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ABSTRACT

A method of “learning from observation” 1is
presented which structures a collection of objects
into hierarchies of subcategories, such that each
subcategory is characterized by a conjunctive
description involving relations on selected object
attributes. The conjunctive descriptions sprouting
from each node are mutually disjoint and optimal as
a group according to a flexibly defined criterion.
Each level of the hierarchy 1s determined by an
iterative process which repetitively applies a
version of the A* search algorithm.

Experiments with the program CLUSTER/PAF
implementing the method indicate that the obtained
hierarchies represent solutions which have a simple
conceptual interpretation and which seem to agree
well with the way people structure objects.

I INTRODUCTION

The problem of intelligently structuring a
given collection of entities has practical
significance not only for applied sciences in
general, but also for designing and implementing AI
systems. For example, knowledge about the
structure underlying given data can help 1in
reducing the search space in problea solving, in
organizing large data bases (or rule bases), in
dividing knowledge acquisition tasks into useful
subcases, or in concisely characterizing a large

collection of objects for human understanding.

The problem of data structuring can be viewed
as a problem of “learning from observation”
("learning without a teacher”). A simple form of
data structuring is clustering, which determines a
hilerarchy of subcategories ("clusters™) within a
given collection of objects. In the traditional
methods of clustering, developed in  cluster
analysis and numerical taxonomy [6}, the basis for
forming subcategories is a "degree of similarity”
between objects: the subcategories are collections
of objects whose intra-cluster similarity is high
and inter-cluster similarity is low.

The traditional clustering techniques have one
major disadvantage. Since the only basis for
forming clusters is the degree of object similarity
(which is a measure dependent only on properties of
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compared objects), the resulting clusters do not
necessarily have any simple conceptual
interpretation. The problem of determining the
“meaning” of the obtained clusters is simply left
to the researcher. This disadvantage is
significant because a researcher typically wants
not only to find clusters, but also wants to find
an explanation of the clusters in human terms.

This paper is concerned with the problem of
determining a hierarchical structure underlying a
glven collection of objects, in which each node
corresponds to a  subcategory objects
characterized by a conjunctive concept (a logical
product of relations on selected object
attributes). Structuring objects into such
“conjunctive hierarchies” called conjunctive
conceptual clustering.

of

is

The 1idea of
general method
hierarchies was
discusses in
(implemented
illustrates
musicology.

conceptual clustering and a
for determining conjunctive
introduced in [3]. This paper
more detail one specific algorithm
in the program CLUSTER/PAF)  and
it by a practical problem found in

II THE SIMILARITY MEASURE VERSUS
CONCEPTUAL COHESIVENESS

The similarity between any two objects in the
population to be clustered is characterized in the
conventional data analysis methods by a single
number--the value of the similarity function
applied to symbolic descriptions of objects ("data
points™). These  descriptions are typically
vectors, whose components represent scores on
selected qualitative or quantitative variables used
to describe objects. Frequently a reciprocal of a
distance measure is used as a similarity function.

Since the similarity function is solely
dependent on the properties of individual objects,
the traditional methods are fundamentally unable to
capture the “Gestalt properties” of objects that
characterize a collection of objects as one whole
and are not derivable by considering objects
individually. In order to detect such properties,
the system must know not only the data points, but
also certain “concepts”. To 1llustrate this point,
let us consider a problem of clustering data points
in Figure 1.
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Figure 1. An illustration of conceptual clustering

A person considering the problem in Figure 1
would typilcally describe it as "two circles”.
Thus, the points A and B, although being very
close, are placed in separate clusters. Here,
human solution involves partitioning the data
points into groups not on the basis of palrwise
distance between points, but on the basis of
"concept membership.” This means that the points
are placed in the same cluster 1f together they
represent the same concept. In our example the
concept is a circle.
idea 1is the basis of conceptual
clustering. From the view of conceptual
clustering, the “similarity”™ between two data
points A and B, which we will call the conceptual
cohesiveness, depends not only on these points but
also on a set of concepts which are available for

This

describing A and B together. In this paper the
concepts into which objects are structured are
conjunctive descriptions involving relations on
selected object attributes.
IIT TERMINOLOGY
This section gives a brief overview of
terminology. A more detailed presentation is

contained in [3].

A. Variables and Their Types
Let Xj,X),...,X; denote discrete variables
which are selected to describe objects 1in the

population to be analyzed. For each variable a
value set (or domain) is defined, which contains
all possible values this variable can take for any
object in the population. We shall assume that the
value sets of variables xy, i=1,2,...,n are finite.
In general, the value sets may differ not only with
respect to their size, but also with respect to the
structure relating their elements (reflecting the
scale of wmeasurement). We distinguish between
nominal (qualitative), linear (quantitative), and
structured variables, whose domains are unordered,
linear, and tree ordered sets, respectively. The
structured variables represent  generalization
hierarchies of related concepts.

B. Event Space and Syntactic Distance

An event e 1s defined as any sequence of
values of variables xj,x9,...,xp. The set of all
possible events, I, is called the event space. The
syntactic distance, &6(ej,ej), between two events eg
and eg 1s the number of variables which have
different values in e; and ej.
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C. Selectors

A relational statement ([xy # Ry], where Ry,
called the reference, 1s a list of elements from
the domain of x4, and # stands for one of the
relational operators = # > <, 1is called a VL)
selector or, briefly, a selector. A selector
[x; # Rj] is said to be satisfied by an event

e = (X],X9,+4+,Xg), 1f the value of variable %y in
e, 1s in relation # with any element of Rj.

D. L-complexes and s-complexes

A logical product of selectors, written as a
concatenation of selectors, is called a VL; logical
complex (or briefly, an fR-complex). An event e is
said to satisfy an f-complex if values of variables
in e satisfy all the selectors in the f-complex.
For example, event e = (2,7,0,1,5,4,6,3) satisfies
the 2-complex [x1=2,3][%3<3] [x5=3..8] [xg=long]
(where x; 1s a mnominal variable, x3 and x5 are
linear variables and xg is a structured variable)

1f the value of xg in e (i.e., 3) is in the class
"long,"” as defined by the structure of the value
set of xg. An f-complex can be viewed as a
symbolic description of the events which satisfy

it. For example, the above Z2-complex 1s the
symbolic description of all events in which x; is 2
or 3, x3 is smaller than or equal to 3, x5 is
between 3 and 8, and xg has a value belonging to
the category "long"” (the values of any other
variables are irrelevant).

Any set of events for which there exists an
f2-complex satisfied by these events and only by
these events is called a set-complex or, briefly an
s-complex. Henceforth, 1f « is an f-complex, then
by & we will denote the corresponding s-complex,
i.e., the set of events described by the f-complex.
For simplicity, whenever the distinction between an
f-complex and an s-complex is not important, then
we will use just the term complex.
E. Sparseness

Let E be a set of events in 3, which represent
objects to be clustered. The events in E are
called data events (or observed events) and events
in T \E (i.e., events 1In g which are not data
events) are called empty events (or unobserved
events). Let & be an s—complex which covers
(includes) some data events and some empty events.

The number of data events (points) in & is denoted
by p(&). The number of empty events in & 1s called
the sparseness and denoted by s(&). The total

PS

number of events in & is thus t(&) = p(&) + s(&)-
The f-complex can be viewed as a generalized
description of the data events contained in the
corresponding s—-complex. The sparseness, as
defined above, can be used as a simple measure of
the degree to which the %-complex generalizes over
(or "“fits") the data events. If the sparseness is
zero, then the description covers only data events
("zero degree of generalization”). As the
sparseness of the complex increases, so does the

*VL; is the variable-valued loglc system one, which
uses such selectors ([2].



to which 1t generalizes over the data
events. A related but more precise measure of the
degree of generalization is the information-
theoretic uncertainty of the location of data
events in the complex [3].

degree

f} Star

The
against

(theoretical) star G(elF) of event e
event set F is formally defined [3] as the
set of all maximal under inclusion s-complexes
covering the event e and not covering any event in
F. (An s-complex & is maximal under inclusion with
respect to property P, if there does not exist an
s-complex &* with property P, such that & c &*.)
Such  maximal complexes, however, have high
sparseness and thus are not directly useable in our
approach. Therefore, the algorithm produces a
reduced star. The reduced star is obtained from
the theoretical star by transforming each complex
into a new one that covers the same observed events
but has the minimum sparseness (or, in general,
minimizes a certain criterion).

G. Cover
Let E1 and E; be two disjoint event sets,
Ey n E; = ¢. A cover COV(E;|Ep) of E; against Ep,

is any set of s—-complexes, {&j}jsJ, such that for
each event e ¢ Ej there is an s-complex &j, jed,
covering it, and none of the complexes &j cover any
event in Ej. Thus we have:

El ¢ U. & < I \Ep
=3 W
A cover in which all s-complexes are pairwise
disjoint sets 1is called a disjoint cover. If set

E; is empty, then a cover COV(E;[E,) = COV(E{l¢) is
simply denoted as COV(E;). A partition of data
events into k subsets, each contained in one set-
complex of a disjoint cover is called a conjunctive

k-partition. The corresponding 2-complexes
constitute conjunctive descriptions of these
subsets. A simple measure of the "fit" of a k-

clustering to the data events is the sparseness of
the k-partition defined as the sum of the
.sparsenesses of the complexes in the partition.
IV THE METHOD AND ITS IMPLEMENTATION

This section describes the algorithm for
conjunctive conceptual clustering implemented in
program CLUSTER/PAF. The algorithm consists of an
inner layer and an outer layer, described in

sections IV-A and IV-C, respectively.

A. Inner layer (algorithm PAF)

The inner layer of the algorithm (called PAF)
was  Introduced in [3]. Its function can be
described as:

Given: e a collection of events to be clustered,

® the number of clusters desired (k),

e the criterion of k-clustering optimality,
Find: a conjunctive k-partition of the collection

of events that is optimal according to
the criterion of k-clustering optimality.
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B.

The flow diagram of the algorithm PAF is shown
in Figure 2.

E - a set of data events
k - the desired no. of clusters
A - the evaluation functional

W
Choose k "seed" events from E
)

N\

Determine the bounded reduced star
of each seed against remaining seeds.
Select from each star one complex, so
that the obtained collection, P, of k
complexes will be the "best" disjoint
cover of E,

Given:

4
J
Is the termination
criterion applied
to P satisfied?

Is iteration

odd or even
2

Choose k new seed
events which are
extreme in the
complexes in P

1

Choose k new seed

events which are

central in the

complexes in P
—

I

The flow diagram of the inner
layer of the PAF algorithm

Figure 2.

PAF works iteratively, starting with a set of k

initial, randomly chosen seed events ("seeds") from

the given collection of events. The seeds are used

to determine a set of complexes, which constitute

the first conjunctive k—partition of the event set.

Subsequent iterations consist of two repeated

steps:

1 -- given k complexes, determine the
(clusters) covered by them,

2 —- given clusters of data events, determine new
"seeds,"” and then a new set of k complexes (a
conjunctive k-partition).

data events

The process continues until a termination criterion
is satisfied (a local optimum is achieved). The
general structure of the algorithm is based on the
so—called dynamic clustering method [1].

Generating a Efpartition from "seeds”

The process of determining a k-partition from
seeds involves determining a reduced star of each
seed agalnst other seeds, and then selecting
complexes fror the stars and modifying them in such
a way that they constitute a k-partition. The
selection is done by a best-first search method.



The existence of such a solution is guaranteed by
the "sufficlency principle” proved in [31.

The theoretical star G(e|F) has been defined
in section III as the set of maximal complexes
covering event e and no events in the set F. Here
is a simple algorithm to produce such a star.
Assume first that F={e;}, ejfe. To generate the
star G(elel) one determines all variables in e that
have different values in ej. Suppose, with no loss

of generality, that they are Xj,Xp,..-,Xk, and
that e = (rl,rz,...,rk,...,rn). Assuming that the
variables are nominal, the complexes of the star

G(eley) are [x1 # ril, i=1,2,...,k, since these
are the largest complexes which cover e and do not
cover ej. The number of complexes 1n a star
G(elF), when F is a single event, is at most n (the
number of variables), and at least 1, since ejfe.
Assume now that F = {ep,ep,...,egl. A star G(el|F)

is constructed by building first stars G(eley),
i=1,2,440,8, and then set-theoretically
multiplying these stars by each other, using

absorption laws to eliminate redundancy.

This theoretical star is replaced by a reduced

star in which complexes cover the same observed
events but have the minimum sparseness. To do
that, for each complex of the theoretical star

observed events contained in 1t are determined.
The 1ist of all values taken by each attribute in
the observed events is used as the reference (see
section IIT) of the selector in the corresponding
complex of the feduced star (i.e., a
operation 1is performed, as described in [3]). If
the reference is equal to the value set (or implies
the value set in the case of linear or structured
attributes) then the selector is removed.

The upper bound on the size of a star is n@,
where n is the number of variables and m is the
number of events in F. Absorption laws will
usually eliminate many redundant complexes, but the

size of a star may still become unmanageable.
Therefore a bounded star is used, which has a
specified upper limit, MAXSTAR, on the number of

complexes it may contain. Whenever a star exceeds
this number, the complexes are ordered in ascending
order according to sparseness (or, in general, to
any assumed clustering optimality criterion; see
end of this section) and only the first MAXSTAR
complexes are retained.

The above two steps produce a bounded

star. For simplicity, from now om by star and the
notation G(e|F) we will mean a bounded reduced
star.

At each iteration of algorithm PAF, k stars

are produced, each of a single seed event against
the remaining k-1 seed events. From each star one
complex is selected in such a way that the
resulting set will comsist of k disjoint complexes
(be a conjunctive k-partition), and be optimal
according to the assumed criterion. If un-bounded
stars were used, each could contain up to N=n(k-1)
complexes, and therefore up to Nk gets of complexes
would have to be inspected in order to determine
the optimal k-partition. To combat this immense
search problem the best-first search strategy is

refunion

reduced
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used. This search uses a form of algorithm A*
(Nilsson [5]).
Assume that k events ("seeds”) ey,e3,.+:,€k>

been selected from the collection E and k

Gy = G(ejlremaining seeds)  have been
generated. For simplicity, we will assume that the
criterion of clustering optimality is simply to
minimize the total sparseness of complexes in the
k-partition. At each level of the search tree, a
complex is selected from the star corresponding to
this level and is added to the partial partition (a
sequence of fewer than k complexes). The selected
complex 1s the one which most likely will 1lead to
the optimal k-partition. This procedure avoids
testing (possibly very many) clusterings, for which

have
stars

{t 1s possible to predict that they will not be
optimal.
Figure 3 illustrates the search process.
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Figure 3. ‘A search tree illustrating algorithm PAF

Branches emanating from a node at level 1 represent

complexes in star Gj. A path from the root to a
node at level 1 represents a partial k~partition
with { complexes. When i=k, the path represents a

complete k-partition.

In the first step, the sequence of complexes
af, «9,..-, of 1is determined, where af 1is the
complex in star Gy with the smallest sparseness.

In the next step, node (1) (Figure 3) is expanded
by pairing the "best” complex in Gy, i.e., af, with
every complex in Gjp. If the complexes lntersect, a
special procedure NID modifies them so that they
become disjoint. If NID cannot make the complexes
disjoint, the path is abandoned (procedure NID 1is
described in detail in [3]). Every so obtained
palr of complexes is a partial k-partition with 1=2

complexes. This process is repeated for the other
complexes in Gy, in the order of their increasing
sparseness. Nodes corresponding to all these

clusterings (first generation nodes) are
value of the evaluation function:

assigned a
f = h+ g, where



h 1s 1s the sparseness of the obtained partial
disjoint cover and g is the expected cost of the
remainder of the k-clustering to be determined (the
sum of the sparsenesses of the complexes along the
path from node i+l to leaf node k).

A lower bound for g is determined on the basis
of complexes af generated in the first step. If
any of these complexes Intersect, procedure NID
transforms them into certain "core" complexes, of
which it can be proven [3], that the sum of their
sparsenesses 1s a lower bound on the sparseness of
the optimal k-partition constructed from complexes
of the stars.

According to the algorithm A*, the node to be
expanded at the next step 1s the one which is
assoclated with the lowest value of the evaluation
function. The order of expanding nodes in the tree
in Figure 3 is shown by numbers 1in circles. The
value of the evaluation function associlated with
each node is given in parentheses. If complete
(not-bounded) stars are used, this algorithm will
produce the optimal k-clustering (i.e., in this
case, a  k-clustering with the minimum total
sparseness).

The method can simultaneously use not Just
one, but several criteria of clustering optimality.
In addition to sparseness, these other component
criteria include [4]:

[} maximizing inter-cluster differences,

3 maximizing essential dimensionality,

. maximizing simplicity of cluster
representations, and

) maximizing uniformity of cluster

populations.

€. Outer layer of PAF

As described above, the inner layer (PAF)
determines an optimal or suboptimal k-clustering of

a given collection of events. The outer layer
performs two loops, one iterative and one
recursive. The iterative loop repeats algorithm
PAF for a sequence of values of k (say,
k=2,3,...,7) 1in order to find the value of k for
which the most desirable clustering of the given
event set 1s obtained. It is assumed that

interesting solutions should have only a few (e.g.,
less than 7) different clusters.

The recursive loop applies the
recursively iin order to create
clusterings. 1In the first step, the process is
executed for the initial event set E, and a
collection of subcategories (clusters) of E 1is
determined. Consecutive steps repeat the same
operation for each event set (cluster) obtained in
the previous step.

above process
a hierarchy of

The obtained hierarchy grows
fashion wuntil a "continuation-of-growth” criterion
fails. This criterion requires that the "fit"
(measured by sparseness) of the complexes to the
events they describe be better by a certain
threshold at each next level of the hierarchy.
When this criterion is not met, the latest obtained
subcategories become leaves of. the hierarchy.

in a top-down
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has been
written in

The algorithm described above
implemented in program CLUSTER/PAF,
PASCAL.

V A MUSICOLOGICAL EXAMPLE

This example illustrates an application of the
described method to structuring a collection of one
hundred old Spanish folksongs.

The folksongs were characterized by 22
musicological attributes, such as degree of rubato
(rhythmic freedom), tonal range, style (monophonic
vs. polyphonic), etc. The attributes and the data
for the experiment were provided by musicologist
Pablo Poveda who studied this problem using
traditional methods of numerical taxonomy [6]. The
results obtained by those methods, however, were
very difficult to interpret because they do not
provide any description of the generated clusters.

The top five levels of the conjunctive
hierarchy of folksongs produced by CLUSTER/PAF are
presented in Figure 4. The criterion of clustering
optimality was “"minimizing the total sparseness.”
The branches in the hierarchy have been labeled
with the particular characteristic of the folksongs

which discriminates between the left and right
subcategories. The number of clusters (k) formed
at each level was 2 to meet a requirement imposed

by the musicologist.

Tips of the hierarchy marked by 15095 ev 0,017
represent groups of songs (the number of songs is
indicated above the tip), whose complete
description consists of properties indicated along
the path from the root to the tip, and some
additional properties not shown 1in the figure.
(These additional properties are less relevant for

classifying the songs, as they occur at the lower
levels of the hierarchy.) For example, the group
denoted by @y has the following complete
description:

[sty1e=monophonic][tubato=low][tonal range=low]

[type=secular][instruments=no] (A)
A

[no. of tones=5..8][panegyric=no][tension=1..3]

[no. of phrases=l..2][melisma=0..2][dance=no] (B)

Part A contains properties shown in the hierarchy

(Figure 4) while part B contains additional
properties selected by the program from the
complete set of attributes.

One interesting aspect of the determined

hierarchy 1is that the value sets of some variables
have been split into ranges. These ranges can be
considered as new constructed (generalized) values
of variables. For example, the range of the degree
of "rubato” has been split into two ranges 0..3 and

4..5, which can be described as "low” and “high,"
respectively (see complex as) - Similar
partitioning of value sets into ranges of values
was found for the degree of embellishment, the

degree of melisma, the tonal range, and the number
of tones in the song. It should be noted that
although the nodes in this particular hierarchy are
marked by single attributes, the method, in



general, labels the nodes by products of
attributes.
VI SUMMARY

The described method for conjunctive
conceptual clustering determines a hierarchy of
subcategories characterizing a collection of
objects. The subcategories are formed in such a
way that an appropriate generalization of the

description of each subcategory yields a single
conjunctive statement. The difference between this
method and methods of numerical taxonomy 1s in
extending the concept of the measure of similarity
into a more general notion of “conceptual
cohesiveness”. Such a measure takes into
consideration mnot only the distance between the
objects, but also their relationship to other
‘events and, most importantly, their relationship to

some predetermined “concepts” (in our case,
conjunctive statements). The musicological example
described 1in the paper (as well as other

experiments performed with CLUSTER/PAF) indicate
that this method has the potential to be a useful
new tool for analyzing data.
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Figure 4. A classification hierarchy of 100 Spanish folksongs

found by program CLUSTER/PAF.
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