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Simulations of neural systems promise to offer powerful frameworks to formulate 

and test hypotheses about the physical interactions intrinsic to the brain. A 

comprehensive characterization of experimentally observed neuronal diversity using a 

modeling system is necessary to simulate biologically realistic brain networks at the cell 

type level. Biophysically detailed model descriptions typically limit the scalability of 

such network simulations as they specify hundreds of equations governing each neuron’s 

intrinsic dynamics. On the other hand, simple phenomenological models, which 

compactly describe the patterns of neuronal excitability through dynamical bifurcations, 

often lack experimentally identifiable parameters. This makes it challenging for such 

models to quantitatively account for the intrinsic diversity experimentally observed 

among the neurons. In this work, compact model descriptions that comprehensively 

capture the intrinsic dynamical diversity observed among the rodent hippocampal 
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neurons are created. Both point-neuron and compact multi-compartment models are 

optimized using evolutionary algorithms. These optimized models reflect the intrinsic 

differences among hippocampal neuron types both qualitatively and quantitatively. In 

addition, this work describes the collective dynamics of an ensemble of bursting neurons 

based on their self-organizing properties. Measures are formulated to quantify the 

metastable nature of the neural ensembles. Such integrative descriptions of neuronal 

dynamics can complement their intrinsic descriptions to accurately simulate biological 

neural circuits. 
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CHAPTER 1: INTRODUCTION 

 The mammalian brain presents a multitude of challenges in the understanding of 

its complexity. The mouse brain contains approximately 70 million neurons (Herculano-

Houzel et al., 2006), each making thousands of connections with other neurons. In 

addition, neurons have enormous diversity in their genetic expression, morphology, 

electrophysiology, and intrinsic dynamics (Wheeler et al., 2015). The number of neurons, 

whose activity can be recorded in parallel from an awake animal, is currently less than 

1000 and is expected to double every seven years (Hong and Lieber, 2019; Stevenson and 

Kording, 2011). Such technological limitations hinder the experimental interrogation of 

large-scale neuronal interactions and highlight the importance of simulating those 

interactions in the brain. Thus, biologically realistic simulations of large-scale neuronal 

interactions are increasingly considered as necessary tools (Markram et al., 2015) to 

advance our understanding of the physics of the brain. 

The goal of simulating a brain region requires precise descriptions of its 

individual components at a sufficient level of detail. Such descriptions include, but are 

not limited to, the morphological features of neurons that determine their connectivity 

structure and the ranges of their intrinsic dynamics. Hippocampome.org, a 

comprehensive knowledgebase of neuron types in the rodent hippocampal formation, 

identifies over 100 morphological types based on their axodendritic patterns across the 
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layers of the hippocampal formation (Wheeler et al., 2015) to describe their known and 

potential connections (Rees et al., 2016). In addition, the knowledgebase describes the 

ranges of passive and active electrophysiological, synaptic, and molecular properties for 

each neuron type, based on tens of thousands of pieces of empirical evidence, assembled 

from the peer-reviewed published literature. 

The qualitative and quantitative differences in the intrinsic dynamics among 

neurons result from specific combinations and distributions of various ion-channel 

mechanisms along the soma, axons, and dendrites. Intrinsic dynamics of a neuron can be 

mathematically described by the rules governing the kinetics of various ion channels 

(Hodgkin and Huxley, 1952). However, morphologically detailed descriptions of intrinsic 

dynamics, which typically include hundreds of equations, significantly limit the 

scalability of the network simulations (Bezaire et al., 2016; Markram et al., 2015; 

Morgan and Soltesz, 2008). On the other hand, phenomenological models, based on the 

bifurcation mechanisms of neuronal excitability, such as the Izhikevich model (IM) 

(Izhikevich, 2003), can compactly describe the intrinsic dynamics with only two 

equations, thereby making them computationally desirable. However, the bifurcation 

parameters of such models, which lack biological interpretability, need to be estimated in 

order to account for the qualitative diversity and quantitative variability commonly 

observed in the intrinsic dynamics of the neurons. 

In the next three chapters of this dissertation, I address the problem of 

phenomenologically describing the diverse intrinsic dynamics experimentally observed in 

hippocampal neuron types. In chapter 2, I review different classes of models, which 
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include both biophysical and phenomenological descriptions, and their tradeoffs. Then, I 

summarize a previous method that systematically characterized the intrinsic dynamics of 

hippocampal neurons, in terms of their temporal patterns of activation (Komendantov et 

al., 2019). Finally, I describe computational modeling of intrinsic dynamics as an 

optimization problem and discuss relevant issues. Special emphasis is placed on the 

appropriate configuration of the evolutionary algorithm (EA) that respects the parameter 

interactions in the IM to robustly optimize its parameters. 

In chapter 3, I present an optimization pipeline based on the EA to tune the nine 

parameters of the IM, to reproduce various temporal features of the experimentally 

identified spike patterns. The reliability of this technique is illustrated by modeling nine 

distinct classes of simple behavior phenotypes identified in (Komendantov et al., 2019). I 

also discuss how incorporating the spike-pattern class definitions into the fitness 

landscape can robustly identify a cloud of possibilities in the IM parameter space for a 

certain phenotype. In addition, I demonstrate the scalability of the approach by 

optimizing models with up to four compartments, which were simulated on CARLsim 

(Beyeler et al., 2015), a high-performance GPU-based simulator. 

While chapter 3 presents models for simple-behavior neuron types that elicit 

qualitatively similar responses for different inputs, in chapter 4, I present a 

comprehensive list of models for 120 neuron types/subtypes identified in 

Hippocampome.org. This covers 45 unique spike-pattern phenotypes, which include 

phenotypes with qualitatively different response patterns under different inputs. Both 
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point-neuron and multi-compartment IM descriptions are publicly available at 

Hippocampome.org, with an online feature to simulate the point-neuron dynamics. 

In addition to the model-fitting results, I report novel findings from various 

analyses, which include a comparison of descriptive powers between point-neuron and 

multi-compartment models, a comparison of dendritic integration properties between the 

optimized multi-compartment IMs and previously published morphologically detailed 

multi-compartment models, and correlation analysis between the bifurcation parameters 

of the IM and various biological features. The comprehensive mapping of 120 neuron 

types/subtypes as clouds of possibilities in the IM parameter space, provides sampling 

regions for neuronal groups to construct biologically realistic circuits of the rodent 

hippocampus. 

While precise phenomenological descriptions of individual components, among 

other factors, are important for the scalable simulations of hippocampal circuits, such 

network simulations face further conceptual challenges. Biological neurons have intrinsic 

plasticity and exhibit flexible working ranges by adjusting their excitability levels 

(Marder, 2011; Marder and Goaillard, 2006). In addition, cortical network dynamics are 

homeostatically tuned to achieve self-organized criticalities (Ma et al., 2019). Therefore, 

integrative-level descriptions, such as the patterns of self-organization among neural 

ensembles, are valuable and could complement the descriptions of individual components 

to accurately simulate network dynamics. Toward this end, in chapter 5, I describe the 

low-dimensional interactions among the broad class of intrinsically bursting neurons 

within the conceptual framework of “metastability” (Freeman and Holmes, 2005; Tognoli 
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and Kelso, 2014). Bursting neurons are multiple-time-scale systems, where the fast-

spiking dynamics are modulated by slower mechanisms. Bursting dynamics can also be 

characterized based on the complex periodic loops observed in the phase portrait of the 

IM. Here, I quantitatively describe and distinguish the metastability that emerges from 

the collective dynamics of different classes of neurons. Such quantitative descriptions of 

self-organization are useful to identify the optimal ranges in subregions of a high-

dimensional network parameter space. 

Finally, chapter 6 provides a summary of this dissertation. It also suggests a 

possible future direction with a brief literature review, which ties various chapters of this 

dissertation together. In addition, several supporting figures and tables are included in the 

appendix. Appendix also includes a paper that I coauthored, which details firing pattern 

identification protocols in detail.  
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CHAPTER 2: COMPUTATIONAL MODELING AS A MEANS TO DEFINING 

NEURONAL SPIKE PATTERN BEHAVIORS⊥ 

1. Introduction 

Information processing in the nervous system is facilitated by the rich, intrinsic 

computational properties of the neurons. These properties are revealed in their 

excitability and various temporal patterns of activation. The precise timing of voltage 

spikes during this activation is crucial for the representation of information (Buzsáki & 

Chrobak, 1995; O'Keefe & Recce, 1993; Gütig & Sompolinsky, 2006). The patterns of 

these voltage spikes are distinguished by several qualitative features such as fast spiking, 

bursting, spike frequency adaptation, bursting followed by spiking, and latency to spike. 

In many cases, a neuron exhibits several of these features under different experimental 

conditions. Thus, a neuron can be qualitatively characterized by the set of all different 

experimentally observed spike pattern types, which defines its spike pattern behavior. 

Computational simulations have been invaluable to the investigation of neuronal 

dynamics. Biophysically detailed Hodgkin-Huxley (Hodgkin & Huxley, 1952) type 

models have provided great insights into the computational properties of the neurons. 

Other simpler spiking models such as the Leaky Integrate and Fire models have been 

 

⊥ Published in Mathematical and Theoretical Neuroscience: Cell, Network and Data Analysis. Cham: 

Springer International Publishing; 2017. pp. 25–43.  

Authors: Venkadesh S, Ascoli GA 
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used to investigate the collective dynamics of neurons in large networks. Several such 

abstract models have been proposed for different applications. A particular model 

becomes the choice for a study by taking into account the factors such as its biophysical 

meaning, simulation cost, and computational possibilities. Section 2 provides a brief 

background on the computational properties of a neuron and a survey of the existing 

abstract models that capture these properties in varying levels of detail. 

Traditionally, morphology has been the major characterizing factor that defines a 

neuron type. From a modeling perspective, characterization based on electrophysiological 

properties such as membrane capacitance, time constant and spike amplitude might seem 

relevant. However, these properties are highly sensitive to the experimental conditions 

and hence, not very reliable. In addition, there could be several possible configurations of 

morphological and electrophysiological parameters that result in a single computational 

property. Therefore, in order to investigate the information processing in the nervous 

system, it is more useful and relevant to characterize the neuron types based on their 

spike pattern behaviors.  

Of particular interest to this chapter is the representation of a neuron type as 

possibilities in an abstract model space, where these possibilities encapsulate its known 

behaviors. Such a representation is valuable for the following reasons: Firstly, it might 

provide key insights into the existence of computational subtypes within a certain 

morphologically characterized neuron type, or, it might suggest a new direction towards 

characterizing neurons entirely based on their detailed neuro-computational properties. 

Secondly, in order to create a biologically realistic large scale spiking neural network 
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(SNN) model of a brain region, the individual neuronal models in that SNN should 

accurately represent the complex behaviors exhibited by the real neurons. Definition of 

these behaviors in the model space offers a sampling region for the neurons in such large 

scale SNN simulations and allows one to investigate the collective dynamics of several 

neuron types with distinct behaviors. However, this requires a framework that allows a 

systematic analysis and categorization of different experimentally observed behaviors. 

One such framework is discussed in section 3. Finally, sections 4 and 5 discuss the 

overall strategy to model the spike pattern behaviors and the issues that need 

consideration. 

2. Computational model of a neuron 

Several abstract models have been proposed to capture the computational 

properties of a neuron in varying levels of detail. On one end, the Hodgkin-Huxley (HH) 

model (Hodgkin & Huxley, 1952), which is a four dimensional system, incorporates the 

persistent K+ and transient NA+ current dynamics in order to explain the generation of an 

action potential in a neuron. The HH model has been traditionally used to study the 

dynamics of a single neuron in detail at the level of ion channel gating mechanisms. On 

the other end, the leaky-integrate-and-fire model (LIF), which is described by a single 

linear differential equation, simply defines a spike event based on a voltage threshold. 

The LIF's have been widely used in SNN simulations to investigate the network level 

dynamics and to solve practical problems in machine learning (Gütig & Sompolinsky, 

2006; Yu et al., 2014; Ghosh-Dastidar & Adeli, 2009). In between these two, there is a 

wide spectrum of models that capture the computational properties of real neurons to 
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different extents. In these models, the biophysical accuracy is usually traded off for a 

lower model simulation cost. The preference for a particular model might be made by 

weighing its biophysical details against its cost of simulation. However, the biophysical 

details are useful and relevant, when one is interested in investigating the factors that 

affect the single neuron dynamics such as the morphology of the neuron (Saraga et al., 

2003), backpropagation of action potentials (Yu et al., 2008), or the ionic currents 

(Goldwyn & Shea-Brown, 2011). For other investigations, it is more meaningful to 

discuss the model preference in terms of the neuro-computational possibilities allowed in 

that system rather than its biophysical details.  

2.1.Neuro-computational properties 

Neuron is a dynamical system (Izhikevich, 2007) and the excitability of a neuron 

can be described by the bifurcation mechanisms revealed in its phase portrait (Izhikevich, 

2000). The bifurcation from resting state of the membrane voltage (stable equilibrium) to 

repetitive spiking can be caused by a single parameter – the strength of the injected 

current. There are two major bifurcation mechanisms that broadly define the neuro-

computational properties (Izhikevich, 2001): In a neuron that undergoes Andronov-Hopf 

bifurcation, perturbing the stable equilibrium results in a damped oscillation towards the 

resting state. In the case of saddle-node bifurcation, such perturbation results in an 

exponential convergence towards the resting state. The former is known as resonator 

neurons and the latter as integrator neurons. The resonators do not have a clearly defined 

voltage threshold to generate an action potential, whereas integrators do. An integrator’s 

action potential is an all-or-none response, whereas a resonator can generate an action 
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potential with large or intermediate amplitude. An integrator’s firing response is directly 

proportional to the frequency of the input signal. The resonators require specific 

frequency components in the input signal to elicit a response. In addition, inhibitory input 

signals can promote spiking response in resonators, whereas inhibition always impedes 

an integrator’s response. Thus, these two classes differ in some of the fundamental neuro-

computational properties. Apart from being an integrator or a resonator, the biological 

neurons also exhibit different qualitative neuro-computational features in their activation 

patterns such as bursting, bursting followed by spiking, spike frequency adaptation, and 

latency to spike. Therefore, a good abstract model of a neuron should be able to 

reproduce all of these features. 

2.2.Biophysically meaningful models 

The Hodgkin-Huxley model (Hodgkin & Huxley, 1952) precisely captures the 

mechanisms of action potential generation in a neuron. It describes the dynamics of 

membrane voltage (V) using voltage-gated Na+ and K+ currents and an Ohmic leak 

current (𝐼𝑁𝑎, 𝐼𝐾and 𝐼𝑙 respectively): 

𝐶 ∙
𝑑𝑉

𝑑𝑡
= 𝐼 − 𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝑙 

𝐼𝑁𝑎 = 𝑔𝑁𝑎 ∙ 𝑚3 ∙ ℎ ∙ (𝑉 − 𝐸𝑁𝑎) 

𝐼𝐾 = 𝑔𝐾 ∙ 𝑛4 ∙ (𝑉 − 𝐸𝐾) 

𝐼𝑙 = 𝑔𝑙 ∙ (𝑉 − 𝐸𝑙) 

Here, C is the membrane capacitance and I is the externally injected current. The 

transient 𝐼𝑁𝑎 is further described by the state variables corresponding to three activation 

gates (m) and one inactivation gate (h). Similarly, the persistent 𝐼𝐾is described by the 



11 

 

state variable corresponding to four activation gates (n). The variables m, h and n define 

the probabilities of opening/closing of their respective ion channels. 𝐸𝑁𝑎, 𝐸𝐾 and 𝐸𝑙 are 

the Nernst equilibrium potentials. Although this four dimensional system can capture the 

rich neuro-computational properties of a biological neuron, it is computationally very 

expensive to simulate. Consequently, the HH type models are not ideal to be used to 

build large scale neural networks. 

Another biophysically meaningful model was suggested by Morris and Lecar 

(ML) (Morris & Lecar, 1981), which reduced the HH model and included only two state 

variables. This model omitted the 𝐼𝑁𝑎 inactivation and approximated its activation by 

including an instantaneous Ca2+ current as follows:  

𝐶 ∙
𝑑𝑉

𝑑𝑡
= 𝐼 − 𝐼𝐶𝑎 − 𝐼𝐾 − 𝐼𝑙 

𝐼𝐶𝑎 = 𝑔𝐶𝑎 ∙ 𝑀∞(𝑉) ∙ (𝑉 − 𝐸𝑁𝑎) 

𝐼𝐾 = 𝑔𝐾 ∙ 𝑊 ∙ (𝑉 − 𝐸𝐾) 

𝐼𝑙 = 𝑔𝑙 ∙ (𝑉 − 𝐸𝑙) 

Here, the state variable W describes the probability that a K+ channel is in open 

state and 𝑀∞(𝑉) describes the instantaneous 𝐼𝐶𝑎activation. Although the ML model 

reduces the dimensionality of the HH model, it requires a significantly small time step for 

the simulation in order to accurately reproduce the spike times (Izhikevich, 2004), which 

makes it still computationally expensive. In addition, this model does not capture spike 

frequency adaptation or tonic bursting. 
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2.3.Integrate and Fire (IF) Models 

The simplest and one of the most widely used spiking models of a neuron is the 

leaky integrate and fire (LIF) model, which describes the membrane voltage (V) using 

only a leak current and a membrane time constant (τ). When V reaches a threshold level 

(𝑉𝑡), it is instantaneously reset to a resting level (𝑉𝑟), which marks a spike event. 

𝜏 ∙  
𝑑𝑉

𝑑𝑡
= −(𝑉 −  𝐸𝑙) 

𝑖𝑓 𝑉 ≥  𝑉𝑡 𝑡ℎ𝑒𝑛 𝑉 =  𝑉𝑟  

Although widely used in large scale SNN simulations due to its simplicity, this 

model cannot reproduce several important neuro-computational properties including 

bursting, spike frequency adaptation, or resonance. A few variations of the LIF model 

have been introduced in order to capture some of these properties. For instance an LIF 

with Adaptation adds another differential equation to incorporate spike frequency 

adaptation. Here, the dynamics of an activation gate is introduced (g), which decays with 

time constant 𝜏 after a spike event. 

𝜏 ∙
𝑑𝑉

𝑑𝑡
= −(𝑉 −  𝐸𝑙) − 𝑔 ∙ (𝑉 − 𝐸𝐾) 

𝑑𝑔

𝑑𝑡
=

𝑒 ∙ 𝛿(𝑡) − 𝑔

𝜏
 

Other variations of LIF such as IF-or-Burst (IFB) (Smith et al., 2000),  Resonate-

and-Fire (RF) (Izhikevich, 2001), and Quadratic IF (QIF) (Ermentrout, 1996) models add 

some neuro-computational properties to the basic LIF model. However, the QIF cannot 

reproduce bursting or resonance, the RF cannot reproduce spike frequency adaptation or 

be an integrator, and the IFB cannot reproduce subthreshold resonance or bursting 
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followed by spiking. Brette and Gerstner incorporated the features of Izhikevich model 

(described below) into an IF model and created a two dimensional model known as 

Adaptive Exponential IF (AdEx) (Brette & Gerstner, 2005). This model has not only 

been shown to reproduce several neuro-computational properties qualitatively (Brette & 

Gerstner, 2005), but also performed well in a quantitative single-neuron modeling 

competition (Jolivet et al., 2008). 

2.4.Izhikevich model 

Izhikevich proposed a simple model (IM) of spiking neuron with two differential 

equations (Izhikevich, 2003) and showed that this model was able to reproduce many 

neuro-computational properties qualitatively. In addition to the membrane voltage (V), a 

membrane recovery variable (U) was included in the equation as follows: 

𝑑𝑉

𝑑𝑡
= 0.04𝑉2 + 5 ∙ 𝑉 + 140 − 𝑈 + 𝐼 

𝑑𝑈

𝑑𝑡
= 𝒂(𝒃 ∙ 𝑉 − 𝑈) 

𝑖𝑓 𝑉 ≥  30𝑚𝑉 𝑡h𝑒𝑛 𝑉 = 𝒄,  𝑈 = 𝑈 + 𝒅 

The recovery variable U approximates the activation of 𝐼𝐾 and the inactivation 

of 𝐼𝑁𝑎 in the HH model. Similar to the IF models, it defines a spike cutoff value to reset 

the state variables. The parameter ‘a’ is the time constant for the recovery variable U. 

The parameters ‘b’ and ‘a’ collectively determine whether the model is an integrator or 

resonator. Typically, the model is an integrator, when b < a, and resonator when b > a. 

The parameters ‘c’ and ‘d’ are after-spike reset values for V and U respectively. The 

resting voltage in this model is between -70 mV and -60 mV depending on the value of 
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‘b’. A slight variation of this model conveniently includes additional parameters such as 

resting voltage (𝑉𝑟), threshold voltage (𝑉𝑡) and cell capacitance (C) without affecting its 

computational efficiency (Izhikevich, 2010):  

𝑪 ∙
𝑑𝑉

𝑑𝑡
= 𝒌 ∙ (𝑉 − 𝑽𝒓) ∙ (𝑉 − 𝑽𝒕) − 𝑈 + 𝐼 

𝑑𝑈

𝑑𝑡
= 𝒂 ∙ {𝒃 ∙ (𝑉 − 𝑉𝑟) − 𝑈} 

𝑖𝑓 𝑉 =  𝑽𝒑𝒆𝒂𝒌 𝑡h𝑒𝑛 𝑉 = 𝒄,  𝑈 = 𝑈 + 𝒅 

The parameter ‘k’ defines the shape of the spike upstroke and Vpeak defines the 

spike cutoff value. 

Unlike the biophysically detailed models, the IM has been shown to capture 

several neuro-computational properties with a very low simulation cost (Izhikevich, 

2004). Consequently, this model has been used in a number of large scale SNN 

simulations (Izhikevich & Edelman, 2008; Beyeler et al., 2014; Nageswaran et al., 2009). 

Therefore, the IM is the most appropriate choice if one wants to build a large scale SNN 

with neuro-computationally diverse single neuron models. However, to create such 

diversity, the nine parameters of this model that collectively determine its neuro-

computational properties, need to be known.  

Qualitatively characterizing the neuro-computational properties as tonic spiking 

or bursting is useful to evaluate different abstract models as done in (Izhikevich, 2004). 

However, the real neurons exhibit more complex behaviors like bursting and spiking with 

frequency adaptation under different current stimulation levels (e.g. CA1 Neurogliaform 

neuron). Therefore, before truly exploring the neuro-computational possibilities in the 



15 

 

parameter space of the IM, one needs a systematic approach to classify the known spike 

pattern types and categorize different behaviors of real neurons. The following section 

discusses one such framework developed in a previous work.  

3. Spike pattern behaviors 

In a previous work (Wheeler et al., 2015), more than 100 neuron types in the 

rodent hippocampal formation were identified based on their axonal and dendritic 

locations across the hippocampal layers. A knowledge base (Hippocampome.org) was 

created and it includes the morphological, electrophysiological and molecular marker 

evidences for all neuron types, where information is available in the literature. 

Experimentally recorded voltage traces of these neuron types were analyzed and a firing 

pattern classification scheme was developed based on the presence of transient/steady-

state and silence/spiking/bursting components in a firing pattern (Komendantov et al., 

2019) (Table 2.1). Consequently, more than 10 different firing pattern types were 

identified among all the hippocampal neuron types. Representative cases for different 

spiking and bursting/stuttering pattern types are listed in tables 2.2 and 2.3 respectively. It 

should be noted that a neuron type can exhibit more than one of these types under 

different experimental conditions (e.g. different levels of current injection). For instance, 

a CA1 Bistratified interneuron elicited spike trains of the types D.PSTUT and D.NASP at 

400pA and 600pA current injection levels respectively (Pawelzik et al., 2002). The set of 

all different spike pattern types known to be elicited by a neuron type defines its 

behavior. However, since these neuron types have been primarily characterized based on 



16 

 

morphology, one must consider the possibility of electrophysiological subtypes in the 

context of spike pattern behaviors. 

 

Table 2.1: A scheme for firing pattern classification 
 

Transient 

response 

Steady-state response  

 

Silence 

Delay 

(D) 

Silence 

(SLN) 

 

Spiking 

Adapting Spiking 

(ASP) 

Non-Adpating Spiking 

(NASP) 

 

 

Bursting 

Transient Stuttering (TSTUT), 

Transient Slow 

Wave Bursting (TSWB) 

Persistent Stuttering 

(PSTUT), 

Persistent Slow 

Wave Bursting 

(PSWB) 

 

 

As listed in table 2.4, a neuron type belongs to the ‘multi-behavior’ category, 

when a single neuron of that type is known to elicit two different firing pattern types (e.g. 

D.NASP and NASP for two different current injection levels). If different neurons of the 

same type elicited different firing pattern types for the same current injection level under 

identical experimental conditions, then electrophysiological ‘subtypes’ exist for that 

neuron type. If the current injection levels were different in this scenario, the existence of 

subtypes is not conclusive, since it could also be a multi-behavior neuron type (‘subtypes 

or multi-behavior’). 
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Table 2.2: Exemplar spiking pattern types in the 

hippocampus 

Firing pattern type 

Neuron type* 

Experimental 

recording 

 

NASP 

CA1 BC CCK+ (i)2232 

(Cope et al., 2002)  

 

ASP.NASP 

CA3 Pyramidal 

(e)23223p** 

(Podlogar & Dietrich, 

2006) 

 

D.NASP 

DG Neurogliaform 

(i)3000p 

(Armstrong et al., 2011) 

 

 

D.ASP.NASP 

CA2 Pyramidal (e)2333p 

(Chevaleyre & 

Siegelbaum, 2010) 

 

 

Table 2.3: Exemplar bursting/stuttering pattern types in the hippocampus 

Firing pattern type 

Neuron type* 

Experimental recording 

 

PSTUT 

CA2 SP-SR (i)-0302 

(Mercer et al., 2012) 

 

 

D.PSTUT 

CA1 Bistratified (i)0333 

(Pawelzik et al., 2002) 
 

TSTUT.NASP 

EC - LV Deep Pyramidal 

(e)-220033 

(Hamam et al., 2002) 
 

TSWB.NASP 

CA1 Pyramidal (e)2223p 

(Zemankovics et al., 2010) 
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ASP.SLN 

MEC LV Superficial PC 

(e)213330 

(Canto & Witter, 2012) 
 

 

TSWB.SLN 

CA3 Pyramidal 

(e)23223p** 

(Chevaleyre & 

Siegelbaum, 2010) 

 

 

* Naming scheme for neuron types is based on (Wheeler et al., 2015);  

Note that firing pattern identification protocols have been updated since the publication of this chapter. See (Komendantov et al., 2019) for the most recent firing pattern 

classes 

** Neuron subtypes 

 

Table 2.4: Possible categories of behavior for a neuron type 'N' that exhibited more than one firing pattern type 

 

 Scenario Behavior category 

Response of 

neuron N1 

 Response of 

neuron N2 

For I1 For I2  For I1 For I2 

1 
Recording from 

a single neuron 
Multi-behavior FPT1 FPT2 

 
- - 

2 

Recordings from 

multiple neurons 

Subtypes FPT1 - 
 

FPT2 - 

3 Subtypes and Multi-behavior FPT1 FPT3 

 
FPT2 - 

4 Subtypes or Multi-behavior* FPT1 - 
 

- FPT2 

FPT: Firing pattern type, I: Input current injection level, N1 and N2 are two different neurons of the 

type N. * Non conclusive category. It also includes the cases where the recordings were made 

under different experimental conditions regardless of the current injection levels (e.g. different 

room temperatures, different animal species) 
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Finally, a neuron type can also satisfy the criteria for both ‘subtype and multi-behavior’. 

Definition of spike pattern behaviors in the IM parameter space might give useful 

insights into the ‘subtypes or multi-behavior’ category. For instance, if different spike 

pattern types of a behavior from the ‘subtypes or multi-behavior’ category cannot be 

reproduced in a single IM, it might suggest the existence of computational ‘subtypes’ 

within that neuron type. However, one must also take into account the possible 

limitations of the IM in these cases. From a modeling perspective, this requires 

optimization and exploration of the IM parameters. The next two sections discuss various 

methodologies to achieve this and the associated challenges in the context of parameter 

optimization. 

4. Evolutionary algorithm as a tool for modeling neuronal dynamics 

An Evolutionary algorithm (EA) is a powerful tool to tackle optimization 

problems. The EA is guided by a fitness function, which is used to evaluate the quality of 

the points in the parameter search space. The objective of using an EA for an 

optimization problem is usually concerned with choosing the appropriate type of the 

algorithm and its configuration, and the definition of the fitness function. The possible 

choices for an EA include, but not limited to, genetic algorithm (GA), evolutionary 

strategies (ES), genetic programming (GP), and particle swarm optimization (PSO). Each 

of these nature-inspired algorithms has their own set of features, but they all have a 

common core template: A population of candidate solutions goes through small changes 
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for several iterations in order to explore and exploit the search space with the guidance of 

a fitness function.  

4.1.Model optimization using the EA 

A number of studies have addressed the optimization problem in the context of 

neuronal models and different approaches for tuning the model parameters have been 

discussed in the literature. With the goal of fitting the model responses to voltage traces 

recorded from the biological neurons, these studies mainly differ in the following details: 

(a) the choice of the optimization algorithm, (b) the type of the neuronal model used and 

(c) the fitness function definition.  

On the model spectrum, simple models such as the adaptive IF, adaptive threshold 

IF, adaptive exponential IF and Izhikevich models have been optimized using the GA and 

PSO (Rossant et al., 2010; Lynch & Houghton, 2015; Rossant et al., 2011). The 

parameters of the biophysically meaningful models such as ML and HH with multiple 

compartments have also been optimized using the GA and ES (Gerken et al., 2006; Van 

Geit et al., 2007; Karen et al., 2005; Druckmann et al., 2007). However, the major aspect 

that characterizes these studies is the fitness function which defined the objectives. As 

mentioned before, the goal of this optimization problem is to create models whose 

responses are close to the experimentally recorded voltage traces. There are different 

ways to capture this goal in the fitness function. One approach is to directly compare the 

points of the experimental voltage trace with those of the model response. The problem 

with this approach is that the fitness function becomes very sensitive to small time shifts 

in the spike train (Van Geit et al., 2008; LeMasson & Maex, 2001). Another similar 
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approach called the phase plane trajectory density (PPTD) method avoids this problem 

(LeMasson & Maex, 2001). The PPTD method excludes the time parameter and plots 

two time-dependent variables such as the voltage V(t) and its first derivative dV/dt for the 

comparison. Using this method as a fitness measure, a Purkinje cell model with 1600 

compartments and 24 free parameters has been tuned (Van Geit et al., 2007). The effects 

of using different fitness functions on the performance of the GA for a HH model with 19 

free parameters has been studied in (Karen et al., 2005): These functions were based on 

direct comparison of voltage traces, the PPTD method, and the comparison of inter-spike 

intervals. The fitness function that combined all these three modes of analysis was shown 

to be the most effective. Another approach is to use the features of a spike pattern such as 

spike frequency, AP width, and AP overshoot in the fitness function (Druckmann et al., 

2007). The major advantage of this approach is that the features can be selectively 

included in the fitness function. For instance, if one decides that the shape of the spike 

upstroke is not relevant to their study, and only interested in reproducing a certain spike 

frequency, the fitness function can be configured accordingly. In (Gerken et al., 2006), 

the input current – firing frequency curve was used to tune the ML model with six free 

parameters. Finally, the possibility of using spike coincidences as the fitness measure has 

been explored with IF and Izhikevich models (Rossant et al., 2010; Lynch & Houghton, 

2015; Rossant et al., 2011). This approach was based on the number of coincidences 

between the experimentally recorded spikes and the model spikes, where coincidences 

were defined using a small temporal window. On a benchmark dataset, this approach 

worked well with the IF models, but performed poorly with the Izhikevich model.  
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4.2.Feature-based fitness function 

As an optimization problem, the objective here can be broadly defined as follows: 

implement a fitness function that can reduce the model error in terms of spike times. 

However, as mentioned earlier, the spike pattern behaviors are characterized by the 

higher level temporal features such as first spike latency (fsl) and spike frequency 

adaptation (sfa). Therefore, it is useful to include these features in the fitness function 

rather than the spike times. This allows one to give importance to one feature over the 

other by assigning different weights to their respective errors. In addition, the right 

combination of these features can implicitly represent the original goal of reproducing 

accurate spike times. As an example, consider the experimentally recorded voltage trace 

from a CA3 pyramidal neuron given in table 2.5 (top trace (Hemond et al., 2008)). The 

spike times of this pattern can be implicitly represented as objectives by simply including 

the following features as described in the table: fsl, pss, sc and sfa during the first five 

spikes. Thus, the fitness function for such an ASP.NASP pattern could be defined as 

− ∑ 𝑤𝑓 . 𝐸𝑓𝑓∈ 𝑆 , where 𝑆: {𝑓𝑠𝑙,  𝑠𝑓𝑎,  𝑝𝑠𝑠,  𝑠𝑐},  and w and E are the weight and the error 

associated with a feature. However, this fitness function will not work for a spike pattern 

of the type D.PSTUT (table 2.5, bottom trace (Pawelzik et al., 2002)), which will require 

its own set of features in order to capture its spike times. For such a stuttering or bursting 

spike pattern, additional features such as bc, bw, and pbi as described in table 2.5 should 

be included in the fitness function. Therefore, for each of the different spike pattern 

types, a minimal set of higher level temporal features to be used as fitness measures, 

needs to be identified. 
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Table 2.5: Possible quantitative features of spike patterns to be included in the fitness function 

Spike pattern Features 

 

 

 

 

 

First spike latency (fsl): Duration between the 

onset of input current stimulation step and the 

first spike  
Post spike silence (pss): Duration between the 

last spike and the end of input current 

stimulation step 

 

Spike count (sc): Number of spikes recorded 

 

Spike frequency adaptation (sfa): Reduction 

in the frequency of spikes following the first 

spike   

 

 

 

Burst count (bc): Number of bursts recorded. 

A burst is a cluster of high frequency spikes 

followed by a period of quiescence 

Burst width (bw): Duration of a burst 

Post burst interval (pbi): Duration of 

quiescence following the burst  
 

 

4.3.Fitness landscape with a feature based function 

To our knowledge, optimization algorithms have not been successfully used to fit 

the IM responses to experimental voltage recordings. As mentioned before, on a 

benchmark optimization test, the IM performed poorly using an EA compared to the 

Adaptive, Adaptive threshold, and Adaptive exponential IF models (Rossant et al., 2010; 

Lynch & Houghton, 2015; Rossant et al., 2011). The major factor that affects the 

performance of an EA is the nature of the problem fitness landscape. The fitness 

landscape is the hypersurface in the parameter search space and it defines the relationship 
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between the parameters and the fitness value. As the search for the optimal parameters is 

guided by this landscape, its topographical features directly affect an EA's performance. 

These features can be used to assess the computational complexity of an optimization 

problem (Chiong, 2009) and knowledge about the fitness landscape will be helpful in 

choosing the appropriate algorithm and its configuration.  

The major problem that any EA faces is the premature convergence to local 

optima (Eshelman, 2014). This happens when the population of candidate solutions 

reaches fitness peaks that are better than the neighboring regions, but are not the globally 

best. If all the candidate solutions reach the same local optimum, there is very little 

chance of further exploration of the search space by the algorithm. This problem is more 

severe in the rugged landscapes (Kolarov, 1997), which contain several of these locally 

optimal peaks. The parameters of the IM create such rugged regions in the fitness 

landscape (fig. 2.1). In these landscapes, the gradient information about the fitness is not 

very reliable and this has a negative effect on the performance of the EA. 
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Figure 2.1: A rugged region in the fitness landscape created by the IM parameters ‘a’ and ‘b’.  

The fitness function included errors on features fsl, sfa, pss, sc as described in section 4.1 for the trace given in table 

1.5 (top). Fitness values range from 0. 

 

  

Another problem is the epistatic interaction among the parameters in creating the 

fitness landscape. In the context of optimization, epistasis is defined as the dependency of 

a parameter's contribution to the fitness value on the state of other parameters. The higher 

the epistatic interactions among the parameters, the harder it is for the EA to optimize 

them (Davidor, 1991). There are strong interactions among the Izhikevich model 

parameters to create a fitness landscape, and an example is given in (fig. 2.2). The region 

shaded in blue corresponds to the model responses that are not biologically valid, hence it 

is assigned the lowest fitness value. As obvious from this figure, this region is not defined 

independently by the parameters 'k' or 'Vt', but collectively by both 'k' and 'Vt'. 
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Therefore, independently varying one of these genes might break the building blocks 

representing such interaction. Finally, the noise introduced in the fitness landscape 

creates a different problem. Fitness is evaluated by comparing the model responses with 

the experimentally recorded spikes. Since these electrophysiological recordings are not 

completely devoid of measurement errors, the resulting fitness landscape might not be an 

accurate representation of the theoretical objective we would want to achieve. 

 

 
Figure 2.2: Epistatic interaction between the parameters ‘k’ and ‘Vt’ to define invalid region (shaded in blue) in 

the parameter space. 

 

It is necessary to consider the facts discussed above when configuring the EA to 

optimize the IM parameters. There is no practicable method that directly solves the 

problem of premature convergence caused by the rugged landscapes. Maintaining 
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diversity in the population has been shown to be a general strategy to avoid premature 

convergence to the local optima. However, it is crucial to achieve the right balance 

between exploration and exploitation of the search space (De Jong, 2006). For instance, 

too much selection pressure with very little mutation might exploit only the local regions 

without really exploring other regions of the search space. On the other hand, too much 

mutation with very little selection pressure would always explore different regions 

without really climbing to their peaks. Therefore, a proper balance between the 

mutation/crossover operations and the selection pressure might mitigate the effects of 

rugged fitness landscapes. Knowledge of epistatic interactions among the parameters will 

be helpful to devise schemes that could prevent building blocks from being destroyed by 

the variation operators such as crossover. Although there is no guarantee, appropriately 

configuring an EA with the knowledge of the problem landscape maximizes its chances 

of reaching the global optimum. 

5. Modeling spike pattern behaviors 

The goal of the problem under discussion is not just to fit IM responses to the 

experimental voltage recordings. It is to characterize the neuron types in terms of IM 

parameters and their relationships that define their behaviors. Although developing a 

strategy that can fit IM responses to individual voltage traces (as discussed in section 4.1) 

is a necessary objective, modeling a behavior requires further considerations, which are 

discussed below. 



28 

 

5.1.Optimization objectives with a behavior 

A neuron type can exhibit more than one firing pattern type as listed in table 1.4. 

The set of all different firing pattern types exhibited by a neuron type under different 

experimental conditions (such as different input current injection) defines its behavior. 

For example, the CA1 Bistratified neuron is known to produce the firing pattern type 

D.PSTUT (table 2.5, bottom trace (Pawelzik et al., 2002)). In addition, a firing pattern of 

the type D.NASP has also been recorded from this neuron type (Pawelzik et al., 2002). 

The objectives of modeling such behaviors can be defined in the fitness function in one 

of many ways. One method is to extend the approach described in section 4.1, and simply 

sum up the weighted feature errors across multiple firing pattern types. However, this 

approach will not be very useful and informative with cases where there are conflicting 

objectives in the fitness function. Before pointing out and illustrating an alternate 

approach, it is useful to consider the scenarios that could possibly create such conflicting 

objectives. As explained in section 2.2, modeling the spike pattern behaviors might give 

useful insights into the ‘subtype or multi-behavior’ class of neuron types. If a neuron type 

indeed has multiple subtypes, then the voltage traces recorded from these different 

subtypes might be computationally impossible to be represented in a single IM, and thus 

creating conflicting objectives. With this consideration, an alternate approach to define 

such objectives is to use the Multi Objective Optimization (MOO) (Deb, 2001; Coello et 

al., 2002).  

The MOO is a useful technique to deal with conflicting objectives. Rather than 

trying to find a single optimal solution for a problem, the MOO attempts to find a Pareto 
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front of optimal solutions, where optimality is defined by the notion of 'dominance': A 

candidate solution 'A' dominates another candidate solution 'B', if and only if 'A' is not 

worse than 'B' in all objectives, and 'A' is strictly better than 'B' in at least one objective. 

Thus, in a MOO with conflicting objectives, the candidate solutions that are not 

dominated by others form the Pareto front of solutions. In principle, features of a single 

experimental voltage trace (e.g. fsl, sc, and pss from a recording of type D.NASP) could 

be viewed as the multiple objectives for the MOO. However, considering the rich 

dynamics of Izhikevich model, there might not necessarily be any trade-off between the 

features of a single spike pattern. In other words, the features fsl and sc are not conflicting 

objectives in a D.NASP voltage trace when Izhikevich model is used. Such tradeoffs are 

more likely to occur among the objectives across different firing pattern types. For 

instance, one may try to fit a single model to both NASP and TSWB.NASP pattern types 

by only varying the input current, which might not be possible in the IM. However, trying 

to do so with the MOO might give useful insights into the nature of trade-off among the 

features that characterize these spike pattern types. 

5.2.Parameter space exploration 

Besides conflicting objectives, one must also take into account the possible 

inadequacy of objectives while constraining a model. Several neuron types have not been 

investigated in detail in the literature, and as a result, the available experimental 

evidences might not be sufficient to create accurate model representations. These cases 

should be viewed as a parameter exploration problem rather than an optimization. The 

EA’s have been largely used as the parameter optimizers with the goal of reaching a 
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single global optimum. However, their optimization capability highly relies on their 

ability to effectively explore the parameter space. In principle, due to their stochastic 

nature, an appropriately configured EA should be able to reach multiple global optima 

across different trials.  

As an illustration, the EA was run to optimize the IM parameters (including the 

input current) for arbitrarily defined feature constraints for four different spike pattern 

types. Across different stochastic trials, the EA identified multiple points in the search 

space that reproduced these constraints (fig. 2.3A). Representative model response for 

each spike pattern type is given in fig. 2.3B. Some observations could be made from this 

figure from the point of view of the spike pattern behaviors. Although only a weak 

adaptation was added to the NASP constraints in order to produce an ASP.NASP pattern, 

these two patterns were clearly separated in the IM parameter space. Very few neuron 

types have been known to exhibit ‘multi-behavior’ with these two spike pattern types. 

However, more definite constraints need to be defined for each spike pattern type to 

explore the possibilities of such behaviors in the IM parameter space. 
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Figure 2.3: Parameter space exploration with stochastic EA trials  

A: Regions in the IM parameter space representing four different spike pattern types. Only the dimensions ‘C’, ‘a’, and 

‘d’ are shown. B: Representative IM responses for four spike pattern types TSWB. 

 

6. Summary 

In sum, defining spike pattern behaviors in the IM parameter space might reveal 

their characterizing features and will help to fill the gap in the knowledge about certain 

behaviors. In addition, this will be valuable to large scale SNN simulations that aim to 

investigate the collective dynamics of several neuron types with distinct behaviors. In 

order to create a biologically realistic, but computationally efficient SNN, its individual 

neuron models should capture the complex behaviors of the real neurons. Achieving this 

goal will provide a platform to develop theories that could causally link the neuro-

computational properties at neuronal level to network behavior and to the emerging 

computational properties at the network level. This requires techniques that are not only 

capable of optimizing the model parameters, but also capable of effectively exploring the 

parameter space.  
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CHAPTER 3: EVOLVING SIMPLE MODELS OF DIVERSE INTRINSIC 

DYNAMICS IN HIPPOCAMPAL NEURON TYPES⊥ 

The diversity of intrinsic dynamics observed in neurons may enhance the 

computations implemented in the circuit by enriching network-level emergent properties 

such as synchronization and phase locking. Large-scale spiking network models of entire 

brain regions offer a platform to test theories of neural computation and cognitive 

function, providing useful insights on information processing in the nervous system. 

However, a systematic in-depth investigation requires network simulations to capture the 

biological intrinsic diversity of individual neurons at a sufficient level of accuracy. The 

computationally efficient Izhikevich model can reproduce a wide range of neuronal 

behaviors qualitatively. Previous studies using optimization techniques, however, were 

less successful in quantitatively matching experimentally recorded voltage traces. In this 

article, we present an automated pipeline based on evolutionary algorithms to 

quantitatively reproduce features of various classes of neuronal spike patterns using the 

Izhikevich model. Employing experimental data from Hippocampome.org, a 

comprehensive knowledgebase of neuron types in the rodent hippocampus, we 

demonstrate that our approach reliably fit Izhikevich models to nine distinct classes of 

 

⊥ Published in Frontiers in Neuroinformatics. 2018;12: 8. pmid:29593519  

Authors: Venkadesh S, Komendantov AO, Listopad S, Scott EO, De Jong K, Krichmar JL, Ascoli GA. 
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experimentally recorded spike patterns, including delayed spiking, spiking with 

adaptation, stuttering, and bursting. Importantly, by leveraging the parameter-exploration 

capabilities of evolutionary algorithms, and by representing qualitative spike pattern class 

definitions in the error landscape, our approach creates several suitable models for each 

neuron type, exhibiting appropriate feature variabilities among neurons. Moreover, we 

demonstrate the flexibility of our methodology by creating multi-compartment Izhikevich 

models for each neuron type in addition to single-point versions. Although the results 

presented here focus on hippocampal neuron types, the same strategy is broadly 

applicable to any neural systems. 

1. Introduction 

In the last decade, several projects have built large-scale models of brain regions 

in an attempt to advance our understanding of how the nervous system functions 

(Izhikevich & Edelman, 2008; Eliasmith et al., 2012; Markram et al., 2015; Hendrickson 

et al., 2016). The biological realism in these models has been captured in varying levels 

of detail. One of the characterizing features of biological neural networks is the diversity 

observed in the intrinsic dynamics of individual neurons. This diversity likely contributes 

to the emergent properties of neural networks and, consequently, plays a major role in the 

information processing in the nervous system (Padmanabhan & Urban, 2010; Tripathy et 

al., 2013; Pozzorini et al., 2015). Therefore, a biologically realistic large-scale network 

model of a brain region should take into account intrinsic behavioral diversities both 

within and between neuron types. 
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Hippocampome.org is a comprehensive knowledgebase of 122 morphologically 

identified neuron types in the rodent hippocampal formation (Wheeler et al., 2015). One 

of the motivations behind developing this knowledgebase was to create a real-scale 

computational model of the entire hippocampus. Towards achieving this goal, we aim to 

create individual neuronal models using the electrophysiological and spike pattern 

properties of neuron types available at Hippocampome.org. In deciding which modeling 

system to use, we considered simulation costs. High simulation costs of biophysically 

detailed Hodgkin-Huxley-type neuronal models often impose limits on the scale of 

network models. Conversely, simpler models, such as leaky integrate-and-fire neurons, 

cannot capture the wide range of dynamics observed in the hippocampus. Models such as 

Izhikevich (Izhikevich, 2003) and Adaptive Exponential Integrate-and-Fire (AdEx) 

(Brette & Gerstner, 2005) have been shown to qualitatively reproduce various firing 

pattern classes observed experimentally in real neurons, while still being computationally 

efficient. Therefore, these simpler models with lower simulation costs allow large-scale 

modeling of biological neural networks in a computationally efficient manner. In this 

work, we create Izhikevich Models (IMs) that reproduce quantitatively comparable 

features of various hippocampal spike pattern classes through parameters optimization. 

The dynamics of Izhikevich models are highly nonlinear and error landscapes that 

are defined over the resulting parameter spaces typically exhibit properties that make 

them difficult to optimize, such as multiple local optima. As such, several studies have 

turned to non-convex, derivative-free optimization methods such as evolutionary 

algorithms (EAs) to fit a neuronal model’s responses to experimentally recorded voltage 



35 

 

traces. The models used in these studies range from simple spiking models such as AdEx 

(Rossant et al., 2010, 2011; Lynch & Houghton, 2015) to biophysically detailed 

Hodgkin-Huxley type models with multiple compartments (Keren et al., 2005; Gerken et 

al., 2005; Druckmann et al., 2007; Geit et al., 2007). Previous studies have also used 

various techniques such as a feature-based error function (Druckmann et al., 2007) and a 

phase plane trajectory density method (Geit et al., 2008) to create the error landscape for 

the EA search. Rössert et al. (2016) created an approach to simplify morphologically 

detailed microcircuit models to their point-neuron counterparts by applying soma-

synaptic correction (to account for dendritic attenuation and delay) and constraining 

Generalized Integrate-and-Fire neurons around an in vivo-like working point. Rounds et 

al. (2016) used EAs to match firing rates of IMs in a network to experimental recordings 

in the retrosplenial cortex. However, to our knowledge, optimization techniques have not 

been successfully used to fit intrinsic IM responses to experimental data. On benchmark 

optimization tests, the IM showed poor performance compared to other simple models 

(Rossant et al., 2010, 2011; Lynch & Houghton, 2015). This might be due to the failure 

to identify an appropriate EA configuration such as the choice of error function and 

variation operators that are well-suited for the IM parameter space. 

Apart from its capability to quantitatively fit IM’s responses to experimental 

voltage traces, the novelty of our automated modeling framework is the integration of 

spike pattern classification protocols. Previous work (Komendantov et al., 2017) 

identified 23 distinct spike pattern classes overall, among the 89 morphologically distinct 

hippocampal neuron types in Hippocampome.org for which experimental recordings 
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were available. A behavior for a certain neuron type was defined based on the set of all 

experimentally recorded spike patterns. If a neuron type exhibited spike patterns of more 

than one class under different experimental conditions (e.g. bursting and regular spiking 

for different current stimulation strengths), it was marked as a multi-behavior type. In 

contrast, a neuron type was marked as a single-behavior type, if all spike patterns 

recorded from the same neuron under different experimental conditions fell into the same 

qualitative class. Neuron types with only a single experimentally recorded spike pattern 

were also marked as single-behavior. 

This article presents the modeling approach and results for single-behavior neuron 

types. We report at least one example for each of the nine distinct single-behavior types, 

with the goal of illustrating both the approach and the IM’s ability to quantitatively 

reproduce a variety of neuronal behaviors observed in the hippocampus. The single 

behaviors reported here include spiking with and without frequency adaptation, delayed 

spiking, bursting, and intermittent spiking or stuttering. In addition to simple point-

neuron (single-compartment) models, multi-compartment IMs were created, where the 

number of compartments varied from two to four depending on the dendritic invasion of 

a neuron type across hippocampal layers. For example, the somata of hippocampal 

pyramidal cells in the principal layer extend basal dendrites in the oriens layer and apical 

trees in the radiatum layer that reach to the lacunosum-moleculare. Thus, these neurons 

can be represented as 4 compartments, one for each layer (as illustrated in the Methods 

below). This stratification is important because it segregates the synaptic inputs: distal 

lacunosum moleculare dendrites, for example, are the targets of entorhinal projections, 
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while dendrites in radiatum receive intra-hippocampal connections. Although finer 

morphological variability observed across various neuron types may also contribute to 

network dynamics, compartmentalized dendritic integration of distinct laminar inputs is 

likely to play a crucial computational role in cortical circuits. Furthermore, dendrites 

located in separate layers typically have different active and passive properties from each 

other and from the soma. A previous large-scale model of the thalamo-cortical system 

used multi-compartment IMs (Izhikevich & Edelman, 2008). However, that model did 

not capture the signal transmission properties between the dendrites and soma in a 

biologically accurate way. In addition, the dendritic compartments did not reflect the 

appropriate balance of active and passive properties. Another novelty of our automated 

modeling approach is its capability to create accurate dendritic representations in the 

multi-compartment IMs. Our dendritic compartments exhibit generally known active and 

passive properties of the dendrites of real neurons.  

2. Materials and Methods 

In this article, a certain spike pattern class will be used to denote a neuron type’s 

“behavior,” since all the neuron types discussed here were examples of single-behavior 

types. It is worth mentioning that 14 of the 23 distinct spike pattern classes observed in 

the hippocampus are part of the multi-behavior types and, hence, not reported in this 

article. Modeling multi-behavior cases requires a different approach, which we are 

pursuing but remains beyond the scope of this article. 
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2.1.Spiking Model 

We reproduced spike patterns by using the nine-parameter variant of the IM 

(Izhikevich, 2007) because we found that the EA could reliably find better solutions with 

this IM than the originally proposed four-parameter formalism. IMs have been shown to 

reproduce qualitatively many spike patterns observed in biological neurons. The state 

variables membrane voltage (V) and membrane recovery variable (U) govern this two-

dimensional system. The recovery variable U approximates the channel kinetics of 

Hodgkin-Huxley type models  (Hodgkin and Huxley, 1952), making it computationally 

much cheaper to simulate. Parameter ‘a’ is the time constant for the recovery variable U. 

Parameter ‘b’ defines the degree of coupling between the state variables V and U. 

Parameters ‘b’ and ‘a’ collectively determine whether the model is an integrator or 

resonator (Izhikevich, 2001). Parameters ‘𝑉𝑚𝑖𝑛’ and d’ are after-spike reset values for V 

and U, respectively. Parameter ‘k’ defines the shape of the spike upstroke, and Vpeak 

defines the spike cutoff value. Parameters 𝑉𝑟 and 𝑉𝑡 are resting and threshold voltages, 

respectively, and C is cell capacitance. 

𝐶 ∙
𝑑𝑉

𝑑𝑡
= 𝑘 ∙ (𝑉 − 𝑉𝑟) ∙ (𝑉 − 𝑉𝑡) − 𝑈 + 𝐼 (1) 

𝑑𝑈

𝑑𝑡
= 𝑎 ∙ {𝑏 ∙ (𝑉 − 𝑉𝑟) − 𝑈} (2) 

𝑖𝑓 𝑉 =  𝑉𝑝𝑒𝑎𝑘 𝑡h𝑒𝑛 𝑉 = 𝑉𝑚𝑖𝑛,  𝑈 = 𝑈 + 𝑑 

In addition, we created multi-compartment (MC) models for each neuron type 

based on the dendritic invasion across the hippocampal layers (Figure 3.1), whereas each 

compartment represents the part of the dendritic tree present in a given layer. 
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Compartments were coupled using an asymmetric mechanism. For example, the MC 

layout for the CA2 pyramidal neuron type depicted in Figure 1 defines the compartment-

specific coupling currents as follows: 

 

𝐼𝑆𝑃 = 𝐺1 . 𝑃1 . (𝑉𝑆𝑃 − 𝑉𝑆𝑂) 

+𝐺2 . 𝑃2 . (𝑉𝑆𝑃 − 𝑉𝑆𝑅)                                                             (3)  

 

𝐼𝑆𝑂 = 𝐺1 . (1 − 𝑃1) . (𝑉𝑆𝑂 − 𝑉𝑆𝑃)                (4)

Here, Stratum Pyramidale (SP) denotes somatic compartment, and Stratum Oriens (SO), 

Stratum Radiatum (SR) and Stratum Lacunosum-Moleculare (SLM) (Figure 1) are 

dendritic compartments. 𝐼𝑆𝑃 is the total coupling current at compartment SP, which 

results from the differences in the voltage between SP (𝑉𝑆𝑃) and SO (𝑉𝑆𝑂), and between 

SP and SR (𝑉𝑆𝑅). 𝐺1 and 𝐺2 are coupling constants, and 𝑃1 and 𝑃2 (with values between 

0.01 and 0.99) determine the degree of asymmetry in the coupling, where a value of 0.5 

denotes symmetric coupling. 
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Figure 3.1: Multi-compartment model layout based on the morphology 

 (Left) Digitally reconstructed morphology of a CA2 pyramidal neuron (Wittner and Miles, 2007), reproduced from 

Neuromorpho.org (Ascoli et al., 2007). Layer boundaries are approximate. (Right) Layout of the multi-compartment 

model for CA2 Pyramidal neuron type. The number and the layout of compartments are determined based on the 

invasion of dendrites across the layers of CA2. SO, Stratum Oriens; SP, Stratum Pyramidale; SR, Stratum Radiatum; 

SLM, Stratum Lacunosum-Moleculare. 

 

2.2.Identification of spike pattern classes 

To classify the model behaviors, we used the same protocol developed for 

identifying various transient and steady-state elements of experimentally recorded spike 

patterns from the hippocampus (Komendantov et al., 2017). Transient elements include: 

Delay (D), if the latency to spike is sufficiently long; Adapting Spiking (ASP), if the 

spike frequency decreases over time; Transient Stuttering (TSTUT), if a quiescent period 

follows a cluster of high frequency spikes; and Transient Slow-Wave Bursting (TSWB), 
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if TSTUT is followed by a slow after-hyperpolarizing potential. Steady-state elements 

include: Silence (SLN), if the quiescence following the last spike is sufficiently long; 

Non-Adapting Spiking (NASP), if no spike frequency adaptation is identified in non-

interrupted firing; Persistent Stuttering (PSTUT), if at least one sufficiently long 

quiescent period separates two clusters of high frequency spikes; and Persistent Slow-

Wave Bursting (PSWB) if slow after-hyperpolarizing potential is present in an otherwise 

PSTUT pattern.  

Given a sufficiently long duration of input current, transients will always be 

followed by a steady-state in a spike pattern. For example, ASP followed by NASP was 

identified in the spike pattern experimentally recorded from a CA3 Basket-CCK neuron 

(Szabo et al., 2010) and this pattern is an instance of the class ASP.NASP (Figure 3.2A). 

The identified class of an experimentally recorded spike pattern represented the target 

class for model spike pattern. Thus, the criteria that defined a target class were used to 

validate the model behavior under the given input current. For details on the spike pattern 

classification criteria, see Komendantov et al., (2017) and Hippocampome.org1. 

2.3.Evolutionary optimization of model parameters 

Many varieties of EAs exist along with numerous ways of implementing their 

specific components (De Jong, 2006). We employed a non-overlapping generational 

model of evolution and used elitism to ensure that the best individuals were always 

preserved in the population. In this section, we describe the specific components of the 

EA. 

 

1 http://hippocampome.org/php/Help_Principles_of_Classification_of_Firing_Pattern_Elements.php 
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Figure 3.2: Characterizing features of neuronal spike patterns and subthreshold voltage traces 

(A) A spike pattern trace recorded from a CA3 Basket-CCK neuron (Gulyás et al., 2010; Hippocampome.org) 

exhibiting a transiently adapting spiking (ASP.) behavior followed by a steady-state non-adapting spiking behavior 

(NASP), which is an instance of the class “ASP.NASP.” (B) The adapting behavior is quantified by plotting inter-spike 

intervals (ISI) against their latencies and extracting the parameters of piecewise linear fits, such as slopes and Y-

intercepts. (C) Stuttering behavior of a CA1 Bistratified neuron (Pawelzik et al., 2002; Hippocampome.org). fsl, first-

spike latency; pss, post-spike silence. The features bw (burst width), and pbi (post-burst interval) characterizes the 

stuttering behavior. (D) A subthreshold voltage trace recorded from a CA1 OR-LM neuron (Oliva et al., 2000; 

Hippocampome.org) for a hyperpolarizing current stimulation. The difference between the resting potential and the 

peak voltage (rbv) after the current stimulation stops characterizes the rebound behavior of this neuron. 

 

2.4.EA configuration 

Each individual in the evolutionary population consisted of a complete 

configuration of the IM we are seeking to tune. We represented these configurations as 

vectors of floating-points. During the search of the parameter space, we bounded each 

value within an allowed range. Choosing a biophysically reasonable range for each 

parameter up front has a significant effect on the efficiency of the optimization 
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procedure, and through preliminary EA runs, we found that different behavior classes 

required slightly different ranges for some parameters.  

When tuning a single-compartment model, each parameter vector contained 9+nI 

elements (genes), representing the 9 parameters of the IM (k, a, b, d, C, Vr, Vt, Vpeak, Vmin) 

and nI input currents. nI equaled the number of voltage traces (which were recorded for 

different input currents) a model was fit to. A small range encompassing each 

experimentally injected input current (Iexp.), [Iexp. – 10, Iexp. + 10] pA was included in the 

EA search. By allowing the EA to search within a small range, we boosted the 

exploration and identified more optimal points (across multiple EA trials) that are very 

similar in the phenotype. This design also helped to achieve more reliable fitting in cases 

where a single model was fit to multiple traces (See section 3.2). In rare cases, where the 

experimental input current was unknown, an unbounded range of [50, 800] pA was 

included for the search. The multi-compartment models had a larger number of 

parameters: if c is the number of compartments, we require 8c+1 parameters representing 

c compartments (the parameter Vr is the same for all c compartments), plus 2(c-1) 

parameters representing coupling parameters for consecutive compartment pairs, and nI 

input currents.   

We first initialized a population of these vectors by sampling uniformly from 

within each parameter’s allowed range. We used a fixed population size of 120 

individuals for single-compartment IMs and of 400 for multi-compartment IMs. An 

exception was the 4-compartment ASP.SLN fast-spiking model, which we found was 

easier to optimize with a larger population size (800). After initializing the population, 
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and at each generational cycle thereafter, we immediately selected the 10% of the 

population with the lowest error to survive to the next generation.  

We filled the remainder of the child population by selecting parents via binary 

tournament and by applying two-point crossover and a mutation operator. Each gene had 

a probability of mutation between 0.1 and 0.3. For the parameters d, C, G, and I, we 

applied an integer random-walk mutation: when selecting one of those genes for 

mutation, an integer increment or decrement was applied with equal probability. All 

remaining parameters were mutated by reset: a new floating-point value was randomly 

chosen out of that gene’s allowed range. The EA was run until a maximum number of 

generations was reached. This number varied between 500 and 5000 depending on the 

number of compartments in the model and the class of behavior the model was fit to. 

2.5.Error function 

We employed a feature-based error function to quantitatively reproduce the spike 

pattern. Features for more than 250 experimentally recorded spike patterns are available 

at Hippocampome.org. These features include first-spike latency (fsl), post-spike silence 

(pss), spike frequency adaptation parameters (sfa), burst width (bw), post-burst interval 

(pbi) and rebound voltage amplitude (rbv) (Figure 2). Spike frequency adaptation (sfa) 

was quantified as previously detailed (Komendantov et al., 2017) with a piecewise linear 

regression on the inter-spike intervals (ISIs) by extracting the parameters of linear fits 

such as slopes (m) and Y-intercepts (c) (Figure 3.2B). The error in the model sfa was 

calculated as follows: the two parameters of linear fit (for NASP and ASP. class) or three 

parameters of piecewise linear fits (for ASP.NASP class) obtained by plotting ISI’s 
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against their latencies to the second spike were compared between experimental and 

model spike patterns. In addition, the number of ISIs (nisis) corresponding to a linear fit 

was also compared. For a bursting/stuttering class, the number of bursts (nbs) and the 

number of spikes (nspikes) within each burst were included. 

Spike pattern classification protocols were also incorporated into the error 

function by dynamically assigning different weight factors to different features. This 

reduced the number of generations required for the EA to find an acceptable solution. In 

addition, for certain spike pattern classes, this approach more reliably found solutions 

across multiple stochastic trials. The error function was defined as:  

 

𝑒𝑟𝑟𝑜𝑟 =  ∑(𝑊𝑓 × log  (1 + |𝑒𝑥𝑝𝑓 − 𝑚𝑜𝑑𝑒𝑙𝑓|))

𝑓∈𝑆

(5) 

𝑆: {𝑓𝑠𝑙, 𝑝𝑠𝑠, 𝑚, 𝑐, 𝑛𝑖𝑠𝑖} for continuous spiking, and 

𝑆: {𝑓𝑠𝑙, 𝑝𝑠𝑠, 𝑛𝑏𝑠, 𝑏𝑤, 𝑝𝑏𝑖, 𝑛𝑠𝑝𝑖𝑘𝑒𝑠} for interrupted spiking (Figure 2).  

Using the spike pattern classification protocols, the qualitative class of a candidate 

model’s spike pattern was first identified. Then, the weight factor 𝑊𝑓 was calculated for 

each feature by comparing the target class with the model spike pattern class During the 

EA search, each feature weight changed based on that feature’s distance from the target 

class boundary. These class boundaries are given by the set of criteria that define that 

class (see supplementary material section 1 for pseudocode description of feature weight 

calculation). This accelerated the search during earlier generations of an EA, when many 

candidate solutions were outside the target class boundary (fast-exploitation towards 
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narrow regions of interest). Once the population began converging within the target class 

boundary, this dynamic weight assignment scheme allowed slower exploration and 

ensured heterogeneity among the best models from within a class (see Results section 

3.4).  

In order to identify several possibilities, we ran a total of one thousand EA 

instances for each neuron type, yielding several best models due to the stochastic nature 

of the EA (different initial populations, stochasticity in variation operators, and selection 

pressure). At the end of an EA search, the best model was accepted only if its spike 

pattern class under the given input current matched the target class. If a single-

compartment IM failed to reproduce a firing pattern class, two identical compartments 

were symmetrically coupled. We noticed that coupling effects enriched IM dynamics and 

were useful to reproduce certain subclasses of stuttering behavior (see Results section for 

examples). 

The parameters of MC models were optimized such that the somatic compartment 

reproduced features of the experimentally recorded voltage traces both qualitatively and 

quantitatively using the same techniques discussed previously for single-compartment 

models. Furthermore, four additional constraints were enforced in order to capture the 

known general active and passive properties of dendrites in the additional compartments. 

Unlike the somatic compartment constraints, all MC models shared the same dendritic 

constraints because of the lack of sufficient experimental dendritic voltage recordings. 

These general constraints include excitability and input resistance of dendrites relative to 

the soma as well as forward propagation of spikes and subthreshold signals. 
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Firstly, the dendritic compartments in MC models were constrained to be less 

excitable than the somatic compartment when they were decoupled. The minimum 

depolarizing current (𝐼𝑟ℎ𝑒𝑜) required to elicit a spike at a compartment was used as the 

measure of its excitability (Aou et al., 1992). During the EA search, a ramp current rather 

than step currents was used to measure compartment excitabilities. This avoided the need 

for a local search for the minimum step current magnitude required to elicit a spike in 

each compartment. To reduce capacitive effects in measuring excitability, the ramp 

current had minimal slopes and high resolution of discrete increments (+0.1 pA/1 ms). 

Secondly, the decoupled dendritic compartments in MC models were constrained to have 

higher input resistances than the somatic compartment. The amplitudes of steady state 

voltage deflections from resting voltage (𝑉𝑑𝑒𝑓) during a strong hyperpolarizing current 

input were compared between compartments to measure their relative input resistances. 

The spike propagation rate (𝑅) was defined as the ratio between the number of spikes 

observed at the destination compartment and the number of spikes initiated at the source 

compartment. A few hundred excitatory synapses were stimulated at a dendritic 

compartment for spike initiation. On the other hand, a single AMPA synapse was 

stimulated at a dendritic compartment and the amplitude of the excitatory post synaptic 

potential (𝐸𝑃𝑆𝑃) was measured at the somatic compartment. A range of (0.1, 0.9) mV 

was enforced for the 𝐸𝑃𝑆𝑃 amplitude. All synapses used a value of 10 for the weight, 

and this value is based on the range used for the multicompartment models by Izhikevich 

et al. (2008). The following errors were calculated for each dendritic compartment and 

added to the somatic spike pattern error described earlier: 
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𝑒𝑟𝑟𝑜𝑟𝑟ℎ𝑒𝑜 = {
0, 𝐼𝑑𝑒𝑛𝑑

𝑟ℎ𝑒𝑜 ≥ 𝐼𝑠𝑜𝑚𝑎
𝑟ℎ𝑒𝑜

log  (1 + (𝐼𝑠𝑜𝑚𝑎
𝑟ℎ𝑒𝑜 − 𝐼𝑑𝑒𝑛𝑑

𝑟ℎ𝑒𝑜)) , 𝐼𝑑𝑒𝑛𝑑
𝑟ℎ𝑒𝑜 < 𝐼𝑠𝑜𝑚𝑎

𝑟ℎ𝑒𝑜
(6) 

 

𝑒𝑟𝑟𝑜𝑟𝑣𝑑𝑒𝑓 = {
0, 𝑉𝑑𝑒𝑛𝑑

𝑑𝑒𝑓
≥ 𝑉𝑠𝑜𝑚𝑎

𝑑𝑒𝑓

log  (1 + (𝑉𝑠𝑜𝑚𝑎
𝑑𝑒𝑓

− 𝑉𝑑𝑒𝑛𝑑
𝑑𝑒𝑓

)) , 𝑉𝑑𝑒𝑛𝑑
𝑑𝑒𝑓

< 𝑉𝑠𝑜𝑚𝑎
𝑑𝑒𝑓 (7) 

 

𝑒𝑟𝑟𝑜𝑟𝑅 = {
0, 𝑅 = 1

log  (1 + (1 − 𝑅)) , 𝑅 < 1
(8) 

 

𝑒𝑟𝑟𝑜𝑟𝑒𝑝𝑠𝑝 = {

0, 0.1 ≤ 𝐸𝑃𝑆𝑃 ≤ 0.9

log  (1 + (0.1 − 𝐸𝑃𝑆𝑃)) , 𝐸𝑃𝑆𝑃 < 0.1

log  (1 + (𝐸𝑃𝑆𝑃 − 0.9)) , 𝐸𝑃𝑆𝑃 > 0.9 

(9) 

2.6.Model and algorithm implementations 

We used the open-source Java-based evolutionary computation system ECJ (Luke 

et. al, 2015) to tune IM parameters. Single compartment models were simulated using the 

Apache Commons Mathematics Library2. The MC models with up to 39 open parameters 

were tuned using the parameter tuning interface of CARLsim, an open-source high 

performance GPU-based spiking neural network simulator (Beyeler et al., 2015). The EA 

and the single compartment model simulations were run on distributed CPU nodes, and 

the MC models were run on the GPU nodes available at the Office of Research 

 

2 http://commons.apache.org/proper/commons-math/ 

http://commons.apache.org/proper/commons-math/
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Computing at George Mason University. All scripts necessary to reproduce the results 

reported in this article are publicly available3. 

3. Results 

3.1.Models of distinct single behavior types  

A total of 33 of 122 neuron types in Hippocampome.org version 1.0 (Wheeler et 

al., 2015) exhibit single behavior. Nine distinct single-behavior classes exist among these 

neuron types, and, in this article, we present at least one model for each of those classes. 

It is worth mentioning that different neuron types that exhibit the same qualitative 

behavior class typically exhibit different quantitative features and excitability levels. 

Figure 3.3 illustrates an exemplar neuron type for each of the nine distinct single-

behavior classes and the corresponding best model from all EA trials. Our simple models 

were able to reproduce quantitatively comparable spike pattern features for all these 

classes (see section 3.2 for quantitative comparison). While earlier models reproduced 

seven qualitatively different classes of spike patterns (Izhikevich, 2003), our models 

capture the spike pattern features of all observed single-behavior spike patterns in 

hippocampal neuron types both qualitatively and quantitatively. Importantly, our 

systematic and more detailed spike pattern classification identifies distinct hippocampal 

spike pattern classes within general firing behaviors (Komendantov et al., 2017). For 

instance, among the adapting spike patterns, our approach distinguishes between the 

patterns that reach a specific steady state such as non-adapting or silence (ASP.NASP and 

ASP.SLN classes, respectively) and those with experimental recordings that only allow 

 

3 https://github.com/Hippocampome-Org/Time 
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determination of the transient state (ASP. class). Our models effectively reproduced the 

features of these classes (Figure 3: ASP., ASP.SLN, and ASP.NASP). 

 

 
Figure 3.3: Models reproducing the diverse hippocampal spike pattern classes. 

Candidate neuron type models for each spike pattern class are displayed as the best IM response across several 

stochastic EA trials (red traces) along with the corresponding experimental recordings (black traces) digitized by 

Hippocampome.org from various published sources. The IMs accurately reproduce the features of spike patterns for all 

classes. Both the experimental and model traces were classified using the same protocols (Komendantov et al., in 

review). Source of the experimental traces and their calibrations: (1A) Oliva et al. (2000); 25 mV, 350 

ms. (1B) Armstrong et al. (2011); 25 mV, 450 ms. (1C) Savić and Sciancalepore (2001); 25 mV, 400 ms. (2A) Gulyás 

et al. (2010); 20 mV, 400 ms. (2B) Chevaleyre and Siegelbaum (2010); 20 mV, 200 ms. (2C) Gulyás et al. (2010); 25 

mV, 300 ms. (3A) Buckmaster et al. (1993); 30 mV, 80 ms. (3B) Chittajallu et al. (2013); 12 mV, 300 ms. (3C) Ali and 

Thomson (1998); 30 mV, 350 ms. [1] Fast-spiking model with a minimum instantaneous spike frequency of 21 Hz. [2] 

Two-compartment IM with homogeneous compartments and symmetric coupling. All the other IMs are single-

compartment models. 

 

All models shown in Figure 3.3 are single compartment IMs except for PSTUT 

and TSTUT.NASP, which were reproduced by coupling two homogenous compartments. 

Although stuttering behavior can be modeled in a single compartment IM, multiple 

compartments (coupling effects) were required to accurately capture various subclasses 
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of stuttering behavior such as TSTUT.NASP and TSTUT.ASP. However, the number of 

compartments for a multi-compartment IM is determined based on the neuronal 

morphology (see section 2.1) and CA1 O-LMR and CA1 Oriens-Bistratified neurons 

have both their soma and dendrites in the oriens layer. Thus, MC models were created by 

symmetrically coupling two identical compartments, unlike the MC IMs with 

morphologically defined layouts (section 3.3). These two-compartment IMs were able to 

capture the classes PSTUT and TSTUT.NASP by integrating coupling effects into the IM 

dynamics. For the EA search, this simply means inclusion of an additional parameter 

(coupling constant). In many cases, the EA population converged in less than 500 

generations, but certain classes required more generations (Figure 3.4). As mentioned in 

section 2.3.2, we reject the best solution found from a single EA run, if its spike pattern 

features do not meet the target class criteria (see section 3.5 for discussion on the number 

of accepted models for different classes). The IM parameters of the nine models from 

Figure 3.3 are given in Table 3.1.  

 

3.2.Quantitative comparison of spike pattern features 

Our approach can reliably fit a model’s responses to multiple experimental 

voltage traces. As an illustration, the model of a CA1 OR-LM neuron type (a variant of 

the O-LM interneuron superfamily with dendrites in oriens and axons in both radiatum 

and lacunosum-moleculare) was created by fitting its responses to four distinct 

experimental voltage traces recorded for different current stimulation strengths (Figure 

3.5A). The model reproduces features of spike pattern and subthreshold voltage traces 

that are quantitatively comparable to the experimental traces (Table 3.2). The model 
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spike pattern features are reported for the input currents that were selected by the EA (see 

Methods). In addition, only the minimum set of features required to fully capture the 

temporal properties of spike patterns were included in the error function. For instance, 

single spike traces do not require pss as an objective feature, when fsl and nspikes are 

included. By allowing a narrow range for input current, the EA was able to reliably fit the 

model responses to multiple voltage traces. Although the voltage sag is not as clearly 

visible as in the hyperpolarized experimental trace, the corresponding model response 

nevertheless has a post-inhibitory rebound potential with a 7 mV amplitude. It should be 

noted that for multiple voltage trace fitting, we only considered traces that were recorded 

under the same experimental conditions (except for the strength of current stimulation), 

such as animal species (rat vs mouse), electrode type (patch vs sharp), and temperature  

 

 

Figure 3.4: Evolution of best models for different spike pattern classes. 

The EA was run for 500 generations for the classes ASP. and ASP.NASP, 3,000 generations for NASP and ASP.SLN 

and 2,000 generations for the remaining classes. Errors typically improved at higher rates in earlier generations, when 
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models that satisfy target class criteria were found. Improvements in the error beyond 500 generations were generally 

small and not shown here. The number next to each class label denotes the last generation of error improvement for that 

class. Inset zooms-in the first 50 generations. 

 

 

(room vs body). As mentioned in section 3.1, our approach does not only differentiate 

between different classes of frequency adapting spike patterns, but also reproduces 

quantitatively comparable parameters of sfa (Figure 3.5B). See supplementary material 

(section 2) for quantitative comparison between experimental and model traces for all 

nine classes from figure 3.3. 

Furthermore, our approach does not simply identify a single optimal point in the 

IM parameter space, but instead identifies several possibilities that correspond to the 

known behaviors of a certain neuron type. The size of such region of possibilities in the 

parameter space depends on the target behavior class to which the model is constrained as 

well as the amount of experimental data available for each neuron type. For instance, 

NASP behavior roughly correspond to the range (0.01, 0.1) for the IM parameter ‘a,’ 

whereas ASP., especially a strongly adapting behavior, significantly reduces the 

possibilities to the range (0, 0.005) for ‘a.’ Similarly, if multiple experimental voltage 

traces were recorded for different input current strengths, the possibilities in the IM 

parameter space are reduced.  
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Table 3.1: IM parameters for the nine models from Figure 3.3 

Neuron type k a b d C Vr Vt Vpeak Vmin G 

CA1 OR-LM  

(NASP) 
0.527 0.00223 6.15 -12 253 -57.25 -42.78 81.81 -44.97 - 

DG 

Neurogliaform  

(D.NASP) 

0.697 0.00107 -30.65 111 242 -74.15 -9.20 17.51 -39.44 - 

CA3 Giant 

(ASP.) 
0.609 0.00365 1.84 2 96 -57.58 -37.12 36.42 -49.45 - 

CA3 Basket 

(ASP.SLN) 
0.995 0.00385 9.26 -6 45 -57.28 -23.16 18.68 -47.33 - 

CA3 Basket-

CCK 

(ASP.NASP) 

0.583 0.00574 -1.24 54 135 -59.00 -39.40 18.27 -42.77 - 

CA2 Pyramidal 

(D.ASP.) 
5.943 0.00114 -15.89 74 1630 -72.59 -58.78 19.99 -62.65 - 

CA1 O-LMR 

(TSTUT.NASP) 
0.326 0.00632 0.40 48 96 -56.44 -27.62 29.48 -51.29 12.00 

CA3c Pyramidal 

(TSWB.SLN) 
3.006 0.00189 19.36 104 244 -62.29 -45.27 17.43 -47.37 - 

CA1 Oriens-

Bistratified 

(PSTUT) 

2.91 0.00168 13.67 35 841 -57.11 -48.50 4.12 -52.94 67.00 
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Figure 3.5: Models quantitatively reproducing the features of experimentally recorded spike pattern traces.  

 (A) Experimental recordings from a CA1 OR-LM neuron (Oliva et al., 2000) for four different current stimulation 

strengths (top). The IM reproduces the features quantitatively for similar input currents (bottom). Refer to Table 2 for 

numerical comparison. (B) The IM sfa is fit to the experimentally observed sfa from a CA3 Giant neuron to generate a 

spike pattern of class ASP. (left). The IM quantitatively reproduces the ASP.NASP behavior of a CA3 Basket-CCK 

neuron (right). The slope(s), Y-intercept(s) and the number of ISI's extracted from the experimental linear fit/piecewise 

linear fits were used as model constraints. (C) The ranges of fsl's (top) and of sfa slopes (bottom) exhibited by the 

accepted IMs for various neuron types. 

 

Table 3.2: Quantitative comparison of spike pattern features between experimental and model traces of the CA1 

OR-LM neuron type given in Figure 3.5A. 

Exp. 

I 150pA 100pA 50pA -200pA 

fsl 40.1ms 30.39ms 200ms - 

pss 18.38ms 7.31ms - - 

sfa: 
c 1.176 1.196 - - 

nISI 12 8 - - 

rbV - - - 7mV 

nSpikes - - 1 - 
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Model 

I 156pA 108pA 46pA -195pA 

fsl 58.9ms 79.9ms 268ms - 

pss 8.9ms 3.1ms - - 

sfa: 
c 1.176 1.198 - - 

nISI 11 8 - - 

rbV - - - 7mV 

nSpikes - - 1 - 

 

The variability in the quantitative features among all accepted models is given in 

Figure 3.5C. The experimentally observed feature typically lies within the range of 

features observed in the corresponding models, with few exceptions. For instance, while 

the IMs for the CA3 Giant neuron type exhibited a range of sfa slopes that encompassed 

the experimentally observed sfa slope (Figure 3.5C bottom), its fsl lies outside the model 

range (Figure 3.5C top). These models were nonetheless accepted because they all satisfy 

the criteria for the target class (ASP.). 

The best model for CA3 Basket (ASP.SLN) showed the highest error in the sfa 

slope among all the adapting classes (Figure 3.5C bottom). Yet, the accepted models for 

this neuron type not only exhibited the desired class (Figure 3.3, ASP.SLN), but also 

captured fast-spiking behavior, which plays an important role in network synchronization 

(Traub et al., 1996; Cardin et al., 2009). It should be emphasized that there is no 

guarantee that a model fit to a single experimentally recorded fast-spiking trace is indeed 

a fast-spiking model. For example, if the model of a CA3 Basket fast-spiking neuron type 

was created by simply fitting to the only available trace (Figure 3.3, ASP.SLN), it might 

still exhibit non-fast spiking behavior for a lower current input. To avoid this 
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discrepancy, in fast-spiking models we enforced a minimum instantaneous frequency of 

25 Hz for a step current close to the rheobase (Figure 3.6). In the end, a neuron type is 

represented by a set of heterogeneous models with similar behavioral features.  

 

 

Figure 3.6: I-F characteristics of the fast-spiking model of a CA3 Basket neuron. 

Instantaneous frequencies, calculated as the inverse of ISI average (circles) and of the first ISI (crosses), are plotted 

against the input currents for the model in Figure 3.3(2A). A minimum frequency of 25 Hz was enforced as a 

constraint, where the best model found by the EA exhibits a minimum frequency of 21 Hz. 

 

3.3.Constrained multi-compartment models 

In addition to the simple point-neuron models described in previous sections, we 

create MC Izhikevich models with heterogeneous compartments for all neuron types with 

dendrites spanning multiple hippocampal layers. These models capture the differences in 

the active and passive properties between soma and dendrites as well as coupling 

mechanisms that allow biologically realistic signal transmission between compartments. 

However, our MC models do not have branching dendritic arbors, and only consists of up 

to four compartments. This is because each additional compartment adds ten new 
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parameters for optimization, and tuning hundreds of compartments for each neuron type 

is an unrealistic goal. We assume that layer-level segregation of synaptic inputs is 

sufficient to significantly increase the computational power of the models in a network. 

As an illustration, we present a four compartment model of CA2 pyramidal 

neuron type (Figure 3.7). The somatic compartment (SP) reproduced features of 

experimentally recorded voltage trace (see Figure 3.3 – 2B) both qualitatively and 

quantitatively (Figure 3.7A). Furthermore, we enforced four additional constraints for 

MC models as detailed in section 2.3.2. Decoupled dendritic compartments are less 

excitable than the somatic compartment (Figure 3.7B) and have higher input resistances 

(Figure 3.7C). It should be noted that the dendritic input resistances and excitabilities 

were only enforced qualitatively (the quality of being higher or lower) relative to the 

somatic compartment. Neither the absolute values nor the magnitudes of the differences 

were enforced in the error function (see equations 6 & 7 in section 2.3.2).  

In addition, the dendritic compartments allow forward propagation of spikes to 

the adjacent compartments. A few hundred excitatory synapses were simultaneously 

stimulated in order to initiate a spike at a dendritic compartment, and forward spike 

propagation (in the direction towards soma) was verified at the adjacent compartment 

(Figure 3.7D). Interestingly, the SLM compartment required an additional depolarizing 

current of 1200pA in order to initiate a spike, consistent with experimental observations 

(Jarsky et al., 2005). Although we enforced a spike propagation rate of 1 for isolated 

spikes initiated at a dendritic compartment (see Section 2.3.2), we noticed that the rate 

was less than 1 for high frequency dendritic spike trains. Finally, the amplitude of unitary 
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EPSP measured at the somatic compartment was constrained to be in the biologically 

realistic range of (0.1, 0.9) mV (Figure 3.7E).  
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Figure 3.7: A four-compartment model of a CA2 Pyramidal neuron.  

*indicates stimulated compartment (using input current/excitatory synapses) (A) Somatic compartment reproduces spike pattern of class D.ASP. for I = 401 pA 

with fsl: 188 ms, sfa: y = 0.173x + 1.017 [compare with experimental trace in Figure 3(2B) and features in Figure 5C]. (B) Decoupled dendritic compartments (DC) are 

less excitable than the somatic compartment (SC). SC spikes before DC's for ramp current (ramp slope: 0.1 pA/1 ms). (C) Decoupled DC's have higher input resistance 

(IR) than the SC. IR is measured by the steady state voltage deflection due to a hyperpolarizing current application (−500 pA). The amplitudes of voltage deflections are 

14.92, 13.66, 14.83, and 14.87 mV for SO, SP, SR, and SLM, respectively. (D) The model and coupling parameters were optimized to enable forward propagation of 

spikes to the adjacent compartment. A total of 200 excitatory synapses were stimulated at 40 ms to initiate a spike at a DC. The SLM compartment required an additional 

input current of 1,200 pA to elicit a spike. Only the forward spike propagation was enforced. (E) The model was constrained to evoke a unitary EPSP with amplitude in 

the range (0.1, 0.9) mV. Excitatory synapses were stimulated at SO, SR, and SLM, and the amplitude of the EPSP was measured at SP. EPSP amplitudes at SP were 

0.09, 0.24, and 0.1 mV by stimulating a single synapse at SO, SR, and SLM, respectively. 
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Table 3.3: IM parameters of the 4-compartment model from Figure 3.7 

Compartment k a b d C Vr Vt Vpeak Vmin G P 

SO 0.875 0.004 9.154 41 1163 -74.633 -61.327 7.440 -66.761 170 0.407 

SP 1.029 0.002 11.054 40 1164 -74.633 -62.009 18.314 -65.184 - - 

SR 0.840 0.016 10.912 42 1174 -74.633 -62.307 14.142 -63.394 169 0.169 

SLM 0.833 0.019 9.471 42 1170 -74.633 -60.468 2.444 -66.223 169 0.348 
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Even though not directly enforced in the error function, our MC models 

qualitatively exhibited the known directional voltage attenuation properties of 

hippocampal neurons: voltage attenuation from a dendritic location to the soma is much 

higher than in the opposite direction (Mainen et al., 1996; Carnevale et al., 1997; 

Chitwood et al., 1999; Golding et al., 2005). This behavior was observed in the models 

because of the higher input resistances of the dendritic compartments and the asymmetric 

coupling between the compartments. The EA always selected weaker coupling towards 

the soma than away from it. Optimization of a 4-compartment model required ~20 hours 

of total execution time on the GPU. This is roughly a 15X speedup from CPU execution. 

The 39 parameters of the model from Figure 3.7 are given in Table 3.3. 

3.4.Variabilities in the intrinsic properties within a neuron type 

Our models of hippocampal neuron types were constrained using voltage traces 

digitized from figures in the published literature. It is thus natural to ask: how faithfully 

does a representative recording from a single neuron, which the authors chose to include 

in an article, reveal the real intrinsic property of that neuron type? Under the same 

experimental conditions, a different neuron of the same type might behave slightly 

differently due to experimental noise and biological variability. A truly accurate model of 

a neuron type should take into account (and even represent) such intra-neuron type 

behavioral variabilities. For instance, if the experimental data consist of spike pattern 

traces recorded from several neurons of the same type under the same experimental 

conditions, the error function could use statistical measures such as z-score to capture the 

variability in the models (Druckmann et al., 2007; Markram et al., 2015). However, we 
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ultimately strive to create spiking models for over a hundred hippocampal neuron types 

based on the available experimental data as gleaned in Hippocampome.org. Except for a 

few well-studied neuron types such as CA1 pyramidal neurons, DG granule neurons, and 

a handful of GABAergic interneurons, the vast majority of neuron types identified in the 

hippocampal formation to date lack adequate data to represent their behavioral 

variabilities. While such a paucity of empirical evidence might pose the risk of overfitting 

the model to experimental noise, two key aspects of our approach synergistically reduce 

that risk: (i) inclusion of qualitative class criteria in the error function and (ii) parameter 

space exploration using the EA. 

Firstly, we dynamically weigh the feature errors during the EA search with 

weights determined by comparing the model’s spike pattern class to the experimental 

target (see Methods). This ensures that several near-optimal points in the error landscape 

represent the appropriate class, even though the exact feature errors might be higher than 

the globally optimal point (Figure 3.8A). Without such a weight-assignment scheme, a 

near-optimal point might not necessarily represent the target class, because both the 

feature that defines a boundary between classes (e.g. fsl between ASP. and D.ASP.) and 

the feature that does not (e.g. pss between ASP. and D.ASP.) would equally contribute to 

the error. Thus, explicitly integrating qualitative definitions in the error function sharply 

distinguishes the near-optimal points that satisfy class criteria from the ones that do not 

(Figure 3.8B). This increases the EA’s chances of finding the models that reproduce the 

target class.  
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Figure 3.8: Parameter space exploration by the EA in a landscape that integrates qualitative class definitions.  

(A) Error landscape created by the features of a CA3 Giant neuron that exhibits a spike pattern of class “ASP.” [see 

Figure 3(1C)]. The dotted line denotes the threshold for model acceptance. All models below this line exhibit 

quantitative features similar to the experimental ones, while strictly adhering to the definitions of the target class 

(ASP.). This threshold might not necessarily be the same for a different spike pattern of class ASP., since the class 

definitions were weight factors for the quantitative feature errors rather than separate objectives themselves. The rest of 

the IM parameters were kept constant to plot this landscape. (B) The best models found by the EA across 1,000 

stochastic trials for the same neuron type. A total of 651 accepted models satisfied the criteria for ASP., while all 

rejected models exhibited NASP. These two classes show clear separation in the search space, which is due to the 

scaling of class-specific feature errors. The EA identified several best models, which are not present in (A), 

demonstrating exploration capabilities in a multi-dimensional search space. Notice the difference in the “error” axis 

scale between the two plots. 

 

Secondly, rather than just exploiting the search space to identify a single optimal 

point that precisely reproduces the spike times, our approach explores the search space 

and identifies numerous points that elicit a similar behavior. The similarity is governed 

by the qualitative class definitions, which are inherent to the error landscape as described 

before. The EA exploration was boosted by a high-rate reset mutation along with a two-

point crossover. The downside of such a configuration is the reduced EA reliability in 

finding acceptable models in certain cases. For instance, only 651 out of 1000 trials found 

best models that satisfy the target class criteria (ASP.) for the CA3 Giant neuron type 

(Figure 3.8B). It is possible to increase this EA reliability by using a step mutation with a 

lower rate; however, this will be achieved at the cost of global exploration, ultimately 

resulting in reduced heterogeneity in the accepted models. In the end, a subset of all best 
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models exhibiting quantitative features with a certain degree of variability is chosen to 

represent a neuron type (section 3.2). Those features strictly adhere to the criteria for the 

qualitative class of the spike pattern recorded from that neuron type.  

There is no guarantee to avoid over-fitting the best model from a single EA trial 

to the experimental noise. However, by reducing the acceleration of evolution within the 

bounds of target class (dynamic feature weight assignment), and identifying several near-

optimal points within these bounds (parameter space exploration), we reduce the risk of 

the best models from all EA trials converging to a single globally optimal point, which 

might or might not represent a noisy feature. It is worth remembering that a feature 

threshold of a spike pattern class was statistically inferred from the distribution of that 

feature from all neuron types (Komendantov et al., 2017). 

The accepted models for a single behavior showed notable variation in their 

parameters, except for TSTUT.NASP (Figure 9A). Such a variation was most prominent 

for parameters ‘a’, ‘b’ and ‘d’, but only the dimensions ‘a’ and ‘b’ are shown in Figure 

3.9A for the nine single-behavior types. Thus, a wide range of parameters yielded similar 

behaviors, demonstrating the robustness of our EA in exploring the parameter space. This 

is also consistent with the notion that a given neuron behavior may result from multiple 

distinct combinations of ion-channel conductance densities (Marder and Prinz, 2002).  
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Figure 3.9: Model and feature variabilities across neuron types.  

(A) Accepted models from each of the nine single behavior types are plotted on dimensions “a” and “b” of the IM. Best 

models from all 1000 EA trials were accepted for NASP (bottom), whereas only 25 models were accepted for 

ASP.SLN with fast spiking constraint (top). All behaviors that include “ASP.” are restricted to the region a < 0.01. 

Stuttering (PSTUT) and fast spiking (ASP.SLN) behaviors are restricted to the region b > 0 (top). Notice the difference 

in axes ranges between top and bottom plots. (B) The slope of sfa is plotted as a function of input current (lasting 500 

ms) for the best IMs of four neuron types that included “ASP.” in their behavior. The sfa slope decreases exponentially 

with linearly increasing input step current. These models show substantial variation in their input dependencies 

of sfa slopes. 

 

3.5.Diversity in the intrinsic properties across neuron types 

In section 3.4, we discussed within-neuron type variabilities, where several IMs 

for a single neuron type reveal slightly different quantitative features for similar input 

currents. In addition to this, feature diversities across different neuron types, both 
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qualitative and quantitative, also likely play a major role in the emergent properties in a 

network.  

Even different neuron types that exhibit similar qualitative behavior might reveal 

substantial diversity in their quantitative features. For instance, the neuron types that 

include transient ASP. in their behavior are CA3 Giant (ASP.), CA3 Basket CCK 

(ASP.NASP), CA3 Basket (ASP.SLN) and CA2 Pyramidal (D.ASP.). The magnitudes of 

sfa experimentally observed from these neuron types were ~0.1 for 100pA, ~0.06 for 

400pA, ~0.02 for 400pA and ~0.2 for 400pA, respectively (Figure 3.5C). The IMs 

constrained using these features reveal considerable diversity in the magnitudes of sfa 

among these four models when the input current is gradually increased, as evidenced by 

plotting sfa against a range of input currents ‘I’ (Figure 3.9B). For all cases, sfa decreased 

exponentially with linear increases of ‘I’. However, these models showed notable 

differences in their excitabilities and their sfa ranges. Most of the variance in sfa slopes 

for the fast spiking CA3 Basket PV+ model could be explained by a narrow range of 

inputs (325pA – 425pA). This window is much larger for the regular spiking CA2 

pyramidal model. Figure 3.9B illustrates the diversity of input-dependent sfa ranges 

among these four models. Although experimental data are too sparse to validate such 

ranges of sfas in the models, the above results demonstrate that our approach can create 

models with remarkable quantitative diversities, even with limited amounts of data.  

The diverse single behavior classes were most separated along the dimensions ‘a’ 

and ‘b’ of the parameter space (Figure 3.9A). The four behaviors that include ASP. were 

restricted to very small values of ‘a’ (<0.01), whereas the NASP models converged to a 
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broad range (0.02, 0.1). As mentioned in section 2.1, ‘a’ is the time constant for recovery 

variable ‘U’, and lower values for ‘a’ results in stronger sfa. The region ‘b’ > ‘a’ 

correspond to Andronov-Hopf bifurcation (Izhikevich, 2003) and all the fast-spiking 

ASP.SLN models were identified in the range (9, 90) for ‘b’. Although only 25 best 

models from 1000 EA trials satisfied the criteria for ASP.SLN and fast-spiking, these 

models encompassed a broad range for ‘b’ (Figure 3.9A – top). 

The optimal region for each class is shown in Figure 3.10. There is a significant 

overlap between the regions for the classes ASP. and ASP.NASP (see also Figure 3.9A). 

This is because the difference between these two classes often depends on the input 

conditions rather than the nine parameters of the model. It is worth mentioning again that 

in the ASP. class only the transient element is present in the spike pattern. Given a longer 

duration of input, this pattern will most likely show a steady-state of NASP. The classes 

NASP and D.NASP encompassed larger regions in the parameter space (Figure 3.9A and 

Figure 3.10). In the case of D.NASP, this is likely due to the fact that the experimentally 

injected input current was unknown (see Table A1), and the EA identified several 

possibilities for similar behavior under a broad range of input currents. 
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Figure 3.10: Optimal regions of different spike pattern classes. 

Region for a class was obtained by plotting the convex hull from all the accepted models. The relationship between 

parameters “a” and “b” determines the type of bifurcation and it separates several classes. There is significant overlap 

between the classes ASP. and ASP.NASP. In general, the EA identified a wide range of optimal points for each class 

along the dimensions “a,” “b,” and “d”. The classes NASP and D.NASP encompassed larger regions than other classes. 

The region for TSTUT.NASP, which lies very close to PSTUT (see Figure 3.9A–bottom) is the smallest region and is 

not visible here. 

 

4. Discussion 

A major motivation behind the current work is the intent to create large-scale 

network models using IMs with both biologically realistic within-neuron type behavioral 

variabilities and experimentally validated between-neuron type diversity. Our compact 

model representations of diverse neuron behaviors allow the implementation of 

hippocampal circuit simulations in a computationally efficient manner. More importantly, 

our results offer a sampling range for a neuron group in a network model (Figure 3.9A 

and Figure 3.10). Several studies have shown that neurons have intrinsic plasticity and 
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undergo homeostatic regulatory mechanisms, which modify their non-synaptic ion-

channels such as sodium and delayed-rectifier potassium channels, in order to maintain a 

certain target activity level in the network (Desai et al., 1999; Aizenman and Linden, 

2000; Desai, 2003). This implies similar intrinsic properties or behaviors can arise from 

various combinations of ion channel conductance densities (Foster and Ungar, 1993; 

Marder and Goaillard, 2006; Schulz et al., 2006). In the mathematically abstracted IM, 

this is equivalent to various combinations of parameter interactions. Although it might be 

difficult to describe such interactions mathematically, a robust EA can identify several 

optimal points in the multi-dimensional search space that correspond to the known 

behaviors of a neuron type (Figure 3.8B). Thus, our method represents a neuron type as 

possibilities in the model parameter space (Figure 3.9A). Such a representation is crucial 

for a thorough and systematic investigation of the contributions of neuronal intrinsic 

properties to network behavior and function. Our multi-compartment models extend this 

platform to investigate the effects of dendritic filtering on the emergent network 

properties, while still being reasonably compact. 

Furthermore, the diversity captured in our models may help experimentalists 

identify and distinguish real neurons in finer electrophysiological terms. Our models of 

sfa suggest the existence of different critical input windows for different neuron types as 

explained in section 3.5 (Figure 3.9B). Thus, a neuron exhibiting sfa could be 

characterized by the range of sfa slopes and its critical input window. The sfa makes a 

neuron act as high-pass filter (Benda and Herz, 2003) and plays a role in emergent 

network synchronization (Ermentrout et al., 2001). Two neurons with different input-
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dependent sfa ranges will likely have different filtering properties, and consequently, may 

contribute to network synchronization in different ways. 

An advantage of using a Pareto-optimal front approach for model optimization 

(Druckmann et al., 2007) is that it avoids the need to weigh different feature errors. 

However, the performance of such multi-objective optimization techniques is affected by 

the number of objectives (Khare et al., 2003) and exponentially increasing population 

sizes are required to represent high-dimensional Pareto-optimal fronts (Deb, 2014). A 

single interrupted spike pattern trace (e.g. TSTUT.NASP in Figure 3.3) presents at least 

eight objectives for optimization (see Table A2, CA1 O-LMR). Moreover, some of our 

simple models are constrained using several spike pattern traces (Figure 3.5A). With 

population sizes as small as 120, our approach can efficiently optimize model parameters 

for several objectives. 

On the other hand, the approach created by Rössert et al. (2016) requires a data-

driven microcircuit model constructed from morphologically detailed neuron models 

(such as the one in Markram et al., 2015) as a reference, and such reference models are 

computationally very expensive. Compared to this approach, our simple models might be 

less constrained in some cases, but they significantly reduce the open parameter space 

size to create biologically accurate circuit models. Furthermore, our simplified multi-

compartment models intrinsically capture the dendritic voltage attenuation properties 

without a need for synaptic correction (Section 3.3). 

The precise shape of the spike was not captured in some of our models (for 

example, D.NASP in Figure 3.3). This could be attributed to the quadratic voltage 
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dependence in the IM voltage equation. The AdEx model  (Brette and Gerstner, 2005) , 

which replaces the quadratic term in the IM with an exponential term for the voltage 

dependence, has been shown to reproduce more realistic spike shapes (Badel et al., 

2008). However, our selection criteria for the models were entirely based on the temporal 

features of the overall spike pattern, and do not include characteristics of individual 

spikes. More important for the information processing in a neural network are the 

excitability of neurons, the precise timing of spikes, and the properties of connections. 

The shape of the spike is unlikely to play an equally prominent role in network dynamics. 

In fact, in the nine-parameter IM formalism ‘k’ and ‘Vt’ collectively determine the shape 

of the spike. It is thus possible to obtain realistic spike shape by restricting the ranges for 

these parameters (e.g. Figure 3.3, ASP.SLN). However, we did not explore these 

parameter ranges and interactions for all the cases for the reasons mentioned above. 

Although only IMs have been presented in this article, our framework can be 

easily enhanced to include any phenomenologically rich model of spiking behavior. The 

only part of this framework that is specific to the IM is the EA configuration presented in 

section 2.3.1. This configuration was identified partly based on the topographical features 

of error landscape created by the IM parameters. Once an appropriate EA configuration is 

identified, our error function and spike pattern classification procedures are readily 

applicable to any alternative model. 

In the future, we will enhance our framework to model multi-behavior neuron 

types. At least fifteen morphological neuron types in the Hippocampome.org exhibit 

sharply distinguishable qualitative features under different experimental conditions. One 
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of the commonly occurring multi-behavior types in the hippocampus is stuttering and 

spiking observed in a single neuron for different current stimulation strengths. For 

example, a CA1 Bistratified neuron exhibited stuttering and regular spiking behaviors for 

400 pA and 600 pA, respectively (Pawelzik and Hughes, 2002). Similarly, a CA1 

Neurogliaform projecting neuron exhibited this multi-behavior for 500 pA and 700 pA 

(Price et al., 2005). Our preliminary work with multi-behavior types revealed vast 

possibilities for modeling such behaviors using IM, which could also provide insights 

into the existence of electrophysiological subtypes for a given morphological type.  

The categorization of neuron type behaviors as either single-behavior or multi-

behavior is solely based on the currently available experimental data. Consequently, it is 

possible that additional qualitative behaviors will be observed in future experiments from 

neuron type currently considered to display a single-behavior based on available data. An 

advantage of our modeling approach is that it identifies many possibilities for the known 

behaviors of a neuron type in the IM parameter space. Furthermore, the flexibility of our 

framework allows easier addition of newly observed behaviors from a neuron type to 

improve the accuracy of its model representations. Eventually, we plan to create models 

for over a hundred hippocampal neuron types and to make them freely available at 

Hippocampome.org. Nevertheless, although the modeling framework and the results 

presented in this article pertain to the hippocampus, our approach could be easily adapted 

to other brain regions. 
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CHAPTER 4: SIMPLE MODELS OF QUANTITATIVE FIRING PHENOTYPES 

IN HIPPOCAMPAL NEURONS: COMPREHENSIVE COVERAGE OF 

INTRINSIC DIVERSITY⊥ 

Patterns of periodic voltage spikes elicited by a neuron help define its dynamical 

identity. Experimentally recorded spike trains from various neurons show qualitatively 

distinguishable features such as delayed spiking, spiking with or without frequency 

adaptation, and intrinsic bursting. Moreover, the input-dependent responses of a neuron 

not only show different quantitative features, such as higher spike frequency for a 

stronger input current injection, but can also exhibit qualitatively different responses, 

such as spiking and bursting under different input conditions, thus forming a complex 

phenotype of responses. In previous work, the comprehensive knowledge base of 

hippocampal neuron types Hippocampome.org systematically characterized various spike 

pattern phenotypes experimentally identified from 120 neuron types/subtypes. In this 

paper, we present a complete set of simple phenomenological models that quantitatively 

reproduce the diverse and complex phenotypes of hippocampal neurons. In addition to 

point-neuron models, we created compact multi-compartment models with up to four 

compartments, which will allow spatial segregation of synaptic integration in network 

simulations. Electrotonic compartmentalization observed in our compact multi-
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compartment models is qualitatively consistent with experimental observations. The 

models were created using an automated pipeline based on evolutionary algorithms. This 

work maps 120 neuron types/subtypes in the rodent hippocampus to a low-dimensional 

model space and adds another dimension to the knowledge accumulated in 

Hippocampome.org. Computationally efficient representations of intrinsic dynamics, 

along with other pieces of knowledge available in Hippocampome.org, provide a 

biologically realistic platform to explore the large-scale interactions of various neuron 

types at the mesoscopic level. 

1. Introduction 

Complex interactions among a myriad of neurons make it challenging to study the 

functions of brain regions. Although each neuron is different, their landmark features 

such as the dendritic structure and patterns of somatic voltage spikes help define types of 

neurons, and such grouping allows for a tractable description and investigation of 

complex network interactions. For instance, large-scale network models of brain regions 

can include precisely defined neuronal types to create a biologically realistic platform for 

hypothesis testing. While neurons differ in their morphological, biochemical and 

electrophysiological features, precisely what features are useful and relevant for neuronal 

grouping is a topic of great interest (Petilla Interneuron Nomenclature Group et al., 

2008).  

A few studies have created large-scale network models of brain regions 

(Eliasmith et al., 2012; Hendrickson et al., 2016; Izhikevich and Edelman, 2008; 

Markram et al., 2015). The major methodological difference among these studies is the 
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level of biological details captured in the individual components of the network and there 

is often a tradeoff between such biological details and the scale of the network. For 

example, a microcircuit model of the rat somatosensory cortex (Markram et al., 2015) 

simulated ~31,000 neurons with ~37 million synapses, where each neuron was a 

biophysically detailed description of one of 207 morpho-electrical types identified 

experimentally. On the other hand, a large-scale description of thalamocortical systems 

(Izhikevich and Edelman, 2008), which used simplified phenomenological neuron 

models (Izhikevich, 2003), simulated a network of a much larger scale (one million 

neurons and half a billion synapses), but it only included 22 abstract types among the 

neurons. Network modeling efforts more specific to the hippocampus include a full-scale 

model of the CA1 circuit (Bezaire et al., 2016) (~338,000 biophysically detailed neuron 

models of nine types), a large-scale model of the dentate gyrus (Morgan and Soltesz, 

2008) (~52,000 biophysically detailed neuron models of four types) and a large-scale 

model of CA1 (Ferguson et al., 2017) (~10,000 phenomenological models of two types).  

An advantage of biophysically detailed neuron models is that they can include 

experimentally known distributions of ion channels during model generation. For 

example, A-type potassium and hyperpolarization-activated currents were distributed 

non-uniformly (increasing densities with distance from soma) in the CA1 pyramidal 

models in (Bezaire et al., 2016; Migliore et al., 2018) based on experimental 

observations. However, hundreds of compartments, each specifying the dynamics of 

several types of currents require prohibitively large supercomputer resources, if one 

wants to simulate a large-scale network of biophysically detailed neuron models (Bezaire 
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et al., 2016; Markram et al., 2015). Increasing the complexity of the model also increases 

the number of free parameters that cannot be measured experimentally and need to be 

estimated. On the other hand, highly abstract phenomenological models such as 

(Izhikevich, 2003) specify only two equations, and they significantly reduce the 

computational cost of simulating large-scale networks (Beyeler et al., 2015; Ferguson et 

al., 2017; Izhikevich and Edelman, 2008). However, the parameters that govern such 

models are not directly biologically interpretable and optimizing their parameters to 

reproduce quantitatively accurate intrinsic dynamics of neuron types can be difficult 

(Rossant et al., 2010; Venkadesh et al., 2018). In current work, with a vision of creating a 

real-scale network model of the rodent hippocampus that nevertheless captures biological 

details at the mesoscopic level, we have created phenomenological models of 120 

hippocampal neuron types and subtypes using their intrinsic dynamics identified 

experimentally. Recently, a database of simple models for hundreds of neurons of various 

transgenic types in the mouse primary visual cortex was created with a similar vision 

(Teeter et al., 2018). 

A large-scale literature mining effort created Hippocampome.org (Wheeler et al., 

2015), a comprehensive knowledgebase of neuron types in the rodent hippocampal 

formation (dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex). This 

resource provides information on morphology, electrophysiology, and molecular marker 

profiles of more than 100 neuron types, where the type of a neuron is primarily 

determined based on the locations of its axon, dendrites and soma across 26 parcels of the 

hippocampus. A numerical protocol (Komendantov et al., 2018) was developed to 



78 

 

identify the classes of published somatic spike patterns of morphologically identified 

neuron types. Analysis of a total of 247 traces, which were linked to 90 morphological 

types, revealed several spike pattern phenotypes, and further divided 22 morphological 

types into 52 electrophysiological subtypes for a total of 120 neuron types/subtypes. The 

subtypes of a neuron type, while sharing the same morphological identity, differ in their 

spike pattern phenotypes. Features of experimentally recorded spike patterns were 

extracted for a neuron type and a systematic characterization of spike pattern features 

revealed nine unique families of intrinsic dynamics, such as delayed spiking, non-

adapting spiking, simple adapting spiking, and persistent stuttering among hippocampal 

neurons. Furthermore, many neuron types exhibit different classes of spike patterns for 

different input currents, resulting in complex spike pattern phenotypes.  

In this article, we present a comprehensive set of point neuron models that 

quantitatively reproduce various spike pattern phenotypes of hippocampal neurons. We 

also created multi-compartment models that are compact extensions of point neurons in 

order to allow spatial context for synaptic integration in a network. In addition, our 

compact multi-compartment (compact-MC) models exhibit electrotonic properties 

consistent with experimental observations. We also report novel insights into the 

relationships between abstract model parameters and various biological properties, which 

were revealed in our correlation analysis. The models were created using an automated 

modeling framework (Venkadesh et al., 2018), and they further enhance the existing 

accumulated knowledge in Hippocampome.org, where they are freely available to 

download. By identifying several possibilities for a quantitative phenotype in 
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phenomenological space, current work comprehensively maps hippocampal neuron types 

to low-dimensional model subspaces, which can be used as sampling regions for 

biologically realistic large-scale network simulations of hippocampal circuits.  

2. Methods  

The class of a spike pattern is identified based on various transient and/or steady-

state elements present in the pattern. Transient elements are Delay (D), if the first spike 

latency (fsl) is sufficiently long; Adapting Spiking (ASP), if the inter-spike intervals 

(ISIs) increase over time showing a spike frequency adaptation (sfa); Rapidly Adapting 

Spiking (RASP), if a strong sfa is only present in the first two or three ISIs, Transient 

Stuttering (TSTUT), if a quiescent period follows a cluster of high frequency spikes; and 

Transient Slow-Wave Bursting (TSWB), if a slow after-hyperpolarizing potential follows 

a cluster of high frequency spikes. Steady-state elements are Silence (SLN), if the post-

spike silence (pss) (quiescence following the last spike) is sufficiently long; Non-

Adapting Spiking (NASP), if no frequency adaptation is identified in a non-interrupted 

spiking; Persistent Stuttering (PSTUT), if at least one sufficiently long quiescent period 

separates two clusters of high frequency spikes; and Persistent Slow-Wave Bursting 

(PSWB) if a slow after-hyperpolarizing potential is present in an otherwise PSTUT 

pattern. Thus, the key features are fsl, sfa, pss and the number of ISIs (nISIs) for a spiking 

pattern, and burst widths (bw), post-burst intervals (pbi), number of bursts (n_bursts) and 

nISIs within a burst (b-nISIs) for a stuttering/bursting pattern.  

A spike pattern can consist of one or more elements, and we use a dot (‘.’) 

notation to separate them. A ‘.’ in a spike pattern indicates that the preceding element is a 
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transient (e.g. “ASP” is a transient element in the pattern “ASP.SLN”), and if the pattern 

ends with a ‘.’ (e.g. “ASP.” or “RASP.ASP.”), it serves to mean that this is an incomplete 

pattern, where the duration of current injection was too short to elicit one of the steady 

state responses. Supplementary text S1 and (Komendantov et al., 2018) provide more 

details on the criteria for various spike pattern classes.  

The temporal features described above identify the class of a single spike pattern, 

and all classes of patterns exhibited by a neuron under different input currents 

collectively define the spike pattern phenotype of that neuron. Thus, our approach 

emphasizes the temporal patterns in the periodic voltage spikes rather than the shape of 

the spike or subthreshold dynamics to define the intrinsic dynamics. Note that a minimum 

of two spikes are required to identify a class, hence, single-spike traces are not assigned a 

class label in this scheme. However, such single-spike traces are still included as 

constraints to help capture the excitability (rheobase) in the models more precisely. 

We used the Izhikevich model (IM) (Izhikevich, 2003, 2007) to reproduce spike 

pattern phenotypes. This model is governed by the state variables membrane voltage (V) 

and membrane recovery variable (U): 

𝐶 ⋅
𝑑𝑣

𝑑𝑡
= 𝑘 ⋅ (𝑉 − 𝑉𝑟) ⋅ (𝑉 − 𝑉𝑡) − 𝑈 + 𝐼 (1) 

𝑑𝑈

𝑑𝑡
= 𝑎 ⋅ {𝑏 ⋅ (𝑉 − 𝑉𝑟) − 𝑈} (2) 

𝑖𝑓 𝑉 = 𝑉𝑝𝑒𝑎𝑘 𝑡ℎ𝑒𝑛 𝑉 = 𝑉𝑚𝑖𝑛, 𝑈 = 𝑈 + 𝑑 

where 𝑉𝑟 and 𝑉𝑡 are the resting and threshold voltages respectively; 𝑉𝑝𝑒𝑎𝑘 is the 

spike cutoff value, 𝑉𝑚𝑖𝑛 is the post-spike reset value for the voltage and 𝐶 is the cell 



81 

 

capacitance. The parameters 𝑘, 𝑎, 𝑏 and 𝑑affect the model’s intrinsic dynamics both 

qualitatively (e.g. the type of bifurcation revealed by fast-spiking and non-fast-spiking 

behaviors) and quantitatively (e.g. rheobase and magnitude of sfa). Compact-MC models 

with up to four compartments were modeled using an asymmetric coupling mechanism 

for the interaction currents in proximal (𝐼𝑝𝑟𝑜𝑥) and distal (𝐼𝑑𝑖𝑠𝑡) compartments (e.g. soma 

and dendrite, respectively) as described in (Venkadesh et al., 2018): 

𝐼𝑝𝑟𝑜𝑥 = 𝐺 ⋅ 𝑃 ⋅ (𝑉𝑝𝑟𝑜𝑥 − 𝑉𝑑𝑖𝑠𝑡) (3) 

𝐼𝑑𝑖𝑠𝑡 = 𝐺 ⋅ (1 − 𝑃) ⋅ (𝑉𝑑𝑖𝑠𝑡 − 𝑉𝑝𝑟𝑜𝑥) (4) 

where 𝐺 is the coupling strength and 𝑃 denotes the degree of coupling 

asymmetry, which determines the influence of a compartment on the overall model 

dynamics (Pinsky and Rinzel, 1994). It should be noted that each compartment specifies 

its own set of parameters, except 𝑉𝑟 for equations (1) and (2). As reported before 

(Venkadesh et al., 2018), most of our compact-MC models specify a much weaker 

coupling toward the soma than away from it, making the somatic compartment dominate 

the overall model intrinsic dynamics.  

Our modeling framework uses evolutionary algorithms (EA) and employs a 

feature-based error function. By incorporating spike pattern features (fsl, sfa etc.) and 

qualitative class criteria (delay factor, number of piecewise linear fit parameters of ISIs 

etc.) in the error landscape (Komendantov et al., 2018), our approach enforces a fine level 

of granularity in the key quantitative features of various spike-pattern classes, as 

described in our previous work (Venkadesh et al., 2018). The error function was defined 

as:  
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𝑒𝑟𝑟𝑜𝑟 =  ∑(𝑊𝑓 × 𝑙𝑜𝑔  (1 + |𝑒𝑥𝑝𝑓 − 𝑚𝑜𝑑𝑒𝑙𝑓|))

𝑓∈𝑆

(5) 

where 𝑆: {𝑓𝑠𝑙, 𝑝𝑠𝑠, 𝑠𝑓𝑎, 𝑛𝐼𝑆𝐼𝑠} for a spiking class, and 

𝑆: {𝑓𝑠𝑙, 𝑝𝑠𝑠, 𝑏𝑤, 𝑝𝑏𝑖, 𝑛_𝑏𝑢𝑟𝑠𝑡𝑠 , 𝑏_𝑛𝐼𝑆𝐼𝑠} for a bursting/stuttering class. 𝑊𝑓 is the feature 

weight and it was calculated for each feature by comparing the target class with the 

model spike pattern class during the EA search. The dynamical scaling of errors for the 

key features using this scheme helped adjust the balance between exploration and 

exploitation as the population began to converge within the subregion of the target class 

(Venkadesh et al., 2018). Using this scheme, we previously identified subregions for 

single-behavior neuron types, which show the same class of spike patterns regardless of 

the input current strength. However, as mentioned before, many neuron types exhibit 

different classes of patterns under different input currents. We noticed for many such 

complex phenotypes, the EA with randomly initialized population using broad parameter 

ranges showed a bias towards a single class rather than reproducing all the classes of a 

phenotype. To reduce this bias in our current work, the EA population was initialized 

using the subregions of all desired spike pattern classes, which were identified (in 

independent EA runs) for single-behavior types (Venkadesh et al., 2018). It should be 

noted, however, that during the EA search, the parameters of the IM could vary beyond 

these subregions (using an unbounded mutation operator). Furthermore, we used a higher 

population size (240 as opposed to 120 as for single-behavior types). The operators of the 

EA (mutation, crossover etc.) were configured by taking into account the features of error 

landscape created by the IM parameters (Venkadesh and Ascoli, 2017). In order for a 
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model found by the EA to be accepted, the classes of its spike patterns must match those 

of experimental traces. There is, however, one exception: without additional dendritic 

dynamics, the IM failed to reproduce the RASP.ASP. class of patterns, which show a 

strong and rapid adaptation (in the first 2 or 3 ISIs) followed by a very weak yet sustained 

adaptation. Therefore, single-compartment models of seven neuron types, which 

experimentally showed this complex transient pattern, were accepted with RASP.NASP 

patterns instead (see results).  

Compact-MC models were additionally constrained to exhibit appropriate relative 

excitabilities and input resistances between soma and dendrites, and sub- and supra-

threshold signal propagation properties, as described in our previous work (Venkadesh et 

al., 2018). The following errors were calculated for each dendritic compartment: 

𝑒𝑟𝑟𝑜𝑟𝑟ℎ𝑒𝑜 = {
0, 𝐼𝑑𝑒𝑛𝑑

𝑟ℎ𝑒𝑜 ≥ 𝐼𝑠𝑜𝑚𝑎
𝑟ℎ𝑒𝑜

log  (1 + (𝐼𝑠𝑜𝑚𝑎
𝑟ℎ𝑒𝑜 − 𝐼𝑑𝑒𝑛𝑑

𝑟ℎ𝑒𝑜)) , 𝐼𝑑𝑒𝑛𝑑
𝑟ℎ𝑒𝑜 < 𝐼𝑠𝑜𝑚𝑎

𝑟ℎ𝑒𝑜
(6) 

𝑒𝑟𝑟𝑜𝑟𝑣𝑑𝑒𝑓 = {
0, 𝑉𝑑𝑒𝑛𝑑

𝑑𝑒𝑓
≥ 𝑉𝑠𝑜𝑚𝑎

𝑑𝑒𝑓

log  (1 + (𝑉𝑠𝑜𝑚𝑎
𝑑𝑒𝑓

− 𝑉𝑑𝑒𝑛𝑑
𝑑𝑒𝑓

)) , 𝑉𝑑𝑒𝑛𝑑
𝑑𝑒𝑓

< 𝑉𝑠𝑜𝑚𝑎
𝑑𝑒𝑓 (7) 

𝑒𝑟𝑟𝑜𝑟𝑅 = {
0, 𝑅 = 1

log  (1 + (1 − 𝑅)) , 𝑅 < 1
(8) 

𝑒𝑟𝑟𝑜𝑟𝑒𝑝𝑠𝑝 = {

0, 0.1 ≤ 𝐸𝑃𝑆𝑃 ≤ 0.9

log  (1 + (0.1 − 𝐸𝑃𝑆𝑃)) , 𝐸𝑃𝑆𝑃 < 0.1

log  (1 + (𝐸𝑃𝑆𝑃 − 0.9)) , 𝐸𝑃𝑆𝑃 > 0.9 

(9) 

where𝐼𝑟ℎ𝑒𝑜 is the minimum depolarizing current required to elicit a spike and 

𝑉𝑑𝑒𝑓 is the amplitude of steady-state voltage deflection from the resting voltage for a 

hyperpolarizing input current in decoupled compartments. 𝑅 is the spike propagation rate, 
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defined as the ratio between the number of spikes observed at the destination 

compartment and the number of spikes initiated at the source compartment. Several 

AMPA synapses (50-200) were stimulated to initiate a spike at a dendritic compartment 

and 𝑅 was calculated for the adjacent compartment for forward-spike propagation. 

Finally, a single AMPA synapse was stimulated at a dendritic compartment and the 

amplitude of the excitatory post synaptic potential (𝐸𝑃𝑆𝑃) was measured at the somatic 

compartment. A range of (0.1, 0.9) mV was enforced for the 𝐸𝑃𝑆𝑃 amplitude. All 

synapses used a value of 10 for the weight, unless explicitly mentioned otherwise. For the 

comparison against biophysically detailed models, we used the CA1 Pyramidal multi-

compartment model (Jarsky et al., 2005) obtained from ModelDB (McDougal et al., 

2017) (accession number: 116084), which was simulated using the NEURON simulation 

environment (Hines and Carnevale, 1997), and the simulated data from (Krueppel et al., 

2011) for DG Granule neuron type. For the analysis of attenuation of back-propagating 

spikes, the amplitude of a spike in the IM is measured as the difference between the 

maximum of 𝑉 and the reset 𝑉𝑚𝑖𝑛. In this article, the goodness-of-fit is reported as the 

ratio between simulated and experimentally recorded values (for spike pattern features) 

and the ratio between somatic- and dendritic-compartments (for excitability and input 

resistance) for intuitive understanding. Optimization and simulation scripts are publicly 

available at https://github.com/Hippocampome-Org/Time. 

Pairwise correlations were performed to explore the relationships between IM 

parameters and various pieces of knowledge (PoK) that have been accumulated in 

Hippocampome.org. All firing pattern classes and electrophysiological properties and the 



85 

 

20 most cited biomarkers were considered, which resulted in a total of 198 correlations. 

To analyze statistical co-occurrence with existing categorical knowledge, continuous IM 

parameters were converted into categorical variables appropriately by marking positive 

and negative or by labelling top- and bottom- one-third ranges respectively as high and 

low. Correlations between the categorical variables were evaluated using Barnard’s exact 

test for 2x2 contingency tables. This test provides the greatest statistical power when row 

and column totals are free to vary (Lydersen et al., 2009). Threshold for statistical 

significance and false discovery rate for multiple comparisons were conventionally set to 

0.05 and 0.25, respectively. 

3. Results 

3.1. Single-compartment models of diverse intrinsic spike pattern phenotypes 

The intrinsic dynamics of a neuron is typically identified in experiments by 

injecting step input currents of various magnitudes. A neuron’s responses to these inputs 

typically fall into one of two phenotype super-families: (1) a spiking phenotype, where 

the neuron only exhibits continuous spike pattern classes such as ASP.SLN, NASP, and 

D.NASP for different input currents (Fig 4.1A-D), and (2) a stuttering/bursting 

phenotype, where the neuron exhibits an interrupted spike pattern class such as 

TSWB.SLN, TSTUT.NASP, and PSTUT for at least one input current (Fig 4.2A-D). A 

spiking or stuttering phenotype could be formed by various combinations of spike pattern 

classes, and models for four exemplar cases in each of these two phenotype super-

families are reported in this article (visit Hippocampome.org for a comprehensive list of 

phenotypes and their models). 
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Figure 4.1: Exemplar models of continuous spiking phenotypes.  

Each panel displays experimentally recorded voltage traces in the top-left and their morphological identity and 

magnitudes of somatic current injections in the bottom-left. Traces were digitized by Hippocampome.org. 

Morphological abbreviations: SO - stratum oriens, SP - stratum pyramidale, SR - stratum radiatum, SM - stratum 

moleculare, SG - stratum granulosum, H – hilus. Model responses for similar input currents (±0.01nA from 

experimental input) are given in the top-right and the goodness-of-fit is given (only) for key features in the bottom-right 

(supplementary table S2 reports goodness-of-fit for all features). The traces are highlighted in different colors to 

visually compare experimental and model responses, and to identify the input current and key features for each trace. 

Calibration bars denote 200ms and 20mV in all panels. (A) Simple phenotype of a dentate gyrus (DG) Total Molecular 

Layer neuron that elicits ASP. patterns under three different input currents (Mott et al., 1997). The digitally 

reconstructed morphology was reproduced from NeuroMorpho.org (Ascoli et al., 2007). (B) Simple phenotype of a 

CA1 Basket neuron that elicits patterns of class NASP for +0.15nA and +0.31nA (Tricoire et al., 2011). Note that sfa in 

the red trace is not statistically significant to qualify this pattern as ASP. (C) The phenotype of a CA1 Trilaminar 

neuron shows different classes of patterns for +0.025nA and +0.05nA (Tricoire et al., 2011). In addition, this neuron 

elicits rebound spikes (RBS) for a hyperpolarizing input of -0.1nA. (D) The phenotype of a medial-entorhinal cortex 

(MEC) neuron shows different classes of patterns for +0.2nA and an unknown input (denoted by ‘*’) just above its 

rheobase (Canto and Witter, 2012). All experimental traces are whole-cell patch clamp recordings.  
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Figure 4.2: Exemplar models of stuttering/bursting phenotypes.  

(A) Complex phenotype of a Bistratified neuron in CA1. This neuron elicits a stuttering pattern for +0.4nA (red) and a 

spiking pattern for +0.6nA (grey) (Pawelzik et al., 2002). The digitally reconstructed morphology (Katona et al., 2014) 

was reproduced from NeuroMorpho.org (Ascoli et al., 2007). (B) The voltage trace recorded from an entorhinal layer-5 

neuron shows both (transient) bursting and (steady state) spiking features for +0.4nA (Hamam et al., 2002). (C) A DG 

granule neuron transiently bursts for both +0.2nA and +0.4nA with quantitative difference (Williams et al., 2007). The 

digitally reconstructed morphology was reproduced from NeuroMorpho.org (Ascoli et al., 2007; Bausch et al., 2006). 

(D) A dentate gyrus neuron that transiently bursts just above its rheobase (red) elicits a spiking pattern with a strong sfa 

(grey) for a higher input current (Pierce et al., 2011). ‘*’ indicates the unknown magnitude of the input current near 

rheobase. All voltage traces were digitized by Hippocampome.org. Experimental spike amplitudes are truncated. 

Calibration bars denote 200ms and 20mV in all panels. Goodness-of-fit is given only for key features (see appendix 

table A3 for all features). The experimental traces in panels A, B and D are intracellular recordings and the trace in 

panel C is a whole-cell patch clamp recording. 

 

In the simplest case, a neuron exhibits spike patterns of the same class regardless 

of the input current strength. For example, the three spike patterns recorded under 

different input currents from a DG Total Molecular Layer neuron were identified as ASP. 
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(Fig 1A), and the two patterns recorded from a CA1 Basket neuron were identified as 

NASP. (Fig 1B). Such simple-behavior neurons typically show different quantitative 

features among different patterns of the same class. In the former example, the three 

ASP. traces were experimentally recorded under +0.075nA (red), +0.100nA (black), and 

+0.200nA (grey) (Mott et al., 1997). The ISI counts (nISIs) are 5, 9, and 19, and sfa 

magnitudes are 0.142, 0.114, and 0.056 respectively for the red, black and grey traces. 

The model of this neuron type was constrained to quantitatively reproduce the spike 

pattern features for similar input currents: nISIs of 5, 9 and 19, and sfa magnitudes of 

0.142, 0.082, and 0.032 respectively for +0.073nA, +0.102nA and +0.205nA. Appendix 

Fig A1 illustrates examples of models reproducing frequency responses of neurons for a 

range of input currents. 

Additionally, a neuron can show more complex behaviors by eliciting patterns of 

different classes under different input currents (Fig 4.1C-D). Both CA1 Trilaminar and 

MEC LV-VI Pyramidal-Polymorphic neurons include ASP. in their phenotypes (grey 

traces), but they show different dynamics close to their respective rheobases. Whereas the 

former quickly fires a few spikes before going into a silence mode (ASP.SLN), the latter 

shows delayed-spiking (D.NASP). The model quantitatively reproduces the 

characterizing features of these different classes (see pss for ASP.SLN and fsl for 

D.NASP). Also, note that the model reproduces the rebound-spiking behavior for a 

hyperpolarizing input current, a known feature of CA1 Trilaminar neurons (Tricoire et 

al., 2011). 
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Another level of complexity in spike pattern phenotypes is when the intrinsic 

dynamics show sharply distinguishable spike-pattern classes, which differ across super-

families, under different input conditions. For example, a CA1 Bistratified neuron stutters 

(PSTUT) for +0.4nA, and spikes for +0.6nA (ASP.) (Fig 4.2A). A few neuron types and 

subtypes in the hippocampus exhibit such a complex phenotype, where PSTUT is 

typically observed just above the rheobase of a neuron (e.g. CA1 Neurogliaform (Price et 

al., 2005) and DG Total Molecular Layer subtype (Mott et al., 1997)). Our simple models 

capture the characterizing features of both PSTUT and ASP. (Fig 4.2A) under the right 

input conditions. It is worth mentioning that all PSTUT neurons are inhibitory neurons 

and the CA1 region has a proportionately larger number of these phenotypes 

(Klausberger and Somogyi, 2008; Komendantov et al., 2018). In many cases, however, 

the characteristic features of interrupted spiking can be only transiently present (Fig 

4.2B). Here, a single pattern presents features of both bursting and spiking, where a 

relatively longer interval separates a few high frequency spikes (burst) from a train of 

regular spikes. In another set of examples, Granule and Hilar Ectopic Granule cells in the 

dentate gyrus (DG) show only transient bursting just above their respective rheobases 

(Fig 4.2C and 4.2D). However, for an increased input current, Granule cells still 

maintained the same TSWB.SLN pattern with quantitative differences such as increased 

number of spikes, whereas Hilar Ectopic Granule cells transitioned to ASP. These 

constrained representations of two different DG neurons fall under the same family of 

non-persistent bursting, but they are optimized to capture the finer quantitative 

differences in the input-dependent responses between these two neuron types. Thus, our 
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simple models do not only qualitatively capture the rich diversity of dynamical classes 

defined systematically, but they are also quantitatively constrained representations of 

experimentally recorded patterns from hippocampal neuron types.  

3.2. Multi-compartment models as compact extensions of point-neuron models 

The point-neurons with only two state variables, which were presented in the last 

section, would tremendously reduce the computational cost of simulating large-scale 

networks of hippocampal circuits relative to morphologically detailed Hodgkin-Huxley 

type models. However, since they lack spatial dimension, they do not differentiate 

synaptic inputs from different layers, unlike their biological counterparts. For example, 

hippocampal pyramidal neurons receive entorhinal projections on the apical dendrites in 

stratum lacunosum moleculare (SLM), and intra-hippocampal connections in stratum 

radiatum (SR), thereby compartmentalizing synaptic integration of distinct laminar 

inputs. While it is not possible to spatially segregate synaptic integration in a network of 

point-neurons, it is of interest to see the effects of such segregated synaptic integration 

mechanisms in a network. Hippocampome.org (version 1.4) identifies 87 neuron types 

with their dendrites invading at least two layers. Therefore, for these neuron types, in 

addition to point neuron models, we created compact-MC models with up to four 

compartments. Here, each compartment corresponds to a hippocampal layer, allowing 

layer-level connectivity specifications at the neuron type level.  

One example for each of the four out of five possible multi-compartment layouts 

are illustrated here, and the fifth layout is discussed in detail in Section 3.3. The somatic 

compartment of a compact-MC model quantitatively reproduces the spike patterns 
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experimentally recorded from the soma of the respective neuron type for similar input 

currents (Fig 4.3 and Fig 4.4A). The number and layout of the coupled compartments is 

determined by the layers of dendritic invasion and known/possible soma locations of real 

neurons as illustrated by various examples in Fig 4.3. The dendritic compartments in a 

compact-MC model are less excitable and have higher input resistances than the somatic 

compartment (Appendix Fig A2 B) (Ledergerber and Larkum, 2010; Spruston, 2008).  
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Figure 4.3: Multi-compartment models compactly extend point neurons to allow layer-level spatial context.  

(A) Experimentally recorded somatic voltage traces (left) are given for four different morphological types (right). 

Dendritic invasion (darker) of layers and relative soma location determine the number and layout of compartments. (B) 

Layout of compartments coupled asymmetrically (left) correspond to the layers of dendritic invasion shown in A. Filled 

circles denote somata. Compartment responses for somatic input currents that are ±0.01nA from experimental input are 

shown on the right side. See Fig 4 for quantitative comparison of spike pattern features, Supplementary Fig S2 for 

dendritic features, and Fig 5 for another possible 4-compartment layout. The digitally reconstructed morphology of DG 

MOLAX (Mott et al., 1997) was reproduced from NeuroMorpho.org (Ascoli et al., 2007). Other experimental traces 

were digitized by Hippocampome.org from the following sources (from top to bottom): (Vida et al., 1998), (Mott et al., 

1997), (Canto and Witter, 2012) and (Lübke et al., 1998). Morphological abbreviations: SMi and SMo – inner one-third 

and outer two-third of stratum moleculare. Experimental spike amplitudes are truncated. Calibration bars denote 

200ms, 20mV. The experimental trace ASP.SLN is an intracellular recording and the remaining experimental traces are 

whole-cell patch clamp recordings. 

 

 
Figure 4.4: Accuracy of compact multi-compartment models in reproducing spike pattern features.  

(A) The goodness-of-fit is given (only) for key features for each of the four examples from Fig 4.3 (see Appendix table 

A4 for all features). (B) Pairwise comparisons of accuracy between single-compartment (blue) and compact-MC 

(orange) models for spiking features (top) and bursting features (bottom). While single-compartment models, in 

general, showed smaller errors for spiking features, they did not satisfy statistical criteria for RASP.ASP. patterns 

(denoted by circles in top panel). See Appendix Fig A4 for an example for RASP.ASP. pattern. At the same time, 

compact-MC models generally improved the accuracy of bursting features (bottom) with a significant improvement in 

bw (p<0.005 for paired-sample t-test). 
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Furthermore, forward-coupling (from dendrite to soma) between compartments is 

just strong enough to evoke a somatic excitatory postsynaptic potential (EPSP) with an 

amplitude in the range [0.1, 0.9] mV for a single synaptic stimulation at a dendritic 

compartment and to achieve a forward-spike propagation (from dendrite to soma) ratio in 

the range [0.5, 1.0] (Appendix Fig A2C-D). Forward- and backward-coupling strengths 

are defined by 𝐺 ⋅ 𝑃 and 𝐺 ⋅ (1 − 𝑃), respectively (see eqns 3 – 4). As mentioned in 

Methods, the backward-coupling (from soma to dendrite) is much stronger than the 

forward-coupling in most of our compact-MC models, consistent with the electrotonic 

profiles reported for various neuron types (Carnevale et al., 1997; Chitwood et al., 1999; 

Mainen et al., 1996). Such an asymmetric design for coupling enables the somatic 

compartment to dominantly define the model’s overall intrinsic dynamics, while still 

preserving forward propagation properties for sub- and supra-threshold signals from 

dendrites. Thus, our multi-compartment models are compact extensions of point neuron 

models, which allow spatial contexts for synaptic integration. 

Although the major motivation for creating compact-MC models is to allow 

synaptic segregation in a network model, we also investigated if additional dendritic 

mechanisms implemented in our compact-MC models could help achieve a better fitting 

of somatic spike patterns than their point-neuron counterparts. Therefore, we performed 

pairwise comparisons between the somatic spike pattern features of single-compartment 

and compact-MC models. In general, implementing additional dendritic mechanisms in 

the models only improved the accuracy of bursting features (Fig 4.4B). Interestingly, fsl 

and pss errors were higher in the models due to the addition of dendritic compartments. 
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However, it should be noted that each additional compartment not only adds two state 

variables, which require more computations for numerical simulation, but also adds ten 

open parameters (including coupling parameters) making it a more-challenging 

optimization task. Although our single-compartment models were able to reproduce 

quantitatively comparable experimental bursting/stuttering patterns (Fig 4.2) (see 

(Venkadesh et al., 2018) for two exceptions), compact-MC models significantly 

improved the accuracy of bw, a key feature of bursting/stuttering patterns (Fig 4.4B).  

Furthermore, while the single-compartment models quantitatively captured 

various classes of adapting spike pattern phenotype such as ASP., ASP.SLN, ASP.NASP 

and RASP.NASP, they failed to reproduce RASP.ASP. patterns. These patterns exhibit a 

strong and rapid adaptation in the first few ISIs, which is then followed by a very weak 

and sustained adaptation. Interestingly, we found that such a combination was not 

possible in the IM (red circles in Fig 4.4B), unless additional dendritic compartments 

were included. Two different time constants (parameter ‘𝑎’) for the adaptation variable 

(state variable 𝑈) were required for the somatic and dendritic compartments, respectively, 

in order to capture such complex transients in the soma. In our single-compartment 

models, RASP.ASP. is represented by RASP.NASP, since the adaptation followed by 

RASP. is usually very weak. See Appendix Fig A4 for an example.  

3.3. Properties of dendritic compartments in compact-MC models 

In addition to the features discussed in the last section, our compact-MC models 

show electrotonic structures and interplay between different compartments that are 

similar to those observed experimentally and in morphologically detailed multi-
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compartment (morpho-MC) models. To illustrate this, here we present a 4-compartment 

model of CA1 Pyramidal neurons and discuss the spike propagation and voltage 

attenuation properties of apical compartments. First of all, the somatic compartment 

quantitatively captures frequency adaptation (Fig 4.5B), a characterizing feature of 

experimentally recorded spike patterns from CA1 Pyramidal neurons (Fig 4.5A 

(Chevaleyre and Siegelbaum, 2010) and Fig 4.5C - top). Secondly, the dendritic 

compartments (SR, SLM and SO) are less excitable and have higher input resistances 

than the somatic compartment (Fig 4.5C - bottom).  
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Figure 4.5: A 4-compartment model of CA1 Pyramidal neuron.  

(A) A whole-cell patch clamp recording from a CA1 Pyramidal neuron (Chevaleyre and Siegelbaum, 2010) digitized 

by Hippocampome.org, and digitally reconstructed morphology of the same type (Ishizuka et al., 1995) reproduced 

from NeuroMorpho.org (Ascoli et al., 2007). (B) Layout of the compartments (left) and their responses to somatic 

input current of +0.15nA. (C) Somatic compartment reproduces key features that are quantitatively comparable to the 

experimental features (top). Minimum depolarizing input required to elicit a spike (I-rheo) and steady-state voltage 

deflection (V-def) for a hyperpolarizing input are higher in dendritic compartments than the somatic compartment 

(bottom). (D) Attenuation of first back-propagating spike from experimental recordings (exp.), in morphologically 

detailed multi-compartment model (morpho-MC) and in compact-MC model (horizontal lines; for the spike trains in 

B). First-spiked and First-spikes denote amplitudes of first spikes at dendrite and soma, respectively. Vertical lines 

indicate the distances of the morpho-MC sections from the soma that correspond to the attenuation profiles of proximal 

(SR) and distal (SLM) compartments in the IM. (E) Attenuation of dendritic EPSPs as they propagate towards the 

soma. Vs and Vd are amplitudes of EPSPs at soma and dendrite, respectively. Inset shows compartment responses for a 

single synaptic stimulation at SR (left) and SLM (right). Calibration: 0.2mV. (F) Conditional spike propagation in 

morpho-MC (left) and compact-MC (right) models of a CA1 Pyramidal neuron. ‘*’ denote the stimulated compartment. 

A single spike initiated at the distal compartment (top left traces: stimulation at 430µm in SLM) failed to propagate to 

the soma. Additional depolarization level at the proximal compartment (bottom left traces: stimulation at 220µm in SR) 

facilitates propagation of spike initiated at the distal compartment (right traces) to the soma in both models. 

Experimental data digitized from (Golding et al., 2001) (D) and (Golding et al., 2005)(E). Multi-compartment CA1 

Pyramidal model from (Jarsky et al., 2005) was used to obtain morpho-MC data. Calibration: 20mV, 20ms. 

 

CA1 Pyramidal neurons exhibit strong attenuation of spike amplitudes as they 

propagate from the soma to apical dendrites (Golding et al., 2001; Hoffman et al., 1997). 

This attenuation has been attributed to the highly dense expression of transient A-type K+ 

conductance in the dendrites (Hoffman, 1999; Hoffman et al., 1997). We compared the 

attenuation of back-propagating spikes between compact-MC and morpho-MC models 

(Fig 4.5D and appendix Fig A3A). The compartments SR and SLM in the compact-MC 

model matched the attenuation profiles of morpho-MC sections at ~210µm and ~275µm, 

respectively, from the soma. However, it should be noted that the experimental dendritic 

recordings distal to ~300 µm showed a dichotomy of attenuation exhibiting either strong 

(71-87%) or weak (26-42%) attenuation (Golding et al., 2001), and we only included data 

corresponding to strong attenuation for comparison in Fig 4.5D.  

In real neurons, integration of an EPSP is influenced by the location of the 

synapse, because the voltage attenuates more from a distal dendritic location to the soma, 
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than from a proximal location. This is partly due to the higher input resistances of more 

distal dendrites with smaller diameters. Such an attenuation profile will also hold for a 

uniform diameter cable with appropriate electrotonic asymmetry between the ends. The 

attenuation of EPSPs in our compact-MC models is consistent with experimental 

observations and morpho-MC simulations (Fig 4.5E and Fig A3B). The SR and SLM 

compartments in the compact-MC model matched the EPSP attenuation profiles of 

morpho-MC sections at ~320µm and ~470µm from the soma, respectively. It has been 

shown in some CA1 Pyramidal neurons that the synapses might be able to compensate 

for their distance by scaling their conductances in order to sufficiently influence somatic 

voltage (Magee and Cook, 2000; Nicholson et al., 2006). In our model, compared to a 

synapse stimulated at SR to evoke a somatic (SP) EPSP with an amplitude of 0.2mV, a 4-

fold increase in synaptic weight was required at SLM in order to evoke an EPSP with the 

same amplitude at SP (Fig 4.5E inset).  

Furthermore, the distal compartments in our 3- and 4-compartment models rarely 

initiated a spike that successfully propagated to the soma, and additional depolarization 

levels at the proximal compartment facilitated forward-propagation of spikes from distal 

compartments. Such an interplay between proximal and distal compartments in a 

compact-MC model is qualitatively comparable to that of a morpho-MC model (Fig 

4.5F). This is also consistent with the experimental observation that the activation of CA1 

neurons by perforant path alone, which projects to SLM, is limited, but modest activation 

of Schaffer-collateral synapses in SR facilitates forward propagation of distal spikes 

(Jarsky et al., 2005). It has thus been suggested that Schaffer-collateral evoked EPSPs 
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“gate” perforant path spikes in CA1 Pyramidal neurons, underscoring the functional 

interaction between these different dendritic domains (Spruston, 2008). Such 

compartmentalization might be crucial to appropriately capture the integration of distinct 

laminar inputs and it is therefore notable that our compact-MC models with “active” 

dendritic compartments qualitatively reproduce such observations. Although voltage 

attenuation profiles could be modeled in IMs with passive dendritic compartments that 

are appropriately coupled, capturing the interplay between compartments such as gating 

as demonstrated here requires that the distal dendrites are optimized to initiate a spike. 

Finally, spatially segregating the temporal integration of presynaptic spikes might 

enhance the range of responses of the postsynaptic neuron. We illustrate this using a 

simple example, where we compared the responses of single- (point neuron) and 2-

compartment models of a CA1 Perforant Path-Associated neuron (from Fig 4.3) for 

arbitrary excitatory and inhibitory presynaptic spike trains (Fig 4.6). Following a spike-

triplet, while the point neuron elicited a single spike, the 2-compartment counterpart 

exhibited different responses (2 or 0 spikes) depending on the location of integration of 

distinct spike trains. To what extent these differences influence the emergent network 

properties remains to be answered, but our models allow one to explore such questions. 
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Figure 4.6: An example of segregated synaptic integration in a 2-compartment model.  

(A) A schematic illustration of a biological neuron with its soma and dendrites in different layers L1 and L2. This 

neuron receives two distinct presynaptic spike trains in L1 and L2. (B) A simplified point-neuron model integrates both 

the excitatory and inhibitory presynaptic spikes at the same point. (C) A 2-compartment model (see Fig 3) can integrate 

distinct inputs in different compartments. The model behaves differently (left vs. right) depending on the location of 

integration of distinct inputs. Excitatory weight = 8.0 and Inhibitory weight = 1.5 for B and C, respectively. Dendritic 

synapses scale 4x (see Fig 4.5E inset for details). 

 

3.4. Online repository of models: An enhancement to Hippocampome.org  

A comprehensive list of models of 68 types and 52 subtypes of neurons is freely 

available at Hippocampome.org. Mapping the intrinsic dynamics of each neuron type in a 

low-dimensional model space enhances the existing information accumulated in this rich 

knowledge base of hippocampal neuron types.  

All the single-compartment and compact-MC model parameters are presented in a 

matrix on the main page for easy browsing (Fig 4.7A). Within a Neuron page, models for 

all subtypes (if any) of the given morphological type are available for download. This 

page includes both the experimentally recorded voltage traces and simulated ones for all 

models (Fig 4.7B). Simulated spike patterns are also annotated with their class labels. 

Each type/subtype presents three downloadable files (Fig 4.7C): a Fit-file including both 

the experimental and simulated values for spike pattern features such as fsl and sfa for 
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each available pattern in a JSON format; an XPP (Ermentrout, 2002) script for single-

compartment models; and a csv input file that includes both single-compartment and 

compact-MC models for CARLsim (Beyeler et al., 2015), a high performance GPU-

based simulator. The Help section of Hippocampome.org provides links to explanatory 

pages on model definition, fitting, and simulation, including instructions to run the scripts 

and feature descriptions, under “Simulation of Firing patterns”. This section also provides 

a link to download all single-compartment model descriptions in simulator-independent 

NeuroML format (Cannon et al., 2014). Furthermore, neuron pages include an online 

simulator, which allows the simulation of single-compartment dynamics for custom 

input.  

3.5. Relationship between model parameters and biological features 

A limitation of many phenomenological models such as the IM used here is the 

lack of biological interpretability of their parameters. One advantage of our approach of 

densely covering the diversity among neuron types is to allow one to explore 

relationships between the mathematical parameters of the IM and various known 

biological features. Our analysis revealed interesting trends and correlations in this 

regard. 
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Figure 4.7: Hippocampome.org provides a comprehensive list of models and ready-to-run scripts.  

(A) Single- and multi-compartment model parameters for all neuron types are presented in a matrix form on the main 

page. Each row is linked to a Neuron page. (B) The Neuron page for each neuron type has been enhanced to include 

model parameters and simulated traces for all types and subtypes (if any). (C) The Neuron page provides the user with 

three downloadable files for each subtype: a Fit-file that lists both experimental and simulated features for each pattern, 

an XPP script to simulate single-compartment models, and a CARLsim input file for single- and multi-compartment 

models. 

 

In general, the parameters of the IM collectively determine its spike pattern 

phenotype. However, the parameter ‘b’, which determines if the model is an integrator 
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(b<0) or a resonator (b>0), sufficiently distinguishes two families of phenotypes. Most of 

the models that show delayed spiking near their depolarizing rheobases were found in the 

negative regions of ‘b,’ whereas models that show rebound spiking for hyperpolarized 

input currents were sharply restricted to the positive regions (Fig 4.8A). These results are 

consistent with the fact that ‘b>0’ is a necessary condition for rebound spiking 

(Izhikevich, 2007), and we find that most delayed spikers are integrators with the 

exception of the ones found in the narrow range 0<b<20. Thus, rebound (Fig 4.1C) and 

delayed (Fig 4.1D) spiking are, in general, instances of two qualitatively distinct types of 

intrinsic dynamics.  

Next, we studied how much the parameter ‘b’ quantitatively influences the 

respective features in delayed and rebound spiking types. We used delay factors for the 

former and measured rebound rheobases for the latter. Increasing ‘b’ makes the model 

more rebound excitable until ‘b’ reached a value of +50, beyond which there was no 

noticeable effect (Fig 4.8B). Furthermore, there was no clear trend in the relationship 

between ‘b’ and delay factors. Thus, while ‘b’ alone can define a sharp qualitative change 

in the intrinsic dynamics, its interaction with other parameters, such as ‘a,’ determine 

precise quantitative features. In addition, pairwise correlations revealed several 

interesting trends between model parameters and electrophysiological or molecular 

properties of neuron types (Box 1) (also see Fig 4.8C for the data distributions and further 

analyses). 

 



104 

 

 
Figure 4.8:Relationship between model parameters and biological features.  

(A) Distribution of parameter ‘b’ for the models that show rebound spiking (red), delayed spiking (blue), and neither 

(grey). Rebound spiking types were sharply restricted to the positive region of ‘b.’ In contrast, delayed spiking types 

were mostly found in the negative region (two-sample t-test). (B) Mean and SEM of delay factors and rebound 

rheobases of the models from the blue and red histogram bins respectively from A. Delay factor is the ratio between fsl 

and average of the first two ISIs. Rebound rheobase is the minimum magnitude hyperpolarizing current required to 

elicit rebound spikes. (C) Neuron types with positive expression of Parvalbumin (PV) have higher values for parameter 

‘a’ than the types with negative expression of PV (one-tailed Wilcoxon Rank-Sum test; p<0.0005 in Anderson-Darling 

normality test) (top-left). Neuron types with negative values for ‘b’ have wider spikes compared to the types with 

positive values for ‘b’ (one-tailed Student t-test) (top-right). Input resistance (𝑹𝒊𝒏) of a neuron type is negatively 

correlated with the parameter ‘k’ (‘𝒓𝒔’ denotes Spearman’s Rank-Order correlation coefficient, n=67. An exponential 

fit was added for illustration only, and not used to measure correlation) (bottom). (D) Separation of spike pattern 

phenotypes in the space of first two principal components. ‘x’ denotes the best model for each type. Vectors denote the 

principal component coefficients of the respective parameters. 
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Box 1. Categorical correlations between model parameters and electrophysiological 

and molecular properties in hippocampal neurons 

 

None of the neuron types that show PSTUT has a low value for ‘k’ (p<0.01, n=43). In 

contrast, none of the neuron types that show ASP.NASP has a high value for ‘k’ 

(p<0.05, n=43). Moreover, no neuron type with high input resistance (𝑹𝒊𝒏) has a high 

value for ‘k’ (p<0.001, n=15) (also see Fig 4.8C). 

 

None of the 23 neuron types except CA3 Lucidum ORAX has narrow spikes and a 

low value for ‘a’ (p<0.05). Moreover, clearly positive expressions of somatostatin 

(SOM) tend to co-occur with high values of ‘a’ (p<0.05, n=18).  

 

Neuron types with wide spikes tend to have negative values for ‘b’ (p<0.001, n=31) 

(also see Fig 4.8C). 

 

Low values of resting voltage (𝑽𝒓𝒆𝒔𝒕) tend to co-occur with high values of ‘d’ (p<0.05, 

n=21). In contrast, no neuron type with positive expression of serotonin (5HT-3) has a 

high value for ‘d’ (p<0.05, n=14).  

 
The p values and sample sizes (n) pertain to Barnard’s exact test for 2 x 2 contingency tables (see 

‘Methods’). 

 

Parvalbumin (PV)-positive and somatostatin (SOM)-positive interneurons have 

been shown to elicit narrow spikes of high frequency, with no or weak spike frequency 

adaptation (Jonas et al., 2004). Lower (and higher) values of ‘a’ result in slower (and 

faster) recovery of adaptation variable ‘U’ (Izhikevich, 2003), resulting in ASP. (and 

NASP) behaviors as we reported previously (Venkadesh et al., 2018). Consistent with the 

above facts, high values of ‘a’ co-occurred with positive expressions of PV (Fig 4.8C) 

and SOM (Box 1), and low values of ‘a,’ with one exception, never co-occurred with 

narrow spikes (Box 1). 

Negative values of ‘b’ correspond to a saddle-node bifurcation, which is 

necessary for the neuron to elicit low-frequency spikes (Izhikevich, 2007). Our analysis 
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linked negative values of ‘b’ with wide spikes, a well-known property of regular (non-

fast) spiking neurons. It should be noted that our modeling approach only enforces the 

temporal features of the overall spike patterns, such as sfa, and not the characteristics of 

individual spikes, yet makes expected links between the model parameters and spike 

width in the original (experimental) traces. 

Cortical interneurons expressing serotonin receptor 3 (5HT-3) have been shown to 

elicit spike patterns with sustained sfa (van der Velden et al., 2012). The parameter ‘d’ is 

the magnitude of offset for the state variable ‘U’ during a spike reset, and high values of 

‘d’ prevent the model from exhibiting sustained sfa. As mentioned before, low values of 

‘a’ can result in sustained sfa (ASP.) behavior. However, the model would quickly reach 

the steady-state when a low value of ‘a’ is combined with a high value of ‘d,’ typically 

resulting in a RASP.NASP pattern. Consistently, high values of ‘d’ never co-occurred 

with expressions of 5HT-3. 

Parameter ‘k’ scales the difference between the membrane potential state variable 

(V) and threshold voltage (Vt) (see eqn-1). Near resting equilibrium (Vr), higher values of 

‘k’ will require higher values of depolarizing ‘I’ to compensate for the scaling effect to 

initiate a spike. Thus, ‘k’ affects the excitability in the IM (appendix figure A5), and 

higher values of ‘k’ result in lower excitability. It is known that neurons with higher 

rheobase (lower excitability) have lower input resistances (see for instance (O’Leary et 

al., 2010)). Consistent with these facts, high input resistances were never found with high 

values of ‘k.’ 
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Another interesting correlation is that the PSTUT phenotypes were never found 

for low values of ‘k’ (also see appendix figure A5). Our analysis revealed that the number 

of periodic loops in the limit cycle attractor changes from infinite-period 

(aperiodic/chaotic) to single-period, as the value of ‘k’ is decreased in PSTUT 

phenotypes (not shown in figure). Such higher-periodic attractor loops are necessary to 

capture the criteria for bursting/stuttering phenotypes in the IM. This suggests a 

mathematically interesting relationship between ‘k’ and the maximum intrinsic 

periodicity in the model. However, the in-depth study required to fully uncover this 

relationship is beyond the scope of this study. Nevertheless, these correlations are also 

consistent with our previous finding that PSTUT neurons never have high input 

resistances (Komendantov et al., 2018).  

Our modeling framework represents each neuron type as a cloud of possibilities in 

the model parameter space (Fig 4.8D). Spike patterns produced by all the models in a 

cloud strictly adhere to the criteria for the respective target qualitative class, but small 

errors in the quantitative features were accepted to allow variabilities in the spike pattern 

features (not shown here; see Venkadesh et al., 2018 for details on the optimization 

framework design that allows such variabilities and for examples of ranges of 

quantitative features). This provides a sampling region for each neuron type to create 

network models with intragroup neuron variabilities. Several factors affect the size and 

shape of these clouds: bursting/stuttering phenotypes typically result in smaller clouds 

than spiking phenotypes. Similarly, spike patterns with unknown input currents (see Fig 

4.1D) result in bigger clouds, since the models are searched in a broad range of input 
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currents for such cases. At present, these clouds are only identified for single-

compartment models due to the computational cost of exploring higher dimensional 

parameter spaces of multi-compartment models. 

4. Discussion 

Hippocampal neurons show diverse features in their morphological, electrical and 

molecular properties (Harris et al., 2018). Hippocampome.org (v.1.4) identifies 122 types 

of neurons defined primarily based on their neurite invasion patterns in the hippocampal 

parcels (Wheeler et al., 2015). Their intrinsic spike pattern features were extracted from 

relevant publications, and systematic characterization of such features revealed diverse 

and complex spike pattern phenotypes among the 122 morphological types 

(Komendantov et al., 2018). The present work described a comprehensive set of simple 

models that are accurate quantitative representations of such spike pattern phenotypes. 

Correlation analysis revealed novel insights into the relationship between IM parameters 

and various biological features. In addition, point neuron models were compactly 

extended to create multi-compartment models with up to four compartments. Our 

compact-MC models, in addition to quantitatively reproducing the somatic spike pattern 

phenotypes, exhibited voltage attenuation profiles and interplay between different 

compartments that are consistent with experimental observations and simulations using 

morpho-MC models (Fig 4.5 & Fig A3). 

The compact-MC models constitute a useful balance between computational 

efficiency and biological interpretability, but it is also important to recognize their 

limitations. The distal apical dendrites in CA1 Pyramidal neurons and their morpho-MC 
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models show activity-dependent attenuation of back-propagating spikes, such that the last 

spike in a spike train attenuates more markedly than the first spike (Golding et al., 2001; 

Hoffman, 1999). This is due to the activity-dependent changes in the ratio of sodium to 

potassium current in the dendrites (Colbert et al., 1997). Our compact-MC models did not 

show such activity-dependent attenuation of back-propagating spikes. The instantaneous 

reset of the voltage following its peak in the IM might be a limiting factor in this context. 

In addition, due to the lack of specific dendritic recordings and higher computational 

costs of optimizing the compact-MC models, we only enforced a minimum set of general 

constraints to create qualitatively accurate dendritic compartments. While we lack data to 

verify if the dendritic compartments in many of our models quantitatively reproduce the 

properties of their biological counterparts, their somatic compartments are quantitatively 

accurate (Fig 4.3). It should also be mentioned that we only considered coupling 

topologies with consecutive compartments for deeper layers, whereas, in real neurons, the 

deeper layer synapses may be on different branches than superficial layers. However, our 

compact-MC representations are useful for studies that aim to extend a baseline network 

of single-compartment neurons with minimum necessary dendritic properties to enable 

layer-level connectivity specifications.  

Our single-compartment and compact-MC representations emphasize biological 

realism in the context of somatic intrinsic diversity, but it is also worth discussing their 

biological realism in the context of intra-neuron type variability in intrinsic dynamics. 

The intrinsic property of a neuron revealed in its spike patterns is determined by the types 

and precise distribution of the underlying ion channel conductances, such as sodium, 
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potassium, and calcium. However, it has been shown that similar dynamics can arise 

from a broad range of combinations of these conductances (Foster et al., 1993; Marder, 

2011; Migliore et al., 2018; Rathour and Narayanan, 2014; Schulz et al., 2006). 

Consistent with this notion, our modeling framework represents a spike pattern 

phenotype as a cloud of possibilities in the parameter space (Fig 4.8D). Two closely 

related considerations motivate such representation. 

The first issue is the existence of intrinsic variabilities in the spike pattern features 

among different neurons of the same type. For example, all the models representing the 

CA1 Trilaminar type (Fig 4.8D) were obtained using the features of voltage traces 

recorded from a single neuron (Fig 4.1C). While this particular neuron elicited 22 spikes 

with a sfa magnitude of 0.038 for 0.05nA, a different CA1 Trilaminar neuron might show 

slightly different values for these features, under the same input conditions, due to 

intrinsic variability. Furthermore, the recorded intrinsic spike pattern features might be 

influenced by the conditions such as the type of recording electrode and difference in 

animal strain, sex, or age. However, current knowledge about the intrinsic dynamics of 

these neuron types is limited to the representative traces that the researchers who studied 

these neuron types chose to publish. Therefore, we allowed a small range in the spike 

pattern features of a model as long as these features strictly adhere to the definitions of 

the respective target qualitative class. While the cloud boundaries defining such ranges 

are currently arbitrary, one could easily enhance our modeling framework to include 

more realistic ranges, when such ranges are experimentally obtained for all neuron types. 
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Secondly, neurons have intrinsic plasticity and undergo homeostatic regulations to 

maintain some constancy in the network activity (Desai, 2003; Desai et al., 1999; Marder, 

2011; Marder and Goaillard, 2006; Turrigiano et al., 1994). In cell cultures, intrinsic 

homeostasis has been shown to modify non-synaptic ion channel conductances of 

pharmacologically isolated neurons. Such modifications shift the input-dependency of a 

neuron’s responses based on the history of activity. For example, activity deprived 

neurons showed higher firing rates than control group for the current injections of the 

same magnitude (Desai et al., 1999). In another study, chronic isolation from normal 

inputs switched a neuron’s response from tonic spiking to intrinsic bursting and this 

transition was reversed by applying a rhythmic inhibitory drive (Turrigiano et al., 1994). 

While these results suggest that each neuron has a working range that flexibly defines its 

input-dependent responses, such ranges likely preserve the overall qualitative spike 

pattern phenotypes (Marder and Goaillard, 2006). Our EA search for a cloud of models 

not only included the space of intrinsic IM parameters that define a phenotype, but also 

included a small range for input current (a 20pA range symmetrically encompassing 

experimental input current magnitude), allowing a reasonable flexibility for its input-

dependency.  

Considering the issues discussed above, an approach to modeling biological 

circuits should assume a flexible range for its components. While Hebbian plasticity rules 

can enable flexible ranges in synaptic conductances, the rules governing a neuron’s 

intrinsic plasticity remain largely unknown. Although cell-autonomous regulatory rules 

have been proposed (O’Leary et al., 2015), from a network perspective, intrinsic 
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homeostasis has been shown to synergistically result from multiple interacting 

components in a circuit (Lane et al., 2016; Maffei and Fontanini, 2009). Exhaustively 

reductionist approaches to modeling brain regions specify precise descriptions at the 

level of ion channel conductances. While data gathered from different experimental 

conditions or inevitably from different animals drive such intrinsic descriptions, there is 

no guarantee that they specify dynamically compatible critical ranges necessary for a 

higher-level integrative property (Frégnac, 2017).  

A large-scale approach to modeling a brain region, rather than being purely 

reductionist, should attempt to complement the descriptions of individual components 

with syntactically relevant descriptions at an integrative level. For example, temporal 

sequences of activity in ensembles of hippocampal neurons are correlated with the 

locations of an animal during spatial navigation (Dragoi and Buzsáki, 2006; O’Keefe and 

Recce, 1993; Skaggs et al., 1996). Such self-organizing ensembles of neurons, in general, 

have been suggested to form neural syntax (Buzsáki, 2010). Complex periodic structures 

in these ensembles, such as theta-modulated gamma activity patterns, should be enforced 

in a network model as sparse higher-level descriptions.  

Future studies should aim to identify a family of models for an experimentally 

known network-level property, within the anatomical constraints of connectivity among 

hippocampal neuron types (Rees et al., 2016), using the sampling regions for those types 

created in this study. Then, the identified family of models should be evaluated for their 

predictive power, or one could investigate how the predictive abilities increase by scaling 

up the network or by adding more mechanisms, such as synaptic plasticity and spatial 
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context for synaptic integration. This approach emphasizes the goal of creating the 

simplest model with the most predictive power iteratively.  

Finally, it is important to identify recurring patterns of self-organization in 

biological complex systems and translate such patterns into mathematical descriptions 

that could be enforced using optimization techniques, such as an EA that heuristically 

explores the given parameter space. If a biological complex system can indeed allow 

flexibility and compensation among multi-level components, then it suggests that a 

certain property could emerge from multiple, similar configurations in a network 

parameter space, which a metaheuristic approach (Yang, 2010), such as an EA, can take 

advantage of. While this might be a computationally expensive task, our simple models, 

with only two state variables per neuron, as opposed to hundreds in a biophysically 

detailed multi-compartment model, allow one to approach this problem much more 

efficiently. Future releases of Hippocampome.org are aimed at approximating the counts 

of different neuron types and mapping synaptic properties to potential connections. These 

enhancements will further narrow down the space of biological possibilities to create 

realistic large-scale models of hippocampal circuits. 
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CHAPTER 5: ITINERANT COMPLEXITY IN NETWORKS OF 

INTRINSICALLY BURSTING NEURONS⊥ 

Active neurons can be broadly classified by their intrinsic oscillation patterns into 

two classes characterized by periodic spiking or periodic bursting. Here we show that 

networks of identical bursting neurons with inhibitory pulsatory coupling exhibit itinerant 

dynamics. Using the relative phases of bursts between neurons, we numerically 

demonstrate that the network exhibits endogenous transitions among multiple modes of 

transient synchrony. This is true even for bursts consisting of two spikes. In contrast, our 

simulations reveal that identical singlet-spiking neurons do not exhibit such complexity 

in the network. These results suggest a role for bursting dynamics in realizing itinerant 

complexity in neural circuits. 

1. Introduction 

Neural systems exhibit transitions across multiple spatiotemporal scales. While 

individual neurons exhibit spiking events, which are sharp changes to the resting 

membrane potential, an ensemble of self-organized neurons can exhibit transitions among 

multiple coexisting metastable states (Fingelkurts and Fingelkurts, 2004; Freeman and 

Holmes, 2005; Tognoli and Kelso, 2014). In a metastable state, the interacting elements 
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enter into a transiently fixed relationship to each other, or “mode”, before subsequently 

diverging and visiting a different transient mode. Metastability has been suggested to 

underlie the necessary coordination within and between brain regions (Tognoli and 

Kelso, 2014). Moreover, experimental evidence shows that the coordinated transitions 

among neural ensembles correlate with changes in an organism’s behavior (O’Keefe and 

Recce, 1993; Skaggs et al., 1996; Jones and Wilson, 2005; Dragoi and Buzsáki, 2006; 

van der Meer and Redish, 2011). 

Chaotic itinerancy (Tsuda, 2001) is a special case of metastability and has been 

observed in many complex systems, including globally coupled maps (Kaneko, 1997; 

Tsuda and Umemura, 2003) and electrically coupled point neurons (Fujii and Tsuda, 

2004a, 2004b; Tsuda et al., 2004). Those coupled systems show endogenous transitions 

through a sequence of quasi attractors in the state space. Among possible scenarios 

underlying itinerancy in coupled systems (Alexander et al., 1992) are attractors with 

riddled basins (Tsuda, 2009), where initial conditions that are arbitrarily close to an 

attractor can generate trajectories leading to a different attractor. However, the intrinsic 

property of interacting elements that is necessary for the emergence of network itinerancy 

has not yet been clarified.  

Neurons can be dynamically classified based on their intrinsic patterns of 

activation (Komendantov et al., 2019). In the current work, we constructed three separate 

networks of identical elements based on two broad classes of neurons: bursting neurons, 

which have either chaotic or two-loop periodic trajectories in the phase space, and 

spiking neurons, which have a single-loop trajectory. Analysis of the ensuing network 
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dynamics revealed several novel results. First, networks of bursting neurons showed 

transiently stable phase differences in pairs of neurons at the level of bursts, which 

transitioned to other transiently stable arrangements endogenously. Previous reports have 

described ensembles of bursting oscillators that synchronize on the bursting timescale 

and desynchronize on the spiking timescale (Ivanchenko et al., 2004). Our results show 

that synchronized bursting is only one of the multiple modes of stability observed in the 

network. We illustrate these complex dynamics using the burst-level phase differences 

between neurons as a variable of coordination. Second, we demonstrate that even 

networks consisting of bursting elements as simple as doublet-spikers can exhibit 

multiple stable phase differences and endogenous transitions. Third, singlet-spiking 

neurons only display, in contrast, perfectly phase-synchronized and desynchronized 

modes between pairs of neurons in the network. These results suggest that complex 

periodic oscillators such as bursters are crucial for the emergence of itinerant dynamics in 

neural networks. 

2. Burst-level phase difference as a coordination variable 

We use Izhikevich model (IM) neurons (Izhikevich, 2003), whose dynamics are 

described by (eqn1-2): 
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 Here, 𝐼 is a constant current, and 𝐼𝑠𝑦𝑛 is the total synaptic current from all 

presynaptic neurons. The parameters were identified by an optimization framework 

(Venkadesh et al., 2018) to match the spike patterns of an isolated (𝐼𝑠𝑦𝑛=0) IM neuron to 

experimentally-obtained voltage traces from a stuttering CA1 neurogliaform cell (a 

GABAergic neuron type) from the rodent hippocampus (Price et al., 2005) (𝑘 =

3.59, 𝑎 = 0.01, 𝑏 = −10, 𝑑 = 120, 𝐶 = 195, 𝑉𝑟 = −63.5, 𝑉𝑡 = −46.6, 𝑉𝑝𝑒𝑎𝑘 =

11.4, 𝑉𝑚𝑖𝑛 = −50.6). The bifurcation diagram with respect to the constant input current 𝐼 

was obtained by making a Poincaré cut at 𝑉 = 𝑉𝑝𝑒𝑎𝑘 − 20𝑚𝑉 in the direction of 

increasing 𝑈 after discarding 1s of initial transient behavior. This revealed period-

doubling cascades leading to chaos (fig 5.1A). For chaotic bursting neurons, we set 

𝐼=500pA. A network of 100 identical neurons, which were coupled using a delta function 

(eqn-3), was then constructed with 

where 𝑛 is the number of presynaptic neurons connecting to the postsynaptic 

neuron 𝑗 and 𝑊 is the connection weight. 𝛿𝑖 is 1 (for a single time step) if neuron 𝑖 spikes 

and is 0 otherwise. All networks were constructed with a connection probability of 0.7 

and an inhibitory connection weight of 8 unless otherwise noted. Simulations were 

𝐶 ⋅
𝑑𝑣

𝑑𝑡
= 𝑘 ⋅ (𝑉 − 𝑉𝑟) ⋅ (𝑉 − 𝑉𝑡) − 𝑈 + 𝐼 − 𝐼𝑠𝑦𝑛 

𝑑𝑈

𝑑𝑡
= 𝑎 ⋅ {𝑏 ⋅ (𝑉 − 𝑉𝑟) − 𝑈} 

𝑖𝑓 𝑉 = 𝑉𝑝𝑒𝑎𝑘 𝑡ℎ𝑒𝑛 𝑉 = 𝑉𝑚𝑖𝑛,  𝑈 = 𝑈 + 𝑑 

(1) 

(2) 

𝐼𝑗
𝑠𝑦𝑛

= ∑ 𝛿𝑖

𝑛

𝑖=1

. 𝑊 (3) 
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performed on CARLsim (Beyeler et al., 2015) for a duration of 120s using the fourth 

order Runge-Kutta integration method with 100 steps per millisecond. The first 5s of 

simulation was discarded, and the analysis was performed for a total duration (∆𝑇) of 

115s. 

In order to extract the relative phases of bursts, the following steps were carried 

out for each neuron. First, discrete spike events were lowpass-filtered to obtain a 

continuous periodic signal which captures bursting cycles (Fig 5.1C, also see Fig S1A-C 

top). Then, the instantaneous phase of this signal was extracted using the Hilbert 

transform. Finally, the instantaneous phase differences between pairs of neurons were 

calculated for each millisecond in a given duration. We find that pairs of neurons 

predominantly exhibit phase differences near 0, 2𝜋 3⁄ , or 4𝜋 3⁄  radians, and that they 

endogenously transition among these transiently locked states (Fig 5.1D).  

Next, we studied the stability of transiently phase-locked modes and the nature of 

transitions among them. Specifically, we asked the following questions pertaining to 

pairs of neurons: (i) What is the locked duration in each of the three modes? (ii) For what 

fraction of the total duration (∆𝑇) does a pair exhibit stable phase differences in each of 

the three modes? (iii) What are the transition probabilities among the three modes?  

The stability of a pair of neurons over a duration 𝛿𝑇 was quantified by averaging 

all the instantaneous phase differences ∆𝜃(𝑡) represented on a unit circle (eqn-4). 𝛿𝑇 =

500𝑚𝑠 unless specified otherwise. 

 

𝑍𝛿𝑇
𝑛 = ൻ𝑒𝑛∙𝑖∙∆𝜃(𝑡)ൿ

𝑡∈[𝑡1,𝑡1+𝛿𝑇] 
 

(4) 
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Endogenously transitioning phase-locked modes in a network of 100 identical bursting neurons. A. Bifurcation diagram 

of the bursting neuron showing period-doubling cascades leading to chaos for increasing input current. Inset shows the 

activity pattern (voltage vs. time) of the isolated neuron. B. Raster plot showing the spike times of a network of neurons 

for a duration of 1 second. C. The discrete spike times of two neurons are transformed into a continuous signal 

corresponding to burst cycles (top & middle, also see Fig S1). The phase-locked mode endogenously transitions from 

𝐦𝐨𝐝𝐞 − 𝟎 to 𝐦𝐨𝐝𝐞 − 𝟒𝝅 𝟑⁄  (bottom). D. Normalized distributions of phase differences between the neurons shown 

in C during the same 1 second window as in C (left-top), and for 115 seconds (left-bottom). The distribution of phase 

differences between 100 randomly selected neuron pairs (right) show three clearly preferred locked modes 

(𝟎,  𝟐𝝅 𝟑⁄ , 𝟒𝝅 𝟑⁄ ). 

 

Here, ⟨𝑓⟩ denotes the time average of 𝑓. The magnitude of 𝑍𝛿𝑇
𝑛  was used as a 

measure of stability. The parameter 𝑛 indicates the number of stable clusters of phase 

differences between pairs of neurons. For example, if the bursts of two neurons are 

Figure 5.1: Endogenously transitioning phase-locked modes in a network of 100 identical bursting neurons. 
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perfectly synchronized over 𝛿𝑇, then |𝑍𝛿𝑇
𝑛=1| = 1. If their phase differences segregate into 

two equally populated clusters at 0 and 𝜋 radians, then |𝑍𝛿𝑇
𝑛=2| = 1 and |𝑍𝛿𝑇

𝑛=1| = 0 

(Golomb and Hansel, 2000). 

A pair of neurons was deemed to be ‘stable’ or ‘phase-locked’ in a mode 

if |𝑍𝛿𝑇
𝑛=1| ≥ 0.95 during 𝛿𝑇. Such stable pairs were also assigned a mode 0, 2𝜋 3⁄ , or 

4𝜋 3⁄  based on the angular range in which the phase of 𝑍𝛿𝑇
𝑛=1 lies (see Fig 5.1D for the 

bounds of the three ranges). In order to identify how long a pair remains phase-locked in 

a given mode, |𝑍𝛿𝑇
𝑛=1| was calculated sequentially for non-overlapping 𝛿𝑇s until either the 

pair was unstable (|𝑍𝛿𝑇
𝑛=1| < 0.95 for a duration 𝛿𝑇) or a new mode was detected. The 

sum of all stable intervals (𝛿𝑇s) calculated from this sequential search was taken as the 

locked duration of the given mode. This gives a sequence of modes and a locked duration 

(in increments of 𝛿𝑇) in each mode visited by a pair.  

The locked durations of any of the three modes for 100 randomly selected pairs 

were exponentially distributed (Fig 5.2A-C), consistent with a previous report (Tsuda and 

Umemura, 2003). Pairs exhibit an expected locked duration of roughly 2s in all three 

modes. It is worth mentioning here that the expected locked durations do not give 

information about the fraction of the overall time ∆𝑇 that such locked modes were 

observed, because of their transient nature. We refer to this fraction as the fraction of 

locked time, given by 𝑁 ×  𝛿𝑇 ∆𝑇⁄ , where 𝑁 is the total number of phase-locked 𝛿𝑇 

intervals observed for a pair. The average of the fractions of locked time was 0.22 for 

each mode (Fig 5.2A-C insets). 
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In addition, the sequences of modes visited by 100 pairs were used to gain 

insights into the nature of transitions. The counts of transitions among the modes, which 

were given by the number of pairwise occurrences of modes in the sequence, were used 

to construct a 3x3 mode transition probability matrix (Fig 5.2D). Interestingly, there were 

several occurrences where pairs of neurons, after becoming unstable, failed to exhibit 

successful transitions. In other words, after losing stability from a certain locked mode, 

they were attracted back to the same mode rather than escaping to a different one (see Fig 

A7 for an example). The probability of successfully transitioning to a different mode (i.e. 

escape probability) is 0.72 from each of the three modes (Fig 5.2D). The apparently 

random nature of successful transitions from a given mode, which is noted by the 

approximately equal probabilities of transitions to the other two modes, is suggestive of a 

high entropic network exhibiting states that persist over several cycles of bursts.  
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Figure 5.2: Stability and transitions in the network of chaotic bursting neurons. 

A-C. Probability densities of locked durations in 𝐦𝐨𝐝𝐞𝐬 − 𝟎 (A), 𝟐𝝅 𝟑⁄  (B) and 𝟒𝝅 𝟑⁄  (C) are exponentially 

distributed with the expected locked durations (𝝁) of 2.11s, 2.01s and 2.02s with 95% confidence intervals [2.0, 2.24], 

[1.91, 2.13] and [1.91, 2.14] respectively for 100 randomly selected pairs. Insets show probability density distributions 

of the fractions of locked time for 100 pairs. D. Probabilities of transitions among the three modes. Each table entry 

denotes the probability of a pair transitioning from 𝒎𝒐𝒅𝒆𝒊 to 𝒎𝒐𝒅𝒆𝒊+𝟏 after losing its stability from 𝒎𝒐𝒅𝒆𝒊, where i 

denotes the sequence index.  

 

3. Itinerancy in the simplest form of bursting 

Bursting dynamics include a spectrum of oscillatory patterns ranging from a 

double loop trajectory in the phase space (e.g. doublet-spiking observed for 𝐼=580pA in 

Fig 5.1A) to an aperiodic trajectory (𝐼=500pA in Fig 5.1A). In this section, we consider 

networks separately consisting of doublet-spiking neurons (the simplest form of bursting 

with only two timescales) and singlet-spiking neurons. While the periodicity of 

oscillations in the chaotic-spiking IM neuron depends on the bifurcation parameter 𝐼 (Fig 

5.1A), here we considered IM neurons with the highest periodicity of only two for 

doublet-spiking and one for singlet-spiking (Fig 5.3A). 
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It was previously reported that bursting dynamics do not exist for low values of 

the parameter 𝑘 in the IM neuron (see eqn-1) (Venkadesh et al., 2019). We obtained 

doublet- and singlet-spiking neuron models by only varying parameter 𝑘 from the 

chaotic-spiking model (𝑘=1.5; 𝐼=175pA and 𝑘=0.5; 𝐼=200pA for doublet- and singlet-

spiking neurons respectively) (Fig 5.3). It should be noted that the bifurcation diagrams 

only illustrate the asymptotic behavior of the isolated neurons (Figs 5.1A&5.3A). 

Networks were constructed using these models and the steps explained in the previous 

section were carried out for the analysis (Fig A8, also see A6 A-C middle & bottom). We 

found that the network of doublet-spikers (ND) showed phase-differences that were 

clustered near 0, 2𝜋 3⁄ , and 4𝜋 3⁄  radians (Figs 5.3B-C top & A8 A-B) like the network 

of chaotic-spikers (NC). Interestingly, the network of singlet-spikers (NS) only phase-

locked near 0 radians (Figs 5.3B-C bottom & A8 C-D).  

The average locked duration in the ND is less than a second for each of the three 

modes (Fig 5.4A). The average fractions of locked times are 0.1, 0.07 and 0.07 (Fig 5.4A 

inset), and the escape probabilities are 0.62, 0.66, and 0.67 for the modes 0, 2𝜋 3⁄ , and 

4𝜋 3⁄  respectively. Thus, the network of neurons that are intrinsically as simple as that of 

a doublet-spiking exhibits itinerant dynamics. Although the NS did not exhibit multiple 

metastable phase differences, its neuron pairs still exhibited simpler metastability, where 

desynchronized spiking occurred in between synchronized (mode 0) spiking (Fig A8 C-

D). This is similar to the transitory dynamics reported in (Fujii and Tsuda, 2004a, 2004b; 

Tsuda et al., 2004), where the networks of point neurons coupled with gap junctions 

alternated between synchronized and desynchronized states. The NS showed an average 
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Figure 5.3: Dynamical complexity is preserved in the network of doublet- (ND) spiking neurons 

A. An isolated neuron with a 2-loop limit cycle attractor (spike doublets shown in inset) was obtained by reducing the 

value of parameter 𝒌 from the chaotic- model to 1.5 (top). Further reducing the value of 𝒌 to 0.5 result in a singlet-

spiking model (bottom). B. Raster plot shows the spike times of ND (top) and NS (bottom) in the network for a 

duration of 1 second. C. The phase differences between 100 randomly selected neuron pairs in the ND (top) show three 

preferred locked modes (𝟎,  𝟐𝝅 𝟑⁄ , 𝟒𝝅 𝟑⁄ ), although these distributions have a wider spread compared to NC (see Fig 

1). There is only a single preferred locked mode for NS (bottom), although they show scattered distributions of non-

zero phase differences (see Fig S3).  

 

locked duration of over 5s and an average fraction of locked time of 0.74 in mode 0 (Fig 

5.4C left). While the transitions among the three metastable modes in NC and ND are 

generally abrupt (for instance, see Fig 5.1C), the transitions between successive 

synchronized states in NS showed scattered phase differences (Fig A8C). The 

occasionally slower dynamics of such transitions lead to a few stable 𝛿𝑇s in mode 2𝜋 3⁄ . 
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However, the fraction of locked time in mode 2𝜋 3⁄  is negligible (Fig 5.4C right, also see 

Fig 5.3C bottom).  

 

 

Figure 5.4: Stability and transitions in network of doublet- (ND) and singlet- (NS) spikers. 

A. Distributions of locked durations in 𝐦𝐨𝐝𝐞𝐬 −  𝟎 𝟐𝝅 𝟑⁄  and 𝟒𝝅 𝟑⁄  are exponentially distributed in ND with the 

expected locked durations (𝝁) of 0.75s, 0.65s and 0.66s with 95% confidence intervals (CI) in [0.71, 0.79], [0.61, 0.68] 

and [0.63, 0.70], respectively, for 100 randomly selected pairs. B. Probabilities of transitions among the three modes in 

ND. C. The locked durations in 𝐦𝐨𝐝𝐞 −  𝟎 (left) roughly follow a gamma distribution in NS with 𝝁 = 𝟓. 𝟓𝟐𝒔 (𝜶 =
𝟎. 𝟓𝟒 with CI [0.51, 0.57] and 𝜷 = 𝟏𝟎. 𝟐𝟗 with CI [9.41, 11.25] are the shape and scale parameters, respectively, of the 

gamma distribution, and 𝝁 = 𝜶 × 𝜷). There are 2 occurrences of locked 𝐦𝐨𝐝𝐞 − 𝟐𝝅 𝟑⁄  (right), which are due to the 

slower phase scattering dynamics. Insets show probability density distributions of the fraction of total time a pair was 

locked in the mode. D. Probabilities of transitions in NS show no stable transitions to the 𝐦𝐨𝐝𝐞 − 𝟒𝝅 𝟑⁄ . 
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The itinerant dynamics that emerges from the collective interaction of complex-

periodic spiking neurons is also sensitive to the network connectivity parameters such as 

𝑊. Therefore, we studied how the tri-stability (as illustrated in Fig 5.1D – right and Fig 

5.3C – top) is affected by changing the strength of the inhibitory connections. We plotted 

two measures, |𝑍∆𝑇
𝑛=1| and |𝑍∆𝑇

𝑛=3| (see eqn – 4) for connection weights in [0, 40]. For a 

weakly connected NC (𝑊 = 4), both measures are near zero (Fig 5.5A – left) because 

the phase differences between pairs of neurons are mostly asynchronous and they are 

uniformly distributed with predominantly transitioning 𝛿𝑇s (Fig 5.5B – top). At 𝑊 = 8, 

|𝑍∆𝑇
𝑛=3| reaches its maximum value of 0.62, while |𝑍∆𝑇

𝑛=1| remains near zero. These 

measures correspond to the tri-stability illustrated in Fig 5.5B – middle, where the stable 

𝛿𝑇s are more prevalent than the transitioning ones. Similarly, the maximum of |𝑍∆𝑇
𝑛=3| 

when the corresponding |𝑍∆𝑇
𝑛=1| is near zero is only 0.22 for the ND (Fig 5.5A – middle), 

as their phase differences are more spread-out (Fig 5.5C – bottom) than the most stable 

NC. Furthermore, the ND required stronger inhibitory connections (𝑊 = 20) to reach 

this maximum (Fig 5.5A – middle). Interestingly, for weaker connections (𝑊 = 4), ND’s 

metastability is qualitatively similar to that of the NS, where |𝑍∆𝑇
𝑛=1| scores higher than 

|𝑍∆𝑇
𝑛=3| (Fig 5.5A – middle & right) and the modes 2𝜋 3⁄  and 4𝜋 3⁄  are nearly non-

existent (Fig 5.5C – top & Fig 5.5D). 

 Thus, there are optimal connection weights that maximize the stability of the 

states visited by the networks of bursters. In addition, the network of simpler bursters 

exhibits states that are less stable than those of the network of more complex bursters. 
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Figure 5.5: Stability as a function of connection weight.  

A. Magnitude of the average of phase differences between 100 randomly selected pairs of neurons (see eqn – 4) for NC 

(left), ND (middle) and NS (right). ∆𝑻 = 𝟏𝟏𝟓𝒔. Note that 𝑾 = 𝟎  corresponds to isolated neurons that fire in perfect 

synchrony. Therefore, |𝒁∆𝑻
𝒏 | = 𝟏 for any 𝒏. B. Distributions of phase differences for weakly connected NC (top-left) 

and distributions of the probabilities of the modes visited (top-right) Here, 𝑾 = 𝟒. A total of 1000 𝜹𝑻s was analyzed to 

calculate the probabilities. 𝜹𝑻 = 𝟏𝟎𝟎𝒎𝒔 and ‘TR’ denotes transitioning 𝜹𝑻s. B – D: Distributions of phase differences 

and the probabilities of visited modes when 𝑾 = 𝟒 (top), 𝑾 = 𝟖 (middle) and 𝑾 = 𝟐𝟎 (bottom) for the NC (B), ND 

(C) and NS (D).  
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4. Summary and discussion 

Metastability is a useful framework to characterize the existence of synchronized 

and desynchronized states in a system (Shanahan, 2010; Tognoli and Kelso, 2014). 

However, the relationship between metastability and itinerancy has not been very clear. It 

has been suggested that the appearance of metastable states is a necessary but not 

sufficient condition for itinerancy (Tsuda, 2015). Along this line, a few scenarios for the 

existence of itinerancy have been proposed (Tsuda, 2009). The current study finds that 

while the networks of both the simple-periodic (singlet-spiking) neurons and complex-

periodic (chaotic- and doublet-spiking) neurons show metastability, only the latter class 

showed multiple synchronized modes.  

The chaotic-spiking model used in this work was obtained by tuning the IM 

parameters to reproduce the stuttering behavior of a neurogliaform interneuron (Price et 

al., 2005). Neurogliaform interneurons in the cerebral cortex connect nonspecifically to 

almost all other neuron types within their somatic layer as well as across layers (Jiang et 

al., 2015). In addition to electrical and chemical synapses, they also influence target 

neurons by volume release of GABA and were suggested to play a crucial role in broadly 

regulating the synchronized activity of neural circuits (Price et al., 2005; Oláh et al., 

2009; Rudy et al., 2011), a role aptly described as “master regulators” (Jiang et al., 2015). 

The network of identical simple-periodic spiking neurons did not exhibit itinerant 

complexity. However, it should be noted that the broad class of such simple-periodic 

neurons include a range of spiking timescales such as the regular spiking observed in 

many pyramidal neurons and fast-spiking observed in many Parvalbumin positive 
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interneurons near their respective rheobases. A system can exhibit bursting if it consists 

of mutually interacting fast and slow subsystems, where the slow dynamics modulate the 

fast-spiking (Izhikevich, 2007). Further work is required to determine if the additional 

mechanisms that are necessary to induce bursting in simple-periodic neurons are 

sufficient for the emergence of itinerant complexity. 
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CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS 

In this dissertation, I have created an optimization system to quantitatively match 

the Izhikevich model responses to experimentally recorded spike patterns. Using this 

system, I have captured a variety of complex spike pattern phenotypes experimentally 

observed among over a hundred neuron types/subtypes in the rodent hippocampus. Such 

a comprehensive coverage of intrinsic diversity in a phenomenological modeling system 

will significantly reduce the computational burden of simulating large-scale circuits of 

the hippocampus. In addition to the compact model descriptions of neuronal intrinsic 

dynamics, I have characterized the collective dynamics of two broad classes of neurons in 

terms of their metastable features. While the ensemble of identical spiking neurons 

showed synchronous and asynchronous states, the ensembles of identical bursting 

neurons showed multiple metastable states.  

It has been proposed that the transitions among metastable states in the brain are 

the temporal identities of moment-to-moment transitions in consciousness, and a single 

moment of experience, in and of itself, is irresolvable in time (Freeman, 1999). In a 

separate line of inquiry, integrated information theory (IIT) (Tononi et al., 2016) 

postulates about the necessary properties of conscious physical systems, and it formulates 

complexity measures that quantify to what extent a system of mechanisms is both 

integrated and differentiated (Oizumi et al., 2014).  
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The mathematical framework of IIT formally defines quantities such as cause-

effect information, which measures the specificity of a mechanism in a certain state in 

constraining the system’s past and future states, and integration, which measures the 

irreducibility of the information generated by the whole system to the information 

generated by its parts. A set of elements is partitioned into all possible subsets, and their 

elements are perturbed into all possible states to identify the local maxima of information 

integration. Moreover, IIT postulates that the global maximum of integrated information 

(ϕMax) is specified at a definite spatiotemporal grain in conscious physical systems. 

However, identifying ϕMax is only possible for small and simplified systems due to 

combinatorial explosion. Using systems of (<10) simplified neuronal-like elements, it 

was demonstrated that ϕMax can occur at a coarser-grained level in space (grouped 

elements) and time (grouped timesteps) (Hoel et al., 2016). 

The relationship between the temporal grain size of information integration and 

metastability has also been previously discussed (Tononi, 2012). It was suggested that the 

timescale of metastable attractors in the cortex could correspond to the macro-time scale 

at which integrated information reaches a maximum. Future studies can verify this in 

small bursting neural networks, which exhibit distinguishable states at multiple 

timescales as illustrated in chapter – 5. At the timescale of a few milliseconds, a neuronal 

state can be described by the presence or absence of a spike. At a coarser-grained 

timescale of tens of milliseconds, a neuronal state can be described as one of low-mean or 

high-mean firing states as illustrated in (Tononi et al., 2016). Finally, the state of a 

neuron in a self-organized ensemble can also be described by its relative phase at burst-
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level as shown in chapter – 5. The relative phase of a neuron that is stable over several 

cycles of bursts is a temporally coarse-grained description of its state, and it does not 

average or approximate finer-grained events such as spikes or bursts that constitute the 

attractor macro-states. By measuring integrated information (ϕ) across these temporal 

grains, one can see if ϕMax indeed occurs at the temporal grain that corresponds to the 

metastable attractors. 

Future studies can also explore the possibilities of relating metastable attractors at 

the postulate level of IIT. Particularly, parts of IIT’s postulate of exclusion, which apply 

to temporal grains, could be expanded in a way that would allow for a direct 

mathematical translation of temporally coarse-grained (macro) states into transient 

attractors. This would reduce the computational burden of exhaustively searching through 

all possible temporal grains to identify the relevant macro state and allow for more 

rigorous validations of other postulates of IIT. Furthermore, the presence of gradients in 

ϕ across different levels of spatial groupings of elements (Hoel et al., 2016) suggests that 

a heuristic search, in place of an exhaustive one, could be employed to accelerate the 

process of identifying optimal spatial grain in large networks. Such scalable mathematical 

translations of IIT’s postulates could pave the way for evolving biologically realistic and 

causally autonomous neural networks. 
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APPENDIX 

 

 
A1 Fig. Models reproduce frequency-response curves of different neuron types. Experimentally measured mean 

firing frequencies of (A) CA1 Pyramidal (Babiec et al., 2017), (B) DG HICAP (Mott et al., 1997) and (C) DG Granule 

(Yun et al., 2006) for various input current magnitudes (±5pA), were used to constrain the model responses. 

Representative experimental (black) and corresponding model (red) traces are given in the bottom. Calibrations: 20mV, 

100ms (left); 20mV, 200ms (middle); 40mV, 40ms (right). 
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A2 Fig. Multi-compartment models capture qualitative dendritic properties and sub- and supra-threshold signal 

propagation. (A) Four different layouts of asymmetrically coupled compartments from Fig 4.3. (B) Minimum 

depolarizing input required to elicit a spike (I-rheo) and steady-state voltage deflection (V-def) for a hyperpolarizing 

input are higher in dendritic-compartments than in the somatic-compartment. (C) A single synapse stimulated at a 

dendritic-compartment (denoted by ‘*’) evokes a unitary EPSP at the somatic-compartment (red traces), with an 

amplitude in the range [0.1, 0.9] mV. (D) Coupling mechanism implemented in the models allows forward propagation 

of spikes initiated at a dendritic-compartment (denoted by ‘*’). 
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A3 Fig. Dendritic properties of the 3-compartment DG Granule model. Stratum Granulosum (SG), Stratum 

moleculare-inner (SMi), and Stratum moleculare-outer (SMo) denote the somatic, proximal, and distal dendritic 

compartments, respectively. (A) Attenuation of first back-propagating action potential (AP) from experimental 

recordings (exp.), biophysically and morphologically detailed multi-compartment model (morpho-MC) and three-

compartment IM. Inset shows compartment responses for somatic current injection. (B) Attenuation of dendritic EPSPs 

as they propagate towards soma. Inset shows compartment responses for a single synaptic stimulation at SMi and SMo. 

Experimental and model data were digitized from (Krueppel et al., 2011). Calibrations: 25mV, 20ms (A) and 2mV (B). 
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A4 Fig. Additional compartments are necessary to capture the complex transient pattern ‘RASP.ASP.’. (A) 

Experimentally recorded voltage trace from a CA1 Basket CCK+ neuron (Cope et al., 2002) digitized by 

Hippocampome.org. (B) 4-compartment model reproduces the pattern RASP.ASP. (red), and the single-compartment 

counterpart failed to do so (blue). (C) While both versions reproduce nISIs accurately, the multi-compartment model 

more accurately reproduces sfa. Sfa-1 is the rapid frequency adaptation measured in the first three ISIs (RASP.), and 

sfa-2 is the weak adaptation measured in the remaining 35 ISIs (ASP.) Note that sfa-2=0 in the single-compartment 

model. Spike amplitudes are truncated. 
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A5 Fig. Parameter ‘k’ affects the excitability level in the IM. Arrows represent the CA1 Bistratified model (see Fig 

2). Model responses were classified by only varying the parameter ‘k’ and input current ‘I’ for this plot. As the value of 

‘k’ is increased, higher values of depolarizing current are required to elicit stuttering (yellow) or spiking (light green) 

patterns. Notice that the stuttering behavior occurs just above the rheobase and is non-existent for ‘k’<1.75. It should 

also be noted that the stuttering region could be wider in a different sub-region of the parameter space. 

 

  



138 

 

A1-A Table. Quantitative features of firing patterns 

fsl First Spike Latency 

sfa Spike Frequency Adaptation 

ISI Inter-Spike Interval 

nISIs number of ISIs 

pss Post-Spike Silence 

n_bursts Number of bursts 

bw Burst Width 

pbi Post-Burst Interval 

b-nISIs nISIs within a Burst 

 

A1-B Table. Elements of firing patterns 

D  Delayed 

ASP Adapting SPiking 

NASP Non-Adapting SPiking 

RASP Rapidly Adapting SPiking 

TSTUT Transient Stuttering 

TSWB Transient Slow Wave Bursting 

PSTUT Persistent Stuttering 

PSWB Persistent Slow Wave Bursting 

SLN SiLeNce 

RBS ReBoundSpiking 

 

A1-C Table. Other abbreviations 

IM 

compact-MC 

Izhikevich Model 

Compact Multi-Compartment model 

morpho-MC Morphologically detailed Multi-Compartment model 

EA Evolutionary Algorithm 

SP Stratum Pyramidale 

SR Stratum Radiatum 

SLM Stratum Lacunosum Moleculare  

SO Stratum Oriens 

SG Stratum Granulosum 

SMi Inner one-third of Stratum Moleculare 

SMo Outer one-third of Stratum Moleculare 

H Hilus 
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A2 Table. Features and errors for all the traces from Fig 4.1 

Neuron type 
pattern  

class 

I (pA) 

exp, model 

fsl (ms) 

exp, model,  

model/exp 

sfa 

exp, model, 

model/exp 

nISIs 

exp, 

model,  

model/exp 

pss (ms) 

exp, model,  

model/exp 

DG Total 

Molecular 

Layer 

- 50, 42 150, 367, 2.45 - 1, 1, 1* - 

 

ASP. 75, 73 64.71, 96, 1.49 

y=0.142x+0.947, 

y=0.142x+0.975, 

1.01 

5, 5, 1 
99.06, 96.96, 

0.98 

 

ASP. 100, 102 22.25, 64, 2.88 

y=0.114x+0.911, 

y=0.082x+0.987, 

0.90 

9, 9, 1 
52.97, 27.37, 

0.52 

  

ASP. 200, 205 13.05, 33, 2.53 

y=0.056x+1.073, 

y=0.032x+1.014, 

0.76 

19, 19, 1 
18.67, 17.40, 

0.93 

CA1 Basket NASP 150, 151 
175.00, 141, 

0.81 

y=0.000x+1.197, 

y=0.000x+1.197, 

1 

2, 2, 1 210, 210.15, 1 

  

NASP 310, 316 4.97, 18.00, 3.62 

y=0.000x+2.080, 

y=0.000x+1.165, 

0.56 

55, 55, 1 20.90, 0, 0 

CA1 

Trilaminar 
RBS -100, -100 770, 810, 1.05 -  1, 1, 1 - 

 

ASP.SLN 25, 23 50.73, 56.00, 1.1 

y=0.720x+1.000, 

y=0.491x+1.000, 

0.84 

2, 2, 1 
541.95, 542.17, 

1 
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ASP. 50, 46 14.49, 28, 1.93 

y=0.038x+1.340,  

y=0.036x+1.006, 

0.85 

21, 21, 1 
26.21, 24.59, 

0.94 

MEC LV-VI 

Pyramidal 

Polymorphic 

D.NASP 
unknown, 

78 
292.34, 292, 1 

y=0.000x+1.055, 

y=0.000x+1.042, 

0.99 

5, 5, 1 
40.00, 63.57, 

1.59 

  

ASP. 200, 197 
56.40, 56.00, 

0.99 

y=0.036x+1.103, 

y=0.030x+1.024, 

0.88 

18, 18, 1 
23.70, 23.33, 

0.98 

*number of spikes is compared for single-spike traces 

 

A3-A Table. Features and errors for all the traces from Fig 4.2 (spiking features) 

Neuron type 
pattern  

class 

I (pA) 

exp, model 

fsl (ms) 

exp, 

model,  

model/exp 

sfa 

exp, model,  

model/exp 

nISIs 

exp, model, 

 model/exp 

pss (ms) 

exp, model, 

model/exp 

CA1 

Bistratified 

PSTUT 400, 408 

40.48, 

37.00,  

0.91 

NA NA 
43.48, 43.75,  

1.01 

  

ASP. 600, 602 

12.38, 

16.00,  

1.29 

y=0.008x+1.213, 

y=0.005x+1.187, 

0.8 

35, 35, 1 9.63, 0, 0 

EC LV Deep 

Pyramidal 

TSTUT.NASP 400, 410 

16.00, 

15.00,  

0.94 

NA NA 
164, 126,  

0.77 

DG Granule 
TSWB.SLN 200, 208 

41.81, 

13.00,  
NA 1, 1, 1 

1904.27, 

1902.08,  
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0.31 1.0 

  

TSWB.SLN 400, 404 

7.79, 

7.00,  

0.9 

NA 3, 4, 1.33 

1943.55, 

1943.16,  

1.0 

DG Hilar 

Ectopic 

Granule 

TSWB.SLN 
unknown, 

602 

14.34, 

17.00,  

1.19 

NA 1, 1, 1 
156.16, 129.95, 

 0.83 

  

ASP. 700, 699 
9.52, 10,  

1.05 

y=0.791x+0.693, 

y=0.790x+0.683, 

0.99 

2, 2, 1 
107.94, 109.29,  

1.01 

 

A3-B Table. Features and errors for all the traces from Fig 4.2 (bursting/stuttering features) 

Neuron type 
pattern  

class 

I (pA) 

exp, model 

n_bursts 

exp, 

model,  

model/exp 

bw* (ms) 

exp, model,  

model/exp 

pbi* (ms) 

exp, model,  

model/exp 

b-nISIs*  

exp, model,  

model/exp 

CA1 

Bistratified 
PSTUT 400, 408 2, 2, 1 

83, 70 

56, 69, 

1.04 

154, 154, 1 

3, 3, 

2, 2, 

1 

EC LV Deep 

Pyramidal 
TSTUT.NASP 400, 410 2, 2, 1 

88, 38 

3752, 3654, 

0.7 

276, 365, 

1.32 

2, 2, 

16, 19, 

1.09 

*features are reported for each burst in a pattern 
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A4-A Table. Features and errors for all the traces from fig 4.3 (spiking features) 

Neuron type 
pattern  

class 

I (pA) 

exp, 

model 

fsl (ms) 

exp, 

model,  

model/exp 

sfa 

exp, model,  

model/exp 

nISIs 

exp, 

model, 

 

model/exp 

pss (ms) 

exp, model, 

model/exp 

CA1 Perforant 

Path 

Associated 

ASP.SLN 700, 708 
0.16, 12,  

75 

y=0.142x+0.915, 

y=0.115x+0.852, 

0.875 

12, 12, 1 

59.55, 

59.10, 

0.99 

DG MOLAX PSTUT 400, 397 
15.30, 43, 

2.81 
NA NA 56.90, 0, 0 

MEC LIII 

Multipolar 
RBS 

-200, 

193 

625, 625, 

1 
NA 1, 1, 1 NA 

  

NASP 250, 243 
4.05, 8, 

1.98 

y=0.000x+1.310, 

y=0.000x+1.401, 

1.06 

53, 53, 1 7.37, 0, 0 

DG AIPRIM ASP.NASP 200, 209 
0.45, 14, 

31.11 

y1=0.031x1+1.268,  

y1=0.040x1+1.011;  

y2=0.000x2+3.576, 

y2=0.000x2+3.567, 

1.02 

33, 33, 1; 

24, 24, 1 

1.24, 13.26, 

10.7 

CA1 

Pyramidal 
ASP. 150, 154 

29.16, 89, 

3.05 

y=0.085x+1.140, 

y=0.078x+1.137, 

0.96 

11, 11, 1 

120.79, 

72.12,  

0.6 
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A4-B Table. Features and errors for all the traces from fig 4.3 (bursting/stuttering features) 

Neuron type 
pattern  

class 

I (pA) 

exp, 

model 

n_bursts 

exp, 

model,  

model/exp 

bw* (ms) 

exp, model,  

model/exp 

pbi* (ms) 

exp, 

model,  

model/exp 

b-nISIs* 

exp, model,  

model/exp 

DG MOLAX PSTUT 400, 397 7, 6, 0.86 

39.90, 45; 

0, 39; 

47.8, 28; 

0, 38; 

23.4, 29; 

24.5, 0, 

0.49 

34, 67; 

39.2, 95; 

66, 65; 

62.8, 88; 

64.9, 72; 

74.4, 0, 

1.32 

4, 3; 

1, 2; 

3, 2; 

1, 2; 

2, 2; 

2, 1, 

1.15 

*features are reported for each burst in a pattern  
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A6 Fig. Transforming discrete spike times into a continuous signal capturing bursting cycles. A. Activity patterns 

of a sample neuron for a duration of one second, which show the existence of periodic bursting in NC (top) and ND 

(middle) and periodic spiking in NS (bottom). B. Probability density estimates of interspike intervals from all the 

neurons. The sum of all the local maxima (triangles) are 97, 139 and 37 respectively for NC (top), ND (middle), and 

NS (bottom). C. Lowpass filtering of spikes to extract bursting cycles using Gaussian convolution. The length of the 

Gaussian window is equal to the duration of one full cycle of a burst (NC and ND) or a spike (NS), which was 

estimated from B. This is done so that any frequency higher than that of the burst frequency is filtered in NC and ND. 

 

 

A7 Fig. An example of an unsuccessful transition. Neuron-53 was attracted back to a relative phase near 0 radians 

after losing stability from the same with respect to neuron-7. 
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A8 Fig. Phase-locked modes in ND and NS. A&C. Discrete spike times of two neurons are transformed into 

continuous signals corresponding to burst cycles for ND (A) and spike cycles for NS (C). B. The neuron pair in A 

shows a locked mode at 𝟒𝝅 𝟑⁄  radians for 1 second (top) and its distribution for 115 second duration is shown in 

bottom. D. The neuron pair in C shows scattered phase differences for the first 500ms (top), but overall it shows a 

preferred locked mode near zero radian for 115 second duration (bottom). 
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Quantitative firing pattern phenotyping of hippocampal neuron types⊥ 

 

 

 

 

Abstract 

Systematically organizing the anatomical, molecular, and physiological properties 

of cortical neurons is important for understanding their computational functions. 

Hippocampome.org defines 122 neuron types in the rodent hippocampal formation based 

on their somatic, axonal, and dendritic locations, putative excitatory/inhibitory outputs, 

molecular marker expression, and biophysical properties. We augmented the 

electrophysiological data of this knowledge base by collecting, quantifying, and 

analyzing the firing responses to depolarizing current injections for every hippocampal 

neuron type from published experiments. We designed and implemented objective 

protocols to classify firing patterns based on 5 transients (delay, adapting spiking, rapidly 

adapting spiking, transient stuttering, and transient slow-wave bursting) and 4 steady 

states (non-adapting spiking, persistent stuttering, persistent slow-wave bursting, and 

silence). This automated approach revealed 9 unique (plus one spurious) families of 

firing pattern phenotypes while distinguishing potential new neuronal subtypes. Novel 

statistical associations emerged between firing responses and other electrophysiological 

 

⊥ Published in Scientific Reports. Authors: Alexander O. Komendantov, Siva Venkadesh, Christopher L. 

Rees, Diek W. Wheeler, David J. Hamilton, and Giorgio A. Ascoli 
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properties, morphological features, and molecular marker expression. The firing pattern 

parameters, experimental conditions, spike times, references to the original empirical 

evidences, and analysis scripts are released open-source through Hippocampome.org for 

all neuron types, greatly enhancing the existing search and browse capabilities. This 

information, collated online in human- and machine-accessible form, will help design and 

interpret both experiments and model simulations. 

Introduction 

 Quantitative characterization of neurons is essential for understanding the 

functions of neuronal networks at different hierarchical levels. The hippocampus 

provides an excellent test-bed for this exploration as it is one of the most intensively 

studied parts of the mammalian brain, and is involved in critical functions including 

learning (Rudy and Sutherland, 1989, 1995), memory (Eichenbaum et al., 1992; 

Eichenbaum, 2000, 2017), spatial navigation (Hafting et al., 2005; O'Keefe, J. and 

Dostrovsky, 1971), and emotional associations (Buchanan, 2007).  

Transmission of information between neurons is carried out by sequences of 

spikes, and firing rates are commonly believed to represent the intensity of input stimuli. 

Since the first discovery in sensory neurons (Adrian and Zotterman, 1926), this principle 

was generalized and extended to neurons from different brain regions, including the 

hippocampus (McNaughton et al., 1983). However, it was also found that the firing rate 

of certain neurons is not constant over time, even if the stimulus is permanently applied. 

One form of such time-dependent responses is spike frequency adaptation, manifested in 

a decrease of firing rate (Adrian and Zotterman, 1926). Neurons can produce diverse 
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firing patterns in response to similar stimuli due to the inhomogeneity in their intrinsic 

properties (Connors and Gutnick, 1990). Both firing rates and temporal firing patterns 

have long been recognized to play important roles in neural information coding (Ferster 

and Spruston, 1995). 

In electrophysiological experiments in vitro, hippocampal neurons demonstrate a 

vast diversity of firing patterns in response to depolarizing current injections. These 

patterns are referred to by many names, including delayed, adapting, accommodating, 

interrupted spiking, stuttering, and bursting (Canto and Witter, 2012; Hemond et al., 

2008; Lübke et al., 1998; Mercer et al., 2007; Pawelzik et al., 2002; Tricoire et al., 2011). 

Uncertainties and ambiguities in classification and naming of neuronal firing patterns are 

similar to other widely spread terminological inconsistencies in the neuroscience 

literature, posing obstacles to effective communication within and across fields 

(Hamilton et al., 2017). 

Recent efforts aimed to classify firing patterns for identifying distinct electrical 

types of cortical neurons (Markram et al., 2004; Markram et al., 2015; Ascoli et al., 2008; 

Druckmann et al., 2013). Notably, statistical analysis of a large set of electrical features 

of neocortical interneurons with different firing patterns from a single lab yielded a 

refinement of the physiological component of the Petilla Nomenclature (Druckmann et 

al., 2013). However, comparisons across labs and experimental studies are typically 

limited to qualitative assessments of the illustrated firing traces or subjectively intuitive 

criteria. Moreover, firing pattern data are seldom unambiguously linked to neuron types 

independently defined by morphological and molecular criteria. 
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The Hippocampome.org knowledge base defines neuron types based on the 

locations of their axons, dendrites, and somata across 26 parcels of the rodent 

hippocampal formation, putative excitatory/inhibitory output, synaptic selectivity, and 

major and aligned differences in molecular marker expressions and biophysical properties 

(Wheeler et al., 2015). Version 1.3 of Hippocampome.org identifies 122 neuron types in 

6 major areas: 18 in dentate gyrus (DG), 25 in CA3, 5 in CA2, 40 in CA1, 3 in subiculum 

(SUB), and 31 in entorhinal cortex (EC). The core assumption of this identification 

scheme is that neurons with qualitatively different axonal or dendritic patterns, or with 

multiple substantial differences in other dimensions, belong to different types. For the 

majority of neuron types, Hippocampome.org reports 10 basic biophysical parameters 

that numerically characterize passive and spike properties (hippocampome.org/ephys-

defs), consistent with other literature-based neuroinformatics efforts (Tripathy et al., 

2015). 

Here, we developed an objective numerical protocol to automatically classify 

published electrophysiological recordings of somatic spiking activity for morphologically 

identified hippocampal neurons from Hippocampome.org. This process revealed specific 

firing-pattern phenotypes, potential neuronal subtypes, and statistical associations 

between firing responses and other properties. Inclusion of the classified firing patterns 

and their quantitative parameters, along with a comprehensive tabulation of the 

underlying experimental conditions, substantially extends the online search and browse 

functionalities of Hippocampome.org, providing a wealth of annotated data for 

quantitative analysis and modeling. 
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Methods 

Data collection, extraction and digitization  

The firing patterns of hippocampal neurons were classified based on their spiking 

responses to supra-threshold step-current pulses of different amplitude and duration as 

reported in peer-reviewed publications. Firing pattern parameters were extracted from 

electronic figures using Plot Digitizer (plotdigitizer.sourceforge.net) for all 

Hippocampome.org neuron types (Wheeler et al., 2015) for which they were available 

(90 out of 122). A total of 247 traces were analyzed. We extracted values of first spike 

latency (i.e. delay), inter-spike intervals (ISIs), and post-firing silence (in ms), as well as 

slow-wave amplitude (in mV) for burst firing recording. For firing pattern identification 

and analysis, ISIs in each recording were normalized to the shortest inter-spike interval 

(ISImin) within that time series, to allow meaningful comparison. 

All analyzed recordings were obtained in normal artificial cerebrospinal fluids 

(ACSF) from rodents (rats 85%, mice 12%, and guinea pigs 3%) generally described as 

“young adults” (ages ranging from 11 to 70 days for rats and from 10 to 56 days for 

mice). All firing traces considered in this report were recorded in slice preparations; 74% 

of electrophysiological traces were obtained using whole-cell patch clamp and 26% 

intracellular recording with sharp microelectrodes. All experimental conditions and 

solution compositions were extracted and stored with every recording and are available at 

Hippocampome.org as specified in the “Web portal” section below.  

Firing pattern classification  
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Hippocampal neuron types display a variety of firing pattern elements in both 

their transient and steady state responses to continuous stimulation (A9 Fig.). 

Specifically, transients (which we label by dot-notation) can be visually differentiated 

into delay (D.), adapting spiking (ASP.), rapidly adapting spiking (RASP.), transient 

stuttering (TSTUT.), and transient slow-wave bursting (TSWB.). Steady states include 

silence (SLN), non-adapting spiking (NASP), persistent stuttering (PSTUT), and 

persistent slow-wave bursting (PSWB).  
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A9 Fig. Firing pattern elements observable in hippocampal neurons in vitro. ISI - inter-spike interval, PFS – post 

firing silence, sDW – slow depolarization wave, sAHP – slow after-hyperpolarization. Original data extracted from 

Lübke et al., 1998 (D), Vida et al., 1998 (ASP), Pawelzik et al., 2002 (RASP), Hamam et al., 2002 (TSTUT), 

Chevaleyre and Seigelbaum, 2010 (TSWB), Mercer et al., 2012 (SLN), Mott et al., 1997 (NASP), Fuentealba et al., 

2010 (PSTUT), and Golomb et al., 2006 (PSWB, spontaneous bursting in Ca2+-free ACSF).  

 

In certain cases, a constant current injection elicits firing patterns consisting of 

single firing pattern elements (NASP, PSTUT or PSWB). In other cases, complex firing 

patterns are observed as sequences of two or more firing pattern elements, such as 

delayed non-adapting spiking (D.NASP), silence preceded by adapting spiking 

(ASP.SLN), and non-adapting spiking preceded by delayed transient slow-wave bursting 

(D.TSWB.NASP). Experimental recordings without identifiable steady states were 

deemed uncompleted firing patterns (e.g. ASP., D.ASP., or RASP.ASP.). 

In order to define the firing pattern elements unambiguously, we developed a set 

of quantitative classification criteria (Table 1). The transient response was classified as 

delayed (D.) if the latency to the first spike was longer than the sum of the first two inter-

spike intervals (ISI1 and ISI2). Similarly, post-firing silence (PFS) was considered to be a 

steady state (SLN) if it exceeded the sum of the last two inter-spike intervals (ISIn-1 and 

ISIn). In addition, post-firing silence had to last at least twice the longest inter-spike 

interval (ISImax).  

A persistent firing response with relatively equal inter-spike intervals denotes 

non-adapting spiking (NASP); in contrast, transients with a progressive increase or 

decrease of ISIs can be classified as adapting or accelerating spiking, respectively. To 

discriminate among several possible combinations of these firing patterns objectively and 

reproducibly, we devised a minimum information description criterion by comparing 
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piecewise (segmented) linear regression models of increasing complexity. Specifically, 

non-adapting spiking (NASP) can be described by a single parameter, namely the 

(average) firing rate (Y=c). Similarly, fitting normalized inter-spike intervals versus 

normalized time with a (2-parameter) linear function Y=aX+b (with a>0) corresponds to 

adapting spiking (ASP.). Fitting data with a piecewise linear function  
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corresponds to adapting-non-adapting spiking (ASP.NASP) when a1>0 and a2=0 

(3 parameters), and to adapting-adapting spiking with different adaptation rates 

(ASP.ASP.) when both a1>0 and a2>0 (4 parameters). We only selected a model with 

more parameters if the fit relative to a less complex model improved in a statistically 

significant way. The significance threshold for the differences between one-parameter 

fitting (NASP) and two-parameter linear-regression fitting (ASP.) was conventionally set 

at 0.05. Furthermore, in order to avoid identifying very weak adaptations as ASP., a 

minimum threshold of 0.003 was used for the slope a1.
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A5 Table. Principles of classification of firing pattern elements 

Firing 

pattern 

element 

Transient 

responses 

Steady-state 

responses  
Characteristics of responses 

Values of 

parameters 
S
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Delayed (D.)  1 2ISI + ISI
Delay > DF

2  
  DF=2 

  SiLeNce (SLN) 

n n-1

max

ISI + ISI
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2

PFS > SF * ISI
 

 

   SF=2 

S
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g
 

Adapting 

Spiking (ASP.) 
 

ISI1 < ISI2 < ISIn ;   to 

compare 2 parameter fit 

(Y=a1X+b1) and  

3 parameter fit 

 (Y=a1X+b1; Y= b2) 

p2,1<0.05 

p3,2>0.025 

a1 > 0.003 

Rapidly 

Adapting 

Spiking 

(RASP.) 

 

1 2 3

= 1 1

>1 RASP

ISI << ISI << ISI

Y a X +b

a S  

SRASP = 0.2 

 
Non-Adapting 

Spiking (NASP) 

ISI1 ≈ ISI2 … ≈ ISIn;  

 to compare 1 parameter fit 

(Y=b1) and 2 parameter fit 

(Y=a1X+b1) 

p2,1>0.05 
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For each subsequent stage of comparison, we used Bonferroni-corrected p-values. 

Specifically, in order for a pattern with an adapting spiking transient (i.e. ASP.) to be 

qualified as ASP.NASP, the p-value must be less than 0.025. Similarly, the p-value for 

the differences between three-parameter piecewise-linear-regression fitting (ASP.NASP) 

and four-parameter piecewise-linear-regression fitting (ASP.ASP.) must be less than 

0.016. Supplementary Fig. S1 shows examples of fitting spiking activity with linear 

regression and piecewise linear regression models. If adaptation was only observed in the 

first two or three ISIs in a longer train of spikes, and if the linear fitting of slope a1 

exceeded 0.2, then this transient was classified as rapidly adapting spiking (RASP.) (see 

Fig.1; Pawelzik et al., 2002). For accelerating spiking (ACSP.), the linear fitting slope 

must be negative. 

We defined transient stuttering (TSTUT.) as a short high-frequency (>25 Hz) 

cluster of action potentials (APs) followed by other distinctive activity. In addition, the 

first ISI after a TSTUT cluster must be 2.5 times longer than the last ISI of the cluster and 

1.5 times longer than the next ISI (see A9 Fig.; Hamam et al., 2000). Under transient 

slow-wave bursting activity (TSWB.), a cluster of two or more spikes rides on a slow 

depolarization wave (>5mV) followed by a strong slow after-hyperpolarization (AHP) 

(see A9 Fig.; Chevaleyre and Siegelbaum, 2010). Persistent stuttering (PSTUT) was 

classified as firing activity with high-frequency clusters of APs separated by long silence 

intervals, moreover, the sum of its ratios to the preceding ISI and the following ISI is 

more than 5 (see A9 Fig.; Fuentealba et al., 2010; Price et al., 2005). Similarly, under 
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persistent slow-wave bursting (PSWB) activity, these clusters of two or more tightly 

grouped spikes ride on slow depolarizing waves (>5 mV) followed by strong, slow AHPs 

(Golomb et al., 2006; Bilkey et al., 1990). The amplitude of the slow wave was 

determined as the difference between the threshold of initiation of the slow wave and the 

threshold of generation of the action potential at the top of the slow wave. Threshold 

level was defined as a point of fast rising of the membrane voltage (for slow wave 

initiation and action potential generation dV/dt should exceed 0.15V s-1 and 20 V s-1, 

respectively). As exemplified above, the choices of firing-pattern identification 

parameters were consistent with literature reports of experimental results with similar 

activities. 

Based on the aforementioned methods, we implemented a firing-pattern 

classification algorithm using the values of ISIs, delay, post-firing silence, and slow-wave 

amplitude as input data (for algorithmic details, see Supplementary Fig. S2).  

Statistical analysis  

We explored pairwise correlations between 24 observed firing patterns, 9 firing 

pattern elements, and 212 other properties of Hippocampome.org neuron types, 

including: primary neurotransmitter, 103 morphological properties (axonal, dendritic, and 

somatic locations in the 6 sub-regions and 26 parcels of the hippocampal formation; the 

projecting (between sub-regions) or local (within sub-regions) nature of axonal and 

dendritic patterns; axon and dendrite co-presence within any parcel; axonal and dendritic 

presence in a single layer only (intra-laminar) or in ≥3 layers (trans-laminar)), clear 

positive or negative expression of 98 molecular markers; high (top third) or low (bottom 
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third) values for 10 electrophysiological properties. To evaluate the correlations between 

these categorical properties, we used 2×2 contingency matrices with Barnard’s exact test 

(Barnard, 1947), which provides the greatest statistical power when row and column 

totals are free to vary (Lydersen, 2009). A total of 6,996 correlations were analyzed. The 

results satisfying a p-value cutoff of <0.05 and a false discovery rate (FDR) <0.25 

(Benjamini and Hochberg, 1995) were considered as statistically significant. The 

correlation analysis was implemented in MATLAB (MathWorks, Inc.). 

We analyzed numerical electrophysiological data, such as the relationship 

between the width of an action potential and the minimum ISI using linear regression and 

histograms. Spike duration was measured as the width at half-maximal amplitude, as is 

most commonly defined36. Minimum inter-spike intervals (ISImin) were measured from 

the figures or extracted directly from tables or textual excerpts of the corresponding 

papers. 

For cluster analysis of weighted categorical firing pattern data, we assigned 

weights to firing pattern elements according to the formula We=(N-ne)/N, where We is the 

weight of the element e, ne is the number of cell types expressing firing pattern(s) with 

element e, N is the total number of cell types/subtypes, and e={ASP., D., RASP., NASP, 

PSTUT, PSWB, SLN, TSUT., TSWB.}. We employed a two-step cluster analysis using 

the IBM SPSS Statistics 24 software. Silhouette measures of cohesion and separation 

greater than 0.5 indicated that the elements were well matched to their own clusters and 

poorly matched to neighboring clusters, and that the clustering configuration was 

appropriate.  
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Statistical data were expressed as mean ± standard deviation. 

Web portal and database representation of firing patterns and experimental 

conditions 

Hippocampome.org provides access to morphological, molecular, 

electrophysiological, and connectivity information for 122 neuron types. The firing 

pattern data newly added and made freely available for download with this work include 

recording illustrations, the duration and amplitude of stimulation, digitized ISIs and firing 

pattern parameters (as comma-separated-value files), the complete solution compositions 

of the ACSF and of the micropipettes or patch pipettes, and the result of the firing pattern 

classification algorithm detailed above. Additional metadata is collected and displayed 

for all electrophysiological evidence in Hippocampome.org including the animal species 

(rat vs. mouse) and other details regarding the subject (inbred strain, age, sex, and weight, 

if reported), slice thickness and orientation, recording methods (intracellular 

microelectrode or variations of patch clamp), and temperature. Details of the 

implementation of the portal are presented in the Supplemental Information. 

Results 

From firing patterns to firing pattern phenotypes 

Version 1.3 of Hippocampome.org contains suitable electrophysiological 

recordings for 90 of the 122 morphologically identified neuron types. Applying the firing 

pattern identification algorithm to these digitized data resulted in the detection of 23 

different firing patterns. A given neuron type may demonstrate distinct firing patterns in 
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response to different stimuli or conditions. The set of firing patterns exhibited by a given 

neuron type forms its firing pattern phenotype. 

The simplest case consists of those neuron types that systematically demonstrate 

the same firing pattern independent of experimental conditions or stimulation intensity. 

These neuron types may still display quantitatively different responses to stimuli of 

various amplitudes (typically increasing their firing frequency upon increasing 

stimulation), but their qualitative firing patterns remain the same. We identified 37 such 

“individual/simple-behavior types” in Hippocampome.org, as exemplified by DG Basket 

cells with their NASP phenotype (Savanthrapadian et al., 2014). 

In contrast to the above scenario, certain neuron types exhibit qualitatively 

distinct firing patterns in response to different amplitudes of stimulation. We identified 

20 such “multi-behavior” types; for instance, medial EC Layer V-VI Pyramidal-

Polymorphic cells demonstrate delayed non-adapting and adapting spiking (Canto and 

Witter, 2012), or CA1 Neurogliaform projecting cells (Price et al., 2005) display adapting 

spiking and persistent stuttering at different stimulus intensities. The firing phenotypes of 

these neurons thus consist of the combinations of two firing patterns. 

In a different set of cases, subsets of neurons from the same morphologically 

identified type display distinct firing patterns under the same experimental conditions 

(typically from the same study) in response to identical stimulation. These neuron types 

can thus be divided into electrophysiological subtypes. For example, of the CA3 Spiny 

Lucidum interneurons, some are adapting spikers whereas others are persistent stutterers 

(Szabadics et al., 2009). In certain neuron types, one or more of the subtypes could also 
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display multiple behaviors at different stimulation intensities. For instance, a subset of 

entorhinal Layer III Pyramidal neurons consists of non-adapting spikers and another 

subset switches from ASP.NASP at rheobase to RASP.ASP. at higher stimuli (Canto and 

Witter, 2012). Of the 90 neuron types with firing patterns in Hippocampome.org, 22 

could be divided into 52 electrophysiological subtypes. Notably, these included the 

principal neurons of most sub-regions of the hippocampal formation: CA3, CA1, and 

subiculum Pyramidal cells, entorhinal Spiny Stellate cells, but also several GABAergic 

interneurons such as dentate Total Molecular Layer (TML) cells (Mott et al., 1997). 

Specifically, 8 neuron types yielded 18 subtypes exclusively demonstrating single 

behaviors; for 11 neuron types, at least one of the subtypes exhibited multi-behaviors, 

resulting in 13 multi-behavior subtypes and 13 additional single-behavior subtypes. 

This meta-analysis is complicated by the variety of experimental conditions used 

in the published literature from which the electrophysiological data were extracted. 

Several differences in materials and methods could affect firing patterns above and 

beyond common species (rats vs. mice) or recording (patch clamp vs. microelectrode). 

For example, 30% of experimental traces were recorded from transverse slices, 24% from 

horizontal, 8% coronal, 29% mixed (e.g. “horizontal or semicoronal”), and 9% other 

directions (e.g. custom angles). Furthermore, pipettes were filled with potassium 

gluconate in 69% of cases, with potassium methylsulfate in 22%, and with potassium 

acetate in 9% (see e.g. Supplementary Table S2). While these different experimental 

conditions can affect membrane biophysics substantially (Tebaykin et al., 2018) and 

often quantitatively influence neuronal firing (e.g. changing the spiking frequency), 
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occasionally they can also cause a qualitative switch between distinct firing patterns. A 

striking case is that of rat DG Granule cells, which have demonstrated transient slow-

wave burst followed by silence in whole-cell recordings of horizontal slices from 

Sprague-Dawley animals (Williams et al., 2007); delayed non-adapting spiking in whole-

cell recording of transverse slices from Wistar animals (Lübke et al., 1998); or adapting 

spiking in intracellular recording of horizontal slices from Wistar animals (Han et al., 

1993). Because the different firing patterns could be caused by the differences in 

experimental methods, we annotate a possible “condition-dependence,” but cannot 

conclusively categorize these cells as multi-behavior or subtypes. Most of the condition-

dependent behaviors could be attributed at least in part to the occasional use of 

microelectrode instead of patch-clamp (now considered the preferred recording method) 

or the animal species as in the case of CA1 Horizontal Basket cells, which display 

adapting and non-adapting firing in rats and mice, respectively (Tricoire et al., 2011; 

Zemankovics et al., 2010).  

Condition dependence can alter the firing patterns not only in cell types with 

single behaviors, such as MOPP cells (Han et al., 1993; Armstrong et al., 2011), but also 

in multi-behavior neuron types, such as CA1 Axo-axonic cells (Pawelzik et al., 2002; 

Buhl et al., 1994). These cases account for 6 and 5 Hippocampome.org neuron types, 

respectively. Lastly, condition dependence may also be found in specific 

electrophysiological subtypes, whether they display single behaviors, such as CA1 

Pyramidal neurons (Chevaleyre and Siegelbaum, 2010; Zemankovics et al., 2010; Kirson 

and Yaari, 2000; Staff et al., 2000) or multi-behavior, such as entorhinal Layer V Deep 
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Pyramidal neurons (Canto and Witter, 2012; Hamam et al., 2000, 2002). These cases 

respectively account for 2 and 1 Hippocampome.org neuron types, in turn giving rise to 6 

condition-dependent subtypes with single behaviors and 2 condition-dependent subtypes 

with multi-behavior. In general, types/subtypes with firing pattern recorded under diverse 

experimental conditions constitute only 16 percent of the total number of types/subtypes 

with available recordings. 

Figure 2 presents the full firing-pattern phenotypes of all 90 Hippocampome.org 

neurons, with available data in form of separate matrices for the 68 individual neuron 

types (A10 Fig.a) and the 52 subtypes divided from the remaining 22 types (A10 Fig.b). 

In both cases the simple behaviors constitute larger proportions than multi-behavior, with 

condition dependence only reported for a minority of types and subtypes (A10 Fig.c). 

Across these neuron types/subtypes, 44 distinct phenotypes can be identified as unique 

combinations of firing patterns, excluding those that differ from others only by the 

absence of a detectable stable state in one of the firing patterns (like ASP. versus 

ASP.NASP or ASP.SLN). An interactive online version of these matrices is available at 

hippocampome.org/php/firing_patterns.  
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A10 Fig. Identified firing patterns and firing pattern phenotypes complexity of neuron types (a) and subtypes 

(b). Online matrix: hippocampome.org/firing_patterns. Green and red cell type/subtype names denote excitatory (e) and 

inhibitory (i) neurons, respectively. FPP is firing pattern phenotype. The numbers in the brackets correspond to the 

order in which the cell types were presented in the Hippocampome (ver. 1.3). The orange asterisk denotes different 
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experimental conditions. (c) Complexity of firing pattern phenotypes; percentages and ratios indicate occurrences of 

phenotypes of different complexity among 120 cell types/subtypes. 

 

Dissecting firing patterns into firing pattern elements across neuron types 

Firing patterns and firing pattern elements are also diverse with respect to their 

relative frequency of occurrence among hippocampal neuron types. Firing patterns can be 

grouped based on the number of elements comprising them, namely single (e.g., NASP or 

PSTUT), double (e.g. ASP.NASP or TSWB.SLN), and triple (D.RASP.NASP and 

D.TSWB.NASP) or based on whether they are completed (ASP.NASP, TSWB.SLN) or 

uncompleted, as in ASP., RASP.ASP., and TSTUT.ASP. (A11 Fig.a). Of the nine firing 

pattern elements, the most frequent are ASP and NASP, while the least common are 

TSTUT, TSWB, and PSWB (A11 Fig.b). Notably, accelerated spiking (ACSP) has not 

been reported in the rodent hippocampus although it is commonly observed in other 

neural systems, such as turtle ventral horn interneurons (Smith and Perrier, 2006) and 

motoneurons (Leroy et al., 2014).  

The relationships between sets of firing pattern elements observed in hippocampal 

neuron types can be summarized in a Venn diagram with firing pattern elements 

represented as ellipses and the intersections thereof corresponding to complex firing 

patterns (A11 Fig.c). This analysis highlights the following features: the four main firing 

transients (ASP., RASP., TSTUT., TSWB.) often end either with NASP or with SLN; 

ASP. is often preceded by RASP. and occasionally by TSTUT.; interrupted steady-state 

firings (PSTUT and PSWB) stand out as a separate group; and delay (D.) most often 
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precedes NASP. Fifteen of possible 38 completed firing patterns were discovered in the 

literature for morphologically identified hippocampal neuron types. 
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A11 Fig. Occurrence of firing patterns, firing pattern elements and firing pattern phenotypes among the 

hippocampal formation neuron types. (a) Distribution of 23 firing patterns; total numbers are shown above the bars. 

(b) Distribution of 9 firing pattern elements; total numbers are in parentheses below and percentages of occurrence 

among 90 cell types are above the bars. (c) Relationships between firing pattern elements in the firing patterns of 

hippocampal neuron types. Numbers of cell types with distinctive firing patterns are indicated.  

 

Classification and distribution of firing pattern phenotypes 

In order to classify the 44 unique firing pattern phenotypes observed in the 

hippocampal formation, we weighted the constituent firing pattern elements according to 

the frequency of occurrence among 120 neuron types and electrophysiological subtypes 

(see Methods). As a result, infrequent firing pattern elements (PSWB, TSTUT and 

TSWB) received high weights (0.99, 0.95 and 0.93, respectively), very frequent elements 

(ASP and NASP) were assigned low weights (0.42 and 0.41), and common elements (D, 

RASP, PSTUT and SLN) obtained intermediate weights (0.90, 0.80, 0.88 and 0.87). 

Two-step cluster analysis identified ten firing pattern families as leaves of a seven-level 

hierarchical binary tree (A12 Fig.a). At the highest level, hippocampal neuron types and 

subtypes are divided into two major groups: those with spiking phenotypes (78%) and 

those with interrupted firing phenotypes (22%). The latter are separated into bursting 

(6%) and stuttering (16%), and each of these is subdivided into persistent and non-

persistent families. A first group of the neuron types with spiking phenotypes is 

distinguished based on delay (9% of cell types). The remaining neuron types split into 

adapting (54%) and non-adapting phenotypes (15%). The adapting group consists of 

neuron types with rapidly adapting phenotypes (18%) and normally adapting (36%) 

phenotypes. Among the normally adapting group, the following phenotypes can be 

distinguished: discontinuous adapting spiking (6%) with ASP.SLN pattern, adapting-non-
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adapting spiking (15%) with ASP.NASP patterns, and a last “spurious” phenotype of 

uncompleted adapting spiking (15%) with ASP. pattern only, for which the steady state 

(SLN or NASP) was not determined. This division of the adapting spiking groups reflects 

differences in adaptation rates, duration, and subsequent steady states.  

This analysis also highlights the most distinguishing firing pattern elements of 

each family (A12 Fig.b). In particular, D. is the defining element for delayed spiking, 

PSTUT for persistent stuttering, ASP. and SLN for discontinuous adapting spiking. Each 

of the four major elements of interrupted firing patterns (PSWB, PSTUT, TSWB. and 

TSTUT.) is observed in a single firing pattern phenotype (persistent bursting, non-

persistent bursting, persistent stuttering, and non-persistent stuttering, respectively). 

Other firing pattern elements (D., RASP., ASP., NASP, and SLN) appear in several firing 

pattern phenotypes. The proportions of non-defining firing pattern elements range from 

5% to 83%. 

The families of firing pattern phenotypes are differentially distributed within the 

set of 120 neuron types/subtypes (A12 Fig.c). Certain phenotype families are associated 

with excitatory neuron types, either exclusively (e.g. persistent bursting and non-

persistent bursting) or predominantly (non-persistent stuttering, rapidly adapting, and 

adapting-non-adapting spiking). Conversely, persistent stuttering, delayed spiking, non-

adapting spiking and simple adapting spiking are phenotypes composed largely by 

inhibitory neuron types. The discontinuous adapting spiking phenotype has relatively 

balanced proportions of excitatory and inhibitory neuron types. 
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The firing pattern phenotypes also have different distributions among the sub-

regions of the hippocampal formation (A12 Fig.d). Among CA1 neuron types, the 

persistent stuttering (16%), non-adapting (24%), simple adapting (16%), and rapidly 

adapting spiking (13%) phenotypes are more common than other phenotypes; in DG, the 

most expressed phenotypes are delayed (20%), rapidly adapting (20%), and simple 

adapting spiking (15%); in EC, ASP-NASP (61%), discontinuous ASP. (11%), RASP. 

(28%), and NASP (19%) occur more often than other phenotypes.  

 

 

A12 Fig. Firing-pattern phenotype families from 120 neuron types/subtypes. (a) Hierarchical tree resulting from 

two-step clustering of weighted firing pattern elements with representative examples of cell types/subtypes that belong 
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to one of the corresponding firing-pattern phenotype families. Note that the simple adapting spiking pattern (ASP. only) 

constitutes a “spurious” phenotype of uncompleted adapting spiking (15%), for which the steady state (SLN or NASP) 

was not determined. (b) Percentage of occurrence of firing-pattern elements in families of firing pattern phenotypes. (c) 

Relative proportions of firing-pattern phenotype families among neuron types/subtypes. Green and red numbers 

represent excitatory and inhibitory cell types/subtypes as enumerated in A10 Fig.. (d) Distribution of firing-pattern 

phenotype families in sub-regions of the hippocampal formation. FPP% is percentage of expression of families of firing 

pattern phenotypes. 

 

Usage of Information from Hippocampome.org 

Searching and Browsing  

The addition of firing pattern data to Hippocampome.org extends opportunities 

for broad-scope analytics and quick-use checks of neuron types. Similar to 

morphological, molecular, and biophysical information, firing patterns and their 

parameters can be browsed online with the interactive versions of the matrices presented 

in A10 Fig. (hippocampome.org/php/firing_patterns), along with an accompanying 

matrix to browse the stimulation parameters (duration and intensity) and the firing pattern 

parameters (delay, number of inter-spike intervals, etc.). Moreover, all classification and 

analysis results reported here can be searched with queries containing AND & OR 

Boolean logic using an intuitive graphical user interface (see Hippocampome.org → 

Search → Neuron Type). The integration within the existing comprehensive knowledge 

base enables any combination of both qualitative (e.g. PSTUT) and quantitative firing 

pattern properties, with molecular (e.g. calbindin-negative), morphological (e.g. axons in 

CA1 pyramidal layer), and biophysical (e.g. action potential width < 0.8 ms) filters (A13 

Fig.). For example, of 13 neuron types with persistent stuttering, in 7 the largest inter-

spike interval is more than 4 times longer than the subsequent ISI. When adding the other 

three selected criteria, the compound search leads to a single hit: CA1 Axo-axonic 

neurons (A13 Fig.a). Clicking on this result leads to the interactive neuron page (A13 
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Fig.b) where all information associated with a given neuron type is logically organized, 

including synonyms, morphology, biophysical parameters, molecular markers, synaptic 

connectivity, and firing patterns. Every property on the neuron pages and browse 

matrices, including firing patterns and their parameters, links to a specific evidence page 

that lists all supporting bibliographic citations, complete with extracted quotes and 

figures (A13 Fig.c). The evidence page also contains a table with all corresponding firing 

pattern parameters (A13 Fig.d), experimental details including information about animals 

(A13 Fig.e), preparations (A13 Fig.f), recording method and intra-pipette solution (A13 

Fig.g), ACSF (A13 Fig.h), and a downloadable file of inter-spike intervals (A13 Fig.i). 
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A13 Fig. Hippocampome.org enables searching neuron types by neurotransmitter; axon, dendrite, and soma 

locations; molecular expression; electrophysiological parameters; input/output connectivity; firing patterns and 

firing pattern parameters. (a) Sample query for calbindin-negative neuron types with axons in CA1 stratum 

pyramidale, APwidth <0.8 ms, PSTUT firing, and ratio of maximum ISI to the next ISI greater than 4.8. Numbers in 

parentheses indicate the number of neuron types with the selected property or specific combination of properties. (b) 

Search results are linked to the neuron page(s). (c) The neuron page is linked to the firing pattern evidence page. 

Original data extracted from Pawelzik et al., 2002. All firing patterns parameters (d), experimental details including 

information about animals (e), preparations (f), recording method and intra-pipette solution (g), as well as ACSF 

composition (h) can be displayed. (i) Downloadable comma-separated-value file of inter-spike intervals. 
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The portal also reports, when available, the original firing pattern name 

descriptions used by the authors of the referenced publication (Hippocampome.org → 

Search → Original Firing Pattern) and provides links to corresponding published models 

from ModelDB (https://senselab.med.yale.edu/modeldb/).  

Statistical analysis of categorical data 

Firing pattern information more than doubles the Hippocampome.org knowledge 

base capacity to over 27,000 pieces of knowledge, that is, associations between neuron 

types and their properties. This extension allows for the confirmation of known 

tendencies and unearthing hidden relationships between firing patterns and molecular, 

biophysical, and morphological data in hippocampal neurons, which are otherwise 

difficult to find amongst the large body of literature. We computed p values using 

Bernard’s exact test for 2×2 contingency tables that had a sum total of more than 9 

elements. Comparisons of observable firing pattern elements with molecular markers 

expression, electrophysiological parameters, primary neurotransmitter and axonal 

projecting properties, with false discovery rates less than 0.25 ended with 26 statistically 

significant correlations. Several interesting examples of such findings are presented in 

A14 Fig.. For instance, adapting spiking (ASP.) tends to co-occur with expression of 

cholecystokinin (p=0.0113 with Barnard’s exact test from all n = 26 pieces of evidence; 

see Lee et al., 2011 as an example); moreover, silence (SLN) after short firing discharge 

is not observed in neuron types with low (lower tercile of) membrane time constant 

(n=32, p=0.0235). 

https://senselab.med.yale.edu/modeldb/
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A14 Fig. Examples of statistically significant correlations between firing pattern elements and known molecular, 

morphological and electrophysiological properties in hippocampal neurons. The p values are computed using 

Bernard’s exact test for 2×2 contingency tables and satisfy FDR<0.25 (see Methods). 

 

Analysis of numerical electrophysiological data 
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The extracted quantitative data allow one to study the relationship between firing 

pattern parameters and membrane biophysics or spike characteristics, such as the 

correlations between minimum inter-spike intervals (ISImin) and action potential width 

(APwidth). We analyzed these two variables in the 81 neuron types and subtypes for which 

both measurements are available (A15 Fig.). The scatter plot of APwidth against ISImin 

reveals several distinct groupings (A15 Fig.a), and the corresponding histograms (Figs. 

7b,c) demonstrate poly-modal distributions. The horizontal dashed line (ISImin=34 ms) 

separates 9 neurons with slow spikes (all excitatory except one) from 72 neurons (61% of 

which are inhibitory) with fast and moderate spikes. The latter group shows a general 

trend of ISImin rise with increasing APwidth (black dashed line in panel A). This trend was 

adequately fit with a linear function Y = 13.79X - 0.05 (R = 0.72; p=0.03). Neuron types 

with slow spikes demonstrate the opposite trend, which was fit with a decreasing linear 

function Y = - 26.72X + 76.42 (R = -0.91, p=10-6). Furthermore, the neuron types can be 

separated by spike width. The vertical dashed lines w1 (APwidth=0.73 ms) and w2 

(APwidth=1.12 ms) separate neuron types with narrow, medium and wide action potentials. 

The group of neuron types with narrow spikes (n=22) includes only inhibitory neurons, 

which have APwidth in the range from 0.20 to 0.73 ms (0.54 ± 0.12 ms). In contrast, the 

group of neuron types with wide spikes (n=28) contains only excitatory neurons with 

APwidth in the range from 1.13 to 2.10 ms (1.49 ± 0.23 ms). The group of neuron types 

with medium spikes (n = 31), with APwidth range from 0.74 to 1.12 ms (0.89 ± 0.12 ms), 

includes a mix of inhibitory (74%) and excitatory (26%) neurons.  
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A15 Fig. Relationships between the width of action potentials (APwidth) and minimum of inter-spike intervals 

(ISImin) for 84 neuron types and subtypes. (a) APwidth - ISImin scatter diagram with results of linear regression. 
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Green triangles and red circles indicate excitatory and inhibitory neurons, respectively. Dashed orange lines: horizontal 

line separates neurons with slow spikes from neurons with fast and moderate spikes; vertical lines (w1 and w2) separate 

neurons with narrow, medium and wide action potentials. Black lines: solid line shows linear fitting for slow spike 

neurons with a function Y = - 26.72X + 76.42 (R2=0.83); dashed line shows general linear fitting for fast and moderate 

spike neurons with a function Y = 13.79X - 0.05 (R2=0.52). (b) APwidth histogram. (c) ISI histogram. 

 

Among the 22 neuron types/subtypes from the group with APwidth<0.72 ms, 13 

demonstrated so-called fast spiking behavior, which is distinguished by narrow spikes, 

high firing rate, and the absence or weak expression of spike frequency adaptation (Jonas 

et al., 2004). Besides these common characteristics, however, their firing patterns vary 

broadly even from a qualitative standpoint. Five of these 13 neuron types belong to the 

PSTUT family, namely CA3 Trilaminar (Gloveli et al., 2005), CA3 Aspiny Lucidum 

ORAX (Spruston et al., 1997), CA2 Basket (Mercer et al., 2007), CA1 Axo-axonic 

(Pawelzik et al., 2002), and CA1 Radial Trilaminar (Tricoire et al., 2011). Three types 

belong to the NASP family: DG Basket (Savanthrapadian et al., 2014), CA1 Horizontal 

Axo-axonic (Tricoire et al., 2011), and MEC LIII Superficial Multipolar Interneuron 

(Kumar and Buckmaster, 2006). Two types, CA3 Axo-axonic (Dugladze et al., 2012) and 

CA2 Bistratified (Mercer et al., 2007), belong to the simple adapting spiking family; two 

types, DG HICAP (Mott et al., 1997) and DG AIPRIM (Lübke et al., 1998), belong to the 

ASP-NASP family; and lastly CA1 Basket (Lee et al., 2011) belongs to non-persistent 

stuttering family.  

Additionally, firing pattern families are unequally distributed among the 

groupings revealed by the above analysis. Persistent and non-persistent stuttering families 

and non-persistent bursting phenotypes are composed entirely of neuron types with 

narrow and medium fast/moderate spikes. Conversely, the rapidly adapting – non-
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adapting spiking phenotype is represented solely by neurons with spikes of intermediate 

width.  

Discussion 

Neurons differ from each other by morphological and molecular features 

including the diversity and distribution of ion membrane channels in somata and 

dendrites. These intrinsic properties determine important physiological functions such as 

excitability, efficacy of synaptic inputs (Häusser et al., 2000; London et al., 2002; 

Komendantov et al., 2009), shapes of individual action potentials and their frequency 

(Bean, 2007), and temporal patterns (Mainen and Sejnowski, 1996; Krichmar et al., 

2006).  

In the neuroscience literature, the firing patterns of neuronal activity are 

commonly used to characterize or identify groups of neurons. Examples include 

descriptions of “strongly adapting, normally adapting, and nonadapting cells” (Mott et 

al., 1997); “fast-spiking and non-fast-spiking” interneurons (Bjorefeldt et al., 2016); “late 

spiking” cells (Tamas et al., 2003); “stuttering interneurons” (Song et al., 2013); 

“bursting” and “non-bursting” neurons (Hablitz and Johnston, 1981; Masukawa et al., 

1982); “regular spiking, bursting, and fast spiking” (McCormick et al., 1985), and many 

more. However, it has until now remained challenging to integrate these characterizations 

across different laboratories and studies besides largely qualitative summaries.  

In this study, we show that a quantitative, data-driven methodology based on the 

analysis of transients and steady states of evoked spiking activity can meaningfully 

classify the firing patterns of hippocampal neuronal types. This work is a further 
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development of the effort initiated by the Petilla Interneuron Nomenclature Group 

(Ascoli et al., 2008), which was applied to firing patterns in cortical neurons (Markram et 

al., 2015; Druckmann et al., 2013). At the same time, this work demonstrates the 

feasibility of systematic, comprehensive meta-analysis of electrophysiological data from 

the published literature. This is especially important as a necessary approach to help link 

and interpret the growing information from centralized, large-scale, “industrial” 

neuroscience projects (Kandel et al., 2013; Migliore et al., 2018; Teeter et al., 2018) with 

the distributed accumulation of data in traditional research laboratories (Ferguson et al., 

2014). 

From the electrophysiological recordings of 90 neuron types in the rodent 

hippocampus, we identified 23 firing patterns, 15 of which were completed, that is, 

included both transient(s) and putative steady state components (see A10 Fig. and A11 

Fig.). Taking into consideration the firing pattern information enables a possible 

refinement of neuron type delineation by identifying 52 putative electrophysiological 

subtypes among 22 neuron types. Subsequent two-step cluster analysis allows for the 

clear distinguishing of 9 unique families of 44 firing pattern phenotypes among 120 

neuron types and putative subtypes. Notwithstanding the focus of the present research on 

the hippocampal formation, the firing pattern classification framework introduced with 

this study can be readily applied to spiking activity of neurons from other brain regions.  

The two firing pattern families characterized by bursting phenotypes (transient 

and persistent) are comprised of excitatory neurons, while the persistent stuttering family 

only included inhibitory neurons. However, the majority of phenotype families are mixed 
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between putatively glutamatergic and GABAergic types (A12 Fig.c). Thus, the 

identification of a firing pattern phenotype by itself is a useful but in most cases 

insufficient attribute for a reliable categorization of excitatory and inhibitory neurons.  

The frequency of discharges is an important characteristic of neuronal 

communication. Many neuron types, especially interneurons, show fast spiking behavior: 

they are capable of firing at high frequencies (200 Hz or more) with little decrease in 

frequency during prolonged stimulation (Bean, 2007; Jonas et al., 2004). Spike frequency 

correlates with electrophysiological characteristics, such as action potential duration or 

fast AHP amplitude (Druckmann et al., 2013). Fast spiking neurons typically have 

narrow action potentials and high-amplitude fast AHP (Bean, 2007). Our correlation 

analysis of Hippocampome.org data reveals that transient stuttering (TSTUT.) is not 

typical for cells with extremely high-amplitude fast AHPs and delayed firing (D.) is not 

characteristic for neuron types with wide action potentials (A14 Fig.). Interestingly, 

plotting ISImin against APwidth for all neuron types with relatively faster firing (maximum 

frequencies higher than ~30 Hz) and for all neuron types with slower firing (maximum 

frequencies lower than 29 Hz) reveals opposite, statistically significant linear 

relationships (A15 Fig.a). 

Firing pattern phenotypes of central mammalian neurons are determined by 

biophysical properties associated with expression and distribution of several types of 

Ca2+ and K+ channels, which modulate specific ion currents (Bean, 2007; Llinás, 1988; 

Migliore et al., 2005) and may correlate with expression of other molecular markers 

(Markram et al., 2004; Ascoli et al., 2008; Caballero et al., 2014). Despite the relative 
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sparsity of molecular marker information, analysis of the correlations between firing 

patterns and other neuronal properties revealed novel interesting relationships in 

hippocampal neuron types (A14 Fig.). 

Firing patterns play important roles in neural networks including the 

representation of input features, transmission of information, and synchronization of 

activity across separate anatomical regions or distinct cell assemblies. Although single 

spikes can provide temporally precise neurotransmitter release, this release usually has 

low probability in central synapses. Neurons can compensate for the unreliability of their 

synapses by transmitting signals via multiple synaptic endings or repeatedly activating a 

single synapse (Lisman, 1997). Thus, a short high-frequency sequence of action 

potentials may cross a synapse more reliably, increasing the likelihood of a postsynaptic 

spike (Zeldenrust et al., 2018). This can also be affected by short-term synaptic plasticity 

(Zucker and Regehr, 2002; Citri and Malenka, 2008), which varies with age and with the 

identity of pre- and post-synaptic neurons. Moreover, single burst of action potentials in 

CA3 axons (Schaffer collaterals) can induce robust and stable long-term potentiation at 

synapses on CA1 pyramidal neurons, provided that the postsynaptic depolarization 

triggers a dendritic spike (Remy and Spruston, 2007). Recent results have also revealed 

that single bursts in DG granule cells may selectively alter specific functional 

components of the downstream circuit, such as feedforward inhibitory interneurons 

(Neubrandt et al., 2018). Experimental studies provide strong evidence that different 

brain circuits employ distinct schemes to encode and propagate information (Xu et al., 

2012): while information relay by isolated spikes is insignificant for the acquisition of 
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recent contextual memories in the hippocampus, it is essential for memory function in the 

medial prefrontal cortex. However, even within the hippocampus, different neuronal 

circuits may employ distinct coding schemes by relying on isolated spikes or bursts of 

spikes for execution of critical functions (Xu et al., 2012). Indeed, distinct sub-regions of 

the hippocampal formation show differential distributions of spiking, bursting, and 

stuttering firing pattern phenotypes (A12 Fig.).  

In this study, the phenotyping of most types of neurons was based on the 

quantitative analysis of data extracted from single (or limited numbers of) figures 

exemplified neuronal electrical activity in relevant publications. Until neuroscience 

switches to the systematic deposition of all firing traces recorded and analyzed for a 

given publication to public repositories, such representative illustrations, however 

limited, constitute a fairly accurate reflection of the communal knowledge about neuronal 

physiology in particular neural system. Thus, our approach is based on the statistical 

quantification of integrated data presented in the literature. 

The findings presented in this report resulted from the analysis of firing patterns 

in response to depolarizing current. To this date, this is by far the most common 

experimental protocol for characterizing the neuronal input-output function. 

Nevertheless, different types of neurons also exhibit distinct responses to 

hyperpolarization, as well as to its termination. For example, several neuron types 

described in Hippocampome.org demonstrate rebound spiking: CA1 Trilaminar (Sik, 

1995), CA1 Back-Projection (Sik, 1994), CA1 O-LM (Sik, 1995), CA1 SO-SO 

(Pawelzik, et al., 2002), MEC LIII Multipolar Interneuron (Kumar and Buckmaster, 
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2006), MEC LII Stellate (Canto and Witter, 2012), MEC LII Oblique Pyramidal (Canto 

and Witter, 2012). Such neuronal behaviors, owing to the hyperpolarization-activated 

cation current (h-current), may play an important role in hippocampal rhythmogenesis 

(Hasselmo, 2013) and could be locally modulated by activity-dependent changes in 

intrinsic excitability (Ascoli et al., 2010). It will therefore be interesting to extend the 

current firing pattern phenotyping by considering these additional neuronal properties in 

future work. 

The information on firing patterns of neuron types further expands the rich 

knowledge base of neuronal properties Hippocampome.org, which already contained 

information on morphology, molecular marker expression, connectivity, and other 

electrophysiological characteristics (Wheeler et al., 2015). Computation of the potential 

connectivity map of all known 122 neuron types by supplementing available synaptic 

data with spatial distributions of axons and dendrites enabled the reconstruction of a 

circuitry containing more than 3200 putative connections (Rees et al., 2016). 

Modern experimental techniques allow to conduct detailed morphological 

analysis (Deitcher et al., 2017) and digital reconstructions of neurons (Ascoli et al., 

2007), collect biophysical and electrophysiological data, and develop complex multi-

compartmental models in order to study synaptic efficacy (Komendantov and Ascoli, 

2009), synaptic (Poirazi et al., 2003) and dendritic integration (Eberhardt et al., 2019), 

dendritic input discrimination capabilities (Zippo et al., 2015), and other neuronal 

properties. The main feature of the Hippocampome.org knowledge base is general 

information about location of dendrites and axons in different sections and layers of the 
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hippocampus, which serves as the basis for neuron type classification. Similarly, we 

selected, extracted, and systematized basic electrophysiological parameters and firing 

pattern information, which gave us the opportunity for quantitative firing pattern 

phenotyping and comprehensive coverage of intrinsic diversity of neuronal types with 

simple models (Venkadesh et al., 2018). We developed compact multi-compartment 

models with up to four compartments, which will allow spatial segregation of synaptic 

integration and significantly reduce the computational cost of large-scale network 

simulations (Venkadesh et al., 2019). More detailed morphological, electrophysiological 

and molecular information can be found on the provided links to the cited articles, as well 

as to the models published in the ModelDB (McDougal et al., 2017). Among them are 

multicompartment models that consider the details of the morphology and biophysical 

properties, including distributions of specific ion channels and synaptic inputs, such as 

models of CA1 Pyramidal cells with non-uniformly distributed A-type potassium and 

hyperpolarization-activated channels (Migliore et al., 2018; Bezaire et al., 2016) based on 

experimental observations. 

This ongoing accumulation of data and knowledge makes Hippocampome.org a 

powerful tool for building real-scale models of the entire hippocampal formation, thus 

substantially expanding the potential scope of recent advances in this regard (McDougal 

et al., 2017). More generally, such knowledge bases are playing an increasingly important 

role in neuroscience research by fostering computational analyses and data-driven 

simulations. 
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