations in mutations using 

existing data sets can provide a more holistic picture of potential functional implications. 

Network Analysis 
 

While there is a significant body of literature on the analysis of correlated mutations 

in proteins in general, there was very little work done up to date to comprehensively 

analyze correlations in IAV strains. Majority of the work performed on IAV strains either 

focused on the two surface proteins (HA and NA) or was based on small datasets. After 

performing extensive review of available literature on correlated mutations in general and 

more specifically on IAV strains (Chapter 4 - Literature Review) it became apparent that 

the large number of curated IAV strains available in public databases presents a unique 

opportunity to conduct a thorough analysis of mutational landscape. We conceived a novel 

approach based on principles in graph theory and network analysis where residues in each 

protein act as nodes in the graph and edges in the graph are created based on inter-residue 

correlated mutations. Our approach used ‘maximal information coefficient’ (MIC) to 

compute correlations between residues and we created edges between nodes if MIC 

exceeds a certain threshold value. 

Significance 
 

 The broader implications of creating a comprehensive correlation profile 

based on network analysis for mutations in IAV can be broken into three broad categories. 
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We believe that our work can have both direct and indirect impact on future work 

performed in these areas. 

 

Antiviral Drugs 
 

Analogous to the treatments used against HIV-1 infection, it has been hypothesized 

[9] that a combination of potent influenza drugs, each targeting a different viral entity or 

with different modes of inhibition, would be expected to be more effective in treating 

virulent and pandemic influenza viruses. A recent study employed a network based 

approach for determining conserved amino acid sequences within a protein system to more 

effectively identify epitopes on viral proteins (for the design/identification of broadly-

neutralizing monoclonal antibodies or specific immunogens for anti-viral drugs and 

vaccine development) [10]. Given the fact that viruses universally develop mutations that 

allow escape from neutralization, the above study suggests that protein function may not 

be dependent on observed conservations at point locations. Potential links between 

conserved sites within different proteins can be exploited to create a more potent 

combination of drugs and for effective epitope identification. Correlations between 

mutations in proteins that are co-involved in a specific step or sub-process within the 

influenza life cycle may provide new insights into potential interactions that can be useful 

for drug design. 

Vaccines 
 

Current influenza vaccines induce neutralizing antibodies against the viral 

membrane surface proteins hemagglutinin (HA) and neuraminidase (NA). Due to antigenic 
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shift and drift of HA and NA genes, neutralizing antibodies elicited by influenza vaccines 

lack cross-reactivity against non-matching influenza strains. While seasonal adjustments 

to the vaccine strains are made to cope with this problem, it is not as convenient and fast 

as a potential cross-protective influenza vaccine. Thus, the identification of alternative 

correlates of protection (CoPs) against influenza is an important step toward the 

development of cross-reactive influenza vaccines. Developing a universal influenza 

vaccine based on a more conserved part of the influenza virus which is not affected by 

antigenic change or that is consistent across all strains remains the ultimate goal to afford 

cross-protection [11]–[14]. 

Epidemiology 
 

Several fundamental questions regarding the epidemiology of influenza remain 

unanswered [15] and there is a continued interest in having a more comprehensive 

understanding of the impact of epistasis on broader epidemiological patterns of this virus. 

Having a broader understanding of the overall mutation profile of IAV based on different 

datasets can provide insights into these patterns. 

Objectives 
 

The primary objective of this work is to provide novel insights into the functional 

dynamics of IAV system based on network analysis of correlated mutations. We perform 

this analysis on multiple datasets and try to examine the differences. Based on our analysis, 

we attempt to address the following problems. 

 



6 

 

General properties of the networks of correlated mutations 
 

 

1. What is the overall structure of the network of correlated mutations? 

2. What is the behavior of the network for various threshold values? 

3. Does a correlated mutation graph follow the power-law model?  

4. What is the overall degree and clustering distribution? What is the diameter? 

Is this a “small world” network? 

5. What is the relationship between global characteristics of the graph (degree 

distribution, edge density) and entropy profiles of the residues? Can we 

hypothesize that residues with zero or very low entropies will be out-of-

network while in-network residues will always have higher entropies? 

6. Are there differences in residue cooccurrence counts based on correlation 

scores?   

Subtype dependence of the network properties 
 

 

• Are there significant differences between networks of correlated mutations 

depending on the virus subtype? E.g., how does the human H1N1 

mutation graph differ from swine H1N1 mutation graph? Do the 

significant residues in human H3N2 mutation graph differ substantially 

from the significant residues in swine H3N2 mutation graph? 

• What are the characteristics of a mutation graph constructed from strains 

belonging to multiple subtypes? Does this graph differ significantly from 

graphs created from a single subtype? 
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Protein structure and function implications of network features 
 

1. Is there a significant overlap between the known functionally important 

residues in influenza and the nodes with highest degree?  

2. Is there a significant difference in solvent accessibility profile between in-

network residues and out-of-network residues?  

3. Are there more edges between the two surface proteins (HA and NA) and 

between HA, NA and other proteins compared to edges between non-

surface proteins? 

4. How does the Human H1N1 network evolve over multiple flu seasons?  

Computational contributions 
 

From a computational perspective, this dissertation offers the following 

contributions. 

1. Web application –  We created a user-friendly web application to allow 

users to examine our results and visualizations and to perform basic search 

for correlated sites of a specific residue. 

2. Source code & datasets – All datasets used for this analysis and python code 

developed are made publicly available. 

3. This effort endeavored to create a robust computational pipeline that can 

potentially be applied to perform network analysis of other viral systems in 

the future. Artifacts created as part of this initiative should have 

applicability in the analysis of similar viral systems like Ebola, 

Chikungunya, West Nile and Enterovirus. 
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Dissertation Structure 
 

After elucidating the opportunity, objectives and significance of our work in this 

Chapter, we provide required biological background of influenza virus in Chapter 2. We 

start with basic information on influenza classification and follow it up with a broad 

overview of structural details and various steps involved in the life cycle of influenza. 

Chapter 2 also provides additional background information on existing vaccines, anti-viral 

drugs and epidemiology. Given the extensive use of concepts from graph theory in our 

dissertation, we provide relevant background information on concepts and principles from 

graph theory and network analysis in Chapter 2. We also include details of MIC in this 

chapter since we use MIC to calculate correlation coefficient throughout our work. In 

Chapter 3, we provide details of work that we conducted to automatically classify flu 

sequences using n-grams. The results of this work on classification have motivated us to 

perform a comprehensive analysis of correlated mutations in IAV sequences.  In Chapter 

4, we provide a broad overview of literature available in the areas of correlated mutations 

and network analysis. Chapter 5 covers details of datasets and Chapter 6 provides a listing 

of computational tools and libraries that we used in this work. Chapter 7 elucidates the 

methodology that we used to identify and analyze correlated mutations. We begin this 

chapter by providing a pipeline of the end-to-end flow and we explain each of the steps in 

this process. We cover details of the three important components of our computational 

pipeline - pre-processing, graph creation and graph analysis in this chapter. Chapter 8 

focusses on summarizing results of our work. We attempt to answer questions listed as part 

of our objectives. Our analysis covers the macro properties of the system based on network 
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analysis as well as delves into identifying and studying significant nodes and edges. We 

compare the properties of different IAV sub-systems based on network analysis. In Chapter 

8, we also explain the functionality of a web application called NACMI (Network Analysis 

of Correlated Mutations in Influenza) that we created to allow users to perform analysis 

and perform basic search for correlated mutations in influenza. Chapter 9 offers our 

conclusions and Chapter 10 includes suggestions for future work.  
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CHAPTER 2 - ADDITIONAL BACKGROUND 

In Chapter 1, we have stated that our work will focus on performing network 

analysis of correlated mutations in influenza strains. Before we delve into the details of 

datasets, methodology and results of our work, we provide some necessary background 

information on influenza, Network Analysis and Maximal Information Coefficient (MIC) 

in this chapter. We start with an overview of the classification, structure and life cycle of 

the Influenza virus. Next, we describe some key concepts from graph theory and network 

analysis. We conclude this chapter with an introduction to correlations and MIC. 

Influenza 
 

Influenza (flu) is a contagious respiratory illness caused by Influenza viruses. It can 

cause mild to severe illness. Serious outcomes of flu infection can result in hospitalization 

or death. Certain categories of people, such as older people, young children and people 

with certain health conditions are at high risk for serious flu complications.  

Classification of Influenza Virus 
 

Influenza virus types A, B and C belong to the family of Orthomyxoviridae and 

have negative sense, single-stranded, segmented RNA. The most prominent difference 

between the three types of influenza virus is the host range. While influenza viruses of 

types B and C are predominantly human pathogens that have sporadically been isolated 

from seals and pigs respectively, IAVs have been isolated from many animal species, 

including humans, pigs, horses and a wide range of birds. Influenza virus B mutates at a 

rate 2–3 times slower than type A and consequently is less genetically diverse, with only 
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one influenza B serotype. Because of this lack of antigenic diversity, a degree of immunity 

to influenza B is usually acquired at an early age. However, influenza B mutates enough 

that lasting immunity is not possible. This reduced rate of antigenic change, combined with 

its limited host range (inhibiting cross species antigenic shift), ensures that pandemics of 

influenza B do not occur. Influenza C is less common than A and B types and usually only 

cause’s mild disease in children. The type A viruses are the most virulent human pathogens 

among the three influenza types and cause the most severe disease. Our work will focus 

only on correlated mutations in IAV strains. Wild aquatic birds are the natural hosts for a 

large variety of influenza A strains. Occasionally, these viruses are transmitted to other 

species and may then cause devastating outbreaks in domestic poultry or give rise to human 

influenza pandemics. The main antigenic determinants of influenza A and B viruses are 

the Hemagglutinin (HA or H) and Neuraminidase (NA or N) transmembrane glycoproteins. 

Based on the antigenicity of these glycoproteins, Influenza A viruses are further subdivided 

into sixteen H (H1-H16) and nine N (N1-N9) subtypes. Example subtypes of Influenza A 

include H5N1 (bird flu) and H1N1 (swine flu) [16].  

Nomenclature of Influenza Strains 
 

The strain designation for influenza virus types A, B, and C contains the following 

information:  

1. A description of the antigenic type of the virus based on the antigenic specificity of 

the NP antigen (type A, B, or C). Since 1971, a further type-specific internal antigen 

of the influenza A and B viruses, the matrix (M) protein, has been described (19). 

http://www.influenzavirusnet.com/antigenic-shift.html
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Typing of Influenza, A and B viruses based on the M protein is consistent with the 

results obtained with NP antigen (20). 

2. The host of origin. This is not indicated for strains isolated from human sources but 

is indicated for all strains isolated from non-human hosts, e.g., swine, horse 

(equine), chicken, and turkey.  

3. Geographical origin. 

4. Strain number.  

5. Year of isolation. 

6. For influenza A viruses, the antigenic description, in parentheses, follows the strain 

designation and includes the following information.  

a. An index describing the antigenic character of the Hemagglutinin, i.e., H1, 

H2, H3, H4, etc. The numbering of subtypes is a simple sequential system 

which applies uniformly to influenza viruses from all sources.  

b. An index describing the antigenic character of the Neuraminidase, i.e., N1, 

N2, N3, N4, etc. As with the H antigen subtype, this is a simple sequential 

numbering system applied uniformly to all Influenza A viruses. 

7. Examples 

a. A/swine/Virginia/01359/2006 (H1N1),  

b. A/green-winged teal/Minnesota/Sg-00820/2008 (H4N5) [17] 

Proteins in Influenza  
 

Influenza A and B viruses are enveloped viruses with eight RNA segments that 

encode for the following 11 proteins: glycoproteins (hemagglutinin (HA) and 
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neuraminidase (NA)), matrix 1 (M1), matrix 2 (M2), nucleoprotein (NP), non-structural 

protein 1 (NSP1), non-structural protein 2 (NS2; also known as nuclear export protein, 

NEP), polymerase acidic protein (PA), polymerase basic protein 1 (PB1), polymerase basic 

protein 2 (PB2) and polymerase basic protein–F2 (PB1-F2) [18], [19].  

Influenza C virus contains only 7 RNA segments that encode for 10 proteins with 

only one glycoprotein (HEF, hemagglutinin-esterase-fusion) that has the functionality of 

both HA and NA [18], [19]  

Structure of Influenza  
 

The structure of Influenza A virus is depicted in Figure 1. The Influenza virion is 

roughly spherical. It is an enveloped virus with an outer lipid membrane with ‘spikes’ 

consisting of two surface glycoproteins – HA and NA. The HA binds the virus to sialic 

acid receptors on the host cell surface. The NA protein facilitates the release of virions to 

infect other cells by removing sialic acid residues from the viral HA during entry and 

release from cells [18], [19]. 
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Figure 1 – Structure of Influenza [20] 

 

Beneath the lipid membrane is a viral protein called M1, or matrix protein. This 

protein, which forms a shell, gives strength and rigidity to the lipid envelope. The IAV 

envelope contains a small number of a membrane protein, M2 which forms a tetramer with 

ion channel activity. M2 is involved in the infection process by modulating the pH within 

virions, weakening the interaction between the viral ribonucleoproteins (RNPs) and the M1 

protein. Within the interior of the virion are the viral RNAs – 8 of them for Influenza A 

viruses. These are the genetic material of the virus; they code for one or two proteins. Each 
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RNA segment consists of RNA joined with several proteins shown in the diagram: PB1, 

PB2, PA and NP. These RNA segments are the genes of Influenza virus.  

Life Cycle of Influenza  
 

Influenza viruses are usually transmitted via air droplets, and subsequently 

contaminate the mucosa of the respiratory tract. They can penetrate the mucin layer of the 

outer surface of the respiratory tract, entering respiratory epithelial cells, as well as other 

cell types. Immuno-histological pictures show that foci of virus-producing cells are 

clustered in the mucous layer of the respiratory tract, in the gut and even in endothelial 

layers, myocardium and brain. Within nasal secretions, millions of virus particles per ml 

are shed, so that a 0.1 µl aerosol particle contains more than 100 virus particles. A 

single HID (human infectious dose) of influenza virus might be between 100 and 1,000 

particles. At least during the early course of influenza infection, the virus can be found also 

in the blood and in other body fluids. Replication is very quick: after only 6 hours the first 

influenza viruses are shed from infected cells  

Influenza infection and replication is a multi-step process depicted in Figure 2. 

First, the virus must bind to and enter the cell, then deliver its genome to a site where it can 

produce new copies of viral proteins and RNA, assemble these components into new viral 

particles, and, last, exit the host cell. 

Influenza viruses bind through hemagglutinin onto sialic acid sugars on the 

surfaces of epithelial cells, typically in the nose, throat, and lungs of mammals, 

and intestines of birds (Stage 1 in Figure 2). After the hemagglutinin is cleaved by 

a protease, the cell imports the virus by endocytosis. 
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Once inside the cell, the acidic conditions in the endosome cause two events to 

happen: First, part of the hemagglutinin protein fuses the viral envelope with the vacuole's 

membrane, then the M2 ion channel allows protons to move through the viral envelope and 

acidify the core of the virus, which causes the core to disassemble and release the viral 

RNA and core proteins. The viral RNA (vRNA) molecules, accessory proteins and RNA-

dependent RNA polymerase are then released into the cytoplasm (Stage 2).  

These core proteins and vRNA form a complex that is transported into the cell 

nucleus, where the RNA-dependent RNA polymerase begins transcribing complementary 

positive-sense vRNA (Steps 3a and b). The vRNA either is exported into the cytoplasm 

and translated (step 4) or remains in the nucleus. Newly synthesized viral proteins are either 

secreted through the Golgi apparatus onto the cell surface (in the case of neuraminidase 

and hemagglutinin, step 5b) or transported back into the nucleus to bind vRNA and form 

new viral genome particles (step 5a). Other viral proteins have multiple actions in the host 

cell, including degrading cellular mRNA and using the released nucleotides for vRNA 

synthesis and inhibiting translation of host-cell mRNAs. 

Negative-sense vRNAs that form the genomes of future viruses, RNA-dependent 

RNA polymerase, and other viral proteins are assembled into a virion. Hemagglutinin and 

neuraminidase molecules cluster into a bulge in the cell membrane. The vRNA and viral 

core proteins leave the nucleus and enter this membrane protrusion (step 6). The mature 

virus buds off from the cell in a sphere of host phospholipid membrane, acquiring 

hemagglutinin and neuraminidase with this membrane coat (step 7). As before, the viruses 

adhere to the cell through hemagglutinin; the mature viruses detach once 
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their neuraminidase has cleaved sialic acid residues from the host cell. After the release of 

new influenza viruses, the host cell dies [19], [21]. 

 

 

Figure 2 - Replication Cycle of Influenza 

 

Network Analysis 
 

A network is any collection of objects in which some pairs of these objects are 

connected by links [22]. Given the flexibility of this definition, it is easy to find networks 

in many domains and the concept of networks is finding increasing applicability to analyze 

and predict the structure and dynamics of complex systems.  We will discuss several 

applications of network analysis to understand biological systems and more specifically 

protein systems in Chapter 4 - Literature Review.  In this section, we introduce concepts 
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from “graph theory” since the study of network structure relies on principles from graph 

theory.  

A graph is a way of specifying relationships among a collection of items. A graph 

consists of a set of objects called nodes with certain pairs of these objects connected by 

links called edges. Two nodes are neighbors if they are connected by an edge. An 

undirected graph has edges that can be traversed in both directions while a directed graph 

has edges that can only be traversed in one direction ([23], [24]). In a weighted graph, an 

edge has a number weight associated with it to denote the strength of association between 

the nodes. In an unweighted graph, all edges are equivalent (or have the same weight). A 

connected graph is one in which it is possible to go between any pair of nodes via a path 

through a series of edges and other nodes. A completely connected graph is one where 

every node is directly connected by an edge to every other node.  

After a network is created with appropriate nodes and edges, a variety of useful 

measures can be calculated to capture the structural topology of the network. In this work, 

we focus primarily on two measures called degree and clustering coefficient.  

Degree (or degree centrality) of a node is the simplest measure in a network and is 

the number of edges connected to that node. In the context of correlated mutation networks, 

degree of a node is a useful measure since it is reasonable to assume that a node with high 

degree can act as a hub and has more influence in the network compared to a node with 

low degree. More importantly, degree distribution of nodes in a correlated mutation 

network can provide a good overview of the overall mutation profile of residues in proteins. 
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Clustering coefficient (or local clustering coefficient) of a node in a network is 

defined as the ratio of the number of pairs of neighbors of that node that are connected and 

the total number of possible pairs of neighbors. In the context of a correlated mutation 

network, a node with high clustering coefficient signifies that this node is part of a highly 

connected sub-graph where there is strong covariance between multiple residues. Nodes 

with high clustering coefficient generally tend to have a low degree and vice-versa. 

We have reviewed several other measures of networks to understand topologies of 

correlated mutation graphs (including page rank, betweenness centrality, closeness 

centrality and eigen value centrality) and have concluded that degree and clustering 

coefficients are more appropriate. 

Correlation Measures 
 

Our approach to network analysis of correlated mutations relies on computation of 

a correlation measure to assign a weighted edge between nodes. The choice of a correlation 

measure that can accurately capture complex linear and non-linear relationships and 

quantify it appropriately is important. After careful analysis of several available correlation 

measures [25], we have decided to use a relatively novel technique called “Maximal 

Information Coefficient” for this work. Linear dependence measures such as Pearson 

correlation or monotonic dependence measures such as Spearman’s do not capture complex 

relationships in biological systems [26]. While Mutual Information (MI) can identify non-

linear relationships in data, MI has been sensitive to bin size and number of bins in some 

cases and more importantly MI has an unsatisfying (0 to infinity) range that limits its 
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applicability when being used broadly for multiple datasets.  The MIC [27] solves both of 

these issues and is being increasingly used on biological datasets ([26], [28]).  

Maximal Information Coefficient 
 

The MIC is a tool for finding the strongest pairwise relationships in a data set with 

many variables. MIC is useful because it gives similar scores to equally noisy relationships 

of different types. This property, called equitability, is important for analyzing high-

dimensional data sets. MIC is based on the idea that if a relationship exists between two 

variables, then a grid can be drawn on the scatterplot of the two variables that partitions 

the data to encapsulate that relationship. Thus, to calculate the MIC of a set of two-variable 

data, we explore all grids up to a maximal grid resolution, dependent on the sample size, 

computing for every pair of integers (x, y) the largest possible mutual information 

achievable by any x-by-y grid applied to the data. We then normalize these mutual 

information values to ensure a fair comparison between grids of different dimensions and 

to obtain modified values between 0 and 1. We define the characteristic matrix M = (mx, 

y), where mx, y is the highest normalized mutual information achieved by any x-by-y grid, 

and the statistic MIC to be the maximum value in M. 
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CHAPTER 3 – CLASSIFICATION OF INFLUENZA SEQUENCES 

Introduction  
 

In this chapter, we provide details of related work that we conducted to 

automatically classify flu sequences using n-grams. The results of this work on 

classification have motivated us to perform a comprehensive analysis of correlated 

mutations in IAV sequences.  

Nucleotide sequence variation among genomes of highly variable, fast mutating 

pandemic viruses presents a challenge for systemic classification. Fast, accurate and 

reliable classification of IAV sequences can help determine routes of disease transmission, 

provide therapeutic and clinical decision support, facilitate monitoring for new variants, 

improve our understanding of relationships between IAV diversity and immune response 

and can simplify analysis of treatment-resistant mutations. The gradual increase in number 

of sequences in IRD [29] presents a unique opportunity to apply state-of-the-art machine 

learning algorithms to accurately classify IAV sequences based on specific characteristics. 

To date, most of the work done in this area focused on classifying hemagglutinin (HA) and 

neuraminidase (NA) sequences in IAV with respect to clade and subtype. In this effort, we 

attempted to classify nucleotide sequences of Matrix proteins (M1 and M2), Polymerase 

basic protein 1 (PB1), and Nucleoprotein (NP) along with HA and NA based on multiple 

characteristics – drug resistance, subtype, year of infection, geography and pH1N1 

(similarity to 2009 pandemic H1N1). We feed normalized n-gram frequency counts of IAV 

protein and nucleotide sequences as feature vectors to four different classification 
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algorithms - Random Forest (RF), Support vector machine (SVM), Gaussian naïve bayes 

(GNB) and K-Nearest Neighbors (KNN). We apply this approach on several different data 

sets to perform binary classification. To our knowledge, this is the most comprehensive 

effort up to classify IAV sequences. 

 

Background 
 

Influenza A is among the most extensively studied viruses because of its 

importance as a human pathogen. With a large, public database of genetic sequences, 

Influenza virus offers to be an appropriate system for studying antigenic and genetic drift 

in general. The evolution of Influenza viruses is characterized by frequent re-assortment 

events within subtypes as well as high rates of amino-acid substitutions in several proteins 

including the viral surface proteins HA and NA. Such high evolutionary rates reflect both 

poor fidelity of the viral proteins, and strong selection pressures to evade the human 

immunity and present unique challenges in terms of accurately classifying sequences. 

ClassyFlu is a recently developed tool for the classification of IAV sequences of the HA 

and NA gene into subtypes and phylogenetic clades using discriminatively trained profile 

hidden Markov models [30]. The IRD proposed ‘‘Highly Pathogenic H5N1 Clade 

Classification Tool’’ (IRDCT) as a free web service for the classification of IAV sequences 

into phylogenetic clades. IRDCT is based on phylogeny but keeps the tree of already 

classified sequences fixed.  

In the absence of an effective and widely available Influenza vaccination, Anti-

influenza drugs serve as valuable “second line of defense” to treat Influenza. Two classes 
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of anti-influenza drugs - Adamantanes (amantadine and rimantadine) and Neuraminidase 

inhibitors (oseltamivir and zanamivir) are currently approved by FDA for treatment of 

influenza [31].  Adamantanes act by blocking the ion channel formed by M2 protein and 

inhibiting early stages of virus replication while Neuraminidase inhibitors attenuate patient 

infection by binding to active site on viral Neuraminidase (NA) and blocking its ability to 

infect additional cells. The main drawback of utilizing Adamantanes is that drug-resistant 

variants develop rapidly. A study conducted in 2007 reported a 15.5% Adamantane 

resistance among H1N1 viruses and a much higher percentage for H3N2 viruses isolated 

worldwide in 2005-2006 [32]. A more recent study [33] found that 45.2% of Influenza A 

viruses circulating globally were resistant to Adamantanes and the vast majority of these 

resistant virus bear S31N mutation in M2 protein sequence. Few cases of resistance to 

oseltamivir in strains of the pandemic Influenza A 2009 (H1N1) virus have been reported 

worldwide [34]. In [35], Nguyen et al. reported an Influenza A 2009 H1N1 virus strain with 

laboratory evidence for Oseltamavir & Zanamivir resistance in a 14-year-old girl with 2 

NA mutations (H275Y and I223R). Reports of resistance to NA inhibitors have also been 

reported more recently in H7N9 IAV strains [36], [37].  

We have created a computational approach to detect drug resistance in IAV 

sequences by applying N-gram analysis and machine learning algorithms on data acquired 

from IRD. N-grams have been successfully used for a long time in a wide variety of 

problems and domains including language identification, text categorization, optical 

character recognition and music categorization. N-grams have also been more recently 

applied to problems in computational biology. The method of N-grams was initially applied 
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to large scale clustering of DNA texts [38]. Tomovic et al. computed dissimilarity functions 

of n-grams in HIV-1, HIV-2 and SHIV whole genome sequences to evaluate how 

accurately they could predict the family to which a sequence belonged, reaching an 

accuracy of 99% [39]. Strong correlations between n-gram patterns and secondary structure 

type have been identified based on 3D structures in PDB [40]. Tobi et al suggested that 

recruitment of rare 3-grams may be an efficient mechanism for increasing specificity at 

functional sites [41]. In a more recent study, n-gram analysis was used to classify species 

and to determine to what degree was the identity of the detected n-grams a property of 

phosphosites [42]. In [43], Iqbal et al. used a combination of 1, 2 and 3 grams to create a 

feature vector for classification and feature selection of protein sequence data.  

From an information perspective, each DNA sequence is a linear text over the four-

letter alphabet {A, C, G, T}. There are 256 possible 4-grams (n=4) and 64 possible 3-grams 

(n=3) for a given DNA sequence. Similarly, there are 8000 possible 3-grams for a given 

protein sequence. Our approach uses normalized frequency counts of 3-grams as feature 

vectors in a supervised machine learning model over datasets downloaded from IRD. The 

choice of 3-grams in this work is based on our experiments that showed that 1-grams and 

2-grams do not confer enough specificity while there is no major difference in the 

performance of 3-grams and 4-grams (potentially since some strong signals characteristic 

of 3-grams may be overlooked upon examination of 4-grams). 

In this study, we performed binary classification of input proteins and nucleotide 

sequences using multiple machine learning algorithms. Sequences are classified using 4 

supervised classification approaches: K-Nearest neighbors, Gaussian Naïve Bayes, 
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Support vector machine (linear kernel) and Random Forest. We use the same normalized 

n-gram frequency counts as input for all our classification models. We could classify both 

nucleotide and protein sequences with a high degree of accuracy. In this paper, we have 

presented details of our experiments for our protein data sets and we include a snapshot of 

our results with nucleotide sequences.  

Since the relative rank of a feature (n-gram) used as a decision node in a tree-based 

classification task can be used to assess the relative importance of that n-gram with respect 

to the classification, we performed “feature selection” based on the random forest classifier 

[44] to extract important n-grams to get insights into residue positions that are most 

responsible for classification accuracy. These residue positions are particularly interesting 

for our experiments with “drug resistance” since they provide us valuable information 

regarding potential mutations that are responsible for drug resistance. 

When we observed a high degree of accuracy in classifying disease resistance of 

proteins that are not directly targeted by a specific drug (Adamantanes, Oseltamivir), we 

conducted correlation analysis using a relatively new correlation measure called Maximal 

Information Coefficient (MIC) [27] to identify correlations among mutations between 

proteins in IAV.  MIC is particularly useful for identifying linear and non-linear 

relationships in data with high dimensionality and is finding increasing applicability in 

bioinformatics [45], [46]. We were specifically interested in identifying point mutations in M2 

and NA with high degree of association with mutations in HA and other proteins. 
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Methods 

Data 
DNA and Protein sequences used in this work have been downloaded from 

Influenza Research Database (IRD). Non-redundant Sequences of IAV that are associated 

with specific characteristics (drug resistance, similarity to 2009 pandemic H1N1, 

geography, year, sub-type) have been downloaded after de-duplication. Details of specific 

data sets of protein sequences downloaded for classification are presented in Table 1.  

Table 1 - Datasets used for Classification 

No Classification Classes Protein Sequence Count 

1 Viral 

subtypes 

H1N1, H3N2 HA 500 

2 Viral 

subtypes 

H1N1, H3N2 NA 486 

3 Viral 

subtypes 

H1N1, H3N2 M1 365 

4 Viral 

subtypes 

H1N1, H3N2 NP 500 

5 Drug 

resistance 

Adamantane Resistant, Adamantane 

Sensitive  

HA 228 

6 Drug 

resistance 

Adamantane Resistant, Adamantane 

Sensitive 

M2 28 

7 Drug 

resistance 

Oseltamavir Resistant, Oseltamavir 

Sensitive 

HA 189 

8 Drug 

resistance 

Oseltamavir Resistant, Oseltamavir 

Sensitive 

NA 98 

9 Drug 

resistance 

Adamantane Resistant and Oseltamavir 

Sensitive, Adamantane Sensitive and 

Oseltamavir Resistant 

HA 180 

10 Drug 

resistance 

Adamantane Resistant and Oseltamavir 

Sensitive, Adamantane Sensitive and 

Oseltamavir Resistant 

NA 90 

11 Drug 

resistance 

Adamantane Resistant and Oseltamavir 

Sensitive, Adamantane Sensitive and 

Oseltamavir Resistant 

M1 16 



27 

 

12 Drug 

resistance 

Adamantane Resistant and Oseltamavir 

Sensitive, Adamantane Sensitive and 

Oseltamavir Resistant 

M2 18 

13 Similarity to 

2009 pH1N1  

pH1N1, Not-pH1N1 HA 500 

14 Similarity to 

2009 pH1N1  

pH1N1, Not-pH1N1 NA 500 

15 Similarity to 

2009 pH1N1  

pH1N1, Not-pH1N1 M1 500 

16 Similarity to 

2009 pH1N1  

pH1N1, Not-pH1N1 PB1 500 

17 Geography Asia, North America HA 500 

18 Geography Asia, North America NA 452 

19 Geography Asia, North America NP 114 

20 Flu season 2013-14, 2014-15 HA 418 

21 Flu season 2013-14, 2014-15 NA 317 

22 Flu season 2013-14, 2014-15 PA 50 

 

Pipeline 
 

Our implementation pipeline for classifying IAV sequences using n-grams and 

machine learning algorithms consisted of multiple steps. Python has been used as the 

programming language for implementation of this computational pipeline. This pipeline 

begins with a data cleansing and preparation step where sequences are parsed and extracted 

from two fasta files using features in biopython [47]. After appropriate cleansing and de-

duplication, normalized 3-gram frequency matrices are computed for both the input files. 

Note that a single input fasta file consists of one class of data (listed in Table 1) and this 

pipeline does not expect aligned sequences. These 3-gram frequency counts are then used 

as feature vectors by classifiers in the next step as part of a training step to create a model 

that is iteratively tuned and finally tested using 10-fold cross validation. Four different 

classifiers based on Random Forest (RF), Support Vector Machine (SVM), K-Nearest 
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Neighbors (KNN) and Gaussian Naïve Bayes (GNB) algorithms are used to classify the 

data and results are depicted and compared using roc plots. 67% of input data has been 

used for training and the remaining 33% has been used for testing the model. 

N-grams and feature extraction 
 

After downloading appropriate DNA & protein sequence data from IRD, a python 

program computed 64 (normalized) 3-gram frequency counts for each of the DNA 

sequences and 8000 (normalized) 3-gram frequency counts for proteins sequences. These 

frequency counts are used as the feature vector for automated classification.  

Automated classification 
 

Automated binary classification of feature vectors was performed using python 

libraries in scikit-learn [48], [49]. Binary classification of feature vectors was separately 

conducted using four different classification methods – RF, SVM (linear kernel), KNN and 

GNB. A training, test split of (0.67, 0.33) was used for all the methods. We have used 

normalized frequency counts of 3-grams for all classifications. ROC plots have been 

created against the original test labels and predicted labels. A plotting package in python 

called matplotlib [50] has been used for creating ROC plots. Efficiency of the models were 

also evaluated using 10-fold cross validation. 

Correlations 
 

Adamantine and oseltamivir resistance in IAV strains was mainly attributed to 

mutations in M2 and NA proteins respectively. Our classification accuracy results for drug 

resistant and drug sensitive strains yielded a high accuracy rate for proteins other than NA 
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and M2 and this led us to explore potential correlations between mutations in NA/M2 and 

other proteins. We have used a python implementation of MIC called minepy [51] to 

calculate pair-wise correlations in mutations between residues in two proteins. The overall 

pipeline for computing MIC-based correlations is comprised of the following steps. First, 

we downloaded aligned protein sequences of HA, M1, M2, NA and NP for H1N1 strains 

that are “adamantine resistant and oseltamivir sensitive” in fasta format from IRD.  

Sequence combinations of two proteins from the above set of proteins ([HA, M1], [HA, 

M2], [HA, NA], [HA, NP], [M1, M2]) were read by a python program. Strains that 

contained sequences for one protein but not the other are discarded and only strains with 

sequences from both the proteins are considered for downstream processing. For each 

position i of a given protein (in the two proteins), the type of amino acid s of the multiple 

sequence alignment is represented by a binary variable xi(s) where xi(s) = 1 if the amino-

acid is the most frequent amino acid at this position within the MSA, and xi(s) = 0 if it is 

another amino acid. Inter-residue pair-wise maximal information coefficient was 

calculated between residues in the two proteins using minepy. As an example, MIC scores 

for each of the 568 positions in HA are evaluated with respect to each of the 254 positions 

in M1. 

 

Classification Results 
 

To classify IAV sequences, we executed our pipeline for several different data sets. 

The experiments were arranged into multiple groups based on the specific classification 

type: year of infection, subtype, geography, similarity to 2009 pandemic H1N1 virus and 
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drug resistance. In each of these experiments, protein and nucleotide sequences from IRD 

were used as data sets. Results for protein and nucleotide data sets are included in this 

section. We primarily focused on binary classification problems in our experiments. Based 

on results from our preliminary tests, we used 3-grams in all our experiments. Efficiency 

of our models was evaluated using 10-fold cross validation, and (balanced) accuracy results 

of our classification runs were graphically depicted. 

Drug Resistance 
 

Classification of strains based on known drug resistance attributes was performed 

with accuracy results nearing 100% with all four methods. We performed three separate 

experiments to perform classification based on drug resistance. In our first experiment, we 

classified adamantine resistant and adamantine sensitive strains of M2 and HA proteins. In 

our second experiment, we classified oseltamivir resistant and oseltamivir sensitive 

sequences of NA and HA and for our final experiment, we attempted to classify 

‘adamantane resistant and oseltamivir sensitive’ and ‘adamantane sensitive and oseltamivir 

resistant’ sequences of HA, NA, M1 and M2 proteins. These experiments resulted in a 

near-100% classification accuracy.  
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Figure 4 - Classification accuracy for oseltamavir resistant vs oseltamavir sensitive sequences of HA and NA using four 

different classification algorithms 

Figure 5 - Classification accuracy for adamantane-resistant, oseltamavir-sensitive vs adamantane-sensitive, oseltamavir-

resistant sequences of HA, NA, M1& M2 using four different classification algorithms 

Figure 3 - Classification accuracy for adamantane resistant vs adamantane sensitive sequences of HA and M2 using four 

different classification algorithms 
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To understand the most significant 3-grams that are responsible for this clear split, 

we used random forest classifier to perform feature selection. Since the anti-viral activity 

of Adamantane has long been associated with its ability to bind and block the ion channel 

protein M2, we were particularly interested in the features used for classifying the M2 

protein sequences. Table 2 provides a list of these 3-grams along with the most common 

location of the 3-gram in M2 sequence and clearly highlights that the features that are used 

by ‘random forest’ classifier are closely related to known drug-resistant mutations in M2. 

Most notably, our top 10 features contained multiple 3-grams that contained residue #31 

(which is the site for S31N mutation that is known to be the most significant for drug 

resistance).  In a similar manner, we performed feature selection for Oseltamavir resistant 

and Oseltamavir sensitive strains of NA, since Oseltamavir is known to be a NA inhibitor. 

Again, our top 10 features (listed in Table 3) contained multiple 3-grams that contained 

residue #275 (which is the site for H275Y mutation that is linked to drug resistance). This 

link between significant 3-grams and known mutations in M2 and NA validates our overall 

approach. 
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Table 2 - Important features in M2 (based on AD resistance vs AD sensitivity) 

No. 3-gram Position in M2 sequence Known Mutations 

1 ANI 30,31,32 S31N, A30T 

2 YRE 76,77,78  

3 NII 31,32,33 S31N 

4 SII 31,32,33 S31N 

5 GIV 34,35,36 G34E 

6 LHL 36,37,38 L38F 

7 LFS 46,47,48  

8 GIL 34,35,36 G34E 

9 FKC 48,49,50  

10 VHL 36,37,38 L38F 
 

 

Table 3 - Important features in NA (based on OS resistance vs OS sensitivity) 

No. 3-gram Position in NA sequence Known Mutations 

1 YYE 275,276,277 H275Y 

2 NFY 273,274,275 H275Y 

3 SIE 266,267,268  

4 IVM 287,288,289  

5 GEG 331,332,33  

6 DGM 186,187,188  

7 MGW 188,189,190  

8 HYE 275,276,277 H275Y 

9 FYY 274,275,276 H275Y 

10 NQR 50,51,52  
 

 

 

 

To visualize these mutations, we created weblogos [52] of sequences around the 

position of interest. These logos depicted in Figure 6, Figure 7 & Figure 8 provide a good 

visual illustration of the differences between the drug sensitive and drug resistant proteins 

around the most significant 3-gram. 
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To further confirm the accuracy of our results, we created a control data set by 

shuffling the frequency counts for each sequence. ROC plots created using original datasets 

and control (random) datasets (depicted in Figure 9 and Figure 10) show an AUC close to 

1 for original datasets and much lower AUC values for control datasets, indicating 

Figure 6 - weblogo for a 10-residue segment around the most significant 3-gram (227/228/229) in HA 

Figure 7 - weblogo for a 11-residue segment around the most significant 3-gram (274/275/276) in NA 

Figure 8 - weblogo for an 8-residue segment around the most significant 3-gram in M2 
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significance of our results.  We performed a similar validation by shuffling the labels 

(instead of the feature vectors) of the two classes and observed a similar decrease in AUC.  

 

 

 

 

 

 

Figure 9 - ROC plots based on classification of AD resistant and AD sensitive sequences of HA, values in 

parenthesis represent area under curve (AUC) 
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Viral Subtypes 
 

Classification of IAV sequences into viral subtypes H1N1 and H3N2, resulted in a 

clear split with classification rates consistently approaching 100% with all four 

classification algorithms for HA, NA, NP and M1 proteins. These accuracy results are 

depicted in Figure 11. 

 

 

 

Figure 10 - ROC plots based on classification of OS resistant and OS sensitive sequences of NA, values in 

parenthesis represent area under curve (AUC) 

Figure 11 - Classification accuracy for H1N1 vs H3N2 classification 
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Geography 
 

10-fold cross-validation accuracy for classification of IAV sequences of HA, NA 

and NP proteins based on geographic location (North America & Asia) ranged between 

60% and 80% indicating that there is substantial difference between results based on the 

classification algorithm. To reduce noise, we selected sequences of H1N1 subtype and 

sequences from years 2011 to 2014 for both data sets. Classification accuracy was lower 

for NP compared to HA and NA proteins. These accuracy results are depicted in Figure 12. 

Based on these results, it can be inferred that there are important differences in sequences 

(of HA and NA) in circulation among humans in Asia and North America. 

 

 

 

Flu season 
 

Classification between strains of IAV from a specific geographic location for two 

consecutive flu seasons (2013-2014 vs 2014-2015) proved to be moderately accurate 

confirming a known hypothesis (that there are substantial mutations in sequences of IAV 

from year to year). Results for HA and NA are better when compared to PA, again 

confirming our existing understanding that there are more mutations in surface proteins. 

Figure 12 - Classification accuracy based on geographic location 
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ROC curves generated by the classification yielded good results with an area close to 1 

under the curve. These results correlate well with IAV’s ability to swiftly mutate between 

consecutive flu seasons. 

 

 

 

 

Similarity to 2009 pH1N1 
 

Classification of strains based on similarity to 2009 pandemic H1N1 was performed 

with an accuracy rate close to 100% for HA, NA, PB1 and M1 sequences. These results 

are depicted in Figure 14 for HA, NA, M1 and PB1 proteins. 

 

 

Figure 13 - Classification accuracy for 2013-14 vs 2014-15 sequences 
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Figure 14 - Classification accuracy for protein sequences based on pH1N1 similarity 
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Classification of DNA sequences 
 

We were also able to classify DNA sequences with a high degree of accuracy using 

the same pipeline elucidated in section 3.2. We fed (normalized) 3-gram counts as feature 

vectors to our classification models and could perform binary classification with similar 

accuracy levels as in protein sequence based classification. Classification accuracies for 

distinguishing sequences based on drug resistance and flu season are depicted in Figure 15 

and Figure 16 respectively. 

 

 

 

Figure 15 - Classification accuracy for adamantane-resistant, oseltamavir-sensitive vs adamantane-sensitive, oseltamavir-

resistant DNA sequences of HA, NA, M1& M2 using four different classification algorithms 
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Classification of protein sequences using a reduced 3-letter alphabet 
 

We have also attempted to classify IAV protein sequences using reduced 3-letter 

alphabets detailed in [53], [54]. We modified our pipeline by adding an additional step to 

convert the protein sequences to reduced (3-letter) alphabets and computed a feature vector 

comprising 27 normalized 3-gram frequency counts. Our classification results were at or 

below 50% for both the original and control data for all the 22 data sets listed in Table 1 

suggesting loss of important differentiating information when we converted the original 

protein sequences to 3-letter alphabet. 

 

Correlations 
 

Approximately 300 FASTA aligned sequences of adamantine resistant and 

oseltamavir sensitive strains of HA, M1, M2, NA and NP sequences are downloaded from 

IRD. Sequence lengths of HA, NP, NA, M1, M2 proteins are 568, 500, 472, 254 and 99 

respectively. Inter-residue ‘Maximal Information Coefficient’ is calculated for residues in 

Figure 16 - Classification accuracy based on year of infection for HA, NA, M1& M2 DNA sequences using four different 

classification algorithms 
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all possible combinations of two proteins from the above set of proteins ([HA, M1], [HA, 

M2], [HA, NA], [HA, NP], [M1, M2]).  

Figure 17 and Figure 18 provide two visualizations of the MIC based correlation 

scores. In these plots, MIC scores are plotted using a sequential color map where there is a 

clear progression from lighter shades of grey (for lower MIC values) to brighter shades of 

grey (for higher MIC values). Figure 17 depicts pair-wise correlation scores for (NA, HA) 

and (NA, M1) proteins and Figure 18 provides a similar visualization for (HA, M1) and 

(HA, M2) proteins. These plots clearly illustrate that there are several correlated mutations 

between these proteins and confirm our hypothesis that these correlations among mutations 

can potentially be the reason for our ability to classify drug resistance in proteins that are 

not directly targeted by the drug. 

 

 

Figure 17 - MIC inter-residue correlation scores between NA, HA and NA, M1 proteins. x and y axis represent residue 

numbers within that protein 
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Discussion 
 

N-gram analysis coupled with supervised classification algorithms to distinguish 

between strains of IAV proved to be successful. We created a software pipeline in Python 

and applied it to classify protein and nucleotide sequences of IAV that we downloaded 

from IRD. Using this approach, we could perform binary classification to distinguish 

sequences from different subtypes, (consecutive) flu seasons, geographic locations (Asia 

vs North-America), similarity to 2009 pandemic H1N1 and most importantly drug 

resistance. We could classify sequences of HA, NA, M1, M2 and NA based on their 

resistance to Adamantane and Oseltamavir with a near 100% accuracy. Using Random 

Forest classifier, we identified the most significant features (3-grams) in NA and M2 

sequences and could confirm a strong linkage between these features and known drug 

resistant mutations in these proteins. 

  

 

Figure 18 - MIC inter-residue correlation scores between NA, H1 and NA, M1 proteins. x and y axis represent residue 

numbers within that protein 
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CHAPTER 4 - LITERATURE REVIEW 

In this chapter, we will cover details of prior related research. Our literature review 

can be broadly classified into three main areas –  

1. Analysis of correlated mutations in genomic and proteomic datasets  

2. Application of network analysis to understand structural dynamics of 

biological systems  

3. Other relevant literature covering topics like 

a. Application of Maximal Information Coefficient (MIC) to 

understand non-linear associations in biological datasets 

b. Use of “correlation coefficient” as a weight measure in creation of 

networks 

c. Vaccines, Anti-viral drugs and Epidemiology of Influenza 

Correlated Mutations 
 

Several studies have been conducted up to date, to understand correlated mutations 

within proteins. The tendency for correlated mutations to indicate contacts between two or 

more residues was originally reported in 1994 [5]. In [55], authors show that a direct 

contact is more likely to be present when the correlation between the positions is strong at 

the amino acid level but weak at the codon level. Most methods that predict protein contacts 

between residues based on correlated mutations tend to have a high false positive rate. In 

[56], authors reported a new implementation where selection rules are applied to improve 

the overall accuracy. In 2013, Tayler et al. [57] conducted a thorough review of research 



44 

 

conducted in the field of contact prediction from correlated substitutions and also discussed 

applications of prior work to protein and RNA structure prediction. In [58], authors report 

a novel method called PSICOV that uses sparse inverse covariance estimation to perform 

protein contact prediction. In [59], Weigt et al. employed a combination of covariance and 

global inference approaches to successfully identify directly correlated residue pairs.  

Apart from contact prediction, there were several efforts that have been reported 

that focused primarily on algorithms and methods to identify correlated mutations. One of 

the earlier works [60] employed a conditional approach using 2*2 frequency tables, to 

detect correlated mutations in V3 loop of the envelope gene from human 

immunodeficiency virus (HIV).  Fares et al. created a tool called CAPS (coevolution 

analysis in protein sequences) that identifies co-evolution between amino acid sites in a 

protein sequence using blosum distance measures [61]. In [62], Wang and Lee elucidated 

a computational methodology based on analysis of synonymous and non-synonymous 

mutations to distinguish background linkage disequilibrium (LD) from covariation due to 

selection pressure. In 2008, Correlated mutations in HIV-1 protease were analyzed using 

spectral clustering of covariance matrices [63]. In a 2009 study [64], Andrec et al. 

developed a probabilistic approach based on degree of connected information, to identify 

second and higher order correlations within HIV-1 protease. Mao et al. provided a 

comprehensive comparison of existing approaches for detecting coevolution [65]. 

Majority of studies done up to date in this area have focused on residue contact 

prediction and structural implications of correlated mutations and not much work has been 

reported on potential phenotypic implications.  Kowarch et al [8] have conducted an 
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analysis of disease causing correlated mutations in humans to prove their hypothesis that 

conservation and co-evolution of residues in a protein influences the likelihood of a residue 

to be functionally important. 

In [66], Hu analyzed sequences from 2009 H1N1 Influenza pandemic, and 

identified two networks of co-mutations that may potentially affect the flu-drug binding 

sites on neuraminidase (NA). Hu also explored host differentiation and co-mutations in M, 

NS and PB1 of avian, human, 2009 H1N1 and swine viruses with random forests, 

information entropy and mutual information [67]. In [68] Hu analyzed co-mutated sites 

within and between four important proteins – NP, PA, PB1 and PB2 of avian, human, 

pandemic 2009 H1N1, and swine flu using mutual information, based on which several 

highly connected networks of correlated sites in NP, PA, PB1 and PB2 were discovered. 

[69] employed concepts from ‘random matrix theory’ to determine collectively coevolving 

groups of residues in HIV Gag polyproteins. It has also been demonstrated in a more recent 

work that evolution in human Influenza A is mainly driven by dynamically correlated 

mutations [70]. [71] performed evolution analyses to illuminate dependencies between 

amino acid sites in the chaperonin system GroES-L. In [72], Giuliani et al. demonstrated 

the possibility to predict correlated mutations in a single protein system (Hepatitis C Virus 

NS5B viral RNA polymerase protein) using a combination of supervised (discriminant 

analysis) and unsupervised (principal component analysis) approaches.  

During our literature survey, we have seen very few efforts where computational 

tools and/or web applications have been developed to help detection and analysis of 

covarying substitutions. Interprotein Correlated Mutation Server (ICOMS) was developed 
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to estimate covariation between residues of different proteins by using 4 different 

covariation methods [73]. In a separate effort, Li et al. developed a stand-alone 

R/Bioconductor package called CorMut to detect the correlated mutations among positive 

selection sites [74].  

Network Analysis 
 

The concepts of network theory have been applied to the study of protein structure 

and function with promising results.  

Protein-protein interaction networks, regulatory networks and signal transduction 

networks (collectively termed as Protein networks) are typically designed to model 

interactions between proteins or other macro molecules while Protein structure networks 

represent interactions between segments of a protein [75]. Majority of studies conducted 

up to date in protein structure networks focused on analysis of amino acid interactions 

where the network elements are amino acids and edges are created between two nodes if 

the distance between them is below a given threshold.  

We have reviewed several works where network analysis was applied to model 

biological networks and more specifically literature where concepts of correlation have 

been applied to model interactions between biological elements. In [76], authors reported 

an integrative strategy combining quantitative genetic mapping and metabolite-transcript 

correlation networks to identify functional associations in Arabidopsis Thaliana. 

Batushansky et al. [77] introduced a series of methods for correlation based network 

generation and analysis using freely available software, and applied their methods on 

metabolomics data of a population of human breast carcinoma cell lines. In a more recent 
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study conducted by Toubiana et al., [78], Correlation-based Network Analysis (CNA) was 

conducted to investigate the natural variability of leaf metabolism and enzymatic activity 

in a maize inbred population. In most of these biological networks created from CNA, 

vertices typically represented molecular elements (example: genes, proteins, metabolites) 

and edges represented a correlation coefficient between the elements.  

The other category of work that we reviewed was in the area of protein structure 

networks where residues in proteins act as vertices and we noticed that most of the efforts 

relied on energy or distance measures to create edges. [79] studied protein stability by 

constructing a network of non-covalent connections between amino acid side chains. In 

[75], Bode et al. reviewed results of topological analysis of protein structures as molecular 

networks describing their small-world non scale-free character. Estrada [80] proposed a 

modification of Watts-Strogatz model [81] to describe protein residue networks. He studied 

595 non-homologous proteins and concluded that they exhibit universal topological 

characteristics. In their model, Gaci and Balev [82] created edges between amino acids if 

the distance between Cα atoms is less than 7Å and they identified a number of general 

properties of these distance-based networks. They also introduced the term “Amino-acid 

Interaction Networks” to broadly describe networks that are created based on interactions 

between amino acids. In a subsequent research publication [83], Gaci provided a 

topological description of hubs in Amino-acid Interaction Networks. We have seen very 

few previous studies where network analysis was conducted based on correlations between 

residues, and more specifically we did not come across any efforts that focused on 

comprehensive network analysis based on correlated mutations among residues in proteins 
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in Influenza. A study published in 2008 by Du et al. [84] attempted to understand the 

dynamics of H3N2 evolution by constructing and analyzing nucleotide co-occurrence 

networks. Hu’s analysis reported in 2009 [68]  used ‘Mutual Information’ to quantify 

correlation of sites within 4 Influenza proteins (NP, PA, PB1 and PB2) and uncovered 

interaction patterns but did not apply broader principles from graph theory and network 

analysis. 

 

 



49 

 

CHAPTER 5 - DATASETS 

We have downloaded several datasets from Influenza Research Database (IRD) 

(http://www.fludb.org) [29] during the course of this dissertation. The IRD is a free, open, 

publicly-accessible resource funded by the U.S. National Institute of Allergy and Infectious 

Diseases through the Bioinformatics Resource Centers program. IRD provides a 

comprehensive, integrated database and analysis resources for Influenza sequence, 

surveillance, and research data, including user-friendly interfaces for data retrieval, 

visualization, and comparative genomics analysis, together with personal log in-protected 

‘workbench’ spaces for saving data sets and analysis results. In this chapter, we provide an 

overview of options we picked and steps we followed to download the data along with few 

screenshots. We also provide a listing of different datasets. 

Workflow 
 

We have only used “strain” data from IRD to perform network analysis of 

correlated mutations. For each dataset that we downloaded, this is the sequence of steps we 

followed. 

1. We searched for ‘strains’ using the Search Data  Search Sequences  

Strain Data from IRD’s main menu. 

2. Based on the specific dataset that we are interested, we selected specific 

options that are generally depicted in Figure 19. For all our datasets, we 

have always selected strains of Influenza A with complete genome only and 

we limited our search results to strains from a pure sub-type (excluding all 

http://www.fludb.org/
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mixed sub-types). We have not limited our search results to either a 

geographic grouping or a country. The ‘sub type’, ‘host’ and ‘flu season’ 

varied for each of our datasets. 

3. After selecting appropriate options, we submit our search and select the 

results in the following screen. We download the strains in ‘Protein 

FASTA’ format. This will result in a single FASTA file that contains 

sequences of all the 10 proteins that we are interested in. Figure 20 and 

Figure 21 depict these steps of the workflow. 

 

Figure 19 - Search options in the IRD 
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Figure 20 - Search Results in the IRD 
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Figure 21 - Download Results in the IRD 

 

Details of Datasets 
 

The primary datasets that we used in this work (listed in Table 4) were downloaded 

from the IRD using the workflow explained in previous section. The number of strains 

listed in this table is the number of unique strains after de-duplicating and the procedure 

we used to remove duplicate strains is explained in next chapter under Preprocessing 

section. Unless mentioned explicitly, these datasets have been downloaded in 01/2017. 

Table 4 – Primary Datasets used for Network Analysis of Correlated Mutations 

NAME #STRAINS COMMENTS 

HUMAN_H1N1_ALL 1769 Human H1N1 strains from all years, maximum 

300 strains per year 

HUMAN_H3N2_ALL 1940 Human H3N2 strains from all years, maximum 

300 strains per year 
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SWINE_H3N2_ALL 794 All available Swine H3N2 strains 

SWINE_H1N1_ALL 1096 All available Swine H1N1 strains 

AVIAN_H5_ALL 1463 All available Avian H5 strains 

H7N9_ALL 434 All available H7N9 strains 

HUMAN_ALL 9716 All available Human H1N1 strains downloaded 

in 10/2016 
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CHAPTER 6 - COMPUTATIONAL TOOLS AND LIBRARIES 

Before we delve into the details of computational methodology and pipeline, we 

provide a listing of software tools and libraries used in our dissertation in this chapter to 

provide additional technical context. From a computational perspective, we have embraced 

the following tenets in choosing appropriate tools and technologies during this work. 

1. We have used Python as the core programming language throughout the 

course of this work since Python provided the most robust and extensive set 

of open source libraries and tools for our end-to-end computational 

requirements that included data processing, scientific computations, 

network analysis, visualizations and web application. In a nutshell, the use 

of Python obviated the need to use multiple frameworks and/or 

programming languages during this work. At the same time, we have made 

meaningful exceptions to the use of Python wherever we felt that there is a 

gap in capabilities in the python eco system. 

2. We have used only open-source tools and libraries during this work. This 

decision was made because there is sufficient quality and choice in the 

available tools and libraries in the open-source landscape, and to reduce the 

overall cost of the project. 

3. We have attempted to reuse existing libraries wherever possible as opposed 

to building our own. From the very inception, we have acknowledged that 

this is an initiative that will focus on application of existing computational 
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methodologies and algorithms to biological datasets as opposed to 

developing such methodologies and/or algorithms. More importantly, our 

initial research quickly proved to us that there is sufficient maturity in the 

existing open-source software landscape that either meets or exceeds our 

requirements. 

We created our data analysis pipeline using the following open-source tools and 

libraries based on the above guiding principles. 

 Table 5 - Computational Tools and Libraries 

NAME ADDITIONAL COMMENTS 

Anaconda [85] Anaconda is a distribution of Python for large-scale data processing, 

predictive analytics and scientific computing. It includes a collection 

of about 200 open source packages. Additional packages are 

available through contributed channels or through installation using 

a package manager. Anaconda obviates all issues surrounding 

installation of packages and use of multiple python versions and/or 

environments. 

 

For our work, we have used Anaconda 4.1.1 with Python 3.5.2. 

Numpy [86] Numeric Python (Numpy) is an open-source add-on module to 

Python. Numpy module provides pre-compiled basic mathematical 

and numerical routines for manipulating arrays and matrices of 

numeric data. 

 

We have used numpy version 1.11.1 in our work. 

MUSCLE [87] MUSCLE is a program for creating multiple alignments of amino 

acid or nucleotide sequences. A range of options is provided that 

give you the choice of optimizing accuracy, speed, or some 

compromise between the two.  

 

We have used 3.8.31 command-line version of MUSCLE to align 

sequences. 

Neo4j [88] Neo4j is a native ACID-compliant transactional graph database, 

designed by Neo Technology to store and process graphs from 

bottom to top. Neo4j graph database follows the ‘Property Graph 

Data Model’ to store and manage its data. Cypher is a declarative 
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query language (originally created for Neo4j) that allows for 

expressive and efficient querying and updating of a property graph. 

 

In our dissertation, we have used neo4j community edition 3.1.0 to 

store IAV correlated mutation graphs and Cypher query language to 

query the database. 

PyCharm [89], 

[90] 

PyCharm is an Integrated Development Environment (IDE) for 

developing python applications. PyCharm’s collection of out-of-the-

box tools include an integrated debugger, code completion utility, 

test runner, integration with Git and PyCharm provides native 

support for python web development frameworks and JavaScript 

libraries. 

 

As part of this effort, we have used 2016.2.2 version of PyCharm 

(Professional Edition for Students)  

Flask [91], 

[91], [92] 

Flask is a micro framework for Python web applications. Flask is 

built with a small core and is easy to extend. 

 

We have used Flask (version 0.11.1) to create a web application to 

search and analyze correlated mutations in IAV strains. 

Networkx 

[93], [94] 

NetworkX is a Python package for the creation, manipulation, and 

study of the structure, dynamics, and functions of complex 

networks.  

 

While most of our graph related work was performed using Neo4j 

and Cypher, we have also used capabilities in Networkx (version 

1.11) to create a graphml file for (import and) stand-alone analysis 

using Gephi. 

Gephi [95] Gephi is a stand-alone open-source network analysis and 

visualization tool. Gephi can be installed on both windows and linux 

platforms. After a graph is created (using an alternate library like 

networkx), Gephi allows us to import, analyze and visualize that 

graph.Gephi uses a 3D rendering engine to display large networks in 

real-time and to speed up the exploration.  

 

After creating graphml files of correlated mutation networks using 

networkx, we used Gephi (version 0.9.1) primarily to create 

compelling visualizations of the network and in some cases to 

perform preliminary analysis to understand network topology and 

view centrality distributions. 

Bokeh [96] Bokeh is a Python interactive visualization library that targets 

modern web browsers for presentation. 

 



57 

 

We have used Bokeh (version 0.12.0) charts to create visualizations 

of node counts and edge counts vs MIC threshold values, for 

different datasets. 

Matplotlib [97] Matplotlib is a Python 2D plotting library which produces 

publication quality figures in a variety of hardcopy formats and 

interactive environments across platforms.  

 

We have used Matplotlib (version 1.5.1) plotting features to create 

macro plots to depict node and edge density for each of the 10 

proteins. 

py2neo [98] Py2neo is a client library and toolkit for working with Neo4j from 

within Python applications. 

 

We have used Py2neo for both loading the graph database with node 

and relationship data, and for querying the database. 

minepy [99] Minepy is an open-source implementation of the MIC algorithm in 

python. 

 

As part of this dissertation, we performed all our MIC calculations 

using minepy to detect non-linear relationships between residues in 

proteins. 

Biopython [47] Biopython provides a collection of modules and scripts for 

developers of Python-based software for bioinformatics use and 

research. Biopython comes with reusable modules for parsing 

various bioinformatics file formats (BLAST, FASTA, Clustalw, 

PDB) and for interfacing with common programs used by the 

bioinformatics community.  

 

In this effort, we availed Biopython’s features for reading, parsing 

and writing alignments. 

sigma.js [100] Sigma is a JavaScript library dedicated to graph drawing. It makes 

easy to publish networks on web pages and allows developers to 

integrate network exploration in web applications. 

 

We created sigma.js visualizations of the entire network for each of 

our datasets to enable easy exploration of the graph. 

Twitter 

Bootstrap 

Bootstrap is a Cascading Stylesheets (CSS) framework that helps 

creation of sleek, intuitive front-ends for web applications. 

scikit-learn 

[48] 

scikit-learn provides a unified API for most supervised and 

unsupervised machine learning algorithms, along with utilities and 

meta-algorithms to help create an end-to-end machine learning 

pipeline to tie everything together. 
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CHAPTER 7 - IMPLEMENTATION DETAILS 

In this chapter, we will provide details of the computational pipeline that we created 

to perform network analysis of correlated mutations in IAV strains. We will start with a 

high-level description of our methodology and central themes of our design. We will then 

provide a schematic of the main components before going into details of the pipeline for 

each of the components.  

Core Themes 
 

Before we go into specifics of our implementation, it is important to understand the 

core underlying themes of our computational methodology.  

Modularity 
 

First and foremost, we have focused on modularity of our overall solution and 

ensured that there are discrete reusable components in our pipeline with separate functions. 

This allowed us to test individual components before wiring them together to create an 

integrated solution. This approach also allowed us to try different techniques for 

implementation of specific components with ease.  

Best of breed 
 

Next important tenet that was integral to our methodology was to use a ‘best of 

breed’ approach when it comes to the choice of appropriate tools and technologies. From 

the choice of appropriate visualization libraries and/or tools to using the right paradigm for 

‘network analysis’ and picking a simple (but sufficiently robust) web application 
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framework, we adhered to a ‘best of breed’ philosophy taking our requirements into 

consideration. 

Visualizations 
 

Creation of compelling visualizations is key to any analysis. We have placed 

emphasis on depicting the results of our analysis using appropriate visualizations wherever 

appropriate. 

Extensibility 
 

From the very outset, we have ensured that the solution that we are designing will 

be extensible in nature and sufficiently generic. The ability to run the end-to-end pipeline 

for additional datasets without having to make changes to parts of the overall pipeline 

provided a degree of robustness to our solution and increased its applicability. While we 

started the initiative with datasets that are specific to Human IAV strains, we could quickly 

extend the solution to Swine and Avian datasets without additional complexity. 

Graph Database 
 

During this dissertation, we realized that there is tremendous value in storing our 

graphs in a database. This not only allowed us to separate the ‘graph creation’ aspect of 

our pipeline from subsequent analysis steps but also provided a flexible mechanism to 

extend the solution to additional datasets and data. We looked at available options and 

decided to use Neo4j graph database to store correlated mutation graphs. 

Sequence Encoding 
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For us to compute correlations among mutations using a correlation coefficient like 

MIC, encoding the protein sequences to a numeric format is a required step. We have 

looked at several options for encoding and decided to go with a simplistic Boolean notation 

that was used in previous works [69]. While there are some inherent drawbacks in this 

approach (like the lack of differentiation between mutations that are more significant and 

less significant), this method tends to not be biased and is generic enough for our broad set 

of datasets where the specific context of a mutation is not known. Additional details of this 

notation are included in the section titled MIC Computation. 

Web Application 
 

We created a web application called NACMI (Network Analysis of Correlated 

Mutations in Influenza) to show results of our work. Functionality in this application can 

be broadly sub-divided into two categories. First, this application allows end-users to view 

topN nodes, edges and triplets in networks corresponding to individual datasets based on 

data available in a graph database, along with a feature to search for edges corresponding 

to specific residues in a protein. Second, this application provides static pre-computed 

visualizations of degree & clustering coefficient distributions, MIC distribution, entropy 

plots, interactive visualization of networks at 0.5 threshold and protein-level correlated 

networks. The combination of these two functionalities should allow users to 

comprehensively understand the overall characteristics of correlated mutation networks of 

IAV datasets. 

Pipeline 
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Figure 22 provides a high-level schematic of our overall pipeline. We begin with a 

preprocessing step where we download and preprocess the data for downstream processing. 

The next step in our pipeline computes MIC correlations between residues in various 

proteins and generates CSV files with MIC scores. We then invoke a ‘graph creation’ sub-

flow to create a correlated mutation graph. The ‘graph analysis’ sub-flow is responsible for 

creating necessary visualizations and performing appropriate analysis. As a final step, we 

perform post-processing to gain additional insights and to contextualize out results. We 

have designed and implemented our pipeline in a manner that allows us to run it 

consistently for all datasets that we download from IRD. 

 

 

Figure 22 – Overall Pipeline for Network Analysis of Correlated Mutations. 

 

 

Preprocessing 
 

Figure 23 depicts the various steps of our preprocessing workflow. After searching 

for strains for a required dataset in IRD, we downloaded the strains as a single FASTA file. 

Since this FASTA file contains sequences from multiple IAV proteins, we split it into 10 

separate FASTA files containing protein sequences for HA, NA, M1, M2, NP, PA, NS1, 

NS2, PB1 & PB2 proteins. We aligned these sequences using the MUSCLE alignment 

program. We then performed de-duplication of the sequences across strains by 
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concatenating the sequences of all 10 proteins for a given strain and looking for a 100% 

match. Strains with duplicate sequences are discarded. We generated 10 FASTA files with 

sequences for each of the 10 proteins after de-duplication. 

 

 

Figure 23 – Preprocessing step where strains of IAV are downloaded, de-duplicated and split into individual 

protein-specific sequence files to enable downstream processing 

 

MIC Computation 
 

In our MIC-Computation pipeline (depicted in Figure 24), we computed pair-wise 

MIC correlation coefficient between residues in IAV proteins. We have focused our efforts 

only on correlations between inter-protein correlations and therefore we did not compute 

correlations between residues within a protein. For a set of 10 proteins, we have a total of 

45 combinations of these proteins. This pipeline is invoked once for each combination 

(examples: [HA, NA], [M1, M2], [NP, NS1], [NA, PB1]) of proteins. There are two steps 

in this sub-flow that requires elaboration. First, we must matched the strains from the two 

FASTA files and create matrices that can be used for pair-wise MIC computation. Second 

is an important step where the sequences in the matrices must be converted to a Boolean 

[0,1] format based on the following convention: For each position i of a given protein (in 

the two proteins), the type of amino acid s of the multiple sequence alignment (MSA) is 

represented by a binary variable xi(s) where  
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xi(s) = 1 if the amino-acid is the most frequent amino acid at this position within 

the MSA  

xi(s) = 0 if it is another amino acid. 

xi = 0 for all sequences in the MSA if number of gaps at position i exceeds 10% 

Before we computed MIC, we also discarded all positions with zero variance to improve 

the speed of computation. We computed MIC between 2 residue positions using functions 

in minepy library [99]. We created two sets of csv files, the first set consisted of data for 

all MIC scores greater than 0.1 and the second set consisted of data for all MIC scores 

greater than 0.5. 

 

 

Figure 24 - MIC Computation pipeline where pairwise residue MIC computation is performed between residues 

in two proteins 

 

Graph Creation 
 

Graph Creation sub-flow is responsible for creating correlated mutation graphs for 

each of our datasets. Our approach for the design of this sub-flow was to create graphs that 

would provide the best analysis capabilities, and we decided to create these graphs using 

two different methods and tooling to realize that objective. We created property graphs in 

a Neo4j graph database as our first method since this approach gave us a great deal of 
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(querying) flexibility and ability to scale (for additional datasets). For our second approach, 

we created ‘graphml’ files that represented our mutation graphs and this allowed us to 

exploit features in Gephi for visualization and analysis of global characteristics. Figure 25 

depicts this workflow with two separate branches for our two approaches. We stored all 

nodes and edges where MIC > 0.1 in neo4j database since we were interested in 

understanding the overall node and edge counts for different cutoffs. We used a MIC value 

of 0.5 as the notional threshold where the correlation is significant, and hence created 

“graphml” files based on csv files generated using a 0.5 threshold for MIC. 

 

 

Figure 25 - Graph Creation pipeline where graphs are created based on inter-residue correlated mutations 

 

Neo4j Database Design 
 

We conceived a simple graph database design to meet our requirements. To store 

several mutation graphs in a single instance of Neo4j, we used the name of the dataset as 

one of our node labels to give us the required separation of context. We have also created 

the following uniqueness constraint in our database to prevent duplicate nodes. 
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create constraint on (p:P) assert p.unique_id is unique 

where P = a protein from {HA, NA, M1, M2, NP, PA, PB1, PB2, NS1, NS2} 

and unique_id = concatenation of dataset_name + protein +residue_number 

Table 6 provides a listing of labels and properties in our Neo4j graph database. We have 

purposefully added some redundancy into the label names and property names to provide 

us maximum flexibility and query optimization, since labels can provide us a higher-level 

separation (based on dataset name and protein) while property labels can provide us greater 

querying capabilities. 

Table 6 - Neo4j labels and properties 

Node Properties protein (2 letter name of protein) 

aa (3 letter amino acid code) 

residue_number (residue number in protein sequence) 

dataset (name of dataset) 

unique_id (concatenation of dataset_name + protein 

+residue_number, used for uniqueness constraint) 

Edge Properties mic (MIC score) 

Relationship Types MUTATES_WITH (relationship between 2 nodes) 

Node Lables dataset (name of dataset) 

protein (2 letter name of protein) 

 
 

Graph Analysis 
 

Our computational pipeline (depicted in Figure 26) for ‘graph analysis’ is 

comprised of two methods. 

1. Creation of a web application that allows users to 

a. Search connections of a specific node 
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b. View plots depicting number of nodes & edges for different 

threshold values 

c. View top nodes, edges and triplets for each dataset 

d. View global properties of graphs generated with a MIC filter > 0.5 

including degree distribution, clustering coefficient, edge density 

and average degree 

e. View interactive network visualizations for correlated mutation 

graphs (generated with a MIC filter > 0.5) 

2. Use of Gephi visualization and exploration platform to perform analysis of 

correlated mutation graphs. We have included results of any analysis that 

we did using Gephi (including visualizations, images, other data points) as 

part of our web application. 
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Figure 26 - Graph Analysis pipeline for analysis of correlated mutation graphs 

 

 

Additional Post-processing 
 

In addition to conducting analysis of networks generated for different datasets to 

determine structural and topological properties, we performed post-processing steps 

(Figure 27) to answer specific questions. First, we conducted entropy analysis to 

understand the amount of variation in different proteins in all datasets and thereby identify 

potential associations between entropy and MIC correlations. Second, we were interested 

to know if most of the in-network residues are on the surface of a protein with higher 

solvent accessibility values and we conducted solvent accessibility analysis to answer this 

question. Third, we calculated residue cooccurrence counts for pairs to get a better insight 
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into the underlying mechanics of MIC algorithm for our use case. Finally, we created 

‘protein networks’ to provide a macro picture and depict the extent of correlations between 

proteins.  

 

 

Figure 27 - Additional post processing steps that we conducted to provide additional context to our results 
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CHAPTER 8 - RESULTS 

In this chapter, we present out results based on comprehensive network analysis of 

correlated mutations on multiple IAV datasets. We start with plots of node counts and edge 

counts for different MIC threshold values, since this association can provide a general 

understanding of the degree of covariance. We also present MIC distribution plots since 

the network structure and dynamics is directly related to these distributions. Based on our 

general assumption that correlations that exceed a MIC value of 0.5 should be significant 

or near-significant, we create degree distribution and clustering coefficient distributions 

for all 10 datasets previously listed in the section on Chapter 5 - DataSets. Given our 

interest to understand the potential relationship between entropy and correlated mutation 

networks, we include details of average entropies for each of the proteins in all datasets. 

We create schematics of protein-level graphs for correlated mutation networks @ 0.5 MIC, 

to provide more obvious protein-level insights. We delve into the details of residue 

combination counts of highly significant, significant and not significant edges to gain a 

better perspective into the underlying mutational patterns and to ensure that MIC is a 

reliable statistic. 

Web Application 
 

We have created a web application to share the results of our work with the broader 

community. This web application can be accessed at http://omics.gmu.edu:5000. While 

majority of the images and visualizations depicted in this application (node counts, edge 

counts, degree distributions and macro plots) are pre-computed and stored, the ‘top N’ and 

http://omics.gmu.edu:5000/
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‘search’ functionalities provide real-time dynamic results based on querying of neo4j 

database. 

Network Visualizations 
 

 We created visualizations of correlated mutation networks at 0.5 threshold. 

Interactive version of these visualizations can be viewed 

at  http://omics.gmu.edu:5000/dviz. We have also included a static version of these 

network diagrams for human H3N2, swine H3N2, human H1N1, swine H1N1 and avian 

H5 datasets in Figure 28, Figure 29, Figure 30, Figure 31 and Figure 32. 

These pictures clearly elucidate that there are significant differences in structural 

topologies of these networks. The density of nodes in human H1N1 network is significantly 

higher that swine H1N1 and the same comparison holds true for human H2N2 network 

over swine H3N2 network. The avian H5 network is dominated by residues from NA 

(purple) while the swine H1N1 network is characterized by four distinct clusters. 

 

http://omics.gmu.edu:5000/dviz
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Figure 28 - Visualization of human H3N2 correlated mutation network at 0.5 threshold 

  



72 

 

 

Figure 29 - Visualization of swine H3N2 network at 0.5 threshold 
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Figure 30 - Visualization of human H1N1 network at 0.5 threshold 
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Figure 31 - Visualization of swine H1N1 network at 0.5 threshold 
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Figure 32 - Visualization of avian H5 network at 0.5 threshold 

 

Node Counts 
 

IAV strains that we downloaded from IRD consisted of a total of 4499 residues. 

We computed the total number of in-network residues for different MIC threshold values 

and noticed a wide variance based on the dataset. The number of nodes gradually decreases 
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as MIC threshold increases. Several interesting observations can be made based on plots 

in Figure 33, Figure 34, Figure 35, Figure 36 and Figure 37. 

1. Human H1N1 vs Swine H1N1 (Figure 33) - The number of in-network 

residues for human H1N1 IAV correlated mutation network tends to be 

stable till a MIC threshold of ~0.6 after which it starts to decline while the 

number of in-network residues for swine H1N1 network gradually 

decreases for increasing values of MIC threshold. It should be noted here 

that the number of residues in human H1N1 network with MIC correlations 

in (0.1, 0.5) range is very low implying that we do not see new nodes joining 

the network for lower MIC values. While we see a slightly higher number 

of nodes in swine H1N1 at low threshold values in (0.1, 0.4) range, these 

numbers gradually decrease and the number of nodes with at least one 

significant mutation is lower compared to human H1N1 network. Both 

networks have similar node count for MIC values > 0.8. 

2. Human H3N2 vs Swine H3N2 (Figure 34) - We see a high number of in-

network nodes (~650) for swine H3N2 strains at a low threshold value of 

0.1 and we see a steeper decrease for increasing MIC threshold values and 

the number comes down to less than 50 for MIC threshold values in the 

significance region (>0.5). In other words, 98% of the residues in swine 

H3N2 strains do not have any significant correlated mutations. The human 

H3N2 network starts with a lower number of nodes (~350) at 0.1 MIC 

threshold and we see a much more gradual decrease in the number of nodes. 
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We also observe a roughly overlapping tail for MIC > 0.88 in both these 

plots.  

3. There are approximately 25 nodes in the H7N9 network in the significant 

zone (MIC > 0.5) while there are approximately 200 nodes in the significant 

zone for avian H5 network. 

4. The results that we observe in Figure 37 for the “Human All” network are 

generally suggesting that there will be higher degree of covariation when 

we mix strains belonging to different sub-types.  

 

Figure 33 - Node counts for H1N1 datasets.  
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Figure 34 - Node counts for H3N2 datasets 

 

 

 

Figure 35 - Node counts for AVIAN H5 dataset 
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Figure 36 - Node counts for H7N9 dataset 
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Figure 37 - Node counts for HUMAN_ALL dataset 

 

 

Edge Counts 
 

The theoretical upper limit (max) for the total number of inter-protein edges in IAV 

strains approximates to 8.8 million. We computed the total number of edges in the network 

for different MIC threshold values. Plots for edge counts are depicted in Figure 38, Figure 

39, Figure 40, Figure 41 and Figure 42.  

1. If we exclude the ‘Human All’ network, we can make a general conclusion 

that less than 2% of edges in IAV have correlated mutations (MIC > 0.1) 

and a smaller fraction of edges have significant correlations. 

2. There is a wide variance in edge counts based on the dataset. 
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3. H1N1 vs. H3N2 – The number of edges in H3N2 networks is very small 

compared to edges in H1N1 networks.  

4. Human H1N1 vs. Swine H1N1 – There is a significant difference between 

the number of edge counts for MIC > 0.5 in these two networks. There are 

79524 significant edges in human H1N1 compared to a much smaller 

number (501) in swine H1N1.  

5. Human H3N2 vs. Swine H3N2 – swine H3N2 network contains only 132 

edges in the significant zone while the human H3N2 network contains 1378 

significant edges. There is a steep decline in the number of edges (from 

290000 to 5000) in swine H3N2 as the MIC threshold changes from 0.1 to 

0.2. 

6. We see more than 40000 edges in avian H5 for 0.1 MIC threshold but only 

647 of these edges have MIC values greater than 0.5.  

7. The H7N9 network is characterized by a very small number of edges. This 

network contains only 37 edges with MIC values greater than 0.5. 

8. Like our observation with ‘node counts’, the number of edges in ‘Human 

All’ network is significantly higher compared to all other datasets. 
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Figure 38 - Edge counts for H1N1 datasets 

 

 

Figure 39 - Edge counts for H3N2 datasets 
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Figure 40 - Edge counts for AVIAN H5 dataset 
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Figure 41 - Edge counts for H7N9 dataset 
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Figure 42 - Edge counts for HUMAN ALL dataset 

 

MIC Distribution 
 

The MIC distribution plots depicted in Figure 43, Figure 44, Figure 45, Figure 46, 

Figure 47, Figure 48 and Figure 49 provide us additional insight into the extent of 

covariance between residues in IAV proteins and provide us appropriate reasoning behind 

the change in node and edge counts as we increase the MIC threshold. The MIC histograms 

for Swine H1N1, Swine H3N2, Human H3N2 Avian H5 and H7N9 confirm to a ‘power 

law’ model suggesting that there is a high degree of concentration of residues with low 

MIC values and the correlation decreases rapidly for higher MIC threshold values. Other 

histograms (corresponding to Human H1N1 and Human-All datasets) do not have a 

specific pattern associated with them, with the ‘Human-All’ distribution diverging the most 
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from a ‘power law’ model with a relatively high concentration of residues in the [0.9, 1] 

range. 

 

Figure 43 - MIC distribution for SWINE H1N1 dataset 
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Figure 44 - MIC distribution for HUMAN H1N1 Dataset 

 

 

Figure 45 - MIC distribution for SWINE H3N2 dataset 
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Figure 46 - MIC distribution for HUMAN H3N2 Dataset 
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Figure 47 - MIC distribution for AVIAN H5 dataset 
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Figure 48 - MIC distribution for H7N9 dataset 
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Figure 49 - MIC distribution for HUMAN_ALL dataset 

 

Edge Densities 
 

We have made an empirical decision that MIC values greater than 0.5 indicate 

significant mutations and hence explored the properties of networks at this value. As a first 

step, we listed the node and edge counts along with edge density for our primary datasets 

in Table 7 to further elucidate the differences between networks (for MIC > 0.5). This table 

reaffirms our earlier observation that the “Human All” network @ 0.5 MIC has higher 

nodes, edges and more importantly this network is characterized by a high edge density. 

The ‘Human H1N1’ and ‘Avian H5’ networks have the highest and lowest edge densities 

respectively.  

Table 7 - Networks @ 0.5 

Dataset #nodes #edges edge density 
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Swine H3N2 42 132 0.15 

Human H3N2 133 1378 0.16 

Swine H1N1 327 2023 0.04 

Human H1N1 501 79524 0.63 

Avian H5 209 647 0.03 

H7N9 20 37 0.19 

Human All 903 238832 0.59 

 

Degree Distribution 
 

The degree of a vertex is the number of edges emanating from it. Degree 

distribution is an important characteristic of a graph and provides a distribution of the 

degree of nodes over the entire network. Degree distribution reflects the overall pattern of 

connections in a dataset. A node with high degree in correlated mutation network implies 

that the residue has correlated mutations with many residues in the network.  

We provide histograms of degree distributions in Figure 50, Figure 52, Figure 51, 

Figure 53, Figure 54, Figure 55 and Figure 56. There is substantial difference between each 

of these degree distributions indicating that the overall structure of a correlated mutation 

network in IAV does not adhere to a single topology. While the distributions for Swine 

H1N1 and Avian H5 are close to a power-law model, other network distributions are more 

indicative of random networks. The network that corresponds to “Human All” dataset is 

highly connected with many nodes with a degree greater than 500. These plots illustrate 

the complex evolutionary patterns in Influenza and highlight the fact that the overall 

mutation profile and evolution in IAV strains are sub-type specific. 
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Figure 50 - Degree histogram for Swine H1N1 dataset 
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Figure 51 - Degree distribution for Human H1N1 dataset 
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Figure 52 - Degree histogram for Swine H3N2 dataset 

 

 



96 

 

 

Figure 53 - Degree distribution for Human H3N2 dataset 
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Figure 54 - Degree distribution for Avian H5 dataset 
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Figure 55 - Degree distribution for H7N9 dataset 
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Figure 56 - Degree distribution for Human All dataset 

 

Clustering Coefficient Distributions 

 

The clustering coefficient of a vertex indicates how concentrated the neighborhood 

of that vertex is. The clustering coefficient is the ratio of the number of actual edges there 

are between neighbors to the number of potential edges between neighbors (all possible 

edges between the vertices). A node with high clustering coefficient in correlated mutation 

network implies that the residue is part of a neighborhood where residues are covarying 

with high probability.  
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We provide histograms of local clustering coefficient distributions in Figure 58, 

Figure 59, Figure 60, Figure 61, Figure 62, Figure 63 and Figure 64. Figure 57 illustrates 

the difference in average clustering coefficient between datasets. 

 

 

Figure 57 - Average Clustering Coefficient 
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Figure 58 - Clustering coefficient histogram for Swine H1N1 dataset 

 

 

 

Figure 59 - Clustering coefficient histogram for Human H1N1 dataset 
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Figure 60 - Clustering coefficient histogram for Swine H3N2 dataset 
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Figure 61 - Clustering coefficient histogram for Human H3N2 Dataset 

 

 

Figure 62 - Clustering coefficient histogram for Avian H5 
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Figure 63 - Clustering coefficient histogram for H7N9 dataset 

 

 

 

Figure 64 - Clustering coefficient distribution for Human-All dataset 

 

Top 25 Nodes  
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Nodes with highest degrees in a dataset have a special significance since they tend 

to act as ‘hubs’ in the network. We list the top 25 nodes with highest degree distributions 

for each the seven datasets in Table 8, Table 9, Table 10, Table 11, Table 12, Table 13 and 

Table 14. We also identify the top 10 edges (covarying residues) for these top nodes. 

Several interesting observations can be derived from these results. 

1. It can be generally concluded that majority of these top nodes are not from 

virally active surface proteins (HA and NA).  

2. The top nodes in Human H1N1 influenza have significantly higher number 

of connections compared to other datasets. There is also a very small 

variance between the degrees of top 25 nodes in Human H1N1 dataset. The 

top node (NS2_63) has a degree of 416 while the 25th node (M2_83) has a 

degree of 415. 

3. In the Avian H5 dataset, HA_217 acts as a hub node with a relatively high 

degree compared to other top nodes.  

4. In the Swine H1N1 dataset, NS2_40 and NS1_197 have relatively higher 

degrees compared to other top nodes. 
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Table 8 – Top 25 residues for Swine H1N1 Dataset 

RESIDUE DEGREE COVARYING_RESIDUES 

NS2_40 (Ile) 73 

['NS1197 (Asn)', 'NP293 (Ala)', 'PB2705 (Asp)', 'NP27 (Asp)', 'NP145 (Ile)', 'NP465 

(Leu)', 'NP393 (Arg)', 'PA748 (Thr)', 'NP108 (Arg)', 'NP380 (Val)'] 

NS1_197 (Asn) 70 
['NS240 (Ile)', 'NP293 (Ala)', 'PB2705 (Asp)', 'NP27 (Asp)', 'NP145 (Ile)', 'PA748 
(Thr)', 'NP393 (Arg)', 'NP465 (Leu)', 'NP108 (Arg)', 'NP380 (Val)'] 

PB2_705 (Asp) 58 

['NP293 (Ala)', 'NP393 (Arg)', 'NP108 (Arg)', 'NP145 (Ile)', 'NP27 (Asp)', 'PA748 

(Thr)', 'NP465 (Leu)', 'NP380 (Val)', 'NS240 (Ile)', 'PA216 (Asp)'] 

NP_293 (Ala) 48 
['PB2705 (Asp)', 'PA748 (Thr)', 'NS240 (Ile)', 'PA216 (Asp)', 'NS1197 (Asn)', 'PB2483 
(Met)', 'PA184 (Ser)', 'PA553 (Ala)', 'PA399 (Glu)', 'PB1592 (Asp)'] 

NP_298 (His) 44 

['PB2705 (Asp)', 'PA748 (Thr)', 'NS240 (Ile)', 'HA256 (Pro)', 'HA399 (Thr)', 'NS1197 

(Asn)', 'HA473 (Arg)', 'HA463 (Ser)', 'HA98 (Val)', 'HA10 (Leu)'] 

NP_27 (Asp) 44 
['PB2705 (Asp)', 'PA748 (Thr)', 'NS240 (Ile)', 'NS1197 (Asn)', 'PA553 (Ala)', 'PA216 
(Asp)', 'PA399 (Glu)', 'PA184 (Ser)', 'PB2483 (Met)', 'M255 (Phe)'] 

NP_145 (Ile) 43 

['PB2705 (Asp)', 'PA748 (Thr)', 'NS240 (Ile)', 'NS1197 (Asn)', 'PA553 (Ala)', 'PA399 

(Glu)', 'PA216 (Asp)', 'PB2483 (Met)', 'PA184 (Ser)', 'M255 (Phe)'] 

HA_79 (Ile) 43 
['NA114 (Val)', 'NA311 (Glu)', 'NA463 (Glu)', 'NA23 (Leu)', 'NA415 (Leu)', 'NA3 
(Pro)', 'NA430 (Arg)', 'NA298 (Gly)', 'NA32 (Ile)', 'NA328 (Pro)'] 

M2_19 (Cys) 42 

['M1248 (Met)', 'NS240 (Ile)', 'NP54 (Lys)', 'NS1197 (Asn)', 'NP332 (Ala)', 'NP107 

(Arg)', 'PA553 (Ala)', 'NP293 (Ala)', 'PB2705 (Asp)', 'NS252 (Met)'] 

NP_465 (Leu) 41 
['PB2705 (Asp)', 'PA748 (Thr)', 'NS240 (Ile)', 'NS1197 (Asn)', 'PA553 (Ala)', 'PA216 
(Asp)', 'PA399 (Glu)', 'PB2483 (Met)', 'PA184 (Ser)', 'M255 (Phe)'] 

M1_248 (Met) 41 

['M219 (Cys)', 'NS240 (Ile)', 'NP54 (Lys)', 'NP332 (Ala)', 'NS1197 (Asn)', 'NP107 

(Arg)', 'PA553 (Ala)', 'NP293 (Ala)', 'PB2705 (Asp)', 'PA184 (Ser)'] 

PB2_483 (Met) 40 
['NP293 (Ala)', 'NP108 (Arg)', 'NP393 (Arg)', 'NS240 (Ile)', 'NP145 (Ile)', 'NS1197 
(Asn)', 'PA748 (Thr)', 'NP27 (Asp)', 'NP465 (Leu)', 'NP54 (Lys)'] 

PA_748 (Thr) 37 

['NP293 (Ala)', 'PB2705 (Asp)', 'NP145 (Ile)', 'NP393 (Arg)', 'NP27 (Asp)', 'NP108 

(Arg)', 'NP465 (Leu)', 'NP380 (Val)', 'NS1197 (Asn)', 'NS240 (Ile)'] 

NP_386 (Asn) 36 
['PB1779 (Ser)', 'PB2271 (Ala)', 'PB2147 (Thr)', 'PB1649 (Asp)', 'PA400 (Pro)', 
'PB2591 (Arg)', 'PB1350 (Met)', 'PB2590 (Ser)', 'PB265 (Asp)', 'PB1595 (Gln)'] 

HA_496 (Asn) 35 

['NA395 (Gly)', 'NA385 (Ser)', 'NA84 (Lys)', 'NA311 (Glu)', 'NA435 (Asn)', 'NA331 

(Gly)', 'NA287 (Glu)', 'NA285 (Ser)', 'NA430 (Arg)', 'NA166 (Val)']  
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NP_380 (Val) 35 

['PB2705 (Asp)', 'PA748 (Thr)', 'NS240 (Ile)', 'NS1197 (Asn)', 'PA216 (Asp)', 'PA553 

(Ala)', 'PA399 (Glu)', 'PA184 (Ser)', 'PB2483 (Met)', 'M255 (Phe)'] 

PB2_243 (Met) 34 

['PB1484 (Val)', 'PA717 (Ala)', 'PB1777 (Glu)', 'PB1394 (Glu)', 'PB1587 (Leu)', 

'PA332 (Pro)', 'PB1140 (Tyr)', 'PB191 (Ser)', 'PB1411 (Thr)', 'PA251 (Lys)'] 

PA_400 (Pro) 34 

['PB1779 (Ser)', 'PB2147 (Thr)', 'PB2271 (Ala)', 'PB1649 (Asp)', 'NP386 (Asn)', 

'PB2591 (Arg)', 'PB1350 (Met)', 'PB1347 (Ile)', 'PB2590 (Ser)', 'PB265 (Asp)'] 

PB2_265 (Asn) 33 

['PB1484 (Val)', 'PA717 (Ala)', 'PB1777 (Glu)', 'PB1394 (Glu)', 'PB1587 (Leu)', 

'PB1140 (Tyr)', 'PB191 (Ser)', 'PB1411 (Thr)', 'PA251 (Lys)', 'PA332 (Pro)'] 

PB2_467 (Met) 33 

['PB1484 (Val)', 'PA717 (Ala)', 'PB1777 (Glu)', 'PB1394 (Glu)', 'PB1587 (Leu)', 

'PA332 (Pro)', 'PB1140 (Tyr)', 'PB191 (Ser)', 'PB1411 (Thr)', 'PA251 (Lys)'] 

PA_256 (Arg) 32 

['PB1779 (Ser)', 'PB2147 (Thr)', 'PB2271 (Ala)', 'PB1649 (Asp)', 'NP386 (Asn)', 

'PB1350 (Met)', 'PB2591 (Arg)', 'PB2590 (Ser)', 'PB1595 (Gln)', 'PB265 (Asp)'] 

PA_553 (Ala) 32 

['NP107 (Arg)', 'NP332 (Ala)', 'NP54 (Lys)', 'NP293 (Ala)', 'PB2705 (Asp)', 'NP145 

(Ile)', 'NP27 (Asp)', 'NP393 (Arg)', 'NP108 (Arg)', 'NP465 (Leu)'] 

PB1_484 (Val) 32 

['PB2627 (Glu)', 'PB2467 (Met)', 'PB2265 (Asn)', 'PB2243 (Met)', 'PA717 (Ala)', 

'PB2475 (Leu)', 'PB2199 (Ala)', 'PA542 (Val)', 'PB2238 (Thr)', 'PA332 (Pro)'] 

NP_393 (Arg) 32 

['PB2705 (Asp)', 'PA748 (Thr)', 'NS240 (Ile)', 'NS1197 (Asn)', 'PA216 (Asp)', 'PB2483 

(Met)', 'PA184 (Ser)', 'PA553 (Ala)', 'PA399 (Glu)', 'PB1592 (Asp)'] 

PB2_147 (Thr) 31 

['PB1779 (Ser)', 'PB1649 (Asp)', 'PB1350 (Met)', 'PA400 (Pro)', 'NP386 (Asn)', 

'PB1595 (Gln)', 'PB1347 (Ile)', 'PA407 (Val)', 'PB1163 (Ser)', 'PA256 (Arg)'] 
 

  

 

Table 9 - Top 25 nodes for Human H1N1 Dataset 

RESIDUE DEGREE COVARYING_RESIDUES 

NS2_63 (Glu) 419 
['PA336 (Met)', 'PB2684 (Ser)', 'PB1584 (Gln)', 'NS1119 (Leu)', 'NS191 (Ser)', 'NP456 
(Leu)', 'NP289 (His)', 'NP21 (Asp)', 'HA308 (Thr)', 'HA256 (Lys)'] 

NS2_107 
(Leu) 418 

['PB2399 (Ile)', 'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 (His)', 'NP293 (Arg)', 'NP257 (Ile)', 
'M286 (Val)', 'M236 (Leu)', 'HA206 (Gln)', 'PA421 (Ser)'] 

NS2_86 (Arg) 418 
['PB2399 (Ile)', 'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 (His)', 'NP293 (Arg)', 'NP257 (Ile)', 
'M286 (Val)', 'M236 (Leu)', 'HA206 (Gln)', 'PA421 (Ser)'] 

NS2_60 (Ser) 418 
['PA336 (Met)', 'PB2684 (Ser)', 'PB1584 (Gln)', 'NS1119 (Leu)', 'NS191 (Ser)', 'NP456 
(Leu)', 'NP289 (His)', 'NP21 (Asp)', 'HA308 (Thr)', 'HA256 (Lys)'] 

NS2_40 (Ile) 418 

['NS1197 (Asn)', 'PA336 (Met)', 'PB2684 (Ser)', 'PB1584 (Gln)', 'NS1119 (Leu)', 'NS191 

(Ser)', 'NP456 (Leu)', 'NP289 (His)', 'NP21 (Asp)', 'HA308 (Thr)'] 

NS2_57 (Tyr) 417 

['PA65 (Ser)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2114 (Val)', 'NS186 (Thr)', 'NP421 

(Glu)', 'HA328 (Lys)', 'HA210 (Gln)', 'PB2399 (Ile)', 'PB1691 (Lys)'] 
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M1_121 (Thr) 416 

['PB2674 (Ala)', 'PB2645 (Leu)', 'M277 (Gln)', 'NA351 (Phe)', 'NA311 (Glu)', 'NA70 

(Ser)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2114 (Val)', 'PA65 (Ser)'] 

M1_137 (Thr) 416 

['PB2674 (Ala)', 'PB2645 (Leu)', 'M277 (Gln)', 'NA351 (Phe)', 'NA311 (Glu)', 'NA70 

(Ser)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2114 (Val)', 'PA65 (Ser)'] 

M1_115 (Val) 416 

['NA351 (Phe)', 'NA311 (Glu)', 'NA70 (Ser)', 'NA250 (Gln)', 'NA214 (Asp)', 'NA166 

(Val)', 'NA21 (Asn)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2114 (Val)'] 

M1_209 (Thr) 416 

['PB2674 (Ala)', 'PB2645 (Leu)', 'M277 (Gln)', 'NA351 (Phe)', 'NA311 (Glu)', 'NA70 

(Ser)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2114 (Val)', 'PA65 (Ser)'] 

M1_116 (Ser) 416 

['PB2674 (Ala)', 'PB2645 (Leu)', 'M277 (Gln)', 'NA351 (Phe)', 'NA311 (Glu)', 'NA70 

(Ser)', 'PB1576 (Leu)', 'M278 (Gln)', 'NA250 (Gln)', 'NA214 (Asp)'] 

M1_231 (Asp) 416 

['NA101 (Ser)', 'NA14 (Cys)', 'NA351 (Phe)', 'NA311 (Glu)', 'NA70 (Ser)', 'PB2399 (Ile)', 

'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 (His)', 'NP293 (Arg)'] 

M1_160 (Arg) 416 

['NA101 (Ser)', 'NA14 (Cys)', 'NA351 (Phe)', 'NA311 (Glu)', 'NA70 (Ser)', 'PB2399 (Ile)', 

'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 (His)', 'NP293 (Arg)'] 

M1_101 (Lys) 416 

['NA351 (Phe)', 'NA311 (Glu)', 'NA70 (Ser)', 'NA250 (Gln)', 'NA214 (Asp)', 'NA166 

(Val)', 'NA21 (Asn)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2114 (Val)'] 

M1_147 (Val) 416 
['NA101 (Ser)', 'NA14 (Cys)', 'NA351 (Phe)', 'NA311 (Glu)', 'NA70 (Ser)', 'PB2399 (Ile)', 
'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 (His)', 'NP293 (Arg)'] 

NS2_26 (Glu) 416 
['PB2399 (Ile)', 'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 (His)', 'NP293 (Arg)', 'NP257 (Ile)', 
'M286 (Val)', 'M236 (Leu)', 'HA206 (Gln)', 'PA404 (Ala)'] 

M1_142 (Ala) 416 
['PB2674 (Ala)', 'PB2645 (Leu)', 'M277 (Gln)', 'NA351 (Phe)', 'NA311 (Glu)', 'NA70 
(Ser)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2114 (Val)', 'PB1576 (Leu)'] 

M1_218 (Thr) 416 
['M257 (Tyr)', 'NA101 (Ser)', 'NA14 (Cys)', 'PB2674 (Ala)', 'PB2645 (Leu)', 'PB2399 
(Ile)', 'PB2199 (Ala)', 'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 (His)'] 

NS2_6 (Met) 415 

['NS16 (Met)', 'NP190 (Ala)', 'HA385 (Leu)', 'PA336 (Met)', 'PB2684 (Ser)', 'PB1584 

(Gln)', 'NS1119 (Leu)', 'NS191 (Ser)', 'NP456 (Leu)', 'NP289 (His)'] 

M2_57 (Tyr) 415 

['PB2674 (Ala)', 'PB2645 (Leu)', 'PB2399 (Ile)', 'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 

(His)', 'NP293 (Arg)', 'NP257 (Ile)', 'HA206 (Gln)', 'PB1576 (Leu)'] 

M2_78 (Gln) 415 
['PB2674 (Ala)', 'PB2645 (Leu)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2114 (Val)', 'PA65 
(Ser)', 'NS186 (Thr)', 'NP421 (Glu)', 'HA328 (Lys)', 'HA210 (Gln)'] 

M2_36 (Leu) 415 
['PB2399 (Ile)', 'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 (His)', 'NP293 (Arg)', 'NP257 (Ile)', 
'HA206 (Gln)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2490 (Ser)'] 

M2_77 (Gln) 415 

['PB2674 (Ala)', 'PB2645 (Leu)', 'PB1576 (Leu)', 'M1209 (Thr)', 'M1137 (Thr)', 'M1121 

(Thr)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2114 (Val)', 'PA65 (Ser)'] 

NS2_115 (Ala) 415 

['NS16 (Met)', 'NP190 (Ala)', 'HA385 (Leu)', 'PA336 (Met)', 'PB2684 (Ser)', 'PB1584 

(Gln)', 'NS1119 (Leu)', 'NS191 (Ser)', 'NP456 (Leu)', 'NP289 (His)'] 

M2_86 (Val) 415 

['PB2399 (Ile)', 'PB1691 (Lys)', 'NP422 (Arg)', 'NP334 (His)', 'NP293 (Arg)', 'NP257 (Ile)', 

'HA206 (Gln)', 'PB2627 (Glu)', 'PB2491 (Thr)', 'PB2490 (Ser)'] 

 

 

Table 10 - Top 25 nodes for Human H3N2 Dataset 

RESIDUE DEGREE COVARYING_RESIDUES 

PB1_709 (Ile) 50 
['NP406 (Thr)', 'NA50 (Phe)', 'NA31 (Phe)', 'NA26 (Ser)', 'NA394 (Asn)', 'PB2590 
(Ser)', 'NP136 (Ile)', 'HA246 (Pro)', 'NA38 (Ile)', 'NA316 (Ile)'] 

PB2_590 (Ser) 50 
['NP406 (Thr)', 'PB1709 (Ile)', 'NA394 (Asn)', 'NA50 (Phe)', 'NA31 (Phe)', 'NA26 (Ser)', 
'NP136 (Ile)', 'HA246 (Pro)', 'NA38 (Ile)', 'NA316 (Ile)'] 
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PA_420 (Asp) 49 

['PB1113 (Val)', 'M231 (Ser)', 'PB2249 (Glu)', 'PB2451 (Ile)', 'NA396 (Asn)', 'HA69 

(Glu)', 'NA158 (His)', 'NP406 (Thr)', 'NA394 (Asn)', 'NA50 (Phe)'] 

PA_101 (Glu) 47 

['PB1113 (Val)', 'M231 (Ser)', 'PB2249 (Glu)', 'PB2451 (Ile)', 'HA69 (Glu)', 'NA396 

(Asn)', 'NA158 (His)', 'HA246 (Pro)', 'NP406 (Thr)', 'PB1709 (Ile)'] 

M2_31 (Ser) 45 

['PB1113 (Val)', 'PA101 (Glu)', 'PA420 (Asp)', 'HA69 (Glu)', 'PA475 (Tyr)', 'NA396 

(Asn)', 'NA381 (Ser)', 'NA158 (His)', 'PA256 (Lys)', 'HA159 (Lys)'] 

NP_406 (Thr) 44 

['PB1709 (Ile)', 'NA31 (Phe)', 'NA26 (Ser)', 'NA50 (Phe)', 'NA394 (Asn)', 'PB2590 

(Ser)', 'HA246 (Pro)', 'NA38 (Ile)', 'NA316 (Ile)', 'M251 (Val)'] 

M2_51 (Val) 43 

['NP406 (Thr)', 'NA26 (Ser)', 'PB1709 (Ile)', 'NA31 (Phe)', 'NA50 (Phe)', 'NA394 (Asn)', 

'PB2590 (Ser)', 'NP136 (Ile)', 'NA316 (Ile)', 'HA246 (Pro)'] 

NP_136 (Ile) 43 

['PB1709 (Ile)', 'NA50 (Phe)', 'NA31 (Phe)', 'PB2590 (Ser)', 'NA394 (Asn)', 'NA26 

(Ser)', 'HA246 (Pro)', 'NA38 (Ile)', 'NA316 (Ile)', 'M251 (Val)'] 

PB1_113 (Val) 42 

['M231 (Ser)', 'PA101 (Glu)', 'PA420 (Asp)', 'PA475 (Tyr)', 'NA396 (Asn)', 'HA69 

(Glu)', 'PA256 (Lys)', 'NA158 (His)', 'HA159 (Lys)', 'NP131 (Ala)'] 

NA_50 (Phe) 41 

['NP406 (Thr)', 'PB1709 (Ile)', 'PB2590 (Ser)', 'NP136 (Ile)', 'HA246 (Pro)', 'PB1619 

(Asn)', 'M251 (Val)', 'PB2340 (Lys)', 'NS182 (Val)', 'NP77 (Lys)'] 

NS1_82 (Val) 41 
['NA26 (Ser)', 'NP406 (Thr)', 'NA31 (Phe)', 'PB1709 (Ile)', 'PB1586 (Arg)', 'NA50 (Phe)', 
'NA394 (Asn)', 'NP136 (Ile)', 'PB2590 (Ser)', 'NA316 (Ile)'] 

NA_394 (Asn) 40 
['NP406 (Thr)', 'PB1709 (Ile)', 'PB2590 (Ser)', 'NP136 (Ile)', 'HA246 (Pro)', 'PB1619 
(Asn)', 'M251 (Val)', 'PB2340 (Lys)', 'NS182 (Val)', 'HA221 (Ile)'] 

NP_312 (Val) 40 
['HA246 (Pro)', 'PB1709 (Ile)', 'NA26 (Ser)', 'NA50 (Phe)', 'NA31 (Phe)', 'NA394 (Asn)', 
'PB2590 (Ser)', 'NA316 (Ile)', 'NA38 (Ile)', 'NA224 (Val)'] 

NA_31 (Phe) 40 
['NP406 (Thr)', 'PB1709 (Ile)', 'PB2590 (Ser)', 'NP136 (Ile)', 'HA246 (Pro)', 'PB1619 
(Asn)', 'M251 (Val)', 'PB2340 (Lys)', 'NS182 (Val)', 'NP77 (Lys)'] 

NA_26 (Ser) 40 

['NP406 (Thr)', 'PB1709 (Ile)', 'PB2590 (Ser)', 'PB1619 (Asn)', 'NP136 (Ile)', 'HA246 

(Pro)', 'M251 (Val)', 'PB2340 (Lys)', 'NS182 (Val)', 'NP77 (Lys)'] 

PB2_340 (Lys) 40 

['NA26 (Ser)', 'NP406 (Thr)', 'PB1709 (Ile)', 'NA31 (Phe)', 'NA394 (Asn)', 'NA50 (Phe)', 

'NA316 (Ile)', 'NP136 (Ile)', 'PB1619 (Asn)', 'NA38 (Ile)'] 

NP_52 (Tyr) 39 

['HA246 (Pro)', 'PB1709 (Ile)', 'PB2249 (Glu)', 'NA26 (Ser)', 'PB2451 (Ile)', 'NA31 

(Phe)', 'NA50 (Phe)', 'NA394 (Asn)', 'PB2590 (Ser)', 'HA245 (Ile)'] 

HA_69 (Glu) 39 

['NA381 (Ser)', 'NA396 (Asn)', 'NA158 (His)', 'NP131 (Ala)', 'PB2249 (Glu)', 'M231 

(Ser)', 'PB2451 (Ile)', 'PB1113 (Val)', 'NA319 (Tyr)', 'NS1221 (Lys)'] 

PB1_619 (Asn) 38 

['NA26 (Ser)', 'NP406 (Thr)', 'NA31 (Phe)', 'NA50 (Phe)', 'NA394 (Asn)', 'NA316 (Ile)', 

'PB2590 (Ser)', 'NP136 (Ile)', 'HA246 (Pro)', 'NA38 (Ile)'] 

HA_246 (Pro) 38 

['PB1709 (Ile)', 'NP406 (Thr)', 'NA50 (Phe)', 'NA26 (Ser)', 'NA31 (Phe)', 'NA394 (Asn)', 

'PB2590 (Ser)', 'NP136 (Ile)', 'NA38 (Ile)', 'NA316 (Ile)'] 

PB2_249 (Glu) 38 

['NA396 (Asn)', 'NP131 (Ala)', 'HA159 (Lys)', 'NA158 (His)', 'HA69 (Glu)', 'NA381 

(Ser)', 'NA319 (Tyr)', 'PA420 (Asp)', 'NA202 (Val)', 'PA101 (Glu)'] 

NA_38 (Ile) 37 

['NP406 (Thr)', 'PB1709 (Ile)', 'PB2590 (Ser)', 'NP136 (Ile)', 'HA246 (Pro)', 'PB1619 

(Asn)', 'M251 (Val)', 'PB2340 (Lys)', 'NS182 (Val)', 'NP77 (Lys)'] 

NP_280 (Val) 36 
['HA246 (Pro)', 'PB1709 (Ile)', 'PB2590 (Ser)', 'NA26 (Ser)', 'NA50 (Phe)', 'NA31 (Phe)', 
'NA394 (Asn)', 'NA316 (Ile)', 'NA224 (Val)', 'NA38 (Ile)'] 

NA_316 (Ile) 36 
['NP406 (Thr)', 'PB1709 (Ile)', 'PB2590 (Ser)', 'PB1619 (Asn)', 'NP136 (Ile)', 'HA246 
(Pro)', 'M251 (Val)', 'PB2340 (Lys)', 'NS182 (Val)', 'NP77 (Lys)'] 

PB2_451 (Ile) 36 
['NA396 (Asn)', 'HA159 (Lys)', 'NP131 (Ala)', 'NA158 (His)', 'HA69 (Glu)', 'NA381 
(Ser)', 'NA319 (Tyr)', 'NS1221 (Lys)', 'PA420 (Asp)', 'NA202 (Val)'] 
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Table 11 - Top 25 residues for Swine H3N2 Dataset 

RESIDUE DEGREE COVARYING_RESIDUES 

M2_28 (Ile) 13 

['M195 (Arg)', 'M1214 (His)', 'M1121 (Thr)', 'M1116 (Ser)', 'M1101 (Lys)', 'M1166 

(Ala)', 'M115 (Ile)', 'M1142 (Ala)', 'M1209 (Thr)', 'M130 (Ser)'] 

M2_20 (Ser) 13 

['M1214 (His)', 'M1121 (Thr)', 'M1116 (Ser)', 'M1166 (Ala)', 'M1101 (Lys)', 'M195 

(Arg)', 'M1142 (Ala)', 'M1209 (Thr)', 'M115 (Ile)', 'M1207 (Asn)'] 

M2_31 (Asn) 13 
['M1116 (Ser)', 'M1214 (His)', 'M1121 (Thr)', 'M1166 (Ala)', 'M1101 (Lys)', 'M195 
(Arg)', 'M1209 (Thr)', 'M1142 (Ala)', 'M115 (Ile)', 'M1207 (Asn)'] 

M2_95 (Glu) 13 
['M1214 (His)', 'M1121 (Thr)', 'M1116 (Ser)', 'M195 (Arg)', 'M1166 (Ala)', 'M1101 
(Lys)', 'M1209 (Thr)', 'M1142 (Ala)', 'M115 (Ile)', 'M1181 (Leu)'] 

M2_77 (Gln) 13 
['M1116 (Ser)', 'M1214 (His)', 'M1121 (Thr)', 'M1101 (Lys)', 'M1166 (Ala)', 'M195 
(Arg)', 'M1142 (Ala)', 'M1209 (Thr)', 'M115 (Ile)', 'M1207 (Asn)'] 

M2_60 (Lys) 13 

['M1181 (Leu)', 'M115 (Ile)', 'M1139 (Thr)', 'M1121 (Thr)', 'M1214 (His)', 'M1116 

(Ser)', 'M1101 (Lys)', 'M1166 (Ala)', 'M195 (Arg)', 'M1209 (Thr)'] 

M2_18 (Arg) 13 
['M1181 (Leu)', 'M1214 (His)', 'M1121 (Thr)', 'M195 (Arg)', 'M1166 (Ala)', 'M1116 
(Ser)', 'M1207 (Asn)', 'M130 (Ser)', 'M1209 (Thr)', 'M1101 (Lys)'] 

M2_79 (Glu) 11 

['M1214 (His)', 'M1121 (Thr)', 'M1116 (Ser)', 'M1166 (Ala)', 'M195 (Arg)', 'M1101 

(Lys)', 'M1209 (Thr)', 'M1142 (Ala)', 'M115 (Ile)', 'M1207 (Asn)'] 

M2_43 (Thr) 11 

['M130 (Ser)', 'M1207 (Asn)', 'M1142 (Ala)', 'M1209 (Thr)', 'M1166 (Ala)', 'M1116 

(Ser)', 'M1214 (His)', 'M1121 (Thr)', 'M1101 (Lys)', 'M195 (Arg)'] 

M1_207 (Asn) 10 

['M243 (Thr)', 'M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M295 (Glu)', 'M228 (Ile)', 

'M214 (Glu)', 'M260 (Lys)', 'M218 (Arg)', 'M279 (Glu)'] 

M1_30 (Ser) 10 

['M243 (Thr)', 'M214 (Glu)', 'M228 (Ile)', 'M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 

'M295 (Glu)', 'M218 (Arg)', 'M260 (Lys)', 'M213 (Ser)'] 

M1_142 (Ala) 10 

['M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M295 (Glu)', 'M228 (Ile)', 'M243 (Thr)', 

'M260 (Lys)', 'M279 (Glu)', 'M218 (Arg)', 'M214 (Glu)'] 

M1_209 (Thr) 10 

['M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M295 (Glu)', 'M228 (Ile)', 'M260 (Lys)', 

'M243 (Thr)', 'M279 (Glu)', 'M218 (Arg)', 'M214 (Glu)'] 

M1_116 (Ser) 9 

['M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M295 (Glu)', 'M228 (Ile)', 'M260 (Lys)', 

'M279 (Glu)', 'M243 (Thr)', 'M218 (Arg)', 'M214 (Glu)'] 

M1_95 (Arg) 9 
['M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M295 (Glu)', 'M228 (Ile)', 'M260 (Lys)', 
'M243 (Thr)', 'M279 (Glu)', 'M218 (Arg)', 'M214 (Glu)'] 

M1_121 (Thr) 9 
['M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M295 (Glu)', 'M228 (Ile)', 'M260 (Lys)', 
'M279 (Glu)', 'M243 (Thr)', 'M218 (Arg)', 'M214 (Glu)'] 

M1_214 (His) 9 
['M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M295 (Glu)', 'M228 (Ile)', 'M260 (Lys)', 
'M279 (Glu)', 'M243 (Thr)', 'M218 (Arg)', 'M214 (Glu)'] 

M1_166 (Ala) 9 
['M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M295 (Glu)', 'M228 (Ile)', 'M260 (Lys)', 
'M243 (Thr)', 'M279 (Glu)', 'M218 (Arg)', 'M214 (Glu)'] 

M1_101 (Lys) 9 
['M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M295 (Glu)', 'M228 (Ile)', 'M260 (Lys)', 
'M243 (Thr)', 'M279 (Glu)', 'M218 (Arg)', 'M214 (Glu)'] 

M1_181 (Leu) 9 

['M260 (Lys)', 'M295 (Glu)', 'M220 (Ser)', 'M277 (Gln)', 'M231 (Asn)', 'M228 (Ile)', 

'M218 (Arg)', 'M214 (Glu)', 'M279 (Glu)', 'M243 (Thr)'] 

M1_15 (Ile) 9 

['M277 (Gln)', 'M220 (Ser)', 'M231 (Asn)', 'M260 (Lys)', 'M295 (Glu)', 'M228 (Ile)', 

'M243 (Thr)', 'M279 (Glu)', 'M218 (Arg)', 'M214 (Glu)'] 

M1_139 (Thr) 7 

['M260 (Lys)', 'M295 (Glu)', 'M220 (Ser)', 'M277 (Gln)', 'M231 (Asn)', 'M228 (Ile)', 

'M218 (Arg)', 'M214 (Glu)', 'M279 (Glu)', 'M243 (Thr)'] 

M2_14 (Glu) 5 

['M130 (Ser)', 'M1207 (Asn)', 'M1209 (Thr)', 'M1142 (Ala)', 'M1181 (Leu)', 'M1166 

(Ala)', 'M1116 (Ser)', 'M1214 (His)', 'M1121 (Thr)', 'M195 (Arg)'] 

NS2_37 (Ala) 4 

['NS1194 (Gly)', 'NS1206 (Arg)', 'NS191 (Ala)', 'NS1171 (Asn)', 'NS1129 (Ile)', 'HA246 

(Ile)', 'NS1209 (Asp)', 'HA243 (Val)', 'NA395 (Thr)', 'NA16 (Ile)'] 
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NS1_70 (Lys) 2 

['HA180 (Ala)', 'HA507 (Val)', 'NS214 (Met)', 'HA220 (Thr)', 'HA316 (Arg)', 'PB261 

(Lys)', 'HA124 (Ser)', 'PB2225 (Gly)', 'HA134 (Thr)', 'NP223 (Ile)'] 

 

 

 

Table 12 - Top 25 residues for Avian H5 Dataset 

RESIDUE DEGREE COVARYING_RESIDUES 

HA_217 (Ile) 89 

['NA34 (Met)', 'NA26 (Met)', 'NA93 (Ser)', 'NA134 (Val)', 'NA430 (Ser)', 'NA256 

(Asn)', 'NA461 (Leu)', 'NA452 (Val)', 'NA437 (Asp)', 'NA223 (Thr)'] 

PB1_384 (Ser) 66 
['NA34 (Met)', 'NA343 (Ser)', 'NA256 (Asn)', 'NA461 (Leu)', 'NA334 (His)', 'NA25 
(Cys)', 'NA452 (Val)', 'NA437 (Asp)', 'NA430 (Ser)', 'NA161 (His)'] 

PB1_149 (Ile) 43 
['NS1219 (Lys)', 'NA204 (Pro)', 'NA203 (Ser)', 'PB272 (Met)', 'NS184 (Met)', 'NA325 
(Ile)', 'NA32 (Ser)', 'NP483 (Asn)', 'NA519 (Glu)', 'NP377 (Asn)'] 

NS1_84 (Met) 35 
['NP377 (Asn)', 'NS222 (Ala)', 'NS256 (Phe)', 'NP483 (Asn)', 'PB114 (Val)', 'M127 
(Lys)', 'PB1149 (Ile)', 'NA325 (Ile)', 'NS261 (Ile)', 'NA32 (Ser)'] 

PB1_14 (Val) 31 
['NP483 (Asn)', 'NS184 (Met)', 'NP377 (Asn)', 'NS1219 (Lys)', 'NS1214 (Leu)', 'NS222 
(Ala)', 'NA325 (Ile)', 'NS256 (Phe)', 'NA204 (Pro)', 'NA203 (Ser)'] 

NP_377 (Asn) 31 
['NS184 (Met)', 'PB114 (Val)', 'NS222 (Ala)', 'NS1219 (Lys)', 'NS1214 (Leu)', 'NS256 
(Phe)', 'PB1149 (Ile)', 'NA204 (Pro)', 'NA203 (Ser)', 'NA519 (Glu)'] 

NS1_219 (Lys) 31 
['NS222 (Ala)', 'NS256 (Phe)', 'NS261 (Ile)', 'NP377 (Asn)', 'PB1149 (Ile)', 'PB114 
(Val)', 'NP483 (Asn)', 'M127 (Lys)', 'NA325 (Ile)', 'NA32 (Ser)'] 

NP_483 (Asn) 30 
['PB114 (Val)', 'NS184 (Met)', 'NS222 (Ala)', 'PB1149 (Ile)', 'NS1214 (Leu)', 'NS1219 
(Lys)', 'NS256 (Phe)', 'NA325 (Ile)', 'NA204 (Pro)', 'NA203 (Ser)'] 

NS2_22 (Ala) 28 

['NS1214 (Leu)', 'NS184 (Met)', 'NS1219 (Lys)', 'NP377 (Asn)', 'M127 (Lys)', 'NP483 

(Asn)', 'PB114 (Val)', 'NS148 (Asn)', 'PB1149 (Ile)', 'NA325 (Ile)'] 

NS1_214 (Leu) 25 

['NS256 (Phe)', 'NS222 (Ala)', 'NP377 (Asn)', 'NP483 (Asn)', 'M127 (Lys)', 'NS261 

(Ile)', 'PB114 (Val)', 'PB1149 (Ile)', 'NA325 (Ile)', 'NA32 (Ser)'] 

NS2_56 (Phe) 24 

['NS1214 (Leu)', 'NS1219 (Lys)', 'NS184 (Met)', 'NP377 (Asn)', 'NP483 (Asn)', 'M127 

(Lys)', 'PB114 (Val)', 'NS148 (Asn)', 'PB1149 (Ile)', 'NA325 (Ile)'] 

M2_14 (Glu) 22 

['M1232 (Asn)', 'M1224 (Asn)', 'HA398 (Val)', 'M1207 (Asn)', 'HA126 (Ile)', 'M1166 

(Ala)', 'M1230 (Arg)', 'HA125 (Arg)', 'HA236 (Ser)', 'HA418 (Arg)'] 

M1_224 (Asn) 19 

['HA228 (Leu)', 'HA126 (Ile)', 'HA236 (Ser)', 'HA125 (Arg)', 'HA418 (Arg)', 'HA328 

(Asn)', 'M214 (Glu)', 'HA398 (Val)', 'HA558 (Leu)', 'HA144 (Glu)'] 

NS2_69 (Gln) 19 
['NS1159 (Gly)', 'NS114 (Phe)', 'NS123 (Ala)', 'NS142 (Ser)', 'NS1164 (Leu)', 'NS1146 
(Leu)', 'NS1171 (Thr)', 'NS194 (Thr)', 'NS128 (Gly)', 'NS125 (Gln)'] 

PB2_72 (Met) 19 
['PB1149 (Ile)', 'PB114 (Val)', 'NS184 (Met)', 'NS1219 (Lys)', 'NS222 (Ala)', 'NA204 
(Pro)', 'NA203 (Ser)', 'NP377 (Asn)', 'NP483 (Asn)', 'NA32 (Ser)'] 

NS1_48 (Asn) 18 
['NS256 (Phe)', 'NS222 (Ala)', 'NP377 (Asn)', 'M127 (Lys)', 'NA325 (Ile)', 'NP483 
(Asn)', 'NS261 (Ile)', 'PB1149 (Ile)', 'NA204 (Pro)', 'NA203 (Ser)'] 

M1_101 (Lys) 17 
['HA126 (Ile)', 'HA349 (Lys)', 'HA236 (Ser)', 'HA125 (Arg)', 'HA418 (Arg)', 'HA398 
(Val)', 'HA228 (Leu)', 'HA558 (Leu)', 'M214 (Glu)', 'HA61 (Asp)'] 

M1_166 (Ala) 17 

['HA126 (Ile)', 'HA349 (Lys)', 'HA125 (Arg)', 'HA236 (Ser)', 'HA418 (Arg)', 'HA398 

(Val)', 'HA558 (Leu)', 'HA228 (Leu)', 'M214 (Glu)', 'HA339 (Ser)'] 

M1_232 (Asn) 16 

['M214 (Glu)', 'HA126 (Ile)', 'HA125 (Arg)', 'HA418 (Arg)', 'HA236 (Ser)', 'HA398 

(Val)', 'HA558 (Leu)', 'HA228 (Leu)', 'HA349 (Lys)', 'HA144 (Glu)'] 

M1_15 (Ile) 15 

['HA126 (Ile)', 'HA236 (Ser)', 'HA418 (Arg)', 'HA125 (Arg)', 'HA398 (Val)', 'HA228 

(Leu)', 'HA558 (Leu)', 'M214 (Glu)', 'HA339 (Ser)', 'HA61 (Asp)'] 
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M1_207 (Asn) 14 

['HA61 (Asp)', 'HA126 (Ile)', 'M214 (Glu)', 'HA125 (Arg)', 'HA236 (Ser)', 'HA418 

(Arg)', 'HA398 (Val)', 'HA558 (Leu)', 'HA228 (Leu)', 'HA349 (Lys)'] 

NS2_38 (Ser) 14 

['NS1159 (Gly)', 'NS114 (Phe)', 'NS142 (Ser)', 'NS1171 (Thr)', 'NS194 (Thr)', 'NS128 

(Gly)', 'NS133 (Leu)', 'NS123 (Ala)', 'NS1164 (Leu)', 'NS1146 (Leu)'] 

NA_325 (Ile) 14 

['PB1149 (Ile)', 'NS184 (Met)', 'NP483 (Asn)', 'PB114 (Val)', 'NS1219 (Lys)', 'NP377 

(Asn)', 'NS222 (Ala)', 'NS1214 (Leu)', 'NS256 (Phe)', 'NS148 (Asn)'] 

NP_34 (Ser) 14 

['NS184 (Met)', 'PB114 (Val)', 'NS1219 (Lys)', 'NS1214 (Leu)', 'NS222 (Ala)', 'NS256 

(Phe)', 'NA223 (Thr)', 'PB1149 (Ile)', 'M127 (Lys)', 'NA519 (Glu)'] 

M1_27 (Lys) 14 

['NS184 (Met)', 'NS222 (Ala)', 'NS1214 (Leu)', 'NS256 (Phe)', 'NS1219 (Lys)', 'NP377 

(Asn)', 'PB114 (Val)', 'NP483 (Asn)', 'PB1149 (Ile)', 'NS148 (Asn)'] 

 

 

Table 13 - Top 25 residues for H7N9 Dataset 

RESIDUE DEGREE COVARYING_RESIDUES 

PB1_171 (Met) 10 
['NP375 (Asp)', 'NS1152 (Glu)', 'NA83 (Arg)', 'PB2139 (Val)', 'NS127 (Leu)', 'NP371 
(Met)', 'NS1216 (Thr)', 'NS1111 (Ile)', 'NS180 (Ser)', 'NS1212 (Ser)'] 

PB1_397 (Ile) 10 

['NP375 (Asp)', 'NS1152 (Glu)', 'NA83 (Arg)', 'NS1216 (Thr)', 'NS1111 (Ile)', 'NS180 

(Ser)', 'NS127 (Leu)', 'NP371 (Met)', 'PB2139 (Val)', 'NS1212 (Ser)'] 

NP_375 (Asp) 9 

['PB1397 (Ile)', 'PB1171 (Met)', 'NA83 (Arg)', 'NS1152 (Glu)', 'NS1111 (Ile)', 'NS1216 

(Thr)', 'NS127 (Leu)', 'NS180 (Ser)', 'NS1212 (Ser)', 'PB2139 (Val)'] 

PB2_139 (Val) 5 

['PB1694 (Asn)', 'PB1397 (Ile)', 'PB1171 (Met)', 'HA140 (Thr)', 'NS1152 (Glu)', 'NS227 

(Asp)', 'NP375 (Asp)', 'NS127 (Leu)', 'NS1216 (Thr)', 'NS1111 (Ile)'] 

NS1_152 (Glu) 5 

['PB1397 (Ile)', 'PB1171 (Met)', 'NP375 (Asp)', 'NA83 (Arg)', 'PB2139 (Val)', 'NP371 

(Met)', 'PB1694 (Asn)', 'HA140 (Thr)', 'PB2676 (Met)', 'NS227 (Asp)'] 

NA_83 (Arg) 5 

['PB1397 (Ile)', 'NP375 (Asp)', 'PB1171 (Met)', 'NS1152 (Glu)', 'NP371 (Met)', 'NS227 

(Asp)', 'NS1216 (Thr)', 'NS1111 (Ile)', 'NS180 (Ser)', 'NS127 (Leu)'] 

NS1_216 (Thr) 3 

['PB1397 (Ile)', 'PB1171 (Met)', 'NP375 (Asp)', 'PB2676 (Met)', 'NA83 (Arg)', 'PB2139 

(Val)', 'PB1694 (Asn)', 'NP371 (Met)', 'PB1525 (Ile)', 'HA140 (Thr)'] 

NS1_80 (Ser) 3 

['PB1397 (Ile)', 'PB1171 (Met)', 'NP375 (Asp)', 'PB2676 (Met)', 'PB2139 (Val)', 'NA83 

(Arg)', 'PB1694 (Asn)', 'NP371 (Met)', 'PB1525 (Ile)', 'HA140 (Thr)'] 

NS1_27 (Leu) 3 

['PB1397 (Ile)', 'PB1171 (Met)', 'NP375 (Asp)', 'PB2139 (Val)', 'PB2676 (Met)', 

'PB1694 (Asn)', 'NA83 (Arg)', 'NP371 (Met)', 'PB1525 (Ile)', 'HA140 (Thr)'] 

NS1_111 (Ile) 3 
['PB1397 (Ile)', 'NP375 (Asp)', 'PB1171 (Met)', 'PB2139 (Val)', 'NA83 (Arg)', 'PB2676 
(Met)', 'PB1694 (Asn)', 'NP371 (Met)', 'PB1525 (Ile)', 'HA140 (Thr)'] 

NP_371 (Met) 3 
['PB1397 (Ile)', 'PB1171 (Met)', 'NA83 (Arg)', 'NS1152 (Glu)', 'PB1525 (Ile)', 'NS1111 
(Ile)', 'PB2139 (Val)', 'NS180 (Ser)', 'NS127 (Leu)', 'NS1216 (Thr)'] 

NS1_212 (Ser) 3 
['PB1397 (Ile)', 'NP375 (Asp)', 'PB1171 (Met)', 'PB2676 (Met)', 'PB2139 (Val)', 'NA83 
(Arg)', 'PB1694 (Asn)', 'NP371 (Met)', 'PB1525 (Ile)', 'HA140 (Thr)'] 

NA_327 (Asn) 3 
['PB2647 (Ile)', 'PB2535 (Met)', 'PB2511 (Val)', 'M210 (Pro)', 'M224 (Glu)', 'NP371 
(Met)', 'PB1397 (Ile)', 'NP375 (Asp)', 'PB1171 (Met)', 'PB2139 (Val)'] 

PB1_694 (Asn) 2 

['PB2139 (Val)', 'PB2676 (Met)', 'NS227 (Asp)', 'HA140 (Thr)', 'NS127 (Leu)', 'NS1216 

(Thr)', 'NS1111 (Ile)', 'NS180 (Ser)', 'NP375 (Asp)', 'NS1152 (Glu)'] 

PB2_535 (Met) 1 

['NA327 (Asn)', 'NA241 (Val)', 'M210 (Pro)', 'NA465 (Lys)', 'M224 (Glu)', 'NA238 

(Val)', 'PB1397 (Ile)', 'NP371 (Met)', 'PB1171 (Met)', 'NP375 (Asp)'] 

PB2_676 (Met) 1 

['PB1694 (Asn)', 'NS1216 (Thr)', 'NS127 (Leu)', 'NS180 (Ser)', 'NS1212 (Ser)', 'NS1111 

(Ile)', 'HA140 (Thr)', 'PB1397 (Ile)', 'PB1171 (Met)', 'NS227 (Asp)'] 

HA_140 (Thr) 1 

['PB2139 (Val)', 'PB1694 (Asn)', 'PB2676 (Met)', 'PB1397 (Ile)', 'PB1171 (Met)', 

'NS1152 (Glu)', 'NS127 (Leu)', 'NS1216 (Thr)', 'NS1111 (Ile)', 'NS180 (Ser)'] 
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PB2_511 (Val) 1 

['NA327 (Asn)', 'NA241 (Val)', 'M210 (Pro)', 'NA465 (Lys)', 'M224 (Glu)', 'NA238 

(Val)', 'PB1397 (Ile)', 'NP371 (Met)', 'PB1171 (Met)', 'NP375 (Asp)'] 

PB2_647 (Ile) 1 

['NA327 (Asn)', 'NA241 (Val)', 'M210 (Pro)', 'NA465 (Lys)', 'M224 (Glu)', 'NA238 

(Val)', 'PB1397 (Ile)', 'NP371 (Met)', 'PB1171 (Met)', 'NP375 (Asp)'] 

 

 

Table 14 - Top 25 residues for Human-All Dataset 

RESIDUE DEGREE COVARYING_RESIDUES 

PB1_327 (Lys) 745 
['HA163 (Ser)', 'NA136 (Pro)', 'NA57 (Ile)', 'NP439 (Thr)', 'NA206 (Leu)', 'NA48 (Ser)', 
'HA187 (Ser)', 'NS2105 (Thr)', 'NA414 (Ser)', 'NP461 (Glu)'] 

NS2_73 (Leu) 745 

['NP429 (Ser)', 'NP465 (Gln)', 'PB2690 (Gly)', 'NS184 (Thr)', 'NA413 (Glu)', 'PB2126 

(Glu)', 'NP349 (Val)', 'NS167 (Lys)', 'NA392 (His)', 'HA270 (Ile)'] 

NS2_76 (Asn) 742 
['HA238 (Ser)', 'M243 (Leu)', 'NS1231 (Lys)', 'PB1517 (Val)', 'PA65 (Leu)', 'NA483 
(Asn)', 'PB1386 (Lys)', 'NA436 (Ser)', 'M1142 (Val)', 'HA255 (Glu)'] 

M2_43 (Leu) 742 
['HA238 (Ser)', 'NS1231 (Lys)', 'NS276 (Asn)', 'PB1386 (Lys)', 'M1142 (Val)', 'PB1517 
(Val)', 'PA65 (Leu)', 'NS144 (Lys)', 'NA436 (Ser)', 'NA400 (Lys)'] 

M2_78 (Lys) 742 

['PA65 (Leu)', 'M1142 (Val)', 'NS1128 (Val)', 'HA255 (Glu)', 'NS144 (Lys)', 'NA96 

(Glu)', 'NP350 (Ser)', 'HA119 (Thr)', 'NA490 (Gly)', 'NA105 (Tyr)'] 

M1_15 (Val) 741 

['HA240 (Lys)', 'NP436 (Thr)', 'PB2461 (His)', 'HA284 (Tyr)', 'NA499 (Asn)', 'NA107 

(Asn)', 'NS126 (Gly)', 'NS125 (Gln)', 'NS1210 (Glu)', 'M243 (Leu)'] 

NS2_14 (Met) 740 

['NA490 (Gly)', 'NA102 (Asn)', 'NA105 (Tyr)', 'NA49 (Leu)', 'HA415 (Ser)', 'NA333 

(Arg)', 'NA301 (Phe)', 'NA263 (Ser)', 'NA232 (Ala)', 'NA110 (Asn)'] 

M2_89 (Ser) 739 

['PA66 (Asp)', 'NP40 (Gly)', 'NA387 (Asn)', 'NS1123 (Glu)', 'PA396 (Asp)', 'HA151 

(Ser)', 'PA398 (Lys)', 'PA65 (Leu)', 'PA142 (Lys)', 'NA258 (Thr)'] 

M1_239 (Ala) 737 

['NS1159 (Val)', 'NP292 (Ala)', 'NP379 (Asn)', 'NS141 (Lys)', 'HA190 (Ala)', 'HA272 

(Leu)', 'PA633 (Thr)', 'NS128 (Gly)', 'HA339 (Lys)', 'HA67 (Lys)'] 

PB1_517 (Val) 737 
['HA238 (Ser)', 'M243 (Leu)', 'NS276 (Asn)', 'NA483 (Asn)', 'PA65 (Leu)', 'HA255 
(Glu)', 'NA436 (Ser)', 'NS1231 (Lys)', 'M1142 (Val)', 'NA400 (Lys)'] 

M1_142 (Val) 736 
['HA255 (Glu)', 'M278 (Lys)', 'NA96 (Glu)', 'HA91 (Ile)', 'NA105 (Tyr)', 'NA102 (Asn)', 
'HA119 (Thr)', 'NA110 (Asn)', 'NA49 (Leu)', 'PA65 (Leu)'] 

PB1_212 (Leu) 736 
['NA283 (Phe)', 'NA263 (Ser)', 'NA255 (Ile)', 'NA237 (Gly)', 'NA235 (Thr)', 'NA232 
(Ala)', 'NA98 (Thr)', 'HA195 (Tyr)', 'HA152 (Ser)', 'NA333 (Arg)'] 

M1_205 (Val) 735 
['PB2577 (Thr)', 'NS128 (Gly)', 'PA633 (Thr)', 'NP379 (Asn)', 'HA190 (Ala)', 'NP292 
(Ala)', 'HA339 (Lys)', 'NS1159 (Val)', 'NA186 (Lys)', 'NS141 (Lys)'] 

NS2_105 (Thr) 734 

['NA206 (Leu)', 'NA48 (Ser)', 'HA187 (Ser)', 'NA414 (Ser)', 'HA163 (Ser)', 'NA136 

(Pro)', 'NP299 (Lys)', 'PA417 (Ser)', 'NP448 (Ala)', 'NP378 (Asp)'] 

M2_54 (Leu) 732 

['PA633 (Thr)', 'NS128 (Gly)', 'NP379 (Asn)', 'HA339 (Lys)', 'HA190 (Ala)', 'NS1159 

(Val)', 'NP292 (Ala)', 'M1239 (Ala)', 'HA416 (Val)', 'M1205 (Val)'] 

NS2_123 (Phe) 731 

['PA417 (Ser)', 'NP448 (Ala)', 'NP428 (Lys)', 'NP378 (Asp)', 'NP299 (Lys)', 'PA434 

(Ser)', 'PA268 (Ile)', 'PB250 (Ser)', 'PA225 (Cys)', 'PB2298 (Thr)'] 

NS2_6 (Val) 730 

['NS16 (Val)', 'PA340 (Leu)', 'NA447 (Glu)', 'NP59 (Glu)', 'PA275 (Pro)', 'PA186 (Gly)', 

'NA313 (Leu)', 'NP322 (Ile)', 'PA85 (Thr)', 'PB2231 (Ser)'] 

PB1_298 (Ile) 729 

['NA439 (Lys)', 'NA49 (Leu)', 'NA490 (Gly)', 'NA102 (Asn)', 'HA91 (Ile)', 'NA105 

(Tyr)', 'HA415 (Ser)', 'HA119 (Thr)', 'NP350 (Ser)', 'NA111 (Thr)'] 

PB1_339 (Ile) 729 

['NP295 (Tyr)', 'NP196 (Val)', 'PA341 (Ser)', 'NP319 (Tyr)', 'NP67 (Leu)', 'M1207 

(Ser)', 'NP289 (Pro)', 'PB2653 (Met)', 'NP27 (Asn)', 'PB2205 (Ser)'] 

M1_167 (Thr) 729 

['NS273 (Leu)', 'NS184 (Thr)', 'NP429 (Ser)', 'NP465 (Gln)', 'PB2690 (Gly)', 'PB2126 

(Glu)', 'NS167 (Lys)', 'NA413 (Glu)', 'NP349 (Val)', 'NA392 (His)'] 
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NS2_99 (Val) 728 

['NP59 (Glu)', 'NA447 (Glu)', 'PA275 (Pro)', 'PA186 (Gly)', 'NA313 (Leu)', 'HA280 

(Ile)', 'NP322 (Ile)', 'PA85 (Thr)', 'M1121 (Ala)', 'PB2231 (Ser)'] 

NS2_131 (Thr) 727 

['NP59 (Glu)', 'NA447 (Glu)', 'PA275 (Pro)', 'NA313 (Leu)', 'PA186 (Gly)', 'NP322 

(Ile)', 'PA85 (Thr)', 'PB1364 (Leu)', 'M1121 (Ala)', 'HA280 (Ile)'] 

M2_86 (Ala) 726 

['M1115 (Ile)', 'NP319 (Tyr)', 'NP289 (Pro)', 'NP67 (Leu)', 'M1137 (Ala)', 'NP295 (Tyr)', 

'NP220 (Lys)', 'NP196 (Val)', 'PA341 (Ser)', 'M1121 (Ala)'] 

PB1_640 (Glu) 726 

['PB2653 (Met)', 'PB2205 (Ser)', 'NP196 (Val)', 'NP295 (Tyr)', 'NP319 (Tyr)', 'NP67 

(Leu)', 'PB271 (Glu)', 'NP289 (Pro)', 'PB2599 (Gln)', 'PA341 (Ser)'] 

M2_93 (Ser) 726 

['M1115 (Ile)', 'NP319 (Tyr)', 'NP289 (Pro)', 'NP67 (Leu)', 'NP295 (Tyr)', 'M1137 (Ala)', 

'NP196 (Val)', 'M1121 (Ala)', 'PA341 (Ser)', 'NP220 (Lys)'] 

 

 

Top 25 Edges 
 

  Edges with highest weight are significant since they represent 

residues with strongest correlated mutations. We list the top 25 edges (with highest MIC 

values) for the seven datasets in Table 15, Table 16, Table 17, Table 18, Table 19 and Table 

20.  From these results, we can make the following observations. 

 

The average MIC value for top 25 edges in Avian H5 and H7N9 is about 20% lower 

compared to averages in H1N1 and H3N2 datasets. 

The top edge in Avian H5 dataset (between NS1_214 and NS2_56) has a 

significantly higher MIC score of 0.95 compared to the next strongest edge (MIC ~0.74). 

Majority of the top edges are correlations between residues in non-surface proteins 

(HA and NA). 

All the top edges in Swine H3N2 dataset are edges between M1 and M2 residues. 

We see edges with HA or NA residues in Human H1N1 and H3N2 datasets whereas 

we do not see any HA or NA residues in top 25 edges in Swine H1N1 or H3N2 datasets. 
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Table 15 - Top 25 edges for Swine H1N1 dataset  

 

 

 

Table 16 - Top 25 edges for Human H1N1 Dataset 

SOURCE TARGET MIC 

NS1_205 (Ser) NS2_48 (Ala) 0.965 

M1_80 (Ile) PA_321 (Lys) 0.943 

HA_202 (Thr) PA_321 (Lys) 0.92 

HA_202 (Thr) M1_80 (Ile) 0.908 

NA_321 (Val) PA_362 (Lys) 0.895 

NA_34 (Ile) PA_362 (Lys) 0.891 

NA_432 (Lys) PA_362 (Lys) 0.887 

NA_44 (Asn) PB1_397 (Ile) 0.879 

SOURCE TARGET MIC 

NS1_205 (Asn) NS2_48 (Thr) 0.949 

PB1_779 (Ser) PB2_271 (Ala) 0.912 

M1_166 (Ala) M2_77 (Gln) 0.905 

PB1_779 (Ser) PB2_147 (Thr) 0.904 

M1_116 (Ser) M2_77 (Gln) 0.897 

PB1_649 (Asp) PB2_147 (Thr) 0.894 

PB1_649 (Asp) PB2_271 (Ala) 0.888 

M1_101 (Lys) M2_77 (Gln) 0.886 

NS1_194 (Val) NS2_37 (Ser) 0.88 

M1_166 (Ala) M2_31 (Asn) 0.869 

PB1_350 (Met) PB2_271 (Ala) 0.869 

M1_116 (Ser) M2_31 (Asn) 0.868 

PB1_779 (Ser) PB2_591 (Arg) 0.859 

M1_121 (Thr) M2_77 (Gln) 0.857 

PB1_350 (Met) PB2_147 (Thr) 0.855 

NP_386 (Asn) PB1_779 (Ser) 0.854 

PB1_779 (Ser) PA_400 (Pro) 0.854 

M1_101 (Lys) M2_31 (Asn) 0.849 

PB2_147 (Thr) PA_400 (Pro) 0.849 

M1_214 (His) M2_77 (Gln) 0.848 

NP_386 (Asn) PB2_271 (Ala) 0.845 

PB1_649 (Asp) PA_400 (Pro) 0.842 

PB2_271 (Ala) PA_400 (Pro) 0.842 

PB1_649 (Asp) PB2_591 (Arg) 0.84 

NP_386 (Asn) PB2_147 (Thr) 0.839 
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HA_471 (Asn) PA_321 (Lys) 0.871 

M1_230 (Lys) PB2_731 (Val) 0.869 

PB1_154 (Gly) PB2_293 (Arg) 0.869 

M1_230 (Lys) PB2_66 (Met) 0.859 

M1_230 (Lys) PB2_293 (Arg) 0.856 

HA_471 (Asn) M1_80 (Ile) 0.854 

HA_233 (Ile) NS1_125 (Glu) 0.852 

M1_192 (Met) PB2_66 (Met) 0.852 

NA_264 (Val) NS2_83 (Met) 0.851 

NS1_125 (Glu) NS2_83 (Met) 0.848 

NA_200 (Asn) M1_230 (Lys) 0.846 

NA_44 (Asn) NS1_90 (Leu) 0.843 

PB2_344 (Met) PA_321 (Lys) 0.843 

PB1_397 (Ile) NS1_90 (Leu) 0.836 

HA_13 (Ala) NS2_83 (Met) 0.834 

NA_321 (Val) PA_100 (Val) 0.834 

NA_34 (Ile) PA_100 (Val) 0.832 

 

 

Table 17 - Top 25 edges for Swine H3N2 Dataset 

SOURCE TARGET MIC 

M1_116 (Ser) M2_77 (Gln) 0.931 

M1_121 (Thr) M2_77 (Gln) 0.92 

M1_214 (His) M2_77 (Gln) 0.92 

M1_101 (Lys) M2_77 (Gln) 0.91 

M1_166 (Ala) M2_77 (Gln) 0.908 

M1_121 (Thr) M2_20 (Ser) 0.907 

M1_214 (His) M2_20 (Ser) 0.907 

M1_116 (Ser) M2_20 (Ser) 0.897 

M1_95 (Arg) M2_77 (Gln) 0.881 

M1_101 (Lys) M2_20 (Ser) 0.879 

M1_166 (Ala) M2_20 (Ser) 0.879 

M1_95 (Arg) M2_20 (Ser) 0.87 

M1_181 (Leu) M2_60 (Lys) 0.859 

M1_142 (Ala) M2_77 (Gln) 0.845 

M1_142 (Ala) M2_20 (Ser) 0.838 

M1_209 (Thr) M2_77 (Gln) 0.831 

M1_116 (Ser) M2_31 (Asn) 0.826 
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M1_209 (Thr) M2_20 (Ser) 0.824 

M1_15 (Ile) M2_77 (Gln) 0.815 

M1_121 (Thr) M2_31 (Asn) 0.813 

M1_214 (His) M2_31 (Asn) 0.813 

M1_30 (Ser) M2_43 (Thr) 0.808 

M1_121 (Thr) M2_95 (Glu) 0.807 

M1_214 (His) M2_95 (Glu) 0.807 

M1_166 (Ala) M2_31 (Asn) 0.807 

 

 

Table 18 - Top 25 edges for Human H3N2 Dataset 

SOURCE TARGET MIC 

NA_31 (Phe) NP_406 (Thr) 0.962 

NP_406 (Thr) PB1_709 (Ile) 0.962 

NA_26 (Ser) NP_406 (Thr) 0.958 

NA_50 (Phe) NP_406 (Thr) 0.95 

NA_50 (Phe) PB1_709 (Ile) 0.945 

NA_31 (Phe) PB1_709 (Ile) 0.942 

NA_26 (Ser) PB1_709 (Ile) 0.94 

NA_394 (Asn) NP_406 (Thr) 0.938 

NA_394 (Asn) PB1_709 (Ile) 0.934 

NP_406 (Thr) PB2_590 (Ser) 0.93 

PB1_709 (Ile) PB2_590 (Ser) 0.927 

NA_394 (Asn) PB2_590 (Ser) 0.92 

NA_50 (Phe) PB2_590 (Ser) 0.917 

NP_136 (Ile) PB1_709 (Ile) 0.916 

NA_31 (Phe) PB2_590 (Ser) 0.913 

NA_26 (Ser) PB2_590 (Ser) 0.91 

NA_50 (Phe) NP_136 (Ile) 0.906 

HA_246 (Pro) PB1_709 (Ile) 0.904 

HA_246 (Pro) NP_406 (Thr) 0.902 

NA_31 (Phe) NP_136 (Ile) 0.901 

NA_26 (Ser) PB1_619 (Asn) 0.9 

NP_136 (Ile) PB2_590 (Ser) 0.9 

NA_38 (Ile) NP_406 (Thr) 0.897 

NA_316 (Ile) NP_406 (Thr) 0.896 

HA_246 (Pro) NA_50 (Phe) 0.893 
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Table 19 - Top 25 edges for Avian H5 dataset 

SOURCE TARGET MIC 

NS1_214 (Leu) NS2_56 (Phe) 0.95 

M1_232 (Asn) M2_14 (Glu) 0.739 

NS1_214 (Leu) NS2_22 (Ala) 0.739 

HA_228 (Leu) M1_224 (Asn) 0.727 

NP_377 (Asn) NS1_84 (Met) 0.726 

HA_126 (Ile) M1_166 (Ala) 0.719 

HA_126 (Ile) M1_224 (Asn) 0.718 

HA_349 (Lys) M1_166 (Ala) 0.718 

NS1_84 (Met) NS2_22 (Ala) 0.717 

HA_126 (Ile) M1_232 (Asn) 0.715 

NS1_219 (Lys) NS2_22 (Ala) 0.713 

HA_125 (Arg) M1_232 (Asn) 0.712 

HA_125 (Arg) M1_166 (Ala) 0.708 

HA_236 (Ser) M1_166 (Ala) 0.704 

HA_236 (Ser) M1_224 (Asn) 0.702 

HA_418 (Arg) M1_232 (Asn) 0.702 

NS1_219 (Lys) NS2_56 (Phe) 0.7 

NS1_84 (Met) NS2_56 (Phe) 0.699 

HA_418 (Arg) M1_166 (Ala) 0.697 

HA_125 (Arg) M1_224 (Asn) 0.695 

HA_236 (Ser) M1_232 (Asn) 0.692 

HA_126 (Ile) M1_15 (Ile) 0.688 

NP_483 (Asn) PB1_14 (Val) 0.687 

HA_418 (Arg) M1_224 (Asn) 0.684 

NS1_219 (Lys) NS2_61 (Ile) 0.683 

 

 

Table 20 - Top 25 edges for H7N9 dataset 

SOURCE TARGET MIC 

NP_375 (Asp) PB1_397 (Ile) 0.751 

PB1_694 (Asn) PB2_139 (Val) 0.727 

NP_375 (Asp) PB1_171 (Met) 0.719 

PB1_397 (Ile) NS1_152 (Glu) 0.714 

NA_83 (Arg) PB1_397 (Ile) 0.654 

PB1_694 (Asn) PB2_676 (Met) 0.654 

PB1_171 (Met) NS1_152 (Glu) 0.649 

PB1_397 (Ile) NS1_216 (Thr) 0.634 
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PB1_397 (Ile) NS1_111 (Ile) 0.628 

PB1_397 (Ile) NS1_80 (Ser) 0.628 

PB1_397 (Ile) NS1_27 (Leu) 0.624 

NP_371 (Met) PB1_397 (Ile) 0.622 

NA_83 (Arg) NP_375 (Asp) 0.617 

NP_375 (Asp) NS1_152 (Glu) 0.61 

NA_83 (Arg) PB1_171 (Met) 0.606 

NA_327 (Asn) PB2_647 (Ile) 0.594 

PB1_397 (Ile) PB2_139 (Val) 0.594 

PB1_397 (Ile) NS1_212 (Ser) 0.591 

PB1_171 (Met) PB2_139 (Val) 0.589 

PB1_171 (Met) NS1_27 (Leu) 0.589 

NA_327 (Asn) PB2_535 (Met) 0.582 

NP_375 (Asp) NS1_111 (Ile) 0.579 

NA_327 (Asn) PB2_511 (Val) 0.576 

NP_371 (Met) PB1_171 (Met) 0.576 

PB1_171 (Met) NS1_216 (Thr) 0.573 

 

Entropy 
 

To gain a global view of sequence variation, we calculated average entropy values 

for sequences of all the 10 proteins in different datasets (Figure 65). This average entropy 

plot revealed that NA protein in Avian H5 has the highest overall sequence variation. 

Proteins in Human-All, Avian H5, Swine H1N1 and Swine H3N2 datasets had higher 

entropies compared to proteins in H7N9, Human H1N1 and Human H3N2 data sets. Within 

each dataset, HA, NA and NS1 had the highest average entropy among all the proteins. 

We have also created separate plots of average entropies for in-network and out-of-

network residues (Figure 66, Figure 67). These plots revealed that the entropy values of in-

network residues are generally higher than the entropy values of out-of-network residues. 
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Figure 65 - Average Entropies 
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Figure 66 - Average Entropies for In-Network Residues 
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Figure 67 - Average Entropies for Out-of-Network Residues 

 

Solvent Accessibility 
 

 We hypothesized that residues with higher solvent accessibility values tend 

to have a higher probability to participate in inter-protein contacts and thereby have a 

greater likelihood to be in the network. We calculated solvent accessibility values based on 

ACC scores in PDB structures for in-network and out-of-network residues in HA, NA, M1, 

NS1 and NP proteins using 1RU7, 3BEQ, 1EA3, 2GX9 and 2IQH PDB structures 

respectively. The average values for in-network residues were not statistically higher for 

most proteins in several datasets compared to the average values for out-of-network cases 

with few exceptions. The average values for in-network residues in NS1 were statistically 

higher (2 sample t-test, p<0.05) compared to out-of-network residues in all datasets except 

SWINE_H3N2.  
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These results disprove our hypothesis and suggest that there is participation of both 

surface as well as buried residues in networks of correlated mutations. 

 

Figure 68 - Average solvent accessibility for in-network and out-of-network residues 

 

 

 

Residue Cooccurence Counts 
 

 To have a deeper understanding of the association between MIC correlation 

values and mutations occurring between two residues, we computed residue cooccurrence 

counts for edges with different MIC values. From these counts, we can interpret that higher 

MIC scores are generally related to higher degree of covariance in residue pairs. If there is 

mutation in only one residue, it does not result in a higher score. As an example, the ha_6, 

ns2_34 edge in Human H1N1 has a weight of only 0.5 since there are proportionately fewer 

covarying mutations compared to the ns2_48, ns1_205 edge with a weight of 0.965. These 

counts substantiate the statistical strength of the MIC methodology and provide additional 

context to our results. 
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Table 21 - Residue Cooccurence Counts 

Dataset Edge Weight Cooccurence Counts 
HUMAN_H1N1 ns2_48, 

ns1_205 

0.965 'AS' - 972; 'TN' - 583; 'AN' - 238; 'TS' - 238; 

'SS' - 18; 'AI' - 18; 'A-' - 1; 'AR' - 1; 'SI' - 

1; 'TK' - 1; 'NN' - 1 

HUMAN H1N1 pb2 731,  

m2 21  

0.805 'VD' - 808; 'IG' - 672; 'ID' - 394; 'VG' - 260; 

'VV' - 146; '-G' - 1 

HUMAN H1N1 ha_6,  

ns2_34 

0.5 'VR' - 1042; 'LR' - 489; 'VQ' - 488; 'AR' - 33; 

'IQ' - 4; 'MR' - 4; '-R' - 3; 'LQ' - 3; '-Q' - 

2; 'AQ' - 1; 'FR' - 1; 'XQ' - 1; 'LL' - 1 

    

HUMAN H3N2 np_406,  

na_31 

0.962 'TF' - 1003; 'IF' - 584; 'TL' - 568; 'IL' - 420; 

'-L' - 2; 'TV' - 1; 'XL' - 1; 'I-' - 1; 'IS' - 1 

HUMAN H3N2 pb1_586, 

ha_244 

0.5 'RG' - 929; 'KD' - 604; 'RN' - 540; 'KN' - 276; 

'RD' - 144; 'KG' - 53; 'K-' - 5; 'RB' - 3; 'XG' 

- 1; 'KB' - 1 

    

SWINE H1N1 'm1_116', 

'm2_77' 

0.931 'SQ' - 501; 'AR' - 280; 'SR' - 7; 'AQ' - 6 

SWINE H1N1 'm1_142', 

'm2_31' 

0.771 'AN' - 491; 'VS' - 265; 'VN' - 31; 'AS' - 6; 

'VG' - 1 

SWINE H1N1 'm1_116' - 

'm2_14' 

0.5 'SE' - 456; 'AG' - 256; 'SG' - 52; 'AE' - 30 

    

SWINE H3N2 'ns1_205', 

'ns2_48' 

0.949 'NA' - 384; 'ST' - 364; 'NT' - 144; 'SA' - 48; 

'KT' - 35; 'NS' - 27; 'IT' - 18; 'SN' - 14; 'KN' 

- 12; 'NN' - 12; 'GT' - 10; 'DT' - 6; 'SX' - 3; 

'XA' - 3; 'GA' - 3; 'IA' - 2; 'NV' - 2; 'SS' - 

2; 'DA' - 1; 'KA' - 1; 'VS' - 1; '-A' - 1; 'RN' 

- 1; 'ND' - 1; 'S-' - 1 

SWINE H3N2 'm2_95', 

'm1_214' 

0.796 'EQ' - 394; 'VH' - 329; 'EH' - 311; 'AH' - 46; 

'MH' - 5; '-H' - 2; 'VQ' - 2; 'SH' - 2; '--' - 

1; 'EN' - 1; 'VN' - 1; '-Q' - 1; 'EY' - 1 

SWINE H3N2 'ns1_129', 

'na_454' 

0.5 'IA' - 435; 'TV' - 232; 'VV' - 231; 'IV' - 108; 

'IT' - 61; 'TA' - 9; 'VA' - 8; 'TT' - 4; 'AV' - 

3; 'IM' - 2; 'VG' - 1; 'LV' - 1; 'MV' - 1 

    

AVIAN H5 'ns2_56', 

'ns1_214' 

0.95 'FL' - 674; 'LP' - 592; 'LL' - 94; 'FP' - 86; 

'LS' - 10; 'FS' - 3; 'CP' - 2; 'LA' - 1; 'FF' - 

1 

AVIAN H5 'ns1_94', 

'ns2_64' 

0.5 'TG' - 1266; 'SA' - 178; 'TE' - 7; 'SG' - 4; 

'TA' - 4; 'AG' - 1; 'TR' - 1; 'NG' - 1; 'NA' - 1 

    

H7N9 'pb1_397', 

'np_375' 

0.751 'ID' - 227; 'ME' - 144; 'IE' - 33; 'MD' - 28; 

'MN' - 1; 'IG' - 1 

H7N9 'ns2_27' - 

'na_83' 

0.5 'DR' - 234; 'DK' - 94; 'GK' - 55; 'GR' - 50; 

'GN' - 1 

    

 

 

Protein Correlation Graphs 
 

To understand the extent of co-variation between the 10 proteins in IAV sequences, 

we created visualizations of protein correlation graphs where the proteins acts as nodes and 
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connections between these nodes are derived based on correlated mutations between 

residues. Strength of a node (enumerated in parenthesis as part of the name of the node) is 

the total number of residues in that protein with at least one significant correlation with a 

residue in another protein, while the strength of a connection (depicted by the thickness of 

a connection) is the total number of edges between residues in two proteins. Several 

interesting observations can be made from these visualizations (Figure 69, Figure 70, 

Figure 71, Figure 72, Figure 73, Figure 74 and Figure 75). 

1. HA and NA proteins play the most prominent role in protein correlation 

networks. They tend to have the maximum number of residues with significant 

correlations.  

2. NA protein dominates the Avian H5 network (Figure 73). 

3. Figure 71 and Figure 72 elucidate the differences between Human H3N2 and 

Swine H3N2 networks. The Swine H3N2 network is sparse and contains very 

few connections between proteins compared to the Human H3N2 network. 

4. Protein interaction networks of Human H1N1 and Human H3N2 (Figure 70, 

Figure 73) suggest that residues in NP have the third highest number of residues 

with correlated mutations (after HA and NA).  

5. These networks (except for H7N9 network) contain residues from all 10 

proteins. 
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Figure 69 - Protein Correlation Network for Swine H1N1 Dataset 

 

 

 

Figure 70 - Protein Correlation Network for Human H1N1 Dataset 
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Figure 71 - Protein Correlation Network for Swine H3N2 Dataset 
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Figure 72 - Protein Correlation Network for Human H3N2 Dataset 

 

 

 

Figure 73 - Protein Correlation Network for Avian H5 Dataset 
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Figure 74 - Protein Correlation Network for H7N9 Dataset 

 

 

Figure 75 - Protein Correlation Network for Human_All Dataset 
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Evolution of Human H1N1 Network 
 

To visualize how H1N1 viruses in Humans evolve over time, we examined the 

changes in network topology over time by analyzing four different datasets listed in Table 

22. We started with a dataset of 698 unique strains belonging to years till 2007. For our 

second dataset, we created a dataset consisting of 1035 unique strains belonging to flu 

seasons till 2010/2011 with a maximum of 300 strains per year. Node and edge counts for 

these datasets are depicted in Figure 76 and Figure 77 respectively. 

These results suggest that there is a sharp increase in epistatic changes in Influenza 

genome between 2007 and 2010/2011 flu season during which a pandemic H1N1 occurred. 

There is a gradual normalization in these changes in subsequent years where the genome 

continued to see lesser covariance in mutations. Both the node and edge count observations 

confirm this hypothesis.  If the trend continues (where we do not observe any new H1N1 

pandemics soon), we should continue to see a similar pattern with the long-tail in the 

number of nodes and a gradual decrease in number of edges in the coming years. 

Table 22 - Datasets for studying Human H1N1 evolution 

NAME #STRAINS COMMENTS 

HUMAN_H1N1_TILL_2007 698 698 unique strains of H1N1 belonging 

to years till 2007 

HUMAN_H1N1_TILL_10_11 1035 1035 unique strains of H1N1 belonging 

to flu seasons before 2010/11, 

maximum 300 per year 

HUMAN_H1N1_TILL_14_15 1448 1448 unique strains of H1N1 belonging 

to flu seasons before 2014/15, 

maximum 300 per year 

HUMAN_H1N1_TILL_16_17 1769 1769 unique strains of H1N1 belonging 

to flu seasons before 2016/17, 

maximum 300 per year 
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Figure 76 - Node counts for Human H1N1 Datasets 
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Figure 77 - Edge counts for Human H1N1 Datasets 

 

Evolution of Human H3N2 Network 
 

To visualize how H3N2 viruses in Humans evolve over time, we examined the 

changes in network topology over time by analyzing four different datasets over an 

increasing 10-year window (listed in Table 23). Compared to the H1N1 evolution plots, 

the H3N2 plots show a far lesser degree of change over the last 10 years suggesting a more 

stable, less dynamic genome. Also, the number of nodes and edges in the H3N2 network 

are substantially lesser than the number of nodes and edges in H1N1 network. 

 

Table 23 - Datasets for studying Human H3N2 evolution 

NAME #STRAINS COMMENTS 

H3N2_HUMAN_TILL_2016 1561 Unique - HUMAN H3N2 - BEFORE 

2007 - MAX 300 per year 
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H3N2_HUMAN_TILL_2010 1913 Unique - HUMAN H3N2 - BEFORE 

2010 - MAX 200 per year 

H3N2_HUMAN_TILL_2014 2154 Unique - HUMAN H3N2 - BEFORE 

2014 - MAX 150 per year 

H3N1_HUMAN_ALL 1940 Unique - HUMAN H3N2 – ALL – 

MAX 100 per year 

 

 

 

Figure 78 - Node counts for Human H3N2 Datasets 
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Figure 79 - Edge counts for Human H3N2 Datasets 
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CHAPTER 9 – CONCLUSIONS 

In this study, we conceived and realized a pipeline for systematic analysis of the 

structural dynamics of IAV system using a network approach. We employed a non-linear 

correlation measure called ‘Maximal Information Coefficient’ (MIC) to identify correlated 

mutations and created networks based on MIC scores. We created separate networks for 

seven different primary datasets – HUMAN H1N1, SWINE H1N1, HUMAN H3N2, 

SWINE H3N2, AVIAN H5, H7N9 and HUMAN ALL and studied topological properties 

of the networks. In a separate but related effort, we successfully applied ‘normalized n-

gram frequencies’ as feature vectors to classify IAV sequences. Our study led us to several 

important conclusions. 

Network Analysis of Correlated Mutations in IAV can provide novel 
insights 
 

Based on our study, we can conclude that correlated mutation networks provide a 

unique and new perspective to understanding the structural dynamics of IAV system. These 

networks can supplement and extend existing structure based computational approaches 

and distance based network models to augment our understanding of the overall features 

of viral proteome. Our approach provides a robust framework to quantify correlated 

mutations, evaluate the mutational space of each amino acid and visualize the impact of a 

specific mutation in a IAV protein on amino acid residues in other proteins.  We could 

identify residues that act as hubs and find edges and triplets with maximum covariance that 

can be useful for epitope identification and antibody engineering.    
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Correlated Mutation Networks in IAV are sub-type and host specific 
 

By implementing our pipeline on datasets covering different sub-types and hosts, 

we can conclude that the correlated mutation networks are both sub-type and host specific. 

There are substantial differences in the networks of Swine H1N1 and Human H1N1 

network and similarly between networks of Swine H3N2 and Human H3N2 networks. 

There are more pronounced differences between networks of Human H1N1 and Human 

H3N2 networks (and similarly between Human H3N2 and Swine H3N2 networks. We have 

also analyzed the correlated mutation networks of Avian H5 and H7N9 and found them to 

be significantly different from other networks. The correlated mutation network created 

from a combination of strains of different sub-types turned out to be the densest and was 

significantly different from all other networks. 

Correlated Mutation Networks can improve our understanding of 
Influenza evolution 
 

Our experiments with Human H1N1 and H3N2 datasets over an increasing time 

allowed us to gain a unique perspective into evolution of H1N1 and H3N2 in Humans 

based on correlated mutation profiles. We observed that H3N2 strains in Humans followed 

a stable pattern where we saw a slow and gradually growing network over the years. We 

observed a sudden increase in the number of nodes and edges in The H1N1 network from 

2006/2007 flu season to the 2009/2010 flu season and the network showed signs of stability 

and slow, gradual changes after the 2009/2010 season. 

Observations from Correlated Mutation Networks in Influenza (@ 0.5 
threshold) 
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We could make several interesting observations based on our results. First, Nodes 

with highest degree and edges with strongest weight did not generally belong to virally 

active surface proteins (HA and NA) for all datasets although a large percentage (>50%) 

of in-network residues belong to these two proteins in Human H1N1, Swine H1N1, Human 

H3N2 and Avian H5 networks. The Avian H5 network is dominated by residues from NA 

(52%). The H7N9 and Swine H3N2 networks @ 0.5 threshold are very sparse with only 

20 and 42 nodes respectively.  

There is a statistically significant correlation between entropy and MIC 
correlations 
 

Our study clearly highlighted that residues with high degree of entropy have much 

higher probability to be in-network compared to residues with lesser entropy. While we 

observed statistical significance in the association between MIC and entropy values, it is 

important to mention here that entropy does not necessarily imply a high MIC value and 

we have seen cases where residues with high entropy were not in the network.  

There is no statistically significant correlation between solvent 
accessibility and MIC correlations 
  

 We explored potential association between residues with high correlated 

mutations and their solvent accessibility scores and did not observe and statistical 

correlation suggesting that both surface and buried residues are involved in correlated 

mutations. 

Computational pipeline and software can be applied to other systems 
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 We have developed a robust and comprehensive software pipeline to pre-

process data, compute MIC, create MIC-based networks and analyze the networks. This 

pipeline can be reused to other viral and small non-viral systems with sufficient data. 

Normalized 3-gram counts are reliable features for automated 
classification of IAV sequences 
 

In our ‘classification’ work, we proved that N-gram analysis coupled with 

supervised classification algorithms to distinguish between strains is a sound approach. We 

created a software pipeline in Python and applied it to classify protein and nucleotide 

sequences of IAV that we downloaded from IRD. Using this approach, we could perform 

binary classification to distinguish sequences from different subtypes, (consecutive) flu 

seasons, geographic locations (Asia vs North-America), similarity to 2009 pandemic H1N1 

and most importantly drug resistance. We could classify sequences of HA, NA, M1, M2 

and NA based on their resistance to Adamantane and Oseltamavir with a near 100% 

accuracy. Using Random Forest classifier, we identified the most significant features (3-

grams) in NA and M2 sequences and could confirm a strong linkage between these features 

and known drug resistant mutations in these proteins. 
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CHAPTER 10 - FUTURE WORK 

This study focused on performing comprehensive analysis of correlated mutations 

in IAV sequences using a network approach. We could conduct this study primarily 

because of the growing number of IAV sequences in public repositories. Results of our 

study can improve our understanding of the evolutionary dynamics of IAV. We have 

presented several specific conclusions based on the results of our work. Our effort provided 

a framework for understanding correlated mutations and overall dynamics of a system 

based on a network approach. We have developed a methodology and a computational 

pipeline that can serve as an additional tool for in-vitro mutation analysis of similar 

biological systems using large number of protein sequences.  

We see several opportunities for application of our approach to other similar 

systems and for improvement of our approach.  

First and foremost, we can incorporate additional sequences from specific years 

and/or regions into our existing network to understand the impact. Such efforts can improve 

the adoption of this approach and can make it a new tool to not only study the dynamics of 

the system more systematically but also to improve our understanding of epidemiological 

patterns. 

Second, the computational pipeline that we developed can be applied to other 

biological systems of similar size. The combined sequence length of the 10 proteins in IAV 

is approximately 4500 and we believe that our pipeline can scale without any issues for 

systems with up to 20000 residues. Other viral systems like Ebola, West Nile, Chikungunya 
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and Dengue are good candidates for similar study in the future based on availability of 

sufficient sequences.   

There is also scope for improvement of our overall computational approach. While 

we employed a Boolean [0,1] notation to represent our sequences, we believe that there is 

value in trying other notations that more accurately capture the strength of a mutation 

before performing MIC computations. In fact, we have some preliminary results based on 

the use of blosum62 scoring matrix and a second approach that employs the hydrophobicity 

of residues as alternate notations that we did not report in this thesis. Comparing the results 

of networks created based on these alternate notations with a Boolean [0,1] notation can 

improve the overall quality of results presented in this work. While we have taken some 

steps to understand the impact of background noise, much work requires to be done in this 

area to automatically identify mutations that are intrinsically phylogenetic in nature and 

include such a step as part of the overall pipeline. The other area that is worth pursuing is 

systematically comparing MIC-based mutation networks with more conventional mutual 

information derived mutation networks to improve robustness of the overall approach. For 

the classification work that we reported in this thesis, the increasing number of labeled and 

curated sequences available in IRD presents a unique opportunity for application of deep 

learning techniques to perform classification without feature engineering. 
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CHAPTER 11 - APPENDIX 

Intra-Protein Correlated Mutations in IAV 
 

While our work primarily focused on analyzing inter-protein correlated mutations 

in IAV sub-systems, we have also created intra-protein correlated mutation graphs to 

understand differences and gain relevant insights. In this appendix, we have included 

results for intra-protein correlated mutations within residues in proteins in IAV sub-

systems for our 6 primary datasets (listed in Data). Figure 80 and Figure 81 depict the node 

and edge counts for each protein. These figures suggest significant differences between the 

6 datasets. There are significantly higher number of nodes and edges in the ‘NA’ network 

of Avian_H5. Figure 81 also suggests that the intra-protein correlated mutations graphs for 

Human H3N2, Swine H3N2 and H7N9 are very sparse with a significantly lower edge to 

node ratio. 

 

 

Figure 80 - Node counts in Intra-Protein correlated mutation graphs with MIC threshold set to 0.4 
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Figure 81 - Edge counts in Intra-Protein correlated mutation graphs with MIC threshold set to 0.4 

 

Source Code  
  

Source code developed as part of this effort can be found in the following github 

repositories. 

• MIC computation, graph creation and analysis of correlated mutations 

https://github.com/yallapragada/network_analysis 

• Web application to depict results of network analysis 

https://github.com/yallapragada/network_analysis_web 

• Classification of Influenza sequences using ngrams 

https://github.com/yallapragada/ngram_classifier 

 

 

https://github.com/yallapragada/network_analysis
https://github.com/yallapragada/network_analysis_web
https://github.com/yallapragada/ngram_classifier
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