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ABSTRACT 

BEHAVIORAL INTERVENTIONS IN ENERGY CONSUMPTION 

Joel Hicks, Ph.D. 

George Mason University, 2019 

Dissertation Director: Dr. David Hart 

 

The “Energy Paradox”, whereby consumers undervalue energy efficiency investments, is 

one of the most puzzling phenomenon for energy policy researchers. Within this sector 

behavioral economics is beginning to provide understandings that cannot be explained 

using neoclassical economic theory. Using the results of a field experiment designed for 

this dissertation, several theories of behavior toward electricity consumption are 

examined. One of those theories, prospect theory, is applied for the first time using an 

incentive structure, or frame, called an Energy Efficiency Escrow (EEE). This treatment 

is compared with a traditional financial incentive structure called pay-for-performance 

(P4P), which itself has not yet been applied to the residential household energy sector. 

Although there were substantial energy reductions in both groups, the research found that 

consumers who were forced to calculate their potential gains (P4P-implicit gains) 

conserved more energy than those who were constantly updated on their potential losses 

(EEE-explicit losses). The P4P group also underestimated their final reward relative to 



xv 

 

the EEE group. Users who found elements of the EEE confusing actually increased their 

energy usage relative to their baseline. Additionally, higher baseline energy users in both 

groups conserved a higher percentage of their baseline energy use relative to lower 

baseline energy users. 
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INTRODUCTION 

This dissertation provides new insights in how consumers respond to financial 

incentives targeted at energy consumption reduction. It provides results from a 

randomized control trial (RCT) conducted over nine months with energy users residing 

on a college campus. The first major section,  

 

 

 

Energy demand policy and the “energy paradox”, provides a policy and regulatory 

backdrop that motivates the research. It suggests that energy efficiency suffers from 

regulatory and structural barriers that prevent it from being an even more effective GHG 

reduction tool while simultaneously reducing energy costs. Currently deployed 

technology, including AMIs, are being under-utilized in view of the ability to leverage 

real-time usage feedback for behavioral changes. 

The next major section,  

 

 

 

Theories of Behavior applied to Energy Consumption, provides an overview of the major 
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behavioral theories that have been applied (or have the potential to be applied) to energy 

consumption. Where appropriate, empirical evidence is provided with their associated 

impacts. The reader will notice that many theories that appear relevant to energy 

consumption have little, if any, reliable studies to estimate their impact. In fact, 

behavioral studies applied to energy consumption are nascent with a large potential to be 

studied further. Prospect theory remains one of the most understudied areas of behavioral 

economics applied to energy consumption. 

The next two sections,  

 

 

 

Research Design and  

 

 

 

Field Experiment Results, provide the details of the field experiment that address the four 

primary research questions. Several unexpected insights were also discovered from the 

field experiment. Those that the author assessed as particularly relevant for further study 

are provided in more detail. Finally, the  
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Conclusions and Policy Implications section is the author’s attempt to identify the most 

promising ways to extend the research in ways that could make it scalable and/or 

integrable with other behavioral traits. 
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ENERGY DEMAND POLICY AND THE “ENERGY PARADOX” 

The Relevance of Energy Efficiency Policies 

Energy efficiency and conservation is largely responsible for the decoupling of 

economic growth with electricity demand, which has flattened over the last thirty years. 

Nevertheless, utility companies and regulators have struggled to properly incentivize 

energy efficiency and conservation within a rate regulation scheme that is based on 

recovery of capital assets, almost exclusively on the supply side. In fact, only a small 

segment of utility rate recovery goes toward energy efficiency and conservation. 

Although some states employ energy efficiency resource standards, they are typically 

modest and do not sufficiently employ new technologies that could help realize greater 

reductions. This is especially relevant since the cost of mitigating (or conserving) a 

kilowatt-hour of energy is lower than adding the equivalent amount of generating 

capacity (see Figure 1); and a smaller footprint of capital assets would yield greater 

savings to all energy consumers. In other words, individual energy efficiency 

improvements can have widespread social benefits. The integration of smart meters and 

devices with cloud computing is beginning to gain the attention of energy regulators, who 

are looking more closely at how new energy services can be employed. 

Questions remain as to the efficacy of incentives designed to reduce consumption. 

For instance, are consumers being under-rewarded for reducing their baseline usage 
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relative to lower energy bills and occasional rebates? For instance, a substantial fraction 

of user energy costs are not for actual usage but for maintenance of supply infrastructure, 

sometimes referred to as demand charges, while rebates suffer from free-ridership 

problems, where informed users are generally inclined to invest in energy efficiency 

without the rebate incentive. Behavioral economics has a role to play in answering some 

of these questions, many with proven applications in other public policy fields. This 

research takes a fresh look at several theories of behavior to see if there are measurable 

reductions that can be employed to incentivize energy conservation. The costs and 

benefits of these “nudges” will be used to help inform regulators as to how new demand-

side technologies might enable more cost-effective alternatives to supply side measures. 

Even a modest reduction in energy demand would have tremendous impact on an 

electricity industry with over $380 billion in revenues. 

The Energy Efficiency Gap 

The policy issue that is most immediately addressed in this research is the “energy 

efficiency gap” or “energy paradox”, defined as the significant difference between 

observed levels of energy efficiency and the notional optimal level of energy use1 (Jaffe, 

Newell, & Stavins, 2004). The potential to reduce energy consumption through positive 

net-present value (NPV)2 energy efficiency investments has been well documented 

 
1 This is also referred to as the “energy paradox”, described by Jaffe and Stavins as a slower than socially 

optimal rate of diffusion of energy efficiency products (Jaffe & Stavins, 1994b). Of course, “optimal level” 

is itself subject to multiple interpretations; for instance, the engineering-optimal levels may be different 

than what individual firms and consumers are willing to pursue if they are unwilling to commit time to 

monitor price signals or conduct research in exchange for less energy efficient outcomes (Allcott, 

Mullainathan, & Taubinsky, 2014). 

2 Alternately described as when the present discounted value of future energy savings exceeds the upfront 

cost. 



6 

 

(eschwass, 2016; Frankel, Heck, & Tai, 2013). One of the most heavily cited engineering 

analyses suggests that the U.S. economy could reduce demand by 23 percent at a net 

present value of $700 billion (Granade et al., 2009). 

Neo-classical economics suggests that if investments in energy efficiency make 

consumers better off, then these gains, or investments, should have been realized. In fact, 

over thirty years of empirical research has demonstrated consistent consumer failure to 

make positive net present value energy efficiency investments (Gillingham & Palmer, 

2013). These investment inefficiencies suggest that government intervention may be 

warranted by providing: 1) information to imperfectly informed consumers, and 2) 

policies that subsidize or mandate energy efficiency (Allcott & Greenstone, 2012). 

Because energy efficiency, on a per-kWh basis, is often more economical than adding 

new generation (eschwass, 2016), there exists a strong policy argument for incentivizing 

efficiency as an alternative to supply side measures. Because most state rate regulation is 

structured to reward utilities based on increased demand (and therefore supply) via cost 

recovery on capital expenses, there are few programs that are designed to incentivize 

customers to reduce consumption. In fact, it provides the fundamental argument for 

promoting energy efficiency as an energy resource capable of displacing electricity 

generation (ACEEE, 2010). 
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Figure 1: Levelized Cost of Energy Efficiency compared to New Generation Sources 

 

Models of Demand 

Understanding energy demand continues to be a challenge for policy makers as 

there are multiple models, each of which provide a useful perspective, but none that are 

sufficient for meeting societal short and long-term objectives. Four of the primary ones 

include, 1) the physical, technical, and economic model (PTEM), 2) an energy services 

approach, 3) social practice theories, and 4) socio-technical transitions (Ekins, Bradshaw, 

& Watson, 2015, p. 134). 

Physical, Technical, and Economic model (PTEM) 

The PTEM model (as its name suggests) emphasizes technological and economic 

explanations of energy consumption. It is based primarily on engineering and economic 

“best case” scenarios and typically does not factor in economical, behavioral, social, or 

psychological constraints that may prevent the diffusion of energy efficiency 
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technologies. These models are common in discussing the “energy efficiency gap”, as 

they quantitatively show the difference between as-is and ideal improvements. As an 

example, one commonly referenced study on cost efficiency in reducing GHGs, 

reviewing both energy efficiency and carbon intensity improvements based on marginal 

abatement cost curves (MACCs) (Figure 2), represents a purely PTEM approach to 

energy demand (and supply). Energy demand is essentially reduced to variables such as 

incomes, physical circumstances, and technological availability. 

 

 
Figure 2: Global GHG Abatement Cost Curve (“Greenhouse gas abatement cost curves | Sustainability & 

Resource Productivity | McKinsey & Company,”) 
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There is a substantial debate about the accuracies of many PTEM models, placing 

some doubt on some of the estimates. For instance, a recent weatherization study of 

30,000 households in Michigan found the upfront investment costs are about twice the 

actual energy savings -or- an average rate of return of approximately negative 7.8% 

annually (Fowlie, Greenstone, & Wolfram, 2018). Other studies have yielded similar 

findings (Allcott & Greenstone, 2017). 

Energy Services and Social Practices Models 

An energy services approach to energy demand attempts to separate the activities 

of daily life (e.g. mobility, sheltering from weather, cooking, communicating) from 

energy demanded at the point of use. In other words, it fundamentally separates future 

consumption habits with past consumption paradigms. The social practice approach to 

energy demand fundamentally challenges the assumption that consumption habits are 

individually or technologically determined but, rather, asserts that they are socially 

constructed. Practices are sustained by values and norms, institutionalized rules, know-

how and routines, and materials, products, and technologies (Reckwitz, 2002; Schatzki, 

1996). In addition to personal behavioral inconsistencies, social practices can partially 

explain why economic incentives and improved information do not always translate to 

effective policies. 

Socio-technical Model 

The socio-technical model views energy systems (e.g. electricity delivery, 

transportation networks, fossil fuel delivery systems) as inherently large, interconnected, 
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and complex. Put simply, “understanding energy demand is a socio-technical problem 

rather than one that is either social or technical” (Ekins et al., 2015). 

A large socio-technical transition is “a major technological transformation in the 

way societal functions….are fulfilled, not only technological changes, but also changes in 

user practices, regulation, industrial networks, infrastructure and social meaning”3 (Geels, 

2002). Supporting systems of the sector are highly intermeshed and within this model, the 

demand for energy is not purely reflective of price signals or consumer attitudes, but 

something that is ‘systematically configured’ over the long-term under both social and 

technological influences (Vliet, Chappells, & Shove, 2005). Socio-technical transitions 

are concerned less with strictly economic (PTEM) drivers of technological changes than 

with the roles, influences, and relationship of actors and social institutions at several 

levels. They are also reflective of endogenous and exogenous influences, the latter of 

which can have tremendous influence on transitions. This model, therefore, is well suited 

for evaluating the role of governance. 

Large socio-technical transitions represent a unique field of research and, for a 

variety of reasons, the U.S. energy sector is undergoing a major shift in how energy is 

delivered to consumers. Within the context of socio-technical transitions, the term 

“regime” is used to represent a series of complex, nested real-world phenomena 

consisting of natural and artificial physical elements as well as social, economic, cultural, 

and cognitive attributes. Within these regimes forces are often at complete odds with one 

 
3 Although social practices (described earlier) are part of the model, they are largely contextual in view of 

the fact that practices are often limited by options presented by ‘systems of provision’, or socio-technical 

complexes. 
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another while societies continue to struggle to make and implement the necessary 

changes to improve their collective well-being. Of course, effective governance within 

these large transitions, although not always sufficient to achieve positive outcomes, is 

certainly required. One author identified three properties that make the socio-technical 

energy system so challenging, 1) its complexity, 2) high costs, and 3) its strong path 

dependency (Goldthau & Sovacool, 2012). 

This research, and other behavior modification studies, inform both the social 

practice and socio-technical views of energy systems. It embraces the idea that 

technology itself is a means by which attitudes and behaviors can be changed. 

Energy Efficiency as a Market Failure 

The energy efficiency gap is recognized as a public policy challenge at various 

level of local, state, and federal government. Certainly, any strong evidence suggesting 

the non-optimal allocation of goods and services will, and should, get the attention of 

policy makers. To understand the challenges of supply-side and demand-side electricity 

regulation it is fitting to examine neoclassic microeconomic theory, whereby government 

interventions are necessary to correct for market failures: information asymmetry, pure 

public goods, monopolies, and externalities. One or more of these can lead to suboptimal 

outcomes such as destructive competition, scarcity, and innovation stagnation, where 

socially optimal prices and quantities are not realized. 

Perhaps at its most fundamental level, the efficiency gap originates from the very 

system by which energy services were first regulated. Energy has long been regarded as a 

public necessity within the U.S., and this fact heavily shaped how utility services were 
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initially organized. Generous government subsidies and monopoly status granted to 

energy companies largely protected those companies from competition, compelling them 

with a “duty to serve” all customers, while allowing them to charge “just and reasonable” 

rates for their service. Low consumer costs and energy abundance have historically 

attracted more political support than have externalities, social welfare, and demand side 

management (Freeman, 1973).The resulting rate-making structure of public utilities has 

not fundamentally changed in the last eighty years and is still based on receiving a fair 

rate of return on capital investments. This is a barrier if the goal is to encourage utility 

companies to reduce consumption by encouraging energy efficiency. 

Historically, commercial and industrial energy consumers have invested in energy 

efficiency improvements more so than residential household consumers. This is partially 

understandable in view of the exigencies of business competitiveness. However, the 

residential household sector accounted for 38.5 percent of all electricity consumed in the 

U.S. in 2018 according to the EIA. 

Theories of Regulation 

Public interest theory, as a normative theory of regulation, suggests that 

regulation is one way of addressing market failures by responding to the demand of the 

public for the correction of inefficient or inequitable market practices. However, one 

major criticism of this theory is that there is no guarantee that a governmental response 

will deliver outcomes that are better than other alternatives, including no action 

(Grossman, 2013). The predominant theory suggesting that regulation may result in 
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suboptimal outcomes is capture theory, where interest groups, often competing with each 

other, use regulation to maximize the incomes of their members (Posner, 1974). 

Energy Efficiency as a Market Failure Solution 

Another class of market failures, and one particularly relevant for energy policy, 

are externalities. This occurs when, in the process of producing or consuming certain 

goods or services, harmful or beneficial side effects are borne by people not directly 

involved in the market activities (Browning & Zupan, 2012, p. 567). Options for policy 

makers include: 1) doing nothing, 2) allocating property rights such that agents can 

negotiate contracts to account for the externality4, 3) imposing a tax (preferably a 

Pigouvian one), or 4) regulating the good or service that is producing the externality. 

Most environmental problems can be classified into a complicated policy-making 

domain called, “commons problems”, where self-interest and public interests have 

differing optimal solutions (Stone, 2012, p. 25). Global climate change can be regarded 

as a common pool resource (CPR) problem in that the earth’s atmosphere can be 

universally exploited, or contaminated, without the ability to exclude the useful benefits 

deriving from it. Per public choice theory, policy proposals with concentrated costs and 

diffuse benefits will tend to be at a disadvantage politically, particularly in terms of 

resources (Olson, 1965; Stone, 2012). 

One major argument for the “federalization” of energy policy is the importance of 

the environmental on social health and well-being. Some of the earliest government 

 
4 As Coase points out that transaction costs, which includes identifying affected parties, conducting 

negotiations, drawing up contracts, and conducting inspections, can be “sufficiently costly at any rate to 

prevent many transactions that would be carried out in a world in which the pricing system worked without 

cost.” (Coase, 1960, p. 15) 
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interventions in electric generation addressed harmful health-related effects from 

emissions, primarily from coal plants. A 2009 study estimated that the annual non-

climate related costs of 406 coal-fired plants was $62 billion, or 3.2 cents/kWh, 

approaching 50 percent of the average cost of electricity5 (National Research Council, 

2010). Another study examining the health effects of the entire life-cycle cost of the coal 

industry concluded that externalities cost the American public as much as $500 billion, 

which, if internalized, would double or triple the cost of coal-powered electricity 

generation (Epstein et al., 2011). Clearly, the direct health effects of harmful, even toxic, 

emissions from fossil-fueled plants helped to rally political support for tougher 

regulations and a successful market-based sulfur-dioxide (SO2) program of reduction 

(Geri & McNabb, 2011). 

The cost, and sometimes even the acknowledgement, of climate change remains a 

political obstacle in the U.S. This is particularly relevant for the electricity sector, which 

accounts for around 28 percent of all U.S. GHG emissions Figure 3. Since the worst 

effects of climate change are decades away, debate regarding the optimal abatement 

strategy influences any potential carbon-pricing policy. Two prominent climate change 

economists6 reach different conclusions regarding cost of abatement efforts largely due to 

differing assumptions as to the appropriate discount rate. 

 

 
5 the report went on to say that a “relatively small number of plants -- 10 percent of the total number -- 

accounted for 43 percent of the damages. By 2030, non-climate damages are estimated to fall to 1.7 cents 

per kwh. 

6 Stern (N. H. Stern & Treasury, 2007) and Nordhaus (Nordhaus, 1991). 



15 

 

 
Figure 3: Portion of GHG's due to Electricity Consumption (EIA, 2017) 

  

The 2015 COP-21 agreement in Paris between the world’s leading carbon-

emitting nations places increased impetus on U.S. states to assess their respective carbon 

mitigation policies. This reflects the fact that states have historically had more of a role in 

developing energy policies than the federal government, but also the recent political 

incoherence within the U.S. federal government to acknowledge the threat of climate 

change and/or formulate effective policies and commit financial resources toward 

mitigating GHG emissions. Still, many states have committed to the INDC’s submitted 

by the U.S. to the UNFCCC in shaping energy policies. 

Energy efficiency as a tool to address climate change is by no means a new 

concept. Many of the carbon “stabilization wedges”, aggregated together to bend the 

global carbon emissions curve using proven technologies, look heavily toward energy 
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efficiency improvements (Pacala & Socolow, 2004). Others have calculated that 

“nudges” or behavioral changes alone could account for an entire stabilization wedge, or 

1.8-2.2 quadrillion BTU’s a year for U.S. households (equivalent to 16-20 percent of 

residential demand) (Frankel et al., 2013). One of the recommended tools includes 

improved information and feedback to consumers. This research explores how feedback, 

coupled with financial incentives, can be used to change user behavior. 

Historically, efforts by federal and state governments to reduce the “carbon 

intensity of the economy” (carbon intensity + energy intensity) have tended to focus on 

production-side policies, a mixture of incentives and regulations (e.g. renewable portfolio 

standards, renewable subsidies, generation facility emission limits). However, in most 

states, energy intensity (EI) reductions, reflective of demand side and consumer 

behavioral changes, continue to outpace carbon intensity (CI) reductions in directly 

contributing to carbon reductions. This fact suggests that policies and resources directed 

on the demand side of the energy system should be enhanced. 

Given the current state of rate regulation it is likely that energy conservation is 

undervalued. This is evident by how residential customers are billed for energy use. A 

large portion of what a customer pays for, whether they actually use any energy or not, is 

the capacity, or demand, charge. In other words, a premium paid to the utility to maintain 

a sufficient generation capacity to provide reliable, uninterrupted power throughout the 

year, including during peak demand. So, an energy consumer is paying interest on capital 

investments made by the utility company in addition to the actual generation charges 

consistent with her monthly use. In fact, utility companies will often lower capacity 
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charges for customers with higher average energy usage. Here is one extreme case from a 

customer in Texas, “A customer who used 1,200 kilowatt hours - about average monthly 

use for Texas residences, according to the U.S. Energy Information Administration - 

would have an electric bill around $78. But if the customer reduced energy consumption 

by a third to 800 kilowatt hours, the monthly bill would rise about $17 because the 

customer would lose out on the credit” (Holeywell, 2015). The clear problem with this 

type of regulatory structure is that it encourages more consumption, which subsequently 

increases the need for more generation and transmission capacity. Clearly, this is not 

socially optimal. A more thorough assessment of how prevalent this mixed incentive is 

clearly warranted. 

The Kaya Equation 
The Kaya Equation (Equation 1) is a useful way of showing how production and 

demand side policies influence carbon emissions (Raupach et al., 2007); in fact, the 

Energy Information Agency (EIA) uses it as the primary determinant of U.S. state carbon 

emissions by tracking state production and consumption levels and assessing carbon 

emissions based on several factors, including fuel types, energy loads, and characteristics 

of generating facilities (EIA, 2019). Because each type of fuel has a unique emission 

profile (e.g. carbon emissions per BTU per fuel type) a rather accurate carbon footprint 

can be calculated. 
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Equation 1: The Kaya Equation7 

 
 

The first two terms of Equation 1 account for all factors that can be managed 

within the realm of energy policy and represent, respectively, the supply and demand 

variables of the energy economy. For instance, improvements to electricity generation 

facilities’ carbon emissions affect CI, or the amount of carbon emitted for a given unit of 

energy produced. By comparison, improvements in building efficiencies and 

conservation (e.g. window insulation, turning lights off that are not in use, energy 

efficient water heaters), are examples of factors that affect EI, or the amount of energy 

consumed for a given unit (product or service) of GDP. What the Kaya equation 

conveniently reveals is that a given percentage change in any of these variables will yield 

a corresponding percentage change in carbon emissions. Reductions or increases in any 

of these variables contribute to changes in carbon emissions. 

Figure 4 shows that reductions in EI (in red) have contributed much more to 

reductions in carbon emissions than have changes in CI (in green). Of course, energy 

efficiency is not the only factor that can affect EI; Table 1 is from a RAND study that 

aggregates all of the factors that can influence EI. 

 
7 There are four terms: In order, they represent (1) Carbon Intensity of Energy (CI) [kilograms of energy-

related CO2 per million BTUs], (2) Energy Intensity of the economy (EI) [thousand BTU’s per dollar of 

GDP], (3) GDP per Capita or growth rate per capita [dollars per person], and (4) Population growth. 

 

The product of the first two terms is called the Carbon Intensity of the Economy [kilograms of energy-

related CO2 per dollar of GDP. 
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Figure 4: Changes in Total U.S. CO2 Emissions, 2005-2015 (IEA, 2016) 

 

Table 1: Factors associated with Energy Intensity (Bernstein, Fonkych, Loeb, & Loughran, 2003) 

 
 

Still, federal and state energy policies have tended to focus on the production side 

of the energy sector, both within the regulatory framework as well as with R&D 
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investments in technology. For instance, an NRC study calculated that the realized 

benefits to program costs from 1978-2000 was 83:1 for end-use technologies compared to 

just 7:1 for fossil-fuel energy-supply technologies (National Research Council (U.S.), 

2001). Additionally, the DoE’s first Quadrennial Technology Review of energy 

innovation concluded that the U.S. federal portfolio needed “rebalancing” toward end-use 

efficiency (US Department of Energy, 2011). 

One of the primary tools that many states have implemented to transition away 

from hydrocarbon sources of energy is the renewable portfolio standard (RPS). This 

policy tool does account for a significant portion of the CI reductions in each state’s 

portfolio. One study found that RPS compliance costs were less than 2% of average retail 

rates for most states and ranged from 0.1 to 3.8% among restructured markets yielding an 

RPS cost compliance between $2-$48/MWh (Heeter et al., 2014). A similar model for 

state-based standards for the energy efficiency, called Energy Efficiency Resource 

Standards (EERSs), are beginning to emerge across the U.S. 

The Kaya equation is a reminder that energy efficiency is only a partial check on 

carbon emissions. Higher energy efficiency does not necessarily equate to lower overall 

energy demand. A growing population and increasing GDPs will continuously challenge 

policymakers in determining the scope and magnitude of public R&D investments, 

technologies, and regulations that will help limit global GHG emissions and reduce the 

impacts of climate change. 
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Energy Efficiency Policy Challenges 

Energy efficiency itself does not have a consensus definition since efficiency can 

be thought of as a welfare characteristic and, thus, has differing meanings to different 

people. However, it is related to energy intensity, which is the ratio of energy 

consumption to some measure of demand for energy services. In this context, energy 

efficiency is when either energy inputs are reduced for a given level of service, or there 

are increased or enhanced services for a given amount of energy inputs (“Definition of 

Energy Efficiency,” EIA). 

Rebound Effects 
One of the earliest criticisms of energy efficiency was put forward as early as 

1865 by economist, William Jevons, who proposed that energy efficiency is 

counterproductive due to the “rebound effect” or “backfire”. One of the corollaries states 

that individuals will simply use more energy as it becomes more efficiently consumed. 

For instance, someone buying a more fuel-efficient car will simply drive further because 

it is economically efficient to do so. Of course, the empirical evidence needed to make a 

quantitative assessment of all combined effects would be substantive. Some assess the 

macro-impact of backfire to be largely overstated (Gillingham, Rapson, & Wagner, 

2015). 

Rebound effects are categorized in two ways: 1) direct effects and 2) indirect 

effects. It is most common in the literature to refer to indirect rebound effects strictly as 

the positive income effect (due to less energy consumption) of all other goods 

(Gillingham et al., 2015). Thus, indirect effects are a function of how energy savings are 

spent on other goods and services and their respective energy intensities. Similarly, the 
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direct rebound effect is defined as the change in energy usage resulting from the 

combined substitution and income effects on the demand for the energy-efficient product. 

In addressing direct effects, a review of short and medium run elasticities of demand for 

gasoline and electricity fall in a range between -0.05 to -0.4. Similar studies in 

developing countries, although less rigorous in their analyses, show similar ranges, -0.1 

to -0.4 (Gillingham et al., 2015). Two notable areas are underrepresented in many of 

these studies, 1) commercial and industrial usage, and 2) non-gasoline or non-electricity 

consumption (e.g. natural gas-heated hot water heaters). 

 Another important differentiator of energy efficiency improvements is whether 

they are a result of technological “zero cost breakthroughs” (ZCB), or are part of a 

command-and-control regulatory policy that is not costless for producers, sometimes 

referred to as “policy-induced improvements” (PIIs). Several researchers have discussed 

the advantages of implementing pigovian taxes over efficiency standards and regulations 

(Linares & Labandeira, 2010).8 In general, ZCB type changes tend to be easier to 

measure and quantify as the set of variables that need to be controlled substantially 

shrink, making it more conducive to standard quantitative economic techniques. 

Behavioral economics does play a role in understanding the magnitude and 

direction of rebound effects, but energy-minimization should not be confused with 

welfare-maximization. 

 
8 Some theories have been offered that suggest that under certain conditions, Pigovian taxes coupled with 

an energy efficiency standard can yield higher welfare than a Pigovian tax alone (Tsvetanov, Segerson, & 

others, 2011). 
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Government Response 

Public policy response to the energy efficiency gap remains widely varied. One of 

the most enduring responses has been to mandate industry to simply build more energy 

efficient products regardless of customer choices. Although largely motivated by 

responses to the security of supply concerns in the 1970’s and the recognition that 

greenhouse gases (GHGs) are an “air pollutant” under the Clean Air Act, the Corporate 

Average Fuel Economy (CAFÉ) standard provides a command-and-control approach. 

Other programs, such as Energy Star, provide incentives to manufacturers by leveraging 

labeling strategies to assist in customer efficiency choices. 

Various other policy tools have been implemented by states to address the gap. 

Below is a sample, but non-exhaustive, list. 

Energy Efficiency Resource Standards (EERS) and State Mandates 

This policy tool, similar to supply-side Renewable Portfolio Standards (RPSs), are 

mandates used by states to encourage energy efficiency by establishing energy savings 

targets for utilities (25 states are currently implementing electricity EERSs9 (see Figure 

5). They require utilities to procure a percentage of their future electricity needs using 

energy efficiency (EE) measures (York, Witte, Nowak, & Kushler, 2012). States adopt 

EERS policies for several reasons, including for environmental reasons, peak load 

reduction, consumer energy efficiency behavior limitations (or failures), economic 

development, energy security, or some combination of these (Brennan & Palmer, 2012). 

Forty-four states (and D.C.) have some sort of ratepayer-funded energy efficiency 

 
9 Of these, 15 also have EERS policies in place for natural gas. 
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programs, although not all are part of an EERS system (ACEEE). An EERS targets 

electricity or natural gas savings through market-based trading systems. In some cases, 

EERS can be used to meet RPSs. The average mandated energy efficiency savings among 

the states with binding policies is around 11.5 percent of total electricity load (Palmer, 

Grausz, Beasley, & Brennan, 2013). Consistent with the theme of this section, the 

structure of EERSs vary greatly between states. For instance, some requirements are in 

percentage of total sales, percentage of load growth, and absolute energy savings. Within 

these requirements, some used a fixed reference year of energy usage, while others use a 

rolling measure over a number of years. 
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Figure 5: Energy Efficiency Resource Standards (and Goals) 

 

Although not mandatory standards like EERS’s, integrated resource planning 

(IRP) mandates require utilities to consider and incorporate energy efficiency and 

conservation options prior to approving requests for new generation sources. 

Additionally, many IRP statutes require PUCs to evaluate the indirect costs of 

environmental damages, including climate change, illnesses, and agricultural damage 

(Eisen et al., 2015, pp. 888–889). One of the challenges to IRPs, many of which were 

written in the early 1990s, is to remain current in the face of widespread restructuring and 

regionalization of utility markets. 
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Subsidies 

Few energy policy topics get more attention than subsidies, defined as a transfer 

of resources from government to a public or private entity, with the goal of lowering the 

cost of some good or service and thereby increasing its production or consumption, or to 

enable a firm to increase revenues and/or decrease costs (Geri & McNabb, 2011, p. 82). 

The policy goal of subsidies is to incentivize consumers who would not otherwise make 

those investments. Subsidies can take various forms, including tax policy, direct 

government spending (e.g. R&D), loans, access to federal lands, including royalty 

provisions, tariffs, insurance, audits and preferences to certain public projects. 

Subsidies suffer from problems of inframarginal consumers, better known as free 

riders. Because subsidies must be funded, they often are the target of distortionary taxes, 

which are economically inefficient and often politically challenging. One German study 

found that 92 percent of one residential energy improvement subsidy program went to 

consumers who would have made those improvements without the subsidy (Grösche, 

Schmidt, & Vance, 2009a). Subsidies for energy efficiency can also suffer from a general 

lack of knowledge of demand elasticities for durable goods (Allcott, 2011), or because 

adopters of energy efficiency subsidies are more informed and attentive to energy costs 

than non-adopters (Allcott, Knittel, & Taubinsky, 2015). 

Even given these limitations on subsidy efficiencies, the focus on supply-side 

management dominates the energy sector. One study shows the contrast with the level of 

subsidies to energy-supply technologies, which have outstripped end-use subsidies by a 

ratio of 35:1 (Sovacool, 2009). 
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However, it is useful to examine the effects of DSM subsidies that have targeted 

behavioral anomalies, either in full or in part. Whereas free ridership is the liability of 

subsidies, free drivers are often the target of DSM and other energy subsidies, those who 

make a purchase because their awareness was raised by the existence of the subsidy 

(Geller & Attali, 2005). 

Public utility regulators (PUCs) oversee utility implementation of energy 

efficiency mandates. The bulk of utility spending on energy efficiency programs goes 

toward subsidies, commonly in the form of home and business energy audits, energy-

efficient lightbulbs, and rebates for energy-efficient (e.g. ENERGY STAR-certified) 

durable goods, including appliances, water heaters, and HVAC systems. These programs 

are favored by regulators because new technologies make it easy to quantify the energy 

efficiency improvements. Inefficiencies due to free ridership, however, are commonly not 

evaluated. 

 Demand Side Management (DSM) Incentives 

DSM is an umbrella term for programs that are aimed at reducing energy 

consumption and/or moving demand to minimize the difference between peak and off-

peak consumption. Closely linked with the movement toward utility restructuring in the 

1970s was a growing frustration by consumers of a seemingly endless pathway toward 

higher utility rates, partly spurred by an influx of expensive nuclear power. Unusual 

partners in this movement were environmental groups who were fearful of dangerous 

emissions from fossil fuel generators, particularly coal. As a result utilities began to 

invest in programs aimed at reducing electricity demand (Eisen et al., 2015, p. 889). 
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Utility spending on DSM peaked in the early 1990s. The reason the trend was 

halted is largely attributed to concerns amongst utilities that under new restructuring 

regulations (aka deregulation) that were aimed at increasing competition, they would 

place themselves at a competitive disadvantage without guaranteed rate recovery 

mechanisms as a backstop (Arimura, Li, Newell, & Palmer, 2011). 

Experimentation with deregulation, or restructuring, in the U.S. has had mixed 

success, but with several glaring failures such as occurred in California in 2000-2001. 

This “quasi-deregulation” strategy may, in effect, have highlighted the worst aspects of 

competitive and regulatory policies. Regardless, it certainly only addressed one side of 

the marketplace, the supply side. This approach might be expected in view of historic 

ratemaking methodologies that incentivize utilities to sell more electricity because 

increased revenues lead to increased profits. This model goes back to the earliest days of 

the electricity utility industry, when Samuel Insull encouraged government intervention 

in ratemaking in order to eliminate competition in the 1920’s and 30’s. 

Partially because of energy efficiency and other DSM programs utility revenues 

have decreased due to less demand, placing burdens on utility companies, especially 

investor-owned utilities (IOUs), to recover stranded costs from non-DSM users. In other 

words, many of the operational benefits of DSM are not being offset efficiently among 

utility consumers. Federal legislation (incl. PURPA and EPAct 1992) specifically 

encouraged public utility commissions (PUCs) to structure rate recovery mechanisms that 

encouraged utility companies to make investments in programs that reduced demand and 

improved efficiency. Still, the pressure to impose fixed charges on DSM users is often 
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opposed by those who wish to develop new technologies, many of which are designed to 

promote customer behavior change. 

Section 1301 of the EISA 2007 established the national policy for grid 

modernization, stating the goals and technology objectives of the Smart Grid10, the 

moniker for a wide range of infrastructure and application upgrades to the electric grid. 

To date, the regulatory excursions into DSM to support these objectives have been 

incremental and uneven, although FERC appears committed to the benefits of DR11. 

Another constraint is the uneven deployment of “smart” technologies, such as Advanced 

Metering Infrastructure (AMI) (better known as smart meters), which incorporate bi-

directional communications between consumer and utility. This technology and 

associated standards enable dynamic pricing structures to be deployed as well as real-

time measurement of consumption data. By the end of 2016, over 70 million smart meters 

had been installed in residences and over 6 million in commercial buildings, for a total 

 
10 It is the policy of the United States to support the modernization of the Nation's electricity transmission 

and distribution system to maintain a reliable and secure electricity infrastructure that can meet future 

demand growth and to achieve each of the following, which together characterize a Smart Grid: (1) 

Increased use of digital information and controls technology to improve reliability, security, and efficiency 

of the electric grid. (2) Dynamic optimization of grid operations and resources, with full cyber- security. (3) 

Deployment and integration of distributed resources and generation, including renewable resources. (4) 

Development and incorporation of demand response, demand-side resources, and energy-efficiency 

resources. 

(5) Deployment of `smart' technologies (real-time, automated, interactive technologies that optimize the 

physical operation of appliances and consumer devices) for metering, communications concerning grid 

operations and status, and distribution automation. (6) Integration of `smart' appliances and consumer 

devices. (7) Deployment and integration of advanced electricity storage and peak-shaving technologies, 

including plug-in electric and hybrid electric vehicles, and thermal- storage air conditioning. (8) Provision 

to consumers of timely information and control options. (9) Development of standards for communication 

and interoperability of appliances and equipment connected to the electric grid, including the infrastructure 

serving the grid. (10) Identification and lowering of unreasonable or unnecessary barriers to adoption of 

smart grid technologies, practices, and services. (Energy Independence and Security Act of 2007 - SEC. 

1301) 

11 Former FERC Chairman, Jon Wellingham, called DR a “killer app” (“Demand More | Tangent Energy 

Solutions,”) 
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penetration rate of 46.8 percent12 (Foster, Burns, Kathan, Lee, & Peirovi, 2018). Other 

tools of DSM include distributed energy resources (DER), energy storage devices, and 

intermittent renewable energy resources. 

Demand Response 
One the primary tools of DSM is demand response (DR), defined by FERC as 

“changes in electric use by demand side resources from their normal consumption 

patterns in response to changes in the price of electricity, or to incentive payments 

designed to induce lower electricity use at times at high wholesale market prices or when 

system reliability is jeopardized” (“FERC: A National Assessment & Action Plan on 

Demand Response Potential”). This DSM policy tool is important to examine given the 

relatively large penetration it has in the electricity sector. Accordingly, it offers insights 

to how programs aimed to reduce total demand (vice shifting load) might be structured. 

DR programs fall into three major categories: 1) organized (dispatchable) wholesale 

markets, 2) load management or control, and 3) price-mediated, or time-varying rates. 

The proponents of DR in the electricity sector make a two-fold argument: 1) 

reducing demand during peak periods can provide a check against increasing marginal 

costs of generation (often becoming exponential during very short periods) (see Figure 

6), 2) reducing demand during peak periods obviates the need for peaking plants, some of 

which operate for fewer than 100 hours per year. This can have both environmental 

 
12 Over 16 million smart meters were funded through the American Recovery and Reinvestment Act 

(ARRA) of 2009 alone (“Advanced Metering Infrastructure and Customer Systems | SmartGrid.gov,” n.d.) 

(“Advanced Metering Infrastructure and Customer Systems | SmartGrid.gov,” n.d.) (“Advanced Metering 

Infrastructure and Customer Systems | SmartGrid.gov,” n.d.) . 
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benefits, as these plants are typically fossil fuel generating units, as well as economic, 

since this reduces the total capital expenditure required to meet demand. 

 

 
Figure 6: Impact of Demand Response in Wholesale Spot Markets (QDR, 2006) 

 

It is important to note that DR, unlike some other aspects of DSM, are not 

designed necessarily to curtail overall energy usage, but rather to optimize the efficient 

deployment of energy generation resources. Consequently, it has the potential to improve 

energy intensity without necessarily reducing consumption. There is debate about the 

conservation aspects of DR, where some argue that it only time shifts peak use. Clearly, 

in instances where customers allow a load (e.g. water heater or heat pump) to be 

controlled during peak demand, there will limited capacity to “recover” for the 

inconvenience. In other words, DR as a conservation tool is not a primary objective. Still, 

it serves as an important DSM tool that can provide behavioral insights that are 
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applicable to other energy efficiency and curtailment behaviors. Pay-for-performance 

(P4P) programs, for example, will provide much better insights into how consumers 

respond to incentives that extend beyond the asynchronous, short time periods associated 

with DR. 

DR programs lag behind funding for subsidy/rebate programs within the utility 

industry. However, the technology that makes DR effective as a DSM tool has great 

potential for incentivizing energy conservation. Much of this is powered by smart grid 

technology and improved, targeted communication with customers. 

 

 
Figure 7: Comparison of Utility Spending on Energy Efficiency and Demand Response Programs (Energy 

Information Administration, 2019) 

 

Organized Wholesale Markets 

On a volumetric (equivalent MW) basis, wholesale demand response (DR) 

markets have had the greatest impact of the three primary DR categories. Until recently, 
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these have generally been limited to commercial and industrial customers but are now 

incorporating residential customers into the mix. Regional electricity wholesale markets, 

such as PJM and MISO, are increasingly using DR as dispatchable resources. Instead of 

calling upon additional generation capacity to meet overall system demand, RTOs and 

ISOs are using “curtailment service providers” or “aggregators”, acting as intermediaries 

between customers and electricity dispatchers (Eisen et al., 2015, p. 921). FERC’s 

primary instruments to date for promoting DR are Orders 719 and 745. The first order 

requires RTOs/ISOs to permit aggregators to bid DR on behalf of retail customers 

directly into the wholesale energy markets while the latter order requires those bids to be 

paid full market prices (Eisen, 2013). Overturning an earlier D.C. Circuit decision, 

SCOTUS recently affirmed FERC’s Order 745 governing wholesale demand response, 

stating that it was within their Federal Power Act (FPA) authority to charge wholesale 

rates13 “with room to spare”. Given the wide discretion that the Court gave in FERC’s 

ability to integrate various “non-traditional” tools of meeting supply and demand, some 

have called this among the most significant energy law cases of all time (Review, 2016). 

These markets take the form of 1) capacity, 2) energy, and 3) ancillary services. 

The first two have analogs on the supply side, the maximum capacity for curtailment and 

the total actual curtailment (supply). Participating customers receive payments for being 

on stand-by (capacity market) and sometimes an additional amount for actually curtailing 

 
13 specifically, to charge locational marginal price (LMP)….without a further “penalty” for what load-

serving entities (LSEs) must then accommodate (e.g. their inability to sell more electricity). In effect, it 

puts wholesale DR bids on par with wholesale generation sources. 
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use (energy market). Figure 8 shows the range of DR penetration throughout the 

RTO/ISO regions that have wholesale markets. 

 

 
Figure 8: Demand Response Saturation as a Percentage of Total RTO/ISO demand (Managan, 2014) 

 

Load Management and Control 

Although more widely implemented geographically than wholesale exchanges, 

including by many regulated utility providers, load management and control still 

encompasses a relatively small share of DR avoided load. In fact, many DR aggregators 

use load management as a tool for wholesale exchanges. Typically, these programs are 

managed by the load serving entity (LSE) and often involves the installation of a 

controllable device onto a load (such as for a hot water heater, a heat pump, or 

thermostat) in exchange for compensation to the customer. Many of these programs are 

part of distributed energy resource (DER) programs that help balance the power demand 
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throughout a service region. This is common for hot water heaters which can act as a 

virtual battery, increasing temperature when demand is low. 

Time Varying Rates 

Time-varying rates are certainly not a new concept, especially in non-regulated or 

deregulated industries. Air travel, hotels, car rentals, movie theaters, and toll roads are all 

examples of services where price variation responds to demand. Although not yet 

supported by empirical data, there are some who theorize that, because electricity prices 

are time-invariant and do not reflect actual real time costs, they are injecting a distortion 

that places prices below marginal costs and, therefore, may be lowering the demand for 

energy efficiency (Brennan, 2010). 

Time-varying rates encompass a host of methods that allow electricity rates to 

vary throughout the day, season, or at unpredictable moments when demand rises above a 

threshold. For residential and small commercial customers these types of rates require 

remote metering technology, generally through AMIs. Although the specifics of 

individual time-varying rates differ, they all share characteristics that are designed to: 1) 

use price signals to inform customers that shifting loads during high demand can result in 

cost savings; 2) lower the total production capacity by flattening the demand curve. This 

flatter profile requires fewer generating facilities, thus reducing the demand for “peaker 

plants” that typically only operate a few hours a year. The decreased capital costs of 

production can be passed on to all consumers; 3) moderate wholesale market prices 

during peak hours; 4) encourage deployment of distributed resources, such as rooftop 

solar (Cappers, 2011). This is because during peak demand, time-varying solar power is 
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also typically operating at maximum efficiency. Also, electric vehicle charging 

from/discharging to the grid can effectively help flatten the demand curve. 

Time-varying rates include 1) time-of-use (TOU), 2) Critical peak pricing (CPP), 

3) Peak Time Rebates (PTR), and 4) real time, or dynamic, pricing (RTP). TOU prices 

and time periods are fixed at least a year in advance. CPP and PTR rates identify the 

highest 60-100 hours of demand in a year and signal those periods a day ahead of time to 

consumers. Peak/off-peak pricing is the most common practice used among utility 

companies to incentivize consumers to use less energy during periods of highest demand. 

For the CPP case, customers are charged a significantly higher rate during peak demand 

periods –or- credited with a rebate for the PTR case. Lastly, there is RTP whereby 

electricity rates are changing constantly, an hour ahead of implementation. 

There are policy challenges to implementing time-varying rates; for instance: 1) 

fixed, or near fixed, rates protect consumers from the “costs” of monitoring rate changes. 

This can be thought of as the cost of paying attention; 2) the infrastructure costs of 

information sharing, or ensuring that current rates are transparent and trustworthy, and 

thus preventing arbitrage, and 3) equity concerns that savings are not disproportionately 

benefiting a particular demographic. Still, despite these constraints, most economists 

believe that real time pricing would lower the overall average wholesale cost of power, 

which would result in lower prices for consumers (Borenstein, 2002). 

The empirical results of time varying pricing programs vary but do support the 

theory that peak demand can be reduced while the inherent savings can be passed on to 

consumption at non-peak time periods. The most comprehensive study to date looked at 
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109 programs that incorporated either TOU, CPP, PTR, or RTP and included a customer 

base from less than a hundred to several tens of thousands (Faruqui, Hledik, Ryan, & 

Palmer, Jennifer, 2012) (see Figure 9). Higher peak to off-peak price ratios yielded larger 

peak reductions, but at a decreasing rate (see Figure 10). Major sources of variation 

included, pilot design, price signal, central-air conditioning density, presence of enabling 

technology (e.g. programmable thermostats, In-home displays, and load switches), 

weather, sociodemographic factors, and marketing. Subsequent studies using TOU 

pricing and programmable communicating thermostats (PCTs) that automatically respond 

to price changes achieved peak to off-peak changes of up to 48 percent, but with variation 

among demographics, weather and across usage distribution (Harding & Lamarche, 

2016). 
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Figure 9: Average Peak Reduction from Various Time-Varying Rate Pilot Studies (Faruqui et al., 2012) 

 

 
Figure 10: Peak Reduction as a Function of Peak to Off-Peak Price Ratio (Faruqui et al., 2012) 
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Other potential benefits are more ambiguous. For instance, it is unclear whether 

there is conservation associated with time-variant rates; load shifting is a term whereby 

consumers simply shift the load from on-peak to off-peak hours. The extent to which 

consumers load shift also seems to vary among the population (Harding & Lamarche, 

2016). Also, there are instances where environmental impacts are positive depending on 

the generating resource mix. This is because peaker plants are typically less efficient and 

have higher rates of carbon emissions. One study found that the result of load shifting 

could result anywhere from a 0.9 percent decrease or as high as a 0.3 increase in GHG 

emissions (Hledik, 2009). 

As mentioned earlier, one prospective policy challenge to using time varying rates 

is that they are non-equitable; that is, it may only benefit those who have the ability to 

shift consumption habits based on price signals. First, it is important to understand that 

under the common flat pricing schemes, users during peak demand period are, in effect, 

being subsidized by users who consume more energy during non-peak times. This 

inequity is, perhaps, so baked into the inertia of current regulatory policy that it often is 

overlooked. Consequently, there is likely no Pareto-efficient manner to adjust for the 

current cross-subsidization and, therefore, peak consumers would potentially find 

themselves paying more under a variable pricing scheme. Nevertheless, the multi-pilot 

review found that because low-income customers tend to have flatter load shapes, almost 

two-thirds (65 percent) were better off on a CPP rate than on a flat rate. Also, overall 

increases versus decreases in bill changes were fairly even (Faruqui et al., 2012). 
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Other Energy Efficiency Programs 

Financial incentives other than subsidies and DR programs have effectively been 

used in demand-side management (DSM) to encourage users to reduce consumption. The 

incentive is behavior neutral in that the reduced consumption can result from either 

efficiency or curtailment behavior. The most comprehensive studies for residential 

households in the energy sector are quite dated. Over a period of eight weeks, households 

who had received a high reward ($0.30 for each 1 percent reduction in weekly kWh 

consumption = 240 percent rebate), feedback and information reduced electricity use by 

about 12%. A low rebate system was only marginally effective, and weekly feedback and 

information were ineffective in curtailing electricity use (Winett, Kagel, Battalio, & 

Winkler, 1978). This research uses this framework, called pay-for-performance (P4P), as 

a control. It is noteworthy that very little empirical evidence exists for this framework. 

Another study investigated the combined effect of information, prompts 

(reminders), biweekly feedback (about the performance of the entire group) and rewards 

(100% of the value of electricity savings). All participants received the same combination 

of interventions. The intervention lasted 14 weeks and resulted in average savings of 

6.2% relative to baseline. The effects appeared to be strongest immediately following 

implementation of the intervention (Slavin, Wodarski, & Blackburn, 1981). A second 

study was set up along the same lines, but instead, participants now received 50% of the 

monetary value of electricity savings, and a bonus amount was given if total group 

savings exceeded 10% (a cooperation game intervention). The combination of 

interventions resulted in electricity savings of 6.9%. 
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Financial incentives for proven energy reductions present several advantages over 

other types of subsidies. First, offering a subsidy for an energy efficient product does not 

guarantee that product will get installed correctly and placed in service. Additionally, 

rewarding actual energy reductions addresses the problem of rebound effects. This may 

be even more effective for residential households since, unlike businesses, growth in 

energy demand is not closely linked to productivity. 

By far the most widespread behavioral-based energy efficiency program remains 

the home energy report (HER) [Usage Feedback and Social Comparison]. It is also one of 

the oldest, reflecting the slow pace of change in the residential energy efficiency sector. 

Utility spending on all residential behavioral programs made up only 2 percent of their 

DSM portfolio while returning 10 percent of average DSM portfolio savings (“Home 

Energy Reports,” 2019). Utility spending on energy efficiency is minute, consisting of 

less than one percent of retail sales in most states (Figure 11). The average utility 

company’s incremental spending per customer on energy efficiency varies wildly among 

states, ranging from $0 (Alaska) to $128 (Massachusetts) (“State efficiency incentives 

averaged $24 per customer, ranged from $0 to $128 in 2016—Today in Energy—U.S. 

Energy Information Administration (EIA),” 2018). Typically, these programs are a 

response to mandates by state legislators, reflecting the continuing challenge to incent 

utility companies with rate-based models that favor fixed costs. 

 



42 

 

 
Figure 11: Utility spending on Energy Efficiency Programs 

 

Emerging technologies offer new opportunities to test energy efficiency 

incentives. With the widespread implementation of smart meters, consumer usage can be 

collected at short intervals, allowing for sharing of real-time energy usage and creating 

opportunities for innovative new techniques for changing user behavior. Today, utility 

companies are able to use household smart meter data to help reduce peak demand 

consumption through customer engagement. As mentioned earlier, the specific programs 

vary widely, including both financial and non-financial incentives. The following discuss 

other ways that real-time energy feedback, enabled by smart metering, are being 

integrated into energy efficiency programs. 

Pay for Performance (P4P) 
These programs have been around for decades to encourage customers to reduce 

energy consumption. The concept is to reward consumers for actual reductions in energy 

consumptions, versus programs (e.g. rebates) that simply reward purchasing of energy 

efficient equipment. These types of programs are generally structured in one of three 
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ways: 1) performance target incentives, 2) shared savings incentives, and 3) rate of return 

incentives (“Incentivizing Utility-Led Efficiency Programs: Performance Incentives | 

ACEEE”). 

To date, P4P programs have targeted commercial and industrial customers with 

utility companies working through aggregators, or energy service companies (ESCOs), 

who help private businesses manage project finances. This makes sense, since ESCOs are 

highly informed about energy efficiency technologies and many industries have complex 

energy systems. Consequently, few P4P programs have attracted interest from individual 

customers. For instance, the U.S. residential household sector has not yet been offered a 

utility-scale P4P program14. This is somewhat surprising considering the success of other 

demand-side management (DSM) programs, such as demand response (DR), which aim 

to curtail usage during peak demand. In fact, residential housing represents a high 

percentage of all structures that are metered and, thus, easy to establish usage baselines, a 

condition the National Resource Defense Council (NRDC) recently suggested was highly 

attractive for P4P programs (Borgeson, 2017). 

One of the natural benefits of P4P programs is that rate structures should, 

theoretically, be much simpler than for DR programs. Whereas, DR programs attempt to 

target short, and sometimes hard-to-predict, events throughout the year, P4P rate 

structures need not be time dependent. Again, this is because the goal is to reduce overall 

demand, not shifting away from peak usage periods. 

 
14 Pacific Gas and Electric Company (PG&E) recently announced the U.S.’s first residential P4P program, 

called “Cool Savers”. (Orvel, 2019) 
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Prepay as an Energy Efficiency Program 
There is some evidence that suggests that prepayment of electricity could reduce 

consumption in residential households. This is very common outside of the U.S. with 

substantial percentages of the population using prepay in Africa, Europe, South America, 

and Asia. The research is very light in this area, especially in the U.S., with some 

challenging the notion that prepay should even be called an energy efficiency program. 

Some estimates suggest that in Minnesota prepay participants could reduce consumptions 

between 2 percent and 8.5 percent, with the former including provisions for automatic 

shutoff. However, utility regulators have been slow to adopt prepay due to concerns 

regarding consumer protection (Sussman, LeZaks, Drehobl, Kushler, & Gilleo, 2018). 

In many ways this program most closely resembles the EEE framework created 

and tested by this research. This is true in two key respects, 1) there is an element of loss 

that takes place as energy is consumed, and 2) feedback is a key element in leveraging 

behavioral change. Loss aversion in prepay programs is quite literally the aversion to 

having electricity disconnected. Prepay also requires the outlaying of actual credit/cash as 

opposed to the paying after consumption. This may help minimize Time-inconsistent 

Preferences and Hyperbolic Discounting which is quite prevalent in the decision to 

purchase energy efficient products. 
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THE ENERGY EFFICIENCY ESCROW (EEE) AND PAY-FOR-

PERFORMANCE (P4P) FRAMEWORK 

This research introduces a framework that seeks to explore if, and how, disparate 

theories of behavior can be activated within the energy efficiency sector. The concept of 

the energy efficiency escrow (EEE) is drawn from an idea most closely associated with 

the real estate industry. An escrow account is nothing more than a holding tank. In 

mortgage transactions it is a vehicle used between buyers and sellers. Mortgage lenders 

also use it to pay property taxes and insurance on behalf of the homeowner. The key 

characteristics of the escrow are: 1) they exist for a single purpose, 2) the value within the 

account is real, and 3) they cannot be accessed by the beneficiary until certain conditions 

are met. 

Escrows may have the potential to address bounded rationality challenges and 

reduce time inconsistencies in the energy efficiency sector. For instance, a cost-effective 

incentive that may appear to be small based on the conversion, say $0.05/kWh, does not 

immediately instill potential cost savings to a consumer. If the potential savings can be 

conveyed in gains that are significant enough, this could make it worthwhile for the 

consumer to pay attention. Applying a rate-based incentive over a long period of time can 

also help eliminate cognitive errors that consumers make in calculating long-term 

savings. This is the same basic principal used in many labeling techniques used for 

durable goods, such as washing machines, dishwashers, and other household appliances. 
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This is also a common technique used for sharing what the fuel costs will be over the 

lifetime of a new vehicle. 

Since escrows hold real value to the beneficiary, loss aversion can be a potential 

behavioral trait that is activated. At its core, prospect theory suggests that people dislike 

losses more than they like an equivalent gain. In other words, they get more disutility 

from losing something they own, than utility in gaining something they do not. Escrows 

provide a way of reflecting losses and, therefore, disutility throughout the period of 

performance. The EEE is, in fact, an endowment, which creates immediate stored wealth 

that can only be reduced. The rate of reduction is determined by the behavior of the 

beneficiary. Because individuals tend to overvalue things they already own, we might 

expect their personal cost/behavior to reflect that belief. 

The EEE framework addresses the heart of loss aversion, “the aggravation that 

one experiences in losing a sum of money appears to be greater than the pleasure 

associated with gaining the same amount” (Kahneman & Tversky, 1979, p. 279). In the 

case of the EEE framework, the “cost” to consumers includes paying attention and 

actually reducing energy use. Additionally, the EEE can be decoupled from individual 

risk aversion preferences, which are sometimes comingled in loss aversion studies, since 

any potential losses are entirely within the individual’s control. 

Figure 12 suggests how a consumer might respond to the same incentive given 

two different frameworks. Suppose the incentive is that 5 cents will be given to a 

consumer if, over the next hour, they use 1 less kW of power (or 1 kWh). There exists a 

maximum of 5 cents at stake. Prospect theory suggests the disutility (-40) of losing the 5 
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cents is greater than the utility (16) of gaining 5 cents despite achieving the same 

financial outcome. Simply be moving the reference point, an EEE induces 40 units of 

disutility that can be avoided. 

 

 
Figure 12: Potential Disutility Induced by EEE 

 

It is worth noting the slope of the curve in the 3rd quadrant. This suggests that as 

the value of the endowment increases the rate of disutility experienced decreases. For 

instance, a $5 loss from a $40 endowment will create less disutility than a $5 loss from a 

$10 endowment. This might suggest several responses from an EEE, 1) non-linear effects 
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as EEE’s approach depletion, and 2) fewer beneficial outcomes with large initial EEE 

balances. 

One seminal difference of the EEE vs. P4P framework from most loss aversion 

studies is that the potential gains in a P4P program are notional and cannot be quantified 

a priori. For instance, at the beginning of the treatment period all of the participants in the 

treatment group (EEE) know exactly how much they can potentially lose, whereas in the 

control group (P4P) the potential gains are speculative. With a few simple calculations, 

this is certainly discoverable, but not made explicit. This research design avoided any 

projections of potential gains to the P4P group in order to minimize triggering loss 

aversion anxiety. For instance, a periodic report such as, “at this rate of energy usage, 

your reward would be X dollars at the end of the incentive period”, may itself be 

interpreted as something to be lost. 

The P4P group in this study is a notional construct that mirrors the efforts of some 

utility companies to provide a rate-based incentive to reduce energy consumption. The 

reason it is called notional is because there is no empirical evidence that shows how 

consumers will respond to a real-time, rate-based incentive for energy conservation. 

Continuous usage feedback combined with a baseline usage reminder is an added feature 

provided to both groups in this research that differentiates this from previous studies. 

However, some of the behavioral change that the P4P user makes is based on risk 

mitigation, or a heuristic calculation based on how close the user believes they are 

conserving in order to maximize utility, financial or otherwise. For this group, there are 
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neither any reminders about what financial gains are at stake nor any forecasting about 

how much of their potential gain they have forfeited through use. 

The EEE user, on the other hand, is balancing loss aversion based on a value that 

is explicit, where no heuristics are required, but also has the ability to monitor the same 

feedback mechanisms, historic and baseline energy usage, provided to the P4P group. 

Lastly, both the P4P and EEE frameworks attempt to address some of the 

criticisms of feedback systems in general. One researcher identified several liabilities in 

coupling IHDs and financial incentives, 1) rewards should be delivered soon after 

behavior changes, and 2) most IHDs do not help with the “tricky cognitive problem” of 

making sense of consumption decisions (Buchanan et al., 2015). Both the P4P and EEE 

framework attempt to address the first directly, while the EEE framework targets the 

second directly. Another liability not addressed in this research is allowing users to use 

non-pecuniary incentives, such as explicit, pro-environmental information, in parallel 

with financial incentives because “a one size fits all approach for IHD cannot be 

justified” (Dam et al., 2010). This is encouraged for further research. 

Figure 13 shows a mapping of the different theories of behavior that shape the 

two groups.  
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Figure 13: Mapping of Experiment Frameworks to Theories of Behavior 

 

The GOEFER app will ensure that all users have real-time access to their 

individual energy usage. For those with pro-environmental dispositions, this may trigger 

conservation behavior. The EEE specifically addresses bounded rationality by removing 

the cognitive barrier of quantifying what is at stake. This is done by taking every user’s 

individual baseline and applying it to their potential gains at the end of the treatment 

period. As a result, a comparison can be made between how consumers behave under 

conditions of certain losses (EEE) and uncertain gains (P4P). While each of the common 

theories of behaviors (usage feedback and proenvironmental behavior) exist in some form 

in this experiment it does not explicitly assess the relative influence of each. With a larger 

sample population and the ability to include different frameworks this could quite easily 

have been done but is left for future research. 
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THEORIES OF BEHAVIOR APPLIED TO ENERGY CONSUMPTION 

Behavioral economics provides important insights into market failures, including 

principal-agent conflicts, externalities, information asymmetries, and transaction costs. 

For instance, consumers can act inconsistently against both their stated and revealed 

preferences, therefore providing direct challenges to rational choice theory that dominates 

neo-classical economic theory. In other words, consumer choice is not always consistent 

with strict utility maximization (Tversky & Kahneman, 1992). Classic welfare analysis 

assumes that consumers maximize their utility function based on choices constrained 

only by budgets. Utility functions can be specified based on consumers’ revealed 

preferences but are generally regarded as immutable and inviolable. The problem is that 

consumers often do not act on their stated preferences, resulting in various types of 

behaviors, such as procrastination and altruism. 

This section focuses on behavioral phenomena across a single, but significant, 

subset of the economy, the energy sector, and particularly on a small subset of that, 

residential household behavior. Compared to industrial and commercial energy 

consumption, household energy consumption has been largely shielded from financial 

incentives to reduce consumption. Competition within the industrial and commercial 

sectors has been a more normalizing force when it comes to energy efficiency and 

consumption. Because market-like arbitrage does not actually exist for many energy and 
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environmental goods and services, behavioral “failures” can affect and be affected by 

government intervention (Shogren & Taylor, 2008). These interventions can take several 

forms, including regulation, policy, measurements, and information exchange. 

Many researchers believe behavioral anomalies can help explain the differences in 

observed and socially optimal levels of energy efficiency, sometimes called the “energy 

efficiency gap” or “energy paradox”, whereby life cycle cost analysis shows short 

payback periods for required capital investment in most energy efficiency technologies, 

yet they go unrealized (Gillingham & Palmer, 2013). Two primary forces are contributing 

to a renewed focus on conservation and behavior within the energy sector, 1) the 

increased delinking of economic growth from energy consumption, and 2) a renewed 

concern about environmental externalities associated with energy production, particularly 

with respect to climate change. In fact, public and private sector concerns about the large 

quantities of GHGs being dumped into the atmosphere, largely from the transportation 

and electricity sectors, are focusing attention within the energy sector on environmentally 

responsible behaviors (ERBs), thus renewing interest in theories of social behavior as 

they relate to energy consumption. 

What is empirically known is that residential households often respond in 

unpredictable ways to both financial and non-financial incentives. The responses can 

modulate and even dissipate. Behavioral economics addresses some of these 

inconsistencies or deviations by formalizing theories of consumer choice. It draws upon 

cognitive psychology, sociology, and other fields to explain how individuals make 

decisions. This field statement highlights the most applicable theories within the energy 
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sector with a particular emphasis on DSM and energy efficiency programs and targeted 

policy tools, such as labeling, choice framing, and usage feedback, some of which can be 

coined libertarian paternalism “nudges” (Allcott & Kessler, 2015; R. H. Thaler & 

Sunstein, 2009). The policy goal is to assist consumers in maximizing their overall true 

utility (in contrast to a time-invariant revealed utility) without constraining their choice 

set. This merging of welfare economics and behavioral economics is (unsurprisingly) 

referred to as behavioral welfare economics. 

Currently, there is only a small body of research that examines the impacts of 

prospect theory applied to the demand-side of the energy sector. The lack of application 

for loss aversion is particularly acute, prompting one leading energy journal to claim “We 

know very little in energy research about how loss aversion impacts energy demand” 

(Hahn & Metcalfe, 2016). One of the promising reasons to explore it is because it has a 

high potential to be integrated into markets, with smart meter technology providing 

avenues for exploring consumer behavior in ways that were not possible even a few years 

ago. Unfortunately, the market penetration within residential households of smart meter-

enabled information remains remarkably slow. Although utilities receive immediate 

benefit by remotely collecting usage from smart meters, that information is seldom used 

to directly incent users to reduce consumption. Traditional rate-based cost-recovery 

structures, discussed earlier, provide one major barrier by not providing adequate 

incentives for utilities to curtail consumer demand. 

A recent study of intrinsic (financial) and extrinsic (non-financial) incentives to 

reduce peak demand showed that financial incentives induce larger reductions and are 
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more habit forming (Ito, Ida, & Tanaka, 2018)15. Some researchers will occasionally 

point to these types of studies and claim that utility ‘behavioral programs’ are not as 

beneficial as financial incentives in reducing consumption. Unfortunately, this label is 

misleading since the two are not mutually exclusive. This research employs behavioral 

treatments that examine how consumers respond differently to the same financial 

incentive. 

Behavioral science is identified as a way of addressing the six market barriers to 

energy efficiency identified in the literature: 1) misplaced incentives, 2) lack of access to 

financing, 3) market structure flaws, 4) inappropriate pricing and regulation, 5) gold 

plating, and 6) lack of information (Thollander, Palm, & Rohdin, 2010). A subset of these 

are identified as “behavioral failures”, often a result of information asymmetries (see 

Table 2). 

 

 
15 Because the costs of procuring energy at peak demand is very high for utilities, the overall costs of 

providing a DR program are much lower. This result should not necessarily be assumed to apply to all 

energy reduction programs.  
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Table 2: Market and Behavioral Failures in Energy Efficiency with Potential Policy Responses (Gillingham, 

Newell, & Palmer, 2009)  

 
 

This research directly investigates one type of behavioral response that has the 

potential to improve individual utility and social outcomes, prospect theory. Specifically, 

it examines whether loss aversion, can more effectively be employed to reduce the energy 

efficiency gap as a direct financial incentive that competes against supply-side 

generation. The possibility appears promising. Many studies show that loss aversion, 

where personal gains are discounted at a higher rate than losses, is a prevalent behavioral 

characteristic (DellaVigna, 2009; Tversky & Kahneman, 1981). The U.K. government, 

for instance, includes loss aversion as one of its seven key principles informing one (of 

two) behavioral change guides for policy makers (Dawnay & Shah, 2005). This 

behavioral trait has the potential to redress high discount rates for energy efficiency 

investments in two ways: a) If potential gains can be framed as potential losses, 

consumers can overcome cognitive limitations by precisely and overtly stating those 
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gains/losses, and b) it can effectively address the worse aspects of high discount rates, 

called hyperbolic discounting, whereby individuals exhibit a declining rate of time 

preference. 

This research, thus, has the potential to develop policy approaches that are 

consistent with libertarian paternalism “nudges” (Allcott & Kessler, 2015; R. H. Thaler & 

Sunstein, 2009). The policy goal is to assist consumers in maximizing their overall true 

utility (in contrast to a time-invariant revealed utility) without constraining their choice 

set. 

Behavior and Energy Consumption 

Behavioral interventions in energy consumption are generally focused on 

individual (or micro) outcomes. In contrast, “macro” factors tend to focus on TEDIC16 

factors, which have a more social and techno-industrial component to them. Individual 

outcomes recognize that reductions in energy consumption can result from very different 

types of behavior ranging from “one-shot”, or efficiency, behaviors, to “repetitive”, or 

curtailment, behaviors (See Table 3) (Martiskainen, 2007). Interestingly, research on 

energy consumption behaviors has not been able to quantify whether curtailment or 

efficiency behaviors are more effective in domestic energy saving (Abrahamse, Steg, 

Vlek, & Rothengatter, 2005; Gardner & Stern, 2002). 

 

 
16 TEDIC = Technology (e.g. more energy efficient appliances), Economic growth, Demographic factors, 

Institutional, and Cultural factors. 
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Table 3: Types of Energy Consumption Behavior 

Behavior Type Examples 

Efficiency One-shot 

• Insulation 

• Purchase of energy efficient durable good 

• Purchase of fuel efficient vehicle 

Curtailment Repetitive 

• Carpooling 

• Turning off lights 

• Adjusting thermostat 

 

 

It is important to understand why behavioral interventions deserve further 

economic study given that energy efficiency behaviors almost invariably reward 

individuals in a short period of time. A wide variety of individual choices that contradict 

revealed preferences can be explained by various theories of behavior. This is true even 

beyond material interests, including pro-social and pro-environmental preferences. 

The major departures from neoclassical economics reflected in behavioral 

economics are generally grouped in four categories: 1) prospect theory, 2) time-varying 

discount rates, 3) bounded rationality, and 4) pro-social behavior (Pollitt & Shaorshadze, 

2011). Although this research touches on all of these groups, prospect theory and loss 

aversion are most saliently addressed. 
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Prospect Theory: Loss Aversion and the Endowment Effect 

When presented with choices with equivalent expected outcomes, individuals tend 

to prefer less risk averse options. For example, when presented with an option that could 

cure a terminal disease affecting 600 persons, 72 percent of respondents favored the 

program option whereby 200 people were saved over the program option whereby the 

entire affected population was saved with 1/3 probability (Tversky & Kahneman, 1981). 

Similarly, people preferred medical options that favored a 90 percent survival rate over 

the same option that yielded a 10 percent mortality rate (McNeil, Pauker, Sox Jr, & 

Tversky, 1982). In economic terms this uncertainty-loss aversion bias (ULAB) shows 

that compensation required for forgoing consumption of a given good typically exceeds 

the willingness to pay for increased consumption of the same good by several times 

(Bateman, Munro, Rhodes, Starmer, & Sugden, 1997). This can be expressed 

mathematically as: 

 

Equation 2: Willingness to Pay vs. Willingness to Accept Model 

 

 

Where  is the payoff of the risky choice and V is the perceived utility 

Typical estimates for the variables are  =  and  = 0.88 (Benartzi & Thaler, 

1993a). The endowment effect reflects experiments that show that people are more eager 

to retain something they actually own than to acquire something new, potentially of 
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higher revealed preference.17 For example, one experiment showed that a group given a 

coffee mug would only sell for an average price of $7.12, while another group was only 

willing to pay $2.87 for the same mug (Kahneman, Knetsch, & Thaler, 1991). This 

phenomenon helps explain why individuals consistently have higher willingness-to-

accept (WTA) thresholds than willingness-to-pay (WTP). This behavioral trait can be 

challenging in encouraging one-shot, efficiency type activities, such as replacing a highly 

durable good, because consumers already tend to overvalue their current energy-

consuming item. 

Across multiple risk experiments losses count roughly twice as much as gains in 

customers’ revealed preferences (De Palma et al., 2008; DellaVigna, 2009). 

 

 
Figure 14: Kahneman and Tversky's Loss Aversion Function (Benartzi & Thaler, 1993b) 

 

 
17 For instance, one experiment showed how, when items of the same value (a candy bar and coffee mug) 

were randomly distributed to participants, preferences to keep the assigned commodity (versus trading for 

the other) ranged from 10 to 89 percent (Knetsch, 1989). 



60 

 

Both the presence and magnitude of the loss aversion effect varies widely and can 

depend on multiple factors. For instance, where losses and gains are repetitive and where 

the amounts in question are not high, actual differences were insignificant, although 

emotional affect in losing was still detectable (Yechiam, 2015). Other factors include: 

1. Cultural and ethnic differences (Wang, Rieger, & Hens, 2017) 

2. Whether the good is utilitarian (e.g. money) or hedonic (e.g. possession). 

For instance, some studies have shown there is no detectable loss aversion 

for money if consumers have committed to spending it. An endowment 

effect for an object or good can grow as consumers become more attached 

to it. Even new goods can cause instantaneous attachment effects due to 

their relative association. (Ariely, Huber, & Wertenbroch, 2005) 

3. Level of attention – One study showed that when two tasks are performed 

simultaneously, one requiring high levels of attention and the other 

requiring little attention, loss aversion had relatively little effect on the 

outcome for the high attention task (Yechiam & Hochman, 2013). This 

may suggest that as consumers are forced or allowed to work through the 

cognitive barriers of a task, that the inherent losses are seen as 

proportional or commensurate with the gains. 

4. Emotions can affect consumers’ WTA. One study showed that sadness is 

more likely to cause a consumer to facilitate trading. (Lerner, Small, & 

Loewenstein, 2004) 
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Another reason loss aversion may be important in explaining the energy paradox 

is because predicting exact future energy savings from energy efficient products is 

difficult and will certainly show considerable variance. For instance, 1) products will be 

used in different ways from which they were tested/rated, 2) future energy prices will 

change, 3) products will be used at different rates, and 4) product lifetimes will vary. So, 

although the net average savings may be considerably net positive, the bias toward loss 

aversion may not move some consumers toward purchasing even though they are likely 

to benefit18. Loss aversion has been modeled to explain revealed discount rates in the 

context of vehicles and fuel-efficiency performance. (Greene, 2011; Hassett & Metcalf, 

1993).19 However, empirical evidence of loss aversion as a behavioral failure in 

consumers’ energy choices continues to be sparse, this despite the fact that many 

governments and researchers view it with great potential. 

Time-inconsistent Preferences and Hyperbolic Discounting 

“Time preferences” have been interpreted as “an amalgamation of various 

intertemporal motives” (Frederick, Loewenstein, & O’Donoghue, 2002, p. 355). In other 

words, it is shorthand for the effects of multiple influences that affect behavior and, 

therefore, cannot be used as uniquely deterministic model. Individual discount rates are, 

in fact, not constant over time and vary across types of intertemporal choices: 1) gains are 

 
18 Of course, given the high number of uncertainties, one or more of which may trigger loss aversion 

behaviors, may also contribute to other types of behaviors, such as simplified heuristics (e.g. bounded 

rationality). 

19 There is little research to show how “learning by using” new energy efficient technology may contribute 

to reduced consumption. This may be increasingly relevant in the future for two reasons: 1) technology 

diffusion may be a function of how well early adopters can optimize new technology, and 2) there are an 

increasing array of technologies that can potentially interact to create synergies (e.g. wireless technology 

and smart appliances, smartphone apps and smart meters). 
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discounted more than losses, 2) small amounts more than large amounts, and 3) decisions 

with multiple outcomes differ from those considered singly (Frederick et al., 2002, p. 

360). 

Hausman was a pioneer who first demonstrated that consumers heavily 

discounted future energy savings in the purchase of room air conditioners (~ 20 percent) 

(Hausman, 1979). Other studies included the market for used motor vehicles (~ 24 

percent) (Allcott & Wozny, 2013), and durable goods (20 – 50 percent) (Train, 1985). 

Table 4 shows a range of discount rates from multiple studies for the purchase of various 

durable goods (Team). 

 

Table 4: Discount Rates for Various Energy-Related Durables and Investments 

 
 

Experimental economics is replete with examples of individuals exhibiting a 

declining rate of time preference. In other words, the implicit individual discount rate 

over a longer period is lower than for shorter periods. Sometimes referred to as 

hyperbolic discounting, one popular study revealed that individuals, when given $15, are 

indifferent to parting with that if compensated with $20 a month later (a 345 percent 
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discount rate), $50 a year later (a 120 percent discount rate), or $100 ten-years later (a 19 

percent discount rate) (R. Thaler, 1981). Similarly, a consumer may prefer $100 today to 

$105 tomorrow yet prefer $105 a year and one day from today to $100 a year from 

today20. Although this clearly violates utility theory axioms it reflects how individuals 

manage risk (Gong, Smith, & Zou, 2007). These tendencies have been difficult to 

quantify with respect to energy efficiency investments and energy use (Prindle & others, 

2007). 

Although this study does not specifically address time-inconsistent preferences, 

which dominates “efficiency” type behavior (see Table 3), it can certainly provide a basis 

for how consumers may behave when faced with information that quantifies their usage. 

Information Asymmetries 

Usage Feedback and Social Comparison 

Feedback is the process of giving individuals information about their behavior. It 

has been used in many policy areas, including public health, education, and 

organizational behavior. Norm activation theory emphasizes the importance of awareness 

of behavioral actions in influencing outcomes. Awareness helps reinforce a person’s 

behavioral intentions by reducing the likelihood that he/she simply is not paying 

attention. For electricity or natural gas consumption, this is particularly relevant since 

most consumers are only aware of their usage habits once a month when they get their 

 
20 A somewhat special case of time-inconsistency reflects individual preferences toward avoiding near term 

costs regardless of the longer-term savings. Although closely related to hyperbolic discounting, this 

phenomenon refers to situations where, as the future nears, regardless of the consumer’s specific long-term 

discount rate, discounting becomes steep. Also referred to as “self-control problems”, this nonstandard 

preference has been used to explain why individuals fail to stop smoking or eat healthier despite their stated 

preferences. 
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energy bill. Contrast this with driving habits, which are much more responsive to 

gasoline prices and a feedback routine (fuel gauge) with much higher frequency. 

Feedback can take on a variety of forms, sometimes differentiated by indirect and 

direct methods. Indirect methods include enhanced billing and estimated feedback, using 

tools such as online energy audits. Direct or real-time feedback generally refers to using 

devices such as in-home displays (IHDs). The effect of usage feedback may differ 

somewhat depending on an individual’s utility function, which reflect myriad tradeoffs 

and marginal costs of substitution, but feedback is unlikely to change behavior if their 

existing behavior is not compatible with their values and beliefs (Martiskainen, 2007). 

Direct energy feedback studies generally confirm that providing more frequent 

usage feedback will reduce homeowner electricity consumption to some degree, although 

the levels vary widely, from 3-20 percent (Abrahamse et al., 2005; Darby, 2006; 

Seligman & Darley, 1977). This result matches well with international studies that show 

a short-term energy savings from 5-15 percent (Martiskainen, 2007). A meta-analysis of 

42 studies shows a mean effect size of 7.1 percent (Karlin, Zinger, & Ford, 2015). 

Few studies, however, have examined how direct feedback works in concert with 

other incentives. One study indicates that the direct feedback provided by IHDs 

encourages consumers to make more efficient use of energy, ranging from, on average, 

about 7 percent when prepayment of electricity is not involved to about 14 percent when 

consumers use both an IHD and are on an electricity prepayment system (Faruqui, 

Sergici, & Sharif, 2010). 
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Even fewer studies have incorporated IHDs with other forms of information that 

might further alter behavior. This study contributes to the literature by combining 

financial incentives with two frameworks that employ loss aversion and risk 

management. One recent study examined how internal value and tailored action prompts 

delivered through IHD-enabled smart tablet changed behavior. This approach is termed 

intelligent smart metering (ISM) (Mogles et al., 2017). 

Some caution must be taken in estimating savings from IHDs, however. This is 

particularly the case in estimating mid to long-term reductions where significant 

reductions evaporated in only 15 months (Dam, Bakker, & Hal, 2010). Others argue there 

is simply not enough research to assess the overall efficacy of IHDs (Buchanan, Russo, & 

Anderson, 2015). Also, IHDs are typically deployed as stand-alone devices. This may 

actually inhibit how consumers interact as more information is being consolidated onto 

shared platforms, such as smart device applications. IHDs that are not dynamic or that 

repeat the same information can suffer from the “fallback effect”, where old information 

fades into the background of user behavior (Wilhite & Ling, 1995). 

Usage feedback can help users understand social norms and how their habits 

compare to others in comparable social and regional settings. This type of behavioral 

intervention has yielded the highest interest among energy providers to date. Multiple 

utility companies have used home energy reports (HERs) to allow households to compare 

energy usage with comparable households. Typically, HERs give descriptive norms 

outlining how household energy usage compares to local averages as well as other 

diagnostic comparisons. Customer behavior change is based on both theories of social 
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norm conformance (aka “norm to conform”), as well as increased information and user 

awareness (user feedback). Peer comparison has shown dramatic changes in behavior in 

other conservation arenas, such as encouraging towel reuse at hotels (Goldstein, Cialdini, 

& Griskevicius, 2008), reducing residential water usage (Ferraro & Price, 2011), and 

installing energy-efficient light bulbs (Ferraro & Price, 2011). It is important to 

distinguish types of informational, either normative or descriptive, with disclosure 

requirements, such as restaurant hygiene grades. The efficacy of disclosure, in fact, can 

depend greatly on the framing, content, and form of delivery (Ayres, Raseman, & Shih, 

2013). 

A review of twenty social comparison studies that met stringent causality 

standards showed reductions between 1.2% and 30% (Andor & Fels, 2017). In two of the 

largest studies, one that included over 600,000 households, and another that included 

170,000 residential customers covering two utility service areas (one for electricity and 

the other for natural gas), reductions in energy consumption ranged from 1.4% to 3.3% 

(mean = 2%) (in the former), and 1.2% and 2.1% over a 7 and 12-month time period with 

no observed boomerang effect whereby individuals feel compelled to use more energy 

upon learning that they are lower-than-average (Clee & Wicklund, 1980). In fact, one 

study found this to be true for a relatively small number of low-use users (Schultz, Nolan, 

Cialdini, Goldstein, & Griskevicius, 2007). One way of overcoming this is by the use of 

injunctive norms, such as using smiley faces or frowns, to express social values rather 

than actual behavior. Lastly, HERs have generally resulted in sustained decreased 
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consumption. Additionally, social norms tend to have a stronger effect on heavy energy 

consumers (Allcott, 2011; Ayres et al., 2013). 

The management of these peer comparison programs not only yields cost savings 

to customers but also provides a cost-effective way for utility companies to meet energy 

requirements. For instance, studies show that it costs about 0.025 $/kWh to reduce 

demand versus a range of higher-cost supply options. For a given service area, it can 

reduce carbon emissions by 0.5 percent and has the potential to save $2.2 billion per year 

in the U.S. (Allcott & Mullainathan, 2010). Furthermore, and very important to 

policymakers, HER programs have shown to have persistent effects beyond program 

cessation. One important study showed that consumers who participated in HER 

programs invested substantially in capital efficiency investments, not just curtailment 

behavior. Approximately 35 to 55 percent of energy consumption reductions can be 

attributed to efficiency upgrades, which are persistent (Brandon et al., 2017). 

Most studies of HERs base their findings and potential benefits strictly on reduced 

consumption and reduced energy spending. However, a few very recent studies have 

evaluated consumers’ WTP for HERs and found that a small, but significant, number of 

consumers actually would pay to stop having HERs delivered, meaning that they have 

negative utility in some instances. This presents an interesting additional consideration 

for energy policy, for blanket delivery of HERs does exert some negative societal 

outcomes (Allcott & Kessler, 2015). 



68 

 

Public Commitment, Cooperation and Goal Setting 

Game theory in public goods games have a long history in economics and 

strategic studies. Variations of these, including cooperation, reciprocity, and punishment 

games are very common both in laboratory and field experiments but have very little 

empirical research within the demand side of the energy sector. This is slightly unusual 

considering the scope and nature of the energy sector, as well as the potential gains that 

these behavioral insights could yield. 

Cooperation is the willingness to incur personal costs for the common good. It 

reflects variations of the Prisoner’s Dilemma game where total social benefits can only be 

optimized through trust, while personal gain is placed at risk. Self-interest can undermine 

cooperation and lead to free-riding. Rational, self-interested individuals are always 

predicted to defect yet decades of experiments show cooperation rates range from 40 to 

60 percent (Bicchieri, 2006, p. 140). Another critical factor to individuals is reputation, 

thus requiring levels of observability. There is evidence that publicizing the names of 

donors increases the frequency of blood donations (Lacetera & Macis, 2010) and levels 

of charity giving (Karlan & McConnell, 2014). 

One of the few large-scale, field-experiment cooperation games in the energy 

sector, which evaluated incentives to allow the utility company to reduce peak demand, 

found that 1) observable, voluntary relinquishment of central A/C control during high 

demand, framed as a public good, was more effective than a $25 incentive21. Also, 

volunteers were three times more likely to sign up if their participation was publicly 

 
21 The study found that it would take a $174 incentive to offset the perceived gains of being in the 

observable treatment group. 
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shared relative to the anonymous treatment group, 2) this effect was more significant in 

densely populated areas, such as apartment buildings, where neighbor interaction is more 

frequent and reputation concerns matter more, as well as in residences where the tenants 

owned the property versus rented (adding to other principal-agent challenges previously 

discussed). To verify that observability was a critical element of cooperating in the public 

good, another treatment group responded to a similar solicitation stripped of language 

referring to demand response as a public good, and there was no statistically significant 

differences in those choosing the publicly shared option and the anonymous option 

(Yoeli, Hoffman, Rand, & Nowak, 2013). 

Bounded Rationality 

Bounded rationality is another general classification of behavioral economics that 

describes why rational choice is constrained by limitations on time and imperfect (or non-

existent) information, often coupled to influence a consumer’s cognitive abilities. 

Neuroeconomics, a nascent field of research, is dedicated to understanding the mental 

processes involved in personal decision-making. Also called “Nonstandard 

Decisionmaking” (DellaVigna, 2009), different decision-making heuristics or mental 

shortcuts can be used to explain such behaviors as procrastination and overweighting 

observable factors, such as the purchase price of an energy efficient durable good. This is 

especially true if the energy costs are small compared to the purchase price (Jaffe & 

Stavins, 1994a). 

Mental accounting is a known behavioral framework which predicts that people 

will spend money coming from different sources in different ways. That is to say that 
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depending on the actual good or service being consumed, consumers reveal different 

preferences based on a relative reference point. For instance, the difference between $10 

and $20 seems bigger than the difference between $500 and $510, and in percentage 

terms the difference is significant (100 percent versus 2 percent). Although the absolute 

savings (or loss) is equivalent, consumers may choose to incur some cost (e.g. take time 

to switch plans or travel across town) based on the relative change to an expected cost (R. 

Thaler, 1985). This framework is yet another departure from classical economic theory 

that suggests money is fungible and is indifferent to income sources (R. H. Thaler & 

Sunstein, 2009). This mental model could have profound effects for energy efficiency, 

for if consumers have built a ceiling threshold for energy consumption, and that ceiling is 

not exceeded, the ability to pursue greater savings (no matter the cost) may become very 

difficult. Consequently, it could help explain the relatively high discount rates for energy 

efficiency purchases. The lack of empirical information within the energy consumption 

sector to quantify this effect limits policy development. However, given that energy 

consumption is so disaggregated from a transaction perspective (e.g. gasoline for 

vehicles, natural gas for heating, electricity), it is intriguing to see how mental accounting 

may change behaviors if/when it becomes more aggregated; for instance, if more 

households use electricity for transportation. 

Framing and Default Options/Status Quo Bias 

Default options for residential household energy consumers have gotten attention 

from researchers on the supply side. With the restructuring of the electricity industry in 

the 1990’s many states deregulated either wholesale or retail markets. The motivation 
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was that consumers, not utility companies, could best decide the mix of generation 

sources that were valued and, thus, make for a more competitive marketplace. In turn, 

that would lead to lower electricity prices. The results have been mixed. One of the 

challenges for regulators has been to find effective ways for consumers to make informed 

choices about their energy provider. This can be confusing since consumers are not 

necessarily knowledgeable about these options and are used to working with a single 

provider, which is their local energy distribution company (LDC). They are required to 

provide a default option. 

In Pennsylvania, which has unregulated retail electricity markets, less than a third 

of residential customer have opted out of the default electricity provider compared to 43.7 

percent and 79.1 percent of commercial and industrial customers (PA Power Switch, 

2019). The default residential rate is set by the LDC, who only provides transmission and 

distribution service to the residential service area. The default rate is often neither the 

cheapest nor the most environmentally beneficial. The LDC, who monitors consumer 

usage, is not necessarily incentivized to ensure each customer understands and can 

navigate their provider choices. 

The other extreme of the choice spectrum can be equally costly for consumers. 

When presented with too many choices, customers often decide not to decide. This is 

famously reflected in the “jam study”, whereby customers who were exposed to six types 

of jams were more likely to make a purchase than those exposed to 24 types (Iyengar & 

Lepper, 2000). In one of Pennsylvania’s largest service areas, customers must navigate 
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through 165 energy providers, with a variety of fixed and variable rate and term length 

offerings. 

How options are presented to consumers has been shown to have a substantial 

effect on their behavior. Consequently, labeling and positive messaging have observable 

effects. This appears to be more salient when consumers have to make choices from a 

large choice set with multiple attributes, such as a pension plan, health insurance, or a 

new vehicle. The high revealed discount rates of Table 4 could possibly be explained by 

inattentive behavior or imperfect information (or both). This assertion could explain other 

empirical studies that show that consumers are inattentive to “ancillary product costs”, 

such as sales taxes (Chetty, Looney, & Kroft, 2009) and shipping and handling charges 

(Brown, Hossain, & Morgan, 2010), or out-of-pocket insurance costs (Abaluck & Gruber, 

2011). In the context of durable good purchases or household efficiency upgrades, limited 

attention may be due to the relevance (or irrelevance) of energy efficiency in a decision-

maker’s subjective experience (perhaps due to the relatively low monetary expenses for 

electricity), or because the topic is not generally addressed in the media. This suggests an 

“availability bias” against infrequent (one-shot) type behaviors (Schubert & Stadelmann, 

2015). 

Product labeling represents another effective tool by which policymakers can not 

only reduce information asymmetries, but also frame consumer choices. Since 1980, the 

Federal Trade Commission (FTC) has required appliance manufacturers to provide 

“information” about the operating costs of their products. The Energy Policy Act of 2005 

(EPAct 2005) required the FTC to look at more effective designs for the EnergyGuide 
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label. One major study showed that simple information on the economic value of energy 

savings was the most important element guiding consumer decisions to invest in energy 

efficient water heaters (Newell & Siikamäki, 2013). Still, certifications (e.g. Energy Star) 

(Ward, Clark, Jensen, Yen, & Russell, 2011)22 or grades (e.g. EU-style label) are also 

effective, as was information on physical energy use and carbon emissions. The 

cumulative effects of each label treatment were also additive, although at differing levels 

depending on the combination. Two other important findings showed that individuals 

with higher revealed discount rates were more responsive to the labeling features than 

those with lower discount rates23, and 2) those with higher discount rates were less likely 

to take advantage of federal EE tax credit claims, showing an increase in potential free-

ridership for some durables. As an important policy finding, the study did show that there 

were labeling structures that caused consumers to overvalue energy savings relative to 

their revealed individual discount rates (median rate = 19 percent). Although these labels 

may help overcome the energy paradox, it does reveal a cautionary warning regarding 

“liberal paternalism”; that is, should labels that require users to overvalue future costs be 

encouraged despite consumer revealed discount preferences? In other words, although it 

may be to the individual’s economic interest to encourage energy efficiency, nudging 

should ideally encourage individuals to experience their revealed utility. 

 
22 Consumers, on average, are WTP an extra $249-$349 for a refrigerator with the Energy Star label. 

Associated studies found that household characteristics, such as renter status, ethnicity, income, and living 

in states with lower ACEEE scores decrease the propensity to purchase Energy Star appliances (Murray & 

Mills, 2011). 

23 For example, going from a 10 to 20 percent individual discount rate (100% increase) will cause a 10 

percent reduction in WTP for $10 in annual energy savings. 
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Other studies have suggested that even when energy costs are fully presented as a 

function of total operating costs, they do not always change consumer purchasing 

decisions. One study, for instance, found no effect of fuel economy information affecting 

vehicle purchasing decisions (Allcott & Knittel, 2017). Because certain durables, like 

vehicles, have a good deal of feature differentiation, perhaps researchers are undervaluing 

consumer utility in unmeasured variables. 

Of course, loss aversion can have profound effects on framing. These types of 

framing techniques suggest information such as “You are currently losing $10/month by 

not using fluorescent lightbulbs” may be more effective than suggesting they could save 

the equivalent amount. However, this type of framing may be less effective when 

directed away from personal consumption and toward social contexts (Frederiks, Stenner, 

& Hobman, 2015). In this sense, the Energy Efficiency Escrow (EEE), described below, 

is itself a type of framing mechanism that constantly reminds the user of what exactly is 

being lost when they choose to consume. Variations of the EEE could include rates at 

which the escrow is diminishing, much like the fuel efficiency gauges on newer vehicles. 

Although opt-out energy efficiency, time-variant pricing and home energy report 

(HER) programs are effective, the marginal savings per additional customer for utility 

companies is less than for opt-in programs. That is because those who opt-in are 

generally more informed and motivated to conserve energy. For time-variant pricing 

programs, average adoption rates are around 80 percent when customers are given the 

choice to opt-out compared with 15 percent for opting in; the latter option still tends to be 

the norm for those types of programs. 
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Pro-environmental Behavior 

The values, beliefs, and norms (VBN) theory suggests that proenvironmental 

behaviors stem from acceptance of particular personal values, from beliefs that things 

important to those values are under threat, and from beliefs that actions initiated by the 

individual can help alleviate the threat and restore the values (P. C. Stern, Dietz, Abel, 

Guagnano, & Kalof, 1999). It is an integration of two theories, the theory of planned 

behavior (TPB) promoted by Ajzen, that beliefs antecede behavioral intentions, which in 

turn antecede actual behavior (Ajzen, 1991), and Schwartz’s moral norm-activation 

theory (Schwartz, 1977), referring to a process in which people construct self-

expectations regarding prosocial behavior. These behavioral self-expectations are termed 

‘personal norms’ and are experienced as feelings of moral obligation. Central in the 

process of norm activation are six factors that are incorporated within (and added upon) 

the VBN model: 1) Awareness of consequences, 2) awareness of need, 3) situational 

responsibility, 4) efficacy, 5) ability, and 6) denial of responsibility. 

According to TPB, the main determining factors of behavioral intention are 

attitudes, which are influenced by knowledge and experience, subjective norms that the 

consumer believes is acceptable by society, and the perceived impact of the behavior. 

VBN adds to this causal chain by demonstrating that environmental beliefs are anteceded 

by personal values (e.g., altruistic, egoistic). Stern emphasizes that environmentally 

significant behaviors are affected based on the interplay of a wide range of contextual and 

attitudinal causal variables. In particular, he finds it useful in distinguishing between 

private sphere environmentalism (e.g. consumer purchasing choices) and public sphere 
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environmentalism (e.g. activism, petitioning), emphasizing that a unifying general theory 

of environmentalism is quite likely unattainable. Consequently, VBN theory is designed 

to explain nonactivist environmentalism (P. C. Stern, 2000). 

VBN theory focuses on a narrow set of attitudinal factors that describe a 

consumer’s general disposition to act with proenvironmental intent. This is distinct from 

other attitudinal factors, including behavior-specific predispositions (related to norm 

activation theory) and behavior-specific beliefs. In this respect VBN applies norm 

activation theory in a general sense. As such, VBN theory is not a unifying theory of 

consumer behavior and the interactions between attitudinal and contextual variables are 

complex and evolving (P. C. Stern, 2000). However, many studies indicate that personal 

values are most significantly associated with activation of proenvironmental personal 

norms (Karp, 1996; P. C. Stern, Kalof, Dietz, & Guagnano, 1995). 

Some contend that environmentalist intent is not even among the more critical 

factors in predicting environmental-related outcomes. Habits, income, community 

infrastructure (e.g. access to public transportation) constrain the choices among 

consumers who value the environment equally. One study showed substantial 

differentiation among pro-environmental behavior patterns with respect to individuals 

who have positive environmental dispositions, supporting the notion that behaviors are 

situational-specific or that the mechanism by which personal norms are activated are still 

not clearly understood. (Cleveland, Kalamas, & Laroche, 2005). Because the interplay of 

all contextual and attitudinal factors within the VBN model are complex, this research 

can likely not be generalized. For instance one study involving curbside recycling 
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showed that attitudinal variables are less important when certain contextual forces are 

strongly positive (compelling) or negative (prohibiting) with respect to the behavior in 

question (Guagnano, Stern, & Dietz, 1995). Other studies have shown that positive 

environmental behavior is not strongly favored by contextual variables that are more 

difficult, time-consuming, or expensive (Black, Stern, & Elworth, 1985). Few studies 

have been conducted to compare attitudinal factors with contextual factors. 

Another body of theory associates positive environmental behavior with 

postmaterialist values of quality of life and self-expression (Inglehart, 1990). One 27-

country sample provided strong postmaterialistic value correlation with environmental 

concern, perceived threat, perceived behavioral control and willingness to sacrifice, 

affecting a variety of pro-environmental behaviors (Oreg & Katz-Gerro, 2006). Although 

many of the triggering mechanisms that support the VBN model are present in 

postmaterialist theory, the more constrained level of analysis covered in this research 

(U.S. energy consumers) is unlikely to differentiate dramatically due to postmaterialist 

values. 

Research Questions 

The following include the primary research questions for the experiment. They 

attempt to integrate emerging DSM policy trends with theories of behavior that have not 

been applied to the energy sector. 

Financial Incentives for Energy Reduction 

Research Question: Does the employment of a rate-based financial incentive 

reduce personal energy consumption? 
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Hypothesis: A financial incentive will reduce personal energy consumption across 

multiple frameworks (EEE and P4P). 

Research Question: Do individuals with a higher potential reward for reducing 

energy, reflected in a higher baseline usage level, perform better relative than others? 

Hypothesis: Individuals with a higher potential reward for conserving energy will 

reflect higher levels of energy reductions than those with lower potential rewards. 

Performance of EEE versus P4P 

Research Question: Does the employment of an energy efficiency escrow (EEE) 

reduce consumption relative to the same financial incentive presented as a potential gain, 

modeled by a P4P program? 

Hypothesis: The EEE incentive will result in lower energy consumption relative 

to the same financial incentive framed as a P4P program. 

Research Question: Do levels of consumption reduction increase over time for the 

EEE group? 

Hypothesis: The EEE group will show greater levels of consumption reduction as 

the incentive period approaches its conclusion. 
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RESEARCH DESIGN 

This research makes several contributions to the literature on behavioral theories 

applied to energy consumption. First and most important, it examines whether two 

separate frameworks that employ the same financial incentive to conserve energy yield 

substantially different results. One framework (EEE) is structured to stimulate loss 

aversion explicitly, while the other (P4P) invokes potential gains implicitly, under 

conditions that require the consumer to use cognition to achieve desired outcomes. 

Second, this research examines to what degree, and to which types of consumers, 

do financial incentives, in general, reduce the monitored consumption of individuals. It 

does so in a way that employs real-time usage feedback, the ability to remotely control 

loads, and to monitor personal usage history. A small number of utilities are just 

beginning to provide rate-based incentives to reduce residential household consumption, 

but few reliable studies exist to bound how consumers respond. 

Third, it examines how individuals respond to financial incentives based on a 

series of sociodemographic and energy usage factors. These include age, gender, race, 

financial assistance, and study co-participation. Additionally, it assesses how/whether 

personal consumption is related to interactions with the usage feedback device, how well 

they understand the incentive being presented, and how the magnitude of the potential 

reward affects performance outcome. 
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Design Outline 

The primary data examined in this dissertation is drawn from a field experiment 

conducted over two-semesters (~ 9 months) at Dickinson College. This method was 

chosen in order to increase external validity by measuring how energy consumers 

respond in a natural environment over a timeframe significantly longer than experienced 

within a laboratory. Several months of discussions with multiple utility companies failed 

to result in a residential household pilot study. Thus, resource constraints made a wider, 

more comprehensive, study impossible. However, given that no empirical evidence exists 

in the literature about how loss aversion or residential P4P programs would work in the 

context of energy efficiency incentives, it was determined that this research had policy 

implications that could inform future household studies. 

The experiment was designed to determine how/if individuals (students) would 

respond to the same financial incentive to reduce energy consumption ($1 for every kWh 

used below a baseline) provided in two separate frameworks. The unit of analysis are 

individual students. Institutional Review Board (IRB) approval was granted in September 

2018 by Dickinson College. 

Two groups were formed and studied in a randomized control trial (RCT), with 

the control group replicating a traditional pay-for-performance (P4P) program. Both 

groups received a treatment of a financial incentive. Since P4P provides a framework that 

currently exists, it is termed the control group for simplicity sake. However, it is 

important to note that there is no historic performance comparison for the control group 
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given that this research implements P4P quite differently than do current residential 

household programs, including the level of usage feedback. 

The treatment group was provided the same financial incentive, but framed as a 

potential loss. The mechanism, an energy efficiency escrow (EEE), provided consumers 

with their maximum possible incentive on day one of the treatment period. That is to say, 

their EEE showed a balance that reflected what their individual reward incentive would 

be at the end of the treatment period if they consumed no energy at all. The EEE balance 

would then decrease for each unit of energy (kWh) they used during the treatment period. 

The baseline collection period of four weeks (28 days) (Feb 9 - Mar 9) was used 

to establish each individual’s average use. A pause in the experiment occurred during the 

spring break. The treatment period, whereby the financial incentive was in place, lasted 

seven weeks (49 days) (Mar 18 – May 6). Each student was offered $25 to participate. 

Additionally, any student who either had a balance on their EEE at the end of the 

treatment period (EEE group) or who used less than their individual average baseline 

(P4P group) was compensated $1 per kWh saved (Figure 15). All payments were in cash. 
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Figure 15: Field Experiment Overview 

 

All students who participated were by definition “opting in” to the study. All 

students were briefed and reminded that they had the option to opt-out at any time and 

would retain their $25 participation fee. No students chose to do so. This is noteworthy as 

some behavioral efficiency programs have triggered some participants to opt-out. This 

design did not employ any communications, such as injunctive norms, to indicate to 

students how they were performing relative to other students, nor did it share energy 

usage of other participants. Only personal usage information was shared with each 

participant via the GOEFER app. 

Design Features 

Dickinson College was chosen for the field experiment. All students living in on-

campus housing who were at least 18 years old were sent emails (see  

 

Pay-for-

performance (P4P)

One energy efficiency incentive

Two Frameworks

per kilowatt-hour 

saved

Energy Efficiency 

Escrow (EEE)
Final Balance based on minimizing 

losses

Final Balance based on maximizing gains

Maximum Reward Upfront

Ø 90 Students

Ø Android and Apple smart devices

1

2
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Appendix A) promulgating from the Director of Residence Life and Housing at 

Dickinson College. This took place in early October 2018. A smaller set of students were 

recruited in early Spring 2019 from invited requests to discuss the project in several 

classroom lectures24 All participants were required to sign consent forms, take pre and 

post experiment surveys, and agree to download the GOEFER app that was used to assist 

them in monitoring their energy usage and incentives. The Fall 2018 semester was 

primarily used to ensure experiment hardware and network connectivity was stable. 

All students resided in one of eighteen on-campus residence halls. They ranged in 

size from single to multi-student configurations with the vast majority residing in either 

single or double occupancy rooms (68 out of 90). Room sizes ranged from 200 sq-ft 

(single rooms) to around 1000 sq.ft. (4-room apts.). Because space heating/cooling was 

neither an energy load directly measured nor allowed to be controlled directly by 

students, room-size differentials were not expected to be a factor. Figure 16 provides a 

summary of the design layout. Although an inventory of plug loads was not taken for 

each individual, an informal review of typical loads included, lamps, computers with 

monitors, mini-refrigerators, stereos, video game consoles, televisions, coffee makers, 

small microwave ovens, and small fans. 

 

 
24 Of the final sample population of 90 students, 71 were recruited via email and 19 recruited via classroom 

invites early in the Spring 2019 semester. See Appendix A for the text of the recruitment email. 
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Figure 16: Summary of Research Design Parameters 

 

Several orientation sessions were provided throughout the Fall 2018 and early 

Spring 2019 semesters to issue power strips, to demonstrate their use as well as the 

accompanying app, and to review the requirements for participation. Each student was 

allocated as many power strips as they needed to account for their entire plug level 

demand and to minimize any unnecessary disruptions that may result from plug loads 

being in disparate locations within the residence. As a result, each student received 

anywhere from one to three powerstrips. 

The guidelines for usage stated that: 

a) All individual plug level loads must be connected to an assigned GOEFER 

power strip. For participants in single rooms, this meant all plug level loads 

were connected to a GOEFER power strip. 

b) All users would download the GOEFER app on an Apple or Android device 

of their choice. 

• Framed field experiment – Similar to a Randomized 

Control Trial (RCT)

• 90 Students

• Unit of analysis = individual students

• 1 control (P4P) and 1 treatment group (EEE)

• 1-3 powerstrips per student

• Represents all plug-level loads (~40 percent of total 

load)

• Energy levels collected multiple times per second à

aggregated to 15 min. intervals.
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c) For participants in rooms where all residents are participating in the study, any 

shared plug loads (e.g. refrigerator) must be assigned to one of the 

participant’s power strips and remain there for the duration of the study. 

d) For participants in rooms where not all of the residents are participating in the 

study, any shared plug loads can either be in an unmonitored outlet, or 

assigned to a GOEFER power strip. It must remain in that configuration for 

the duration of the study. 

Another consideration in the study was how to account for the effect of providing 

each student with a smart device app that makes each of them more aware of their own 

energy use (dependent on how often they check their app). As mentioned earlier, in-home 

devices (IHDs) tend to reduce consumption without any additional incentive. Because the 

GOEFER app effectively serves as an IHD it is expected that some reduction took place 

as students became more familiar with the study hardware and IT equipment. 

Students downloaded the GOEFER app asynchronously over the fall and early 

spring semesters as new students received orientation. As such, it was not feasible to 

monitor energy usage for each student in order to directly determine usage feedback 

effects. However, it was assumed that the usage feedback effects, as enabled by the 

GOEFER app, had already been reflected in each student’s energy consumption by the 

time the baseline collection period began. Additionally, although the GOEFER archiving 

system logs when each user interacts with the app, no attempt was made to precisely 

calculate how the GOEFER app interaction reduced consumption for each individual 

student during the baseline or treatment periods. 
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The GOEFER energy management company worked directly with the researchers 

to develop app features, maintain a web-based, real-time dashboard, provide technical 

assistance, and archive the energy use of all participants in the study. They also provided 

technical support to students who needed assistance in setting up accounts, pairing the 

powerstrips with the wifi network, and updating to new versions of the app. Although 

there were features on the app that were common to all GOEFER users, the version of the 

app used in the treatment period was customized to meet the requirements of the 

experiment. 

Determining Group and Sample Size 

The use of a power analysis to determine the ideal number of groups and sample 

size was limited by two constraints, 1) there is no public data that indicates the mean and 

standard deviation of typical college students’ energy use, including plug-level loads, and 

2) there were financial constraints as to the total number of power strips that could be 

procured and issued. For these reasons it was decided to not maintain a third control 

group that received no financial incentive. Having fewer than 45 students in a group 

would likely dilute the significance of any findings. Still, given the high sample rate and 

long duration of the treatment, the data set is very robust and an accurate and complete 

reflection of plug-level usage for both groups. 

The hypotheses of the research remained undisclosed to the participants 

throughout the experiment. The purpose was kept generic and simply revealed as “a 

research project…..on energy usage”. Informal post experiment interviews and discussion 
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confirmed that students were not aware of the purpose of the experiment prior to 

volunteering. 

Constraints and Limitations 

While a full collection of electricity usage for each student would be optimal, 

practical considerations limited doing so. Individual rooms are not metered. Also, it 

would be difficult to account for individual usage where much of the energy use is shared 

amongst roommates. For instance, lighting and space heating/cooling are both energy 

loads that cannot be easily allocated to individual use in shared rooms. Power strips 

offered the best opportunity to isolate energy use with individual behaviors while still 

accounting for a significant portion of the total energy demand. 

Experiment rule compliance could not be fully enforced except by periodically 

reinforcing the requirements of the study rules. Several times during the study an email 

would be sent to students reminding them of the requirements. It should be noted that 

despite this constraint, since the financial incentive was the same in each group, the 

benefits to cheating were equally available to those in all groups. Thus, any cheating, if it 

occurred, would not be biased toward either the control or treatment group. 

Experiment Preparation 

Hardware Selection and Network Connectivity 

The GOEFER energy management company was contracted to provide hardware 

and IT services for the study. This included the procurement of 157 power strips (Figure 

17). See  
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Appendix B for spec sheet. 

 

 
Figure 17: Image of GOEFER power strip 

 

Each strip consisted of six outlets and three USB ports. Although power was 

collected and archived at the individual outlet level, all power levels were aggregated, 

including those using multiple power strips. 

Each student was required to download the GOEFER app on an Apple or Android 

device of their choosing. Figure 18 shows the home screen of the app. Some important 

features of the app include: 1) the ability to turn individual outlets on/off, 2) real-time 
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power use by outlet, 2) an energy history tab that shows daily/weekly/monthly energy 

use. These features were common on the initial version of the GOEFER app. 

 

 
Figure 18: Home screen of GOEFER app 

 

A web-based dashboard was available to the primary researcher which gave real-

time status on power strip connectivity and selectable energy history usage information. 

This allowed the researcher to filter by calendar range (date/time), student, and 
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resolution25. A graph provided the power history for the selected range. Figure 19 shows 

the dashboard display (upper panels) from a random query taken from Feb. 4 – Feb 7. 

The “Watts over Time” panel shows the aggregate power consumption of all participants 

during that period. Below that panel, the “Watts Over Time by Student” panel shows the 

individual consumption use of all participants. Individual user consumption could be 

filtered to show higher resolution. The dashboard also shows that, at the time of the 

query, all 157 power strips were connected to the network and all 90 students were 

reporting data. 

 

 
25 Individual power strip collection intervals included 1 minute, 5 minute, 15 minute, and 1 hour intervals. 
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Figure 19: GOEFER Dashboard (upper panels) 

 

The dashboard display (lower panels), “Student Info” panel, provided more 

granular information by student. The “Num. Issued” column showed the number of 

power strips assigned to each student in a stoplight chart fashion. Additionally, for the 

calendar range selected, each student’s energy consumption would display in the “kWh” 

column. The researcher could scroll through this panel to get a quick update on each 

participant’s energy consumption history and connectivity status. 
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Table 5: GOEFER Dashboard (lower panels) 

 
 

Experiment Variables 

 Dependent Variable 

The primary dependent variable is energy consumption in kilowatt-hours (kWh). 

This was continuously collected at 1-minute intervals throughout all phases of the 

experiment. However, 15-minute intervals were used for all analyses as it best replicates 

smart meter transmission intervals (“FERC: Industries—Demand Response,” 2019). 

Cumulative energy consumption was also measured for each collection period. 

Additionally, as a way of monitoring how escrow balances evolved over the 

treatment period, account balances were updated across all 15-minute time periods. Proxy 

escrow balances for the control group (P4P) were generated so as to better compare 

depletion over time and to facilitate comparing performance with the treatment group 

(EEE). In other words, the researcher could directly determine how each group was 
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depleting their aggregate potential financial gains from the incentive. Individuals in the 

EEE group were able to monitor their own depletions, while those in the P4P group could 

only estimate. 

Independent and Control Variables 

A pre-experiment survey was conducted prior to any data collection in order to 

collect sociodemographic information and self-reporting attitudes and history toward 

energy use. These data were primarily used as control variables, but also to use as 

interaction variables in instances where sociodemographic, attitudes, and history have 

been shown to affect energy behavior. Figure 20shows the survey questions that all 

participants were required to complete prior to the study orientation briefings. 

One control variable that was not included was ambient temperature. This was 

omitted for two reasons, 1) all rooms in the residence halls are centrally controlled, and 

2) campus policy forbids the use of space heaters in residence halls. Although the use of 

fans is not prohibited, it was decided that the low power requirements and low use would 

not require a unique ambient temperature control requirement. 

Sociodemographic variables 
These variables included, gender, age range, academic status, residence hall, room 

occupancy, and whether all room occupants were participants in the study. These are 

included because there is some evidence to suggest that energy and pro-environmental 

outcomes have sociodemographic correlations. However, theoretical linkages to prospect 

theory are not known or well-understood. Figure 21 shows the aggregated results of the 

sociodemographic questions. 
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Energy use self-assessment and Knowledge variables 
These variables reflected previous household experience with energy use as well 

as self-evaluation of energy usage habits and knowledge. Figure 22 shows the summary 

of all responses. 
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Figure 20: Pre-experiment Survey (all participants) 
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Figure 21: Summary of Sociodemographic Results of Pre-experiment Survey 
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Figure 22: Energy use self-assessment and Knowledge Results 
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Baseline Energy Usage 
In order to establish an incentive structure that was reflective of each student’s 

average energy use, a baseline collection period of 28-days (Feb 8 - Mar 8) was used as 

the reference period. These data were used to inform what the potential financial reward 

would be for each student. In the case of the EEE treatment group, the average daily use 

during the baseline period was projected through the entire treatment period assuming 

that student used no energy. Since the baseline and treatment collection periods were 

exactly 28 and 49 days, respectively, the initial EEE balance was calculated as shown in 

Equation 3. 

 

Equation 3: Calculation of Initial EEE balances 

 
 

For both control and treatment groups, each student’s average baseline energy use 

was fixed on the energy history tab of the GOEFER app. The user had the ability to view 

either daily, weekly, or monthly usage, with the average baseline energy use 

automatically adjusting for desired time period. 

Baseline energy usage was needed to establish potential financial reward 

incentives, but also to ensure control and treatment groups were homogenous, as well as 

to determine if there was variation in behavior amongst light and heavy energy users.  

 Post Experiment Survey 
A post experiment survey was essential to determine several factors. Figure 23 

and Figure 24 are the surveys given to the control (P4P) and treatment (EEE) groups, 
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respectively. Slightly different versions were given to each group to understand how the 

differing incentive frameworks may have affected each student’s behavior. Results of this 

survey are presented in the next chapter. 

 

 

 
Figure 23: Post Experiment Survey (P4P) 
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Figure 24: Post Experiment Survey (EEE) 

 

Variable List 
Table 6 and Table 7 shows the complete variable list for the baseline and 

treatment period analyses, respectively. 
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Table 6: List of variables - Baseline Period and Pre-Study Survey 

 
  

Variable Name Type Coded Specification Description Note
genderdum Dummy M(0) F(1)

kwh Continuous

energy in kilowatt-hours consumed during 

15 minute interval

levels indicate total energy for all 

powerstrips assigned to each student

kwh_cum Continuous

cumulative energy in kilowatt-hours 

consumed for the time period of interest

levels indicate total energy for all 

powerstrips assigned to each student

age Categorical 1 18-20

2 20-22

3 >22

acad_yr Categorical 1 Freshman

2 Sophomore

3 Junion

4 Senior

race Categorical 1 White

2 Black or African American

3 Asian

4 Two or more races

assist Dummy

Not Receiving(0) Receiving(1) Financial 

Assistance

Are you using financial assistance to help 

fund your education?

No specific source or amount was 

indicated on question

lasthouse Categorical 1 1

2 2 or 3

3 4 or 5

4 >5

dorm_size Categorical 1 Single

2 Double

3 Three or More

share Categorical 1 No

2 Yes

3 Don't Know

estownuse Categorical 1 Much less than average

2 A little less than average

3 About average

4 A little more than average

5 Much more than average

estownknow Categorical 1 A little less knowledgable than average

2 About average

3 A little more knowledgable  than average

4 Much more knowledgable than average

devices Categorical 1 1

2 2

3 3

EEE Dummy Control Group P4P (0) Treatment Group EEE (1)

lighting

space

plug Continuous 1-10

In a typical dormitory room, how significant 

is lighting, space heating/cooling, lighting 

relative to the entire energy load?

How would you characterize your knowledge 

regarding energy consumption relative to 

persons your age?

"Much less knowledgable than 

average" was on the survey but 

yielded no responses

Number of powerstrips issued

Are all occupants of your dorm room 

participating in the study

Total household size of last residence (incl. 

self)

What is the occupancy of the dorm room you 

are currently residing in?

How would you characterize your energy 

usage relative to persons your age?

Age in Years

Academic Status

2019 Dept. of Commerce race categories 

were used  on suvey.

American Indian and Alaska Native 

and Native Hawaiian and Other Pacific 

Islander selections were on survey but 

yielded no responses
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Table 7: List of Variables - Treatment Period and Post-Study Survey 

 
 

Control and Treatment Group Formation 

Care was taken to make each group as homogenous as possible across 

each criteria below in order of decreasing importance. 

a) Housing unit (single/double/>3) – The objective was two-fold, 1) to have an 

equal number of persons in each of the three distinct room configurations, and 

2) to ensure all persons within the same room configuration were in the same 

group. The latter criteria minimizes the possibility that students might 

speculate on the purpose of the experiment and, thus, to minimize expectancy 

effects. 

Variable Name Type Coded Specification Description Note
appease Categorical 1 Very easy

2 Somewhat easy

3 Neither easy nor difficult

4 Somewhat difficult

importfin Categorical 1 Not at all significant

2 Somewhat significant

3 Very significant

finrwd Categorical 1 Much less than I expected

2 Somewhat less than I expected

3 About what I expected

4 Somewhat more than I expected

5 Much more than I expected

tabimport Categorical 1 Not important

2 Somewhat important

3 Very important

escimport Categorical 1 Not important

2 Somewhat important

3 Very important

useapp Categorical 1 daily

2 weekly

3 monthly

4 less frequently than monthly

5 I never checked the app

escimport Categorical 1 Not important

2 Somewhat important

3 Very important

migrate Categorical 1 Never

2 Rarely

3 Sometimes

4 Often

5 Always

6 I never altered the way I used energy

escunder Categorical 1 No

2 Yes, but not immediately

3 Yes, immediately

How important was the Energy Efficiency 

Escrow balance on the GOEFER app in your 

decision to use energy?

When you consciously reduced your energy 

consumption in your room, how often did 

you simply use the same power in a 

different location? (e.g. charge your phone 

in the library, used a printer in the lab)

Question only posed to treatment 

group (EEE)

Did you understand how your initial Energy 

Efficiency Escrow balance was calculated?

How important was the Energy History tab 

on the GOEFER app in your decision to use 

energy

How important was the Energy Efficiency 

Escrow balance on the GOEFER app in your 

decision to use energy?

Question only posed to treatment 

group (EEE)

How often did you check the GOEFER app to 

monitor your energy use?

"Hourly" was on the survey but yielded 

no responses

How significant was the financial incentive 

in changing your energy use

How would you characterize your final 

reward?

How would you describe the ease of use of 

the GOEFER app?

"Very Difficult" was on the survey but 

yielded no responses
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b) Baseline energy usage – As noted earlier, there is empirical evidence from 

residential utility behavioral programs that some behaviors are correlated to 

baseline levels of usage. Students were sorted by quintile and assigned 

randomly to each group. 

c) Academic Year 

d) Gender 

As can be seen in Table 8, control (P4P) and treatment (EEE) groups were 

perfectly balance between three of the four criteria with only a small, irreconcilable 

difference in academic year.  

 

Table 8: Randomization Table for Control and Treatment Groups based on selected Criteria 

 

 

Administration of Treatment 

The treatment period ran for 49 days, from March 18 (0400 UTC/GMT – 0000 

EDT) until May 6 (0400 UTC/GMT -- 0000 EDT). Email announcements were sent to 

each student at midnight (new day) March 18. A separate incentive announcement went 

out to each group. The control (P4P) and treatment (EEE) group emails are in Figure 25 

and Figure 26, respectively. 

 

Total 1 (top 20%) 2 3 4 5 (bottom 20%) Single rooms Double rooms 3> F Soph J Senior M F

EEE 568 9 9 9 9 9 14 20 11 17 16 4 8 12 33

PFP 528 9 9 9 9 9 13 21 11 17 13 4 11 13 32

Baseline Energy Use (kWh) Room Size Academic Year Gender
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Figure 25: Announcement for Financial Incentive (P4P) 

 

 
Figure 26: Announcement for Financial Incentive (EEE) 

 

Students were then required to immediately update their GOEFER app in order 

for several new features to appear that would assist them in monitoring their usage 

Participants - Over the past several weeks we have calculated your average daily power usage. Starting 
on March 18 and based on your use over the next 49 days (7 weeks) we will reward you with $1 for 
every kWh you use below your average, which will be reflected in the “Energy History” tab of your 
updated GOEFER app (v 1.0.2).  
  
For instance, if your average daily power usage was 1.0 kWh/day and decreased to 0.9 kWh/day over 
the next 49 days your reward would be: 
  
(1.0 – 0.9) kWh/day  X (49 days) X ($1.0 reward/(kWh)) = $4.90 
  
This amount will be added to your $25 participation fee at the end of the year.  If you use more than 
your average daily use, you will not receive any additional compensation beyond your participation fee. 
 

Participants - Over the past several weeks we have calculated your average daily power usage. Starting 
on March 18 and based on your use over the next 49 days (7 weeks) we will reward you with $1 for 
every kWh you use below your average, which will be reflected in the “Energy History” tab of your 
updated GOEFER app (v 1.0.2).  
  
Based on this reward incentive your app will automatically calculate the maximum compensation to 
which you are entitled if you were to use no power for the next 49 days. This is your energy efficiency 
escrow (EEE) account and will appear on the GOEFER app home screen. 
  
For instance, if your average daily power usage was 1.0 kWh/day your EEE will reflect a starting balance 
of: 
  
(1.0 kWh)/day  X (49 days) X  ($1.0 reward/(kWh)) = $49.0 
  
Your EEE will continuously decrement based on your actual usage. For instance, if after 49 days your 
average daily usage decreased from 1.0 kWh/day to 0.9 kWh/day your EEE will show a balance of: 
  
(1.0 – 0.9) kWh/day  X (49 days) X ($1.0 reward/(kWh)) = $4.90 
  
Whatever amount remains in your EEE will be added to your $25 participation fee at the end of the 
year.  If you deplete the balance in your EEE, it will remain at $0.00 and you will not receive any 
additional compensation beyond your participation fee. 
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relative to the incentive. Figure 27 shows two of those features. All students now saw a 

new bar in the energy history tab labeled “Avg.”. This reflected each student’s average 

energy use (either by day, week, or month, as selected) as calculated during the baseline 

collection period. The treatment group (EEE) had an additional feature, labeled “EE 

Escrow”. This would appear on all tabs in the same relative position. Just as reflected in 

the email incentive send to the treatment group, the EEE balance would be continuously 

decremented based on the rate of each student’s energy use. 

One consideration for the administration of the incentive for the control group 

(P4P) was whether to periodically update them on what their potential reward would be 

as the treatment period progressed. It was decided that no information other than that 

provided on the Energy History Tab would be included. The rationale was that updates of 

potential gains may itself induce a loss aversion reaction. Thus, control group students 

had to rely entirely on their own cognitive abilities to estimate what their final reward 

would be throughout the entire treatment period. 

Similarly, it was decided that, aside from the emails announcing the incentive, no 

reminders would be sent to participants about the incentive. It was expected that some 

level of user experience would be required for some members of the treatment group 

(EEE) to understand how the EEE worked despite the example given in the initial email. 
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Figure 27: Incentive Features reflected on GOEFER app 
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FIELD EXPERIMENT RESULTS 

This section provides both primary and secondary observations of the experiment.  

Student Response to Project  

The preponderance of study respondents, 76 (out of 90), were drawn from the Fall 

recruitment. 60 of those 76 respondents (or 78.9 percent) were female. Data provided by 

the Residence Life and Housing office show recruitment emails went out to 1,260 eligible 

students. Table 9 shows gender data for all on campus student residents. 

 

Table 9: Gender Distribution for Recruitment Population 

Gender  Freq.  Percent  Cum. 

 F 683 53.44 53.44 

 M 595 46.56 100.00 

 

 

A binomial test shows that we can reject the null hypothesis that the proportion of 

females in the study is the population frequency of 53.44 percent (p < 0.05). 

The balance of the final sample population of 90 students came from direct 

classroom recruiting. This included 19 additional students26. 

 
26 Five of the original Fall recruits enrolled in a Study Abroad program and were, thus, not available for the 

treatment period. None of the data collected from those individuals was used. 
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Baseline Collection 

A 28-day collection period was used to establish personal baselines for each 

student. Energy usage was archived every 15-minute for all participants. Average daily 

usage was used in order to accommodate the few dropouts that occurred during the 

period. There were 2,688 (28*4*24) collection opportunities for this period. 85 of the 90 

students experienced zero collection dropouts during the period27. For any daily period 

where a full 96 (24 X 4) possible values were not collected on any student, their average 

for what was collected for a given day was normalized to a full 24-hour period. This 

approximation was valid given the asynchronous use of a typical student throughout the 

day. The 24-hour normalization allowed for more accurate comparisons between students 

and the inclusion of a higher percentage of panels. 

Students were not told the parameters of the baseline collection period so as to 

minimize biases. A total energy usage of 1094 kWh was measured for the baseline 

period. Table 10 shows the distribution of energy usage – for the entire sample 

population (Mean = 0.434) and (Standard Deviation = 0.472) as well as by group. 

 

 
27 The remaining five had collections of 2280, 2529, 2603, 2645, and 2675. 
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Table 10: Baseline Collection Histogram and Avg. Usage by Group 

 

 

 

Clearly, these daily electricity consumption levels fall considerably short of 

typical U.S. residential levels, which, according to the EIA average about 28.9 kWh per 

day (Energy Information Administration). However, given that these levels are based on 

a single room, per person (versus per household), and not measuring space 

heating/cooling or lighting, the data is representative of a load set that is highly 

individualized, aiding to the objectives of the experiment. 

 Group    mean   sd 

 P4P .415 .432 
 EEE .452 .513 

 Combined .434 .471 
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These baseline data also provide a rationale for why the energy reduction 

incentive had to be higher than market rates. For instance, based on an incentive of $0.10 

per kWh saved, the mean potential savings (if no energy was consumed) would be $2.13. 

This potential reward was unlikely to overcome the cost of paying attention. Thus, to 

make the incentive more representative of what a typical household decision-maker 

might face, as well as to conform to the study’s budget constraints, the incentive was set 

at $1 per kWh saved. This amounted to an average EEE balance -or- an average potential 

reward for the P4P group of $21.26. 

It is also worth noting that the standard deviations of the study’s sample 

population are somewhat larger than most reliable data on residential household use. For 

a wide sampling of different households in Portugal, standard deviations ranged from 

about a quarter to half of the sample mean. Standard deviation in the U.S. tend to 

approach about 15 percent of mean (Pombeiro, Pina, & Silva, 2012). Because the types of 

loads being measured with the power strips are highly variable and taste specific, and 

thus not dependent on basic comfort needs of space heating/cooling and lighting, a higher 

standard deviation was expected, although not predictable. Thus, these baseline data 

provide useful insights in understanding energy use patterns in environments such as 

college campuses and shared housing units where large energy loads are centrally 

controlled. 

Sociodemographic and Background Factors on Baseline Usage 

Table 11 shows the clustered, pooled-regression results for the baseline collection 

period. Equation 4 shows the daily-average-usage OLS model using student clustering to 
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ensure robust standard errors and accurate p-values are used. Table 12 expands results 

across factor variables. Independent variables that showed increased baseline usage were 

white and male students. Energy usage decreased with increasing age group, with seniors 

showing the lowest and only statistically significant academic year group. Financial 

assistance was not statistically significant. White and non-white differentiation showed 

significance with respect to Black or African American and Asian race groups using less 

energy. 

Students’ estimation of their own energy consumption relative to other students 

revealed interesting discrepancies. For instance, students who stated they used “a little 

more than average” consumed considerably more energy than all other users. Those who 

revealed their own use to be “much more than average” used less energy than all 

responses with the exception of those who stated they used “much less energy than 

average”. All results were statistically significant. 

Students’ self-assessment of their energy knowledge correlated very well with 

baseline level usage, much better than did their estimation of personal energy usage. This 

is consistent with the theory of planned behavior (TPB) that suggests the main 

determining factors of behavioral intention are attitudes, which are influenced by 

knowledge and experience. Again, all results were statistically significant. 

Lastly, it was not surprising that those students who requested multiple power 

strips used more energy. Although some students suggested that they needed additional 

strips to accommodate a larger space with limited outlets, that translated into more actual 

load. 
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Equation 4: Clustered OLS model for Avg. Daily Usage (Baseline Period) 

 
 

 

Table 11: Clustered, Pooled-Regression Results of Baseline Collection Period28 

 

 
28 To check for collinearity of variables, a VIF (Variance inflation factor) test was conducted with all 

independent variables < 2. Panels were clustered by individual students. 

 kwh_daily  Coef.  St.Err.  t-value  p-value  [95% Conf  Interval]  Sig 

 genderdum -0.295 0.121 -2.43 0.017 -0.537 -0.054 ** 
 acad_yr -0.067 0.042 -1.60 0.113 -0.150 0.016  
 race -0.052 0.036 -1.44 0.154 -0.125 0.020  

 assist 0.159 0.120 1.33 0.188 -0.079 0.398  
 lasthouse -0.064 0.044 -1.45 0.151 -0.152 0.024  
 dorm_size 0.104 0.081 1.28 0.203 -0.057 0.264  
 share -0.009 0.067 -0.14 0.890 -0.142 0.124  

 estownuse 0.129 0.070 1.84 0.069 -0.010 0.269 * 
 estownknow -0.091 0.066 -1.38 0.171 -0.221 0.040  
 devices 0.160 0.093 1.73 0.087 -0.024 0.344 * 
 Constant 0.298 0.411 0.72 0.471 -0.519 1.114  

 
Mean dependent var 0.433 SD dependent var  0.541 

R-squared  0.192 Number of obs   2606.000 
F-test   3.144 Prob > F  0.002 
Akaike crit. (AIC) 3658.337 Bayesian crit. (BIC) 3722.858 
 

*** p<0.01, ** p<0.05, * p<0.1  
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Table 12: Clustered, Pooled-Regression Results of Baseline Collection Period Across Factor Variables 

 

      (1)   (2)   (3)   (4)   (5)   (6) 

       kwh_daily    kwh_daily    kwh_daily    kwh_daily    kwh_daily    kwh_daily 

 genderdum -0.282** -0.356***     

   (0.126) (0.129)     

 acad_yr -0.046      
   (0.043)      

 race -0.058      

   (0.038)      

 assist 0.151 0.064     
   (0.113) (0.113)     

 dorm_size 0.071      

   (0.077)      

 share -0.048      
   (0.066)      

 devices 0.232**      

   (0.089)      

 1bn.acad_yr       
         

 2.acad_yr  -0.120     

    (0.120)     

 3.acad_yr  0.159     
    (0.198)     

 4.acad_yr  -0.258**     

    (0.099)     

 1bn.race       
         

 2.race  -0.227*      

    (0.134)     

 3.race  -0.287***     
    (0.090)     

 4.race  0.032     

    (0.130)     

 1bn.dorm_size       
         

 2.dorm_size  0.016     

    (0.093)     

 3.dorm_size  0.210     
    (0.175)     

 1bn.share       

         

 2.share  0.047     
    (0.097)     

 3.share  -0.095     

    (0.132)     

 1bn.devices       
         

 2.devices  0.206**     

    (0.088)     

 3.devices  0.438*      
    (0.260)     

 1bn.age       

         

 2.age   -0.179***    
     (0.067)    

 3.age   -0.255***    

     (0.055)    

 1bn.lasthouse       
         

 2.lasthouse    0.088   

      (0.206)   

 3.lasthouse    0.135   
      (0.212)   

 4.lasthouse    -0.071   

      (0.211)   

 1bn.estownuse       
         

 2.estownuse     0.321***  

       (0.059)  

 3.estownuse     0.319***  
       (0.043)  

 4.estownuse     0.885**  

       (0.363)  

 5.estownuse     0.250*   
       (0.137)  

 1bn.estownknow       

         

 2.estownknow      -0.278** 
        (0.123) 

 3.estownknow      -0.276** 

        (0.111) 

 4.estownknow      -0.440*** 
        (0.133) 

 _cons 0.258 0.550*** 0.410*** 0.266 0.008*** 0.582*** 

   (0.283) (0.171) (0.055) (0.201) (0.000) (0.102) 

 Obs. 2606 2606 7094 7094 7094 7094 
 R-squared  0.140 0.221 0.031 0.021 0.080 0.056 

 

Standard errors are in parenthesis  

*** p<0.01, ** p<0.05, * p<0.1  
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Treatment Period 

The earlier Control and Treatment Group Formation section describes the 

prioritization of control and treatment group assignment. Figure 28 shows distribution 

among the variables prioritized for group balancing. 

 

 
Figure 28: Boxplot of Sub-group distributions 

 

A 49-day treatment period was used to collect energy use information after the 

start of the incentive. Again, energy usage was taken every 15-minutes for all participants 
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and normalized to a 24-hour period. This amounted to 4705 observations per student29. 

Table 13 shows the distribution of energy usage – for the entire sample population (Mean 

= 0.307) and (Standard Deviation = 0.364). The total expected energy usage for the 

treatment period was calculated using the baseline period usage (1094 kWh) and 

multiplied by the fraction of days in each period (49/28) = 1915 kWh. The total energy 

used for the treatment period was 1354 kWh for a reduction of 561 kWh, or 29.3 percent. 

Total student payouts for the incentive amounted to $679. This puts the effective 

payout per-kWh-saved at $679/561(kWh saved) = $1.21, since individuals were not 

penalized if they exceeded their baseline usage. Another way of stating this is to 

normalize the savings per dollar invested, thus showing an equivalent 29.3 percent/1.21 = 

24.2 percent reduction in energy usage for every $1 of program rate-based incentive. This 

5.1 percent delta can be regarded as the cost of allowing users who do not take advantage 

of the incentive to revert back to the mean of their normal usage. These users must be 

compensated for by energy savers. 

Figure 29 shows a scatterplot of how the population varied their treatment period 

usage compared to their baseline energy usage. All those in green increased energy usage 

(28 users) relative to their baseline and represent consumption for which energy 

conservationists (62 users) had to overcome in order to reach the 29.3 percent reduction. 

 

 
29 Five students experienced some level of network outage, resulting in observations ranging from 3980 to 

4700. 
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Figure 29: Comparison of Increased Usage vs. Decreased Treatment Usage by Baseline Usage 
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Table 13: Treatment Collection Histogram 

 

 

 

One way of understanding how the two groups performed relative to each other is 

to take the combined EEE balance of all participants in the treatment group (EEE) for 

each 15-minute interval and compare it the control group (P4P) assuming each participant 

had their own balance (Figure 30)30. Within two weeks after the treatment period 

 
30 In real-time 1-minute intervals were used to update the EEE escrow balances. The 15-minute and daily 

averages were derived from these data. Where outages occurred, the balances were restored by calculating 

users’ historic averages. Interpolations or projections were not used when outages occurred. This accounts 

for the periodic “steps” in the graph. 

 Group    Mean (daily averages - Kwh)   sd 

 P4P .252 .258 
 EEE .362 .442 

Combined .307 .364 
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commenced, the EEE group had already reduced their balances to below the level of the 

P4P group despite starting with a larger initial balance. 

 

 
Figure 30: Escrow Depletion for Control and Treatment Groups 

  

Analysis of Findings 

Research Question #1 

Research Question: Does the employment of a rate-based financial incentive 

reduce personal energy consumption? 
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Hypothesis: A financial incentive will reduce personal energy consumption across 

multiple frameworks (EEE and P4P). 

Table 14 is a T test that compares the combined (unpaired) performance of both 

control (P4P) and treatment (EEE) groups relative to total baseline use. 

 

Table 14: Unpaired T Test for All Groups - Baseline vs. Post-Treatment 

 
 

Average daily consumption across both groups was reduced by 29.3 percent (p < 

0.001). Clearly, we can, reject the null hypothesis that there is no difference in 

conservation outcomes based on a financial incentive. 

Research Question #2 

Research Question: Does the employment of an energy efficiency escrow (EEE) 

reduce consumption relative to the same financial incentive presented as a potential gain, 

modeled by a P4P program? 

Hypothesis: The EEE incentive will result in lower energy consumption relative 

to the same financial incentive framed as a P4P program. 

Table 15 shows a paired T test for each group’s performance relative to their 

respective baselines. It shows average daily reductions of 39.2 percent (p < 0.05) and 

19.9 percent (p < 0.05) in the P4P and EEE groups, respectively. 

 

     Baseline  Treatment   St_Err    p_value 

 avg daily use (Kwh)  0.434 0.308 0.030 0.000 
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Table 15: Paired T Test for Each Group - Baseline vs. Post-Treatment 

 

 

 

Table 16 is a summary of observations of the pre and post-treatment summary of 

energy usage by group using cumulative energy levels. It is a difference-in-differences 

table comparing group means before and after treatments. Note the projection of usage 

for both groups without any treatment. This was done by taking the sum of the average 

daily usages of each group and multiplying it by the total number of treatment days (49 

days)31. Figure 31 is a graphical display of Table 16. 

 

Table 16: Difference-in-Differences summary table 

 
 

 
31 Despite the similarities this is not a standard difference-in-differences experiment in that there was not a 

third group with no financial incentive to account for time variant differences during the treatment period. 

However, the comparisons are still robust given the number of observations and the homogeneity between 

groups. 

     Mean(Baseline Avg. 
daily use – Kwh) 

  Mean (Treatment 
Avg. daily use – Kwh) 

  St_Err   p_value 

 Control (P4P) 0.416 0.253 0.044 0.001 

 Treatment (EEE) 0.452 0.362 0.040 0.030 

 

Pre-Incentive Post-Incentive Difference Difference-in-Differences

P4P 0.416 0.253 0.163

EEE 0.452 0.362 0.09

Group 0.073

Average	Daily	Energy	Use	(kWh)

Baseline Projected	Use	without	Incentive Post-Incentive Difference Difference-in-Differences

P4P 524.2 1441.6 1079.9 361.7

EEE 568.3 1562.8 1366.5 196.3

Cumulative	Energy	Use	(kWh)

165.3
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Figure 31: Difference in Post-Treatment and Estimated Usage for Control (P4P) and Treatment (EEE) Groups 

 

The research hypothesis is refuted. The null hypothesis is rejected due to a 

statistically significant difference in the performance of the control group (P4P) over the 

treatment group (EEE). 

In summary, this research shows that when consumers are continuously informed 

about their usage and offered an incentive to reduce consumption, those who are forced 

to cognitively calculate potential gains and are therefore forced to perform some form of 

risk management, perform better than those who are explicitly and continuously aware of 

their loss exposure. 

Spring Break

1563  Kwh

1442 Kwh

Projected usage – Control Group (P4P) 

Projected usage – Treatment Group (EEE) 

1079 Kwh

1080 Kwh
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Embedded in the research design itself is the acknowledgement that the EEE 

mechanism may not be well understood by all users. The post-study survey attempted to 

gauge user comprehension to determine how this might affect performance. The 

treatment group (EEE) had two additional questions that were specific to them (Figure 

34) and (Figure 35). Several important observations emerged from these questions. First, 

the escrow bar on the GOEFER app was unique to the EEE group. Despite the fact that 

every user in that group had the ability to know exactly what their final compensation 

would be at the end of the performance period, only 57.8 percent responded that their 

reward was “about what I expected” (compared to 44.4 percent in the control (P4P) 

group). Although it was anticipated that a certain portion of the treatment group would 

not immediately understand exactly how the EEE worked, a third of them (33.3 percent) 

revealed they never did. It is reasonable to believe that the actual number might be 

slightly higher considering that some might be uncomfortable admitting it. 

Second, 73.3 percent of treatment (EEE) group (compared to 68.9 percent in the 

control (P4P) group) participants responded that the Energy History Tab was either “very 

important” or “somewhat important” (Figure 32). So, despite having an explicit indicator 

of their reward potential, their behavior still seemed to divert toward their baseline usage 

comparison revealed in the Energy History Tab; more so than even in the control group. 

An OLS model based on Equation 5 helps identify the singular effect of EEE 

understanding. 
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Figure 32: How Important was the Energy History Tab on the GOEFER app in your Decision to Use Energy?  

 

Equation 5: Clustered OLS Model to Determine EEE Subgroup Effects 

 
 

Table 17 shows the results of the Equation 5 model. Relative to the control group 

(P4P), those who responded that they never understood how their EEE initial balance was 

calculated conserved far less energy than any other subgroup. In fact, individuals in that 

group tended to use more energy over the treatment period. This is made more clear in 

Figure 33, which shows the range of percent energy reductions by 4 groups, 1) the 

control group (P4P), and those in the EEE group who responded to the question “Did you 

understand how your initial EEE balance was calculated?” 2) No, 3) Yes, but not 

immediately, and 4) Yes, immediately. 

 

EEE P4P 
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Figure 33: Reduction Comparison Between P4P and EEE Subgroups (Did You Understand How Your Initial 

EEE Balance was Calculated?) 

 

Table 17: OLS Model of EEE (Subgroups) Post Treatment 

 
 

 kwh_daily  Coef.  St.Err.  t-value  p-value  [95% Conf  Interval]  Sig 

 post_treat -0.163 0.043 -3.78 0.000 -0.249 -0.077 *** 
        
 P4P  . . . . .  
 2.No -0.125 0.083 -1.51 0.136 -0.291 0.040  
 3.Yes, not immediately 0.288 0.181 1.59 0.115 -0.072 0.648  
 4.Yes, immediately -0.109 0.103 -1.05 0.294 -0.314 0.096  
        

 P4P post_treat  . . . .   
 1.post_treat#2.No 0.174 0.055 3.17 0.002 0.065 0.284 *** 
 1.post_treat#3.Yes, not immediately -0.024 0.100 -0.24 0.809 -0.223 0.175  
 1.post_treat#4.Yes, immediately 0.090 0.057 1.57 0.119 -0.024 0.205  
 Constant 0.416 0.064 6.49 0.000 0.288 0.543 *** 
 

Mean dependent var 0.354 SD dependent var  0.478 
R-squared  0.077 Number of obs   7094.000 
F-test   3.971 Prob > F  0.001 
Akaike crit. (AIC) 9110.449 Bayesian crit. (BIC) 9165.386 
 

*** p<0.01, ** p<0.05, * p<0.1  

 



125 

 

This leads to an interesting observation. The effect of the EEE for those who did 

not understand how it was calculated was a significant barrier rather than an aid, or even 

a neutral factor, in conserving energy. This is true despite the fact that all persons in the 

EEE group still had the same tool (the energy history tab) that the P4P group had to 

monitor their usage. 

As another check of user understanding of the EEE, it is useful to examine 

whether each student’s assessment of their final reward correlated with their 

understanding of EEE balance determination. One would expect that if a student 

understood how the EEE balance was calculated, there final reward should not be 

subjective, but rather precise. 

 

Table 18: Correlation Table of EEE User Understanding of Escrow Balance Determination vs. Final Reward 

 

Table 18 is a correlation table of two survey question responses by EEE group 

members: 1) Did you understand how your initial Energy Efficiency Escrow balance was 

calculated? (Figure 34) and 2) How would you characterize your final reward? (Figure 

36). 

escrow understand final reward 

  

Much less 

than I 
expected 

Somewhat 

less than I 
expected 

About 

what I 
expected 

Somewhat 

more than 
I expected 

Much 

more than 
I expected 

Total 

No 1 3 9 2 0 15 

 100.00 33.33 34.62 33.33 0.00 33.33 
Yes, but not immediately 0 4 8 3 2 17 
 0.00 44.44 30.77 50.00 66.67 37.78 
Yes, immediately 0 2 9 1 1 13 

 0.00 22.22 34.62 16.67 33.33 28.89 
Total 1 9 26 6 3 45 

 100.00 100.00 100.00 100.00 100.00 100.00 
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Figure 34: EEE group only - Did you understand how your initial Energy Efficiency Escrow balance was 

calculated? 

 

 
Figure 35: EEE group only - How Important was the Energy Efficiency Escrow balance on the GOEFER app in 

your Decision to use Energy? 

 

 
Figure 36: How Would you Characterize Your Final Reward? 

 

The table clearly shows that those who understood how their EEE balance was 

calculated were no more likely to respond that their final reward was “about what I 

expected”. Of course, some respondents may have characterized their final reward less in 

terms of being surprised at the final allocation as being reflective of its compensation 

EEE P4P 
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parameters. Therefore, it is reasonable to conclude some may have not selected “about 

what I expected” when, in fact, it was exactly what they anticipated. This can be 

considered a missed opportunity in the post-survey brief to better understand consumers’ 

assessments. 

 

Table 19: Group Comparisons of Final Reward Estimations 

 
 

Table 19 shows how each group (P4P and EEE) assessed the final reward 

amounts. A Pearson’s Chi-Squared test confirms that we can reject the null hypothesis 

that the differences in the final reward estimates are statistically insignificant between the 

EEE and P4P group (Pearson chi2(4) = 16.45   Pr = 0.002)32. Overall, the P4P group 

assessed their reward as higher than expected with a full third revealing that the final 

reward was “much more than I expected”. 

Coupled with the fact that the P4P group conserved more energy, it supports the 

assertion that those participants “overshot” whatever conservation targets they may have 

set for themselves. It may also suggest that more utility could be gained with consumers 

 
32 Given the small fe for some cell groups, a Fisher’s exact test was also calculated with the same p = .002 

value.  

Group final reward 

  

Much less than 

I expected 

Somewhat less 

than I expected 

About what 

I expected 

Somewhat more 

than I expected 

Much more 

than I expected 

Total 

P4P 5 3 20 2 15 45 
 11.11 6.67 44.44 4.44 33.33 100.00 

EEE 1 9 26 6 3 45 
 2.22 20.00 57.78 13.33 6.67 100.00 

Total 6 12 46 8 18 90 
 6.67 13.33 51.11 8.89 20.00 100.00 
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who obtain a higher compensation than they were expecting at the end of the 

performance period. This is significant because customer satisfaction is an important 

element in any utility-run program. Whether this is sustainable over multiple treatment 

periods is left to be verified for further research. 

Research Question #3 

Research Question: Do individuals with a higher potential reward for reducing 

energy, reflected in a higher baseline usage level, perform better relative than others? 

Hypothesis: Individuals with a higher potential reward for conserving energy will 

reflect higher relative levels of energy reductions than those with lower potential rewards. 

To address this question, the model used was simply to examine the daily average 

usage of each participant throughout the treatment period and then taking the percentage 

difference relative to their baseline average energy use (distribution shown in Table 10). 

This is analogous to comparing usage with each person’s potential reward since the 

incentive was based on average baseline usage ($1 per kWh saved). 

 

Equation 6: Percent Change in Average Energy Consumption Use 

 
 

Equation 7: Clustered OLS model for Estimating Percent Reduction Relative to Baseline Avg. Usage 
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Table 20: Clustered OLS model Results for Equation 7 

 
 

 
Figure 37: Energy Conservation Performance vs. Average Baseline Usage 

 

The results of Table 20 show that we can reject the null hypothesis and conclude 

that as potential rewards increase, the relative percentage reduction in energy usage does 

increase. For every kWh per day increase in baseline usage, students reduced their 

 Actual_perc  Coef.  St.Err.  t-value  p-value  [95% Conf  Interval]  Sig 

 Baseperday -27.175 12.939 -2.10 0.039 -52.884 -1.465 ** 
 Constant -3.907 10.422 -0.38 0.709 -24.616 16.802  
 

Mean dependent var -15.693 SD dependent var  61.492 
R-squared  0.044 Number of obs   90.000 

F-test   4.411 Prob > F  0.039 
Akaike crit. (AIC) 995.777 Bayesian crit. (BIC) 1000.777 
 

*** p<0.01, ** p<0.05, * p<0.1  
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consumption by 27.1 percent. The OLS model is shown in Figure 37 in concert with the 

scatterplot of control and treatment group usage results. 

This finding has been observed over a handful of other DSM programs. Home 

energy reports (HERs), for instance, tend to have a stronger effect on heavy energy 

consumers as well (Allcott, 2011; Ayres et al., 2013). The magnitude of the reductions in 

this experiment, however, exceeds those seen in other energy reduction programs. 

One reason could be that heavier energy users tend to have a higher number of 

discretionary loads to moderate. This would include loads that are not directly related to 

essential functions such as space heating/cooling and hot water heaters. Of course, this 

experiment examines only a small subset of overall residential household loads, with a 

large number of the plug-level loads likely being cycled without impacts to room comfort 

or hygiene. 

Research Question #4 

Research Question: Do levels of consumption reduction increase over time for the 

EEE? 

Hypothesis: The EEE group will show greater levels of consumption reduction as 

the incentive period approaches its conclusion. 

Although the consumption levels from the EEE group appear linear throughout 

the treatment period in Figure 31, a simple quadratic model was used to see if there was 

any noticeable non-linear effect. 
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Equation 8: OLS Model of Non-Linear Time Effects on Daily Average Energy Use for Treatment Group (EEE) 

 
 

Table 21: Clustered OLS Quadratic Model for EEE Group (Post-Treatment) 

 
 

With no effective coefficient in the “Time_squared” variable the hypothesis can 

be refuted. A slight linear reduction does exist over time reflecting increased 

conservation over time. However, the results are not statistically significant. 

Post-Experiment Survey Results 

Additional independent variables were derived from a post-experiment survey 

conducted immediately following the treatment period. Figure 42 and Figure 43 show the 

results of the survey for the control group (P4P) and treatment group (EEE), respectively. 

The survey was also beneficial in determining how homogenous the behaviors 

were between control and treatments groups, especially with respect to interactions with 

the GOEFER app. 

Sociodemographic and Background Factors on Energy Behavior Changes 

The earlier section “Sociodemographic and Background Factors on Baseline 

Usage” examined factors that influenced baseline levels of usage. This section explores 

 kwh_daily  Coef.  St.Err.  t-value  p-value  [95% Conf  Interval]  Sig 

 Time_squared 0.000 0.000 1.24 0.221 0.000 0.000  
 timeday -1.779 1.502 -1.19 0.243 -4.806 1.248  
 Constant 19274.790 14110.521 1.37 0.179 -9163.095 47712.676  

 
Mean dependent var 0.363 SD dependent var  0.492 

R-squared  0.002 Number of obs   2240.000 
F-test   . Prob > F  . 
Akaike crit. (AIC) 3174.804 Bayesian crit. (BIC) 3186.233 
 

*** p<0.01, ** p<0.05, * p<0.1  
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many of the same factors to determine their correlation(s), if any, on energy behavior 

performance. A series of T tests across several variables is appropriate since average 

daily baseline and average daily post-treatment energy levels can be directly compared. 

 

Table 22: Paired T Test Results Pre-Post Treatment by Gender 

 
 

 

Table 22 shows reductions across gender, with individual males reducing their 

energy usage by an average of 20.1 percent (p < 0.1) and individual females by 14.0 

percent (p < 0.1). Overall male and female energy reduction was 23.4 percent and 

33.3percent, respectively33. These seemingly contrasting results suggest that high level 

female baseline users resulted in a lot of the overall post-treatment mean reductions for 

females. 

This result is not surprising in view of two previous finding, 1) females had lower 

levels of baseline energy use, and 2) research question #3 showed that higher baseline 

levels correlated with higher percentage reductions. Remember that overall energy 

 
33 The differences in percentages between the two groups was not statistically significant. 

     Baseline Mean (Avg. 
Kwh/day) 

  Post-Treatment 
Mean (avg. Kwh/day) 

  St_Err   p_value 

 Female 0.378 0.252 0.033 0.001 

 Male 0.580 0.444 0.064 0.044 

 Percent Reduction 
relative to baseline 

  

 Female -14.000  7.881 0.081 
 Male -20.096  11.366 0.090 
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savings was much higher due to the higher levels of reductions amongst heavier baseline 

users in general. Figure 38 shows this gender difference well. 

 

 
Figure 38:Energy Conservation Performance by Gender 

  

Looking at the same factors examined in Equation 4, Table 23 shows the pre and 

post treatment interaction effects. 
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Table 23:Clustered, Pooled-Regression Results of Pre-Post Treatment Period Across Factor Variables 

 

      (1) 

       kwh_daily 

 1.gender_dum#~male -0.311 

   (0.450) 
 1.post_treat#~female -0.537 

   (0.397) 

    
 1.acad_yr#~freshman 0.212*** 

   (0.067) 

 1.post_treat#~sophomore 0.093 
   (0.136) 

 1.post_treat#~junior 0.433** 
   (0.176) 

 1o.post_treat~senior  

    
 1.race#~White 0.020 

   (0.100) 

 1.post_treat#~Black or African American -0.305 
   (0.193) 

 1.post_treat#~Asian -0.039 
   (0.113) 

 1o.post_treat~Two or more races  

    
 1.assist#~No -0.077 

   (0.083) 

 1o.post_treat~Yes  
    

 1.lasthouse#~1 0.121 
   (0.100) 

 1.post_treat#~2 or 3 0.099 

   (0.069) 
 1.post_treat#~4 or 5 0.097 

   (0.092) 

 1o.post_treat~>5  
    

 1.dorm_size#~single -0.132 
   (0.190) 

 1.post_treat#~double -0.108 

   (0.156) 
 1o.post_treat~three or more  

    

 1.share#~no 0.083 
   (0.100) 

 1.post_treat#~yes 0.091 
   (0.114) 

 1o.post_treat~don’t know  

    
 1.estownuse#~much less -0.513** 

   (0.202) 

 1.post_treat#~a little less -0.142 
   (0.162) 

 1.post_treat#~about average -0.267* 
   (0.145) 

 1.post_treat#~a little more 0.163 

   (0.322) 
 1o.post_treat~much more  

    

 1.estownknow#~a little less 0.163 
   (0.152) 

 1.post_treat#~about average 0.010 
   (0.116) 

 1.post_treat#~a little more -0.032 

   (0.123) 
 1o.post_treat~much more  

    

 1.devices#~1 -0.028 
   (0.168) 

 1.post_treat#~2 0.074 
   (0.139) 

 1o.post_treat~3  

    
 _cons 0.718*** 

   (0.213) 

 Obs. 7094 
 R-squared  0.305 

  

Standard errors are in parenthesis   
*** p<0.01, ** p<0.05, * p<0.1   
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Performance Comparisons across selected Survey Questions 

Usage Feedback and Monitoring 
As discussed in the Usage Feedback and Social Comparison section of this 

research, we can be confident that the existence of feedback has an effect on behavior, 

even if only for the short term. This research contributes some new information regarding 

frequency of usage feedback and performance. Most usage feedback programs push 

information to users, through reports and social media reminders. While some utilities do 

allow users to log into a web portal and view their usage, the barrier to feedback is still 

rather high. 

However, the smart device-enabled GOEFER app is a pull device that allows 

users to check usage virtually anywhere and at any time. Based on the results of the post-

survey question “How often did you check the GOEFER app to monitor your usage” 

(Figure 39), Equation 9 examines whether frequency of GOEFER app usage influenced 

behavior. Since no students indicated they checked the app hourly, it was not included in 

the OLS model. 
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Figure 39: How often did you check the GOEFER app to monitor your usage? 

 

Equation 9: Clustered OLS Model for comparing pre-post energy usage with GOEFER App usage 

 
 

Table 24 shows that those who checked their app daily conserved more energy 

relative to their baseline than those that checked weekly or monthly but conserved less 

than those who checked less frequently or never. However, none of the interaction results 

were statistically significant. 

 

P4P EEE 
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Table 24: OLS model results for Equation 9 

 
 

Usage Migration 
Because students had some power loads that were migratory, such as laptops and 

cellphones (fixed loads were required to remain in a GOEFER power strip) the post-

survey asked students “when you consciously reduced your energy consumption in your 

room, how often did you simply use the same power in a different location?” (Figure 40). 

 

      (1) 
       kwh_daily 

 1.post_treat -0.140** 

   (0.062) 
 1b.daily  
    
 2.weekly 0.145 

   (0.132) 
 3.monthly 0.024 
   (0.107) 
 4.less than monthly 0.018 

   (0.178) 
 5.never 0.215 
   (0.207) 
 1o.post_treat~daily  

    
 1.post_treat#~weekly 0.026 
   (0.076) 
 1.post_treat#~monthly 0.086 

   (0.070) 
 1.post_treat#~less than monthly -0.030 
   (0.118) 
 1.post_treat#~never -0.203 

   (0.212) 
 _cons 0.359*** 
   (0.090) 
 Obs. 7094 

 R-squared  0.040 
 

Standard errors are in parenthesis  

*** p<0.01, ** p<0.05, * p<0.1  
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Figure 40: When you Consciously Reduced Your Energy Consumption in Your Room, How Often Did You 

Simply Use the Same Power in a Different Location? 

 

This gives some assessment if energy migration might account for some of the 

measured reductions. In other words, how much did migration affect their usage behavior 

as well as measured energy usage? Equation 10 is the OLS model used to determine this 

effect. 

 

Equation 10: Clustered OLS Model for comparing pre-post energy usage with student estimated energy 

migration 

 
  

EEE P4P 
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Table 25: OLS model results for Equation 10 

 
 

The post treatment results of Table 25 suggest no discernible effect between the 

different survey responses. Those responding “never”, “rarely”, and “often” had similar 

levels of usage reduction, while those responding “sometimes” actually increased usage. 

None of those four were statistically significant. The only significant result was from a 

single respondent who responded, “I never altered the way I used energy”, who increased 

energy usage throughout the treatment period. 

      (1) 
       kwh_daily 

 0b.post_treat~e never  

    
 0b.post_treat~e rarely 0.037 
   (0.090) 
 0b.post_treat~e sometimes 0.314** 

   (0.133) 
 0b.post_treat~e often 0.163 
   (0.132) 
 0b.post_treat~e always 0.094 

   (0.187) 
 0b.post_treat~e never altered 0.590*** 
   (0.063) 
 1.post_treat#~e never -0.072 

   (0.044) 
 1.post_treat#~e rarely -0.086 
   (0.074) 
 1.post_treat#~e sometimes 0.193 

   (0.117) 
 1.post_treat#~e often -0.029 
   (0.086) 
 1.post_treat#~e always -0.066 

   (0.111) 
 1.post_treat#~e never altered 0.458*** 
   (0.063) 
 _cons 0.285*** 

   (0.063) 
 Obs. 7094 
 R-squared  0.094 
 

Standard errors are in parenthesis  
*** p<0.01, ** p<0.05, * p<0.1  
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Thus, assuming students answered the survey question honestly, and 

understanding that each student may have a different estimate of words such as “often” or 

“sometimes”, there does not appear to be a correlation between energy behavior and 

levels of reported energy migration. 

Financial Incentive 
Although the financial incentive was clearly a factor in reducing consumption, its 

relative importance in behavioral change is uncertain. In response to the question “How 

significant was the financial incentive in changing your energy use?” (Figure 41) 

 

 
Figure 41: How Significant was the Financial Incentive in Changing your Energy Use? 

 

 Table 26 shows that across both groups 28.9 percent stated that the financial 

incentive was “not at all significant” in reducing energy use, while only 13.3 percent 

stated that it was “very significant”. For the majority of the sampled population (57.8 

percent), the financial incentive appears to be part of several factors involved in changing 

behavior. 

 

EEE P4P 
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Table 26: Survey Responses to Importance of Financial Incentive 

 
 

Equation 11 models how this survey question correlated with outcomes. 

 

Equation 11: Clustered OLS Model for comparing pre-post energy usage with importance of financial incentive 

 
 

Table 27: OLS model results for Equation 5 

 
 

Table 27 shows two important findings, 1) students who thought the financial 

incentive was “very significant” in changing their energy use reduced their average daily 

significant financial incentive 

Group 

Control Treatment Total 

Not at all significant 12 14 26 
 26.67 31.11 28.89 

Somewhat significant 24 28 52 
 53.33 62.22 57.78 

Very significant 9 3 12 
 20.00 6.67 13.33 

Total 45 45 90 

 100.00 100.00 100.00 

 

First row has frequencies and second row has column percentages 

 

 kwh_daily  Coef.  St.Err.  t-value  p-value  [95% Conf  Interval]  Sig 

 1.post_treat -0.113 0.056 -2.00 0.048 -0.225 -0.001 ** 
 1.Not Significant  . . . . .  
 2.Somewhat significant 0.002 0.109 0.02 0.986 -0.214 0.218  

 3.Very significant 0.343 0.194 1.77 0.080 -0.042 0.729 * 
        
 1.post_treat#Somewhat significant 0.047 0.063 0.74 0.458 -0.078 0.173  
 1.post_treat#Very significant -0.300 0.116 -2.58 0.012 -0.531 -0.069 ** 

 Constant 0.386 0.093 4.17 0.000 0.202 0.570 *** 
 

Mean dependent var 0.354 SD dependent var  0.478 
R-squared  0.039 Number of obs   7094.000 
F-test   5.874 Prob > F  0.000 
Akaike crit. (AIC) 9387.822 Bayesian crit. (BIC) 9429.024 

 

*** p<0.01, ** p<0.05, * p<0.1  
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use significantly, and 2) those students had significantly higher levels of baseline use than 

others. Again, this reinforces the importance of how higher potential gains effectively 

motivated students to change behavior, both in their stated and revealed preferences. 

There are several theories of behavior that are consistent with this result as 

discussed in  

 

 

 

Theories of Behavior applied to Energy Consumption. First, it is well established that 

simple usage awareness will reduce consumption. The majority of studies that examined 

increased awareness in households must still acknowledge that reduced consumption is at 

least partially incentivized by lower energy bills. 
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Figure 42: Post Experiment Survey Results (P4P) 
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Figure 43: Post Experiment Survey Results (EEE) 
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CONCLUSIONS AND POLICY IMPLICATIONS 

The conclusions of this project should be regarded as preliminary with limited 

external validity. The research design intentionally simplified many of the parameters to 

reflect the fact that the research applications of prospect theory, and loss aversion, to 

demand side management (DSM) is sparse. Still, this research is novel and establishes a 

new framework for interested utilities to design a pilot program that can leverage a larger 

sample size and a more heterogenous population. 

Achieving energy reductions approaching those found in this research are unlikely 

due to several factors, 1) the flexibility of adjusting plug-level loads is likely much higher 

than for other household loads, such as space/heating cooling and hot water heating, 2) 

individuals endogenously select into any experiment and are not truly a random 

population sample, thus some self-selection bias and/or Hawthorne effect may exist, and 

3) the amount of energy migration could not be precisely measured. This latter 

observation may be endemic with any residential household study to some degree. 

Consumers respond to financial incentives  

This research does support the neoclassic economic tenet that individuals respond 

to incentives. This is significant for several reasons: 1) Pay-for-performance (P4P) 

programs are still almost non-existent in the U.S. residential energy sector. There are 

currently no publicly available empirical results from which to compare the results of this 
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research, 2) technology, such as the GOEFER app and smart meters, is becoming 

increasingly ubiquitous and affordable, allowing for creative ways to explore more 

complex ways of engaging with consumers. 

Financial incentives are effective in DR programs as well, using a wide range of 

framework mechanisms, including dynamic rate structures. Having options to direct 

demand management over a wider timeframe and/or to targeted service area locations 

will likely become more economical as the electricity grid shifts to more renewables and 

storage. P4P/EEE type programs coupled with dynamic usage feedback offer curtailment 

and, very likely, energy efficiency behavioral modifications. Unlike today’s DR 

programs there is no need to predict when incentive periods are being offered and, thus, 

requires less attention by the consumers. In fact, DR programs do not require consumers 

to stay engaged with their household usage except for very few times a year. Despite 

some of the similar financial frameworks, DR programs show little evidence of energy 

efficiency behavior, but rather curtailment behavior that shifts usage patterns. HERs and 

energy audits appear to the be only widescale, non-rebate programs with empirical 

evidence showing energy efficiency gains. Unfortunately, neither use rate-based financial 

incentives to reduce energy use. 

Although it is clear to anyone familiar with electricity rates that the incentive rate 

to conserve a unit of energy was spectacularly high for this experiment34, the research 

results should not be readily dismissed as impractical. Although it was not explicitly 

 
34 $1 kWh is considerably higher than the average U.S. residential electricity rate of $0.128 kWh in March 

2019 (according to EIA). Accordingly, this rate would not be economically efficient. 
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asked on the survey, persons of this age typically do not have a history of paying energy 

bills and, thus, are unlikely to know that the incentive was favorable to them relative to 

industry standards. The incentive amount was structured to ensure the participants had a 

potential reward that would reasonably cause them to be attentive to both the amount and 

their energy use. 

Although not the primary objective of this research, this is one of the first studies 

to quantify how effective a real-time usage feedback program might actually perform in 

concert with a rate-based financial incentive. Paying consumers directly to use less 

energy using only their historic and current usage information avoids some of the costly 

engineering estimates required of current P4P programs. This research found that an 

effective savings of 24.2 percent could be achieved for the unit rate. Other factors would 

need to be considered in scaling this research for a wider set of households. For instance, 

are high relative incentive rates needed to achieve the program’s desired outcomes, in 

view of the induced penalties of non-responders, or can lower rates achieve the same 

results? 

An added financial incentive that was not integrated into this research is the fact 

that using less energy results in a lower energy bill. As discussed earlier, some of the 

residential household charges are demand charges and do not change significantly based 

on usage. However, consumption charges would reduce user costs even beyond the rates 

offered by P4P-type programs. Conveying to a customer their combined savings 

(consumption charge reductions plus P4P/EEE savings) would be is yet another 

opportunity to change behavior in real-time, using usage feedback. 
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Importance of Understandable Framework Details 

The results of the EEE subgroups in Research Question #2 of the previous chapter 

make it clear that program information that is shared with the customer needs to be well 

understood. In this research, those students who did not understand how the EEE balance 

was calculated were largely deterred from reducing their consumption relative to all other 

groups, including other EEE subgroups. Despite having other tools available to gauge 

performance, this subgroup had trouble reconciling their usage with a single program 

element they did not understand. 

In developing future smart device programs and apps, ensuring customer 

understanding of all features should be prioritized less they become a distraction. In this 

study a premium was not placed on ensuring consumers understood all app features 

before they were deployed. This was partly by design to minimize any bias. It was 

assumed that consumers would most likely reconcile how their EEE corresponded to their 

usage. It shows that features aimed to overcome bounded rationality and cognitive 

barriers can actually inhibit behavioral change if not fully understood by the consumer. 

Matching Energy History with Proper Incentives 

The finding that those with higher average baselines tended to have higher 

relative levels of energy reductions does have policy implications. Although the overall 

efficacy of a P4P/EEE-inspired program may be expected to be greater per-program-

dollar, a service area targeted toward heavy energy users might create equity concerns. 

With low income users, the number of discretionary loads are likely more limited, 
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leaving a larger percentage of program funds directed toward the more affluent. Many of 

these arguments are similar to those made against dynamic pricing of DR programs. 

One alternative would be to alter the rate structure to be more favorable toward 

lower income users, so as to balance the reward structure. Other types of energy 

efficiency incentives may also be more appropriate for low income users, such as 

weatherization and subsidies for energy efficient durables. Targeting subsidies toward 

low income users would also reduce the free ridership problems inherent with users that 

have time to overcome information asymmetries and have easier access to credit. 

According to the Energy Information Administration (EIA) residences account for 

37 percent of all electricity sales in a $380 billion U.S. market. Even marginal shifts in 

conservation can have tremendous economic benefits. Also, major segments of the 

economy, such as college campuses, charge flat fees for energy usage regardless of actual 

usage. Although there are sound economic reasons for doing so, it does limit their ability 

to incentivize conservation. 

As the costs of administering these types of experimental programs are weighed 

against the benefits, they should be compared with supply-side incentives, such as cost-

of-service regulation. They should also be compared with other DSM programs, such as 

energy efficiency rebates, dynamic pricing, and other incentives. The costs and benefits 

of these “nudges” will be used to help inform regulators as to how new demand-side 

technologies might enable more cost-effective alternatives to supply side measures. 
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Recommendations for further research 

This research provided a very limited framework for how prospect theory could 

be applied to incentivize energy conservation, a continuously decrementing balance on a 

smart app to a large group of college students. Obviously, applying this to actual 

residential households would greatly improve validity. Other interesting variations are 

mentioned below. 

• Quantizing rewards could change how consumers view losses. What if 

potential rewards were presented in increments? For instance, an EEE 

could reflect a tiered level of payment based on the magnitude of the 

savings. One NRDC report that surveyed historic P4P programs showed 

that tiered incentive payments are critical to achieving large conservation 

targets because, otherwise, there is a tendency for consumers to only 

address “low-hanging fruit” (NRDC, 2017). 

• Research shows that non-pecuniary incentives that activate social norms 

have worked effectively at-scale in residential household environments. 

Loss aversion could effectively be used in this context by urging 

consumers to maintain a certain status. For instance, to maintain 

“platinum” saver status a consumer would have to demonstrate savings 

over a fixed period of time. The incentive would be to avoid dropping to 

“gold” or “silver” status. These could be used as injunctive norms and/or 

shared with those who opt-in to a program. 
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• Feelings of affect were not explicitly measured in this experiment, 

although no participant decided to opt-out of the program. Overall 

satisfaction of a program must be reconciled with outcomes. For instance, 

one study showed positive outcomes (over a financial incentive) by giving 

children a token for achieving good grades. Tokens were taken from 

students whose performance degraded. (Cullen, Levitt, Robertson, & 

Sadoff, 2013) Obviously, this brings up other policy considerations 

including social costs and possible moral hazards. 

• This experiment reflected curtailment behavior much more than energy 

efficiency. Also, no information was provided to students about how they 

could reduce consumption. A more comprehensive EEE program could 

address both. Removing information asymmetries with targeted messages 

could further reduce consumption. For instance, consumers might see 

“replacing three incandescent bulbs with LEDs will, on average, add $10 

to your EEE balance over one year” or “upgrading to an ENERGYStar 

dishwasher can add up to $138 to your EEE balance over three years” as a 

way of directing specific types of activities. 

• Given that revealed discount rates for durable goods have differences 

among sociodemographic factors, such as education and ethnicity, the 

benefits of an EEE may favor those groups with higher revealed discount 

rates. This experiment essentially represented a homogenous education 

level. 
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• Loss aversion tends to have geographic and cultural variation. 

• This research was essentially a one-shot experiment. It is unclear how both 

control and treatment groups would react given a new incentive period. It 

is realistic to hypothesize that as the control group (P4P) became more 

confident in predicting their gains, whereby they are “less surprised”, that 

consumption may gradually increase in a multi-shot experiment. There are 

plenty of examples whereby consumption increases after the initial 

exposure. For instance, Home Energy Reports (HERs) tend to have the 

largest energy consumption reductions early in a performance or treatment 

period, tapering off as the frequency of reports increase (Allcott, 2011; 

Ayres et al., 2013). 

• Comparing program costs of rebates and subsidies with a P4P/EEE-type 

program would help determine how to structure a portfolio of options. It is 

unlikely that a one-size-fits-all approach is the most effective. Even 

combining the two in some fashion provides some interesting options. For 

instance, what if part of a EEE could be used to help purchase, or 

subsidize, a more energy-efficient durable product? 

• With low-income households often most in need of energy savings, 

creative programs whereby high-income users could effectively save on 

behalf of lower income users. Sustained savings could be directed to 

energy efficiency projects for low-income households. Similar human 

resources (HR) policies allow for donating leave days to those in need. 
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Practical Applications 

The electricity utility sector is undergoing rapid change, brought about by new 

technology, declining demand, environmental imperatives, and customer preferences. 

Regulators continue to struggle to find ways to incentivize utilities to reduce demand. 

This is understandable for many reasons. However, energy conservation, either through 

energy efficiency or curtailment, continues to be among the most cost-effective ways of 

structuring a socially optimal energy sector, where the greatest output of goods and 

services can be obtained with the least amount of primary energy. 

P4P programs, which are just beginning to evolve in the U.S. residential sector, 

should continue to draw on behavioral economics to help inform how energy efficiency 

incentives are framed. As more customers become accustomed to using technology, such 

as smart phone apps, to reduce information asymmetries opportunities abound in pairing 

behavior with incentives. The EEE, or derivation thereof, is just one framework that 

behavioral economics can play an important role. 

How an EEE would be employed by a utility company must address several 

challenges not of concern is this early research. First, can reduced consumption be 

sustainable? After all, the primary value and economic justification for a P4P-type 

program is to permanently reduce the incentivized load and, thus, lower the overall 

demand footprint in a given area. An efficient program would attempt to minimize 

rewarding behavior that may simply be reverting to the mean. Other control factors not 

used in this research, such as heating/cooling day offsets, would likely be necessary. 

Establishing a reasonable baseline period would require some attention, perhaps a multi-
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year sampling period. Also, changing the length of the incentive period of performance 

may show some variation. For instance, if beginning EEE balances were larger it might 

incent consumers to make larger investments in energy efficiency upgrades. Also, a 

longer period of performance may help normalize year-to-year variations that mask 

sustainable reductions. 

Obviously the EEE-P4P program examined in this experiment does not suffer 

from the constraints of seasonal variability. Since this program looked only at plug-level 

loads that do not tend to vary with weather and other factors, the continual comparison of 

daily, weekly, and monthly usage makes usage comparison seasonally agnostic. A 

program that incorporated full household usage would need to factor in seasonal 

variations. For instance, monthly comparisons from the previous year would likely make 

more sense given that space heating/cooling is the predominant energy load. A variable 

rate incentive that reflected the variability in wholesale rates throughout the year could 

also be explored. Obviously, the cost of the energy efficiency incentive would have to be 

factored into the rate base approved by regulators, and likely paid for by other consumers. 

Although this may seem counterintuitive it makes sense from a social economics 

perspective. Remember that the EEE-P4P incentive cost has virtually no capital recovery 

costs embedded, only the costs of setting up the feedback usage framework, which would 

have virtually zero marginal costs if the program is expanded. 

Escrows could also be used in conjunction with other behavioral and 

informational tools. For instance, escrows could be paired with a utility marketplace, 

whereby balances can be applied to offset the purchase of energy efficient durable goods, 



155 

 

smart devices, or home audits. They could be used to run competitions and reinforce 

personal commitments for energy use reductions. 

EEE-P4P programs also address a growing concern among some energy 

policymakers; that of rebound effects. While it remains uncertain to what extent 

consumers are choosing to use the savings from energy efficiency rebates and subsidies 

on other energy-generating sources, programs that reward households and consumers for 

absolute reductions would be more effective as a long-term demand side management 

(DSM) tool. Updating a household’s average baseline is one way of normalizing the 

incentive. In other words, as household energy use decreases, the incentive would 

naturally decrease as well, reflecting a lower overall average. In this way, the EEE 

framework used in this research maintains a higher incentive for households that do not 

make usage change, which makes for a more equitable and effective policy. 

An EEE could also help overcome status quo bias by making it an opt-out 

program. The cost of adding an additional customer is extremely small. Customers may 

view their balances as an “energy efficiency dividend” much as they would a tax rebate. 

The goal for energy utility regulators should be to incentivize reducing overall 

demand if it is less expensive than to add generation. This makes the value of these DSM 

programs much more comparable to supply-side options; “is the unit cost of removing 1 

kWh of energy off the service area baseline cheaper than adding 1 kWh of generation?” 

remains the important question. Additionally, regulators should try to minimize any 

negative effects of behavioral programs. Although some worry that prepay electricity 
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programs may potentially negatively affect vulnerable populations, the EEE framework 

does not suffer from that problem. 
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APPENDIX A 

During the 2018-2019 academic year, Dickinson College Residence Life and 

Housing is supporting a research project being conducted by George Mason University 

and Dickinson College faculty and students on energy usage. Your room, along with 

others in your residence hall, has been identified as a candidate location for the project. A 

small financial compensation by the researchers has been set aside for you if you decide 

to participate, which is completely optional. Please read the attached consent form for 

more details. If you wish to participate, please sign the consent form and return it to me 

electronically or drop it by the Residence Life and Housing Office (lower level of the 

Hub) no later than October 5, 2018. 
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Temperature/ Humidity  
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Switch 
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reset, manual turn the unit power on/ off 

DC Output 5v/ 3.1A (3 ports total) , USB for charging 
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