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ABSTRACT:  This paper presents an innovative use of human behavior models for detecting insider threats to 
information systems. While most work in information security concerns detecting and responding to intruders, 
violations of system security policy by authorized computer users present a major threat to information security.  A 
promising approach to detection and response is to model behavior of normal users and threats, and apply 
sophisticated inference methods to detect patterns of behavior that deviate from normal behavior in ways suggesting a 
possible security threat. This paper presents an approach, based on multi-entity Bayesian networks, to modeling user 
queries and detecting situations in which users in sensitive positions may be accessing documents outside their assigned 
areas of responsibility. Such unusual access patterns might be characteristic of users attempting illegal activities such 
as disclosure of classified information.  We present a scalable proof of concept behavior model, provide an 
experimental demonstration of its ability to detect unusual access patterns in simulated situations, and describe future 
plans to increase the realism and fidelity of the model. 
 
1. Introduction 
 
Defending against an insider who attempts to misuse 
his access privileges is one of the most significant 
problems facing network security. An authorized 
insider can violate a system security policy for several 
reasons and in a multitude of ways but not all 
violations are true threats. An insider’s privileges may 
range from those of a novice user to a system 
administrator. An insider user can be a threat against 
all three computer security objectives: confidentiality, 
integrity, and availability. One of the key findings of 
the eighth annual CSI/FBI 2003 report, “Computer 
Crime and Security Survey” [10], is that insider abuse 
of network access was the most cited form of attack or 
abuse although 92% of the respondents’ organizations 

employ some manner of access control mechanisms. 
Hence, more attention must be paid to insider users 
allowed access to system resources in order to reduce 
risks imposed by them. 
 
In this paper we focus on a particularly insidious threat: 
that posed by individuals who misuse their privileges 
to gain access to sensitive information in order to make 
it available to unauthorized parties (e.g.: other states, 
terrorists), or to manipulate it with the purpose of 
producing misguiding analysis. Examples of such cases 
are those of Robert Hanssen [4], convicted of trading 
secrets to the Russians in exchange for money and 
diamonds, and Aldrich Ames [3] who sold secrets to 
the KGB in exchange for money.  
 



Modeling user behavior can provide us with insights 
for understanding types of threats that normally go 
undetected. A user's day-to-day actions modeled over 
time can be used to alert a security manager to possible 
masqueraders, clandestine users, or misfeasors. It 
would be possible for a smart user to slowly change his 
profile over time.  To respond to this possibility, 
historical user profiles can be compared and analysis 
derived to detect when a user has deviated over a 
period of time from a generic normal work pattern. 
While these observations cannot be used to 
conclusively show that a user has done anything 
wrong, they can be used to alert a security manager to a 
possible problem. Human behavior exhibits both 
systematic regularities and inherent unpredictability. 
Social and behavioral science research has led to 
improved understanding of the relationships between 
an individual’s innate personality, values, cultural 
traditions, life experiences, and behavior patterns. 
Nevertheless, no matter how good our models become, 
uncertainty will remain a fundamental aspect of any 
problem or situation involving human behavior. For 
this reason, modeling tools are required that can 
represent and exploit systematic relationships while 
also accounting for uncertainty and unpredictability in 
human behavior. This paper demonstrates the use of 
multi-entity Bayesian networks to model both the 
systematic features and the uncertainties in user 
behavior over time, and to accumulate evidence to 
distinguish normal from threatening user behavior. 
 
2. Background 
 
Several articles have been published in Bayesian 
network applications in network security. Burroughs, 
Wilson and Cybenko [1] provide an analysis of 
distributed intrusion detection systems using Bayesian 
methods. The main goal of their work is to defend 
computer networks against attackers. Information 
provided by intrusions detection systems (IDSs) is 
gathered and divided into its component parts such that 
the activity of individual attackers is made clear. This 
approach involves the application of Bayesian methods 
to data being gathered from distributed IDSs in order to 
improve the ability to detect distributed attacks against 
infrastructure and preliminary phases of distributed 
denial of service attacks as early as possible. Bayesian 
multiple hypotheses tracking (BMHT) algorithms 
generate and store all possible hypotheses that could 
explain the data being measured. Every hypothesis is 
evaluated against the understanding of the sensor 
behavior and the dynamics of the target. All hypotheses 
must be evaluated to determine their likelihood. The 
hypothesis that has the greatest likelihood is assumed 
to be the correct one. As new information arrives, the 

likelihood of each hypothesis is adjusted and belief in 
that hypothesis is either strengthened or weakened.  
 
In [6], a Bayesian statistical model was developed to 
model user behavior where invalid user behavior is 
determined by comparing user current behavior with 
their typical behavior and comparing their current 
behavior with a set of general rules governing user 
behavior formed by system administrators. This 
prediction model has provided results that are very 
close to the actual user behavior with obvious 
similarities between results and actual data. The results 
were improved after applying intervention 
mechanisms. 
 
Hierarchies of dynamic Bayesian network models, 
described in [5], were developed to compute the 
likelihood of various cyber attacks by dynamically 
adding evidence to the networks and solving the 
implied probability equations with a Bayesian network 
solution algorithm. Security situation assessment and 
response evaluation (SSARE) [11] provides 
understanding and timely management of rapidly 
changing cyber battle space through the application of 
dynamic, knowledge-intensive, Bayesian and decision-
theoretic methods. It dynamically composes models in 
a data-driven way to develop situation-specific 
hypothesis to respond to the central task of cyber 
command and control. 
 
3. Our Methodology 
 
3.1 Bayesian Networks 
 
Bayesian probability theory is a powerful technology 
for constructing models of phenomena involving 
uncertainty. Probabilities express degrees of 
plausibility or likelihood on a scale ranging from 
certainty through impossibility. Bayesian models can 
combine expert knowledge with observational data, 
and can be refined over time through learning from 
observation. Recently, a powerful new set of modeling 
methods has emerged that combine graph theory with 
Bayesian probability, enabling the construction of 
highly complex models involving large numbers of 
interrelated hypotheses. A Bayesian network encodes a 
probabilistic model over a set of related variables by 
using a directed graph to represent qualitative 
relationships and local probability distributions to 
represent quantitative information about the strength of 
the relationships. Bayesian networks can represent both 
causal and statistical dependency relationships. Figure 
3.1 shows a simple Bayesian network representing user 



behavior for a document retrieval task.1 The figure 
shows a set of random variables representing uncertain 
hypotheses. The random variable GlobalIntention 
represents whether a user is normal or a security threat. 
The probability that a user is a threat is influenced by 
the value of the Motive random variable. Although 
users are likely to be normal regardless of motive, 
users with personal, financial or political motives are 
more likely to be threats. The remaining random 
variables represent the user’s assigned task, the task for 
which the user is performing a given query, and 
relevance ratings of a retrieved document with respect 
to each of the tasks. Each random variable has a set of 
mutually exclusive and collectively exhaustive possible 
values, and a set of local probability distributions that 
specify the probabilities of its values given the values 
of its parents. 
  
A Bayesian network such as that shown in Figure 3.1 
and 3.2 can be used as a generative model to simulate 
user behavior or as a recognition model to infer 
unknown user characteristics and future user behavior 
from known user characteristics and past user behavior. 
Figures 3.1 and 3.2 illustrate use as a recognition 
model for two different patterns of evidence. In Figure 
3.1, the document is rated highly relevant to the 
assigned task and highly non-relevant to the other 
possible tasks, thus  reinforcing the prior expectation 
that a normal user is performing a task-relevant query. 
In Figure 3.2, the document is rated highly irrelevant to 
the assigned task and highly relevant to a different task, 
substantially increasing the likelihood of a task-
irrelevant query and also increasing the likelihood that 
the user is a threat.  Note, however, that the probability 
of Threat remains low. It takes more than a single 
questionable document retrieval to arouse serious 
suspicion. Threats are identified from patterns of user 
behavior that occur over time. To model such patterns 
requires a more expressive modeling technology than 
standard Bayesian networks. 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 Screen shots of Bayesian networks are from the Netica® 

Bayesian network package. 

 
 

Figure 3.1 Task Relevant Document Model 

 

 
Figure 3.2 Non Task Relevant Model 
 
 
3.2 Multi-Entity Bayesian Networks 
 
Standard Bayesian networks are limited to problems in 
which the same set of random variables applies to all 
problem instances, and only the evidence is different 
from problem to problem. A much more flexible 
representation capability is required to model human 
behavior in all but the most stereotypical situations. 
Multi-entity Bayesian networks (MEBNs) expand upon 
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standard Bayesian networks in their ability to encode 
repeated, parameterized argument structures called 
MEBN Fragments (MFrags). An MFrag is a modular 
component representing a fairly small, separable, and 
conceptually meaningful part of the total argument 
structure supporting or denying a given hypothesis. 
MFrags can represent alternative hypothetical world 
states, evidence that bears upon which hypotheses are 
true, and chains of argument relating evidence to 
hypotheses. MFrags can be combined to build models 
relating complex configurations of many features, and 
can be re-used in multiple scenarios. Figure 3.3 shows 
how the model of Figure 3.1 and 3.2 can be represented 
as a set of MFrags. Each MFrag has a set of resident 
random variables (shown in white) whose local 
distributions are defined in the MFrag, input random 
variables (shown in light gray) whose values condition 
the local distributions of the resident random variables, 
and context random variables (shown in darker gray), 
which must have value True for the local distribution 
defined in the MFrag to apply. The random variables 
take arguments called entities. For example, the query 
task MFrag of Figure 3.2 applies when the entity u 
(representing a user) is equal to the value of 
PerformingUser(q) for the entity q (representing a 
query) – that is, when user u is performing query q. It 
specifies the relationship between the user’s assigned 
task, the user’s intention, and the query task. 
   
The local distributions of MFrags can be learned from 
observations as evidence is accrued. MFrags can 
represent complex models involving multiple actors, 
multiple documents, and multiple computer systems. 
They can appropriately handle the resulting complex 
correlations both in inference and in learning. The 
learned MFrags are applied at runtime to detect 
anomalous events in a process called situation-specific 
Bayesian network construction. As evidence arises, 
suspicious configurations trigger “suggestors” which 
bring in MFrags that provide potential explanations for 
the normal as well as anomalous patterns. The 
constructed situation-specific Bayesian networks are 
then used to infer the probability of hypotheses of 
interest, and to trigger alerts as necessary.  
 
MEBN theory has been implemented in 
Quiddity*Modeler (Q*M), part of a suite of Bayesian 
Inferencing tools  developed by Information Extraction 
and Transport, Inc. (IET). Q*M is a knowledge 
representation language based on frames (a widely 
used knowledge representation in Artificial 
Intelligence) augmented in various ways to express 
uncertainties.  In addition to frame (class) abstractions 
organized by “is-a” hierarchies inherited from the 
frame system, Q*M supports mechanisms to express 
uncertainties about the value of variables, the reference 

to instances, the existence of instances, and the type of 
instances.  Q*M allows for expressing domain 
knowledge as pieces of BNs, called Bayesian Network 
Fragments or MFrags, in a modular and compact way, 
facilitating reuse.  Instances of probabilistic frames are 
created dynamically for each instance, allowing 
situation-specific probabilistic inference. 
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Figure 3.3 MEBN Fragments for Document 

Retrieval 
 
4. Our Model 
 
Our current model consists of seven MFrags that model 
queries and document accesses performed by users. 
Within that constraining scenario, we identified 
information useful for distinguishing normal users 
from those who pose a threat. The model is 
implemented in IET’s Q*M frame language. A frame is 
a software object representing a type of entity.  Each 
frame contains slots that represent attributes of entities 
of the associated type.  Slots contain information used 
to determine the probability for each slot. At run-time, 
instances of each frame are created to represent 
particular entities of the type modeled by the frame as 
necessary.   
 
Figure 4.1 shows how instances of the MFrags of our 
model can be assembled into a unified Bayesian 
network. This network is composed of nodes in parent-
child relationships.  Each node has several states, 
representing the slot-values of slots appearing in 
frames.  We will discuss each MFrag, explaining its 
structure and role. 
 
User—The user MFrag represents an individual user’s 
profile. The slots included are name, clearance level, 
role, motive, intention, assignment, and other activity. 
Motive, intention, assignment and other activity slots 
are used to determine threat and these are explicitly 
represented in the network shown in Figure 4.1. Most 
user slots are reference slots, pointing to other MFrags, 



but it is useful to have a single user reference fragment 
for use throughout inferencing. 
 
User Background—We currently model three areas 
that may serve as indicators that a user is likely to be a 
threat: political activities, personal background, and 
financial background. In each area we make fairly 
coarse distinctions such as serious concerns, minor 
concerns, and no concerns. In future work, we may 
flesh out the relevant user background, improving how 
we determine the threat level posed by each user and 
making finer distinctions regarding the levels of 
concern. While our model includes variables that 
represent user background we are not using this 
background information as evidence in our model. 
 
User Assignment—Each user has an assigned 
geographic region and an assigned task. This 
information is taken as known and set as evidence on 
the network.  We also assume that assignments are 
constant within a given time step.  We have created 
fictional regions and tasks for our proof of concept 
network but we could easily substitute real regions and 
tasks. Given that the assignment nodes have no parents, 
we can easily increase the numbers of both regions and 
tasks as necessary. 
 
User Intention—We currently classify users’ 
intentions as either “normal” or “threat.” We assume 
that users’ intentions may change over several sessions. 
We assume users have global intentions that do not 
change over the time interval represented by the model 
and session intentions that may change from one login 
session to the next. The session intention is influenced 
by both the global intention and the previous session’s 
intention.  We do not directly know either the global or 
session intention of users.  The global intention is 
currently influenced by user motive.  The session 
intention influences the user query nodes and thus can 
be inferred from the pattern of documents accessed 
over time.   
 
User Other Intention—Our goal is to build a model 
that not only identifies malicious users but also 
indicates the nature of the potential threat. Currently 
we model the threat by attempting to identify an 
information source the malicious user may be trying to 
identify, as well as any regions and/or tasks in which 
the user is showing interest in addition to his or her 
assigned region and task. The user’s other intention 
also influences the documents he or she accesses, and 
can be inferred from the pattern of document retrieval 
behavior. 
 
Document—Documents have sources (providers of 
information contained in the documents) and region 

and task classifications. Documents are rated to 
provide a measure of how relevant each document 
matches each of task and region.  The relevance rating 
is currently provided manually but in the future 
relevance will be assigned according to a document 
relevance classification system.  Techniques to 
measure document relevancy such as the ones 
described in [2] will be used for this purpose. 

 
Query—Users perform queries that result in document 
accesses. We assume for any given query that the user 
is seeking information about a source, a task and a 
region. The query source represents the source that 
provides the intelligence information in a retrieved 
document, as opposed to the author of a document. If a 
user is attempting to identify a given source, then 
whether or not the user explicitly queries on the source, 
task or region, the user is likely to access documents 
citing this source. A query is also likely to return a 
document relevant to the query task or region.  
 
Figure 4.1 shows the seven MFrags assembled into a 
unified model for a single session, a single query, and a 
single document access. The context variables in the 
upper left corner represent relationships that must hold 
among the referenced entities in order for the 
relationships in the constructed model to hold. The 
context variables state that the model refers to a user u 
who accessed a document d retrieved in response to a 
query q performed by u during a session s.  The other 
random variables in the model represent the values of 
slots in the frames. 
 
For the network shown in Figure 4.1, the user’s 
assigned task and region have been set as evidence, as 
well as the results of a query (as shown by the evidence  
set on both task and query relevance). Even though the 
user is, in this example, querying for documents 
outside of his/her assigned task and assigned region, 
our belief that the user is a threat increases only by a 
small amount. The prior probability for a user being a 
threat is 1.08%.  After setting the evidence used for this 
example, the probability has increased to 2.83%, as 
reflected in the GlobalIntention(u) node. This minor 
shifting of our belief is in keeping with the fact that the 
great majority of users are not threats; that users who 
are threats will act like normal users the majority of the 
time; and that detection of threats requires the accrual 
of data over time as we do using dynamic nodes.  
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Figure 4.1 Proof of concept model for detecting insider threats, with evidence set 

 



MEBN logic as implemented in the Quiddity*Modeler 
language allows many instances of each frame to be 
combined automatically into a single complex model 
involving multiple users, multiple sessions per user, 
multiple queries per session, and multiple document 
retrievals per query.  Quiddity*Modeler is also 
powerful enough to allow us to model access 
sequences and patterns.  This is a planned extension to 
the current models and is discussed below. In the 
experiments described below, the Bayesian network for 
a single session contained hundreds of nodes, and the 
experiment was carried out over 100 sessions.   
 
 
5. Simulation Experiment 
 
5.1 Experiment 
 
The aim of our experiment is to distinguish users’ type 
(normal/threat) through a set of actions by the users’ 
(multiple document queries) over a period of time 
(multiple sessions). We implemented our experiment 
by creating two identical Bayesian networks operating 
simultaneously.  The ground truth network was used as 
a generative model to simulate a user’s intention and 
behavior.  The model simulated session intention, a set 
of queries for the session, and a set of document 
retrievals and associated relevance ratings.  The 
inference network was used as a recognition model to 
detect threatening user behavior.   
 
In a specific session, the two parallel models are the 
same (same nodes, same arcs between the nodes and 
same belief tables for the nodes). Each experimental 
session had a global intention (normal or threat), an 
assigned region, and an assigned task set by design.  
The values of the design random variables e 
GlobalIntention(u), AssignedRegion(u), and the 
AssignedTask(u) were applied as evidence in our 
generative model. We then sampled the random 
variables OtherInterestRegion(u) and 
OtherInterestTask(u) and applied the sampled values as 
evidence in the ground truth network. We also set the 
values of AssignedRegion(u) and AssignedTask(u) as 
evidence in the inference network, because it is 
assumed that their values will be available to the 
inference system. 
 
 Finally, for each session we simulated a set of queries 
and document accesses, applied the simulated 
document relevance ratings and sources as evidence in 
the inference network, and computed the posterior 
probabilities for GlobalIntention(u): 

P(GlobalIntention=Normal | data, assigned task/query) 

P(GlobalIntention=Threat | data, assigned task/query) 

This process was repeated for each of 100 sessions for 
each user.  For a specific user we obtained a sequence 
of probabilities, one for each session, allowing us to 
compare the inferred results with the ground truth. 
 
 
5.2 Simulation and Inference 
 
We simulated the behavior of a total of 192 users, 
distributed in the following manner:  16 Normal users 
with 5 queries of 4 documents per session for 100 
sessions; 48 Threat users under the same conditions; 16 
Normal users with 2 queries and 10 documents per 
session for 100 sessions; 48 Threat users under the 
same conditions; 16 Normal users with 10 queries and 
2 documents per session for 100 sessions; 48 Threat 
users under the same conditions. In each case the 
procedure was as follows: 
 
1. Use Quiddity*Modeler frame language to create 

the generative and recognition BN models for a 
given design case (user type, assigned region, 
assigned task, number of queries per session, 
number of documents per query). 

 
2. For each ground truth user type (16 Normal users 

and 48 Threat users) do the following procedures: 
2.1. Set the values of GlobalUserIntention(u) to 

the design value (Normal/Threat) in the 
generative model. Set the values of 
AssignedRegion(u) and AssignedTask(u) 
values to the design value in both the 
generative and inference models. Then we 
sample the random variables 
OtherInterestRegion(u) and 
OtherInterestTask(u) from our generative BN 
model and set the sampled values as evidence 
in our generative model. 

2.1.1. For each of 100 sessions do 
2.1.2. Simulate data from the generative 

model for each query in the session and 
each document access for the query, 
where the number of queries and the 
number of document accesses is set by 
design 

2.1.3. Set the documents relevance ratings 
and source information as generated by 
the ground truth model as evidence in 
the inference model.  

2.1.4. Use our inference BN model to 
compute the two posterior probabilities: 
P(GlobalIntention=Normal | data, 
assigned region/task); 



P(GlobalIntention=Threat | data, 
assigned region/task). 

2.1.5. Advance both our generative BN 
model and inference BN model to the 
next session. 

 
 
6. Results 
 
Figures 6.1 through 6.4 show typical results of 
experimental runs for a normal user, two detected 
threats, and an undetected threat. For each of 48 test 
simulations of normal users, the probability of Normal 
remained near 1.0 over all 100 sessions. Of 144 test 
simulations with threat users, 14 (about 10%) were 
indistinguishable from the plots of normal users. An 
additional 2 Threat users had high probabilities above 
80% Normal over all 100 sessions, but noticeably 
lower than for normal users (e.g., around 90%) for 
some set of sessions. For the remaining 128 Threat 
users (about 89%), the probability of Normal dropped 
to single digits. In most cases, the probability of 
Normal remained low, although in a few cases it began 
to climb at some point. That is, according to this 
model, document retrieval patterns alone would be 
sufficient to definitively detect almost 90% of the 
threats in 100 sessions. Approximately 1% of 
simulated Threat users showed patterns only slightly, 
although noticeably different from normal users. Below 
we include four typical plots that show the inferred 
probability of “Normal” and “Threat” over 100 
sessions. 
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     Figure 6.1 Typical plot for a normal user 
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Figure 6.2 Typical plot for a threatening user that   
is detected after some rounds of suspicious behavior 
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Figure 6.3 Typical plot for a threatening user who is 
undetected 
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Figure 6.4 Typical plot for a detected threatening 
user 
 
 
 
 
 
 



 
7. Discussion and Future Work  
 
The model presented here illustrates the concept of 
detecting insider threats from document retrieval 
patterns based on a model of user behavior. The model 
has not been validated against actual user behavior. 
The probabilities used in the model were assessed 
judgmentally and are not reflective of actual measured 
user behavior. Our experiments have demonstrated the 
ability of a behavior model such as this to perform 
reasonable inferences using data generated from the 
model itself. A definitive demonstration of the value of 
this modeling technology for information security 
applications would require learning the parameters of 
the model from field data and testing the model against 
field data not used to train the model. Nevertheless, this 
simple model demonstrates the potential utility of 
MEBN technology for modeling user behavior in 
information systems. Our results demonstrate that user 
behavior modeling using MEBNs is a promising 
approach to the problem of detecting insider threats in 
information systems.  
 
One future direction of our work is to examine the 
problem of generating ground truth data that addresses 
a more realistic insider behavior. We also plan to 
discriminate between different types of threats, e.g., 
users with intentions of leaking information versus 
those with the intention of influencing policy making. 
A further improvement to the model includes 
integrating with other insider user attributes such as 
insider skill, knowledge, clearance level, access 
sequences and patterns, log-in time for sessions, and 
realistic security policies. 
 
Another avenue of research we plan to explore is the 
use of data mining techniques to generate evidence for 
our Bayesian Network. In particular, we are interested 
in automatically computing the task relevance of a 
document that the analyst is accessing. For this task, 
we can borrow the ideas from [2] on computing the 
relevance of a document when performing focused 
crawling in the web. Concretely, given a pre-defined 
ontology of topics, where a series of topics have been 
marked as relevant to the task in hand, and a given 
document being accessed by an analyst, we are 
interested in computing a measure of relevance R(d), as 
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been marked, relevant(c) is set to true. P(c|d) 
represents the probability that d addresses the topic c. 
This can be computed using the ontology and a chain 
rule: 
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Using Bayes rule it is possible to express the last 
conditional probability as:  
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where the sum ranges over siblings of c in the 
taxonomy. Finally P(d|c) can be computed using a a 
Bernoulli binomial distribution model:  
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In this last expression, t represents terms (words) in the 
document, n(d) is the number of words in d, n(d,t) the 
number of times the t appears in d, and θ(c,t) the 
probability distribution of  t in topic c. When 
computed, the relevance measure R(d) can be fed into 
the Task Relevance nodes of the Bayesian Network as 
evidence.  In this way, a link between the pattern of 
document accesses from an analyst and our Bayesian 
model can be established. We plan to design 
experiments to test this technique in the near future.  
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