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Department of Computer Science

Fall Semester 2016
George Mason University

Fairfax, VA



Copyright c© 2016 by Gene R. Shuman
All Rights Reserved

ii



Dedication

This is for Sue, Amanda, and David, whose own accomplishments helped inspire this effort.

iii



Acknowledgments

No work of this size or effort is possible without the help of many different parties. I would
like to acknowledge some them here (and apologize to those who deserved to be called out,
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Abstract

USING MYOELECTRIC SIGNALS TO CLASSIFY PREHENSILE PATTERNS

Gene R. Shuman, PhD

George Mason University, 2016

Dissertation Director: Dr. Zoran Durić

People want to live independently, but too often disabilities or advanced age robs them

of the ability to do the necessary activities of daily living (ADLs). Finding relationships be-

tween electromyograms measured in the arm and movements of the hand and wrist needed

to perform ADLs can help address performance deficits and be exploited in designing my-

oelectrical control systems for prosthetics and computer interfaces.

This dissertation presents the results of applying several machine learning techniques to

discover the electromyogram patterns present when performing typical fine motor functional

activities used to accomplish ADLs. The primary data in this research is from electromyo-

gram and accelerometer signals collected from the arms and hands of several subjects while

they performed typical ADLs involving grips or movements of the hand and wrist. Four

approaches were developed and tested. One involved classification of 100 ms individual sig-

nal instances. The second and third approaches used a symbolic representation called SAX

to approximate signal streams. The second created an affinity matrix approach to model

the co-occurrence of SAX symbols and classes to classify based on multiple adjacent signal

values. The third used nearest neighbor classification with Dynamic Time Warping (DTW)

as a distance measure to classify entire activity segments. A fourth approach used a Hidden

Markov Model (HMM) to classify continuous movement segments by applying a ’belief’



calculation that uses that instance’s signal reading as the observation model, the belief val-

ues of the previous instance’s classes, and estimated transition probabilities. Accelerometer

data were systematically used to aid in labelling the data since it clearly indicates the start

and stop of dynamic movements.

The findings reported here support the view that grips and movements of the hand

can be distinguished by combining electrical and mechanical properties of the task to an

accuracy of 76.72% for 47 classes in a segmented approach and 75.09% in a continuous

movement approach. Converting the signals to a symbolic representation and classifying

based on larger portions of the signal stream improves classification accuracy. More precise

labelling and applying the belief calculation gave credible results for the more complex

continuous movement scenario. Classification errors were in all approaches predominantly

concentrated within particular grip family groups. This is both clinically useful and opens

the way for an approach to help simulate hand functional activities. With improvements it

may also prove useful in real time control applications.



Chapter 1: Introduction

People want to live independently, but too often disabilities or advanced age robs them of

the ability to perform basic activities of daily living (ADLs). ADLs are necessary personal

functional activities, typically self-care, mobility, feeding, etc. They are largely performed

through upper extremity (UE) movements. The hand, being the terminal UE device, is

responsible for the detailed performance of ADLs and is essential for their successful com-

pletion. It is a complex part of the body that is capable of a nearly infinite number

of postures and movements. Understanding the underlying physical mechanisms required

for movements of the wrist and hand can help identify deficits in ADL performance with

enough specificity to devise effective rehabilitation treatments that would provide many

people with options for achieving and prolonging independence. That understanding can

also be exploited in control applications, such as driving a prosthetic or robotic hand, and

in the design of a “touch-less” computer interface.

1.1 Purpose of the Study

This dissertation presents results of research that explores the use of machine learning

pattern recognition techniques to learn and interpret the relationship between a movement

and the electrical signals emitted from the muscles that control the movement. The collected

signals were used to train a classifier with the aim of creating a software agent that can

decide which hand and wrist ADL movement or movements are being performed based on

a particular set of signals. The expectation prior to conducting the study was that a large

set of grips and movements could be identified using forearm EMG signal patterns to a

sufficiently high accuracy to allow for use in control applications.

Four different supervised learning approaches are presented and results of classification

1



training and testing reported. Data from five subjects were collected and used for training

and testing. Four of the subjects were in good health and without disability. The intention

was to collect data exclusively from non-disabled subjects. However, a fifth subject whose

left arm and hand are partly disabled was available and included as a comparator with the

non-disabled subjects.

The data were collected while the subjects performed grips or movements of the hand

plus the rest position. For two of the four approaches the prediction accuracy of the tech-

niques was improved by using a symbolic representation of the signal stream, incorporating

a group of adjacent signals in the stream into the classification decision, and classifying

entire activity segments while adopting Dynamic Time Warping (DTW) as a distance mea-

sure. Results from earlier tests of the first three approaches for 25 classes (24 grips and

movements plus the rest position) were reported in [1].

As the research evolved, the number of activities grew to 47 (46 grips and movements plus

rest) to include transition actions to account for continuous movement. The class labelling

used accelerometer data as an aid in applying more precise labels for the 47 classes since it is

an excellent indicator of the start and stop of movement. The fourth approach was developed

with the purpose of being able to classify continuous movement. This approach employed a

Hidden Markov Model (HMM) in which a classifier was used to generate class probabilities

for the data followed by the application of a ’belief’ calculation that used information about

the previous state and transition probabilities to arrive at a classification decision.

All four approaches were applied to the 47 class data. Results are reported in Chapter

6 and discussed in Chapter 7.

1.2 Contributions of This Dissertation

The main contributions of this dissertation are:

• Developed and evaluated several machine learning classification techniques to identify

2



47 fine hand grips and movements used to perform typical Activities of Daily Liv-

ing (ADLs). Constructed the feature set from electromyogram (EMG) signal data

collected from the arms and hands of several subjects while they performed typical

ADLs involving grips or movements of the hand and wrist. Collected accelerometer

(ACC) signals as a separate data modality to indicate the start and stop of dynamic

movements and aid in providing ground truth labels for the grips and movements.

• Designed and executed an experimental protocol to collect EMG and accelerometer

data from five subjects. Directed subjects performing a scripted set of eight hand

grips and related movements over eight two minute runs that covered the spectrum

of grip types: from power to fine. Processed, reduced, and coded the subjects’ signal

readings to produce labelled classification datasets for the subjects.

• Developed and tested several classification approaches. One classified individual signal

instances using Random Forest. In two others converted the signal streams to a

symbolic representation called SAX prior to classification. Created an affinity matrix

approach to model the co-occurrence of SAX symbols and classes to classify based on

multiple adjacent signal values. Developed and tested a nearest neighbor approach

that used Dynamic Time Warping (DTW) as a distance measure to classify entire

activity segments.

• Developed and tested a Hidden Markov Model (HMM) to classify continuous move-

ment data. Classified signal instances by applying a ’belief’ calculation that used an

observation model based on the current instance’s EMG signal readings, a transition

matrix containing probabilities of moving from one action to another in adjoining

time periods, and the belief calculation of the previous instance. Measured the im-

provement in classification accuracy provided by the belief calculation versus Random

Forest.

3



1.3 Document Map

The structure of the dissertation is as follows. Chapter 2 covers the background material

used in this research in the areas of anatomy, instrumentation, and automated processes.

Chapter 3 reviews related research. Chapter 4 describes the methodology employed, includ-

ing the specific experimental set-up, instruments, and automated methods used. The latter

includes material on how data was collected, activities that were performed and tracked,

and how the data were labelled. Chapter 5 is a description of the four supervised learn-

ing approaches used to classify the data. Chapter 6 covers the results of the experiments.

Finally, Chapters 7 discusses the results, while Chapter 8 suggests potential future work.

4



Chapter 2: Background

This chapter describes the anatomical, instrumentation, and automated processing areas

used in this study.

To move a voluntary muscle, the brain sends a low-level electrical, or myoelectric, signal

over the central nervous system to the muscle tissue that causes contraction or relaxation,

resulting in the movement. Electromyography is the study of those signals [2]. They can

be measured while the muscle is contracting or relaxing and are called electromyograms, or

EMGs. EMGs are very low-level — less than 10 mV (≈ .0001 of U.S. household current) —

and must be amplified to be measured. An electromyograph amplifies and measures EMGs

and has two types of sensors: (1) needles inserted directly into muscle tissue and (2) surface

sensors attached externally to the skin as close to the measured muscle as possible. Needle

EMGs are inserted into the muscle and target specific areas. Surface EMGs (sEMGs),

by contrast, do not distinguish between specific muscles. However, sEMG sensors have

been shown to provide as good results as needle-based approaches for pattern recognition

applications [3]. Their noninvasive nature and demonstrated good results make them a

suitable mechanism for capturing EMG signals and are therefore the choice in this research.

The relationship between a muscle’s EMG and the resulting movement is often not ob-

vious. Complex movements such as fine hand and finger movements usually involve several

muscles working in concert, often firing sequentially, which makes finding a relationship

difficult [4]. One approach to finding the relationship is to use supervised learning, or clas-

sification. In this technique a set signals from training instances are associated with an

outcome movement to learn a classification model. The model is a function constructed

from the training instances that approximates some true underlying relationship. When

presented with a similar, but previously unseen instance in the future, the model (the

5



learned function) is used to predict the outcome by translating the set of new signals into

the appropriate grip or movement.

2.1 Muscle Actions

Most fine motor tasks not only involve the fingers and wrist, but the forearm, upper arm,

and shoulder are also involved for positioning and/or stabilization of the distal segments.

Motion about a joint is caused due to force generated by muscle activity. Two kinds of

muscle movements can be defined: agonist and antagonist. Agonist muscles are defined

as being skeletal muscles that induce motion through the process of its own contraction.

An antagonist muscles is one that works in direct opposition to the agonist muscle and

is responsible for returning the limb segment to the anatomical position. Extensors and

Flexors are antagonist pairs, meaning that if the motion being elicited is of flexion, then the

flexor is the agonist and the extensor is the antagonist; vice versa for extension. Forearm

muscles that control the wrist and hand are listed in Table 2.1. The location of key muscles

is shown in Figures 2.1 and 2.2.

2.2 Anatomy of the Forearm, Wrist and Hand

Since this dissertation focuses on movements of the wrist and hand, an overview of their

anatomy is given in this section. The wrist is controlled by three sets of forearm muscles

responsible for its flexion, extension, and pronation and supination (twisting inward and

outward). Flexion is controlled by the flexor carpi ulnaris and flexor carpi radialis. The

palmaris longus is a flexor responsible for tension. Extension is controlled by the extensor

carpi radialis longus and brevis and the extensor ulnaris and brevis. Pronation is largely

controlled by the pronator teres and brachioradialis.

The hand is controlled by a set of extrinsic muscles located in the forearm and a set of

intrinsic muscles that are part of the hand itself. This study focuses on predicting hand grips

and motions from forearm sEMGs, so the extrinsic muscles will be described. The extrinsic

6



Table 2.1: Forearm Muscles Controlling the Wrist and Hand (Adapted from [5])

Muscle Action

flexor carpi ulnaris flexion of wrist; ulnar deviation of hand

flexor carpi radialis flexion of wrist; radial deviation of hand

palmaris longus tension of the palmar fascia

extensor carpi radialis longus and brevis extension of wrist; radial deviation of hand

extensor carpi ulnaris and brevis extension of wrist; ulnar deviation of hand

pronator teres forearm pronation

brachioradialis pronation or supination of the forearm

flexor digitorum superficialis flexion of the PIP and MCP joints (fingers)

flexor digitorum profundus flexion of the DIP, PIP, and MCP joints

flexor pollicis longus flexion of IP & MCP joints of thumb

extensor pollicis longus extension of IP & MCP thumb joints; thumb ab-
duction

extensor pollicis brevis extension of MCP joint of thumb

abductor pollicis longus abduction of thumb

extensor indicis proprius extension of index finger

extensor digitorum communis extension of fingers

extensor digiti quinti proprius extension of V finger

Figure 2.1: Anterior Forearm Muscles Controlling the Hand and Wrist: (a) flexor carpi
ulnaris (b) flexor digitorum superficialis (c) palmaris longus (d) flexor carpi radialis (e)
pronator teres (f) brachioradialis (Adapted from [6]).

7



Figure 2.2: Posterior Forearm Muscles Controlling the Hand and Wrist: (a) brachioradialis
(b) extensor carpi radialis longus (c) extensor carpi radialis brevis (d) abductor pollicis
longus (e) extensor pollicis brevis (f) extensor digitorum (g) extensor digiti minimi (h)
extensor carpi ulnaris (i) anconeus (cubitalis rotani) (j) flexor carpi ulnaris (Adapted from
[6]).
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muscles consists of three sets that control the fingers and thumb: flexors, extensors, and

abductors. Flexors control the inward bending of individual fingers and the thumb, and

include the flexor digitorum superficialis, flexor digitorum profundus, and flexor pollicus

longus. Extensors control the extension of individual fingers and the thumb, and include

the extensor pollicis longus and bevis, extensor indicis proprius, and extensor digitorum

communis, and extensor digiti quinti proprius. Abduction, the lateral movement of the

thumb, is controlled by the abductor pollicis longus. [5].

The above is summarized in Table 2.1. The locations of key muscles is shown in Figures

2.1 and 2.2.

2.3 Prehensile Movements

Prehensile movements of the hand are those in which an object is seized and held partly

or wholly by the hand. These are used in a broad range of activity and involve handling

objects of varying shapes and sizes [5]. Napier [7] identfied two distinct patterns of prehensile

movement: power grip and precision grip.

The power grip involves grasping an object with flexed fingers and thumb. The wrist

is usually slightly flexed to allow it to apply some tension. The precision grip involves

manipulating small objects between the thumb and fingers in a finely controlled manner.

Wrist position can vary to increase range. There are variations of each of these general

types. For the powere grip, these include the coal-hammer, bunched fist, procesion-power,

fencing, and jar grips. Precision variations include the scissors, pencil, tip-to-tip pinch,

palmar pinch, lateral (key) pinch, and pulp (ulnar) pinch grips. These are representative

grips used in ADLs and are explored in this study and are shown in Figures 2.3, 2.4, and

2.5.
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Figure 2.3: Power Grips: (a) typical power grip (b) coal-hammer (non-precision) (c)
bunched fist (non-precision) (d) typical precision power grip (e) fencing grip - power grip
with element of precision (f) jar grip (Adapted from [5])

Figure 2.4: Tripod Grips: (a) scissors (b) perncil (Adapted from [5])

Figure 2.5: Precision Grips (small objects): (a) tip-to-tip pinch (b) palmar pinch (c) lateral
(key) pinch (d) pulp (ulnar) pinch (Adapted from [5])
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2.4 Electromyogram (EMG) Signals

Surface electromyography (sEMG) is the study of electromyograms that are collected from

sensors attached to the skin, as opposed to needle or wire based approaches that have

connections placed within the muscle tissue itself. For control applications surface sensors

have been just as effective as needles, but are far less intrusive [3, 8]. The electrical signal

captured is the composition of all signals generated from the muscle fibers below the sensors.

Muscle fibers that are closer to the sensors contribute more to the overall sEMG signal

than those further away. The signal becomes stronger as more and more fibers are recruited

(signaled by the nervous system).

There are two different types of muscle fibers that produce different electrical signals.

Type-I fibers (slow-twitch) have slower contraction velocity, are less prone to fatigue, and

are prevalently used in aerobic activities. Type-II fibers (fast-twitch) have a must faster

contraction time and are used for high-force, fast-response tasks, but are more prone to

fatigue. Different types of fibers will contribute differently to the electrical signal due to

their contraction velocities. Fat and other non-muscle tissue (adipose tissue) can also affect

the captured signal when using surface sensors. Adipose tissue behaves like an insulator,

absorbing some of the electrical activity. Each of the above factors can affect the electrical

signal, causing a great deal of variability; therefore there has been significant amount of

research to identify key features of the electrical signal that produce useful information. [4]

[2]

2.4.1 Equipment (DelSys)

Muscle actions will be captured using the DelSys Trigno WirelessTM sensors and base station

for both sEMG and accelerometer (ACC) signal collection [9]. This system was chosen

since its sEMG sensors can be placed on the skin allowing for noninvasive data capture.

The sensors are placed on the skin above several superficial (closest to the skin) muscles

that control the fingers and wrist [2]. The unit is portable and supports up to 16 channels
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Figure 2.6: DelSys Trigno kit used for data collection (left, top and bottom) and a subject
(right) performing a jar lid turn with ten sensors attached to the action arm.

of sensor input. The base unit communicates with the DelSys EMGWorksTM Acquisition

package via a USB interface that, in turn, drives the collection and control of the sensor

signals and allows for the real-time monitoring of the signal. sEMG signals in this research

were collected at rate the of 2 kHz, ACC signals at 148.1 hz.

The EMGWorks Analysis software package is provided by the vendor to allow for the

digitization and processing of signals. The package allows for easy visualization of the

signals and provides computation of standard values such as root-mean square (RMS) for

a specified time window. [9]
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2.5 Classification

Classification is a machine learning technique in the category of supervised learning. An

external teacher, or supervisor, provides a set of examples with an associated class label for

each example. The goal is to train a software system to recognize the implicit relationships

between the examples and the labels. A set of labelled data is given and the classifier is

trained to recognize the relationship between the data structure and the class label. Once

trained, the system, or classifier, can provide the class label of a previously unseen example

with a high degree of accuracy.

Formally, let x = {(x1, y1), (x2, y2), ..., (xn, yn)} be a set of n examples xi with

associated labels yi. The vector xi ∈ <m and yi ∈ N, where m ∈ N represents the number

of attributes or features used in the classification training example, and the number of class

labels is represented by j ∈ N. In many classification problems j is a small number, often 2.

The goal is to derive a function fE(x) that approximates the true function f(x) as closely as

possible. The function fE(x) represents a separating boundary or decision surface between

the classes, yi, of the various xis.

Classification is treated in detail in a number of standard references, including [10],

[11], and [12]. These references are the primary sources for the material summarized in the

following subsections that describe classifiers.

The primary classifier types considered for used in this study are briefly summarized in

the following subsections.

2.5.1 Neural Networks

The Multilayer Perceptron (MLP), sometimes called an Artifical Neural Network (ANN) or

just Neural Network, builds on the concept of the Perceptron. The Perceptron respresents a

hyperplane that separates the training instances and is relatively fast to train. However, the

Perceptron can only find a hyperplane boundary if the training data is linearly separable,

which is a serious shortcoming. The MLP, by contrast, can succeed in these cases since it

is not limited to linear boundaries.
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The MLP is implemented as a feedforward network with input units, output units, and

hidden units. Each input unit corresponds to a classifier feature and the output units are

determined by the number of classes to be predicted. For a two class problem, one output

unit suffices since it can be used to render a yes/no or positive/negative decision. For

more than two classes, there are as many output units as classes. The hidden units are

the key variable in setting up and tuning an MLP. They can vary in number and in how

many layers in which they are arranged. An MLP with a single hidden layer of units can

represent most classification problems, so the variable is usually the number of units in the

hidden layer. More units means that a more complex decision boundary can be constructed

and good accuracy against the training data achieved. However, too many hidden units

can lead to over-fitting. In over-fitting, the classifier fits the training data very well, but

does not generalize well - that is, does not give as high accuracy against new, previously

unseen data instances. The goal is to find enough hidden units to give high accuracy while

not specifying so many that over-fitting occurs. [10]

There is no specific way to determine the optimum structure of the MLP network except

through experimentation with the number of hidden units and the adjustment of parameters.

The path through the network from the input units to the output units requires a transition

value from each unit to each of the units in the next layer - from input to hidden units, then

from the hidden units to output units. The values are determined by a weighted function

of the input value and use of a continuous activation function such as the sigmoid function.

The activiation function weights are learned using the backpropagation algorithm. Weights

are adjusted using a gradient-descent algorithm and minimizes the squared-error loss value,

the difference between the predicted value and the true value, until some minimum threshold

is reached. [10] [12]

2.5.2 Support Vector Machines

The Support Vector Machines, or SVM, is a two-class classifier that attempts to find a

linear separation boundary between the instances. The optimization criteria is to maximize
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the distance between the decision boundary and the nearest training instances of both

classes. The SVM is often refered to as a maximum margin classifier. The training instances

closest to the boundary are called the support vectors and are the only instances needed

for classification after classifier training is complete.

To achieve separability of training instances, SVMs preprocess the instances into a higher

dimensionality than the original space. A kernel function is used for the transformation that

allows for new instances to be quickly and simply classified using a dot-product computation.

SVMs generalize well and do not suffer from overfitting, as do MLPs. They can be

adapted to multi-class problems using a one-versus-one or one-versus-all postprocessing

approach.

2.5.3 Decision Trees and Random Forests

A Decision Tree (DT) is trained by iteratively selecting features that best separate classes

at each node. Criteria such as entropy and Gini purity are used to measure this and drive

feature selection. Many DTs are binary, using a single feature at each node, resulting in

decision boundaries that are parallel to the feature axes, making them suboptimal. Once

trained, however, DTs can classify new instances quickly and the resulting decision path

from tree root to class node can be traced and read as a decision rule that can provide

information on the structure of the classification problem. Unfortunately, like MLPs, DTs

can easily be over-fitted to the training data.

The success of DTs can be improved if more than one tree is generated and applied to

the classification. Various trees are randomly generated by selecting different features for

each tree, yielding potentially different classification decisions. In so-called Random Forests

(RFs), the classifcation results are post-processed using a majority voting scheme for the

final decision. RFs can improve the accuracy of DTs [13] and play a significant role in this

study.
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2.5.4 Nearest Neighbor

Nearest-Neighbor is based on the concept of similarity. The simplest variety is the one

nearest-neighbor, or 1-NN. In this case there is no training phase, but rather instances to

be classified are compared to the ”training” instances at the time classification is needed

and the classification decision is the class of the one training instance closest to it. ”Closest”

is determined by a distance measure selected as a parameter, but is often the Euclidean

distance. 1-NN is often used as a benchmark for other classifiers since it appears to provide

a reasonable classification performance in most applications [12].

1-NN can be generalized to classifying based on the class label of ’k’ nearest neighbors,

where k ≥ 2. K-NN operation is similar to 1-NN except that the majority of the ’k’ nearest

neighbors determines the class label of the instance being classified. ’k’ is specified as a

parameter to the algorithm and its optimum value must be experimentally determined.

2.5.5 Detection, Collection, Segmentation, and Processing

MES data is collected from sensors and recorded as a stream (or channel) of digitized values.

Analyzing the MES data and preparing it for classification requires the selection of the

specific time window of the sample corresponding to the grip or movement of interest. This

window covers the time during execution. Because the data is collected as a continuous

stream and we wish to track a sequence of grips and movements, the stream must be

segmented for processing. A segment is a time slot of data from which a feature or feature

set is extracted. Real-time constraints of control systems dictate that a processing delay

between selection and classification decision be 300 ms or less [14]. Even though this

study is not solely concerned with control systems, the 300 ms limit is kept in mind as a

guideline rather than a firm requirement. There are three aspects of data segmentation to

be considered: segment length, state of data, and windowing technique [15].

Segment lengths between 32 ms and 250 ms have been found to work well in practice [14],

although classifier accuracy degrades with lower segment lengths. Englehart showed [16]

that steady-state signal data emanating from a constantly maintained muscle contraction is
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Fig. 1. Windowing of MES data in the continuous classifier. Successive
analysis windows (W1, W2, and W3) are adjacent and disjoint. For each
analysis window, a classification decision (D1, D2, and D3) is made seconds
later, where is the processing time required of the classifier. Although four
channels of myoelectric data are used, only a single channel is shown here for
illustrative purposes.

from each window. The simplest approach (that used in the orig-
inal description of the continuous classifier [21]) is to use adja-
cent, disjoint analysis windows of the MES. This is equivalent
to incrementing the window position by an amount equal to its
size, as illustrated in Fig. 1.
In this scheme, each analysis window is equal to 256 ms (256

samples at 1000-Hz sampling). Therefore, decisions are made
at 256-ms intervals, assuming that processing can take place
while new data are being acquired.1 The processing delay ,
as depicted in Fig. 1, consists of the time required to compute
the feature vector and discriminate the data. Processing algo-
rithms were implemented in Matlab, with computationally in-
tensive portions compiled to increase speed. The processing was
performed on a 1.0-GHz Pentium III based workstation.2 For a
256-sample analysis window, this corresponds to a processing
delay of roughly 16 ms.
It is clear from Fig. 1 that processing (feature extraction

and classification) occurs in only a portion of the time spent
acquiring data, implying that a processing system will be un-
derutilized. Consider a scheme that fully utilizes the computing
capacity of a given system: as soon as a decision is generated,
begin processing the data of the most recent samples,
where is the analysis window length. This is analogous to
incrementing the -sample analysis window by a time duration
equal to the processing delay, as shown in Fig. 2.
This produces a decision stream that is as dense as possible,3

given the processing capacity of the computing platform. This
decision stream may be subject to postprocessing, intended to

1This may be accomplished by insulating the processor from the data acqui-
sition process, by means of direct memory access support.
2It is important to note that processing delays are relative to the coding effi-

ciency and the processing power of the computing platform. The Matlab code
used here is by no means as efficient as an implementation in assembly code or
even C/C++. An embedded system would not likely be based upon a P-III mi-
croprocessor, but rather, a dedicated digital signal processing microprocessor.
Regardless, the delays described in this paper easily scale to greater (or lesser)
coding efficiency and computing power.
3It should be noted that this scheme requires that data acquisition and pro-

cessing occur simultaneously, which is possible by separating the tasks into dif-
ferent threads of control.

Fig. 2. Windowing scheme that maximally utilizes computing capacity and
produces a decision stream that is as dense as possible.

Fig. 3. Dependency between the analysis window length and the
processing delay . These results are for a 1-GHz Pentium III workstation
using compiled Matlab code.

improve the accuracy of classification. It will be shown here that
some distinct advantages result from this approach.

IV. RESULTS

The data from the roster of 12 subjects were subject to
analysis using the continuous classification algorithm. In this
scheme the configurable parameters that will affect perfor-
mance are as follows.
1) Analysis window length . This determines the amount
of data used in feature extraction and classification, to
produce one class decision. A larger amount of data will
result in featureswith lower statistical variance and, there-
fore, greater classification accuracy. The tradeoff in in-
creasing window length is the processing time required to
generate a decision. This tradeoff is illustrated in Fig. 3.

2) Acceptable delay . This is the response time of the
control system: the time from the onset of myoelectric
intent until the control system is capable of generating
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Figure 2.7: Two possibilities for windowing. At left shows 256 ms windows with no overlap,
at right shows the same window length but with a 32 ms overlap. (Adapted from [14])

classified more accurately than transient data which emanates at the onset of a contraction.

An MES has an undetermined state during transition between contraction levels and most

errors occur when switching between classes. This is consistent with the results reported

later in this study. Therefore, classifying steady-state data with a segment length of ≈ 128

ms will yield fast, accurate results. [15]

Windowing can either mean processing time-adjacent segments of data or overlapping

segments. Overlapping leads to a denser input stream and when combined with post-

processing can result in high accuracy. Englehart [14] showed that processing overlapping

windows as small as 32 ms with post-processing of segments using a majority voting scheme

works well. Figure 2.7 illustrates the concept for both overlapping and non-overlapping

windows.

2.5.6 Feature Generation

Feature selection is a key part of creating a classifier and strongly influences the classification

results. The sEMG signals are the features of interest in Myoelectric Systems (MES) studies

and can be used directly or combined or transformed so the classes of interest can be easily

separated by a classifier.
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Hudgins [17] identified several time-domain features that he used for prosthesis studies.

Mean absolute value (MAV) or average rectified value (ARV) and root mean squared value

(RMS) are very prevalent time-domain features that are commonly used, and are given by:

X̄i =
1

L

L∑
k=1

|xk|,

RMS(i) =

√∑L
k=1 x

2
k

L
,

where X̄i is the MAV of the ith window of size L, and xk is the kth electrical signal sample

within the given window.

Difference ARV is another measure characterized by the difference in ARV between

windows:

∆X̄i = X̄i+1 − X̄i,

Hudgins used a simple frequency measure given by the number of zero crossings (ZC).

Due to the considerable artifacts that can affect the signal, a threshold must be used to

ease the effect of noisy data. Therefore a zero crossing is detected if the difference between

subsequent samples is greater than a defined threshold T :

ZC(k) =


1 if |xk+1 + xk| > T ;

0 otherwise.

ZCWindow(i) =

L∑
k=1

ZC(k)

Another simplified means to collect information about the frequency of the electrical

signal, is the number of sign slope changes (SSC) between three consecutive samples, where
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xk is a relative max or min.

SSC(k) =


1 if (xk > max(xk−1, xk+1) or xk > min(xk−1, xk+1));

and max(|xk − xk+1|, |xk − xk−1|) > T |;

0 otherwise.

SSCWindow(i) =
L∑
k=1

SSC(k)

Finally, Hudgins examined the total length of the signal over the window, which is cal-

culated as the sum of absolute voltage differences between each sample within the window:

WL(i) =

L∑
k=2

|xk − xk−1|

These time-domain features have been shown to have high classification accuracy among

steady states (i.e. muscle is in tension to hold the segment stationary) [17,18]. Time-domain

features work well for steady states, and the electromyogram is a quasi-stationary signal,

therefore it is promising to use sliding windows to capture these features over time.

Frequency domain features are typically used to study muscle fatigue and infer changes in

muscle recruitment [15]. This is because the muscles that commonly fatigue are composed of

Type-II, which have faster firing rates which will be present in frequency analysis. Common

features extracted include mean (MNF) and median (MDF) frequency:

MNF (i) =

∑J
j=1 IjFj∑J
j=1 Ij
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MDF (i) = Fk; argmin
k


k∑
j=1

Ij >

∑J
j=1 Ij

2


where the frequency Fj is computed by the Fast Fourier Transform, and Ij is the amplitude

at the frequeny Fj .

Parametric methods have also been used for frequency analysis of the muscle action;

typically an autoregressive (AR) model is used [18], and represents random processes. The

Akaike Information Criterion is commonly used to select the order of the model. Sample

xk is modeled by:

xk = c+

p∑
q=1

φqxk−q + εk,

where is c is a constant factor, p is the order of the model, εk is white noise, and φq are the

autoregressive parameters that estimated and used to describe the signal.

When processing the MNF and MDF, information regarding the time-domain is lost,

therefore the Short-Time Fourier Transform (STFT) is used to slide a window through

the data and observe the frequency changes over time. Wavelet transforms are also used

to examine the time-frequency domain. The definition of a continuous wavelet transform

(CWT) follows:

XCWT (s, τ) =

∫
x(t)ψ∗(t)

(
s−τ
a

)
√
a

dt,

where s is a scale factor, τ is the translational factor, and ψ is the wavelet function to use.

∗ denotes the complex conjugate.

A final step after the feature creation process is dimensionality reduction, or reducing

the total number of features used in classification. Features vary in their strength, or

contribution to the classifier’s accuracy. Selecting a subset of the strongest can lead to

higher accuracy while at the same time reducing the time needed to train the model and

perform individual classification decisions. Since the features used in this study are based

on physical signals collected from a variety of sensor locations, signal strength and quality
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varies. Gauging the contributions of individual features and their associated sensors can

provide information on muscular contributions to the various grips and movements used to

perform ADLs.

Three methods, Principle Component Analysis (PCA) [16], uniformisation [19], and

ANOVA [13], have been shown to be useful in past studies. However, this study employed

the MAV (ARV) of eight signal channels as the feature set and attempts at reducing the

number in the set did not yield improved results. Since eight is not a high number of

features, no further reduction was performed.

2.5.7 Validating Classification Models

A good classifier is one whose predictive accuracy on unseen input examples is high. Pre-

dictive accuracy, or just accuracy, is the percentage of correctly classified instances. Error

rate, which is the percentage of misclassified instances, is an equivalent measure. A prob-

lem arises, however, in measuring accuracy against unseen data while the classifier is being

trained and before using it in a real-life production mode. A good method is to divide the

input data into training and validation sets, using the classifier’s accuracy when processing

the validation set as the metric. However, this method reduces the amount of data available

for training and risks skewing the training or validation set so neither is representative of

the mix of the total set.

Cross-validation avoids these problems. It is a fast and robust classifier evaluation

technique that is useful when training data is limited. In the case of 10-fold cross-validation,

one of the more commonly used schemes, 10 separate training and classification runs are

conducted [10] [11]. For each run 90% of the training instances are used in training and

10% are held for evaluation. The runs are constructed so that each of the instances is held

out one time, while participating in training 9 times. The classifier accuracy is measured by

summing up the number of correct and incorrect classifications for the held-out 10% over

the 10 separate runs.
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2.6 SAX

SAX (Symbolic Aggregate approXimation) is a method of representing a time series using

a set of symbols assigned based on a discrete range of the sensor values [20]. It was used

for part of this research and is described in this section. Since the signal stream coming

from the performance of a grip or movement represents a time series, the SAX approach is

appropriate here. Only the idea of symbolic representation of the signal rather than real

number values was borrowed from SAX, an approach that includes other concepts not used

here.

In this implementation of n-symbol SAX the range of possible signal values is divided

into n intervals in such a manner that all symbols are equally probable. As will be seen

later, there are eight signal sensor values, each of which is represented by an MAV value

of a 100 ms signal slice, with each slice overlapped by 50 ms. The result is 20 SAX 8-

tuples per second. The eight MAV values are converted to an 8-tuple symbol for use as a

feature. While the feature dimension remains at eight, the total feature space of possible

values is reduced to a finite number determined by the size of the alphabet of symbols. For

each channel the signal probability is estimated using the histograms of signal values. An

example of applying this method to discretize signal data is shown in Fig. 2.8. Each SAX

window covers 100 ms, one MAV segment per window.

In this research the alphabet size n was varied between 5 and 15. Since each 8-tuple

signal value is replaced by an 8-tuple n-value symbol, a total of n8 different 8-tuples are

possible. MATLAB R© code was developed to implement the above as well as the second and

third learning approaches described in the following two sections. The conversion of the

eight signal channels to SAX 8-tuples was done separately for each subject. The symbol

ranges were established separately for each subject as well.

For an n = 5 size alphabet, examples of SAX 8-tuples are ’AAAAAAAA’, ’ABDED-

BAC’, ’CDEEDCDE’, and ’ABCDEEDC’. In the remainder of this dissertation a SAX

8-tuple of symbols is understood to represent one 100 ms MAV signal segment and will be

referred to as a word.
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Figure 2.8: Assigning symbols to the five sensor streams using an alphabet size of five.
Graphs for four of the eight signal channels are shown for a 3.5 to 8 second segment,
corresponding to the end of the neutral/rest (NR) activity and the entire hammer grip
(HG), for the average of all sensor values for the training runs. The SAX window size is
100 ms. The horizontal lines show the cut-off boundaries for the five symbol alphabet, A
through E. The selected graphs show the diversity of cut-off values that vary for each of the
eight sensors.

2.7 Toolsets

This section describes the two primary tools used to perform classification: Weka and

MATLAB.

2.7.1 Weka

Weka (Waikato Environment for Knowledge Analysis) [21] is a collection of machine learning

software developed at the University of Waikato, New Zealand. It’s a java based open source

suite issued under the GNU General Public License.

The main interface is the Explorer panel that consists of Preprocess, Classify, Associate,

Cluster, Select Attribute, and Visualize panels. To build a classifier using Weka, training

data is first put into the ARFF (Attribute-Relation File Format) format and imported using

the Prepocessor. Once in the Weka ARFF format, it can be processed and used to rapidly

train a variety of classifiers. The data can be visualised using bar graphs, attributes selected

or deleted, and dimensionality reduction performed.

A variety of classification algorithms are implemented, including the Artificial Neu-

ral Network Multi-Layered Percceptron (ANN/MLP), Support Vector Machine (Sequential
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Minimization Optimization), Decision Trees, Random Forest, Nearest Neighbor, and oth-

ers. Weka classifier training involves building a model and, if specified, performing cross-

validation to gauge performance. After the cross-validation is complete, details of the model

are output, including the time needed to build the model, and a confusion matrix is dis-

played showing how many instances were correctly and incorrectly classified. The accuracy,

number of correctly classified instances divided by the total, is displayed and is the main

performance metric.

Weka can be invoked from a java routine, allowing it to be imbedded in a larger process.

Various plug-ins are supported, including LIBSVM.

2.7.2 MATLAB

MATLAB R© is a proprietary programming language developed and sold by Mathworks [22]

as an environment for numerical computations. It allows for fast matrix processing, plotting

of functions, implementation of algorithms, and interfacing with other languages.

Custom MATLAB code was developed in support of this research for Approaches 2, 3,

and 4. The MATLAB Treebagger class and predict method were essential parts of Random

Forest classification in Approach 4.
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Chapter 3: Related work

Relating EMGs to movement has two basic use cases. One involves control applications

in which the EMG readings are used to drive a prosthesis, robotic hand, or a touchless

computer interface. These tend to be real time applications that require that the signals be

acquired and processed, and a related activity initiated in a very short time frame, often a

fraction of a second. The second involves using EMGs to assess motor and sensory signals.

Abnormalities of the signal may contribute criteria that may assist in making diagnoses or

tracking recovery. Additionally, research has provided data about the relationships between

signal amplitude and muscle strength. The relationships are complex, but may provide some

clinically relevant information [23]. This second use case is usually done as a batch process

that allows for the complete collection of a set of EMG data that can be read and interpreted

at a later time.

EMG measurement began in the early 1800s with the invention of the galvanometer.

In the 1920s the newly invented cathode ray oscilloscope was used to give a visual rep-

resentation of EMGs. As instrumentation improved in the 1930s and onward, researchers

began to use sEMGs more widely for the study of normal and abnormal muscle function,

dynamic movement, and for the treatment of emotional and functional disorders. Biomed-

ical engineers introduced the differential amplifier during the 1950s, eliminating the need

for ”copper rooms” and moving sEMG into the realm of clinicians [2].

During the 1960s Basmajian, the ”father” of surface electromyography, worked on sin-

gle motor unit training, leading to research on biofeedback. Clinical use of sEMG for the

treatment of various disorders began in the 1960s. These included teaching students not

to sub-vocalize during silent reading, retraining patients with various neuromuscular con-

ditions, and the restoration of function of hemiplegic patients [2].
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In the 1980s a handheld scanning device was used in a clinical setting and a normative

database of patient data developed. Suitable small and lightweight instrumentation was

developed, making it widely available for the first time [2].

3.1 Control Systems

Much of the related work involves the first use case: exploiting EMG patterns in myoelec-

tric control system (MES) applications [15], especially those needed to drive a prosthetic

hand or arm. EMGs contain rich information from which a user’s intention in the form

of muscle contractions can be detected using surface electrodes. This information can be

exploited to drive control systems of various kinds. sEMG information has been applied to

the problem of controlling a multifunction prosthesis, wheelchair control, gait generation,

grasping control, virtual keyboards, gesture-based interfaces, virtual worlds, and diagnosis

and clinical applications [15].

The first viable EMG controlled prosthesis appeared in the 1960s. Progress in developing

control systems roughly occurred in three generations: (1) ON/OFF control with a single

speed; (2) state machine control, threshold manipulation, signal amplification, and some

proportional control; and (3) microprocessor control with an infinite range of adjustments

[15].

3.2 Pattern Recognition-driven Control

Since the early 1990s there has been an increasing amount of study of the use of sEMG in

control systems, mostly powered prosthetics, but also rehabilitation devices, tele-operation

of robotic limbs, and human-computer interfaces. The individual’s intention is determined

by the control system through the detected muscular electrical signal (EMG). To that end

machine learning techniques have been used, primarily through classification algorithms.

While the research has varied, a common framework has emerged that can be used to

understand the various studies. Almost all the studies involve extracting sEMG signals from
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one or more human subjects while tracking some number of movements. The types and

number of movements the control system attempts to predict varies, as does the number of

sEMG sensors employed and their location on the subject. The sEMG signals are collected

as a continuous stream of electrical voltage values and are usually processed off-line in

batch fashion at a later time. Features can simply be created from the raw signal values, or

by using more sophisticated techniques such as computing statistics from selected elapsed

time window sizes or using time frequency transforms. Classifier algorithms vary, but

the most frequently occurring ones are Artificial Neural Network Multi-Layer Perceptron

(ANN/MLP), Linear Discriminant Analysis (LDA), and Support Vector Machines (SVM).

The control system outputs the predicted movement and sometimes force and torque [15].

3.2.1 Movements of the Wrist, Forearm, and Shoulder

Hudgins, Parker, and Scott [17] performed experiments in driving an upper extremity pros-

thesis in which features were extracted from a transient state (emanating from a burst of

fibers, moving a limb from a resting state) starting roughly 100 ms after movement on-

set. They performed a series of five experiments involving 3 to 18 subjects, including 6

amputees. Four forearm and wrist movements were predicted and signals gathered using

two electrodes - one on the biceps and one on the triceps. The continuous signal streams

were divided into 100 ms segments and five statistics computed for each window. The five

are mean absolute value (MAV), mean absolute value slope (MAVS), zero crossings (ZC),

slope sign changes (SSC), and waveform length (WL). The statistics were frequently used

as features in subsequent studies and referred to as the Hudgins Time Domain (TD) statis-

tics. The experiment used an MLP neural network with one hidden layer consisting of 4 to

12 nodes, and trained using back propagation. Average accuracy of movement prediction

ranged from 85.5% for the amputees to 91.2% for normally-limbed subjects. The results

were encouraging and inspired additional research.

Building on the work of Hudgins, et al, Englehart, Hudgins, and Parker [18] performed a

similar experiment using 16 subjects, two electrodes, and performing four forearm and wrist
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movements. Signals were sampled as a continuous steady state set (emanating from a con-

stantly maintained contraction) and time-scale features generated using a short-time Fourier

transform (STFT), wavelet transform (WT), and the wavelet packet transform (WPT), as

well as the above cited Time Domain statistics for comparison. Principle Component Anal-

ysis (PCA) was used to reduce the feature set to 20 and LDA used for classification. The

WPT features with PCA applied achieved 93% movement recognition accuracy. They con-

tinued the study [16] with 11 normally-limbed subjects, using six hand and wrist movements,

two and four forearm sensors, both transient and steady-state signal sampling, and an LDA

classifier with PCA feature reduction. The size of the signal window used to generate fea-

tures and perform classification was examined. Accuracies up to 98% were achieved using

WPT features with PCA and an LDA classifier. The study concluded that steady-state

data is classified more accurately than transient data, four sensors yield higher accuracy

than two, larger window sizes lead to more accurate classification but longer response times

in an on-line application (i.e. driving a prosthesis), but degradation in smaller window size

is less in the steady-state case. Classifying a steady-state signal stream means continuous

classification of movement is possible and allows it to be more readily used in real world

applications.

Englehart and Hudgins [14] extended the above in a study that involved 12 normally-

limbed subjects, four hand and wrist movements, four forearm sensors, with continuous

steady-state sampling. They examined various window sizes and a set of four TD features

(MAV, ZC, SSC, and WL). They also examined windows of varying sizes and an overlap-

ping processing window scheme that achieved a dense, continuous set of classifications. An

LDA classifier was used with majority vote (MV) post processing of the set of most recent

classification decisions. MV post-processing improved accuracy, especially during move-

ment transition (where most classification errors occur), by allowing spurious decisions to

be ignored. They concluded that the TD feature set outperformed the time-frequency fea-

tures for processing continuous data, achieving accuracies in the 95% range. They are

computationally less expensive and therefore better suited for on-line applications. Also, a
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processing window overlap of 32 ms was found to give a dense signal stream and provide

high accuracy while affording a fast response time to the control system.

Generative models have also been explored for use in sEMG control system studies.

Huang, Englehart, Hudgins, and Chan [24] developed a means of using Gaussian Mixture

Models (GMM) for classification, which was built from existing work of Chan and Engle-

hart [25] where it was shown that feature distributions can be well approximated by GMMs.

Huang, et al, using the same data collected in [14] performed several experiments to deter-

mine the best combination of features to use from the selection of time-domain, root-mean

squared, and autoregressive coefficients, and the number of Gaussians to use. Data was pro-

cessed in continuous steady-state 256 ms overlapping window segments. They found that

six autoregressive coefficients and root mean squared (RMS) features (7 total) together

and three Gaussians for the mixture model provided accuracy of 95.6% with MV post-

processing. This compared favorably with three commonly used classifiers: LDA (95.6%),

Linear perceptron (95.6%), and MLP (95.4%), indicating that probabilistic techniques are

viable for this application.

Hidden Markov Models have also been studied by Chan and Englehart[26], in which a

six-state fully connected HMM was trained on overlapping 256 ms observation windows,

spaced 32 ms apart. Six wrist and forearm movements were tracked using four forearm

sensors. Features were RMS plus six autoregressive coefficients. Single mixture Gaussian

observation densities were used on each state and its results were compared to the results

from using MLP. Accuracy of 94.6% was achieved and statistical differences were shown in

which the HMM method outperformed the MLP method. However, transition classification

decisions were deemed less reliable and discarded.

Au and Kirsch [27] extended the neural network into a time-delayed artificial neural

network (TDANN) that processed raw signals from six sensors on the shoulder, pectoral,

and upper arm as features. The eight subjects included six able-bodied and two with C5

tetraplegia. They tracked joint angles for the shoulder and elbow and showed that it could

predict the kinematic variables of the shoulder and elbow with an accuracy range of 76.6%
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to 90.8%. They demonstrated that the EMG signals reflect the underlying force dynamics

relatively well.

3.2.2 Movements of the Hand and Fingers

Bitzer and van der Smagt [28] concentrated on predicting six thumb and finger movements,

specifically flexion and extension of the thumb, index finger, and the middle, ring, and little

finger simultaneously. They used 10 forearm sensors to collect EMG signals in an interrupt-

driven fashion - recording whenever the value of one or more sensors changes. An SVM

classifier was used that achieved 94% accuracy for an arm in a relaxed position, and 90%

when pronated. The control system was connected to an external robotic hand that moved

when the subject moved, with the classifier instructing the robotic hand to perform one of

the six same moves being performed by the human subject. The authors carefully chose

the placement of the sensors on the forearm to be sensitive to the specific muscles involved

in the six movements.

Tsenov, Zeghbib, Palis, Shoylev, and Mladenov [29] experimented with four hand move-

ments: thumb, index finger, and middle finger flexion, and hand close. They used both two

and four forearm sensors, STFT and TD features, and an MLP classifier with 10 nodes in

a signal hidden layer. Predictive accuracy was 94% with two sensors, and 98% with four.

Saponas, Tan, Morris, and Balackrishnan [30] studied the application of sEMG in the

building of a Human-Computer Interface (HCI). Their study involved 13 subjects, 18 indi-

vidual finger movements (extension and flexion of each, plus light and hard tapping), and

eight evenly spaced forearm sensors arranged in a narrow band. Signals were sampled in

250 ms blocks and 74 features built using the EMG window’s RMS, RMS ratios, frequency

energy, and average phase ratios without feature reduction. Predictive accuracy for same-

subject data - the data is tested against a training model using data from the same subject

- ranged from 78% to 95%. Eliminating the ”light tapping” movement, which the authors

believe is hard to distinguish, raises the accuracy. Cross-user trials - building a model using

all subject data then testing each against it - decreased accuracy to 57%. The authors also
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showed that decreasing the amount of training data reduces classifier accuracy by up to

20%.

Tenore, Ramos, Fahmy, Acharya, Etienne-Cummings, and Thakor [31] examined 12

finger movements: flexion and extension of the thumb and each finger, plus flexion and

extension of the middle, ring, and little fingers as a group. The six subjects included one

transradial amputee. Normally limbed subjects had 28 sensors placed on their forearms and

four just above the elbow arranged in five levels. The amputee only had 19 sensors placed

on the upper, non-amputated part of the forearm. Features were extracted from a 200 ms

continuous steady-state signal window every 25 ms, meaning the windows overlapped. Four

time domain statistics were created for each sensor channel: MAV, variance, WL, and the

Willison amplitude, for a total of 128 features. Classification was a MLP with one hidden

layer with 64 to 512 nodes. Accuracy for the able-bodied participants when using all 32

sensors ranged from 84.9% to 99.7%, and from 81.6% to 99.1% when using only the 12

clustered around the elbow. The amputee’s accuracy, using only the 12 sensors around the

elbow, ranged from 82.3% to 87.8%. There was a statistical difference between the able-

bodied and amputee accuracy, but not between the level of sensors (i.e. the 12 clustered

around the elbow yielded equivalent results to using the full set of 32).

Shuman [13] performed a one subject experiment to classify the performance of six hand

gestures: moving from a fist to holding one to five fingers, and taking no action. Features

were created from the RMS from five forearm sensors of a two second window corresponding

to the period during which the gesture was made. The sensors were placed on the forearm

over muscles believed to contribute to the formation of the gestures. MLP, SVM, Decision

Tree, Random Forest, Decision Tree using boosting, and K-nearest neighbor were trained.

Accuracies of 93% were achieved using an MLP with one hidden layer.

More recently the Ninapro project [32, 33] used classification to recognize up to 52

grips and finger postures with the aim of driving a prosthetic hand. That effort employed

12 sensors, eight placed uniformly just below the elbow, the remainder on the extensors,

flexors, and biceps. Overall accuracy of the classifier was in the 50-75% range. The collected
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data are publicly available.

Shuman, et al, [34] used several standard classifiers as well as a symbolic representation

of the signal stream called SAX, a probabilistic approach, and Dynamic Time Warping as a

distance measure to classify 15 grips and movements (14 plus rest) to an accuracy of 77%.

That research was based on data from one subject. The techniques were modified to handle

25 grips and movements and use data collected from three subjects. Results are reported

in [1]. These techniques were also used in this dissertation and applied to more subjects

and for 47 activities. They are described in detail later.

3.2.3 Movements of the Hand and Fingers with Force Estimation

Castellini and van der Smagt [19] experimented with five grip motions: thumb to index

finger, thumb to middle finger, thumb to ring finger, thumb to all fingers, and no action.

Their study only involved a single subject, used 10 sensors (six on the forearm, four on

the upper), and used the continuous raw signals as features. The continuous collection of

signals provided too many input points, so they used a process called uniformisation to

reduce the input stream. The process compared consecutive input points and only accepted

new ones that differed from the previous by a certain threshold distance. Euclidean distance

was used and found to give acceptable results, since a more sophisticated measure like the

Mahalanobis distance is computationally expensive and impractical to use in real time

applications. In addition to predicting the grip, the grip force was also estimated using the

sEMG signals. The grip type was predicted using an MLP and SVM classifier, and force

was estimated using Locally Weighted Projection Regression (LWPR). The MLP and SVM

classifiers both achieved 90% accuracy in predicting the grip type, and the force accuracy

was predicted with 0.80 correlation (7.89+/- .09N). Uniformisation significantly decreased

the size of the input set while suffering only modest predictive degradation. The results

were demonstrated by having the control system drive a robotic hand in real time from

input sensors on a human subject’s hand.

Castellini, Fiorilla, and Sandini [35] examined three grips: precision - thumb to index

32



finger, precision - thumb to all fingers, and power (as in gripping a hammer). Ten able-

bodied subjects participated, each holding a force sensor using one of the three grips for a

period of time over several minutes. Seven sensors were carefully placed on the forearm over

muscles believed to contribute to holding the grips. Features were created by continuously

calculating the RMS for a 500 ms window from each channel for use in classification, and for

a 100 ms window for the force-estimation regression task. An SVM was used for classification

and regression. The continuous stream of input - captured at 2000 hz - was reduced using

the uniformisation process described above, which dramatically reduced the number of

input features while not degrading accuracy. Subjects performed the series of grips in an

arm stationary position, and then while walking around to simulate a daily life activity

scenario. Average accuracy for the stationary scenario was 97%, and 95% when walking-

around. Cross-subject classification accuracy range was 51.7% to 54%. Force estimation

for stationary averaged a .93 correlation factor, and .90 when walking around. The results

are encouraging, especially for the walking-around scenario. Classifying grip and hand

movements, and estimating force are possible in real-time, real-world activity settings.

Khokhar, Xiao, and Menon [36] experimented with eight subjects performing four move-

ments: flexion and extension of the wrist, ulnar deviation, and radial deviation. Besides

attempting to classify those four movements, they trained the classifier to recognize up to

five levels of torque applied to them: 10%, 20%, 30%, 40%, and 50% of maximum volun-

tary contraction (MVC) torque for the flexion and extension, and 10% through 40% for

the deviations. The torque estimation was built into the predicted class and expressed as

a discrete rather than real value. An SVM was trained using RMS, AR coefficients, and

wavelength (WL) as features extracted from four carefully chosen forearm sensors and 250

ms window. Accuracy was 88% for the full 19 class set, and 96% for a reduced class set

of 13. The results indicate that movement and a torque category can be predicted using

classification.

Table 3.1 summarizes the various studies cited in this section.
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Table 3.1: Summary of related work.

Reference Application # Motions Channel Classifier Features
Hudgens et al. [1993] Upper limb

prosthesis
4-class 2 channel MLP NN MAV, MAVS, ZC,

SSC, WL

Englehart et al [1999] Upper limb
prosthesis

4-class 2-channel LDA/PCA STFT, WT, WPT

Englehart et al.
[2001]

Upper limb
prosthesis

6-class 4-channel PCA/LDA STFT, WT, WPT

Huang et al. [2005] Upper limb
prosthesis

6-class 4-channel GMM/MV RMS, AR

Englehart et al [2003] Upper limb
prosthesis

4-class 4-channel LDA
w/MV

MAV, ZC, SSC,
WL

Chan et al [20405] Upper limb
prosthesis

6-class 4-channel HMM RMS + 7 AR coeff

Bitzen [2006] Hand grips 6-class 10-channel SVM Not stated
Tsenov [2006] Hand grips 4-class 4-channel MLP STFT + TD feats.
Saponas et al [2008] Finger ges-

tures
18-class 8-channel SVM 74 from raw signal

Castellini [2008] Hand grips &
force est.

5-class 10-channel MLP,
SVM,
LWPR

10 - raw signal

Shuman [2009] Hand gestures 6-class 5-channel MLP,
SVM, RF,
KNN

5 - RMS

Tenore [2009] 12 finger
movements

12-class 32-channel MLP 4 TDs/channel
(128 total)

Castellini [2009] Hand grips &
force est.

4-class 7-channel SVM 7 - RMS window

Khokhar et al. [2010] Wrist move-
ment

13 & 19-
class

4-channel SVM RMS, AR, WL

Au and Kirsch [2000] Neuromuscular
stimul.

8-class 6-channel TDANN

Kuzorskij [2012] hand grips 52-class 10-channel Multiple RMS
Atzori [2014] hand grips &

movements
50-class 12-channel Multiple RMS, Hudgins TD

Shuman et al. [2015] hand grips &
movements

15-class 8-channel RF, NN,
Affinity

MAV

Shuman et al. [2016] hand grips &
movements

25-class 8-channel RF, NN,
Affinity

MAV
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3.3 Differences from Previous Research

The research reported in this dissertation differs from previous efforts in that it attempts to

recognize a relatively large set of 47 fine motor movements of the hand needed to perform

typical ADLs. It uses a moderate number of sensors targeted to specific muscle areas. It

reports on results using four different learning approaches. The first involves classification

using several well-known classification techniques. In the second, a symbolic representation

scheme for the sensor data is employed and the concept of an Affinity Matrix is introduced

to construct a learning model using adjacent signals in the stream and perform classification.

The symbolic representation is also used in the third. In that one, Dynamic Time Warping

(DTW) is used as a distance measure in a nearest-neighbor classification scheme. In the

fourth approach, the sEMG signal stream is divided into segments of continuous movement

and classification testing is performed in chronological order for those segments. A Hidden

Markov Model (HMM) classifier was developed that that takes into account the previous

instance and the likelihood of transitioning to other specific states.
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Chapter 4: Data Collection, Preparation, and Feature

Creation

sEMGs were recorded while a subject performed upper extremity (UE) movements used in

a selected set of ADLs. The grips and movements selected for this research focused on those

of the hand and wrist executed in a short time span (five seconds or less). They involve fine

motor movements required to perform typical activities of daily living and include several

types of grips and associated movements: lateral (key) grip (gripping and turning a key),

power or hammer grip, door knob grip and turn, jar lid grip and turn, scissors grip and

open/close, 3-jaw chuck grip and tip pinch grip.[5].

The research described in this dissertation involves four different learning approaches to

classify sEMG signals into one of a set of hand grips or movements. Data were collected one

time from five subjects and used throughout. The subjects performed selected activities

in eight different ”grip families”, including the 46 specific grips and movements and the

neutral/rest position listed in Table 4.3. The table includes their description, codes (used to

label the activity) and action group or grip family. The eight grip families are determined by

the base hand grip that must be engaged before the related follow-on actions are performed.

The collection and processing were done as a first step in this investigation and involved

data collected from the five subjects. Results from an earlier stage of the research for 25

classes are reported in [1].

The goals for of all approaches include exploring the ability to recognize the activities

from their EMG signal patterns, determining relationships between grip signals and their

follow-on movements, and discovering relationships among the various action groups’ EMG

signals. In the remainder of this section the instrumentation and collection protocol are

described in detail.
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4.1 Instrumentation

The DelSys Trigno WirelessTM sensors and base station were used for sEMG and accelerom-

eter (ACC) signal collection[9]. The sensors each contain a rechargeable battery that com-

municates with the base station at a range of up to 40 m. The base unit communicates with

the DelSys EMGWorksTM Acquisition package via a USB interface that, in turn, drives the

collection and control of the sensor signals and allows for the real-time monitoring of the

signal. sEMG signals were collected at rate the of 2 kHz, ACC signals at 148.1 hz.

4.2 Sensor placement

Ten sensors were used in the data collection, each attached to the skin surface of the subject’s

hand and arm used in performing the actions. The sensors were secured using adhesive skin

interfaces provided by DelSys for the purpose. Eight were sEMG sensors located over the

arm muscles believed to contribute to the grip or movement. Seven were located on the

extrinsic muscles in the forearm that control the hand and wrist, and one on the biceps. A

sensor was placed on the biceps in an attempt to capture the contributions of the upper arm

to the activities in Table 4.3, especially those involving raising an object and turns of the

hand and wrist. Trials conducted during previous research [34] indicated measurable EMGs

from the biceps but not the triceps during the listed activities. Guidance from [2] indicated

good candidate areas of the arm contributing to hand and wrist movements. One (on the

extensor indicis) was configured to also collect ACC data for possible later use. EMG data

from the eight sensors are used as classification features.

Two additional sensors were attached on the active hand’s posterior, just below the

base of the thumb and below the little finger. They were configured to collect ACC data

as an aid in labelling the movement actions. Changes in the ACC data from the hand

sensors indicate that a movement has started and the associated EMG data instances can

be appropriately labelled. The location on both sides of the hand was chosen to maximize

the detection, while locating them on the hand’s posterior minimized interference with
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Table 4.1: Location of the ten sensors and data collected.

Sensor# Muscle Location Data Collected

1 extensor digitorum (ED) EMG

2 extensor indicis (EI) EMG and ACC

3 flexor carpi radialis (FCR) EMG

4 flexor digitorum superficialis (FDS) EMG

5 flexor carpi ulnaris (FCU) EMG

6 pronator quadratus (PQ) EMG

7 brachioradialis (Bra) EMG

8 biceps brachii (Bic) EMG

9 base of the thumb (posterior) ACC

10 base of little finger (posterior) ACC

the subjects’ performance of the actions. Data from these two sensors are not used as

classification features, but were used as in aid in labelling.

Sensor placement is shown in Table 4.1 and was not altered during the trials. Fig 2.6

shows the Trigno kit and a subject turning a jar lid with ten sensors attached to the action

arm.

4.3 Data collection protocol and feature creation

Data were collected from five subjects as described below. The subjects included one middle

aged male, one middle aged female, one male in his 20s, one female in her 20s, and one

male in his early 30s. The first four were in good physical condition, without disability

of any kind, and able to perform all grips and actions without difficulty. All four were

naturally right handed and used their right hand to perform the activities. The male in

his 30s had a partially disabled left side and used that hand to perform the activities. The

original intention of the study was to collect data exclusively from non-disabled subjects.

However, when the fifth subject became available he was included as a comparator with the

non-disabled subjects.

Table 4.2 summarizes the subjects involved in the study whose captured data were used

for analysis. Note that the data collection protocol and activities performed were identical
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Table 4.2: Summary of the five subjects from whom data were collected.

Subj# M/F Age range Date collected Hand used Ability

1 M 50-70 9/23/2015 right fully

2 F 50-70 10/9/2015 right fully

3 M 20-30 12/15/2015 right fully

4 F 20-30 2/23/2016 right fully

5 M 30-40 3/28/2016 left partly disabled

for all subjects. The collection followed a protocol approved by the George Mason University

Institutional Review Board, Reference number 8672.

The subjects performed a series of eight two minute data collection runs. The activities

for a single action group, or grip family, were performed in one run. Note that there are

eight grip families, one per run. The subjects followed a timed script in performing 12

repetitions of the action family’s grip and movements, each repetition lasting ten seconds.

Table 4.3 shows breakdown for the 47 actions.

Each two minute run starts with the subject maintaining their hand and arm in a neutral

or rest (NR) posture for the first five seconds. At second five the repetitions begin. First,

the grip for the family was engaged and held for three seconds. At the eight second mark

actions requiring the specific grip are performed until second 11, at which point the subject

transitions back to the neutral/rest position until the start of the next repetition.

The subjects were instructed to begin each grip with the hand in proximity to, but

not touching the object to be grasped, ensuring the act of gripping was captured. For the

hammer, ball, scissors, and jar lid action groups, the object was placed in the non-active

hand between repetitions, with the active hand approximately ten centimeters from the

object. For the two grip families involving turning, the door knob and key, the subject was

instructed to release the object after the first turn movement and resume the grip before

proceeding with the second turn, essentially inserting a brief pause, or neutral/rest, between

the two turns. For the fine movement families, tip pinch and 3-jaw chuck, the subject was

instructed to grasp the objects, a U.S. quarter dollar coin for tip pinch and golf ball for the
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Table 4.3: The 47 activities (grips and associated movements) used in the analysis of the
captured data.

Activity# Grip group# Grip Code Activity Description

1 - none NR neutral/rest

2 1 hammer HGIN hammer grip - transition in

3 1 hammer HG hammer grip

4 1 hammer HR hammer raise

5 1 hammer HGR hammer grip - raised pos.

6 1 hammer HL hammer lower

7 1 hammer HLOUT hammer Lower - transition out

8 2 jar lid JLGIN jar lid grip - transition in

9 2 jar lid JLG jar lid grip

10 2 jar lid JLP jar lid turn - pronation

11 2 jar lid JLRP jar lid - rest/pause

12 2 jar lid JLS jar lid turn - supination

13 2 jar lid JLOUT jar lid - transition out

14 3 ball BGIN ball grip - transition in

15 3 ball BG ball grip

16 3 ball BSQ ball squeeze

17 3 ball BSQOUT ball squeeze - transition out

18 4 door knob DKGIN door knob grip - transition in

19 4 door knob DKG door knob grip

20 4 door knob DKTS door knob turn - supination

21 4 door knob DKTR door knob turn - rest/pause

22 4 door knob DKTP door knob turn - pronation

23 4 door knob DKTOUT door knob turn - transition out

24 5 key KGIN key grip - transition in

25 5 key KG key grip

26 5 key KTS key turn - supination

27 5 key KGTR key grip turn - rest/pause

28 5 key KTP key turn - pronation

29 5 key KGOUT key grip = transition out

30 6 scissors SCGIN scissors grip - transition in

31 6 scissors SCG scissors grip

32 6 scissors SCO scissors open

33 6 scissors SCGO scissors grip - open position

34 6 scissors SCC scissors close

35 6 scissors SCOUT scissors grip - transition out

36 7 3-jaw chuck 3JCGIN 3-jaw chuck grip - transition in

37 7 3-jaw chuck 3JCG 3-jaw chuck grip

38 7 3-jaw chuck 3JCR 3-jaw chuck raise

39 7 3-jaw chuck 3JCGR 3-jaw chuck grip - raised position

40 7 3-jaw chuck 3JCL 3-jaw chuck lower

41 7 3-jaw chuck 3JCOUT 3-jaw chuck grip - transition out

42 8 tip pinch TPGIN tip pinch grip - transition in

43 8 tip pinch TPG tip pinch grip

44 8 tip pinch TPR tip pinch raise

45 8 tip pinch TPGR tip pinch grip - raised position

46 8 tip pinch TPL tip pinch lower

47 8 tip pinch TPLOUT tip pinch grip - transition out
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Table 4.4: The elapsed times shown in the table are only approximate since labelling used ac-
celerometer data to accurately label the 100 ms 8-tuples. The text gives more details.

One 10 second repetition
Grip family sx−14 sx5 sx6 sx7 sx8 sx9 sx10 sx11−14
hammer NR/HGIN HG HG HG HR HGRP HL HLOUT/NR/HGIN
jar lid NR/JLGIN JLG JLG JLG JLP JLRP JLS JLOUT/NR/JLGIN
ball NR/BGIN BG BG BG BSQ BSQ BSQOUT/NR NR/BGIN
door knob NR/DKGIN DKG DKG DKG DKTS DKTR DKTP DKTOUT/NR/ DKGIN
key NR/KGIN KG KG KG KGTS KGTR KGTP KGOUT/NR/KGIN
scissors NR/SCGIN SCG SCG SCG SCO SCGO SCC SCOUT/NR/SCGIN
3-jaw chuck NR/3JCGIN 3JCG 3JCG 3JCG 3JCR 3JCGR 3JCL 3JCOUT/NR/3JCGIN
tip pinch NR/TPGIN TPG TPG TPG TPR TPGR TPL TPLOUT/NR/TPGIN

chuck, with enough force so that it would not be dropped if the hand were lightly slapped.

Apart for the above the subjects were allowed to choose the way in which they performed

the actions.

Table 4.4 illustrates the protocol followed for all eight grip families. Each family (or

group) was performed as one set of 12 repetitions over a two minute time span. A single

repetition lasted 10 seconds and starts on second 5, 15, 25, ... 115, within each 120 second

interval. For the hammer family, for example, the repetition started with the hammer grip

transition in (HGIN) just prior to second 5 (sx−14), the hammer grip (HG) performed for

three seconds (sx5 - sx7), followed by a hammer raise (HR) for one second (sx8), hammer

grip in raised position (HGRP) for one second (sx9), the hammer lower (HL) for one (sx10),

and the transition out (HLOUT) followed by neutral/rest (sx11 - sx14) until the start of

the next repetition.

An attempt was made during data collection to ensure the synchronization of the actions

with the indicated times and durations. The EMGWorksTM timer was used to prompt the

subject for the next action. However, this could only be done to a certain level of precision

and so the timings, while within a few hundred milliseconds of the stated values, should be

regarded as approximate.

Each subject’s data collection resulted in eight separate files, one for each grip family.

Figure 4.1 shows a block diagram of the eight files collected from each of the subjects.
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NA
1 hammer

2 jar  lid

3 ball

4 door  knob

5 key

6 scissors

7 3-‐jaw  chuck

8 tip  pinch

elapsed  secs. 0 5    15    25    35    45    55    65    75    85    95    105    115
#seconds/rep. 5
#100ms  instances 100

File# activities  within  one  family  repetition

1 NR-‐HGIN-‐HG-‐HR-‐HGRP-‐HL-‐HLOUT-‐NR
2 NR-‐JLGIN-‐JLG-‐JLP-‐JLRP-‐JLS-‐JLOUT-‐NR
3 NR-‐BGIN-‐BG-‐BSQOUT-‐BSQOUT-‐NR
4 NR-‐DKGIN-‐DKG-‐DKTS-‐DKTR-‐DKTP-‐DKTOUT-‐NR
5 NR-‐KGIN-‐KG-‐KGTS-‐KGTR-‐KGTP-‐KGOUT-‐NR
6 NR-‐SCGIN-‐SCG-‐SCO-‐SCGO-‐SCC-‐SCOUT-‐NR
7 NR-‐3JCGIN-‐3JCG-‐3JCR-‐3JCGR-‐3JCL-‐3JCOUT-‐NR
8 NR-‐TPGIN-‐TPG-‐TPR-‐TPGR-‐TPL-‐TPLOUT-‐NR

120200 200 200 200 200 200 200 200 200 200 200
10 6

Repetition  number

File# Grip  Family

1010 10 10 10 10 10

7 8 9 10

10 10 10

11 121 2 3 4 5 6

Each  of  the  12    
repetitions  consists  of  
these  activity  sequences  
for  the  8  grip  families  (47  
labelled  classes).  
(Repetition  #5  is  shown.)  

Figure 4.1: Eight files were collected for each subject, one for each of the two minute data
collection runs for the eight grip families. These files were separately processed and labelled
before being combined for classification training and testing.

Each file contained the signal data (EMG and ACC) for one two minute run including

12 repetitions for the family. The DelSys EMGAnalysisTM package was used to visualize

and process the collected signal sequences. The Trigno sensors filtered the signals during

collection with a 20-450 hz bandwidth using a flat Butterworth filter to preserve EMG signal

amplitude and phase linearity. This eliminates noise while capturing most of the signal [37].

The mean absolute value (MAV) was computed for each sequence, specifying a collection

window of a 100 millisecond signal segment with a 50 ms overlap. The window size was

selected to allow for quick classification decisions needed for real time control applications.

The trade-off of varying window sizes versus accuracy is discussed in [15] and [14].

To compute the MAV for the specified window size, let fj(iT1), i = 1, 2, . . . be the sam-

pled data for channel j = 1, . . . , 8; T1 = 1/2000 second is the sampling period. gj(kT ), k =

1, 2, . . . is sampled filtered data computed using Mean Absolute Values (MAVs) for windows
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of width 2T at steps of size T using

gj(kT ) =
1

2N

N∑
i=−N+1

|fj(kT + iT1)|, (4.1)

where T = 1/20 second, N = 100, j is the sensor channel index, and k the sample index.

An 8-tuple gj(kT ), j = 1, . . . , 8 computed using Eq. (4.1) is one training instance. The

result was 20 training instances per second, or 2400 EMG instances per 120 second data

collection run. The Trigno captures the ACC data at a different frequency and the MAV

calculation results in 21.1 instances per second, or an additional 132 for the 120 second run.

EMGAnalysisTM macros were used for this processing. Fig. 4.2 shows the MAV of eight

sensor signals for the one entire 120 second stream for one hammer group data capture run.

Fig. 4.3 shows a 20 second, two repetition sample for four of the action groups.

Figure 4.4 shows an overview of the process from subject data collection, through con-

verting the signals to MAVs, and then to labelling the instances in the destination file. The

file contains eight features, corresponding to the MAVs from the eight sensors, and a class

label indicating the ground truth of the grip or movement. Figure 4.5 illustrates how the ul-

timate classification file for one subject was built from the data collection repetitions. Each

of the eight families consisted of 12 repetitions, shown in the rows in the figures. The last

repetition was slightly shorter than the others, but long enough to include all the necessary

movements. The total number of instances in the file submitted to the classifiers is 18,720,

shown in the lower right corner of the figure. One of these files was created for each subject

and each was separately classified. There was no attempt to mix subject data within one

classification run in this study. Figure 4.6 shows a breakdown of the number of collected

instances for each subject for all 47 classes, and averages.
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Figure 4.2: Graph of the mean absolute values (100 ms. window) for the eight sensor
channels for an entire 120 second hammer group data capture run for one subject. A vertical
slice from the repetition noted along the x-axis (the slice for the 1st and 6th are shown)
up through the eight sensor graphs reveals the pattern for each repetition. Each repetition
starts at seconds 5, 15, 25, ... with a grip transition in (HGIN) in the neighborhood of
second 5, followed by the grip (HG), then a raise (HR), grip in raised position (HGRP),
lower (HL), and a transition out (HLOUT) followed by a short rest (NR) before starting
the starting next repetition.
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Figure 4.3: Graph of four of the eight action groups mean absolute values - 20 second
interval (24-44) covering two complete repetitions (3rd and 4th) of each group’s grip and
movements. The four represent different types of grips: power (hammer), precision (jar lid),
dynamic tripod (scissors), and precision handling - small objects (key). Pattern differences
can be observed among the four. Note that the Key movement requires less force than the
other three and shows a lower signal value despite its graph being scaled at a lower value
than the others. Abbreviations for the muscle signal channels are shown on the left of each
graph row.
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(1) Subject 
collection 

Raw signals – 8 sensors 

8 channels –  divided into 100 ms MAV windows, 50 
ms overlap, 200 windows/10 sec. rep. 

(2) MAV 

(3) Apply Labels (grip or movement) 

Each row is a learning instance  
           = 8 features (MAVs) + Label 

8 Features (MAV values)     

Figure 4.4: The figure shows the complete process from (1) data collection from the subject,
(2) the processing of the signals to create the 100 ms MAV instances, and (3) to the labelling
of the instances and creation of the classification file. The area boxed in red is the data
presented to the classifier. Each row in the table is a single learning instance. Note that the
eight sensor channel MAVs map to the eight features and that only data from one repetition
is shown on the left side of the MAV block corresponding to the 10 second/200 instance
data block in the file.
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Figure 4.5: How a single subject’s classification file was built from the 12 repetitions for
each of the eight grip families. Each of the grip families is shown as a row of 2,340 learning
instances, with a total of 18,720 per subject for all eight families.
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activ.# Code subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 avg.(5) avg./rep. % of total

1 NR 5442 5251 4644 6156 4456 5189.8 *54.1 27.76%

2 HGIN 196 179 184 112 191 172.4 14.4 0.92%

3 HG 612 519 634 604 530 579.8 48.3 3.10%

4 HR 139 157 210 146 203 171 14.3 0.91%

5 HGRP 289 403 259 367 297 323 26.9 1.73%

6 HL 136 149 131 144 221 156.2 13.0 0.84%

7 HLOUT 169 227 171 159 256 196.4 16.4 1.05%

8 JLGIN 158 91 255 84 189 155.4 13.0 0.83%

9 JLG 548 597 454 633 571 560.6 46.7 3.00%

10 JLP 206 206 234 163 190 199.8 16.7 1.07%

11 JLRP 290 337 338 327 310 320.4 26.7 1.71%

12 JLS 184 159 218 192 246 199.8 16.7 1.07%

13 JLOUT 172 287 307 131 181 215.6 18.0 1.15%

14 BGIN 203 267 180 169 289 221.6 18.5 1.19%

15 BG 624 574 583 518 401 540 45.0 2.89%

16 BSQ 494 499 655 596 550 558.8 46.6 2.99%

17 BSQOUT 185 291 117 242 370 241 20.1 1.29%

18 DKGIN 168 117 203 104 97 137.8 11.5 0.74%

19 DKG 696 614 526 582 517 587 48.9 3.14%

20 DKTS 274 313 268 212 197 252.8 21.1 1.35%

21 DKTR 261 321 264 324 465 327 27.3 1.75%

22 DKTP 291 276 284 283 215 269.8 22.5 1.44%

23 DKTOUT 187 159 244 167 203 192 16.0 1.03%

24 KGIN 213 105 235 96 262 182.2 15.2 0.97%

25 KG 605 613 616 578 493 581 48.4 3.11%

26 KGTS 135 149 156 148 190 155.6 13.0 0.83%

27 KGTR 361 367 339 341 275 336.6 28.1 1.80%

28 KGTP 147 158 244 160 177 177.2 14.8 0.95%

29 KGOUT 271 221 227 91 347 231.4 19.3 1.24%

30 SCGIN 235 221 237 128 248 213.8 17.8 1.14%

31 SCG 593 486 492 516 441 505.6 42.1 2.70%

32 SCO 130 166 166 147 169 155.6 13.0 0.83%

33 SCGO 350 360 429 419 350 381.6 31.8 2.04%

34 SCC 106 177 177 187 201 169.6 14.1 0.91%

35 SCOUT 383 337 351 367 432 374 31.2 2.00%

36 3JCGIN 195 160 211 152 232 190 15.8 1.02%

37 3JCG 579 579 610 529 485 556.4 46.4 2.98%

38 3JCR 159 166 247 168 251 198.2 16.5 1.06%

39 3JCGR 263 424 365 343 286 336.2 28.0 1.80%

40 3JCL 174 157 177 187 251 189.2 15.8 1.01%

41 3JCOUT 200 248 239 148 449 256.8 21.4 1.37%

42 TPGIN 215 167 278 145 291 219.2 18.3 1.17%

43 TPG 607 572 586 575 483 564.6 47.1 3.02%

44 TPR 137 152 216 163 274 188.4 15.7 1.01%

45 TPGR 279 430 316 405 291 344.2 28.7 1.84%

46 TPL 156 149 189 169 248 182.2 15.2 0.97%

47 TPLOUT 234 161 250 149 403 239.4 20.0 1.28%

Total 18651 18718 18716 18726 18674 18697 1558.1 100.00%

* The average for 'NR' was 432.5. Since it was present in all 8 grip family repetitions, dividing by 8 yields 54.1. 

Figure 4.6: Summary of the number of instances in each subject’s classification file. The
table shows a breakdown of all the data collected for the five subjects in this study, by class,
and used for classification.
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4.4 Labelling

The current labelling technique improved on earlier attempts. Both the earlier and current

techniques are described in the next two sections.

4.4.1 Previous Labelling

The earlier phase of this research, reported in [1], labelled as follows. Data for all eight files

for each of the subjects’ collection runs were processed and labelled. Labels were assigned

by reviewing the signal stream at the beginning of each of the action repetitions, seconds

5, 15, 25, ... 115. The stream consists of the elapsed captured time as well as the MAV of

the signal values. The grips were assumed to start on the indicated times and were labelled

accordingly. The start of subsequent movements within each repetition were indicated by a

change in ACC signals for the two sensors on the hand. Since the ACC data were collected

at a different frequency, the elapsed times do not exactly match the EMG times on a one-

to-one basis. The ACC values were matched up with the closest EMG value based on the

elapsed time of each, the difference never being more than 30 milliseconds. The summed

difference of the ACC values between time t and t+ 1 were computed. The sum exceeding

double the median value for the entire run was interpreted as being the start of an action

and the EMG 8-tuple closest to the time instance was assigned the appropriate movement

label.

Establishing the onset of the grips was a little more difficult since they are static activities

and are not as clearly distinguished by a change in ACC readings. However, since the

subjects were required to begin each grip with their hand off the object and move it to

the object to establish the grip, there was a more modest ACC change as the grip was

assumed. The end of a sequence of ACC changes during an elapsed time in which a grip

was expected was used to label a data instance as the start of a grip and sustain it for

up to three seconds. The result was that some label instances varied by a few processing

windows before or after the expected time synchronization points indicated in Table 4.4.

While this was never more than a 500 ms adjustment before or after the five second mark,
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the inexactness of the labelling process may have led to some misclassification at the onset

of a static grip activity. While the process described above resulted in superior labelling

compared with that used in [34], it remains a difficulty, has been reported elsewhere in the

literature, for example [32], and as yet does not have a good solution.

Since the NR (neutral/rest) samples greatly outnumber the others, their numbers were

reduced by including only the samples between seconds one and three of each run. This

resulted in ≈ 60 (3 × 20) NR samples per run instead of ≈ 960, and an overall reduction

of ≈ 7, 680 to 480 for all eight runs for a single subject. The NR instances outside the

range of zero to five seconds occupy a gap in data collection between activities or activity

repetitions during which the subject was only sometimes in the NR posture. During those

gaps subjects occasionally performed some movement to relax or get ready for the next

repetition. Because of this uncertainty, those NR instances could not be uniformly labelled

correctly and are ignored. By contrast, subjects always started a run in the neutral/rest

position and so sampling at seconds one to four ensures those instances are truly NR and

do not include casual or unintended movements.

To ensure uniformity in evaluating the learning techniques, two of the approaches de-

scribed in the earlier analysis truncated each labelled action to a maximum of 40 100 ms

segments in length. This was done to facilitate the use of a technique called Dynamic Time

Warping as a distance measure in one of the learning approaches, which will be explained

later.

4.4.2 Current Labelling

The current labelling is an improvement over the earlier attempt. To reduce processing

time, the data were resampled from a frequency of 2,000 to 500 hz. Classification quality

was unaffected, probably because the data’s MAV, not the raw signals, was used as the

feature. An important additional benefit of resampling is that EMGWorks resamples both

the EMG and ACC data and in the process up samples the ACC data from 148.1 hz to

500 hz. The result is a time series in which EMG and ACC data are matched. Prior to
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resampling the EMG and ACC data instances were slightly offset and a match of the timing

of the two required time-consuming inspection and adjustment.

A goal of the current protocol is to improve the labelling of activities by systematically

using the ACC data as an indicator of movement. This data played a relatively minor role

in the earlier labelling. Here, however, plots of the EMG and ACC data streams for each

activity group and each subject were time-aligned. Visual inspection of the plots indicated

when movements started or stopped, and when direction of the hand changed. The changes

approximately aligned with the activity timings shown in Table 4.4, but using the ACC

breakpoints improved the accuracy of most labels.

All data streams (EMG and ACC) for each subject were plotted with MATLAB and

visually inspected. Figure 4.7 shows one such plot for repetition #4 (seconds 34 - 43) of the

hammer activity for one of the subjects. The ACC data was the key indicator used to set

activity transition breakpoints. The transition from NR (rest) to the HGIN (transition-in)

for a repetition can be clearly seen, as can the transition back to NR at the end of the

repetition. Transition from the static grip posture, HG, to a raise, HR, is also obvious, as

is the cessation of the raise and start of the grip/raised position (HGRP) posture.

These breakpoints were used to establish a change in activity label. This was done for

all grip family repetitions for all subjects. The process was time-consuming, but resulted

in more precise labelling.
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Figure 4.7: Plot of repetition 4 (seconds 34 to 43) for a hammer sequence showing the ACC
signals from the hand sensors (bottom two signal rows) and the four most prominent sEMG
signals (top four signal rows). Labels were established for the 100 ms segments based on
changes in the ACC signals, indicating start or stop of a movement, and changes in the
sEMG signals. The repetition starts with NR (second 34), then transitions to HGIN at
35.1, HG at 35.7, HR at 37.7, HGRP at 38.4, HL at 39.6, HLOUT at 40.5, and back to
NR at 41.4. The timings are approximate, but the scale shown during actual labelling was
more detailed and the recorded times were accurate within 100 ms.
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Chapter 5: Learning approaches

Four approaches were used in learning the sEMG patterns leading to the recognition of

selected grips and movements. The first uses several well-known classification techniques

operating on 100 ms MAV windows as learning instances. The second two use a symbolic

representation of the signal stream that divides it into discrete ranges. One of the two

creates an affinity matrix to model the learning instances and employs nearest neighbor

classification. The approach takes advantage of the time-series nature of the data stream

by using a selected number of instances immediately before the one being classified to help

make the classification decision. The other uses Dynamic Time Warping [38] as a distance

measure in conjunction with nearest neighbor. Instead of treating each 100 ms instance in

isolation, this approach considers all the instances that constitute an entire labelled activity

to make classification decisions. The fourth approach, like the first, uses 100 ms MAV

windows as its basic learning instance. Using a Hidden Markov Model (HMM) approach,

it first performs a Random Forest classification of a signal instance, then uses the resulting

class and state transition probabilities to perform a ’belief’ calculation as a post-processing

step.

Each approach is explained in more detail in the following sections.

5.1 Classification (Approach 1).

The key point in classification is the use of a class label for each training instance that must

be manually assigned [11]. Here, a label is assigned to each 100 ms MAV window of each

grip or movement, including the neutral/rest posture. A labelled 100 ms window is one

training instance. Table 4.3 shows the code labels used to track the grips and movements.

The label allows the classifier to build relationships between signals and the class (the grips

53



and movements). The grips and movements form a 47 class problem in which a classifier

is trained to recognize the classes from their sEMG signal patterns. The classifiers were

trained and tested on their ability to recognize the class of each 100 ms instance in isolation,

without considering any time sequence dependencies among them.

Classifiers are measured on the accuracy of their predictions. Accuracy is the percent-

age of test instances correctly identified from the total number evaluated. For multi-class

problems, how well the classifier recognizes instances of each class - measured by the true

positive rate (TPR) or Recall - is also of interest since it can vary.

After labelling, the data were normalized before applying the approaches described

below. Each of the eight channels was individually normalized by subtracting the channel

value mean and dividing by its standard deviation. The eight means and standard deviations

of the training data channels were used to normalize held out test data.

Several classifiers were tried, including Decision Tree, Random Forest (RF), Support

Vector Machine (SVM), and Nearest Neighbor (NN). The Weka toolset, v 3.6.11 [21] was

used to perform all classification in this first approach. The Weka default values were used

except as follows. The description of several classifiers and evaluation of parameter settings

using 25 class data was reported in [1] and is summarized below. Those results showed the

superiority of Random Forest, which is used in this approach.

The Decision Tree used the Weka J48 implementation of the C 4.5 decision tree algo-

rithm. RF is an ensemble classifier that generates a stated number of trees using a subset

of randomly chosen features for each generated tree. A voting process in which each of the

generated tree’s choice is tallied determines the winning grip or movement. The number of

RF trees generated was varied from 15 to 100, with performance levelling off at 25. The

RF results reported here were therefore generated using a 25 tree model. For K-nearest

neighbor (K-NN), the normalized Euclidean distance measure was used, and the value of

K, the number of neighbors used to determine the class, was varied from 1 . . . 5. 1-NN

performed best and was reported.

While the aforementioned classification methods handle multi-class problems as part of
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their core algorithms, SVM is inherently binary. The Weka implementation employed here

uses a 1-versus-1 approach and an implementation of the Hastie and Tribshirani pairwise

coupling method [39]. For C classes, C(C − 1)/2 classifiers are built. The pairwise class

probability estimates are combined into a joint estimate for all classes and used to predict

the class.

The SVM parameters were evaluated and set using a grid search. The Polynomial, RBF,

and Pearson Universal Kernel (PUK) functions were tested. For the Polynomial kernel, the

exponent parameter was tested at 2 and 3, with no improvement over the default of 1.

The RBF kernel bandwidth parameter, γ, was tested for 0.01, 0.05, and 1.0. The PUK

parameters were tested for ω and σ values of 0.25, 0.5, 1, and 5. The SVM regularization

parameter, C, was tested for values 0.5, 1, 5, 10, 25, 50, and 100, with accuracy leveling off

at 5. The PUK kernel with ω = σ = 0.5 and C = 5 were found to result in the highest

accuracy when tested using data for the three subjects. These are the SVM settings used

to produce the results reported in this paper.

Stratified ten-fold cross validation was performed using all training data to select pa-

rameters and evaluate classifier performance. Stratification ensures that a representative

proportion of instances of each class is included in each of the ten folds.

5.2 Affinity Matrix (Approach 2)

One of the key ideas in this approach is the concept of building a class affinity matrix A

from the training data and using it as the classification model. The matrix has one row for

each of the 47 class actions listed in Table 4.3. The 100 ms MAV 8-tuples in the training

dataset are converted to SAX words as described in the previous section. The words in the

training dataset are used to create the matrix columns, each column consisting of a unique

word encountered in the training dataset. The cells are the relative frequency, or affinity

values, in the training data that each word is associated with the corresponding class rows.

As a stream of words to be classified is processed, the column for that word is looked up

in the matrix and, if found, recorded in a new matrix, P . If not found, this new word is
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written into the matrix and its matrix column and row in P populated with the column

values for the closest word already in the matrix. Finally, as each new word is encountered

and entered in P , the class activity decision is determined by summing the value of the

affinities for the current occurrence and the affinity values for the previous w occurrences,

where w is a parameter that was varied in several trials. The values are recorded in a

separate matrix, P̄ , which holds the stream of summed affinity values. The class action

decision is the maximum affinity value in the P̄ row for the current occurrence. This is

described in more detail below, and illustrated in Figure 5.1.

To build A, from the training dataset Aac is computed as the number of times a word

c occurs in action/class a. Ā is computed by normalizing A such that each row sums to 1,

i.e.

Āac = Aac/

N∑
c=1

Aac, ∀a, c

From Ā, Â is computed by normalizing columns of Ā, i.e. by making columns of Â into

unit vectors. N is the number of distinct words found in the training dataset. Note that N

is usually less (much less for n > 4) than the total space of all possible words.

Â is used in the recognition phase. Let the signal samples to be classified be xi, i =

1, 2, . . .m, where m is the number of instances, converted to words, presented for classifica-

tion.

A matrix P is created one row at a time, each row corresponding to a newly encountered

word. The i-th row Pi of P is the cith column Âci of Â, where ci = xi or the nearest word

to xi. The classification step simply estimates the class ai as

ai = argmax{Pi}, (5.1)

i.e. finds the class corresponding to the index of the largest value in the row Pi.

These values can be quite noisy since they treat all word instances in isolation. An

improvement involves taking into account the time series dependency of adjacent signal
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instances. Instead of using P for recognition, create P̄ by summing the affinity values in

the rows of P occurring immediately before the particular instance of P currently being

classified. The number of values to be summed is determined by a window parameter w.

For an instance xi to be classified that is part of a sequence containing m instances, the

predicted class for the ith instance in the sequence is computed using the w affinity values

of the rows between i− w and i as follows

P̄i =


i∑

j=1
Pj , 0 < i ≤ w

i∑
j=i−w

Pj , w < i ≤ m
(5.2)

Note that in Eq. (5.2), the first (w − 1) values in the sequence have less than w values

and must be handled as a special subcase.

The predicted class ai is estimated from P̄i as in Eq. (5.1).

Ā and Â were estimated by computing affinity values of unique words and activity

classes. The columns of Ā and Â correspond to unique words in the training set, and each

column j corresponds to a unique word sj . Call this set S. Given a signal 8-tuple xi to

be classified, if its corresponding word si exists in Â it is added as a row to Pi and P̄i, and

is used to recognize the class ai using Eqs. (5.1-5.2). If si does not appear in Ā, the set

Si = {si1 , si2 , . . .} of symbols is found in S which are closest to si using lexical distance

dl(si, s) =
∑8

k=1 |si(k)−s(k)| for symbols si and s. Given Si, columns Āi1 , Āi2 , . . . are added

corresponding to symbols Si to form a vector pi. pi is normalized to 1 and transposed to

form the row Pi which is then used for recognition using Eqs. (5.1-5.2).

Fig. 5.1 illustrates the structure of the Affinity and P matrices as well as their relation-

ship. Matrix P̄ has the same structure as P except that the values of P̄ are created using

the affinity summation scheme as described by Eq. (5.2).

The effect of the affinity summation scheme is to change the prediction of class “X” found

in the middle of a long sequence of class “Y” by taking advantage of the temporal context
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Figure 5.1: Left shows creation of the P matrix from the Affinity matrix. Right shows the
creation of P̄ from the P matrix with an affinity summation window of w (summation of
the current classified instance plus the previous w rows) as described by Eq. 5.2.

information inherent in time sequences. In many instances, noise in the data can introduce

clearly wrong predictions that this process corrects. Here the size of the summation window

was varied in an attempt to find an optimum balance between an accurate prediction of a

grip or movement sequence and limiting the size of the window. Larger values of w result in

higher accuracies, but require that more information be known about the sequence. Since

this technique uses information that occurs before the instance to be classified, it is suitable

for use in real-time applications since no ”future” information need to be seen prior making

a classification decision.

5.3 Dynamic Time Warping (Approach 3)

The Affinity Matrix approach attempts to take advantage of the time series nature of the

signal data by considering the context in which a 100 ms SAX 8-tuple instance (word) occurs.
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Figure 5.2: The Euclidean distance between two time series (top - blue line, bottom - red)
will not be match along the time scale shown on the X-axis. The connecting lines show
the Dynamic Time Warping (DTW) distance that attempts to match the two within a
predetermined warping window. A parameter is set to govern the width of the path for
comparison between the two series. Adapted from [41].

Specifically, it takes into account the prediction of the current instance under review, xi,

and the previous n instances. The approach described in this section also attempts to

exploit the sequential nature of the data. Here, however, the shape of the entire activity

(e.g., hammer raise, ball squeeze), which consists of a sequence of words, is matched against

the patterns in the training data to find the corresponding action by using Dynamic Time

Warping (DTW) [40] [38] [41] as a distance measure. A short description of DTW is given

below, followed by the specifics of how it is used in this third learning approach.

Euclidean distance is a well-known distance measure in which sequences are aligned in

a point-to-point fashion, i.e. the ith point in sequence Q is matched with the ith point

in sequence C. Its simplicity and efficiency makes it a commonly used distance measure.

While it often works well, it requires that both input sequences be of the same length and

is sensitive to shifting along the time axis. For example, the top and bottom time series in

Fig. 5.2 are not time-aligned and their values along the horizontal scale would not match.

Such a problem can generally be handled by more flexible distance measures such as
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DTW. DTW uses dynamic programming to determine the best alignment to calculate the

optimal distance. The warping window width parameter determines how much warping is

allowed to find the best alignment [41]. A large window can increase processing time of the

search and allow invalid matching between distant points. A small window, by contrast,

could miss the best solution. Figure 5.2 demonstrates that with Euclidean distance, the dips

and peaks in the two time series are misaligned and not matched at the same points on the

horizontal scale, whereas DTW detects their alignment with nearby corresponding points

as indicated by the lines connecting the top and bottom time series. The distance within

which a match will be searched is governed by the warping window. While DTW is a more

robust distance measure than Euclidean Distance, it is also more computationally intensive.

[38] proposed an indexing scheme for DTW that allows faster retrieval. Nevertheless, DTW

is still at least several orders slower.

In this approach, signal instances in the test data are presented for an entire activity for

classification. An activity is one of the 47 actions (grips or movements) listed in Table 4.3

and consists of a sequence of consecutive words from one single repetition. For example,

a group of the action ’hammer raise’, HR, consists of a sequence hr1, hr2, . . . hrm,m ≤ 40,

collected in that order during one of the 12 hammer raise repetitions. Activities in the

dataset were truncated to a maximum of 40 words since that is the maximum number of

words in the movements and the significant parts of the grips occur in the first 40. The test

action is then compared with all actions in the training data starting with only the first

word in the test sequence (hr1), then the first and second (hr1, hr2), then the first through

third (hr1, hr2, hr3), and so on until all words in that test action are compared (hr1 . . . hrm).

The size of the comparison is limited to either m, the number of words in the test sequence,

or the number in the activity sequence from the training dataset if shorter.

For each comparison, the DTW is measured using a modified version of [42] and a

K-nearest-neighbor classification (K-nn) scheme used to determine the class. Here k = 1

was computed and recorded for each comparison window ranging from 1 . . .m. A warping

window of ±5 was specified, for a total width of 11. The distance measure is a modified
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lexical distance between the test and training actions. The individual test and training

words are compared one letter at a time and their differences are summed as follows:

D(a, b) =

8∑
i=1

d(ai, bi), d(ai, bi) =

 0, ai = bi

|ai − bi| − 1, ai 6= bi

(5.3)

For example,

D(‘AAAAAAAA′, ‘AACCBBEE′) = 0 + 0 + 1 + 1 + 0 + 0 + 3 + 3 = 8.

Computing the modified lexical distance in this way avoids the problem of assigning a

distance of one to two adjacent values where both are close to the boundary between them

and whose value would be much closer to zero than one [41].

This approach matches signal sequences whose shapes are similar but slightly out of line.

The window parameter controls the flexibility of the match and the trade-off of large-versus-

small was previously discussed. The approach also measures how soon a test sequence can

be correctly recognized since the comparison is done in increasing numbers of words in a

particular action. The results and conclusion sections discuss this.

5.4 Hidden Markov Model/Belief Calculation (Approach 4)

In the fourth approach a Hidden Markov Model (HMM) was developed, tested, and analyzed

to operate on individual 100 ms MAV windows as learning instances. There is no conversion

to SAX symbols. Similar to Approach 1, a Random Forest (RF) classifier was used to create

a score for each instance that represents a probability that the instance belongs to one of

the 47 classes. As each classification decision is made, a calculation was applied that uses

context information to modify the decision and hopefully improve it. The goal is to identify

a ’belief’ state that reflects the true class of the instance being classified.

The RF voting process returns a score vector, one element for each of the 47 classes,

that represents the percentage of generated trees that identified the specific class as the

true one. The score vector is the observation part of the model since it is a decision based
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on direct input from the sEMG sensors. In Approach 1, the class with the highest score for

a given 100 ms instance is judged to be the true class. No further processing occurred.

In Approach 4, additional processing is performed on the vector that uses contextual

information to improve the accuracy of the classification decision. First, the RF scores

(class probabilities) used to compute the previous instance’s predicted class are considered,

since the previous instance’s class affects the current one. For example, a transition from

a hammer grip to a hammer raise in adjacent 100 ms time intervals is possible, while a

transition from a hammer raise to a key turn is not. Moving the hand from a power grip

used to hold a hammer to the finer grip needed to grasp and begin turning a key requires

more time and is essentially impossible to execute in 100 ms. While some RF scores show

a high result for a particular class, indicating a strong decision, others show smaller scores

spread across many classes. To account for this variation in scoring strength, the previous

instance’s scoring vector is considered in deciding the current instance’s class.

The approach uses a single HMM, similar to [26] and the notation from [43] to describe

it. Initially a simple transition matrix T was used in which the transitions follow the order

in Table 4.3. T is a 47-by-47 matrix showing a probability of moving from a given class

(row) to another class (column) in the next 100 ms time segment. The probabilities in

the table were created by assigning relative weights using a best estimate for reasonable

transitions. For example, a transition from neutral/rest to any transition-in state is possible

and is assigned an appropriate positive value. On the other hand, a transition from hammer

raise to a key turn in one 100 ms time slice is impossible and the associated table entry is

given a low value. From neutral rest, there is an equal probability of staying in it or moving

to a transition to any grip. Additional transition probabilities are defined in T using the

weights in Table 5.1 and normalizing along the row to convert the weights into probabilities.

The weights were determined empirically and are not necessarily optimum. Extra weight is

given to ’no change’ in state and moving from one grip or movement to the next sequential

one (e.g., from hammer grip to hammer raise).

As in Approaches 2 and 3, the eight activities are divided into 12 repetitions each. The
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Table 5.1: Weights assigned to the transitions in matrix T . The rows in T were normalized to convert
them into transition probabilities.

transition from... transition to... weight

neutral/rest neutral/rest 35

neutral/rest transition-in - any grip 10

any state the same state (NC) 50

transition-out - any grip neutral/rest 10

any grip transition-out - same family 10

any movement grip - same family 10

transition-out - any grip neutral/rest 10

any grip/movement next grip/movement - same family 25

any grip/movement previous grip/movement - same family 10

impossible transitions .001

following is repeated twelve times. One repetition is held out for testing and to learn the

parameters of the observation model from the remaining eleven repetitions, which form a

training set.

In the learning phase the observation model is learned and has two components. The

first uses the Random Forest (RF) classifier to classify 100 ms windows in the training set.

The second generates a matrix G, a row-normalized 47 × 47 matrix where gij correspond

to likelihood that a sample from a state si will be recognized as a state s∗j . G is obtained

as follows. Given the learning data X = {x1, . . . ,xN}, with labels L = {l1, . . . , lN} an

RF classifier fRF is generated, which for every 8-dimensional data sample returns a 47-

dimensional vector corresponding to likelihood of each state/class.

The learned classifier is applied to the training data to generate scores fRF (xi), i =

1, . . . , N , which correspond to the probability distribution over all states/classes. A matrix

G∗ is created where a row i of G∗ is given as a sum of all fTRF (xj) for which lj = si, i.e. the

sum of all scores for which the label was the state si. G is obtained by a row normalization

of G∗. Given any test sample y, O = diag{GfRF (y)} is used as observation, i.e. a column

vector is turned into a diagonal matrix.

In the testing phase 200 data points Y = {y1, . . . ,y200} are used which correspond to

one repetition for one of the eight activities as input. The forward filtering algorithm is
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used to compute state beliefs. Each sequence f is initialized with belief 1 for neutral rest

and 0 for all other states. The algorithm is then

f1:t+1 = αOt+1T f1:t, t = 1, . . . , 200

where α is the normalization constant. The classification result is obtained as

st = argmax{f1:t},

i.e. the class for which the belief is maximal at t.
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Chapter 6: Results

This chapter presents the results for the the five subjects and four approaches, with a

separate section for each approach. For each approach data collected from the subjects were

analyzed using the 47 grips and movements listed in Table 4.3. The results are discussed

and compared in the following chapter. Detailed results in the form of confusion matrices

for the same two subjects are shown for each approach to ensure a consistent comparison.

Those are subject #4, who showed relatively high accuracy, and subject #2, with relatively

low accuracy.

6.1 Approach 1

Results reported in [1] showed Random Forest with 25 trees (RF25) having the highest

overall accuracy compared with other classification methods. RF25 was therefore used in

Approach 1 and its results reported here. The Weka workbench was used to build the

classification model and evaluate using stratified ten fold cross-validation. The average

accuracy for the five subjects was 71.28%. Table 6.1 shows the overall accuracy for all

subjects for Approach 1.

Figures 6.1 and 6.2 are confusion matrices showing results for subject 4 and 2, respec-

tively. Subject 4’s accuracy was relatively high: 76.49%. Subject 2’s was relatively low:

66.52%.

6.2 Approach 2

For the second Learning Approach, Affinity Matrix, a custom MATLAB R© solution was

developed. Unlike Approach 1, which only classified individual words, this one sums the
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subj4 NR HGINHG HR HGRHL HLOUTJLGINJLG JLP JLRPJLS JLOUTBGINBG BSQ BSQOUTDKGINDKGDKTSDKTRDKTPDKTOUTKGINKG KGTSKGTRKGTPKGOUTSCGINSCG SCO SCGOSCC SCOUT3JCGIN3JCG3JCR3JCGR3JCL 3JCOUTTPGINTPG TPR TPGRTPL TPLOUT

NR 6366 2 0 0 4 0 13 2 6 2 30 6 8 6 5 0 26 2 7 0 19 2 9 1 6 0 27 1 4 5 18 10 33 2 19 5 2 0 10 1 17 2 1 2 10 4 13

HGIN 11 28 27 2 7 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3 0 0 7 1 0 5 0 5 2 1 0 0 0 0 0 0

HG 0 6 547 8 13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 0 0 4 2 0 0 0 9 0 0 0 0 0 0 0 0

HR 0 2 9 111 17 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0

HGR 0 0 10 11 310 6 0 0 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 0 0 4 5 0 0 0 0 0 0 0 0 0 0 0 0

HL 1 4 2 8 10 101 0 0 0 1 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 6 5 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 43 1 3 0 1 5 59 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 13 1 13 1 8 2 0 0 2 0 1 0 0 0 0 1 0

JLGIN 7 0 0 0 3 0 0 28 21 4 1 1 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 4 0 8 0 0 0 0 0 1 0 0 0 2 1 0

JLG 1 0 0 0 1 0 0 13 556 8 0 0 0 0 0 0 0 1 23 0 0 0 0 0 0 0 0 0 0 0 14 1 1 0 2 1 0 0 4 0 0 0 3 0 4 0 0

JLP 2 0 0 0 0 0 0 0 15 96 17 0 0 0 0 0 0 0 2 1 0 13 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 1 2 0

JLRP 108 0 0 0 0 0 1 0 1 7 176 5 2 0 0 0 0 0 3 0 4 0 3 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 1 0 2 0 1 0 1 6 2

JLS 4 0 0 0 1 0 0 0 5 0 1 138 1 0 0 0 0 1 3 2 1 5 0 0 0 0 0 0 0 2 4 2 3 2 12 0 0 0 0 0 1 0 3 0 0 0 1

JLOUT 60 0 0 0 0 0 2 0 0 0 17 12 8 0 0 0 0 0 0 1 6 0 1 0 1 1 6 0 0 3 0 0 5 0 0 0 1 0 0 0 1 1 0 0 2 1 2

BGIN 13 0 0 0 0 0 0 0 0 0 0 0 0 108 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BG 3 0 0 0 0 0 0 0 0 0 0 0 0 20 490 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 583 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 105 0 0 0 0 0 0 0 0 0 0 0 0 4 0 3 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKGIN 12 0 0 0 1 1 0 0 10 0 2 1 0 0 0 0 0 13 47 0 0 8 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 1 0 2 0 0 1 1

DKG 20 0 0 0 0 0 0 0 25 0 1 2 1 0 0 0 0 4 478 7 1 1 0 0 3 0 2 0 0 0 3 0 4 0 2 3 10 0 0 2 0 0 9 0 2 2 0

DKTS 1 0 0 1 0 1 3 0 1 0 0 1 0 0 0 0 0 0 1 189 6 0 0 0 0 0 0 0 0 0 0 4 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0

DKTR 160 1 0 0 1 0 0 0 2 0 4 1 2 0 0 0 0 2 7 17 87 3 8 0 0 2 4 2 0 0 0 0 2 0 3 1 3 0 0 2 0 2 1 2 3 0 2

DKTP 11 1 0 0 0 2 0 2 8 6 0 9 0 0 0 0 0 1 11 0 1 212 3 0 1 1 0 0 0 0 0 0 0 1 2 1 4 0 2 2 1 0 0 0 1 0 0

DKTOUT 70 0 0 0 0 0 0 0 0 5 13 0 0 0 0 0 0 0 0 0 8 11 37 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 2 1 0 3 9 0 0 4 2

KGIN 27 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 14 41 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 2 0

KG 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 527 7 7 3 0 0 0 0 0 0 0 0 2 0 0 0 0 2 7 0 3 5 3

KGTS 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 100 19 0 0 0 0 0 0 0 0 0 1 0 2 1 0 0 1 4 11 0 0

KGTR 96 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 1 0 1 1 0 0 3 10 211 2 2 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 5 2 0

KGTP 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 9 0 14 94 6 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 5

KGOUT 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 8 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

SCGIN 30 2 4 0 11 0 2 0 5 0 0 1 1 0 0 0 0 1 2 0 0 0 0 0 0 1 2 0 0 9 19 2 2 3 16 0 1 0 2 1 0 0 0 0 11 0 0

SCG 57 0 9 1 31 0 3 0 24 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 326 3 19 1 27 0 4 0 2 0 0 0 0 0 4 2 0

SCO 4 0 3 0 0 0 1 0 1 0 1 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 71 32 0 8 0 0 0 0 0 0 0 4 0 1 0 0

SCGO 53 0 0 0 1 0 11 0 3 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 40 23 250 5 17 0 4 0 0 0 0 0 2 0 7 0 0

SCC 2 8 10 3 10 3 1 1 0 0 0 3 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 2 4 7 1 109 21 0 0 0 0 0 0 0 0 0 0 0 0

SCOUT 24 1 11 0 12 3 12 2 6 1 1 10 0 0 0 0 0 1 1 2 2 2 0 0 0 0 0 0 0 3 48 21 24 29 147 0 0 0 0 0 0 0 0 2 2 0 0

3JCGIN 39 0 0 0 1 0 1 0 2 0 1 0 0 0 0 0 0 0 12 0 0 0 0 0 1 0 5 0 0 0 2 0 1 0 4 37 38 0 2 3 1 0 0 0 2 0 0

3JCG 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 0 0 0 0 0 2 3 0 0 0 0 2 0 1 0 0 16 444 10 12 18 0 0 0 3 4 1 0

3JCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 143 15 1 0 0 0 6 0 0 0

3JCGR 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 4 0 0 0 0 1 13 15 288 15 0 0 0 0 0 0 0

3JCL 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 1 0 0 0 0 0 0 0 2 21 3 28 115 3 1 0 0 0 1 0

3JCOUT 100 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 1 0 0 0 0 0 0 0 3 2 0 0 4 30 1 0 0 0 1 2

TPGIN 39 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 5 0 0 3 4 1 12 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 24 42 0 0 4 4

TPG 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 1 6 0 0 0 1 0 4 2 0 0 0 0 0 3 5 0 0 0 0 0 0 0 0 5 535 4 1 4 0

TPR 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 7 129 16 0 0

TPGR 6 1 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 2 0 0 0 1 0 0 2 2 0 0 2 0 0 2 0 0 0 2 0 1 0 0 0 2 16 350 11 1

TPL 24 0 0 0 0 0 1 0 0 1 5 0 0 0 0 0 0 0 2 0 0 0 5 1 23 0 5 3 0 0 0 0 1 0 0 0 2 0 0 0 0 1 3 0 20 69 3

TPLOUT 57 0 0 0 0 0 0 0 0 0 9 0 1 0 0 0 0 1 2 0 4 0 3 0 8 0 1 12 1 0 0 0 2 0 0 0 0 0 0 0 1 4 0 0 3 3 37

Figure 6.1: Confusion matrix for subject 4, Approach 1 (Random Forest with 25 trees).
Classes listed in the rows are the ground truth for one word instance. The total number
of predicted classes for all subjects are shown in the cells corresponding to the class in the
columns. Higher numbers (200+ or ≈ 1% − 5% of total) are shown in black, moderate
numbers (100-199, ≈ 0.5 − 1%) in dark gray shade, smaller (30-99) in light gray, small
in light blue (5-29, < 0.12%), and fewer than 5 in white. Strong dark colors along the
diagonal indicate correct predictions. Many incorrect predictions are clustered near their
action group (e.g., hammer, tip pinch, 3-jaw-chuck) inside the grip family’s box along the
diagonal. Note the confusion between the tip pinch group (TPx) and neutral/rest (NR).

Table 6.1: Overall accuracies for all subjects for the Approach 1 RF25 classifier. Ranges are 63.70 for
subject 5 (less than fully-abled) to 82.69 for subject 1, with an average of 71.28% for all subjects.

subject# Accuracy(%)

1 82.69

2 66.52

3 67.00

4 76.49

5 63.70

average 71.28
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subj2 NR HGIN HG HR HGR HL HLOUTJLGIN JLG JLP JLRP JLS JLOUTBGIN BG BSQ BSQOUTDKGINDKG DKTS DKTR DKTP DKTOUTKGIN KG KGTS KGTR KGTP KGOUTSCGINSCG SCO SCGO SCC SCOUT3JCGIN3JCG 3JCR 3JCGR3JCL 3JCOUTTPGINTPG TPR TPGR TPL TPLOUT

NR 5046 5 0 1 2 0 9 0 2 1 6 1 8 17 75 0 12 4 14 4 24 0 6 1 93 0 34 0 22 12 50 2 1 6 27 2 72 11 18 7 26 4 106 11 48 3 8

HGIN 34 43 45 0 0 0 8 1 5 2 4 3 0 0 2 0 0 0 9 3 2 0 0 0 0 0 0 0 0 3 1 0 1 0 0 0 0 1 12 0 0 0 0 0 0 0 0

HG 0 5 490 7 6 0 2 0 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HR 0 0 5 110 25 11 1 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

HGR 0 0 10 15 342 8 0 1 5 1 4 0 0 0 0 0 0 0 4 5 0 1 0 0 0 0 0 0 0 2 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

HL 1 1 0 7 13 108 5 0 1 0 0 0 0 0 0 4 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 70 5 13 0 4 9 57 0 0 0 4 2 1 5 0 0 6 0 1 5 13 0 0 1 2 0 2 1 0 7 7 0 0 0 2 0 2 0 2 2 1 0 0 1 1 0 1

JLGIN 16 0 0 0 0 0 0 7 56 0 3 2 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2

JLG 2 0 0 0 1 0 1 2 526 11 11 2 2 0 0 0 0 0 27 9 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

JLP 2 0 2 0 0 0 0 0 2 163 29 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0

JLRP 4 4 0 0 0 0 0 0 18 25 263 7 0 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 1 2 0 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0

JLS 1 1 0 0 0 0 0 2 3 17 8 67 44 0 0 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

JLOUT 71 1 0 0 0 0 1 0 1 1 2 23 149 3 0 0 0 2 5 2 6 1 6 0 0 0 0 0 0 0 1 0 3 0 0 0 0 1 0 1 2 0 0 2 3 0 0

BGIN 87 0 0 0 0 0 3 0 0 0 0 0 1 78 30 0 9 1 0 0 19 0 2 0 4 3 0 0 1 0 5 1 1 0 8 0 1 0 0 2 8 0 0 1 0 1 1

BG 188 1 0 1 2 2 1 0 0 0 1 0 0 14 310 3 3 0 1 0 4 0 0 0 2 1 8 0 2 0 2 0 3 0 0 0 15 0 0 1 2 0 5 1 0 1 0

BSQ 0 0 0 2 1 6 1 0 0 1 0 0 0 1 0 481 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 107 1 2 0 3 0 5 0 2 1 5 0 2 11 5 3 78 0 3 5 8 4 0 0 6 2 0 2 0 1 8 2 5 0 10 0 1 0 1 0 5 0 2 0 2 0 0

DKGIN 32 0 0 0 0 1 1 0 1 1 0 4 3 0 0 0 0 34 21 0 2 9 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

DKG 25 1 1 0 1 0 1 0 28 0 3 5 4 0 0 0 0 5 528 8 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

DKTS 2 0 0 0 8 0 1 1 2 2 9 1 2 0 0 0 1 2 24 250 1 1 0 0 0 0 0 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0

DKTR 132 0 0 0 0 0 0 0 1 0 1 0 3 12 1 0 7 3 13 12 110 2 2 0 5 3 2 2 0 0 1 1 0 0 0 3 1 0 0 0 1 1 0 0 2 0 0

DKTP 6 0 0 0 1 0 0 0 3 1 1 1 3 5 0 0 3 3 6 7 6 220 4 0 0 0 0 0 0 0 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 1

DKTOUT 54 0 0 0 0 0 0 0 0 0 2 0 4 5 0 0 2 1 0 1 6 16 57 0 0 3 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 0 2 2 0 0

KGIN 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 44 0 1 1 1 0 0 0 0 0 0 1 2 0 0 0 0 2 3 0 6 0 0

KG 209 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 330 9 6 3 11 0 0 0 0 0 0 0 3 0 0 0 0 1 15 0 17 0 2

KGTS 7 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2 1 0 1 0 5 86 39 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0

KGTR 55 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 7 17 271 8 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0

KGTP 11 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 3 0 0 0 3 0 0 0 9 7 15 89 11 0 3 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

KGOUT 113 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 28 1 2 4 59 0 0 0 0 0 0 0 2 0 0 0 0 0 3 0 6 0 0

SCGIN 33 5 0 0 2 1 8 0 0 1 6 0 0 2 2 0 5 0 0 2 4 0 0 0 1 1 2 0 0 51 64 1 3 2 18 0 0 0 1 4 1 0 0 1 0 0 0

SCG 48 1 1 0 4 0 2 0 0 1 5 1 0 3 5 0 1 0 0 3 0 0 0 0 0 1 1 0 0 21 275 12 45 0 17 1 26 1 3 6 1 1 0 0 0 0 0

SCO 18 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 3 89 31 10 3 0 0 0 2 0 0 0 0 3 0 0 0

SCGO 5 1 0 0 1 0 1 0 0 2 2 5 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 2 19 19 264 9 25 0 0 0 0 0 0 0 0 1 0 0 0

SCC 8 0 0 0 0 0 2 0 0 13 3 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 3 6 5 3 102 27 0 0 0 0 0 1 0 0 0 0 0 0

SCOUT 27 2 0 0 1 3 6 0 1 7 8 1 0 7 2 0 4 0 0 4 2 1 0 0 0 0 0 0 0 15 23 7 16 32 160 0 2 1 0 2 3 0 0 0 0 0 0

3JCGIN 71 1 3 0 0 0 1 1 1 0 4 1 1 2 1 0 0 0 2 2 5 0 0 1 8 0 0 0 0 1 11 0 0 0 0 6 23 1 0 2 6 2 0 0 2 0 1

3JCG 137 1 0 0 0 0 0 0 0 0 2 0 0 0 7 0 2 0 0 0 0 0 0 0 8 0 2 0 0 0 8 0 0 0 0 2 377 7 2 4 20 0 0 0 0 0 0

3JCR 7 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 113 28 3 0 0 0 2 0 0 0

3JCGR 34 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 3 1 0 0 0 0 0 2 13 358 6 0 0 0 1 1 0 0

3JCL 18 1 1 0 0 0 1 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 5 0 8 4 20 58 29 0 0 0 1 0 0

3JCOUT 47 0 0 0 0 0 1 0 0 0 1 0 1 5 1 0 7 0 0 0 2 0 0 0 0 1 1 0 0 0 2 0 2 0 2 1 27 0 0 6 141 0 0 0 0 0 0

TPGIN 94 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 2 0 2 0 1 0 14 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 13 0 13 1 3

TPG 352 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 1 0 0 1 40 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 146 5 15 1 2

TPR 31 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 2 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 3 96 9 0 0

TPGR 182 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 3 21 0 3 0 6 0 1 0 0 0 0 0 0 3 0 0 0 1 9 8 187 0 0

TPL 84 0 0 0 0 0 0 0 0 0 0 0 0 4 5 0 0 0 1 0 0 0 0 0 16 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 0 3 10 5

TPLOUT 84 0 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 0 1 1 3 0 1 0 14 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 2 8 0 9 6 21

Figure 6.2: Confusion matrix for subject 2, Approach 1 (Random Forest with 25 trees).
Despite showing lower overall accuracy, subject 2’s results show the similar patterns as
those for subject 4.
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computed affinity value for the instance being classified with the values of the previous w

values from the input stream.

To evaluate the approach, the eight action group datasets are divided into 12 segments,

one for each action repetition. Segment one, for example, includes the words in the first

repetition of the hammer grip family (HGIN, HG, HR, HGRP, HL, and HLOUT), followed

by the jar lid family (JLGIN, JLG, JLP, JLRP, JLS, and JLOUT), the ball family (BGIN,

BG, BSQ, BSQOUT), etc. Likewise, the second segment includes the second repetition of

all action groups. Neutral/rest (NR) words from seconds 1-3 for each of the action group

runs were added to each of the 12 runs. This was done to inject a representative sample of

that posture (≈ 6% of total) since including all NRs would result in their being ≈ 35% of

the total and unbalancing the dataset. Twelve separate classification training and testing

runs were performed. Each segment was withheld as a test set for a run one time, with the

remaining 11 used to build the Affinity Matrix. Accuracies from classifying the test sets in

the twelve runs were averaged.

This approach requires two parameters: the number of SAX symbols used to discretize

the signals, and w, the number of words immediately before the test instance used to create

the affinity sum. The number of symbols was varied from 5 to 15, and the number of words

from 3 to 30. Table 6.2 shows the various parameter combinations. The table contains the

high-low range for the three subjects for each combination. The graph in Figure 6.3 shows

the average accuracy for the three subjects for word counts up to 30. The lines for symbols 7,

11, and 15 are tightly clustered and superior to 5 for all word counts. Improvement flattens

out between 20 and 30 words, indicating parameter settings that will produce maximum

accuracy.

Figures 6.4 and 6.5 are confusion matrices showing results for subject 4 and 2, respec-

tively, for 11 symbols and 30 words. Both subjects shoed their highest accuracies at those

parameter levels. Subject 4’s accuracy was relatively high: 79.15%. Subject 2’s was 78.07%

- lower, but closer to Subject 4 compared with results for Approach 1.
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Figure 6.3: Graph of the Affinity Matrix approach for the average accuracy of all subjects
for various numbers of symbols and words used in the affinity summation. The accuracy
for 7, 11, and 15 symbols is tightly clustered and therefore similar, but superior to trials
using only 5. Improvement is steep until the vicinity of 20 to 30 words for all numbers of
symbols.

Table 6.2: Affinity result ranges among the 5 subjects for selected numbers of SAX symbols and number
of words w used in affinity summation.

# symbols 3 5 10 15 20 30

5 [39.61, 64.76] [43.50, 69.69] [49.95, 75.98] [54.58, 79.41] [57.60, 80.64] [61.41, 82.81]

7 [44.39, 68.88] [48.74, 73.64] [55.17, 78.73] [60.27, 81.37] [62.79, 82.22] [65.50, 83.42]

11 [44.30, 70.06] [49.83, 75.16] [57.31, 81.05] [62.72, 83.58] [65.58, 84.38] [69.32, 85.03]

15 [44.46, 69.54] [50.25, 74.63] [58.44, 79.88] [62.99, 82.31] [65.31, 83.15] [68.69, 83.98]
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subj4 NR HGIN HG HR HGR HL HLOUTJLGIN JLG JLP JLRP JLS JLOUTBGIN BG BSQ BSQOUTDKGINDKG DKTS DKTR DKTP DKTOUTKGIN KG KGTS KGTR KGTP KGOUTSCGINSCG SCO SCGO SCC SCOUT3JCGIN3JCG 3JCR 3JCGR3JCL 3JCOUTTPGINTPG TPR TPGR TPL TPLOUT

NR 261 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 86

HGIN 0 3 6 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

HG 0 0 348 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0

HR 0 0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HGR 0 0 14 10 233 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HL 0 0 0 0 2 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 1 0 4 0 0 0 33 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLGIN 0 0 0 0 0 0 0 9 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

JLG 0 0 0 0 0 0 0 7 344 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 4 0 0 0 0 0 4 0 0 0 0 0 0 0 0

JLP 0 0 0 0 0 0 0 0 0 45 1 0 0 0 0 7 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLRP 0 0 0 0 0 0 0 0 0 0 195 0 9 0 0 0 0 0 0 0 0 0 9 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLS 0 0 0 0 0 0 0 0 0 0 1 65 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 7 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0

JLOUT 0 0 0 0 0 0 0 0 0 1 3 4 13 0 0 0 6 0 0 0 2 0 0 0 0 0 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6 0 0

BGIN 0 0 0 0 0 0 3 0 0 0 0 0 0 51 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0

BG 0 0 0 0 0 0 0 0 0 0 0 0 0 5 359 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 372 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 0 0 0 0 0 0 12 0 0 0 0 1 1 0 0 0 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DKG 11 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 27 296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 1 0

DKTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTR 7 0 0 0 0 0 14 0 0 0 3 0 27 0 0 0 9 0 0 16 115 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTP 14 0 0 0 0 4 0 3 0 0 0 2 0 0 0 0 0 0 3 0 0 145 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTOUT 1 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 16 7 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0

KGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 3 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

KG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0

KGTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

KGTR 0 0 0 0 0 0 0 0 0 0 12 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGTP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 7 40 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGOUT 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCGIN 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 7 0 0 0 0 0 0 0 5 0 0 6 2 0 0 1 2 0 0 0 1 0 0 0 0 4 2 0 0

SCG 0 0 4 0 20 0 0 0 9 0 3 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 223 0 33 0 4 0 2 0 3 0 9 0 0 0 0 7 0

SCO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 34 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCGO 2 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 38 14 224 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCC 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 74 0 0 0 0 0 0 0 0 0 0 0 0 0

SCOUT 0 0 13 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 10 14 55 111 0 0 0 0 0 0 0 0 0 0 0 0

3JCGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 6 0 0 0 5 0 0 0 0 0 0

3JCG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 325 0 0 0 0 0 0 0 1 0 0

3JCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0

3JCGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 231 0 0 0 0 0 0 0 0

3JCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 76 0 0 0 0 0 0 0

3JCOUT 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0

TPGIN 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 19 0 0 0 8

TPG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 14 7 0 0 0 0 0 0 0 0 3 270 0 0 0 62

TPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 0 0 11

TPGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 236 0 48

TPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 39 10

TPLOUT 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 32 82 23 39 50 50

Figure 6.4: Confusion matrix for subject 4, Approach 2 (Affinity). Classes listed in the
rows are the ground truth for one word instance. As with Approach 1, note strong dark
colors along the diagonal, indicating correct predictions, and the tendency for incorrect
predictions to be clustered within the same action group box.
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subj2 NR HGIN HG HR HGR HL HLOUTJLGIN JLG JLP JLRP JLS JLOUTBGIN BG BSQ BSQOUTDKGINDKG DKTS DKTR DKTP DKTOUTKGIN KG KGTS KGTR KGTP KGOUTSCGINSCG SCO SCGO SCC SCOUT3JCGIN3JCG 3JCR 3JCGR3JCL 3JCOUTTPGINTPG TPR TPGR TPL TPLOUT

NR 274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 62

HGIN 0 42 12 0 0 0 6 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0

HG 0 6 346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HR 0 0 0 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HGR 0 0 0 25 258 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HL 0 0 0 1 0 41 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 1 16 4 0 11 2 62 0 0 0 0 0 0 5 0 0 0 0 0 11 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0

JLGIN 0 0 0 0 0 0 0 1 12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLG 0 0 0 0 0 0 0 2 330 0 31 0 0 0 0 0 0 0 6 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLP 0 0 0 0 0 0 0 0 0 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLRP 0 0 0 0 0 0 0 0 0 74 155 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLS 0 0 0 0 0 0 0 0 0 21 0 34 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLOUT 1 0 0 0 0 0 0 0 0 0 0 53 126 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

BGIN 0 0 0 0 0 0 6 0 0 0 0 0 0 80 7 0 10 0 0 0 27 0 0 0 0 0 0 0 13 0 1 0 0 0 0 0 0 0 0 5 10 0 0 0 0 0 0

BG 0 0 0 0 0 0 0 0 0 0 0 0 0 13 351 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0

BSQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 352 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 1 0 0 0 0 0 0 0 0 0 0 0 0 2 22 0 142 0 0 0 0 1 0 0 1 0 0 8 0 0 10 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0

DKGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 4 0 2 1 8 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKG 0 0 0 0 0 0 0 0 0 0 0 10 21 0 0 0 0 0 321 4 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 194 0 0 0 0 0 0 0 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0 0 0 0 0

DKTR 0 0 0 0 0 0 0 0 0 0 1 0 17 3 0 0 1 0 0 4 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 9 3 0 0 0

DKTP 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 5 148 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 13 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6

KG 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 229 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 2 2 69

KGTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13

KGTR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 221 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38

KGTP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

KGOUT 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 6 0 0 0 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28

SCGIN 0 0 0 0 0 0 9 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 17 5 0 0 16 0 0 0 0 1 0 0 0 0 0 0 0

SCG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 201 0 19 0 22 0 47 0 14 3 0 0 0 0 0 0 0

SCO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 28 9 5 0 0 0 0 0 0 0 0 0 14 0 0 0

SCGO 0 3 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 10 217 11 4 0 0 0 0 0 0 0 0 0 0 0 0

SCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 0 51 17 0 0 0 0 0 0 0 0 0 0 0 0

SCOUT 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 13 11 54 146 0 0 0 0 0 3 0 0 0 0 0 0

3JCGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 9 0 0 3 0 0 1 0 0 0 0 0 12 0 3 0 14 0 4 0 4 0 0

3JCG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 4 334 0 0 0 2 0 0 0 0 0 0

3JCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 54 2 0 0 0 0 0 0 0 0

3JCGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0

3JCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 7 42 1 0 0 0 0 0 0

3JCOUT 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 133 0 0 0 0 0 0

TPGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 6 0 9 0 0

TPG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 7 32 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 276 0 23 13 0

TPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0 0 0

TPGR 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 18 16 231 1 0

TPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 22 0

TPLOUT 165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 64 13 49 13 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6.5: Confusion matrix for subject 2, Approach 2 (Affinity). Although lower in overall
accuracy, subject 2’s results show the similar patterns as those for subject 4. A notable
exception is the confusion of the TPLOUT class with the key grip (KG) family, indicated
by dark colors along the bottom row and last columns corresponding with the intersection
of those families.
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Table 6.3: Dynamic Time Warping result ranges among the 3 subjects for selected numbers of SAX
symbols and number of words used in the comparison.

# symbols 3 5 10 15 20 30

5 [27.48, 45.92] [42.73, 64.18] [53.01, 72.70] [56.91, 81.03] [60.46, 82.27] [66.13, 85.82]

7 [23.58, 45.57] [41.31, 66.67] [54.61, 73.76] [59.57, 81.21] [64.01, 83.87] [67.91, 85.46]

11 [25.89, 50.00] [40.07, 66.31] [55.67, 74.47] [58.69, 81.38] [64.18, 84.74] [68.26, 86.70]

15 [25.18, 47.52] [40.96, 68.49] [53.35, 73.76] [58.69, 81.56] [65.07, 84.04] [67.91, 86.88]

6.3 Approach 3

For the third Learning Approach, Dynamic Time Warping (DTW), the data was segmented

as described for the second approach. Unlike that approach, which classified individual

words based on summed affinity values of immediately preceding words, this approach only

classifies activity segments, as described in the DTW approach section. This approach

only requires one parameter: number of SAX symbols. However, since the comparison is

made for an increasing number of words, the success rate at each word count is noted and

reported. Results are therefore shown for various combinations of SAX symbols and word

counts.

Table 6.3 shows results for the various parameter and word count combinations. The

table contains the high-low range for the three subjects for each combination. The graph

in Figure 6.6 shows the average values for the five subjects for word counts up to 30. The

lines for all symbol values are tightly clustered and improve rapidly until reaching between

20 and 30 words.

Figures 6.7 and 6.8 are confusion matrices showing results for subject 4 and 2, respec-

tively, for seven symbols and 30 words. Both subjects showed their highest accuracies at

those parameter levels. Subject 4’s accuracy was relatively high: 75.53%. Subject 2’s was

lower: 67.91%.
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Figure 6.6: Graph of the Dynamic Time Warping approach for the average accuracy of all
subjects for various numbers of symbols and words participating in the comparison. The
accuracy flattens out between 20 and 30 words for all numbers of symbols. The number of
SAX symbols used does not have much affect on the accuracy.

73



subj4 NR HGIN HG HR HGR HL HLOUTJLGIN JLG JLP JLRP JLS JLOUTBGIN BG BSQ BSQOUTDKGINDKG DKTS DKTR DKTP DKTOUTKGIN KG KGTS KGTR KGTP KGOUTSCGINSCG SCO SCGO SCC SCOUT3JCGIN3JCG 3JCR 3JCGR3JCL 3JCOUTTPGINTPG TPR TPGR TPL TPLOUT

NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

HGIN 0 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HG 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

HR 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HGR 0 0 1 3 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HL 0 0 0 2 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 0 0 0 0 0 0 9 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

JLGIN 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLG 0 0 0 0 0 0 0 1 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLP 0 0 0 0 0 0 0 0 0 10 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLRP 0 0 0 0 0 0 0 0 0 0 7 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

JLS 0 0 0 0 0 0 0 1 0 0 0 7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLOUT 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKGIN 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DKG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

DKTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTR 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

DKTP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 7 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGTR 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGTP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCGIN 0 2 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCG 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

SCO 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

SCGO 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0

SCC 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

SCOUT 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0

3JCGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0

3JCG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 0 2 1 0 0 0 0 0 1 0

3JCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0

3JCGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 9 1 0 0 0 0 0 0 0

3JCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0

3JCOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0

TPGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0

TPG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 9 0 0 0 0

TPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0

TPGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 8 0 0

TPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 2

TPLOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 2 2 0 2 2

Figure 6.7: Confusion matrix for subject 4, Approach 3 (DTW). Classes listed in the rows
are the ground truth for one word instance. As with Approaches 1 and 2, note strong dark
colors along the diagonal, indicating correct predictions, and the tendency for incorrect
predictions to be clustered within the same action group box.
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subj2 NR HGIN HG HR HGR HL HLOUTJLGIN JLG JLP JLRP JLS JLOUTBGIN BG BSQ BSQOUTDKGINDKG DKTS DKTR DKTP DKTOUTKGIN KG KGTS KGTR KGTP KGOUTSCGINSCG SCO SCGO SCC SCOUT3JCGIN3JCG 3JCR 3JCGR3JCL 3JCOUTTPGINTPG TPR TPGR TPL TPLOUT

NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 1

HGIN 0 10 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HG 0 0 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HR 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HGR 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HL 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 0 0 0 0 0 1 7 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

JLGIN 0 0 0 0 0 0 0 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLG 0 1 0 0 0 0 0 5 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLP 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

JLRP 0 0 0 0 0 0 0 0 0 3 7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

JLS 0 0 0 0 0 0 0 1 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLOUT 0 0 0 0 0 0 0 0 0 0 0 5 4 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

BG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

BSQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

DKG 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTS 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTR 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

DKTP 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

DKTOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 9 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

KGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

KGTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGTR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

KGTP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

KGOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

SCGIN 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 7 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 1 0 0 1 0 0 5 0 0 0 0 0 0 0

SCO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

SCGO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0

SCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

SCOUT 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 5 1 0 0 0 0 1 0 0 0 0 0 0 0

3JCGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 1 0 0 0 0 0 0 0

3JCG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0 0 1 0 0 0 0 0 0

3JCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0

3JCGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1 0 0 0 0 0 0 0

3JCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0

3JCOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0

TPGIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 1

TPG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 1

TPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0

TPGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0

TPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0

TPLOUT 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 1 3

Figure 6.8: Confusion matrix for subject 2, Approach 3 (DTW). Although lower in overall
accuracy, subject 2’s results show the similar patterns as those for subject 4.
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6.4 Approach 4

Since the Random Forest classifier showed the best results reported in [1] and were used in

Approach 1, it was used here as well to produce the class probabilities used as the basis for

the observation model in the HMM.

For Learning Approach 4, signal instances for each grip family in the test data were pre-

sented for an entire 10 second repetition for classification. For example, each of the the rep-

etitions for the hammer activity consisting of {NR,HGIN,HG,HR,HGRP,HL,HLOUT,NR}

was presented for classification and belief calculation in the order in which it was performed.

The 12 test segments consisted of one of these sequences for each family as listed in Table

4.4. Each family’s 10 second segment was classified separately. Maintaining this order al-

lowed the belief logic to use the time sequence nature of the data since it was the order in

which the data was collected from the subject.

The 10 second repetitions each included 200 100 ms instances for repetitions 1− 11 and

approximately 140 for the last repetition since the last one was truncated to seven seconds

by the collection protocol. The first four seconds (80 100 ms instances) of each family’s

repetitions were not included in training or testing. Those instances were not closely tracked

during data collection and included many neutral/rest, which were already over-represented

in each subject’s data. Approximately 18,700 100 ms instances were therefore collected for

each subject. Figure 6.9 shows how data was divided for training and testing.

This approach was implemented in Matlab. The Matlab Treebagger class was used for

training and the predict method used for prediction and to generate the scores. This simple

forward filtering method improved the overall results 10-15% for all subjects. What the

overall score does not show is the nature of improvements. Most of the errors occur within

a family (hammer, key, etc.), at transitions, and between transitions and neutral rest.

Figure 6.10 compares the confusion matrices for subject 4 for Approach 4. Matrices for

both the Random Forest classification and subsequent HMM belief calculation are included

to show the effect of the belief calculation. Subject 4 had relatively high accuracy. The top

is the result of the Random Forest classification which had an overall classification accuracy
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Repetition# NA
hammer

jar  lid

ball

door  knob

key

scissors

3-‐jaw  chuck

tip  pinch

elapsed  secs. 0 4    14    24    34    44    54    64    74    84    94    104    114
#seconds/rep. 4
#100ms  instances 80

7
140

10
200

10
200

10
200

10
200

10 11 121 2 3 4 5 6 7 8 9

10
200

10
200

10
200

10
200 200

10
200

10
200

10

Repetition  #5  
held  out  for  testing  

Figure 6.9: Segmentation of repetition data for Approach 4. The above shows repetition #
5 as held out for testing while the other repetitions were used for training. The instances in
the held-out testing repetition for each grip family were presented to the trained classifier
as a unified whole with the instances in the order in which the subjects performed the
repetition for that family. Each test therefore consisted of presenting 8 different 10 second,
200 instance segments (7 second, 140 instance for repetition # 12) for classification and
belief calculation. The 10 second segments were presented for classification in the top-to-
bottom order shown in the above table hammer, jar lid, ... tip pinch. Maintaining the order
for each family repetition was necessary to consider the time sequence nature of the signal
stream. The process was repeated 12 times so that each repetition participated in training
11 times and was held out once for testing.
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Table 6.4: Overall accuracies for for Approach 4. The results for the Random Forest classification based
on a single instance is shown, followed by the improved accuracy when the belief calculation was made.

Method subj1(%) subj2(%) subj3(%) subj4 subj5 avg.(%)

RF25 76.40 60.96 61.32 71.82 57.19 65.54

Belief Calc. 84.30 72.50 70.20 80.29 68.14 75.09

of 71.82%. The bottom shows the improved CM after applying the belief calculation and

showed an improved accuracy of 80.29%.

Figure 6.11 compares the confusion matrices for subject 2 for Approach 4. Subject 2

had relatively low accuracy. The top is the result of the Random Forest classification of

60.96%. Bottom shows the improved CM after applying the belief calculation resulting in

an accuracy of 72.5%.

Figure 6.12 is a plot of the accuracies for all five subjects of the Random Forest clas-

sification prior to applying the belief calculation. Results for classification using various

numbers of trees from 3 to 100 is shown. Accuracy improves noticeably to around 15 trees

then begins to tail and shows no improvement beyond 50.

Figure 6.13 lists the accuracies for all five subjects of the Random Forest classification

prior after applying the belief calculation. As before, accuracy improves noticeably to

around 15 trees then levels off at 25, and shows no improvement beyond 50.

Figure 6.14 compares the improvement of the belief calculation over RF classification

for subjects 1 and 2. Subject 1 had higher accuracies compared with 2 and belief improved

accuracy by approximately 8%. Subject 2, by contrast, had lower accuracies for all trees,

but belief improved them by approximately 11%.

Table 6.4 summarizes results for all subjects. The RF25 results are shown along side the

belief calculation that used the RF25 probability scores as input. Belief improved the overall

Random Forest Approach 4 accuracies for each subject by ≈ 8% to 11%. The cross-subject

average was improved by ≈ 9% over the Matlab Treebagger classifier.
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subj4 NR HGIN HG HR HGRP HL HLOUTJLGIN JLG JLP JLRP JLS JLOUTBGIN BG BSQ BSQOUTDKGINDKG DKTS DKTR DKTP DKTOUTKGIN KG KGTS KGTR KGTP KGOUTSCGINSCG SCO SCGO SCC SCOUT3JCGIN3JCG 3JCR 3JCGR3JCL 3JCOUTTPGINTPG TPR TPGR TPL TPLOUT

NR 5793 2 0 0 4 0 10 1 5 0 48 5 6 6 14 0 15 1 13 0 17 2 9 3 10 0 17 7 2 1 30 15 34 1 19 2 0 1 5 2 15 1 1 0 17 5 17

HGIN 6 28 23 5 5 6 0 0 1 0 0 0 0 1 5 2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3 0 1 9 2 0 6 0 4 2 0 1 0 0 0 0 0

HG 0 10 524 9 14 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 21 3 0 2 8 0 0 0 9 0 0 0 0 0 0 0 0

HR 0 4 14 98 20 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

HGRP 0 1 24 16 261 7 0 0 5 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2 27 0 0 9 12 0 0 0 0 0 0 0 0 0 0 0 0

HL 1 6 4 6 6 91 0 0 0 1 0 3 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 1 3 0 0 9 7 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 45 2 3 1 1 2 38 0 0 0 0 1 0 5 0 0 6 0 0 1 2 0 0 0 0 0 0 0 0 2 14 1 14 1 12 0 1 0 3 0 2 0 0 0 1 1 0

JLGIN 6 0 0 0 2 0 1 28 20 3 1 1 0 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 2 1 8 1 1 0 0 0 1 0 0 0 2 1 0

JLG 5 0 0 0 1 0 0 18 480 14 0 1 3 2 3 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 51 1 6 0 2 0 0 0 8 0 0 0 4 0 2 0 0

JLP 3 0 0 0 1 0 0 0 8 82 20 0 3 1 0 8 0 1 2 2 0 16 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 1 0

JLRP 118 0 0 0 0 0 0 0 0 12 137 6 6 3 2 0 0 2 5 0 3 0 4 0 0 1 1 1 0 0 1 0 3 0 0 0 1 0 0 0 1 2 1 0 3 10 4

JLS 5 0 0 0 0 0 1 2 4 3 2 125 5 0 0 0 3 1 3 1 0 7 0 0 0 0 0 0 0 0 3 2 6 3 11 0 0 0 0 0 1 0 2 0 1 0 1

JLOUT 60 0 0 0 0 0 1 1 0 6 21 9 3 0 0 0 0 0 3 1 3 0 1 0 1 1 7 0 0 0 0 0 4 0 1 0 1 0 0 0 0 1 0 0 4 2 0

BGIN 26 0 0 0 1 1 3 0 1 2 1 0 0 69 47 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 4 0 0 0 2 0 1 1 4 0 1 0 0 0 1 0 0

BG 13 1 0 0 1 0 0 1 6 0 0 0 0 25 462 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 0 0 0 0 0 2 0 0

BSQ 1 0 1 5 1 9 0 4 1 2 0 3 0 0 3 563 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 156 0 0 0 0 2 11 0 1 1 2 7 0 0 0 1 24 0 0 6 4 0 1 0 0 0 0 0 0 0 0 2 17 0 4 0 0 0 0 0 0 0 0 1 1 1 0

DKGIN 13 0 0 0 1 1 0 1 10 3 1 1 0 2 0 1 0 12 41 0 0 5 0 0 2 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 3 0 0 1 0

DKG 30 0 0 0 0 0 0 0 34 0 1 3 0 0 0 0 1 16 411 5 2 1 0 1 4 1 1 0 0 0 6 1 2 0 3 5 26 0 0 4 1 0 14 0 1 7 1

DKTS 1 0 0 1 0 1 4 0 0 0 0 0 0 0 0 0 3 0 2 177 8 0 0 0 0 0 0 0 0 0 1 1 2 1 0 0 1 0 0 0 0 0 3 6 0 0 0

DKTR 164 0 0 0 1 0 0 1 2 0 4 1 5 1 3 0 2 2 8 16 71 4 10 0 0 1 3 2 0 0 0 0 1 0 5 0 4 0 0 1 3 2 0 2 2 0 3

DKTP 11 1 0 0 1 0 1 1 6 5 0 10 0 0 1 1 1 3 15 0 1 200 5 0 1 0 0 0 0 0 1 0 0 3 3 4 2 0 1 2 0 1 1 0 1 0 0

DKTOUT 69 0 0 0 0 0 0 0 0 2 14 0 0 0 3 0 0 0 1 0 9 15 27 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 6 10 0 0 7 1

KGIN 24 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 18 36 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 4 1

KG 5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 14 488 7 5 7 0 0 0 0 0 0 0 0 5 0 0 0 0 2 10 0 2 16 12

KGTS 2 0 0 0 0 0 0 0 0 0 2 0 1 2 1 0 0 0 0 0 0 0 0 0 6 94 17 1 0 0 0 0 0 0 0 0 2 1 1 0 0 1 1 4 11 1 0

KGTR 124 0 0 0 0 0 0 0 0 0 6 0 3 1 2 0 0 0 0 0 1 0 0 0 8 7 168 5 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 9 5 0

KGTP 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 13 0 10 94 5 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 6

KGOUT 66 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2 10 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

SCGIN 26 1 2 2 12 0 1 1 6 0 2 1 1 0 2 0 0 0 3 0 0 0 0 0 0 1 2 0 0 4 18 0 5 3 17 2 1 0 2 1 0 0 0 1 10 1 0

SCG 79 2 15 0 30 2 3 0 35 0 1 1 1 3 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 6 245 2 31 3 39 1 2 0 5 1 0 0 0 0 5 0 0

SCO 4 0 3 0 0 0 2 0 2 0 0 14 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 7 55 35 1 14 0 0 0 0 0 0 1 5 0 0 0 0

SCGO 57 0 0 0 3 0 10 0 4 0 0 3 0 0 0 0 5 0 4 1 0 0 0 0 0 0 0 0 0 2 56 33 202 3 19 0 6 0 0 0 0 0 2 0 9 0 0

SCC 2 11 14 2 8 6 0 1 0 0 0 4 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 1 8 8 3 90 25 0 0 0 0 0 0 0 0 0 0 0 0

SCOUT 24 1 15 0 10 2 9 1 8 0 2 11 0 3 1 2 3 1 0 2 1 0 0 0 0 0 0 0 0 6 46 20 37 32 125 2 2 0 0 0 0 0 0 0 1 0 0

3JCGIN 37 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 13 1 1 1 0 0 1 0 2 0 0 0 4 0 2 0 3 37 31 1 3 3 5 0 1 0 3 1 0

3JCG 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 25 0 1 1 0 0 7 5 1 0 0 0 9 0 1 0 0 28 390 9 14 27 0 0 0 2 2 3 0

3JCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 3 142 14 1 0 0 0 5 1 0 0

3JCGR 11 0 0 0 0 0 0 0 5 0 0 0 0 1 3 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 1 16 15 260 24 0 0 0 0 1 0 0

3JCL 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 2 1 0 0 0 0 0 0 0 2 24 3 26 116 4 1 0 0 0 0 0

3JCOUT 93 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 2 0 0 0 0 0 6 1 0 0 1 0 0 0 0 4 2 0 0 4 26 1 0 0 0 0 2

TPGIN 36 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 0 0 3 2 1 13 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 18 50 0 0 9 5

TPG 0 0 0 0 0 0 0 0 0 6 3 7 0 0 0 0 0 2 13 0 0 0 3 0 7 1 0 0 0 0 0 8 13 0 0 0 0 0 0 0 0 17 483 3 3 6 0

TPR 1 0 0 0 0 0 0 0 2 3 0 0 0 1 0 0 0 0 1 5 1 0 0 0 0 5 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 5 119 16 0 0

TPGR 9 0 0 0 0 0 0 0 1 0 1 0 3 1 0 0 0 0 2 0 0 0 0 0 1 4 4 0 0 6 2 0 5 0 0 0 2 0 1 0 0 0 2 13 337 10 1

TPL 20 0 0 0 0 0 1 0 0 2 6 0 0 0 1 0 0 0 3 0 1 0 5 1 21 1 10 5 0 0 0 0 1 0 0 0 1 0 0 1 0 1 2 0 20 61 5

TPLOUT 64 0 0 0 0 0 0 0 0 0 4 0 2 0 0 0 0 0 2 0 9 0 2 0 10 0 1 10 3 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 2 7 28

subj4 NR HGIN HG HR HGRP HL HLOUTJLGIN JLG JLP JLRP JLS JLOUTBGIN BG BSQ BSQOUTDKGINDKG DKTS DKTR DKTP DKTOUTKGIN KG KGTS KGTR KGTP KGOUTSCGINSCG SCO SCGO SCC SCOUT3JCGIN3JCG 3JCR 3JCGR3JCL 3JCOUTTPGINTPG TPR TPGR TPL TPLOUT

NR 5825 1 2 0 0 0 14 1 0 0 29 2 10 8 4 0 3 2 6 0 0 0 20 0 6 0 6 0 14 1 24 17 48 0 31 1 2 0 0 0 69 2 0 0 1 0 7

HGIN 8 31 33 3 0 0 0 2 0 0 0 0 0 3 7 2 1 1 0 0 0 0 0 0 1 0 0 0 0 2 6 0 0 0 0 4 6 1 0 0 1 0 0 0 0 0 0

HG 0 0 554 12 13 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 5 0 0 0 7 1 1 0 0 0 0 0 0

HR 0 0 9 109 23 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HGRP 0 0 27 18 310 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HL 1 0 4 5 11 119 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 40 0 6 2 2 6 103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLGIN 14 0 0 0 0 0 0 21 26 5 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 6 4 0 0 0 4 1 0 0 0 0 1 0 0 0 0 0 0

JLG 0 0 0 0 0 0 0 5 552 17 1 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0

JLP 0 0 0 0 0 0 0 0 10 124 25 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

JLRP 80 0 0 0 0 0 0 0 0 10 222 8 1 1 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

JLS 8 0 0 0 0 0 0 0 6 2 2 126 11 3 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 1 2 9 2 2 13 0 0 0 0 0 0 0 1 0 0 0 0

JLOUT 47 0 0 0 0 0 0 0 1 5 31 13 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0

BGIN 30 0 0 0 0 0 0 0 0 0 0 0 0 80 58 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BG 2 0 0 0 0 0 0 0 0 0 0 0 0 0 507 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 587 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 143 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKGIN 17 0 0 0 0 0 0 0 2 0 0 0 0 4 0 0 0 21 50 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0 1 0 1 0 0 0 0

DKG 26 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 510 7 0 0 4 0 2 0 0 0 0 0 0 0 0 0 0 1 27 0 0 0 3 0 1 0 0 0 0

DKTS 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 199 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

DKTR 70 1 0 0 0 0 0 0 0 0 0 0 0 3 2 0 1 2 8 21 189 6 11 1 0 0 0 0 0 1 0 0 0 0 0 5 3 0 0 0 0 0 0 0 0 0 0

DKTP 5 1 0 0 0 0 0 0 1 6 0 0 0 0 0 0 0 3 26 1 12 207 11 0 1 0 0 0 0 0 0 0 0 0 4 1 4 0 0 0 0 0 0 0 0 0 0

DKTOUT 70 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 2 0 0 0 0 19 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGIN 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 40 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0

KG 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 537 16 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 11

KGTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 121 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

KGTR 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 16 224 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGTP 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 113 19 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

KGOUT 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCGIN 37 2 0 0 3 0 0 1 2 0 0 0 0 1 3 0 2 2 0 0 0 0 0 0 0 0 0 0 0 12 24 3 0 0 31 1 0 0 0 0 2 0 0 0 1 1 0

SCG 89 0 4 0 12 2 3 0 15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 288 3 15 0 81 0 0 0 0 0 0 0 0 0 0 0 0

SCO 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 10 55 42 0 35 0 0 0 0 0 0 0 0 0 0 0 0

SCGO 42 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 28 270 4 14 0 0 0 0 0 0 0 0 0 0 0 0

SCC 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 8 0 87 85 0 0 0 0 0 0 0 0 0 0 0 0

SCOUT 22 0 7 3 2 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 3 23 18 249 0 0 0 0 0 0 0 0 0 0 0 0

3JCGIN 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 37 53 2 0 0 12 0 0 0 0 0 0

3JCG 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 25 465 13 3 10 1 0 0 0 0 0 0

3JCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 150 13 0 0 0 0 2 0 0 0

3JCGR 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 15 292 25 3 0 0 0 0 0 0

3JCL 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 3 25 127 12 0 0 0 0 0 0

3JCOUT 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 2 92 0 0 0 0 0 0

TPGIN 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 18 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 27 59 0 0 0 1

TPG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 2 0 0 0 0 0 0 0 0 14 17 0 0 0 0 0 0 0 0 0 533 3 1 0 0

TPR 0 0 0 0 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 128 14 0 0

TPGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 372 13 0

TPL 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 25 105 24

TPLOUT 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1 6 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 76

Figure 6.10: Comparison of the confusion matrices for subject 4’s results in Approach 4.
Top is the Random Forest CM, bottom shows improvement after belief logic is applied.
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subj2 NR HGIN HG HR HGRP HL HLOUTJLGIN JLG JLP JLRP JLS JLOUT BGIN BG BSQBSQOUTDKGIN DKG DKTS DKTR DKTPDKTOUTKGIN KG KGTS KGTR KGTPKGOUTSCGIN SCG SCO SCGO SCC SCOUT3JCGIN 3JCG 3JCR 3JCGR 3JCL3JCOUTTPGIN TPG TPR TPGR TPL TPLOUT

NR 4339 8 2 0 1 0 8 3 1 1 7 2 14 28 87 0 16 3 18 4 26 0 20 3 96 2 38 3 22 8 73 1 2 9 31 10 77 7 16 10 35 7 117 14 57 8 17

HGIN 37 30 40 2 1 1 5 0 7 2 5 3 0 2 1 0 0 1 12 5 2 2 0 0 0 0 0 0 0 4 0 0 0 0 1 2 2 0 12 0 0 0 0 0 0 0 0

HG 2 15 454 8 12 2 2 0 5 4 4 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 6 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

HR 0 0 4 101 35 11 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

HGRP 1 2 17 24 317 8 0 1 7 1 8 0 0 0 0 0 0 0 5 8 0 0 0 0 0 0 0 0 0 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

HL 0 1 0 6 12 104 6 1 0 0 0 0 0 0 0 5 0 0 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 73 9 13 0 6 7 45 0 0 0 3 0 0 7 0 0 0 0 2 6 17 0 0 2 4 0 0 0 0 5 13 0 0 0 6 2 2 0 1 3 1 0 0 0 0 0 0

JLGIN 15 2 0 0 0 0 0 2 54 0 5 2 2 0 0 0 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2

JLG 2 0 1 0 0 0 0 20 462 16 23 8 3 1 0 0 2 0 42 10 1 0 0 0 0 0 0 0 0 1 2 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0

JLP 0 0 1 1 0 0 0 0 5 133 44 7 1 0 3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 0 0 0 0

JLRP 7 4 2 0 1 0 1 0 21 45 219 3 3 0 1 0 0 0 6 6 0 0 0 0 0 0 0 0 0 5 3 0 4 2 4 0 0 0 0 0 0 0 0 0 0 0 0

JLS 2 2 0 0 0 0 0 3 7 19 3 45 49 0 0 0 1 1 15 3 0 0 0 0 0 1 0 0 0 0 2 0 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0

JLOUT 68 0 0 0 0 0 2 0 0 3 1 38 128 3 1 0 1 1 13 1 6 0 11 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 1 2 2 0 0 1 1 0 0

BGIN 95 0 0 0 0 0 3 0 0 0 0 0 2 55 33 1 8 0 0 0 22 0 3 0 1 3 2 1 3 1 7 1 1 0 6 1 2 0 0 2 10 0 0 1 0 1 2

BG 240 0 1 2 5 1 0 0 0 2 0 0 0 15 238 2 4 0 1 0 12 0 0 0 3 1 7 2 1 0 5 0 1 0 1 0 14 2 1 3 3 0 5 0 0 1 1

BSQ 0 0 0 2 2 7 0 0 0 1 0 0 0 0 0 478 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 117 0 2 1 1 1 2 0 0 1 6 1 3 6 8 2 55 0 4 5 12 7 0 0 4 2 1 6 1 1 10 3 11 0 10 1 2 0 1 0 1 0 1 0 2 0 0

DKGIN 29 1 0 0 0 0 1 0 0 1 1 5 2 0 0 0 0 29 23 0 4 7 4 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0 1

DKG 25 2 1 0 0 0 0 2 35 0 4 18 25 0 0 0 2 6 448 33 1 6 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

DKTS 1 1 0 1 7 1 0 1 12 2 11 4 3 0 0 0 1 2 18 232 2 0 0 1 0 0 0 0 0 0 4 0 0 1 7 0 0 0 0 0 0 1 0 0 0 0 0

DKTR 125 0 0 0 0 0 6 0 4 0 0 0 4 17 3 0 11 5 10 13 91 2 4 0 6 1 1 1 0 0 1 2 0 0 1 4 0 0 0 0 1 2 0 0 1 2 3

DKTP 4 2 0 0 0 0 0 2 2 0 1 2 3 4 0 0 4 4 12 6 6 204 13 0 0 0 0 0 0 0 1 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1

DKTOUT 52 0 0 0 0 0 1 0 0 0 3 0 4 6 0 1 2 3 2 0 6 23 47 0 0 1 0 1 0 0 0 1 0 0 0 0 2 3 0 0 0 0 0 0 1 0 0

KGIN 40 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 42 1 1 1 2 0 0 0 0 0 0 2 1 0 0 0 0 0 4 0 7 0 1

KG 215 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 0 0 1 1 0 0 7 280 11 7 6 14 0 0 0 0 0 0 0 6 0 0 0 0 2 33 1 22 2 1

KGTS 10 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2 0 0 1 0 0 1 0 5 90 32 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0

KGTR 60 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 5 25 255 7 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 0

KGTP 12 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 2 1 1 0 6 8 16 85 17 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

KGOUT 113 0 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 25 0 0 12 49 0 0 0 0 0 0 0 1 0 0 0 0 0 4 0 9 0 0

SCGIN 48 2 4 0 3 0 3 0 0 1 8 0 0 1 2 0 4 0 0 1 5 0 0 0 0 2 0 0 0 42 52 1 3 1 20 0 1 2 1 6 4 0 0 2 2 0 0

SCG 53 0 1 0 3 0 4 0 0 0 8 1 1 3 11 0 1 0 1 3 1 0 0 0 2 1 3 0 0 29 216 8 58 1 24 2 43 0 2 2 3 0 0 1 0 0 0

SCO 19 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 1 6 0 0 0 0 0 0 0 0 3 4 72 30 13 12 0 1 0 1 0 0 0 0 1 0 0 0

SCGO 4 1 0 0 0 0 0 0 0 1 2 6 5 0 0 0 5 0 0 2 0 0 0 0 0 1 0 0 0 1 29 29 228 10 35 0 0 0 0 0 0 0 0 1 0 0 0

SCC 5 0 0 0 0 0 1 0 0 12 7 0 0 0 0 0 0 0 0 2 0 4 1 0 0 0 0 0 0 1 5 10 4 89 35 0 0 0 0 0 1 0 0 0 0 0 0

SCOUT 32 0 0 0 1 2 0 0 1 7 8 0 1 3 0 0 10 0 0 7 2 3 0 0 0 1 0 0 0 11 28 10 28 30 140 0 3 2 0 3 4 0 0 0 0 0 0

3JCGIN 76 1 5 0 0 0 1 1 1 1 3 1 1 1 0 0 0 0 1 1 6 0 0 1 7 0 1 0 0 0 11 0 0 0 0 7 20 0 0 2 5 3 0 0 2 0 1

3JCG 123 0 0 0 0 0 0 1 0 0 2 0 0 2 16 0 0 0 1 0 0 0 0 0 10 0 2 0 0 0 16 0 0 0 0 3 364 8 1 4 25 0 1 0 0 0 0

3JCR 10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 8 113 26 4 1 0 0 2 0 0 0

3JCGR 58 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 3 0 0 0 0 0 0 1 18 323 12 0 0 0 0 2 0 0

3JCL 19 2 0 0 0 0 0 0 0 0 0 0 2 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 7 0 0 0 5 1 12 5 20 44 28 0 0 0 1 0 0

3JCOUT 44 0 0 0 0 0 0 0 0 0 2 0 0 6 5 0 8 0 0 0 3 0 0 0 0 0 1 0 0 1 7 0 1 1 3 1 35 0 0 7 123 0 0 0 0 0 0

TPGIN 95 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 2 2 0 2 0 1 0 9 1 6 1 1 0 1 0 0 0 0 1 0 0 0 0 0 12 14 0 14 0 2

TPG 362 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 2 48 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 114 3 24 0 2

TPR 31 0 0 0 0 0 0 0 0 0 0 0 2 3 1 0 0 0 0 0 2 0 3 0 0 4 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 97 6 0 0

TPGR 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 2 1 33 1 3 1 5 1 2 0 0 0 0 0 0 2 0 0 0 0 17 6 163 0 1

TPL 92 0 0 0 0 0 0 0 0 0 0 0 0 6 4 0 1 0 0 0 2 0 0 0 14 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 1 4 3

TPLOUT 101 1 0 0 0 0 0 1 0 0 0 0 0 2 1 0 1 0 1 1 5 0 0 1 15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 3 1 9 0 9 2 5

subj2 NR HGIN HG HR HGRP HL HLOUTJLGIN JLG JLP JLRP JLS JLOUT BGIN BG BSQBSQOUTDKGIN DKG DKTS DKTR DKTPDKTOUTKGIN KG KGTS KGTR KGTPKGOUTSCGIN SCG SCO SCGO SCC SCOUT3JCGIN 3JCG 3JCR 3JCGR 3JCL3JCOUTTPGIN TPG TPR TPGR TPL TPLOUT

NR 4289 7 0 0 0 0 3 0 0 0 0 0 3 57 127 0 3 6 17 2 0 0 8 1 48 1 8 0 54 2 75 1 0 10 42 4 56 14 1 0 48 16 278 19 23 7 21

HGIN 34 56 54 3 0 0 1 1 1 1 0 0 0 4 3 0 1 0 9 6 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

HG 0 1 489 8 1 0 7 0 3 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HR 0 0 4 112 31 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HGRP 0 0 2 17 367 13 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HL 0 0 0 5 14 123 5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HLOUT 81 0 6 0 1 8 90 0 0 0 0 0 0 7 4 0 0 0 3 2 0 0 3 2 5 0 0 0 0 6 7 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

JLGIN 19 0 0 0 0 0 0 13 52 0 0 0 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2

JLG 1 0 0 0 0 0 0 1 525 19 18 4 5 0 0 0 0 0 23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLP 0 0 0 0 0 0 0 0 8 155 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLRP 0 0 0 0 0 0 0 0 19 48 262 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLS 0 0 0 0 0 0 0 0 11 20 4 17 102 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JLOUT 70 0 0 0 0 0 0 0 0 2 0 1 206 0 0 0 0 0 6 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BGIN 37 0 0 0 0 0 0 0 0 0 0 0 0 118 87 2 8 0 0 0 0 0 0 0 1 0 0 0 0 0 6 0 0 0 1 0 2 0 0 0 5 0 0 0 0 0 0

BG 116 0 0 0 0 0 0 0 0 0 0 0 0 4 412 2 19 0 0 0 0 0 0 0 0 1 2 0 0 0 1 0 0 0 0 0 7 3 0 0 0 0 7 0 0 0 0

BSQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 486 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BSQOUT 119 1 4 0 0 0 0 3 3 0 0 0 0 0 4 6 136 0 2 1 2 0 0 0 0 0 0 0 0 0 3 0 1 0 2 0 3 0 0 0 0 0 1 0 0 0 0

DKGIN 28 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 38 28 0 0 2 0 2 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 1 5 1 0 0

DKG 13 3 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 4 527 40 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DKTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 270 4 3 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0

DKTR 90 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 2 14 14 170 3 5 1 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0

DKTP 2 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 4 1 18 7 9 200 28 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

DKTOUT 47 0 0 0 0 0 0 0 0 0 0 0 0 8 1 2 0 0 2 0 0 28 68 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

KGIN 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 53 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 6 0 4 2 4

KG 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 428 15 1 5 67 0 0 0 0 0 0 0 0 0 0 0 0 2 18 0 4 0 0

KGTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 100 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGTR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20 331 9 4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGTP 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 14 108 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KGOUT 70 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 11 2 1 1 133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCGIN 33 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 90 1 0 0 39 1 0 0 0 0 0 0 0 6 0 0 0

SCG 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 298 6 59 1 41 0 32 3 0 1 4 0 0 0 0 0 0

SCO 15 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 73 36 6 20 0 0 0 0 0 0 0 0 8 1 0 0

SCGO 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 13 296 10 27 0 0 0 0 0 0 2 0 2 0 0 0

SCC 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 8 85 71 0 0 0 0 0 0 0 0 0 0 0 0

SCOUT 36 3 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 13 4 20 23 223 0 1 0 0 0 0 0 0 0 0 0 0

3JCGIN 79 2 3 0 0 0 0 1 2 2 2 0 0 4 0 0 1 0 1 0 0 0 0 0 6 0 0 0 0 2 6 0 0 0 0 5 25 1 0 0 15 2 0 0 0 0 1

3JCG 48 0 2 0 0 0 2 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 11 0 0 0 2 0 3 0 0 0 0 2 467 21 0 0 17 0 0 0 0 0 0

3JCR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 114 32 1 0 0 0 5 0 0 0

3JCGR 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 11 375 16 0 0 0 0 0 0 0

3JCL 16 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 6 29 53 36 0 0 0 0 0 0

3JCOUT 43 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 2 0 0 179 0 0 0 0 0 0

TPGIN 49 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 1 3 0 0 0 0 0 8 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 34 41 0 12 4 8

TPG 132 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 37 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 356 6 18 5 10

TPR 8 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 123 13 0 0

TPGR 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 26 264 21 5

TPL 83 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0 0 0 0 0 0 0 6 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 2 4 4 15

TPLOUT 93 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 1 1 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 18 0 7 0 17

Figure 6.11: Comparison of the confusion matrices for subject 2’s results in Approach 4.
Top is the Random Forest CM, bottom shows improvement after belief logic is applied.
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Figure 6.12: Comparison of the results of Random Forest classification for all five subjects
using the Matlab Treebagger class and predict method for various numbers of randomly
generated trees. Accuracy improves noticeably up to 15 trees then levels off around 25 and
shows no improvement beyond 50. A separate evaluation was done on the number of trees
in the Approach 4 Random Forest since the method is different from the Approach 1 Weka
implementation. In both cases, however, 25 trees was found to be optimum.
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Figure 6.13: Comparison of the results of Random Forest classification after applying the
belief calculation for all five subjects using the Matlab Treebagger class for various numbers
of randomly generated trees. Accuracy improved noticeably up to 15 trees then begins to
tail and shows no improvement beyond 50.

Figure 6.14: Comparison of the results of the improvement the belief calculation brought
to classification accuracy for subjects 1 (relatively high accuracy) and 2 (relatively low).
Improvement was approximately 8% for subject 1 and 10% for 2.
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Chapter 7: Discussion and Conclusions

Representing the grips and movements in Table 4.3 - prehensile patterns - effectively, re-

quired accepting the challenge of having to select both electrical signal data from multiple

extrinsic muscles of the hand as well as position data obtainable from the accelerometer.

Not all relevant signals contributing to prehensile activity were captured from a few surface

electrodes - deeper muscles may not be adequately represented. An appropriate set of func-

tional prehensile patterns was selected that was likely to be useful in informing clinicians

about which muscles and hand/wrist movements are associated with these activities. With

further improvements they can form the basis for applications involving myoelectric control

of hand grips and movements.

7.1 Summary of Results for the Four Approaches

The choice of which methods to use to reduce the captured data and recognize the patterns

was empirical and approached from the perspective of trying to identify the best fit. An

MAV window of 100 ms was used. In the first approach, standard classifiers (Decision

Tree, Nearest Neighbor, Support Vector Machine, and Random Forest) were trained to

recognize individual 100 ms instances without considering any other information. The best

performer, Random Forest (25 trees), yielded an average accuracy of 71.28% for 47 classes.

While this is comparable to results obtained elsewhere for similar problems, it is less than

what would be needed to be useful in real life scenarios. Besides having a too-low accuracy,

a difficulty arises when an activity consisting of multiple 100 ms signal instances results in

an inconsistent stream of predicted movements. How would a stream of {HR, HR, HL, HR,

JLS, HR, JLS} be interpreted? Smoothing the result stream, as reported in [34] may help,

but does not erase all ambiguity.
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The second approach, Affinity, attempted to improve classification accuracy in two ways.

The first used the SAX concept to discretize the real-valued signals into a set of symbols.

This had the effect of normalizing the data while reducing the total signal space to a

finite number of symbol combinations. It also allows for an easier visual interpretation of

signal values. For example, it is plain to see that for a five symbol alphabet ’EEEEEEEE’

represents a set of high signal values compared with ’AAAAAAAA’.

The second improvement injected time-context into the process of classifying a signal

by considering immediately preceding values in the stream. Affinity values for a single 100

ms instance can reflect a strong probability for a specific class, in some cases with a 90%+

probability for one class and low or zero values for the rest. In other cases, the affinity

can be spread across ten or more classes with a strong preference for none and the selected

class’s affinity being below 20%. In those instances, the case for selecting the class with

the highest affinity is weak. The class decision was improved by calculating the sum of

the class values for the current with some number of previous instances to better reflect

the ”sense of the neighorhood” in terms of identifying the true class. Experimenting with

various combinations of SAX symbols and numbers of words in the affinity summation led

to an improved average accuracy of 76.72% for 11 symbols and 30 words. To achieve this

accuracy, 30 words or 1.5 seconds of signal data needed to be read and processed before a

class decision was made, thus delaying the decision.

While the Affinity approach improves prediction accuracy using information from adja-

cent 100 ms instances, the third approach considered the entire movement. This approach

also relied on converting the signal values to SAX symbols prior to classifying. The approach

segmented the data stream into the 47 activities listed in Table 4.3. It also employed the

Dynamic Time Warping concept to account for small time shifts in the signals and allow

for a relaxed and more realistic comparison. In this approach the number of SAX sym-

bols was varied and the resultant accuracy noted for various numbers of words used in the

classification. Surprisingly, the number of SAX symbols had little impact on accuracy, but

increasing the number of words improved accuracy before levelling off between 20 and 30.
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At that level the average accuracy was 73.01%. As with Affinity, achieving this accuracy

imposed a processing delay - in this case of 30 words, or 1.5 seconds.

Approach 4 is similar to Approach 1 in that it processed the 100 ms MAV instances of

the signal stream and did not convert them to SAX symbols. In this approach the instances

were classified using an HMM employing a Random Forest classifier to compute a class

probability for each instance based on the number of trees that identified the class as the

true one. This approach then performed a post-processing step by calculating a ’belief’

value for the possible classes based on the previous instance’s probabilities, class-to-class

transition probabilities, and the probabilities of the current instance’s prediction conditioned

by a confidence factor. Like Approach 1, 4 processed the 100 ms instances as they were

encountered and did not require segmentation of labelled activities for classification, as in

Approaches 2 and 3.

Approach 4 classifier training followed a similar process as Approach 1, using individual

100 ms windows as training instances. In post-processing, however, continuous movement

10-second, 200-instance segments were presented for classification. This post-processing

belief calculation took advantage of the time-ordering within the segments by considering

adjacent instances in making class decisions. Accuracy of the belief calculation tests ranged

from 68.14% to 84.3%, an improvement of ≈ 8% to 11% for the various subjects. The

average for the five subjects was 75.09%.

In summary, Approach 2 (Affinity) improved on the classifiers used in Approach 1, and

Approach 3 (DTW) improved on 1 but not 2. Including context information from the

signal stream helps, as does considering entire movement sequences. This is not surprising

since the goal is to recognize complete movements, and not small slivers of movements.

Incorporating a wider swath of data improves this recognition. Approach 4 accuracies were

superior to those from Approaches 1 and 3, but are slightly lower than the results for the

best parameter combinations in Approach 2. However, Approach 4 involved whole activity

segments, not just segments as was the case with Approaches 2 and 3.

Figure 7.1 lists the comparative accuracy and standard deviation for all subjects and
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Appr# Method  (parms) Accuracy Stdev Accuracy Stdev Accuracy Stdev Accuracy Stdev Accuracy Stdev Accuracy Stdev

1 RF  (25) 82.69 3.60 66.52 2.90 67.00 4.70 76.49 5.59 63.70 4.90 71.28 4.34
2 Aff  (11/10) 81.05 9.90 68.28 8.81 63.42 7.75 73.55 13.59 57.31 10.10 68.72 10.03
2 Aff  (11/20) 84.38 8.93 75.52 7.86 68.82 7.59 77.69 12.88 65.58 9.63 74.40 9.38
2 Aff  (11/30) 85.03 8.00 78.07 7.53 72.02 7.18 79.15 12.52 69.32 8.35 76.72 8.72
3 DTW  (11/10) 73.76 6.53 54.61 10.16 58.69 8.17 60.99 7.72 58.69 6.99 61.35 7.91
3 DTW  (11/20) 83.87 7.31 64.54 5.62 64.01 7.60 70.57 5.29 64.01 6.75 69.40 6.51
3 DTW  (11/30) 85.46 6.56 68.26 6.61 67.91 8.71 75.53 7.32 67.91 8.29 73.01 7.50
4 HMM 84.30 4.20 72.50 3.10 70.20 4.10 80.29 5.49 68.14 5.10 75.09 4.40

averagesubj1 subj2 subj3 subj4 subj5

Figure 7.1: Overall accuracy and standard deviation for the four approaches, all five subjects, and average
of the five. Separate results are shown for three parameter combinations for Approaches 2 and 3. In those
cases the numbers in parentheses are the number of SAX symbols generated from the signal stream and the
number of words used in the approach calculations.

approaches. The accuracy is the average of all 12 cross-fold tests for each subject and

approach, and the standard deviation was calculated from the accuracy of those 12 tests for

each subject-approach combination. For Approaches 2 and 3, multiple results are shown for

the various combinations of SAX symbols and signal words used. The Affinity Approach

(2) is nearly equivalent to Approach 1 for each subject and the average when 11 symbols

and 15 words are employed, and superior at 20+ words. The DTW Approach (3) is nearly

equivalent to Approach 1 at 20 and 30 words, but inferior below that level. It requires 30

words to reach equivalence for the Affinity Approach at the 20 word level. The results for

the HMM approach (4) are nearly equivalent to the best in Approach 2, and superior to all

others, while only requiring information from the current and immediately preceding 100

ms signal instance. Approach 2 required 20+ instances, or one second of signals, to achieve

similar results. Approach 3 required 30 words, or 1.5 seconds of data, yet achieves slightly

inferior results. Note that the Random Forest and HMM approaches show lower standard

deviations compared with the Affinity and DTW approaches.
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7.2 Comparison with Results from Similar Studies

Table 7.1 compares the accuracy in this study for Approach 4 (HMMs) with results achieved

by other researchers. Other results reported in the literature almost exclusively classify

small window segments of 500 ms or less. Since Approach 4 produced the best results for

the window based approaches in this study, its results are compared. The top two rows are

results reported in this dissertation. The first involved identifying 47 classes of continuous

movement with an average accuracy of 75.09%. The other shows an accuracy of 85.68%

when the transition movements are not counted. Transitions had low recognition accuracy

- a problem reported in other studies. A common solution is to ignore them in reporting

results. The higher results are a more consistent comparison with other studies, while the

lower results are included to show applicability to continuous movement.

Atzori is from the NINAPRO project and is the closest comparator to the research re-

ported here in terms of types and number of hand and finger movements involved. That

study attempted to recognize 50 classes of mixed hand, wrist, and individual finger move-

ments. The movements involved executing and holding a posture - for example, grasping

a bottle or flexing an index finger. The study was limited to identifying isolated single

movements and did not attempt to identify a continuous set that would be used in an ADL.

The best results used a relatively large feature set of 336 and achieved accuracy equivalent

to that reported here (75.27%). Various other combinations of features were also reported.

The RMS feature results are included in the table since the number, twelve, is the closest

configuration to the eight MAV features used in this study. Accuracy for this reduced set

was somewhat lower (71%).

The other three results in the table show high accuracy, but involved many fewer move-

ment classes and are typical of studies involving control applications. As with the Atzori

results, the focus in all was in executing and holding a single posture for a short period of

time rather than attempting to identify a continuous stream.
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Table 7.1: Comparison with results from studies involving grips and movements of the wrist, hands, and
fingers. The top two rows are results reported in this dissertation - the first involving continuous movement
and 47 classes, the other ignores the transition movements that showed relatively low accuracy. Atzori is
the closest comparator to this study and involved 50 classes with two sets of features used giving different
accuracies. The other three listed show high accuracy, but involved many fewer movement classes.

Researcher Grips & Movements # classes # chan # features Acc.(%)

Shuman (HMM) Hand-continuous 47 8 8 75.09

Shuman (HMM) Hand-ignore transitions 31 8 8 85.68

Atzori [33] Hand& finger-single movements 50 12 336 (All) 75.27

Atzori [33] Hand& finger-single movements 50 12 12 (RMS) 71.00

Tenore [31] Finger movements 12 32 128 84.9-99.7

Castellini [19] Hand grips 6 10 10 89.00

Khokhar [36] Wrist movements 19 4 24 88.00

7.3 Performance Comparison of the Approaches

The performance of the approaches developed here varied and are listed in Table 7.2. The

timings were recorded while running implementations of the approaches on an Apple iMAC

3.06 GHz Intel Core 2 Duo Processor with 4 GB of 667 MHz memory. The implementations

were written in Matlab. The DTW distance measure was a C language version from [42].

The timings were collected by inserting Matlab ’tic’ and ’toc’ timings in the imple-

mentation code. Since these record wall clock times, no other processes were active on the

iMAC while the timings were collected to ensure that only time required by the training and

testing was counted. A complete set of training and test runs were conducted as described

earlier. Twelve runs were executed with 11 repetitions for training and one for testing,

repeated twelve times so that each repetition participated in testing once. Training and

test timings were collected for all runs and averaged.

The Affinity and DTW approaches both have very low training times since there is

relatively little model building in either. Both times listed include converting the signal

values to SAX symbols. By contrast, the Random Forest and HMM approaches both

require substantial training time since they rely on generating 25 decision trees.

Classification times show the opposite trend. Affinity requires .024 seconds (24 ms) to

classify a single 100 ms instance, while DTW requires 0.115 (115 ms) to classify an entire

88



Table 7.2: Comparison of the performance of the four approaches developed and evaluated in this study.

Approach Classification unit Acc.(%) Training time (s) Classif. time (s)

Affinity (SAX) 100 ms MAV window 76.72 1.9 .024

DTW/NN (SAX) entire movement segment 73.01 1.62 .115

RF(25 trees) 100 ms MAV window 65.54 78.0 .0008

HMM 100 ms MAV window 75.09 78.0 .00083

segment based on 30 SAX words (each word representing a 100 ms signal instance). Random

Forest requires 0.0008 (.8 ms) to classify one 100 ms instance after model building. Likewise,

HMM only requires 0.00083: 0.0008 to classify with the RF model and an additional 0.00003

to compute the belief calculation of a single instance.

While the Random Forest and HMM approaches are very fast to classify an instance,

Affinity only requires three times the amount, and even DTW, a method known to be slow,

only requires .115 seconds. However, Affinity and DTW both require that 30 words (30 100

ms instances) of a segment be reviewed before a classification decision can be made. Random

Forest and HMM only require a single 100 ms instance to render a decision. Requiring 30

instances before a decision means a delay of 1.5 seconds and is far greater than the actual

classification time itself. The implications of this for the use of Affinity and DTW in control

applications is discussed later.

7.4 Source of Errors

While the accuracy range of the approaches reported here is promising considering the

large number of classes involved, the best method only achieved an accuracy of 76.72%, or

a 23.28% error rate. Classifier error can be decomposed into three components: variance,

bias, and noise [11,44]. Variance refers to the effect of variability of the training data on the

classifier’s decision boundaries. Classifiers whose decision boundaries change a lot when the

training data changes are said to have high variance. Bias is the impact of the classifier’s

design on its decision boundary. Those with complex boundaries that separate the training

data classes with high accuracy are said to have low bias. Noise is the intrinsic error in the
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target data.

The ideal goal is to construct a classifier with low variance and low bias, which is difficult

to achieve because there is a trade-off between the two. Classifiers with low variance have

simpler decision boundaries and are less sensitive to variation in the training data. However,

the simple boundary can result in many misclassified training instances, resulting in high

bias. On the other hand, classifiers with complex boundaries have low bias because they

have fewer misclassified training instances. Changes in the training data, however, can

result in significant changes in the decision boundary, resulting in high variance. Further,

the complex boundary may not generalize well by correctly classifying new, previously

unseen instances.

Approaches 1 and 4 attempt to balance bias and variance by employing Random Forest,

an ensemble of decision tree classifiers. Decision Trees are sensitive to changes in the training

data and have high variance. By combining them into an ensemble of trees Random Forest

improves the generalization error and lowers the variance of the underlying decision trees

[44].

The following two subsections discuss three areas of errors specific to this particular

problem.

7.4.1 Recognizing Activities versus Sub-activities

The previous chapter includes confusion matrices showing classification results for the var-

ious approaches and subjects (Figures 6.1, 6.2, 6.4, 6.5, 6.7, 6.8, 6.10, and 6.11). All the

confusion matrices show strong results along the diagonal (darker colors and higher num-

bers, where displayed), indicating correct classification, and errors occurring within the grip

families shown as boxes along the diagonals and as neutral/rest in column 1.

The percentage of correct classifications is good considering the large number of classes

to be recognized. The many errors occurring within the grip family boxes indicate that the

accuracy for recognizing the base grip is very high, even if the specific sub-activity is wrong.

A further look at the errors reveals that many misclassified instances occur immediately
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before or after the true class on the diagonal. This could be caused by errors in labelling, or

by a failure to accurately recognize transitions from a given class to its successor. Likewise,

identifying a neutral/rest instance in a sequence of otherwise active grips or movements

could also be due to labelling issues, but might also reflect the reality that the subject

was actually in a rest state for a very short period (100-200 ms) before completing the

movement. Relaxing the classification success criteria to allow for correct identification as

being within the entire grip family or neutral/rest results in higher classification accuracy.

7.4.2 Ambiguous classes and overlapping patterns

More generally than the problem of confusing instances within the same grip family is the

idea that not all class patterns are separable by any boundary. They do not all fall in their

own unique space because their patterns overlap. This is a particularly difficult problem

that might resist any solution. A certain level may be unavoidable because of this intrinsic

noise in the data.

7.4.3 Issues Concerning Labelling

An important task in using supervised learning techniques such as classification is labelling

the signal instances with the grip or movement associated with the signal to establish its

ground truth. Each subject’s 16 minutes of collected data resulted in ≈ 19, 000 instances

that required labelling. This was time-consuming, prone to error, and is a well-known

problem with supervised learning.

There are techniques for improving the labelling process and making it less onerous and

more accurate. For the problem described in this dissertation, using other data modalities

can help, as was the case with using accelerometer data. However, this still required manual

data review and, while it made the resulting labels more accurate, did not completely

eliminate mislabelled instances and increased the amount of time needed for the process.

The labelling problem is a major reason the activities performed by subjects followed

a timed script. That simplified the mapping of activities to signals since it provided a
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chronological starting point for recognizing transitions and assigning appropriate labels.

Using accelerometer data provided additional data that allowed for more precision in the

labels. Ultimately, it will be desirable to track activities unconstrained by scripts - activities

that a typical person might perform throughout the day. These will span longer time

periods than a minute or two and will consist of grips and movements in many different

combinations. Assigning ground truth to such signal streams will require an automated

labelling process that uses modalities such as accelerometer, positional, or pressure inputs.

With such a process a much larger data set can be collected and transition tendencies,

important in Approach 4, can be learned.

7.5 Belief Calculation Versus Random Forest

The Approach 4 HMM used the two step process of (1) calculate Random Forest (RF)

probabilities, and (2) apply the ’belief’ calculation to identify the class. As was shown in the

Results chapter, ’belief’ improved the RF accuracy by 8% to 11% for the various subjects,

and the overall accuracies ranged from 68.14% to 84.3%. Improvements are possible. For

example, the transition matrix was created using a ’best judgement’ method on how likely

transitions from activity to activity were to occur. After initial set-up, no attempts were

made to systematically tune the values. Would different values improve overall accuracy?

Would they improve the accuracy (true positive rates) of individual grips or movements?

Would tuning the values risk over-fitting them to specific subject data and not generalize

well? This was not explored here, but is an interesting question for future research.

7.6 Practicality of the Approaches

How practical would the approaches be in real-life situations? For the use-case involving

after-the-fact review and batch processing of the signal stream, all the approaches are

practical. For those cases, Approach 2 or 3 provide high accuracy and the requirement for

a one or two second data segment to achieve satisfactory accuracy is not a problem.
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For real-time control systems, however, rapid turn-around of data input and activity

identification is essential. A 300 ms processing window is generally used as a maximum

value [14] in such applications. Approach 1 only requires collection and analysis of a 100

ms signal slice before rendering a classification decision. The 300 ms timing requirement

would be met, at the cost of slightly lower overall accuracy (ranging from 63.7% to 82.69%)

and some inconsistency in the predicted signal stream classes.

Approach 2 only requires consideration of the current signal instance and some that were

already seen, and yields high accuracy. The range for 11 SAX symbols and 30 comparison

words as listed in Table 6.2 was from 69.32% to 85.03%. Achieving this accuracy required

30 processing windows, or 1.5 seconds, of data before an activity is recognized to the stated

accuracy and is therefore too slow for the real time requirement. Reducing the number of

windows to five (.25 seconds of data) could bring the processing time to under 300 ms, but

lowers the accuracy range to 49.83% to 75.16%.

Approach 3 requires that an entire activity segment be considered. The results show

that 30 words, or 1.5 seconds of signal data, is required to reach the maximum accuracy

reported here. The range for a 30 word segment is, from Table 6.3, 67.91% to 85.46% when

using seven SAX symbols. A 1.5 second delay is too long in most real-time applications

and would have to be shortened to consider this approach in those settings. Reducing the

number of windows to five to meet the timing requirement results in an accuracy range of

40.07% to 68.49% (for all symbol and word combinations), which is unacceptably low. For

those without a real-time requirement, the accuracy when considering a 30-word, 1.5 second

data segment is acceptable and makes the approach usable.

Approach 4’s accuracy range was 68.14% to 84.3%. The approach is the most attractive

one for real time settings. Its accuracy range is somewhat better than for Approach 1 and

it has similar timing characteristics. Unlike 1, it considers the relative order and timing of

activities. Potential improvements can therefore be made by tuning the transition matrix

and considering more previous states.

The findings reported here report on four different approaches that can be successfully
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applied to different use-cases. They support the view that prehensile patterns can be dis-

tinguished by combining electrical and mechanical properties of the task. This is both

clinically useful and opens the way for an approach to help simulate hand functional activ-

ities. With improvements it may also prove useful in real life settings, including real time

control applications.
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Chapter 8: Future work

Future work should address some of the shortcomings of the approaches reported here. More

prehensile patterns should be investigated, leading to the goal of recognizing continuous

movement, not just discrete action segments. A step toward achieving that goal is to create

a more holistic model that combines the electric signal, the mechanical components, and

the dynamic components to picture the activity in its entirety.

Exploring the recognition of individual tasks and their differences in accuracy would be

useful in breaking down the total prehensile space into those that can be easily recognized

and those that cannot. In this research the ball squeeze (BSQ) and hammer grip (HG) were

well-recognized with high true positive rates for all methods. Tip pinch grip (TPG) and

key grip (KG), by contrast proved difficult to recognize. For the difficult cases, additional

analytical tools can be considered such as recognizing family of movements organized around

their base grip. For those, a hierarchical strategy could be used to recognize the family, for

example a hammer grip, and then operate only on those instances belonging to that family

in a secondary step to identify the specific movement involved such as hammer raise and

lower.

An important goal in exploring prehensile patterns is to model continuous, real time

movement that people typically perform during the course of a day. This would address

the real-time control use case. The research reported here relied on training and testing

scripted activities. Approach 4 began considering continuous segments of 10 seconds, but

within the constraints of the scripts.

The following items briefly present and discuss potential research paths for exploring

the recognition of continuous movement.

Expanding the number of grips and movements. While the 47 activities used in this
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research is large compared with most other reported results, it is far less than what would be

needed in real life control of a robotic or prosthetic wrist and hand. Increasing the number

would help move toward a real-world solution, but might stretch classification techniques

beyond their ability to identify them with enough accuracy to meet requirements.

Using more data modalities. EMG was central to this research. However, additional

modalities could be introduced to improve recognition. For example, accelerometer data

was used here in a limited way to help label transitions, but it could also be used to

build a feature set. Other modalities would be necessary to bring additional capabilities to

recognition. Examples include pressure devices to determine the amount of force used in a

grip, and positional sensors to identify the location and speed of a movement.

More subjects. This is perhaps the most obvious expansion of the research, but an

important one needed to give confidence in the universality of the results. An ideal subject

pool would include a diverse set of people representing different ages, sexes, ethnicity, and

abilities. Data collection is limited by the practicality that it is time consuming. Still,

expanding the pool beyond five subjects would be an excellent way to continue.

Collecting more data. Successfully modelling continuous movement requires the collec-

tion and processing of considerably more data than was done in the research reported here.

Data reflecting the performance of routine, unscripted activities would require many min-

utes and probably hours of signal input. The large variety of movements, need for many

examples of each, the many transitions, and the incomplete movements that are started but

not finished all need to be collected and modelled.

Improving labelling. The large amount of data required to model continuous movement

cannot be manually labelled, as was done in this research. The large volume renders manual

methods infeasible. Collecting additional modalities, including accelerometer, pressure, and

positional, and synchronizing them with the EMG data stream gives the possibility of using

the other modalities to create an automated process to quickly and accurately label the

large datasets that would be needed.
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Experimental parameters. This research did not exhaustively explore the various pa-

rameter spaces. The signal stream windowing can be varied to a smaller or larger amount,

and the overlap changed or dropped. Transition probabilities used in Approach 4 can be

changed to give different weights to transitions. Additional features beyond the MAV used

here can be tried - the Background section described some used elsewhere.

Hierarchical models. Multiple models, including classification, could be used to recognize

a grip family in one step and movements performed while the hand is assuming that grip

in a second step. In such a hierarchical approach, different families could be trained with

different techniques suited to their particular needs. This has the potential to expand the

number of recognized activities while keeping the demands on classifiers to a reasonable

number of classes.

Modelling activity atoms. Techniques including clustering could be used to break down

activities into smaller units, or atoms. These atoms could be assigned as symbols and an

alphabet developed that would be used as descriptors of the larger grips and movements.

Instead of trying to identify whole activities, the atoms would be recognized and an eventual

movement identified from its known atomic parts.
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