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Abstract

EXTREMAL COMBINATORICS IN GEOMETRY AND GRAPH THEORY

Jonathan E. Beagley, PhD

George Mason University, 2013

Dissertation Director: Dr. Walter Morris

We study a problem in extremal geometry posed by Paul Erdős and George Szekeres in

1935. This problem is to find the smallest positive integer N(n) such that every point set

in general position (no three on a line) of N(n) points contains the vertex set of a convex

n-gon. Erdős and Szekeres showed that N(n) exists and conjectured that N(n) = 2n−2 + 1.

In 2006, Walter Morris introduced a graph on the copoints of a planar point set in general

position, where cliques in the graph correspond to subsets of points in convex position, and

showed that the chromatic number of the copoint graph was n if the point set contained at

least 2n−2 + 1 points. We extend this copoint graph to abstract convex geometries studied

by Edelman and Jamison, where the cliques of this graph are convexly independent sets. A

major goal of this dissertation is to study the clique and chromatic numbers for the copoint

graph of convex geometries. Much of this dissertation would be trivial if every graph were a

copoint graph, so we provide a family of graphs that are not copoint graphs for any convex

geometries.

We begin by relating this copoint graph of Morris to the strict graph of critical pairs

from the theory of posets. The chromatic number of the strict graph of critical pairs was

shown by Felsner and Trotter to be a lower bound for the order dimension of the poset.



After establishing this relationship between these two graphs, we prove that the chromatic

number of the copoint graph is non-increasing under minors. We introduce an operation

for constructing a new convex geometry from two smaller convex geometries and use this

construction to show that the difference between clique number and chromatic number of

the copoint graph can become arbitrarily large as for any graph.

We construct a family of copoint graphs for which the ratio of the chromatic number to

the clique number can be arbitrarily large. For any natural numbers 1 < d < k, we study

the existence of a number Kd(k) so that the chromatic number of the copoint graph of a

convex geometry on a set of at least Kd(k) elements, with every d-element subset closed,

has chromatic number at least k. This problem of studying Kd(k) is related to the order

dimension of the complete graph.

Finally, we conclude by stating several properties of the copoint graph of a convex

geometry for convex geometries realized by planar point sets in general position. We prove

an Erdős-Szekeres type result in which for each n we describe a planar point set in general

position with order dimension n and show that every point set of larger size has order

dimension n + 1. We provide computational results detailing the difference of chromatic

number and clique number for the copoint graph of planar point sets in general position for

sets of size 10 or less. Lastly, we show results for characterizing the hyperedges of the strict

hypergraph of critical pairs for a convex geometry.



Chapter 1: Introduction

1.1 A Problem of Erdős and Szekeres

The motivation of this dissertation comes from a problem of Erdős and Szekeres posed in

1935: for any n ≥ 3, to determine the smallest positive integer N(n) such that any set

of at least N(n) points in general position (no three on a line) in the plane contains n

points that are the vertices of a convex n-gon. Morris and Soltan [MS00] surveyed results

related to this problem. It was established by Erdős and Szekeres [ES35],[ES61] that N(n)

exists and N(n) > 2n−2 and conjectured that N(n) = 2n−2 + 1. It is currently known that

N(n) ≤
(
2n−5
n−2

)
+ 1 when n ≥ 5, due to Tóth and Valtr [TV04]. It is worth noting that

exact values for N(n) are only known for n = 3, 4, 5, and 6 [MS00], [SP06] and are equal to

2n−2 + 1 is these cases.

The problem of Erdős and Szekeres is sometimes referred as the Happy Ending Prob-

lem. The name “Happy Ending Problem” is due to the marriage of Esther Klein and George

Szekeres after Erdős and Szekeres’ solution was published. The problem was initiated by

Esther Klein, who observed that any set of five points in general position in the plane con-

tains four points that are the vertices of a convex 4-gon. There are three distinct types of

placement of five points in the plane, with no three on a line, as shown in the Figure 1.1.

In each of these cases, there is at least one convex 4-gon determined by the points.

Klein suggested the more general problem on the existence of a finite number N(n)

such that from any set containing at least N(n) points in general position in the plane,

there are n points forming a convex polygon. There have been numerous generalizations

of this problem, related to higher dimenisions, families of convex bodies, and an abstract

convex setting. We explore the abstract convex setting of the Erdős-Szekeres problem to

1



Figure 1.1: Three Distinct Order Types of Five Points in General Position

gain insight into the original problem.

The rest of this chapter is devoted to introducing the concepts and tools used throughout

this dissertation. We introduce abstract convex geometries and a graph on specific closed

sets originally developed by Morris [Mor06] referred to as the “copoint graph”. The copoint

graph will be central to the investigations in Chapters 2, 3, and 4.

Chapter 2 starts by completely describing which closed sets of a convex geometry are

critical to understanding the poset structure of the collection of closed sets, partially or-

dered by inclusion. We also describe an inequality relating the chromatic number of the

copoint graph and the “order dimension” of the lattice of closed sets for a convex geometry

in Corollary 2.6, which appears in [Beaar]. It is also shown in Chapter 2 that the chromatic

number of the copoint graph is monotone non-increasing under minors. We conclude by

describing a “direct sum” of convex geometries. The copoint graph of a direct sum of con-

vex geometries can be completely described in terms of the copoint graphs of its component

convex geometries, which appears in [Bea].

In Chapter 3, we answer a question posed by Beagley [Beaar] by showing that there

is a convex geometry where the ratio of the chromatic number to the clique number of

the copoint graph is larger than any constant in Theorem 3.6. We continue by proving a

result in the spirit of Esther Klein’s for abstract convex geometries, and use this result to

propose a new problem, related to the Erdős-Szekeres problem. We loosen the restriction

of the convex geometry being “realized” by a set of planar points, but keep an abstraction

of general position for Corollary 3.15. This appears in [BM].

2



Chapter 4 shows results to enhance the study of the copoint graph and some computa-

tional results related to planar point sets in general position. We prove in Theorem 4.7 that

the planar point sets of Erdős and Szekeres of 2n−2 points in general position containing

no vertex set of a convex n-gon have order dimension n − 1 and any larger point set has

order dimension at least n. We conclude by investigating the possible difference between

the order dimension of the lattice of closed sets and the chromatic number of the copoint

graph.

1.2 Convex Geometries

Let X be a finite set and L be a collection of subsets of X with the properties: ∅ ∈ L ,

X ∈ L , and A ∩ B ∈ L whenever A,B ∈ L . Then L is called an alignment on X.

Following the example of Edelman and Jamison [EJ85], we also view L as a closure operator.

For any subset A of X we define the closure of A, L (A), to be the intersection of all C ∈ L

such that A ⊆ C. The subsets in L , or equivalently those subsets of X of the form L (A)

for some subset A of X, are called closed or convex. We say that L is anti-exchange if,

given any set C ∈ L and two distinct points p and q in X, neither in C, then q ∈ L (C ∪p)

implies that p /∈ L (C ∪ q).

Definition 1.1. Let X be a finite set. A pair (X,L ) is a convex geometry if:

1. L is an alignment on X, and

2. L is anti-exchange.

Edelman and Jamison [EJ85] presented several equivalent definitions of convex geometry.

We use the equivalent statement Theorem 1.2 in the proof of Proposition 2.2 and we use

Theorem 1.3 throughout Chapters 3 and 4.

Theorem 1.2 ([EJ85], 2.2). A pair (X,L ) is a convex geometry if and only if L is an

alignment on X and every maximal chain of convex sets of ∅ ( C1 ( C2 ( · · · ( X has the

same length |X|.
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Figure 1.2: The lattice of closed sets for a convex geometry with its copoint graph

Theorem 1.3 ([EJ85], 2.1). A pair (X,L ) is a convex geometry if and only if L is an

alignment on X and for every C ∈ L , C 6= X, there exists a p ∈ X such that C ∪ p ∈ L .

For an alignment (X,L ) we denote by LL = (L ,⊆) the partial order on L by con-

tainment. This partial order is a lattice, where A ∧B = A ∩B and A ∨B = L (A ∪B). A

set C ∈ L is a copoint if it is maximal in X − p for some p ∈ X. If C is a copoint, there

is exactly one set in L of the form C ∪ p for p /∈ C. The unique p is denoted α(C), and

we say that the copoint C is attached to α(C). We will sometimes refer to a copoint C by

the pair (α(C), C). The set of copoints, partially ordered by inclusion, is denoted M(X).

We say B ⊆ X is independent if for all p ∈ B, p /∈ L (B − p). We denote the size of the

largest independent set by b(LL ). A convex geometry is said to d-free if every d-element

subset of X is closed. For an element p of X, we write L (p) instead of L ({p}). We note

that L (p) 6= p in general, as we see in Figure 1.2.

Definition 1.4. Let X be a finite set of points in Rd. The convex geometry (X,L ) realized

by X is defined by L (A) = conv(A) ∩X for all A ⊆ X.

Morris [Mor06] showed that an independent set of size k in the convex geometry realized

by a set of points in general position in R2 corresponds to the vertex set of a convex k-

gon. The Erdős-Szekeres Conjecture, that 2n−2 + 1 points in the plane in general position

4



contain the vertex set of a convex n-gon, equivalently stated is: let convex geometry (X,L )

be realized by a planar point set in general position. Then |X| > 2n−2 implies b(LL ) ≥ n.

1.2.1 Graph of Copoints

We define G(X,L ) to be the graph of copoints or copoint graph with vertex set M(X) and

{A,B} ∈ E(G(X,L )), the edge set of G(X,L ), if and only if α(A) ∈ B and α(B) ∈ A.

G(X,L ) was described and studied by Morris in [Mor06] for convex geometries realizable

by planar point sets in general position. This graph can be created for any convex geometry,

not merely those realized by planar point sets. We see an example of a convex geometry

with its copoint graph in Figure 1.2. A k-clique is a graph G which has an edge between

any two distinct vertices of G with |V (G)| = k, this is also called a complete graph on k

vertices. The clique number of a graph G, denoted ω(G), is the size of the largest complete

graph contained in G. It follows directly from Proposition 1.5 that ω(G(X,L )) = b(LL )

for the copoint graph.

Proposition 1.5. If Y is a k-clique in G(X,L ), then {α(A) : A ∈ Y } is an independent

set of size k in (X,L ). If P is an independent set of size k in (X,L ), then there is a

k-clique Y in G(X,L ) so that P = {α(A) : A ∈ Y }.

Proof. Suppose Y is a k-clique of G(X,L ). If A ∈ Y , then {α(B) : B ∈ Y \{A}} ⊆ A,

because Y is a clique. Thus, since L (A) = A and α(A) /∈ A we see that α(A) is not in

L ({α(B) : B ∈ Y }\α(A)). So, {α(B) : B ∈ Y } is an independent set of size k. Next,

suppose P is an independent set of size k in (X,L ). For each x ∈ P , let A(x) be a copoint

attached to x containing P\{x}. Then {A(x) : x ∈ P} is a k-clique in G(X,L ).

Let G be a graph. An induced subgraph H of G, has the properties that V (H) ⊆ V (G)

and for all v, u ∈ V (H), one has {v, u} ∈ E(H) if and only if {v, u} ∈ E(G). A function

f : V (G)→ [n] is said to be a proper coloring of G if f has the property that f(A) 6= f(B)

whenever {A,B} ∈ E(G). The smallest n for which there is a proper coloring of G is called

5



the chromatic number of G, and denoted χ(G). As a complete subgraph on n vertices

requires n colors, it follows that ω(G) ≤ χ(G) for all graphs. Much of graph theory has

been devoted to understanding the difference between ω(G) and χ(G). One famous recent

example of this is the Strong Perfect Graph Theorem of Chudnovsky et. al [CRST06] that

says ω(H) = χ(H) for every induced subgraph H of a graph G if and only if G contains no

odd hole or odd-antihole. A hole is an induced cycle of size 4 or more, while an antihole

is an induced subgraph that is the complement of a cycle of size 4 or more. Morris also

showed that if X is a planar point set in general position with χ(G(X,L )) = k, then

|X| ≤ 2k−1. This result is stated and applied in Chapter 2 as Theorem 4.6. If we are

able to fully understand the difference between the ω(G(X,L )) and χ(G(X,L )) for planar

point sets in general position, this theorem of Morris would be important for resolving the

Erdős-Szekeres Conjecture.

Much of the discussion in this dissertation would just be restating many results long

known in graph theory if not for one fact: there are graphs that are not copoint graphs.

We establish this by showing that the cycle on 6 or more vertices is not a copoint graph for

any convex geometry.

Theorem 1.6. Let G be a cycle on 6 or more vertices. There is no convex geometry (X,L )

such that G is isomorphic to G(X,L ).

Proof. Suppose there is a convex geometry with G(X,L ) a cycle of length 6 or more. The

cycle has clique number 2, so the size of the largest independent set of (X,L ) is 2. (X,L )

cannot have only one copoint of size n− 1, and still have G(X,L ) be connected, so it has

two copoints of size n− 1 which form a 2-clique. Let these copoints of size n− 1 be A and

B, where A = {1, 2, ..., n− 1} and B = {1, 2, ..., n− 2, n}. In the graph G(X,L ), A and B

are adjacent, so there are two more copoints A1 and B1 where A1 is adjacent to A (and not

B) and B1 is adjacent to B (and not A). We know that A1 contains n but not n−1. Every

maximal chain in LL containing A1 must contain B and an (n − 2)-element subset of B.

This (n−2)-element subset must be a copoint adjacent to A, so it must be A1. Similarly, B1

6



must be an (n− 2)-element subset of A. Suppose that A1 and B1 are attached to different

points, this means that α(A1) ∈ B1 and α(B1) ∈ A1, and we have a cycle of size 4 in

G(X,L ). Thus, A1 and B1 must be attached to the same point; without loss of generality,

let this point be n− 2. We know that A1 = {1, 2, ...n− 3, n} and B1 = {1, 2, ...n− 3, n− 1}.

Because G(X,L ) is a cycle of length 6 or more, there are at least 2 more copoints, A2 and

B2, such that A2 is adjacent to A1 (but not A,B,B1) and B2 is adjacent to B1 (but not

A,B,A1). Thus, A2 and B2 cannot contain n− 1 or n, or they would be adjacent to A or

B in G(X,L ). So, A2 and B2 are subsets of {1, 2, ..., n−2} that must contain n−2 as they

are adjacent to A1 and B1 respectively. Consider A2; this copoint must be incomparable

with A1 and B1 as it contains n− 2. So there is a closed set C ⊇ A2 such that C is of size

n− 3 with C ⊂ {1, 2, . . . , n− 2} and without loss of generality, let C = {2, 3, ...n− 2}. C is

a copoint attached to 1, that contains n− 2, so C is adjacent to both A1 and B1, forming

a cycle of size 5 in the G(X,L ). Thus, there is no convex geometry for which G(X,L ) is

a cycle of length 6 or higher.

1.3 Order Dimension of Partially Ordered Sets

Let P = (X,≤) be a partially ordered set or poset where X is a set and ≤ is a reflexive,

antisymmetric, and transitive binary relation onX. Two elements x, y ∈ X are incomparable

if neither x ≤ y nor y ≤ x. A poset P is called a chain if every pair of distinct elements from

X is comparable. Similarly, if every pair of distinct elements from X is incomparable in P ,

then P is called an antichain. For Y , a nonempty subset of X, the restriction of P to Y ,

denoted P (Y ), is a partial order on Y and we call (Y,≤) a subposet of (X,≤). A nonempty

subset Y ⊆ X is called a chain or antichain if the subposet (Y,≤) is a chain or antichain

respectively. When P and Q are posets on the same set X, Q is called an extension of P if

x ≤ y in P implies x ≤ y in Q. The maximal extensions of P are linear orders on X and

are called linear extensions.

When P = (X,≤) is a poset, the order dimension of P , denoted dim(P ), is the least

7



positive integer t for which there exists a family R = {L1, L2, . . . , Lt} of linear extensions

of P such that P = ∩R =
t⋂
i=1

Li. Any family of linear extensions R where P = ∩R is called

a realizer of P . Many applications of order dimension are discussed by Trotter [Tro92].

An ordered pair, (x, y) ∈ X ×X, of incomparable elements of P is called a critical pair

if for all a, b ∈ X, a ≤ x implies that a ≤ y and y ≤ b implies x ≤ b. It was shown by

Rabinovitch and Rival [RR79] that R is a realizer of P if and only if for every critical pair

(x, y), there is some L ∈ R for which y ≤ x in L.
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Chapter 2: Order Dimension of Convex Geometries

2.1 Copoints and Critical Pairs

We are able to conclude the following connection between copoints of a convex geometry

and critical pairs of its lattice of closed sets.

Theorem 2.1. Let (X,L ) be a convex geometry. For A,B ∈ L , (A,B) is a critical pair

of LL if and only if B is a copoint, A = L (α(B)) and A is incomparable with B.

Proof. Let (A,B) be a critical pair of the lattice LL . Suppose that B is not a copoint.

Then there are distinct p, q ∈ X −B such that B ∪ p and B ∪ q are in L . Since B ∪ p and

B ∪ q both properly contain B, they must also properly contain A. The assumption that

p and q are distinct implies A ⊆ (B ∪ p) ∩ (B ∪ q) = B, which contradicts A and B being

incomparable. Thus, B must be a copoint. The set B ∪ α(B) properly contains B, so it

properly contains A. Because A is incomparable with B it follows that α(B) ∈ A. Because

L (α(B)) ⊆ A and L (α(B)) 6⊆ B, we have L (α(B)) = A.

Suppose B is a copoint attached to α(B) ∈ X, A = L (α(B)), and A is incomparable

with B. Any q ∈ A, q 6= α(B) must be in B because A = L (α(B)) ⊆ B ∪α(B). Therefore,

D ⊂ A means that D ⊂ B. Since B is a copoint, U ⊃ B implies that U ⊇ B ∪ α(B). This

means that U ⊇ L (α(B)) = A and A 6= B ∪ α(B) because A and B are incomparable.

Thus, (A,B) is a critical pair of LL .

In order to ensure that (L (α(B)), B) is a critical pair, it is necessary for L (α(B)) to

be incomparable with B to eliminate the possibility L (α(B)) = B ∪ α(B). In Proposition

2.2, we describe the lattice of closed sets for those convex geometries with copoints B such

that B is comparable with L (α(B)).

9



Proposition 2.2. Let (X,L ) be a convex geometry with copoint B. If B is comparable

with L (α(B)), then L (α(B)) = B ∪ α(B). Furthermore, every maximal chain from ∅ to

X in LL contains B and B ∪ α(B).

Proof. SupposeB is a copoint of (X,L ) comparable to L (α(B)). We know that L (α(B)) ⊆

B ∪α(B) for any copoint B. Since B is comparable with L (α(B)) and B does not contain

α(B), L (α(B)) = B ∪ α(B). Let ∅ = C1 ( C2 ( · · · ( Ck = X be a maximal chain in

LL . We know from Theorem 1.2 that this maximal chain has length |X|. So there is some

Ci ⊂ Ci+1 where Ci ∪α(B) = Ci+1. This means that L (α(B)) ⊆ Ci+1 and B ⊆ Ci. If B is

properly contained in Ci, then L (α(B)) = B ∪α(B) ⊆ Ci because B is a copoint attached

to α(B). So, Ci ∪ α(B) = Ci and Ci = Ci+1 but Ci ⊂ Ci+1 by assumption. Thus, every

maximal chain in LL contains both B and B ∪ α(B).

We can guarantee that (X,L ) has no copoint B such that B is comparable with

L (α(B)) when |X| > 1 and (X,L ) is atomic, that is for all p ∈ X, L (p) = p. This

yields the following corollary.

Corollary 2.3. Let (X,L ) be an atomic convex geometry with |X| > 1. If B is a copoint,

then B is incomparable with L (α(B)).

Proof. Let B be a copoint of (X,L ) attached to α(B). If B ⊂ L (α(B)) = α(B), then B

must be ∅. Since there is more than one element in X, ∅ cannot be a copoint. Therefore,

L (α(B)) is incomparable with B.

A convex geometry need not be atomic to be have every copoint B incomparable with

L (α(B)) as we see in Figure 1.2.

2.2 Order Dimension of Convex Geometries

We consider the critical digraph, D(P ) for the poset P = (X,≤) as defined by Trotter

[Tro92], and used by Reading [Rea02]. This digraph has vertex set equal to the set of
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critical pairs of P and there is a directed edge (A,B) → (C,D) when C ≤ B. In the case

where P = LL , the lattice of closed sets for a convex geometry (X,L ), this is simply where

C ⊆ B (and if (X,L ) is atomic, α(D) ∈ B). The minimal cycles of this digraph induce a

hypergraph, HCP with vertices from the set of critical pairs and hyperedges being minimal

cycles of D(P ). For any cycle of D(P ) there is no linear extension of P that reverses all

critical pairs belonging to that cycle. Felsner and Trotter [FT00] showed that the chromatic

number of this hypergraph is the order dimension of P and greater than or equal to the

chromatic number of the graph, GCP , induced from HCP by only considering the edges of size

2. We state this as a lemma.

Lemma 2.4 ([FT00], 3.3). For every poset P , dim(P ) = χ(HCP ) ≥ χ(GCP )

For (X,L ) a convex geometry we define HCLL
as described above. We make note of the

relationship between the graphs G(X,L ) and GCLL
for all convex geometries.

Theorem 2.5. If (X,L ) is a convex geometry, then the subgraph of G(X,L ) induced by

the vertices B for which B is incomparable with L (α(B)) is isomorphic to the graph GCLL
.

Proof. Theorem 2.1 proves that the function φ which maps the copoint A to the pair

(L (α(A)), A) is a bijection from those copoints A that are incomparable with L (α(A))

to the critical pairs (L (α(A), A). Copoint A is adjacent to copoint B in G(X,L ) if and

only if α(B) ∈ A and α(A) ∈ B. This occurs if and only if (L (α(A)), A)→ (L (α(B)), B)

and (L (α(B)), B) → (L (α(A)), A) are directed edges in D(LL ). Therefore, the edges of

G(X,L ) are exactly the two-cycles of D(LL ), which are the edges of GCLL
.

We make use of Theorem 2.5 and Lemma 2.4 to yield a lower bound for the order

dimension of convex geometries.

Corollary 2.6. For any convex geometry (X,L ), dim(LL ) = χ(HCLL
) ≥ χ(GCLL

) =

χ(G(X,L )).
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Proof. From Theorem 2.5, we know χ(GCLL
) ≥ χ(G(X,L )). The only vertices that were

removed from G(X,L ) were those corresponding to copoints B such that B ∪ α(B) =

L (α(B)). Suppose that there is some copoint A with α(B) ∈ A, then because L (α(B)) =

B∪α(B) ⊂ A we have that α(A) /∈ B. Thus, B is an isolated vertex of G(X,L ). Therefore

χ(G(X,L )) equals the chromatic number of the the subgraph of G(X,L ) induced by the

vertices B for which B is incomparable with L (α(B)). This implies that χ(GCLL
) =

χ(G(X,L )).

There are examples of posets P where χ(HCP ) > χ(GCP ) [Tro92], [FT00]. We would like to

point out that for a convex geometry (X,L ), the hypergraph HCLL
may contain hyperedges

of size greater than 2. Consider the convex geometry realized by the point set in Figure

4.1 with its poset of copoints. One can quickly verify that both (z, uwv), (v, xyu), (y, xwz)

and (z, xyw), (y, xvu), (v, uwz) are minimal cycles of length 3 in the critical digraph of this

convex geometry. However, χ(G(X,L )) = χ(HCLL
) = 4, so the order dimension is 4.

We define a cycle of copoints of length l, to be an ordered collection A of l copoints

(A1, . . . , Al) such that α(A1) ∈ A2, α(A2) ∈ A3, . . . , α(Al−1) ∈ Al, α(Al) ∈ A1 and define

α(A) = {α(Ai) : i = 1, 2, . . . , l}. We will use Proposition 2.7 to help prove Corollary 4.5.

Proposition 2.7. If A is a minimal cycle of length l > 2, then the points α(A1), α(A2),

. . . , α(Al) are distinct.

Proof. Suppose that α(Ai) = α(Aj) for j > i. Then, α(Aj) ∈ Ai−1 and the cycle of copoints

can be shortened, contradicting the minimality of A.

We pose a question based on these results. Is there some convex geometry (X,L )

for which χ(HCLL
) > χ(G(X,L ))? That is, does there exist some convex geometry with

dim(LL ) > χ(G(X,L ))? The construction of Felsner and Trotter [FT00] uses posets that

are not lattices of closed sets for convex geometries. We characterize the hyperedges of

HCLL
when (X,L ) is a convex geometry realized by planar point sets in general position
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in Section 4.3.

2.3 Monotonicity of the Chromatic Number of G(X,L )

Let (X,L ) be a convex geometry and Y ⊆ X. The relative alignment on Y , or the

restriction of L to Y , is the alignment L |Y = {C ∩ Y |C ∈ L }. We note the result of

Edelman and Jamison on the relative alignment of a convex geometry.

Theorem 2.8 ([EJ85], 5.9). If (X,L ) is a convex geometry and Y ⊆ X, then (Y,L |Y ) is

also a convex geometry.

Let (X,L ) be a convex geometry, and Y ⊆ X have the property that Y ∈ L . The

contraction of L with respect to Y , L /Y , is the alignment on X − Y defined by L /Y =

{C ⊆ X − Y |C = L (D ∪ Y )− Y for some D ⊆ X − Y }.

Theorem 2.9 ([EJ85], 5.10). If (X,L ) is a convex geometry and Y ⊆ X, Y ∈ L , then

(X − Y,L /Y ) is also a convex geometry.

A minor of a convex geometry (X,L ) is any convex geometry of a subset Y ⊆ X

obtained by a sequence of restrictions and contractions. Therefore, with the previous two

results, every minor of a convex geometry is a convex geometry. In this section, we aim

to show that for any convex geometry (X,L ), and its graph of copoints, G(X,L ), that

the chromatic number of the copoint graph is monotone under minors. This result is by

no means obvious at first glance, whereas the analogous result for clique number is obvious

from the fact that the cliques of G(X,L ) correspond to convexly independent sets in LL .

To prove the result for the for restrictions, we employ graph homomorphisms. For

graphs G and H, a graph homomorphism φ : G → H is a map from V (G) to V (H) such

that {u, v} ∈ E(G) implies that {φ(u), φ(v)} ∈ E(H) or φ(u) = φ(v). Let G(X,L )|X−p

be the subgraph of G(X,L ) induced by the copoints attached to elements of X − p. We

define a map between the vertex sets of G(X,L )|X−p and G(X − p,L |X−p). Let ψ :
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V (G(X − p,L |X−p))→ V (G(X,L )|X−p) where ψ(A) = A if A is a copoint in (X,L ) not

attached to p, otherwise ψ(A) = A ∪ p.

Lemma 2.10. Let (X,L ) be a convex geometry and p ∈ X. Then, ψ : V (G(X −

p,LX−p))→ V (G(X,L )|X−p) is a graph homomorphism.

Proof. We first prove that the range of ψ is contained in V (G(X,L ))|X−p, that is, ψ(A) is

always a copoint of L not attached to p. Let A be a copoint of (X − p,L |X−p). That is,

A ∈ L |X−p is maximal in (X − p) − q for some q ∈ X − p. If A ∈ L is also maximal in

X − q, then A is not a copoint attached to p so ψ(A) = A ∈ V (G(X,L )|X−p). Suppose A

is a copoint in (X,L ) not attached to q, then A must be attached to p. Further q /∈ A∪ p,

and A ∪ q is closed in (X − p,L |X−p), so A ∪ p ∪ q is closed in (X,L ). Moreover, let

r ∈ X − (A ∪ p ∪ q), then A ∪ p ∪ r is not closed in (X,L ) or A would not be a copoint

attached to q in (X − p,L |X−p). Thus, ψ(A) = A ∪ p is a copoint of (X,L ) attached to

q. Next, suppose A is not a copoint in (X,L ). This means that there is some A ∪ r that

is closed in (X,L ) for some r 6= q. If r 6= p, this would imply that A is not a copoint of

(X − p,L |X−p). Again, let r ∈ X − (A ∪ p ∪ q), then A ∪ p ∪ r is not closed in (X,L )

or A would not be a copoint attached to q in (X − p,L |X−p). Thus, ψ(A) = A ∪ p is a

copoint of (X,L ) attached to q. Lastly, if A /∈ L , then A ∪ p ∈ L and by the previous

argument, ψ(A) = A∪ p is a copoint of (X,L ) attached to q. Therefore, ψ(A) is always in

V (G(X,L ))|X−p. We note that by definition of ψ, α(A) = α(ψ(A)) for each copoint A of

(X,L ).

Let {A,B} ∈ E(G(X − p,L |X−p)), this means that α(A) ∈ B and α(B) ∈ A. Since

α(A), α(B) 6= p, A ⊆ ψ(A) and B ⊆ ψ(B), so α(ψ(A)) ∈ ψ(B) and α(ψ(B)) ∈ ψ(A). This

means that {ψ(A), ψ(B)} ∈ E(G(X,L )|X−p) and ψ is a graph homomorphism.

We define another map φ : V (G(X,L )|X−p)→ V (G(X − p,L |X−p)) and note that for

q ∈ X − p, there may be fewer copoints attached to q in (X − p,LX−p) than there are

in (X,L ). Let A be a copoint attached to q in (X,L ). We define φ(A) to be a copoint
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of (X − p,L |X−p) attached to q containing A − p. If more than one such copoint exists,

choose one arbitrarily. At least one such copoint must exist as a result of the definition of

convex geometry, because A − p ∈ L |X−p. Further, if B,C ∈ φ−1(A), then α(B) = α(C)

which implies that B and C are not adjacent in G(X,L ).

Lemma 2.11. Let (X,L ) be a convex geometry and p ∈ X. Then φ : V (G(X)|X−p) →

V (G(X − p)) is a graph homomorphism.

Proof. Let {A,B} ∈ E(G(X,L )|X−p), this means that α(A) ∈ B and α(B) ∈ A. Since

α(A), α(B) are not p, A− p ⊆ φ(A) and B − p ⊆ φ(B), so α(φ(A)) ∈ φ(B) and α(φ(B)) ∈

φ(A). This means that {φ(A), φ(B)} ∈ E(G(X − p,L |X−p)) and φ is a graph homomor-

phism.

We use a theorem from Hell and Nešetřil [HN04], that if there is a graph homomorphism

φ : G→ H then χ(G) ≤ χ(H), to prove Theorem 2.12.

Theorem 2.12. Let (X,L ) be a convex geometry with copoint graph G(X,L ). For all

p ∈ X, χ(G(X − p,L |X−p)) + 1 ≥ χ(G(X,L )) ≥ χ(G(X − p,L |X−p)).

Proof. We use the fact that if H is a subgraph of G then, χ(G) ≥ χ(H). Further, we know

from Lemmas 2.10 and 2.11 that there are graph homomorphisms between G(X,L )|X−p

and G(X − p,L |X−p). Therefore, χ(G(X − p,L |X−p)) = χ(G(X,L )|X−p) ≤ χ(G(X,L )).

Moreover, we can use a proper coloring of G(X,L )|X−p) to properly color G(X,L )|X−p

together with one additional color for all copoints of (X,L ) attached to p. The set of

copoints attached to p form an independent set in G(X,L ), so there is a proper coloring of

G(X,L ) with χ(G(X,L )|X−p) + 1 colors.

To prove the monotonicity for the chromatic number under contractions, let M(X,L )|p

be the set of copoints containing p. We define a map µ : M(X,L )|p → V ((X − p,L /p)),

where the copoint A in M(X,L )|p maps to µ(A) = A−p. A−p is a copoint in (X−p,L /p)

attached to α(A), because if there were some some q ∈ X − p not equal to α(A) such that
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(A−p)∪ q ∈ L /p this would mean that A∪ q ∈ L . However, since A is a copoint attached

to α(A), this means that q = α(A) and (A − p) is a copoint of (X − p,L /p) attached to

α(A). We can describe the graph G(X − p,L /p) as a subgraph of G(X,L ).

Theorem 2.13. Let (X,L ) be a convex geometry with p ∈ X, p ∈ L . G(X − p,L /p)

is isomorphic to the subgraph of G(X,L ) induced by the set copoints containing p. Also,

χ(G(X,L )) ≥ χ(G(X − p,L /p)).

Proof. The map µ is a bijection of vertex sets. To see that adjacent vertices remain adjacent

under the map µ, we note that only p is removed by the map µ from the copoint A containing

p, which means that all q ∈ (X−p)∩A are contained in µ(A). Thus, if {A,B} are adjacent

vertices in G(X,L ) with p ∈ A ∩ B, then α(A) ∈ B and α(B) ∈ A. This means that

α(A) = α(µ(A)) ∈ µ(B) and α(B) = α(µ(B)) ∈ µ(A). Therefore, G(X − p,L /p) is

isomorphic to the subgraph of G(X,L ) induced by the set of copoints containing p.

As G(X − p,L /p) is an induced subgraph of G(X,L ), the fact that χ(G(X,L )) ≥

χ(G(X − p,L /p)) follows immediately.

We now obtain the final result of this section as a direct corollary of Theorems 2.12 and

2.13.

Corollary 2.14. Let (X,L ) be a convex geometry and (Y,L
′
) a minor of (X,L ). Then

χ(G(X,L )) ≥ χ(G(Y,L
′
)).

2.4 Direct Sum of Convex Geometries

Definition 2.15. Let (X1,L1) and (X2,L2) be convex geometries and let X = X1 tX2,

be the disjoint union of X1 and X2 with L (C) = L1(CX1)tL2(CX2) where CXi = C ∩Xi.

We define (X1,L1)⊕ (X2,L2) = (X,L ) to be the direct sum of convex geometries.

We now show that that (X,L ) defined as a direct sum of convex geometries is itself a

convex geometry. We also classify the copoints of (X,L ) in terms of the summands.
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Proposition 2.16. Let (X1,L1), (X2,L2), . . . (Xn,Ln) be convex geometries. Then

1. (X1,L1)⊕ (X2,L2) is a convex geometry.

2. (X1,L1)⊕ (X2,L2)⊕ · · · ⊕ (Xn,Ln) is a convex geometry.

3. The copoints of (X1,L1) ⊕ (X2,L2) have the form A1 tX2 or X1 t A2 where Ai is

a copoint of (Xi,Li).

Proof. 1. Let (X1,L1)⊕ (X2,L2) = (X,L ) as in the definition. It is obvious that L is a

closure operator on the subsets of X1 tX2. Let AtB be a closed set of (X,L ), then there

is a p ∈ X1tX2−AtB such that either A∪p ∈ L1 or B∪p ∈ L2. Thus, (AtB)∪p ∈ L .

So, (X,L ) is a convex geometry.

2. This follows by induction on n.

3. Let A = A1 tA2 be a copoint of (X1,L1)⊕ (X2,L2) = (X,L ) attached to p. We know

that either p ∈ X1 or p ∈ X2. Suppose p ∈ X1 and A2 6= X2, then there is a q ∈ X2 − A2

such that A1 tA2 = A ⊂ L (A ∪ p) = (L1(A1 ∪ p) tL2(A2)) ⊂ (L1(A1 ∪ p) tL2(A2 ∪ q))

and (A1 t A2) = A ⊂ L (A ∪ q) = (L1(A1) t L2(A2 ∪ q)) ⊂ (L1(A1 ∪ p) t L2(A2 ∪ q))

which contradicts that fact that A is a copoint. We have a similar argument if p ∈ X2

and A1 6= X1. Thus, if p ∈ X1, then we have the case (A1 tX2) where A1 is a copoint of

(X1,L1) attached to p. If q ∈ X2, then we have the case (X1 t A2) where A2 is a copoint

of (X2,L2).

2.4.1 Graph of Copoints under Direct Sum

Definition 2.17. The join of simple graphs G and H, written G∨H, is the graph obtained

from the disjoint union G+H by adding the edges {xy : x ∈ V (G), y ∈ V (H)}

We prove the following proposition about the graph of copoints of a direct sum of convex

geometries using the definition of the join of graphs.

Proposition 2.18. Let (X1,L1), (X2,L2) be convex geometries and (X,L ) = (X1,L1)⊕

(X2,L2). Then, G(X,L ) = G(X1,L1) ∨ G(X2,L2)
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Proof. Part 3) of Proposition 2.16 shows us that the copoints of (X,L ) are either of the

form (A1tX2) or (X1tA2) where Ai is a copoint of (Xi,Li). Directly from this statement

we see that the disjoint union of the graphs G(X1,L1)+G(X2,L2) is contained in G(X,L ).

We also have the edge {(A1 t X2), (X1 t A2)} ∈ E(G(X,L )) as α(A2) ∈ (A1 t X2) and

α(A1) ∈ (X1 tA2).

The following lemma is taken from an exercise in the book by West [Wes01].

Lemma 2.19 ([Wes01], Exercise 5.1.5). ω(G ∨ H) = ω(G) + ω(H) and χ(G ∨ H) =

χ(G) + χ(H)

We make note of the of the convex geometry in Figure 1.2. This is a convex geometry

where G(X,L ) = C5, the cycle on 5 vertices. The copoint graph of this convex geometry

has chromatic number 3 and clique number 2. We use this prove the next proposition.

Theorem 2.20. For all integers m ≥ 0, there exists a convex geometry (X,L ) with lattice

of closed sets LL such that χ(G(X,L ))− ω(G(X,L )) > m.

Proof. Let (Xi,Li) be the convex geometry in Figure 1.2 for i = 1, 2, . . . ,m + 1. Then

consider the convex geometry (X,L ) = ⊕m+1
i=1 (Xi,Li). With Lemma 2.19, we see that

χ(G(X,L )) = 3(m+1) and ω(G(X,L )) = 2(m+1). We see that χ(G(X,L ))−ω(G(X,L )) =

m+ 1 > m.

Lastly, in the construction described in Theorem 2.20, we note that while the difference

between the chromatic number and the clique number can be larger than any integer m but

the ratio χ(G(X,L ))
ω(G(X,L )) is a constant 3

2 . We compare this to the construction of Chapter 3 for a

convex geometry (X,L ) where the ratio χ(G(X,L ))
ω(G(X,L )) > c for each constant c. That construc-

tion gives a convex geometry where ω(G([n],L )) = 2, while χ(G([n],L )) = dlog2(n+ 1)e

so χ(G([n],L )) − ω(G([n],L )) = dlog2(n+ 1)e − 2. Meanwhile, the construction given in

Theorem 2.20 for n = 4m gives us a difference of χ(G([n],L )) − ω(G([n],L )) = n
4 . We

also note that the operation of the direct sum applied to convex geometries generated from
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planar point sets in general position does not produce a convex geometry generated from a

planar point set in general position.
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Chapter 3: Chromatic Numbers of Copoint Graphs of

Convex Geometries

3.1 Construction of A Convex Geometry

Beagley [Beaar] asked the following question: Is χ(G(X,L ))
ω(G(X,L )) ≤ c for some constant c? We

construct a family of convex geometries indexed by integers m,n with clique number of

m+ 1 and chromatic number at least dlog2(n+ 1)e .

Let n be a positive integer and {1, 2, . . . , n} = [n]. When n = 0, then [n] = ∅. Let m be a

positive integer, m < n, and define Lm,n = {([i]∪J)|0 ≤ i ≤ n, J ⊆ {i+2, . . . , n}, |J | ≤ m}.

Figure 3.1 is the lattice of L2,5.

Proposition 3.1. For n,m positive integers with m < n, the pair ([n],Lm,n) is an m-free

convex geometry.

Proof. It is easy to see that Lm,n is closed under intersection and ∅, [n] ∈ Lm,n. Let C

be in Lm,n, C 6= [n]. If C = [i] ∪ J with 0 ≤ i ≤ n, J ⊆ {i + 2, . . . , n}, |J | ≤ m, then

C ∪ {i+ 1} ∈ Lm,n, so ([n],Lm,n) is a convex geometry. To see that ([n],Lm,n) is m-free,

note that if |J | ≤ m and i is the smallest element of [n]\J , then J = [i − 1] ∪ J ′ where

|J ′ | ≤ m.

For each i ∈ {1, 2, . . . , n−m}, define Ai = {[i− 1]∪J |J ⊆ {i+ 1, i+ 2, . . . , n}, |J | = m}

and for each i ∈ {n−m+ 1, n−m+ 2, . . . , n} let Ai = {[i− 1] ∪ {i+ 1, i+ 2, . . . , n}}.

Proposition 3.2. For i = 1, 2, . . . , n, Ai is the set of copoints of ([n],Lm,n) attached to i.

Proof. If C = [i − 1] ∪ J 6= [n] for 1 ≤ i ≤ n, J ⊆ {i + 1, . . . , n}, |J | ≤ m, then C ∪ {i}

is in Lm,n. If C is not in Ai, then there is an element p 6= i of [n] such that C ∪ {p} is in

Lm,n.
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Figure 3.1: Lattice of Closed Sets for L2,5

The size of the maximum clique in G([n],Lm,n) can be found using the size of the largest

independent set.

Lemma 3.3. The clique number of G([n],Lm,n) is m+ 1.

Proof. Let C ∈ Lm,n. If |C| ≤ m, then Lm,n(C) = C. So, let |C| > m. We can write

C = [i]∪J where 0 ≤ i ≤ n−m, J ⊆ {i+ 1, . . . , n}, |J | = m. Thus, C = Lm,n({i}∪J) and

|{i} ∪ J | = m+ 1. Further, G([n],Lm,n) contains a m+ 1-clique consisting of the copoints

of the form [n]\{i} for i = n − m, . . . , n. Since every closed set C can be written as the

closure of at most m + 1 elements of [n], there is no independent set of size m + 2 and

ω(G([n],Lm,n)) = m+ 1.

To bound the chromatic number of G([n],Lm,n) we make note of the following property

of the set Ai.

Proposition 3.4. Suppose that B ⊆ [n], |B| ≤ m, and i < b for all b ∈ B. Then there

exists C ∈ Ai so that C contains every element of B.

Proof. Choose a copoint C = [i− 1]∪ J in Ai with B ⊆ J , and the result is immediate.
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Corollary 3.5. Suppose that B ⊆ [n], |B| ≤ m, and that i < b for all b ∈ B. Then there

exists C ∈ Ai so that C is adjacent in G([n],Lm,n) to every copoint D in
⋃
b∈B

Ab.

Proof. By the previous proposition, b ∈ C for every b ∈ B, and because b > i, we have

i ∈ [b− 1] ⊆ D for all D ∈ Ab.

We shall answer Beagley’s question, using ([n],Lm,n) to show that the ratio χ(G(XL ))
ω(G(X,L ))

is bounded by no constant c.

Theorem 3.6. The convex geometry ([n],Lm,n) has ω(G([n],Lm,n)) = m+1 and dlog2(n+ 1)e ≤

χ(G([n],Lm,n)).

Proof. ω(G([n],Lm,n)) = m+ 1 by Lemma 3.3.

For any proper coloring of G([n],Lm,n) with c colors, let Si be the set of colors used

to color the copoints of Ai, i = 1, 2, . . . , n. For 1 ≤ i < j ≤ n, the fact that there is a

copoint of Ai adjacent to every copoint of Aj means that the Si are distinct and nonempty.

Therefore, n ≤ 2c−1, and any proper coloring of G([n],Lm,n) requires at least dlog2(n+ 1)e

colors.

The graph for the convex geometry ([n],Lm,n) has clique number that is a function of

m and independent of n, while the chromatic number is at least dlog2(n+ 1)e. Therefore

the ratio
χ(G([n],Lm,n))
ω(G([n],Lm,n))

can be bigger than any fixed constant c, provided n is large enough.

The precise determination of χ(G([n],Lm,n)) for m ≥ 2 is an interesting question in its

own right. Let S be a finite set. An m-nondecreasing sequence of subsets of S is a sequence

S1, S2, . . . , St so that for any set B ⊆ [t], |B| ≤ m, and for j ∈ [t] with j > b for all b ∈ B,

we have Sj 6⊆
⋃
b∈B

Sb.

Lemma 3.7. The chromatic number of G([n],Lm,n) is the smallest integer s for which

there is an m-nondecreasing sequence of length n of subsets of an s-element set S.
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Proof. For any proper coloring of G([n],Lm,n) with s colors, let Si be the set of colors used

to color the copoints of Ai, i = 1, 2, . . . , n. It follows from Corollary 3.5 and the definition

of m-nondecreasing sequence of subsets of [s], that S1, S2, . . . , Sn is an m-sequence of length

n. Then, it is possible to color the vertices in levels n, n − 1, . . . , 1 successively where for

any D = [i− 1]∪ J in Ai that is adjacent to the copoints in Aj for j ∈ J , there is a color in

Si that does not appear in the label of Sj for j ∈ J . This color can be used for the copoint

D. Therefore, there is a proper coloring with s colors of G([n],Lm,n).

We are confronted with the problem of determining the smallest integer s for which

there is an m-nondecreasing sequence of length n of subsets of an s-element set S.

A binary covering array of strength m + 1 is an s × n matrix A with entries in {0, 1}

so that for every s×m+ 1 submatrix B of A, every possible 0− 1 vector of length m+ 1

appears as a row of B.

Lemma 3.8. If A is an s × n binary covering array of strength m + 1, then the columns

of A are the characteristic vectors of an m-nondecreasing sequence of length n of subsets of

an s-element set.

Proof. If A is an s × n binary covering array of strength m + 1 and B is an s × m + 1

submatrix of A, then there is a row of B which consists of m zeroes followed by a 1. This

implies that the set with characteristic vector equal to column m+ 1 of B is not contained

in the union of the sets whose characteristic vectors are the first m columns of B.

The survey paper of Lawrence et. al. [LKL+11] on covering arrays gives the result of

Kleitman and Spencer [KS73] that there exist cm+1 and dm+1 such that the smallest integer

s for which there exists an s× n binary covering array of strength m+ 1 is bounded below

by (cm+1 − o(1)) log n and above by (dm+1 + o(1)) log n.

Corollary 3.9. There exists a constant dm+1 so that the chromatic number of G([n],Lm,n)

is at most (dm+1 + o(1)) log n. This means that χ(G([n],Lm,n)) ∈ Θ(log(n)).
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3.1.1 Order Dimension

We are able to make the following remarks about dim(LLm,n) due to the results of Chapter

2.

Proposition 3.10. dim(LLm,n) = χ(G([n],Lm,n))

Proof. We show that H([n],Lm,n) ∼= G([n],Lm,n) from which we get the result from Corol-

lary 2.6. Suppose that there is a hyperedge of size strictly more than 2, {(α(B1), B1),

(α(B2), B2), . . . , (α(Bk), Bk)} where k > 2. There is some i ∈ [k] such that α(Bi) < α(Bi+1)

in [n], so α(Bi) ∈ Bi+1. Also by definition of H([n],Lm,n), we have that α(Bi+1) ∈ Bi.

Thus, there is an edge in G([n],Lm,n) between Bi+1 and Bi. So {(α(B1), B1), (α(B2), B2),

. . . , (α(Bk), Bk)} was not a hyperedge with k > 2.

Let f : (V (G([n],L1,n))\{1, 2, . . . , n− 1})→
(
[n]
2

)
, where f([i− 1] ∪ {j}) = {i, j}. Then

f is a graph isomorphism from the subgraph of G([n],L1,n) induced by the vertices other

than {1, 2, . . . , n − 1} to the shift graph of Kn (see [Tro92],Chapter 8). The shift graph of

Kn is known to have clique number 2 and chromatic number dlog2(n)e.

In this construction, we have shown that the ratio between the chromatic number and

the clique number of the graph G([n],Lm,n) can get arbitrarily large. There is a related

result about posets in a book of Trotter [Tro92]. The standard example, Sn for n ≥ 3, is a

partial order on X = {a1, a2, . . . , an}∪ {b1, b2, . . . , bn} with the relations ai < bj if and only

if i 6= j, for i, j = 1, 2, . . . , n. For i = 1, 2, . . . , n, ai is a minimal element and bi is a maximal

element of the partial order. Figure 3.2 is the Hasse diagram of the standard example S5. It

is known that the order dimension of Sn is n. However, posets with large order dimension

do not require Sn as a subposet. Further, [Tro92] gave examples where the ratio between

the order dimension of a poset and the largest standard example becomes arbitrarily large.

Proposition 3.11 shows that the independent sets of (X,L ) in LL act in much the same

manner as Sn in posets.
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a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Figure 3.2: The Standard Example, S5

Proposition 3.11. Let (X,L ) be a convex geometry. LL contains a subposet isomorphic

to Sk, the standard example, if and only if G(X,L ) contains a k-clique.

Proof. We label the standard example Sk contained in LL in the usual way. Let pi be a

point in X such that pi ∈ (ai − bi) for i = 1, 2, . . . , k. As pi ∈ ai, this means that for all

j 6= i, pi ∈ bj . We now construct the copoint Ci to be a maximal subset of X−pi containing

bi. Consider the copoints Ci and Cj for j 6= i. Cj is a copoint attached to pj and Ci is a

copoint attached to pi. By definition, pi ∈ bj ⊆ Cj and pj ∈ bi ⊆ Ci. This means that Ci

and Cj are adjacent in the graph G(X,L ). Since Ci and Cj are adjacent for all i 6= j, we

have a clique of size k in G(X,L ).

Conversely, let G(X,L ) contain a k-clique composed of copoints C1, C2, . . . , Ck attached

to p1, p2, . . . , pk respectively. By definition of G(X,L ), this means that pi ∈ Cj when i 6= j.

Thus, we let ai = {pi} and bi = Ci for i = 1, 2, . . . , k and we have that LL contains a

subposet isomorphic to Sk.

Theorem 3.6 and Proposition 3.11 together show that the convex geometry ([n],L1,n)

and its lattice of closed sets, LL1,n , is an example of a poset that has order dimension that

becomes arbitrarily large but does not contain a poset isomorphic to S3. The lattice LL1,n

is of order dimension k when |X| = 2k−1, which means that |L1,n| = 22k−3+2k−1+2k−2+1.

The example given by Trotter (Example 5.3, [Tro92]) requires a poset of size R3(k, 4) to

have the order dimension equal to k, where R3(k, 4) is the Ramsey number on 3-regular
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hypergraphs. It is known that R3(k, 4) is at least 2ck log(k) for some constant c [CFS10].

Thus the posets LL1,n perform the function of making the order dimension high at a greater

economy than do the examples of [Tro92].

3.1.2 Remarks

Convex geometries isomorphic to ([4],L1,4) are in the references [EJ85] and [ES88]. The

copoint graph for ([4],L1,4) contains an induced 5-cycle. The convex geometry ([5],L2,5),

for which the copoint graph has clique number 3, shows that 5 elements do not force a

4-clique for general convex geometries even when every 2-element subset is closed. Thus

one would need more restrictions for combinatorial analogues of Esther Klein’s result that

5 point sets in general position in the plane must contain vertex sets of convex 4-gons. The

chromatic number of G([5],L2,5), however, is 4. This will be implied by Theorem 3.17 that

we prove in the next section.

One can compute that for any m,n the total number of copoints of the convex geometry

([n],Lm,n) is:

n∑
i=1

|Ai| =
n−m∑
i=1

(
n− i
m

)
+

n∑
i=n−m+1

1 =

(
n

m+ 1

)
+m

For the case m = bn−12 c, we get that the total number of copoints is
(
n
bn
2
c
)

+ bn−12 c. In

the paper [Jam80] it is stated that no examples of convex geometries with total number of

copoints greater than the middle binomial coefficient for the number of elements are known.

3.2 Consequences of Freeness

We now introduce a new problem analogous to the Erdős - Szekeres problem: for any integer

k ≥ d ≥ 2, determine the smallest positive integer Kd(k) such that for any d-free convex

geometry with |X| ≥ Kd(k) it follows that χ(G(X,L )) ≥ k. There are two questions of

interest related to the study of Kd(k):

26



123

12 23

1 2 3

∅

Figure 3.3: Lattice of Closed Sets for a Convex Geometry

1. Does the number Kd(k) exist?

2. If so, how is Kd(k) determined as a function of k?

We specify d ≥ 2 because of the following 1-free convex geometry. Let X = [k], and for

S ⊆ [k] let L (S) = [min(S),max(S)] ∩ X. Figure 3.3 shows this convex geometry for

k = 3. It is clear that there are two chains of copoints for (X,L ), those containing 1 and

those containing k. The graph G(X,L ) has chromatic number 2, for all k for this convex

geometry, as each of the chains of copoints is an independent set in G(X,L ). This convex

geometry has every 1-element subset closed. Thus 1-freeness alone does not force the chro-

matic number of the copoint graph to increase with |X|.

To show that the number Kd(k) exists for d > 1, we focus on K2(k). It is sufficient to

show K2(k) is finite, because d-freeness for d > 2 implies that every 2-element subset is also

closed, because L is an alignment.

Let (X,L ) be a 2-free convex geometry and I = {I1, I2, . . . , It} be a partition of

G(X,L ) into independent sets. For x, y ∈ X,x 6= y, define Sxy = {j ∈ [t] : there is a

copoint C with α(C) = y, x ∈ C,C ∈ Ij}. For each x ∈ X, let Dx = {Syx : y 6= x}.

A family of subsets of [t] is called intersecting if A ∩ B 6= ∅ whenever A,B ∈ [t]. An

intersecting family of subsets is maximal if it is contained in no other intersecting family.

Lemma 3.12. For each x ∈ X, Dx is an intersecting family.
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Proof. A copoint C attached to x is a maximal closed subset in X − x. For any {y, z}

with x, y, and z distinct {y, z} is closed, so there is a copoint containing {y, z} attached to

x. This copoint must be in one of the independent sets Ij . Therefore, j ∈ Syx ∩ Szx and

Syx ∩ Szx 6= ∅.

Corollary 3.13. No two families Dx for x ∈ X are contained in the same maximal inter-

secting family of [t].

Proof. For x 6= y, Syx is contained in the complement of Sxy in [t], because I is a proper

coloring of G(X,L ).

Results similar to Lemma 3.12 and Corollary 3.13 also appear in [HM99] and [Mor01].

Moreover, in [Mor01], Morris noted that the number γ(n) of maximal intersecting families

of subsets of an n-element set is at least 2( n−1
b(n−1)/2c), which is a result of Spencer [Spe71].

Theorem 3.14. K2(k) = γ(k)

Proof. Corollary 3.13 shows that K2(k) ≤ γ(k). The construction of Hoşten and Morris

[HM99] gives a 2-free convex geometry of convex dimension k with γ(k) elements, for any

k. Edelman and Jamison [EJ85] proved that the convex dimension is bounded below by the

order dimension and Beagley [Beaar] proved that the order dimension is bounded below by

χ(G(X,L )). So, K2(k) ≥ γ(k). Therefore, K2(k) = γ(k).

Corollary 3.15. Kd(k) exists for d ≥ 2, and Kd(k) ≤ γ(k)

The computation of the numbers Kd(k) for d > 2 appears to be difficult, in general.

We will calculate Kd(d + 2). Before we do this, we recall a result of Morris and Soltan

[MS00] to indicate the kind of combinatorial restrictions that lead to analogous results for

the clique number. The Carathéodory number of a convex geometry (X,L ) is the least

positive integer c such that L (Y ) = ∪{L (Z) : Z ⊆ Y, |Z| ≤ c} for any Y ⊆ X.

Let c be the Carathéodory number of a convex geometry (X,L ), and suppose that every
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c−1-element subset of X is closed. We say that (X,L ) satisfies the simplex partition prop-

erty if for any set {z1, z2, . . . , zc+2} of c+2 elements of X with zc+1, zc+2 ∈ L (z1, z2, . . . , zc),

the point zc+2 belongs to exactly one of the sets L (z1, . . . , zi−1, zi+1, . . . , zc, zc+1), i =

1, . . . , c. We state a result of Morris and Soltan [MS00].

Proposition 3.16 ([MS00], 5.6). Let (X,L ) be a (c− 1)-free convex geometry. If (X,L )

has Carathéodory number c, the simplex partition property, and |X| = c+2, then X contains

c+ 1 convexly independent points.

The analogous result for chromatic number does not require the simplex partition prop-

erty or any condition on the Carathéodory number, only that every c− 1 element subset be

closed.

Theorem 3.17. Kc−1(c+ 1) = c+ 2 for c ≥ 2.

Proof. The example from Section 3.1, ([c+ 1],Lc−1,c+1), is realizable by a (c− 1)-simplex

with a point in the interior. The copoints of the form [c + 1]\{i} for i = 2, 3, . . . , c + 1

form a c-clique. The remaining copoints are [c + 1]\{1, i} for i = 2, 3, . . . , c + 1. For

i = 2, 3, . . . , c+1, the copoint [c+1]\{1, i} can be colored with the same color as [c+1]\{i},

so χ(G([c+ 1],Lc−1,c+1)) = c. Thus Kc−1(c+ 1) ≥ c+ 2.

Let X = {q1, q2, p1, . . . , pc} and assume that q1, q2 ∈ L (p1, . . . , pc). Further, consider

the copoints of (X,L ). If there is a convexly independent set of size c + 1, we have the

conclusion. So we may assume that there is no convexly independent set of size c+1. There

are copoints (pi, q1q2p1 . . . pi−1pi+1 . . . pc) for i = 1, . . . , c. Also, there are copoints of the

form (qji , qkip1 . . . pi−1pi+1 . . . pc), because the set {q1q2p1 . . . pi−1pi+1 . . . pc} is closed and

the set {qkip1 . . . pi . . . pc} is not closed. We see that for i1, i2 ∈ {1, . . . c}, i1 6= i2, pi1 ∈

{qki1p1 . . . pi2−1pi2+1 . . . pc} and qji2 ∈ {q1q2p1 . . . pi−1pi+1 . . . pc}, so these two copoints are

adjacent. Suppose that χ(G(X,L )) = c, then the following copoints must be colored with

the same color: (pi, q1q2p1 . . . pi−1pi+1 . . . pc), (qji , qkip1 . . . pi−1pi+1 . . . pc) for i = 1, . . . , c.

Consider the closed set qj1p2 . . . pc, which is a copoint attached to qk1 because {qj1p1p2 . . . pc}
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is not a closed set. The copoint (qk1 , qj1p2 . . . pc) is adjacent to some copoint in each color

class because qk1 ∈ {q1q2p1 . . . pi−1pi+1 . . . pc} and pi ∈ {qj1p2 . . . pc} for i = 2, . . . c. In

addition, qk1 ∈ {qk1p2 . . . pc} and qj1 ∈ {qj1p2 . . . pc}. Thus, χ(G(X,L )) ≥ c+ 1.

Consider the convex geometry ([n],Lm,n). We show that the following:

Proposition 3.18. The convex geometry ([n],Lm,n) has Carathéodory number m+ 1 and

never has simplex partition property.

Proof. As noted in Lemma 3.3, every set in Lm,n can be written as the closure of at most

m+ 1 elements of [n]. Therefore the Carathéodory number is at most m+ 1. In particular

[n] = L (Y ) where Y = [n]−[n−m−1]. Consider Z ⊆ Y where |Z| ≤ m, since Lm,n ism-free

L (Z) = Z. So ∪{L (Z) : Z ⊆ Y, |Z| ≤ m} = ∪{Z : Z ⊆ Y, |Z| ≤ m} = Y 6= L (Y ) = [n].

Thus, the Carathéodory number of ([n],Lm,n) is m+ 1.

If n < m + 3, then ([n],Lm,n) does not satisfy the hypothesis of the simplex partition

property. Let n ≥ m + 3. To see that ([n],Lm,n) does not have the simplex partition

property, we look at the set [m+3]. This convex geometry has Carathéodory number m+1

with every m element subset closed. Both 1 and 2 are contained in L ([m + 3] − {1, 2}),

however 1 is in every set L ([m + 3]− {1, i}) for 3 ≤ i ≤ m + 3. This violates the simplex

partition property that 1 belong to only one of the sets L ([m + 3] − {1, i}) for 3 ≤ i ≤

m+ 3.

3.2.1 Necessary Conditions for Realizable Convex Geometries in General

Position

There are several known necessary conditions for a convex geometry to be realizable by a

set of points X in R2 in general position.

Proposition 3.19. Let X be a planar point set in general position and (X,L ) the realizable

convex geometry of X. Then (X,L ) has Carathéodory number 3 and the simplex partition

property.
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Proof. Let Y ⊆ X, then L (Y ) = conv(Y )∩X. conv(Y ) can be rewritten by Carathéodory’s

Theorem as ∪{conv(Z) : Z ⊆ Y, |Z| ≤ 3}. So, L (Y ) = conv(Y ) ∩X = (∪{conv(Z) : Z ⊆

Y, |Z| ≤ 3}) ∩ X = ∪{conv(Z) ∩ X : Z ⊆ Y, |Z| ≤ 3} = ∪{L (Z) : Z ⊆ Y, |Z| ≤ 3} and

(X,L ) has Carathéodory number 3.

To see that (X,L ) has the simplex partition property, we note that every planar point

set in general position of 5 points with 2 interior points, must look like the point set in

Figure 1.1. The result becomes obvious.

Another property that planar point sets in general position have, is that complements

of copoints are closed.

Proposition 3.20. Let X be a planar point set in general position and (X,L ) the realizable

convex geometry of X. Then the complement of every copoint is closed.

Proof. Copoints of planar point sets in general position are intersections of X with specific

open halfspaces that have bounding lines through the point to which the copoint is attached.

The complement of an open halfspace is a closed halfspace. A closed halfspace is a convex

set and that part of X contained in that closed set must be in L .

Let n > 2m + 1, then A = {2, 3, . . . ,m + 1} is a copoint of Lm,n attached to 1. The

complement of A is {1,m + 2,m + 3, . . . , n} and {m + 2,m + 3, . . . , n} has size at least

m+ 1. Every closed set in Lm,n can be written as a closure of an initial segment together

with a set of size no more than m other elements. The initial segment of the complement

of A is 1 together with a set of size at least m+ 1. So, the complement of A is not in Lm,n.

If n ≤ 2m + 1, the complement of every copoint is closed, because every complement of a

copoint is of size m or less and Lm,n is an m-free convex geometry.
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Chapter 4: Results for Realizable Convex Geometries

4.1 Coloring of Planar Point Sets

Let X be a set of n points in R2 and for A ⊆ X let L (A) = conv(A) ∩ X. The convex

geometry (X,L ) is atomic as L (p) = conv(p)∩X = p for every p ∈ X. In this chapter we

abbreviate the realizable convex geometry (X,L ) as X. We also denote G(X,L ) by G(X)

and HCLL
by H(X). Figure 4.1 is a planar point set in general position with its poset of

copoints.

Morris [Mor06] describes an algorithm to compute all the copoints of a planar point set

in general position. Start with a directed vertical line through p ∈ X. Call the part of the

line above p the head and the part of the line below p the tail. Rotate the line clockwise

around p, noting the order in which the points of X − p are met by the line. If a point q

is met by the head of the line, write q, and if q is met by the tail of the line, write −q.

The sequence of 2n − 2 symbols written as the line makes a complete revolution around

p, viewed as a circular sequence, is called the circular local sequence of p. At one or more

places in the circular local sequence of p there will be an element q followed by an element

x

y

z

w

v u

(w, xyuvz)

(z, xyuv)

(v, xyu) (y, xvu)

(u, xywzv)

(v, xywz)

(z, xyw) (y, xwz)

(x,uwzvy)

(y,uwzv)

(v, uwz) (z, uwv)

Figure 4.1: A six point set and its poset of copoints
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−r. At such a place we can find a copoint. Let m be a line through p of which q and r are

on the same side. Let H be the open halfspace defined by m that contains q and r. Then

H ∩X is a copoint attached to p.

Let B be a consecutive subsequence in the circular local sequence of p ∈ X. We say B

is a block if all b ∈ B are met by the same part of the line ` rotated around p.

Given two disjoint planar point sets L and M , we define a composition of L and M to

be a point set of L together with a translation of M in which

1. every point of M has greater first coordinate than the first coordinates of points of L,

2. the slope of any line connecting a point of L to a point of M is greater than the slope

of any line connecting two points of L or two points of M .

We easily see as a result of the second condition, that the circular local sequence of each

l ∈ L contains −M and M as blocks and that the circular local sequence of each m ∈ M

contains −L and L as blocks. We use the composition of point sets to construct point sets

of particular interest following Corollary 4.4.

Lemma 4.1. Let X be a planar point set such that X is a composition of L and M . If A

is a copoint of X attached to α(A) ∈ L that contains m ∈M , then M ⊆ A. Also, if B is a

copoint of X attached to α(B) ∈M that contains l ∈ L, then L ⊆ B.

Proof. We show that if A is a copoint of X attached to α(A) ∈ L that contains m ∈ M ,

then M ⊆ A. The proof of the other statement is similar. A is the intersection of X with

an open halfplane H defined by a line through α(A) that contains both q, r ∈ X, where q

and −r are consecutive symbols in the circular local sequence of α(A). M is a block in the

circular local sequence of α(A) and there exists m ∈M ∩A, so M ⊆ A.

For X a point set in general position, we say X is a composition of point sets L1, L2,

. . . , Ln if there exists a full rooted binary tree, T (X) for which

1. the leaves of the tree are denoted NL1 , NL2 , . . . , NLn corresponding to L1, L2, . . . , Ln

respectively,
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2. every node NM of T (X) that is not a leaf corresponds to a point set M which is a

composition of two point sets M1 and M2, where NM1 and NM2 are descendants of

NM in T (X),

3. the root of the tree is NX corresponding to X.

For a node M of T (X) let PM be the unique path from NM to NX in T (X).

Let p ∈M ⊆ X, with M being a composition of M1 and M2. Suppose that p ∈M1. We

know that the circular local sequence of p in M contains M2 as a block. The requirement

that the the slope of any line connecting p to a point outside of M must have greater slope

than any line connecting two points of M means that M2 is a block in the circular local

sequence for p in X. Similarly, if p ∈M2, the circular local sequence of p in X contains M1

as a block.

Lemma 4.2. Let X be a composition of point sets L1, L2, . . . , Ln. If A is a copoint of X

attached to α(A) ∈ Li and A ∩ Lj 6= ∅ for some j 6= i, then Lj ⊆ A.

Proof. There is at least one node common to the sequences PLi and PLj , namely NX . So

there is a first node, NM , common to both paths. M is a composition of M1 and M2 where

NM1 is an ancestor of NLi but not NLj , and NM2 is an ancestor of NLj but not NLi . M2

is a block in the circular local sequence of α(A) in M , so M2 is a block in the circular local

sequence of α(A) in X. Since A is a copoint of X attached to α(A) ∈ M1 that contains

p ∈M2, it follows from Lemma 4.1 that M2 ⊆ A and Lj ⊆ A.

We are now able to show a result on an arbitrary composition of point sets and the

hyperedges of their associated hypergraph, H(X).

Theorem 4.3. Let X be a composition of point sets L1, L2, . . . , Ln. If H(X) contains a

hyperedge E such that |E| > 2, then α(E) ⊆ Li for some i = 1, 2, . . . , n.

Proof. Suppose that (A1, A2, . . . , Al) is a cycle of copoints corresponding to the hyperedge

{A1, . . . , Al} = E of H(X) such that |E| > 2. Let I = {i ∈ {1, 2, . . . , n} : Li ∩ α(E) 6= ∅}. If

34



|I| = 1, then the conclusion is satisfied.

Suppose that |I| > 1. Consider all paths PLi in T (X) for i ∈ I. These paths have

at least one node in common, NX , so there is a first common node to all paths PLi , call

this node NM . There exist point sets M1 and M2 and subsets I1 and I2 so that M is the

composition of M1 and M2 with NLi a descendant of NM1 if i ∈ I1 and NLi a descendant

of NM2 if i ∈ I2. The sets I1 and I2 must be disjoint and non-empty, because NM is the

first node in common to all paths. By the proof of Lemma 4.2, if any copoint A is attached

to α(A) ∈ M1 and contains p ∈ M2, then M2 ⊆ A. So, let α(A1) ∈ M1 and α(A2) ∈ M2.

Then, there is some k ≥ 2 such that α(Ak) ∈ M2 and α(Ak+1) ∈ M1 so M2 ⊆ Ak+1.

This means that α(Ak+1) ∈ A2 and α(A2) ∈ Ak+1. Thus, α(E) ⊆ M1 or α(E) ⊆ M2. If

α(E) ⊆ M1, then α(E) ∩M2 = ∅, so there is no i ∈ I with Li ⊆ M2. This contradicts the

minimality of M .

From Theorem 4.3 we get the following corollary.

Corollary 4.4. If the point set X is the composition of singletons, then H(X) ∼= G(X).

Proof. Since X is the composition of singletons, Theorem 4.3 shows that if there is a hy-

peredge of size greater than 2 in H(X), every copoint of the hyperedge must be attached

to the same point. This violates Proposition 2.7 on minimal cycles. Thus, H(X) ∼= G(X).

Erdős and Szekeres [ES61] describe a construction of large point sets without large

subsets in convex position. We describe these point sets with the notation of [Mor06].

For all positive integers, k, we first define ES(0, k) and ES(k, 0) to be singletons. For

i ≥ 1, j ≥ 1 define ES(i, j) to be a composition of ES(i− 1, j) and ES(i, j − 1).

The extended Erdős-Szekeres point set XES(k) is a composition of ES(0, k), ES(1, k−

1), · · · , ES(k, 0) where the compositions are performed in order from left to right. The

number of points in XES(k) is 2k. The size of the largest independent set in XES(k)

is k + 1 ([Mor06]). We apply Corollary 4.4 to the point set XES(k) and conclude that
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dim(XES(k)) = k + 1.

Corollary 4.5. H(XES(k)) ∼= G(XES(k)). Further, dim(XES(k)) = k + 1 for positive

integers k.

Proof. SinceXES(k) is the composition of 2k singletons, Corollary 4.4 implies thatH(XES(k)) ∼=

G(XES(k)).

It was shown that χ(G(XES(k))) = k+1 by Morris [Mor06]. Therefore, χ(H(XES(k))) =

k + 1 and the order dimension of XES(k) is k + 1 by Corollary 2.6.

The Erdős-Szekeres conjecture is an upper bound on the size of the planar point set in

general position for a given size of the largest convex polygon in the set. We use a theorem of

Morris [Mor06] to come to a conclusion on the maximum size of a planar point set in general

position with fixed order dimension. Morris studied pseudoline arrangements, however

planar point sets in general position are equivalent to stretchable pseudoline arrangements.

Theorem 4.6 ([Mor06], 4.5). If L is a pseudoline arrangement and χ(G(L)) = k, then

|L| ≤ 2k−1.

As a direct corollary to this theorem, we are able to bound the size of a planar point set

in general position by a function of its order dimension. This implies that any planar point

set in general position of size greater than 2n−2 must have order dimension at least n.

Corollary 4.7. If X is a planar point set in general position and dim(X) = k, then

|X| ≤ 2k−1.

We have shown in Proposition 1.5 that k-cliques of G(X,L ) correspond to independent

sets of size k, so the size of the largest independent set of (X,L ) is ω(G(X,L )). We

have shown in Chapter 3 that there is no constant c such that χ(G(X,L ))
ω(G(X,L )) ≤ c for a convex

geometry, but we do not know this result for convex geometries realized by planar point

sets.
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Figure 4.2: Smallest point set with different clique and chromatic number and its poset of
copoints

4.2 Inequality of Clique and Chromatic Number of the Co-

point Graph for Planar Point Sets

As has been noted on multiple occasions in [Mor06] and [Beaar], there are examples of

planar point sets in general position where ω(G(X,L )) < χ(G(X,L )). Of the 16 order

types of 6 planar points in general position [AAK02], there is only one with this property.

It is given in Figure 4.2. The copoints are shown to the right of the point set, in the

form (α(C), C) where α(C) is the point to which copoint C is attached. The copoints are

partially ordered by set containment. The subgraph of G(X,L ) induced by the copoints of

(X,L ) of size bigger than 3 form the complement of a 9-cycle. This graph has chromatic

number 5 and clique number 4. To see that the chromatic number must be 5, note that the

size of the largest independent set in the graph is of size 2. Thus, χ(G(X)) ≥ d9/2e = 5.

We have used the database of Aichholzer et. al. [AAK02], to compute the number of

distinct point sets in general position for which the chromatic number and clique number of

the copoint graph are not equal. The results are in Table 4.1. It should also be noted that

for all planar point sets in general position the difference between the chromatic number

and clique number of G(X,L ) is at most 1.

Of the 8 point sets of size 7, 5 of these contain the point set in Figure 4.2. We provide
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n # of Order Types χ = 5, ω = 4 χ = 6, ω = 5 χ = 7, ω = 6 χ = 8, ω = 7

3 1 0 0 0 0
4 2 0 0 0 0
5 3 0 0 0 0
6 16 1 0 0 0
7 135 8 0 0 0
8 3315 51 34 0 0
9 158817 0 7949 0 0
10 14309547 0 1206402 20258 1

Table 4.1: Number of Order Types with distinct Chromatic and Clique Number

the other 3 point sets along with an induced subgraph of copoints that have chromatic

number 5 and clique number 4 in Figures 4.3, 4.4, and 4.5. To see that the chromatic

number must be 5, note that the size of the largest independent set in the graph is of size

2. Thus, χ(G(X)) ≥ d9/2e = 5.

4.3 Describing Hyperedges of H(X,L ) for a Realizable Con-

vex Geometry

Let (X,L ) be a convex geometry realized by a set in Rd. If A is a copoint of (X,L )

attached to α(A), then α(A) /∈ conv(A), so conv(A) and α(A) can be properly seperated by

a hyperplane HA in Rn (Theorem 2.4.10, [Web94]) with α(A) ∈ HA and conv(A) a subset

of an open halfspace defined by HA. Since open halfspaces with one p ∈ X on its boundary

are maximal convex sets not containing p, all copoints of (X,L ) can be represented by such

HA. We use this description of copoints to study α(A) where A is minimal cycle of (X,L ).

Proposition 4.8. Let (X,L ) be the convex geometry of points in Rd. If A is a minimal

cycle of copoints with length l, that is A ∈ E(HCLL
) with |A| = l, then α(A) is the vertex

set of a polytope with l vertices.

Proof. The result is trivial if l = 2, so let l > 2. Suppose α(A) is not the vertex set of a
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Figure 4.3: 7 point set in general position with an induced subgraph of copoints

1
2

3

4
5

6

7

(1,234567)

(4,3567)

(2,14567)

(3,124567)

(6,12457) (6,12345)

(7,123456)

(5,12346)

(5,3467)

Figure 4.4: 7 point set in general position with an induced subgraph of copoints
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Figure 4.5: 7 point set in general position with an induced subgraph of copoints

polytope with l vertices, then there is at least one α(Ai) such that α(Ai) ∈ L ({α(Aj) :

j 6= i}) = C. By assumption, α(Ai) ∈ Ai+1 so there is some λ > 0 such that λα(Ai) +

(1 − λ)α(Ai+1) = x ∈ rbd(conv(C)), the relative boundary of conv(C). So, x ∈ F a face

of conv(C), with W ⊂ C, F = conv(W ). Then, either x ∈ W or x ∈ rint(F ), the relative

interior of F . It is clear that any open halfspace with α(Ai+1) on its boundary that contains

α(Ai) must also contain x. In particular, there is a hyperplane HAi+1 with α(Ai+1) on its

boundary with an open halfspace containing α(Ai) and hence x. Thus, x ∈ Ai+1, so A was

not a minimal cycle.

If x ∈ rint(F ), then we write x =

k∑
j=1

λjwj for wj ∈ W , λj > 0, and

k∑
j=1

λj = 1. Let

H = {y ∈ Rn : y · a = α0} be a hyperplane of Rn containing α(Ai+1) and x (and thus

α(Ai)). So, x · a = α0 = (
k∑
j=1

λjwj) · a =

k∑
j=1

λj(wj · a). Since λj > 0, if there is some

wj1 such that wj1 · a > α0, then there is some and wj2 · a < α0. In particular, there is

a hyperplane HAi+1 = {y ∈ Rn : y · ai+1 = αi+1} with α(Ai) · ai+1 < αi+1 and hence
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Figure 4.6: Welzl’s Little Devil

x · ai+1 = (

k∑
j=1

λjwj) · ai+1 =

k∑
j=1

λj(wj · ai+1) < αi+1. Thus, there is a wj ∈ W such

that wj · ai+1 < αi+1. Therefore, the open halfspace that contains α(Ai) also contains

α(Ak) = wj ∈W ⊂ C with k not equal to i or i+1. This implies that A was not a minimal

cycle, which is a contradiction.

We would also note that there are many well-known examples of planar point sets in

general position where the hypergraphH(X) contains many hyperedges of size larger than 2.

These examples are known as Welzl’s Little Devils [GPP08] and are known to contain many

lines through two points that evenly divide the remaining points. We provide an example on

12 points in Figure 4.6, this contains 63 hyperedges of size 3 with χ(G(X)) = χ(H(X) = 6.

Every example of a convex geometry we have studied satisfies χ(G(X,L )) = χ(H(X,L )).
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[ES88] Paul H. Edelman and Michael E. Saks. Combinatorial representation and convex
dimension of convex geometries. Order, 5:23–32, 1988.

[FT00] Stefan Felsner and William T. Trotter. Dimension, graph and hypergraph color-
ing. Order, 17:167–177, 2000.

[GPP08] Jacob E. Goodman, Janos Pach, and Richard Pollack. Surveys on Discrete and
Computational Geometry: Twenty Years Later. American Mathematical Society,
2008.
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