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Dissertation Director: Dr. Dimitrios A. Papaconstantopoulos

In this dissertation I performed first-principles calculations of the electronic structure

for Iron-Selenium-Tellurium (FeSeTe) systems and applied the results to study supercon-

ductivity in these materials. This dissertation discusses new first-principles calculations

based on the Linearized Augmented Plane Wave (LAPW) method of Density Functional

Theory (DFT) used in the Gaspari-Gyorffy-McMillan (GGM) theories of superconductivity.

The LAPW results were also used to construct Tight-Binding (TB) Hamiltonians using the

Naval Research Laboratory TB (NRL-TB) method. The code was expanded to include

angular momentum contribution to the fits, to improve total and decomposed Density of

States (DOS). Final fits for FeSe and FeTe showed total energy and total DOS calculations

to compare well with the LAPW results up to the eighteenth band. These fits were further

used to develop a computer program to treat disorder effects via the Coherent Potential

Approximation (CPA) to the TB method. The new code incorporated diagonal disorder in

the CPA and combined with the Virtual Crystal Approximation to study various concen-

trations of FeSexTe1−x, where random substitutions of Se by Te were taken into account.

Calculated DOS results with the CPA show similar features to the calculated LAPW DOS

of FeSe0.50Te0.50 by a supercell approach.



The results presented show that the GGM theories based on LAPW results can find

good agreement with experimentally measured superconductivity temperatures, Tc. Specif-

ically, we calculate Tc’s of 5.4 K and 14.5 K for FeSe and FeSe0.50Te0.50, respectively.

The corresponding calculated electron-phonon coupling constants, λ, are 0.64 and 0.97,

respectively. This suggests that the electron-phonon coupling interaction of the Bardeen-

Cooper-Schrieffer (BCS) theory is an important mechanism in the superconductivity of

these materials.



Chapter 1: Introduction

In the field of computational materials science, a prime objective is to perform modeling and

simulations via first-principles calculations. Such calculations are based on the principles

of quantum mechanics and are performed using numerical and computational techniques of

the Density Functional Theory (DFT), for which its main inventor Walter Kohn received

the Nobel prize in Quantum Chemistry in 1998. DFT reduces an insoluble many-body

problem to a tractable one-electron theory, based on the discovery that the total energy

of an electron system is a functional of its electronic charge density. In the early 20th

century Niels Bohr proposed his empirical model to explain the discrete energy levels of the

hydrogen (H) atom. Subsequently, the introduction of the Schrödinger equation led to the

realization, that with the exception of the H atom, this equation can only be solved with

numerical methods.

Schrödinger’s equation can be treated as a system of linear equations by expanding

the wave functions. This allows us to solve Schrödinger’s equation with numerical band

structure techniques. Two such techniques are used in this dissertation. The first is the

Linearized Augmented Plane Wave (LAPW) method, which is a DFT-based all-electron

technique that expands the wave functions into augmented plane waves. This method

is one of the most accurate methods for calculating band structures of materials. The

Tight-Binding (TB) method is the second technique used in this dissertation. This method

expands the wave functions into linear combinations of the atomic orbitals. TB uses first-

principles results to fit parameters that describe these atomic orbitals. Band structure

techniques also allow for the calculation of superconductivity properties of materials.

Bardeen, Cooper, and Schrieffer developed the first comprehensive theory of supercon-

ductivity in 1957, coined the BCS theory[1]. This theory states that electrons can form

into Cooper pairs mediated by lattice vibrations. The interaction between the electrons
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and lattice vibration is known as electron-phonon interactions. Their work won them the

Nobel prize in physics in 1972, for successfully describing all known superconductivity. In

1986, what are now known as high-temperature superconductors were discovered[2]. These

materials can not be explained solely through electron-phonon interactions. Today compu-

tational methods based on the BCS theory, such as the Gaspari-Gyorffy-McMillan (GGM)

theories of superconductivity, are used to understand superconductivity of most materials.

This dissertation discusses new contributions to computing the electronic structure of

superconductors. Specifically, we performed first-principles, TB and Coherent Potential

Approximation (CPA) calculations of the 1-1 type Fe-based superconductor, FeSexTe1−x.

I developed code based on the CPA, using the TB parameters to study a range of concen-

trations for this superconductor. First-principles calculations were performed using DFT

with the LAPW method. The TB method was done using the Naval Research Laboratory

implementation[3].

FeSeTe has been studied previously by others[4–6] using first-principles methods. These

studies suggest that the electron-phonon coupling mechanism of the BCS theory is inade-

quate in describing the superconductivity of this material. All previous work used linear-

response methods to calculate the electron-phonon coupling. In this dissertation, I show

that the coupling calculations based on the GGM theories of superconductivity find good

agreement with experimental results for FeSe and FeSe0.5Te0.5 under ambient conditions.

As opposed to previous results, my calculations suggest that the electron-phonon coupling

mechanism of the BCS theory is important in these materials.

Furthermore, this work provides the first TB parameters for the FeSe and FeTe systems.

The fitted parameters are able to reproduce total energies and total DOS comparable to the

first-principles results. Using these TB parameters, the virtual crystal approximation (VCA)

and CPA were applied using code that I developed for this work. The diagonal disorder CPA

calculations provide comparable results to the various first-principles supercell calculations

of FeSexTe1−x, where x = 0.75, 0.50, and 0.25.
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In Chapter 2, I discuss my previous research, showing that the GGM and general elec-

tronic structure calculations predict expected results for the alkali metals and inert gases.

In Chapter 3, I discuss the general first-principles calculations and results of FeSe, FeTe and

several concentrations of FeSexTe1−x. Chapter 4 is an extension into the superconductivity

first-principles calculations, specifically. Chapter 5 discusses the TB method and its results

for FeSe and FeTe. Finally, I discuss the CPA as applied to my TB results, and compare

to our first-principles calculations in Chapter 6.
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Chapter 2: Augmented Plane Wave Theories and

Preliminary Work

2.1 First-Principles Theory

2.1.1 Applied Density Functional Theory

Schrödinger’s equation, given by equation (2.1), is the basis of all first-principles calculations

for the properties of materials.

Hψ(r) = [−∇2
i + V (r)]ψi(r) = εψ(r) (2.1)

H is the Hamiltonian, ψ is the wave function, V (r) is a potential function with respect to

distance r, and ε is eigenenergy. All first-principles calculations for this paper were based

on the Density Functional Theory (DFT). The theory was developed by Kohn, et. al.[7]

to include total energy in first-principles calculations. The method has two main criteria.

First, the total energy, E, is given as a function of electronic density, ρ. Secondly, the

ground state density minimizes E(ρ). Here, ρ is the electronic density given by ρ =
∑
ψ∗ψ.

The electronic density is also coupled with a form of Poisson’s equation

∇2Vc(r) = −8πρ(r), (2.2)

where Vc is the Coulomb potential. An exchange-and-correlation term is added to obtain

the total potential of the system, V (r) = Vc(r) + Vxc(r), which appears in equation (2.1).

The evaluation of Vxc(r) is discussed in the next section. In DFT, the full total energy

expression is given by

E(ρ) = EH(ρ) + Exc(ρ) , (2.3)
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where

EH(ρ) = Ek(ρ) + Ee−e(ρ) + En−e + En−n(ρ). (2.4)

Here EH is the Hartree energy, Ek is the kinetic energy of the system, Ee−e is the coulomb

interaction, En−e is the interaction between electrons and nuclei and En−n is the interactions

between nuclei. The Exc in equation (2.3) is related to the Vxc potential by Vxc(r) = ∂Exc(ρ)
∂ρ .

Vxc and Exc are the exchange-and-correlation potential and energy, respectively, and are

given by an energy equation that is determined by approximations such as those described

in the following section.

2.1.2 Local Density and Generalized Gradient Approximations

There are many approximations one can use to calculate the exchange-and-correlation com-

ponents. This research focuses on two such approximations, Local Density Approximation

(LDA) and Generalized Gradient Approximation (GGA). Both approximations are a func-

tion of the electronic density, but the GGA is also a function of its gradient. The exchange-

and-correlation energy equations for LDA and GGA approximations, respectively, are given

by

ELDAxc (ρ) =

∫
d3rρ(r)εxc(ρ(r)) (2.5)

EGGAxc (ρ) =

∫
ρ(r)εGGAxc (ρ(r), |∇ρ(r)| ,∇2(ρ(r)))d3r, (2.6)

where εxc is the exchange-and-correlation energy per particle.

One of the first exchange potentials developed was known as the Xα method[8]. This

“exchange” potential is given by

Vex(r) = α(
3ρ(r)

8π

1/3

= αUex(r), (2.7)
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where α is usually varied between 2/3 and 1 to match the Hartree-Fock total energy for the

atom, Uex. Hedin and Lundqvist[9] improved upon this potential by adding a “correlation”

term. This formalism of the LDA exchange-and-correlation potential is given by

Vxc(r) = αβ(rs)Uex(r), (2.8)

where α = 2/3 is the Kohn-Sham parameter and β is the correlation enhancement factor

β(rs) = 1 +B ln(1 +
1

x
). (2.9)

Here, rs = (3/4πρ(r))1/3, x = rs/21 and B = 0.7734.

2.1.3 Additional Approximations

Another approximation that was used, in conjunction with LDA or GGA, is the Born-

Oppenheimer approximation[10]. This approximation considers the nuclei to have zero

velocity, in other words they are frozen at the locations they would occupy in a crystal

at T = 0 K. The approximation applies since the mass of the electron is approximately

1/2000th the mass of a proton. Thus, electrons have little influence on the overall location

of the nuclei in the systems. This allows for the separation of solving the electronic motion

and nuclei motion. For elements heavier than the 3d transition metals, the Hamiltonian

must include relativistic components, as well as the traditional non-relativistic Hamiltonian.

This relativistic Hamiltonian is

H = HNR −
p4

8m3c2
+

h2

8m2c2
∇2V +

h2

4m2c2r

1

r

dV

dr
(σ · L) , (2.10)

where the first term, HNR, is the non-relativistic Hamiltonian, the second term, p4

8m3c2
,

accounts for the relativistic effects on the kinetic energy and is known as the mass-velocity

term, the third term, h2

8m2c2
∇2V , is called the Darwin term and corrects for the centrifugal

6



potential, and the last term, h2

4m2c2r
1
r
dV
dr (σ · L), represents spin-orbit coupling. For some

systems, the spin-orbiting effects can be ignored, if they have little influence on the occupied

states. For example, spin-orbit effects are negligible for the alkali metals[11]. In this work

we have also neglected spin-orbit interactions as having small effect on the Density of States.

2.1.4 Wave Function Expansions and Augmented Plane Wave Methods

Solving equation (2.1) requires the use of wave functions, which can be approximated

through various polynomial expansions. One such expansion is used in the Augmented

Plane Wave (APW) method, which was proposed by Slater in 1937[8, 12]. This method,

when proposed in conjunction with the Muffin-Tin Approximation (MTA), is called the

MT-APW method. The MT-APW method considers that each atomic site is surrounded

by a sphere, or “muffin-tin”. The muffin-tins are touching-spheres of radius rmt. Inside

these spheres we expand the wave functions in a spherically symmetric form,

ψmt(r) =
∑
lm

AlmYlm(r)ul(r, ε), r ≤ rmt, (2.11)

where Ylm are the spherical harmonics and Alm coefficients are determined by “augmented”

boundary conditions. These boundary conditions make the wave functions inside the muffin-

tin spheres continuous with the plane wave functions in the interstitial region,

ψinterstitial(r) = ei(G+k)·r, r ≥ rmt, (2.12)

where G is the reciprocal lattice vector. The ul in equation (2.11) is the radial wave function

and is solved by the radial equation at each k-point in the Brillouin zone,

− 1

2r2
d

dr

(
2r2

dul(r)

dr

)
+

[
l(l + 1)

r2
+ V (r)− εl

]
ul(r) = 0. (2.13)
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The potential inside the muffin-tin is also a spherically symmetric function V (|r − rmt|),

while the potential outside is a constant, Vc. The MTA leads to very accurate results in

close-packed structures such as fcc, bcc and hcp, where the packing ratio of the spheres is

high.

A similar method, the Linearized Augmented Plane Wave (LAPW) method[13], removes

the MTA and uses a general potential that is not spherically symmetric inside the spheres

and not constant outside. Also, the LAPW method linearizes equation (2.11) by adding an

additional energy derivative, such that equation (2.11) becomes

ψmt(r) =
∑
lm

[Almul(r, ε) +Blmu̇l(r, ε)]Ylm(r), r ≤ rmt . (2.14)

The u̇l(r, ε) in equation (2.14) is the energy derivative of the radial wave function, and Alm

and Blm are determined by requiring that equation (2.14) equals equation (2.12) at r = rmt.

Furthermore, the radial equation (2.13) becomes

[
− d2

dr2
+
l(l + 1)

r2
+ V (r)− εl

]
ru̇l(r) = rul(r). (2.15)

These methods allow scientists to calculate values of total energy, Density of States,

energy bands, phonon frequencies, specific heat, elastic constants, and many more electronic

and mechanical properties. These results usually compare very well with experimental

results.

2.1.5 Total Energy

The APW/LAPW converged electronic densities, in conjunction with equation (2.3), deter-

mine the total energy of a system for a given volume. This is performed with calculations

for multiple volumes using one of the DFT methods discussed above. An expansion of the
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total energy is done via the Birch-fit formula[14],

E(V ) =

n∑
i

aiV
2i/3, (2.16)

where ai are the expansion coefficients and n is the order of the fit. Equation (2.17) provides

the expanded version of equation (2.16) to third order.

E = E0 +
9

8
B0V0

[(
V0
V

2/3
)
− 1

]2
+

9

16
B0V0(B

′
0 − 4)

[(
V0
V

4/3
)
− 1

]3
(2.17)

E0 is the equilibrium energy, V0 is the equilibrium volume, B0 is the equilibrium bulk mod-

ulus and B′0 is the pressure derivative of the bulk modulus. Third order expansions are

sufficient for most systems. However, second order expansions are often found to accurately

give the lattice parameter at equilibrium. In some cases, higher order expansions are neces-

sary. The bulk modulus is represented by the second derivative of the energy with respect

to volume, given by

B = −V d
2E

dV 2
, . (2.18)

2.1.6 Elastic Constants

The calculations of elastic constants can be complicated and are explained by Mehl, et.

al.[15]. The description of cubic based elastic constant calculations are explained in some

detail. For cubic systems, the overall symmetry reduces the elastic constant matrix, Cij , to

three independent components, C11, C12, and C44. With an orthorhombic strain, e, applied

to the cubic structure, the energy becomes strained and can be expressed by

E = E0 + V (C11 − C12)e
2, (2.19)
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where E0 is the undistorted energy and V is a fixed volume for the unit cell. Since the

distorted energy has a linear dependence on the squared strain, the slope of the function is

the C11−C12 relation. Similarly, C44 can be found through another linear relation, applying

a monoclinic strain

E = E0 +
1

2
V C44e

2. (2.20)

Furthermore, the bulk modulus is related to the C11 and C12 elastic constants by

B =
1

3
(C11 + 2C12). (2.21)

A structure is mechanically stable if the following criteria are met:

B =
1

3
(C11 + 2C12) > 0

C11 − C12 > 0

C44 > 0.

2.1.7 Density of States

The Density of States (DOS) is defined as the number of states per unit of energy. Deter-

mining the DOS requires the interpolation of first-principles results in k-space. One way to

calculate the DOS is the tetrahedron method[16], in which the eigenvalues are interpolated

linearly between four k-points placed on tetrahedron vertices. The eigenvalues are given by

ε(~k) = ε0 +~b · (~k − ~k0) , (2.22)

where ε0 and ~b are determined by the energies at the vertices. This method was used in

this research for calculations of the DOS in cubic structures.

Another general method used to calculate the DOS was employed for non-cubic system[3,
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17]. This method is based on a Fermi-style smearing function

f(x) =
1

1 + eβx
, (2.23)

where β is 1/T , such that T is the Fermi temperature. The first derivative with respect to

x is given by,

f ′(x) = −βeβxf(x)2. (2.24)

The DOS at a given Fermi energy, EF , can then be calculated by the formula

N(EF ) =

∫ EF

−∞
ρ(e)de . (2.25)

Here, ρ(e) is the electronic DOS at the energy, e. Thus, ρ(e) can be written as

ρ(e) = −
nk∑
k=1

w(k)
ne∑
i=1

f ′(ε(i, k)− EF ) . (2.26)

These equations can be generalized to any energy value, not just the Fermi energy.

The calculated DOS at the Fermi level can then be used to calculate other parameters,

such as the specific heat. This is expressed by

C = γT + αT , (2.27)

where γT represents the electronic contribution and αT the phonon contribution. γ is

known as the electronic specific heat coefficient and is proportional to the total DOS at the

Fermi level

γ = 0.1734(1 + λ)N(EF ) , (2.28)

where N(EF ) is expressed in units of states/Ry per atom for both spins, γ is in units
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mJ
mol deg2

, and λ is the electron-phonon coupling constant. The DOS at the Fermi level can

be further used with the electron-phonon coupling constant, to provide superconductivity

properties based on the BCS[1] theory.

2.2 Preliminary Calculations - Electronic Structure of Fran-

cium and the Alkali Metals

2.2.1 Introduction

The Alkali metals are given as the first group in the periodic table and are lithium (Li),

sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and francium (Fr). These ma-

terials all contain one electron in their valence shell. This electronic configuration makes

them highly reactive in water. Fr is the rarest material on the planet, with less than 30 g

found in the Earth’s crust at any given time. Its longest half-life of all its isotopes is about

20 minutes and is very radioactive, making this material extremely hard to study experi-

mentally. So far the only experimental study of Fr involved optical traps and was unable

to measure any of the structural or electronic structure properties of the material[18].

In our previous work, we presented the first and only band structure calculation of Fr,

while for the other alkali metals discussed within had previous theoretical studies[11]. Our

calculations were performed using the LAPW with both LDA and GGA functionals. The

alkali metals using the LDA functional were previously studied by Sigalas, et. al.[19, 20].

The Fr results were published in the International Journal of Quantum Chemistry[11] (see

Appendix A).

2.2.2 Computational Details of Alkali Metal Calculations

The LAPW method with both LDA in Hedin-Lundqvist form and GGA of Perdew-Wang

were used to study the electronic structure of Fr and the other alkali metals using the

NRL-LAPW code[21, 22]. (This code was originally written by Krakauer and Singh and

modified by Mehl.) All calculations were performed with one electron in the valence shell.
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This means that the core states consisted of the electronic configuration of the inert gas

before the alkali metal. For example, Na used four core states (equilibrium state of Ne.)

Thus, Fr used 24 core states (equilibrium of radon) with one electron in the valence shell

of the calculations. The muffin-tin radii were kept constant at a specific value for each

individual element’s total energy calculations. For band structure calculations, the muffin-

tin radii were varied to allow touching muffin-tin spheres for each volume. The rkmax value

(8.5), basis set size (5x5x5) and local orbital energies (−1.8 Ry for s and −0.5 Ry for p

states) were kept constant for all calculations. A k-point mesh of 55 and 89 points in the

irreducible Brillouin zone were used for the bcc and fcc calculations, respectively. For Fr,

these meshes were increased up to 285 and 505 k-points for bcc and fcc, respectively to check

for convergence. The hcp calculations of Fr required another k-point mesh of 32x32x16 per

direction was used. Another set of total energy calculations were performed for Fr with 22

core states, seven valence electrons, the local orbitals and 6s and 6p states treated as bands

to obtain very accurate total energy values. The fixed muffin-tin radius of 4.3 a.u. was used

for the Fr total energy calculations.

2.2.3 Total Energy Calculations of the Alkali Metals

Total energy calculations were performed for the alkali metals using the LDA and GGA

functionals. Calculations were performed for the bcc and fcc structure for the alkali metals,

with additional hcp lattice structure based calculations for Fr. Table 2.1 shows the total

energy, structural lattice parameters and bulk moduli of the alkali metals using the two

functionals. The total energy is zeroed at the lowest calculated total energy of the two or

three lattice structure types. Experimental results of lattice parameters and bulk moduli

are also included for comparison. It is important to note that all the alkali metals are

experimentally found to be in the bcc structure under equilibrium conditions. However, as

shown in Table 2.1, these calculations (and those of other workers) with the exception of

Li give fcc as the ground state structure. This is in someway a failure of DFT due to the

softness of these materials, which result in very small differences between total energies as
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discussed below.

Table 2.1: Calculated and experimental structural parameters of the Alkali metal. Calcu-
lations were performed using the LAPW method with LDA and GGA functionals. Experi-
mental values were taken from Kittel[23].

Generalized Gradient Approximation Local Density Approximation

Tot. Energy Lat. Const. Bulk Mod. Tot. Energy Lat. Const. Bulk Mod.
(mRy) (a.u.) (MBar) (mRy) (a.u.) (MBar)

Lithium (Li)

bcc 0 6.410 0.296 2.8 6.380 0.148
fcc 0.86 8.134 0.196 0 7.950 0.156
exp 6.597 0.116 6.597 0.116

Sodium (Na)

bcc 0.08 7.964 0.076 0.96 7.690 0.087
fcc 0 10.040 0.076 0 9.680 0.090
exp 7.984 0.068 7.984 0.068

Potassium (K)

bcc 0.23 10.432 0.029 0.75 9.540 0.047
fcc 0 13.379 0.025 0 12.010 0.046
exp 9.877 0.032 9.877 0.032

Rubidium (Rb)

bcc 0.04 10.753 0.032 0 10.130 0.042
fcc 0 13.563 0.031 0.37 12.820 0.049
exp 10.558 0.031 10.558 0.031

Cesium (Cs)

bcc 0.23 11.661 0.023 2.2 10.760 0.020
fcc 0 14.740 0.023 0 13.880 0.033
exp 11.423 0.020 11.423 0.020

Francium (Fr)

bcc 0.29 11.702 0.014 0.22 10.842 0.017
fcc 0.05 14.815 0.015 0.20 13.809 0.022
hcp 0 a = 10.491 0.011 0 a = 9.785 0.021

c = 17.132 c = 15.657
exp (0.020) (0.020)
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Table 2.1 shows that the LDA functional underestimates the structural lattice parame-

ters for all the alkali metals. The GGA functional tends to overestimate these parameters

for most of the alkali metals, with the exception of Li and Na, which it underestimates. All

calculations, with both functionals, overestimate the experimental bulk moduli. Both the

LDA and GGA functional calculations are unable to predict the correct lattice structure

type of the materials. However, the GGA functional is able to predict the correct lattice

structure of Li. Moreover, the GGA functional results have much less energy differences

between the two structure types. It is also worth noting that the differences between these

energies are on the order of less than 1 mRy, which is within the computational accuracy

of the code.

Total energy calculations were also performed for the hcp structure of Fr. Unlike the

bcc and fcc cubic systems that require only the a parameter, the hcp structure has two

structural lattice parameters, a and c. For the fcc and bcc structures, simply varying the

a parameter is enough to find the calculated equilibrium of a system. Therefore, to find

the true equilibrium of the hcp total energy calculations, optimization of the c/a ratio and

volume must be performed via energy minimization. It was found that a c/a ratio of 1.60 was

calculated via optimization of LDA calculations, while the ideal ratio (c/a = 1.633 =
√

8
3)

was found for the GGA optimized calculations.

Figure 2.1 provides a graphical representation of the calculated bcc results with GGA

functional of the alkali metals. The lattice parameters are given as the solid (green) line,

while bulk moduli are given as a dashed (blue) line. Two different trends appear in this

figure. First, the lattice parameter a increases with the increase of atomic number. The

other is the opposite trend for the bulk moduli, where the values decrease with increasing

atomic number. The calculations for Fr seem to follow both of these trends. Spin-orbit

calculations were also performed, but had little effect on the total energy results. It seems

that the GGA functional provides an overall better description of the total energy related

parameters of the alkali metals. The results shown in Figure 2.1 are in agreement with

experiment, as was presented in Table 2.1.
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Figure 2.1: Calculated structural lattice parameters and bulk moduli of the bcc alkali metals
using the LAPW with GGA functional.

Figure 2.2 shows the Birch fitted total energy curves of Fr for the three structural lattice

types using the GGA functional. The lowest total energy is found for the hcp structure,

but only by 0.05 mRy for fcc and 0.25 mRy for bcc. This is consistent with the description

of Table 2.1. All three curves are relatively similar, providing comparable bulk modulus

predictions.

Further calculations involving the enthalpy of the system were also performed. Enthalpy

is given by H = E + pV , where p is pressure and V is the volume of the structure. The

calculations of enthalpy can be used to predict structural transitions of the system under

pressures. Figure 2.3 gives the enthalpy calculations for Fr. This figures shows there is a

transition from hcp to bcc under small amounts of pressure and no transition thereafter

for the given pressure range. The exact change in structure occurs around 0.57 GPa. No

experimental results are available to verify this prediction.
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Figure 2.2: Calculated total energy curves of Fr using the LAPW with GGA functional.
Notice the hcp structure is calculated to have a lower total energy than the fcc structure
by 0.05 mRy at equilibrium.

2.2.4 Band Structure Calculations of Francium

This section discusses the DOS and energy band calculations of Fr using the LAPW with

both LDA and GGA functionals. These calculations were done with touching muffin-tin

spheres. The DOS and energy bands do not show any significant differences between the

two functionals. Spin-orbit interaction calculations were performed with the LDA functional

and were found to have little influence on the electronic structure of the system. Once again,

these results compare well with the GGA functional calculations.
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Francium DOS

The DOS of Fr were calculated with the tetrahedron method discussed in section 2.1.7.

DOS calculations with the GGA functional are given in Figure 2.4(b), alongside the DOS

of Cs. The figure shows the total and angular momentum (l-) decomposed DOS for the bcc

structure. There are obvious similarities between the Cs and Fr DOS. The first panel of

both figures show the total DOS in which we see four main features. One is given between

−0.2 Ry and 0.05 Ry, which is a flat peak containing mostly s- and d-like states. This energy

range also contains the Fermi level (EF ), which is given by the vertical line at 0.0 Ry. The

second main feature is a pair of energy peaks ranging from 0.05 Ry to 0.2 Ry. Here we see

p- and d- like states. A third major set of peaks appear between 0.2 Ry and 0.35 Ry. In

this range, the d-states provide most of the contribution, with more than five times that of

any other state. The last feature is another set of peaks ranging from 0.35 Ry to 0.6 Ry.

The DOS here is comprised of s-, p-, d-, and f -like states. The similarities in this figure

suggests an accurate prediction of the Fr true DOS.
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Table 2.2: The total and decomposed DOS at the Fermi level for bcc cesium and bcc
francium using LAPW with GGA functional at zero pressure.

Element NTotal Ns Np Nd Nf

Cs 21.113 6.621 2.772 4.228 0.070
Fr 19.772 7.198 1.897 3.909 0.094

DOS at the Fermi level for both Cs and Fr are given in Table 2.2. The summation of

the decomposed DOS do not add up to the total as the decomposed are projections onto

the muffin-tin spheres. This table shows good comparison between the two materials. Both

materials suggest that s-like states are the largest contribution to the DOS of the system

at EF . Calculations of Fr were also performed under pressure to see the influence pressure

had on the decomposed DOS of the material. It is found that as the pressure increases, the

s-component of the DOS decreases, while the d-component increases. After about 2 GPa

the d-component of the DOS becomes the major contributor to the total DOS.

Figure 2.5 shows the total, s-, and d-components of the DOS at ambient conditions and

under pressure. The total DOS is found to decrease during the structure transition of hcp

to bcc. After this transition, the total DOS continues to decrease as s-like states seem to

contribute the majority of the total DOS. However, at around 3 GPa, the s-states continue

to decrease as the total DOS and d-DOS jump significantly higher. For the remaining

pressure range, the total and d-component of the DOS continue to increase monotonically,

while the s-states monotonically decrease. This behavior is also found in the other alkali

metals[24] and is due to s-d hybridization under pressure. This behavior of increase of

the d-DOS under pressure predicts superconductivity if Fr, similarly as in the other alkali

metals. This is explained in detail in the paper of Appendix A and in the paper by Shi and

Papaconstantopoulos[24].

Spin-orbit Interactions

Spin-orbit calculations were performed on total energy and energy band calculations of

Fr. The inclusion of spin-orbit interactions had little influence on the overall results of
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the electronic structure of Fr. Table 2.3 shows the total energy related results of bcc Fr

with spin-orbit interactions. The total energy in the table compare very closely to those in

Table 2.1. Both the fcc and bcc structure are calculated to be closer to the hcp structure

by such a small amount, less than 0.05 mRy. The hcp structure is once again found to be

the ground state of the material. Lattice parameters, both a and c, for bcc, fcc, and hcp

all come out to nearly the same values. Bulk modulus are also predicted to be nearly the

same. Overall the spin-orbit interactions seem to have little to no influence over the total

energy related parameters of Fr.

Table 2.3: Total energy and related results for francium with LDA functional with spin-orbit
interaction.

Total Energy Lattice Constant Bulk Modulus
(mRy) (a.u.) (MBar)

bcc 0.20 10.836 0.018
fcc 0.17 13.802 0.022
hcp 0.0 a = 9.788 0.020

c = 15.661

Table 2.4 gives the total and decomposed DOS of the spin-orbit and no spin-orbit

calculations under pressure. Like the total energy related results, we see very little difference

between the two sets of calculations. Pressures are found to be nearly identical for the

corresponding volumes. Total and decomposed DOS both find very similar results for the

given volumes. Once again it would seem the spin-orbit interactions have little influence on

the Fr system.

Fr, like the other alkali metals, has its lowest band half occupied and is almost entirely

of s-character. Quantum mechanics tells us that there is no spin-orbit splitting for these

“s” states. The states above EF have p- and d-character, which do split, but are irrelevant

to the Fermi level values of the DOS, phase shifts, etc. A latter chapter will discuss the role

of superconductivity of this and other systems. As will be mentioned in section 4.1, DOS at

the Fermi level are the important quantities needed for calculating the superconductivity
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Table 2.4: Total and decomposed DOS at EF for bcc francium using LAPW with LDA
functional, both with and without spin-orbit interaction

Vol. Press. DOS DOS DOS DOS DOS
(a.u.3) (GPa) Total s p d f

No Spin-orbit

595.5 0.20 16.146 5.192 1.396 3.825 0.106
500 1.01 14.968 4.279 1.224 3.975 0.1280

364.5 4.39 18.289 3.230 1.083 6.771 0.276
275.7 11.57 23.069 3.080 1.283 9.147 0.650

Spin-orbit

595.5 0.20 16.503 5.257 1.477 3.889 0.107
500 1.00 15.337 4.280 1.318 4.045 0.134

364.5 4.32 18.767 3.267 1.170 6.898 0.281
275.7 11.388 23.956 3.172 1.434 9.416 0.660

of a system.

Table 2.5 shows the splitting of the energy bands at three high symmetry k-points. For

comparison, both spin-orbit (WSO) and no spin-orbit (NSO) results are displayed, with the

energy difference between the splittings. The table shows how little influence the spin-orbit

splitting has on the s-like bands around the Fermi level. Once again this is due to the lack

of splitting that occurs in a quantum system with s-like character. The three points in the

figure are; Γ25′ , which is a triple degenerate state that splits into a single degenerate state

and a double degenerate state by spin-orbit coupling; H25′ , which is also a triple degenerate

state splitting into a double and single degenerate state with spin-orbit interactions; P4

also splits from a triple degenerate state to a single and double degenerate one. These high

symmetry points are displayed and labeled in Figure 2.6.

Francium Band Structure

Figure 2.6 shows the LAPW with GGA functional energy bands of bcc Fr at equilibrium

conditions (a) and under the largest pressure calculated, which corresponds to about 34%

the equilibrium volume (b). As the pressure increases, d-like bands start to cross the Fermi
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Table 2.5: Spin-orbit splitting and energies at high symmetry k-points of bcc francium at
equilibrium

Γ25′ H25′ P4

NSO 0.258 0.484 0.149
WSO 0.255 0.264 0.479 0.493 0.121 0.161
∆E 0.009 0.014 0.040

level, adding to the s-d band hybridization. For example, the H12 point is comprised of en-

tirely d-character and drops below the Fermi level under pressure. Comparison between the

other alkali metals show similar features with the energy bands[19]. Under these large pres-

sures the alkali metals begin to show transition metal like behavior. This will be discussed

further in the superconductivity chapter.

(a) Fr bcc bands eq (b) Fr bcc bands 14 GPa

Figure 2.6: Energy bands of bcc Fr (a) under ambient conditions and (b) at 14 GPa. Fermi
level is given by the horizontal line, given at zero.
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2.3 Preliminary Calculations - Insulator-Metal Transition in

the Inert Gases

2.3.1 Introduction

This section discusses first-principles calculations of the inert gases, or noble gases. All

inert gases are found in group 18 of the periodic table and have their valence shells full.

In 1927, Herzfeld suggested that all inert gases would become metals under high enough

pressure[25]. As of today, only the element xenon has experimentally been measured as

a metal under pressure[26, 27]. Other groups have studied the metalization of the other

materials experimentally[28, 29]. Recently Veeser, et. al.[28] may have found krypton to

conduct under significant pressure. Computationally, this metalization has been studied by

various groups for most of the inert gases[30–34]. This work is a comprehensive study of

the transition from insulator to metal for all the inert gases, including radon.

As with francium and the alkali metals, calculations were performed using the LAPW

method with both the LDA and GGA functionals. The electronic structure of radon has

not been published at the time of writing, computationally or experimentally. The other

inert gases, neon, argon, krypton, and xenon, have various publications[29–34].

2.3.2 Computational Details

Calculations of the inert gas solids were performed using the NRL-LAPW code with the

LDA and GGA functionals. All calculations used the equilibrium electronic configuration of

the element, with the six valence electrons not considered as core states. For example, Rn

used the core states contained the electronic configuration of mercury, with the 6p states

as valence electrons. The muffin-tin, like the alkali metals, were kept constant for total

energy calculations at values that made sense for the specific element. However, during

DOS and band structure calculations, the muffin-tin radii were kept constant as well. The

k-point meshes of 55 and 89 were used for bcc and fcc, respectively. For hcp calculations,

a k-point mesh of 16x16x16 was used. Rn calculations were also performed with a larger
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meshes of 285 and 505 for bcc and fcc, respectively. An rkmax value of 8.5 was used for all

calculations. Energies of −1.4 Ry and −0.3 Ry were used for the local orbitals of the last

core s-state and the valence p-states.

2.3.3 Total Energy Calculations

Total energy calculations were performed for all the noble gases. These calculations were

performed for both the LDA and GGA functionals. The LDA functional found the fcc

structure to be the ground state for all the elements. This is consistent with the experi-

mental results of the inert gases. The LDA results underestimated the experimental lattice

parameters, while the GGA functional results overestimated these parameters.

Table 2.6 shows the total energy, lattice constants, a and c, and bulk modulus of the

inert gases using the LAPW method with LDA functional. For these calculations the LDA

functional was able to predict the correct equilibrium structure of the inert gases, which is

fcc. Like the alkali metals, these total energy calculations had all three structures extremely

close to each other. The largest difference between bcc and fcc results was less than 1 mRy.

It is interesting to note that the bcc and fcc energy difference increases with the atomic

mass. This suggests that the method is better able to predict the correct structure for the

heavier elements, at least when comparing the two cubic structures.

Table 2.7 shows a comparison of the functionals, by comparing the percent difference

of lattice parameters from experiment with the calculated values. The LDA tends to have

a better agreement with experiment for the lattice parameters than the GGA, with the

exception of Ne. The LAPW method is able to predict the correct ground structure, as well

as other properties of these materials.

Total energy curves for the inert gases all find the fcc and hcp curves very close in

minimum energy and shape, with the bcc minimum energy much higher than the other

structures. Here we present the total energy results for the heaviest inert gas, Rn. Figure 2.7

shows the total energy of Rn with the bcc, fcc, and hcp structures using the LAPW method

with LDA functional. The fcc structure was found to be the ground state for Rn, as
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Table 2.6: Total energy and related results for the inert gases Ne, Ar, Kr, Xe, and Rn using
the LAPW with LDA functional with experimental results[23].

Total Energy Lat. Const., a Lat. Const., c Bulk Modulus B
(mRy) (a.u.) (a.u.) (MBar)

Neon (Ne)

bcc 0.29 5.795 0.100
hcp 0.005 5.134 8.383 0.097
fcc 0.0 7.260 0.100
exp 8.428 0.010

Argon (Ar)

bcc 0.55 7.453 0.070
hcp 0.01 6.629 10.673 0.076
fcc 0.0 9.326 0.076
exp 10.034 0.013

Krypton (Kr)

bcc 0.68 8.060 0.066
hcp 0.06 7.131 11.644 0.071
fcc 0.0 10.088 0.076
exp 10.658 0.018

Xenon (Xe)

bcc 0.9 8.876 0.060
hcp 0.05 7.858 12.730 0.066
fcc 0.0 11.092 0.065
exp 11.584

Radon (Rn)

bcc 0.96 9.134 0.063
hcp 0.02 8.081 13.196 0.067
fcc 0 11.420 0.068
exp

suggested by Table 2.6, where we present results for the rest of the inert gases. For the Rn

hcp calculations, the ideal c/a ratio of
√

8
3 , or ≈ 1.633, gave the lowest total energy of all

c/a calculated between 1.5-1.7.
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Table 2.7: Percent difference between calculated and experimental lattice parameters using
LAPW with LDA and GGA functionals of inert gases (Ne, Ar, Kr, and Xe)

Local Density General Gradient
(LDA) (GGA)

Neon (Ne) −13.86% +4.08%
Argon (Ar) −7.06% +15.35%
Krypton (Kr) −5.35% +15.88%
Xenon (Xe) −4.25% +17.54%
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2.3.4 Energy Band Calculations of the Inert Gases

This section discusses the calculations of the DOS and energy bands of the inert gases

under equilibrium conditions and under pressure. We find that the inert gases transition

from an insulator to metal under certain amounts of pressure. Neon, however, was not

found to transition under the calculated pressures involved. The results of the DOS and

energy bands are presented below with a discussion of the mechanism for the metalization

transition.

Density of States of the Inert Gases

Figure 2.8 shows the Density of States (DOS) of Ne, Ar, Kr, Xe, and Rn, respectively,

under ambient conditions. The DOS of Ne, Ar, Kr, Xe, and Rn show a gap between the

occupied and unoccupied states, confirming that these materials are insulators at ambient

conditions. Interestingly, the energy gap between these two states decreases as we go from

the lightest element, Ne, to the heaviest, Rn. The Fermi level is given as a vertical dashed

(blue) line at the top of the p-states at 0.0 Ry.

The valence p-states of the inert gases are found between −0.2 Ry and 0.0 Ry in all these

figures. These p-states are more compressed in the lighter elements. The higher unoccupied

states have a similar shape between all these figures. They are comprised of mostly d-like

states which span a much wider energy range than the p-states. There are also traces of

s-like and higher p-like states found within this range as well. However, no s- or d-states

are found in the higher unoccupied bands of Ne. A large energy gap appears between

the occupied and unoccupied states. The gap gets narrower as the atomic number of the

element increases. Since the valence shell is entirely filled and the materials are found to be

insulators, there are no DOS at the Fermi level for any of these material under equilibrium

conditions.
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Figure 2.8: The total and decomposed DOS of (a)Ne, (b)Ar, (c)Kr, (d)Xe, and (e)Rn at
ambient pressure.
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Energy Bands of the Inert Gases

Figure 2.9 shows the energy bands of the inert gases under equilibrium conditions. These

figures have the Fermi level as a horizontal solid line at 0.0 Ry. Like the DOS figures, the

Fermi level is calculated directly above the p-like bands found between −0.2 Ry and 0.0 Ry.

Once again, a gap appears between these p-like bands and the higher unoccupied bands.

This gap suggests the material are insulators, as no bands cross the Fermi level. These

unoccupied bands are found to contain mostly d- and p-like bands, with a single s-like

band appearing closest to the occupied p-bands. Under ambient conditions, none of the

inert gases show signs of any metallic behavior. However, under pressure, these materials

undergo significant changes in the electronic structure that suggest metal-like properties.

2.3.5 Insulator to Metal Transitions of the Inert Gases

The inert gas calculations were also performed under pressure to understand the effect this

had on the materials. Using the LAPW method with LDA functional, predictions of the

pressures needed to cause a transition from insulator to metal were made. This method has

been able to accurately predict the confirmed experimental pressure needed for the xenon

material.

Table 2.8: Calculated and experimental pressures for the insulator to metal transition of
the noble gases (GPa)

LAPW LDA Other Calculations Experiment

argon 513 550[26]
krypton 392
xenon 147 123,104,128[35] 132±5[26],150[36],155[27]
radon 103

Table 2.8 provides our LAPW with LDA calculations, other group calculations and

experimental pressures needed to force an insulator to a metal transition to occur. As there

aren’t very many papers that provide a direct value for the transition pressure, the table only
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Figure 2.9: The energy bands of (a)Ne, (b)Ar, (c)Kr, (d)Xe, and (e)Rn under ambient
conditions.
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contains a few values to compare to directly. However, the table shows good comparison of

the calculated values with those of both experiment and other groups’ calculations.

Comparing with experiment, the xenon calculations performed agree extremely well

with those found by references [36] and [27]. In particular, reference [27] used x-rays to

study the structure of Xe under pressures up to 155 GPa. They directly measured the

electrical conductivity while compressing the material. Their results suggest that Xe is

predominantly metallic around 121 − 138 GPa and purely metallic at 155 GPa. Goettal,

et. al.[26] found the transition pressure to be 132 GPa, while Reichlin, et. al.[36] found the

pressure to be around 150 GPa.

Other experimental groups have studied these materials under pressure, but did not find

any transitions to metal under the pressures used. Although one group may have recently

found Kr to undergo the insulator to metal transition, but lack of access to the article made

this difficult to confirm[28].

Computational results from other groups also seem to agree well with the calculations

performed here. Three other groups found similar results to our calculations for the Xe

transition. These values were slightly less than the ones calculated here. For Ar, one group

found a comparable pressure to the one calculated here, but unlike Xe, this result was

predicted at a higher pressure. Overall it seems that the LAPW with LDA functional is

able to correctly predict the experimental Xe transition pressure and other computational

predictions.

Our LAPW results displayed in Table 2.8 suggest that the pressure needed to transition

the material from an insulator to a metal decreases as the atomic number increases. The

pressure needed for Ar is nearly four times that of Xe. The band structure of these materials

undergo a significant change under the pressure required for the transition. Figures 2.10,

2.11, 2.12, and 2.13 present the equilibrium and metalization pressure band structure results

of Ar, Kr, Xe, and Rn, respectively.

Figure 2.10 shows the energy bands of Ar under ambient conditions and the metalization

pressure. The figure shows that as pressure increases in this material, all bands begin to
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(a) Ar Bands at equilibrium
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(b) Ar Bands at 513 GPa

Figure 2.10: Energy bands of Ar at equilibrium and at the insulator to metal transition
pressure.
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(a) Kr Bands at equilibrium

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

Γ ∆ X Z W Q L Λ Γ Σ K S X

E
n
e
rg

y
 (

R
y
)

(b) Kr Bands at 392 GPa

Figure 2.11: Energy bands of Kr at equilibrium and at the insulator to metal transition
pressure.

broaden. Specifically, the p bands near the Fermi level begin to broaden from a range of

approximately 0.2 Ry to 1.5 Ry at the point of metalization. The above unoccupied d bands

also begin to broaden when pressure is applied. Figure 2.11 shows the energy bands of Kr

under ambient conditions and 392 GPa pressure. Again, we see a large broadening of the

p bands around the Fermi level as pressure is increased, albeit to a lesser extent than Ar.
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(a) Xe Bands at equilibrium
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(b) Xe Bands at 147 GPa

Figure 2.12: Energy bands of Xe at equilibrium and at the insulator to metal transition
pressure.
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(a) Rn Bands at equilibrium
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(b) Rn Bands at 103 GPa

Figure 2.13: Energy bands of Rn at equilibrium and at the insulator to metal transition
pressure.

For the Kr figure, the bands broaden from approximately 0.2 Ry to 1.3 Ry at the transition

pressure. Figure 2.12 and Figure 2.13 also show the two sets of bands structures for Xe and

Rn, respectively. These figures also show the same broadening features as those shown in

the Figure 2.10 and Figure 2.11.

For all the pressure-based band figures mentioned above, both p bands below the Fermi
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level and unoccupied bands above the Fermi level expand a great deal. However, the size of

the broadening decreases as the atomic number increases. This is true for both the p bands

and those found above the Fermi level. In the ambient condition figures, the lowest energy

band at the Γ point is of s angular momentum character. However, as pressure is applied,

this band begins to move higher in energy, while the d-like band begins to move closer to

the Fermi level. At the point of metalization, the X point intersects the Fermi level, closing

the gap between the d-like bands and the p bands. Specifically, the gap is between the Γ15

point and the X1 point.
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(a) Band gap closure of the inert gases

Figure 2.14: Band gap closure of the inert gases vs. pressure. Energy gap is calculated
from the difference between Γ15 and X1. Insulator to metal transitions occur at 513 GPa,
392 GPa, 147 GPa, and 103 GPa for Ar, Kr, Xe, and Rn, respectively.

Figure 2.14 provides curves of the Γ15-X1 energy gap of each element under pressure.

This figure shows the gap is initially wider for the lighter elements and decrease under

pressure until eventually becoming zero. For example, the energy gap between these points

in Rn is almost half that of Ar. We show that the heavier the element, the less pressure
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required to undergo the insulator to metal transition.

It is important to note that results for Ne were not presented for this section. This is due

to the fact under the pressures studied, Ne d states are at much higher energies above the

Fermi level. The bands above the Fermi level shown in Figure 2.9a begin to move higher as

pressure is increased. It is possible that the much higher d bands move closer to the Fermi

level when pressure is increased, but this was not found for pressures up to 960 GPa.

2.4 Conclusions of Preliminary Results

This chapter presented information on some of the computational theories used to calculate

the electronic structure of materials, as well as calculations using these theories for the alkali

metals and inert gases. It was shown that the LAPW method with both GGA and LDA

functionals can provide good agreement with experiments when calculating total energy

and DOS related parameters. Although both functionals can provide great detail on the

nature of a material, any functional is not universally best. It was shown that the GGA

functional provided much better agreement with experimental structural parameters for the

alkali metals, while the LDA did a better job for the inert gases. The LDA consistently

underestimated these structural parameters for both groups of materials, while the GGA

overestimated them. Energy band calculations and DOS results were well represented by

both functionals. These results have been useful to better understanding the general elec-

tronic structure of the materials. A very interesting transition from insulator to metal has

been confirmed for the inert gases except for Ne. A paper on this work is under preparation.
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Chapter 3: First-Principles Study of the Electronic Structure

of Iron-Selenium-Tellurium Superconductor Systems

3.1 Electronic Structure of Iron-Selenium

3.1.1 Introduction

Iron-selenium (FeSe) is one of the structurally simplest iron-based superconductors. Un-

der ambient conditions[5, 37–40] it forms in the tetragonal PbO structure, Strukturbericht

B10,[41], space group P4/nmm-D7
4d (#129). Fe atoms are found at the (2a) Wyckoff posi-

tion (000) and Se atoms are fixed at the (2c) Wyckoff position (01/2z). Figure 3.1 shows

the PbO structure of the system. The z found in the (2c) Wyckoff position is called the

internal parameter of Se. This internal parameter is the distance of the Se atom plane from

the Fe atom plane, as seen in Figure 3.1.

FeSe is found to superconduct at a critical transition temperature, Tc, of about 8K[5,37–

39,42]. It has been found that Tc increases substantially, up to 37 K under pressure[38,39].

It is important to note that although FeSe is an iron-based material, there is no magnetic

order of the material in the superconducting temperature range. There are several studies,

both computational and experimental[4–6,37–40,42–48].

3.1.2 Computational details

Calculations were performed using the NRL-LAPW and Wien2k[49] codes. Both codes

require various input parameters, and were kept as identical as possible to compare the cal-

culations with one another. LAPW wave functions were used for the valence band, further

augmented by local orbitals for the semi-core states, using codes mentioned. Exchange-and-

correlation effects were approximated by the Hedin-Lundqvist parametrization of the Local
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Figure 3.1: Ground state structure of FeSe, Strukturbereicht designation B10. The space
group is P4/nmm-D7

4d (#129). The iron atoms are on (2a) Wyckoff sites, while the selenium

atoms are on (2c) sites.

Density Approximation (LDA), as well as the Purdue-Wang implementation of the General-

ized Gradient Approximation (GGA). The Rigid Muffin-Tin Approximation (RMTA) code

developed by Papaconstantopoulos and Klein[51] was used to apply the Gaspari-Gyorffy

(GG) theory[52] to the NRL-LAPW results. A Γ-centered k-point mesh of 196 points,

or 12x12x12 per direction, was used for total energy and Density of States calculations. A

larger mesh of 904 k-points was used for the calculations of energy bands in the NRL-LAPW

code. All calculations used a basis set size of 6x6x6, 7 core states (equilibrium state of ar-

gon) for iron and 9 core states (argon + 3d states) for selenium resulting in 28 total valence

electrons for FeSe calculations. Estimates of the local orbital energies were approximately

−0.3 Ry, 0.2 Ry and −2.0 Ry for 3s, 3p and 3d states, respectively. All calculations used

fixed muffin-tin radii of 2.0 a.u. for Fe and Se atoms, with the cutoff parameter, rkmax, set

to 8.5.

3.1.3 Iron-Selenium total energy calculations

Structural optimization was executed via energy minimization with respect to both the

tetragonal lattice constants a and c and the internal Selenium parameter z for FeSe with
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the NRL-LAPW code with both LDA and GGA. As discussed in Koufos, et. al.[47], the

LDA optimization underestimates the experimental lattice parameters. Specifically, the

calculations underestimate the experimental lattice parameters by 4.5% and 2.2% for a and

c, respectively. For the GGA optimization, the c lattice parameter was overestimated by

10.6%, while the a lattice parameter was only underestimated by 1.8%, and the c/a ratio was

largely overestimated for the GGA. Table 3.1 is a comparison of these parameters calculated

with both functionals and the parameters measured by experiment. The table shows that

the GGA and LDA calculated volumes are on either side of the experimental volume. The

calculated internal parameters are also underestimates of the measured z. However, it is

interesting to note that other groups find a range of z from 0.260-0.270[5, 37, 53, 54]. The

calculated LDA bulk modulus is in very good agreement with experiment, while the GGA

value is too low.

Table 3.1: Structural parameters (V, a, c/a, z) and bulk mouduli (B) of FeSe, both com-
putational and experimental[44,45].

V (a.u.3) a (a.u.) c/a z B (GPa)

LDA
472.5 6.804 1.50 0.255 32.2

GGA
564.4 6.994 1.65 0.230 6.6

Experiment
529.5 7.121 1.465 0.269 31.0

Figure 3.2 shows the structural optimization results of energy vs. volume. The solid

(red) line is the fit to the NRL-LAPW LDA optimized calculations, while the dashed (green)

line is the fit to the optimized NRL-LAPW GGA calculations. As discussed in section 2.1.5,

the second derivative of the energy curve is related to the bulk moduli of the system.

These values are also provided in the figure for convenience. As the fits suggest, the bulk

modulus of the GGA calculations is quite small, due to the flatness of the GGA curve.

As mentioned, the LDA underestimates the experimental volume and GGA overestimates,
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straddling the experimentally measured volume. Structural optimization was not performed

with the Wien2k code. This was mainly due to the fact that another set of optimized

LDA calculations were performed for the paper[47] by Mehl with the Vienna ab initio

simulation package (VASP)[55]. The calculations agreed exceptionally well with the NRL-

LAPW optimized LDA calculations.
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Figure 3.2: LAPW total energy plots of FeSe from the optimized LDA and GGA calcula-
tions. The LDA and GGA straddle the measured volume from Kumar, et. al.[44]

Ferromagnetic optimization calculations were also performed for FeSe, but found little

difference from the above paramagnetic calculations. These calculations were done using

the local spin density approximation (LSDA), which incorporates spin-polarization into the

calculations of LDA. Table 3.2 shows the resulting optimized calculations of both the LDA

and LSDA functionals. Hence no magnetic moment was found. As can be seen from the

table, these values are extremely comparable to each other. The LSDA results presented

underestimate the volume and a parameter slightly more than the LDA. The c/a ratio

remains the same, while the internal parameter increases slightly. The largest difference
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here is the bulk modulus, which is due to a steeper energy curve of the fit. It is important

to note that the LDA results were based on a larger database of calculation than the LSDA,

approximately 33% more. Thus the LSDA may be found to have even closer results to the

LDA.

Table 3.2: Structural parameters (V, a, c/a, z) and bulk mouduli (B) of FeSe using the
local density approximation and local spin density approximation (LSDA).

V (a.u.3) a (a.u.) c/a z B (GPa)

LDA
472.5 6.804 1.50 0.255 32.2

LSDA
466.4 6.774 1.50 0.260 61.0

Since FeSe is not found to be ferromagnetic[5, 37, 38, 44], all calculations reported in

the next section were performed without spin-polarization. As the GGA and LSDA are

computationally more expensive than LDA and LDA results agree well with experiment,

the LDA functional was used for the section 3.1.4 calculations. In order to make more

meaningful comparisons with experiment, the band structure calculations discussed in detail

in the following section were performed using the experimental lattice parameters. Lastly,

spin-orbit coupling was not included since the effects of spin-orbit on the energy bands was

found to be minimal.

3.1.4 DOS and energy band calculations of FeSe

Band structure calculations were performed with the two codes mentioned in section 3.1.2.

Having these two sets of calculations allow for direct comparison of the codes. This also

allows one form of validation of the calculations performed. Calculations by other groups[4,

6, 43, 56] and experimental work[48, 57] give us the opportunity to verify our calculations

further. The parameters used by other calculation groups differed slightly from those used

here and may affect the details of the band structure calculations.
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(a) FeSe - NRL-LAPW DOS
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(b) FeSe - Wien2k DOS

Figure 3.3: Density of States of tetragonal (PbO-like) FeSe (a) using NRL-LAPW results
and (b) using the Wien2k results. Fermi level is given by the dashed vertical line, given at
zero.

Figure 3.3 shows the DOS of FeSe for both the NRL-LAPW and Wien2k calculations.

The two FeSe DOS, Figure 3.3a and Figure 3.3b, show near identical results. No significant

difference were found between the two calculations. Overall the picture is extremely similar,

even giving a small gap between the majority of Se p-states and the Fe d-states. This shows

that the codes perform DOS calculations similarly and therefore suggest either code would

be adequate for other calculations of FeSe.

Figure 3.3 shows a tall DOS peak well below the Fermi level. In both figures, the

Fermi level is given as a vertical (blue) line at 0.0 Ry. This peak is composed of mostly

Se-s (lime green), with less than 3% from all the other states. In Figure 3.3 this peak

appears approximately between −1.1 Ry and −0.9 Ry. As we approach the Fermi level,

two other peaks appear between −0.4 Ry and −0.2 Ry below the Fermi energy for both

figures. These two peaks are composed of both Se-p (blue) and Fe-d (green) states, with

a small contribution from the Fe-s (dashed red) and Fe-p (orange) like states. The peaks

end fairly abruptly, creating a gap between them and the next peak. This next peak is also

approximately 0.2 Ry wide and contains the Fermi energy. It is comprised of mostly Fe-d,
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with some Se-p states. At the Fermi level, we find that Fe-d is the largest contributor to

the DOS. The exact values of the DOS at the Fermi level are given in Table 3.3.

The states excluded from Figure 3.3 (Se-d, Se-f, and Fe-f) do not show up in the energy

range presented in these figures. This is because the Se d-states are found in the core,

much further below the Fermi level, and even the Se s-states. Both Fe-f and Se-f are found

far above the unoccupied bands shown in these figures. Trace amounts of contribution of

these ignored states can be found near the Fermi level, as shown in Table 3.3, but are

negligible in the discussion of DOS of these materials. This information is still of interest,

as it is important in the implementation of the Gaspari-Gyorffy theory and tight-binding

calculations discussed in later sections.

Table 3.3: Total and decomposed DOS of FeSe at the Fermi level, for both NRL-LAPW
and Wien2k codes. Decomposed values do not add up to the total DOS due to the use of
muffin-tin spheres. (Note: Wien2k does not calculate the f DOS states.)

Code N(EF ) Fes Fep Fed Fef Ses Sep Sed Sef

NRL 44.82 0.03 0.40 36.71 0.01 0.01 1.18 0.21 0.06
Wien2k 46.66 0.02 0.40 32.60 0.00 0.00 1.16 0.20 0.00

Photoemission of Iron-Selenium

Experimental groups have also performed photoemission studies on FeSe. This provides

another way to validate DOS calculations performed by the codes used. Photoemissions

of experiments are unable to obtain a full picture of the DOS like Figure 3.3. However,

these experiments are able to provide an idea of the overall DOS picture. Figure 3.4 shows

the photoemission measurements of FeSe from Yamasaki, et. al.[42] overlaid with Lorentz

broadened figures of the NRL-LAPW DOS. The photoemission presented in Figure 3.4a

is the data collected from the 690eV off resonance beam source (dashed orange line), with

the NRL-LAPW total DOS with Lorentz broadening (solid red line.) The off resonance

beam source represents the overall measurable DOS in the given energy range. Figure 3.4b
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Figure 3.4: Comparison of the calculated Density of States of FeSe using NRL-LAPW with
Lorentzian broadening and the photoemission spectrum from Yamasaki, et., al.[42]

provides the data collected from the subtraction of the off resonance beam with the “Fe-

2p anti-resonance” beam (dashed blue line) and the NRL-LAPW Fe-d DOS with Lorentz

broadening (solid green line.) The “Fe-2p anti-resonance” beam has an energy just below

the Fe 2p-3d absorption edge, 702eV.

Both Figure 3.4a and Figure 3.4b show the Lorentzian broadened DOS, at DOS peak

positions compare well with the experimentally measured values. The Lorentz total DOS

shows three main peaks, one around −0.4 Ry, −0.25 Ry and near the Fermi level. As

found in ref. [42], the first two peaks are mostly hybridized Fe-d/Se-p states. The third

peak is a slight hybridization of Fe-d/Se-p, but mainly pure Fe-d states. This is confirmed

by Figure 3.4b, where the Fe-d states appear at the two lower energy levels (−0.4 Ry and

−0.25 Ry) and largely near the Fermi level.

Calculations of Energy Bands

Energy band plots of the system are given in Figure 3.5. The energy range of Figure 3.5a is

the same range shown in the DOS Figure 3.3. As seen from the aforementioned Figure 3.5a
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Figure 3.5: Band structures of tetragonal (PbO-like) FeSe using NRL-LAPW results.
Zoomed in section of the Fermi surface is given in (b). Fermi level is given at 0.0Ry.

shows two bands at−1.0Ry below the Fermi level, corresponding to the Se s-states. The gap

between the Se-s bands and the next set of bands at the Γ point is found to be approximately

0.5 Ry. This next set of six bands are comprised of Se-p and Fe-d bands. A small gap is

found between this set of Se-p/Fe-d bands and the next set of ten bands. The gap between

these calculated points was found to be the smallest between the Z and Γ points, with

∆E = 24.6mRy. The following set of bands is also comprised of Se-p and Fe-d states, but

mostly that of Fe-d.

Figure 3.5b shows a zoomed in section of the energy bands around the Fermi level which

we use to plot the Fermi surface. There are two notable features of the Fermi surface. At the

M point, there are two intersecting electron pockets, while at the Γ point there exists three

holes. Figure 3.6a and Figure 3.6b show the two- and three-dimensional representations

of the Fermi surface using the Wien2k code, respectively. We see that these two electron

pockets at the M point correspond to two elliptical cylindrical electron Fermi surfaces at

the center of Figure 3.6. At the corners, the holes are shown as three concentric cylinders.

These Fermi surface results are in agreement with those obtained by Subedi, et. al.[4].

Our band structure calculations agree well with each other and those calculated by

previous groups[4,6,43,56]. It is important to note that the calculations performed by others,
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Figure 3.6: Calculated (a) 2-D and (b) 3-D Fermi surface of tetragonal (PbO-like) FeSe
using Wien2k and XCrysDen programs.

used slightly different structural parameters. Even with this difference, the overall band

structures are quite comparable. Differences can arise between all these calculations due

to the parameters used, including that of k-point mesh size, muffin-tin radii, and methods

used to calculated the DOS and band plots.

3.2 Electronic Structure of Iron-Tellurium

3.2.1 Introduction

Iron-tellurium is an isoelectronic material to that of iron-selenium. For one thing, FeTe

is also found to be in the PbO structure, discussed in section 3.1.1, under ambient condi-

tions[53, 57, 58]. Another similarity is the electronic configuration of the valence electrons.

Both materials have Fe with 8 valence electrons, and Se/Te with 6 valence electrons, making

them isoelectronic.
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3.2.2 Computational Details

The computational details of FeTe calculations are very similar to that of FeSe in sec-

tion 3.1.2. Both NRL-LAPW and Wien2k codes were used to perform calculations of the

band structure of this material. Exchange-and-correlation was again approximated by the

Hedin-Lundqvist implementation of the LDA. However, no calculations were performed with

the GGA functional. This was mainly due to the fact that in FeSe the GGA calculations

did not reveal anything interesting. Furthermore, k-point meshes (12x12x12 and 904), basis

set size (6x6x6), muffin-tin radii (2.0 for both atom types) and rkmax (8.5) were all kept

the same as in FeSe. The only main differences in the calculations were the core states; Fe

atoms continued to have the seven cores states of equilibrium argon and the Te atoms had

fourteen core states (krypton + 4d states.) This resulted in 28 valence electrons once again.

Local orbitals were applied as well with the same energies (−0.3 Ry, 0.2 Ry and −2.0 Ry,)

but for 4s, 4p and 4d states, respectively.

3.2.3 Total Energy Calculations

While calculating the electronic structure of FeTe, structural optimization was performed

using the NRL-LAPW code with the LDA functional. Again, this was performed through

energy minimization with respect to the tetragonal lattice constants a and c and the in-

ternal Tellurium parameter z. It was found that the LDA calculations underestimate the

experimental structural lattice parameters. Specifically, calculated optimized parameters

found the volume to be approximately 570 a.u.3 and c/a ratio to be 1.60.

Table 3.4: Structural parameters (V, a, c/a, z) and bulk mouduli (B) of FeTe, both com-
putational and experimental[59,60].

V (a.u.3) a (a.u.) c/a z B (GPa)

LDA
568.1 7.081 1.60 0.260 55.4

Experiment
617.4 7.224 1.641 0.280 36.0
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Exact values of calculated and experimental parameters can be found in Table 3.4. The

lattice parameter a is 1.9% below the measured experimental value, while c is 4.2% below.

These underestimates are consistent with the calculations of FeSe. FeTe c/a ratio was found

to be close to experiment, similar to the FeSe LDA calculations, but in this case underes-

timated. The internal parameter was also underestimated for the FeTe optimization. Bulk

modulus was calculated and found to overestimate the measured experimental value[60].
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Figure 3.7: Total energy plots of the optimized LDA calculations of FeTe. The LDA
underestimates the measured volume from Finlayson et. al.[59]

Figure 3.7 shows the structural optimized LDA total energy versus volume of FeTe. The

solid (red) line is the fit of the NRL-LAPW LDA optimized calculations. This LDA energy

curve is slightly sharper than that of the LDA calculations for FeSe and thus predicts a

larger bulk modulus for FeTe. Overall this figure compares well with the LDA fit from

Figure 3.2 in FeSe.

Since the differences between ferromagnetic and paramagnetic calculations of FeSe were

minor, no ferromagnetic calculations were performed. Although FeTe is suggested to be on
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the verge of magnetic instability, no experiments have found ferromagnetic order in FeTe.

3.2.4 Band Structure Calculations

The band structure calculations performed for FeTe used both the NRL-LAPW and Wien2k

codes. These extra calculations provide us with another validation of the DOS calculated

by the NRL-LAPW code. Similarly to the FeSe band structure calculations, the FeTe

calculations used the experimental structural parameters given above.
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Figure 3.8: Density of States of tetragonal (PbO-like) FeTe using (a) NRL-LAPW results
and (b) Wien2k results. Fermi level is given by the dashed vertical line at 0.0Ry.

Figure 3.8 provides the total (red) and decomposed DOS of FeTe for both the NRL-

LAPW and Wien2k programs. The Fermi level is given at 0.0 Ry by a vertical (blue)

line. In the figure, a peak comprised mainly of Te-s (dotted blue) semicore states is found

between −1.0 Ry and −0.8 Ry below the Fermi level. This is followed by a gap of approx-

imately 0.4 Ry. Two large DOS peaks appear between −0.4 Ry to −0.15 Ry. Their main

contribution is from both Fe-d (green) and Te-p (dashed blue) DOS. There is a significant

decrease in the total DOS around −0.15 Ry, but does not reduce to near zero, like that

found in Figure 3.3 of FeSe. The fourth major peak is found between −0.15 Ry and 0.05 Ry
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and contains the Fermi level. This energy range contains mostly Fe d-states, with small

contribution of Te p-states. Above the Fermi level, we see some more Te-p and Fe-d states

until another gap appears. The exact values of the total and decomposed DOS at the Fermi

level is given in Table 3.5.

Table 3.5: Total and decomposed DOS of FeTe at the Fermi level, for both NRL-LAPW
and Wien2k codes. Decomposed values do not add up to the total DOS due to the use of
muffin-tin spheres.

Code N(EF ) Fes Fep Fed Fef Tes Tep Ted Tef

NRL 50.83 0.05 0.43 41.07 0.01 0.03 0.87 0.17 0.10
Wien2k 49.92 0.04 0.42 40.66 0.00 0.01 0.80 0.02 0.00

The values in Table 3.5 suggest the Wien2k and NRL-LAPW results compare extremely

well with each other. The decomposed DOS agree particularly well, with the exception of

Te-d DOS. Which is unimportant and, as discussed previously, the Te-d like states appear

well below the lowest DOS energy range pictured above.

Since FeSe and FeTe are isoelectronic in terms of the valence electrons the DOS, including

the decomposed, have the same characteristic general features. For example, both Figure 3.8

and Figure 3.3 show four large DOS peaks at and below the Fermi level. However, the width

of the gap between the first peak and the second peak is different for the two systems. There

is a major difference in the DOS between FeSe and FeTe. That is, FeSe shows a small gap

between the third and fourth peaks at −0.2 Ry, which is not present at FeTe.

Table 3.5 suggests similar results to those of FeSe. Total DOS from the NRL-LAPW

code is comparable to that of Table 3.3, but larger for FeTe. Since the NRL-LAPW total

DOS is larger, the Fe-d DOS is also increased from the FeSe calculations. The remaining

decomposed DOS values are very similar. Se-p is, however, a little larger than the Te-p

values.
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Photoemission of FeTe

Experimental photoemission spectrum for FeTe were not found at the time of writing. We

present here a predicted photoemission spectrum from our calculations, which is very similar

to that of FeSe. However, Lorentz broadening was applied to the calculated NRL-LAPW

DOS results. Total broadened DOS are given in Figure 3.9a and broadened Fe-d DOS are

given in Figure 3.9b. A large peak of Fe-d like states are found near the Fermi level and

correspond to the majority of the large peak in the total DOS figure. Between the energies

of −0.3 Ry and −0.15 Ry there is another large peak in Figure 3.9a, which corresponds

to a much smaller peak in the second figure. A final peak appears between −0.45 Ry and

−0.3 Ry in both figures. These results are quite similar to those found for FeSe. If the

results are indicative of the experimental photoemission, we would once again expect the

two peaks between −0.45 Ry and −0.15 Ry are a hybridization of Fe-d and Te-p states.

This assumption can also be obtained from the DOS Figure 3.8.
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Figure 3.9: Calculated Density of States of FeTe using NRL-LAPW with Lorentzian broad-
ening. These figures represent a prediction to experimental measurements of the photoe-
mission spectrum of FeTe.
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Figure 3.10: Band structures of tetragonal (PbO-like) FeTe using NRL-LAPW results.
Zoomed in section of the Fermi surface is given in (b). Fermi level is given at 0.0Ry.

3.2.5 Energy Band Calculations

Figure 3.10 shows the energy bands of FeTe calculated with the NRL-LAPW with LDA

are consistent with the DOS figure. This figure shows a set of two bands located between

−1.0 Ry and −0.8 Ry. These bands are found to be Te s-like. A gap of approximately

0.4 Ry (compared with 0.5 Ry for FeSe) exists from these Te-s bands and the band around

−0.4 Ry. These remaining bands, ranging from −0.4 Ry to 0.2 Ry, are comprised of Fe-d

and Te-p like states. The Fermi level, solid horizontal (black) line, is given at 0.0 Ry and

intersects these bands. Unlike the FeSe bands, no gap appears between the majority of Te-p

and Fe-d bands.

Figure 3.10b shows a zoomed in section of the FeTe energy bands around the Fermi

level. These results are very similar to those of FeSe. Again, we see two electron Fermi

surfaces at the M point. At the Γ point, we show three hole Fermi surfaces. The two- and

three-dimensional representations of the Fermi surface are predicted to be similar to the

FeSe results of Figure 3.6.
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3.3 Electronic Structure of FeSexTe1−x

3.3.1 Introduction

As discussed in the previous two introductions in this chapter (section 3.1.1 and sec-

tion 3.2.1) FeSexTe1−x also exists in the PbO structure under ambient conditions[5,53,57].

Both Se and Te are chalcogenides; elements found in the 16th column of the periodic table.

This similarity allows for substitutions of Te for Se in the PbO type FeSe system. The

substitution of Te in FeSe creates the FeSexTe1−x system, where x is the concentration of

Se and is between 0 and 1. There have been many studies of various concentrations of Se

in the FeSexTe1−x system. It was found that the x=0.5 system superconducts at a higher

temperature than FeSe at zero pressure, around 15 K[5,53,57]. The addition of Te in FeSe

seems to increase the superconductivity temperature for all concentrations of x ≥ 0.1[48].

Concentrations of Se less than 10% induces magnetic instability and destroys all supercon-

ductivity in the systems[48]. This section discusses LAPW calculations performed for the

x =0.75, 0.50, and 0.25 systems.

3.3.2 Computational Details

FeSeTe system required many of the same computational details as both the FeSe and FeTe

systems. Specifically, k-point meshes (196 and 904), rkmax values (8.5), core states (7 Fe, 9

Se and 14 Te), local orbital energies (−0.3 Ry, 0.2 Ry and −2.0 Ry), and muffin-tin radii

were kept at 2.0. However, certain input parameters had to be changed, due to the additional

atoms needed in the computations. Since FeSeTe systems require the addition of Te atoms

in the FeSe calculations, larger computational cells (supercells) had to be employed. In

the FeSe and FeTe calculations, we had a total of 4 atoms in the computational cells, two

Fe atoms and two Se or Te atoms. For the x = 0.5 system, a simple substitution of one

Se atom for one Te would seem adequate, but was not possible with the limitations of

the codes used. Therefore, more atoms needed to be added to the computations of all

FeSeTe systems. Specifically, the FeSe0.5Te0.5 required 8 atoms (4 Fe, 2 Se and 2 Te) and
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the FeSe0.75Te0.25/FeSe0.25Te0.75 systems required 16 atoms per computational cell (8 Fe,

6/2 Se and 2/6 Te.) The computational cell size was doubled for the FeSe0.5Te0.5 system

and quadrupled for the FeSe0.75Te0.25/FeSe0.25Te0.75 systems. The computation cell was

increased along the direction of the c parameter, [001] direction for both systems. Larger

computational cells also increased the computational time of these calculations from the

simpler FeSe and FeTe calculations. The supercells calculations also required an increase in

the basis set size from 6x6x6 to 7x7x7, further adding to computational costs. Calculations

for FeSe0.75Te0.25/FeSe0.25Te0.75 were performed only with the Wien2k code, due to these

factors. However, both codes were used to calculate FeSe0.5Te0.5.

3.3.3 Band Structure Calculations

We did not perform optimized calculations of any of the FeSeTe systems. With the underes-

timation of structural lattice parameters of both FeSe and FeTe using the LDA functional,

the time required to perform such optimization, and the lack of necessity of these types

of calculations for the later tight-binding based chapter, this would have been an overkill.

Therefore, only the band structure calculations are discussed here. They were performed

with experimental structural parameters as inputs to the codes.

Table 3.6: Experimental structural parameters (V, a, c/a, z) used for LAPW calculations
of FeSe, FeTe, FeSe0.25Te0.75, FeSe0.75Te0.25, and FeSe0.50Te0.50 systems.

V (a.u.3) a (a.u.) c/a z

FeSe 530 7.1244 1.4656 0.260
FeSe0.75Te0.25 550 7.1708 1.4917 0.260
FeSe0.50Te0.50 580 7.1804 1.5667 0.2674
FeSe0.25Te0.75 605 7.2118 1.6129 0.250
FeTe 620 7.2299 1.6406 0.2496

Table 3.6 provides the structural parameters used in the calculations. These correspond

to roughly the measured experimental parameters. The lattice parameter ratio, c/a, were
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taken exactly from experiment, while the final lattice parameters used in the calculations

were based on a volume rounded to the nearest 5 a.u.3. For example, FeSe was rounded

to 530 a.u.3, while experimental volume was measured as 531.3 a.u.3. This was done for

simplicity in the optimization calculations of FeSe and FeTe as well as errors associated

with experimental findings.

Examining Table 3.6, some obvious trends appear. Specifically, the value of volume

almost increases linearly as the concentration of Se is decreased. A similar trend also

appears for a parameter and c/a ratio. This implies that as Te is added to the system,

the unit cell begins to expand. This is most likely due to the increased size of Te atoms

compared to Se. That is the atomic radius of Se is 1.98 and that of Te is 2.21, see table 9 of

Kittel[23]. As discussed in Gomez, et. al.[53], the increased ionic radius increases the bond

lengths in the materials. The internal parameters in this table are interesting on their own.

Different experiments have found different values of z for all these materials. For example,

FeTe was found to be 0.280 in one experiment, but as low as 0.250 in others. Therefore, it is

hard to really understand how these internal parameters affect the materials experimentally.

However, Panfilov, et. al. try to understand the influence of z with magnetic susceptibility.

In Table 3.6 we see an increase of z from FeSe as we approach the 50% concentration material

followed by a decrease as we approach FeTe. Using other measured internal parameters, we

could possibly see a linear increase. Whatever the true nature of the internal parameter

distance of these absolute pure materials, the values presented here are those used for our

calculations.

As discussed, both the Wien2k and NRL-LAPW codes were used to perform the calcula-

tions of FeSe0.50Te0.50, and Wien2k was used to calculate FeSe0.75Te0.25 and FeSe0.25Te0.75.

The total and decomposed DOS of these systems can be found in Figure 3.11. Each figure

has the Fermi level given at 0.0 Ry by a vertical (blue) line. Figures 3.11 show two semicore

states between −1.1 Ry and −0.8 Ry. The first semicore state is comprised of almost en-

tirely Se-s, while the second is almost entirely Te-s. Above these semicore states exists a gap

up to about −0.4 Ry. Between −0.4 Ry and −0.2 Ry there are two peaks comprised mainly
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of Se/Te-p and Fe-d. A sharp decrease in the DOS is found around −0.2 Ry for each figure.

Another large peak appears between −0.2 Ry and approximately 0.0 Ry which contains the

Fermi level. This peak is comprised of mostly Fe-d states, with small contributions from

Se/Te-p states. Overall, the features are quite similar between all four parts of the figure.
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Figure 3.11: Density of States of tetragonal (PbO-like) (a) FeSe0.50Te0.50 using NRL-LAPW
results, (b) FeSe0.50Te0.50 using the Wien2k results, (c) FeSe0.25Te0.75 using Wien2k and (d)
FeSe0.75Te0.25 using Wien2k.

Figures 3.3, 3.8 and 3.11 provide a lot of important information for the general electronic

structure of the FeSeTe systems. It seems that no matter the concentration number, features

are prominent in all. Specifically, we continue to see DOS peaks around −1.0 Ry that

represent the majority of Se-s and Te-s DOS. To the right is a gap until the next DOS peaks

appear. Just like those found in the FeSe and FeTe systems, these peaks contain mostly

Fe-d and Se-p states. The peak that contains the Fermi level is once again dominated by
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Fe-d contributions, with traces of the Se/Te p-states. In comparing these DOS the most

striking difference of the alloy calculations from the pure FeSe and FeTe is the double peak.

Table 3.7: Total and decomposed DOS at the Fermi level for FeSexTe1−x using the Wien2k
code (NRL-LAPW FeSe0.50Te0.50 is provided as well.) Decomposed values do not add up
to the total DOS due to the use of muffin-tin spheres. Values are represented based on the
entire unit cell size (8 atoms for x = 0.5 and 16 atoms for x = 0.25/0.75.

x N(EF ) Fes Fep Fed Ses Sep Sed Tes Tep Ted

0.50 (NRL) 106.95 0.08 0.84 43.72 0.01 1.67 0.19 0.02 0.84 0.14
0.50 (Wien) 96.84 0.08 0.79 39.90 0.01 1.22 0.20 0.02 0.66 0.16
0.75 (Wien) 208.68 0.08 0.79 86.10 0.02 1.91 0.33 0.01 0.33 0.08
0.25 (Wien) 240.62 0.12 0.86 99.28 0.01 1.01 0.11 0.03 1.40 0.24

Table 3.7 gives the calculated total and decomposed DOS at the Fermi level for the

three FeSeTe systems. These values are given in terms of the entire unit cell, meaning eight

atoms for x = 0.5 and sixteen atoms for x = 0.75/0.25. The results also show that the

total and decomposed DOS have similar features regardless of the concentration number.

Specifically, the total DOS are all comparable, when compared to a per atom basis, and the

Fe-d DOS is the major contributor to the total DOS at the Fermi level. The Se/Te-p are

the next highest contribution to the DOS at the Fermi level.

Figure 3.12a shows the energy bands of FeSe0.5Te0.5 using the NRL-LAPW code. These

bands look very comparable to the pure FeSe and FeTe results, but with near double the

total number of bands in this energy region due to the use of an 8-atom supercell. Both

Se-s and Te-s like bands appear between −1.1 Ry and −0.8 Ry energy range. The gap

of approximately 0.4 Ry exists between these Se/Te-s bands and the next set of bands.

Between −0.45 Ry and 0.2 Ry we find the remaining sets of bands. The Fermi level is given

as the horizontal (black) line at 0.0 Ry.

Figure 3.12b shows a zoomed picture near the Fermi level. This figure implies electron

Fermi surface centered at the M high symmetry k-point. At the Γ point, there are four

concentric holes at the center. A small closed hole section appears in the inner most. This
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Figure 3.12: Band structures of tetragonal (PbO-like) FeSe0.5Te0.5 using NRL-LAPW re-
sults. Zoomed in section of the Fermi surface is given in (b). Fermi level is given at 0.0Ry.

is very similar to the results of the Fermi surface for FeTe.

3.4 A Virtual Crystal Approach

The Virtual Crystal Approximation (VCA) within the LAPW method was studied for the

FeSeTe system. It was initially thought that since FeSe and FeTe have similar atomic

properties (DOS, bands, etc.) and are isoelectronic that the VCA could be applied to these

calculations to predict other FeSeTe systems. In general the VCA can be performed with

LAPW calculations by replacing the atomic sites with virtual atoms. These virtual atoms

are given as a weighted average of the atomic number and valence electrons of the elements

being replaced. Specifically, the atomic number is replaced by

ZV CA = ZAx− ZB(1− x) , (3.1)

where ZA/B are the atomic numbers of element A/B. The number of valence electrons are

averaged in a similar way

neV CA = neAx− neB(1− x) , (3.2)
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where neA/B is the number of valence electrons for element type A/B.

Usually this procedure works well for elements in the same row of the periodic table.

However, Se and Te are in different rows and have different numbers of core electrons.

Hence, the above way of performing a VCA calculation gave completely unphysical results.

Therefore, we attempted an averaging of the self-consistent crystal potentials of the FeSe

and FeTe systems to perform VCA calculations. This was done by taking the final potentials

from the two systems and performing weighted averages to create approximate potentials

to be used in direct non-self-consistent LAPW calculations.

FeSeTe VCA Results Averaging Potentials

The final potentials from the self-consistent LAPW calculations for FeSe and FeTe were

averaged to perform non-self-consistent LAPW DOS calculations for FeSe0.50Te0.50 and

FeSe0.15Te0.85. These calculations gave the DOS results presented in Figure 3.13 for (a)

15%/50% FeSe/FeTe and (b) 50% of each. We show that the “potentials VCA” does

not produce reasonable total or decomposed DOS. Due to the lack of the self-consistent

procedure, this approach cannot compute accurate wave functions. As a result, the method

completely fails to calculate the DOS of these systems.
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Figure 3.13: Density of States with Virtual Crystal Approximation potentials of (a)
FeSe0.15Te0.85 and (b) FeSe0.50Te0.50. Potentials of FeSe and FeTe using NRL-LAPW code
were averaged to perform the DOS calculations.
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VCA for the FeAsSe System

As an example of a situation that a self-consistent VCA based on Equation (3.1) and

Equation (3.2) works well, we performed calculations on the FeAsSe system, in which As

and Se are neighbors in the periodic table. First, a direct self-consistent LAPW calculation

for the FeAs system was performed. This was done using the same computational details

expressed in Section 3.1.2. The only differences between the calculation of FeAs and FeSe

were the atomic number of As (33) was used in replace of Se and the total valence electrons

were changed from 28 to 26, due to As having one less valence electron.
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Figure 3.14: Density of States of FeAs0.50Se0.50 with virtual crystal approximation applied
via (a) potential averaging and (b) virtual atom approach. Potentials of FeAs and FeSe
using NRL-LAPW code were averaged to perform the DOS calculations of (a). For (b), self-
consistent calculations were performed using same input parameters, but with an averaged
atomic number for As/Se, 33.5, and averaged valence electrons, 27.

Figure 3.14 gives the total and decomposed DOS for both the (a) “potentials VCA”

and (b) the virtual atom VCA approach. It is clearly visible that the VCA method does

an adequate job predicting the total and decomposed DOS of FeAs0.5Se0.5. The virtual

atom calculations are more robust, as the self-consistent procedure calculates accurate wave

functions. However, the Fermi level, decomposed DOS and overall shape of the DOS of the

“potentials VCA” approach, compare well with the self-consistent virtual atom VCA.
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With these calculations, it seems we can extrapolate a few interesting bits of informa-

tion. For one, similar properties (DOS, decomposed DOS, bands, valence energy levels,

etc.) between systems does not justify the use of the “potentials VCA”. Even though the

LAPW results of FeSe and FeTe are similar, the lack of similar core electronic configurations

are enough to impair the use of VCA for the FeSeTe systems. However, for similar core

electronic configurations, the VCA is able predict the electronic structure of these systems.

Specifically, the VCA calculations of FeAs0.5Se0.5 were able to produce reasonable DOS for

the FeAsSe system.

3.5 Final Conclusions

The electronic structure of FeSe, FeTe, and FeSexTe1−x was calculated with two different

codes using the Linearized Augmented Plane Wave method. Total energy, band structure,

DOS, and prediction of experimental photoemission spectrum were performed in this chap-

ter. Using these first-principles results, the contents of this chapter paint a fairly convincing

picture of the overall electronic structure of the FeSeTe system. It was shown that optimized

calculations using the local density functional underestimates the experimental lattice pa-

rameters by less than 5%, while generalized gradient approximation functional calculations

overestimate by slightly more. Calculations of the DOS show very similar features between

all three systems. Specifically, the DOS of all systems have the Se/Te-s states far below the

Fermi level, in semicore states. Near the Fermi level, both Se/Te-p and Fe-d states play a

major role in the overall DOS. Furthermore, the Fermi level is always found on the large

sloped end of a Fe-d dominated peak. The band structure of all systems also looked quite

comparable, with bands of similar type found in the same locations. Lorentz broadened

DOS calculations have been shown to compare well to photoemission spectrum of FeSe and

have been given as predictions for the FeTe and FeSe0.5Te0.5 systems. Calculations using

the virtual crystal approximation of the LAPW by averaging crystal potentials of FeSe and

FeTe are inadequate, failing in predicting correct total and l-components of the DOS of

the FeSeTe systems. Although the systems relate extremely well with each other, direct
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calculations seem to be necessary for an adequate representation of the electronic structure

of FeSeTe. On the other hand, VCA calculations on the FeAsSe system give reasonable

results due to the proximity of As and Se in the periodic table.
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Chapter 4: Computational Studies of Superconductivity

4.0.1 Introduction

Superconductivity has been an interest to many physicists and engineers over the last hun-

dred years. Due to this, first-principles based theories have been developed to understand

and study the superconductivity of materials. This chapter discusses one of these first-

principles based approaches to calculating superconductivity properties and the results of

this method for the materials discussed in the previous chapters.

As mentioned in chapter 2 and chapter 3, the DOS results were used to calculate super-

conductivity properties using the Gaspari-Gyorffy-McMillan (GGM) theories of supercon-

ductivity. Some of these results have been previously discussed in references [11] and [47],

but will be expanded in this section.

4.1 Gaspari-Gyorffy-McMillan Theories of Superconductiv-

ity

In 1968, McMillan[61] developed a formalism for calculating the electron-phonon coupling

constant, λ, and critical superconductivity transition temperature, Tc, of the BCS theory[1].

The electron-phonon coupling constant is defined by the following formula

λ =
η

M < ω2 >
, (4.1)
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where η is the Hopfield parameter[62], M is the atomic mass and < ω2 > is the renormalized

phonon frequency. The Hopfield parameter is defined as

η = N(EF ) < I2 > , (4.2)

using the Rigid Muffin-Tin Approximation (RMTA). Here, < I2 > is the electron-ion

coupling matrix which is derived from multiple scattering theory and the RMTA prescription

of Gaspari-Gyorffy[52]:

< I2 >=
EF

π2N2(EF )

∞∑
l=0

2(l + 1) sin2(δl+1 − δl)Nl+1Nl

N
(1)
l+1N

(1)
l

, (4.3)

where Nl are the spin angular momenta (l) components of the DOS at the Fermi level, N
(1)
l

are the so-called free-scatterer DOS, and δl are the scattering phase shifts calculated at the

muffin-tin radius and at EF . Free-scatterer DOS are calculated by

N
(1)
l =

√
EF
π

(2l + 1)

∫ rmt

0
r2u2l (r, EF )dr (4.4)

and scattering phase shifts are given by

tan δl(rmt, EF ) =
j′l(krmt)− jl(krmt)Ll(rmt, EF )

n′l(krmt)− nl(krmt)Ll(rmt, EF )
, (4.5)

where jl are spherical Bessel functions, nl are spherical Newnaun functions, Ll = u′l/ul is

the logarithmic derivative of the radial wave function evaluated at rmt (recall section 2.1.4),

and k =
√
EF . The < ω2 > can be calculated through phonon calculations, or taken from
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experimental measurements of the Debye temperature, ΘD, such that

< ω2 >=
1

2
Θ2
D. (4.6)

However, the Debye temperature can also be expressed by the Moruzzi formula[63]

ΘD = A

√
r0B

M
, (4.7)

where A is a proportionality constant between 131.6 and 213.4, B is the bulk modulus in

GPa, and r0 is the Wigner-Seitz radius in atomic units.

The critical superconductivity transition temperature is given by the McMillan equation

Tc =
ΘD

1.45
exp

[
−1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
, (4.8)

where µ∗ is the Coulomb pseudopotential which is usually between the value of 0.1 and

0.2. The Coulomb pseudopotential can also be calculated from the DOS at the Fermi level,

given by the Bennemann-Garland equation

µ∗ = Cµ
N(EF )

1 +N(EF )
, (4.9)

where Cµ is a constant chosen in such a way to make µ∗ equal to a specific value at

equilibrium.
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4.2 Superconductivity of the Iron-Selenium-Tellurium Sys-

tem

This section discusses the results of the GGM theory with the LAPW calculations per-

formed by the NRL-LAPW code for the FeSeTe systems. As mentioned in section 3.1.3,

experimental volumes and c/a were used to calculate the superconductivity properties of

FeSe. The results were found to compare quite well with those found experimentally.

4.2.1 Superconductivity of FeSe

The computational study of superconductivity for the FeSe system using the GGM theory

was discussed in a previous publication[47]. We found that the GGM theory was able to

predict superconductivity for FeSe adequately at ambient pressure, but was not sufficient

for the prediction of the significant increase of Tc under pressure. This section discusses

the results from reference [47] in detail and some further calculations performed after pub-

lication.

Superconductivity calculations were performed using the same computational details

discussed in section 3.1.2. However, further calculations were performed to understand the

influence of muffin-tin radii on the GGM calculations of FeSe. Before talking about the

GGM results, a brief discussion of the DOS calculations will be discussed for the FeSe using

two different muffin-tin radii.

The Role of Muffin-tin Radii

All previously mentioned calculations for FeSe used the 2.0 a.u. muffin-tin radius discussed

in section 3.1.2. However, the use of muffin-tins can influence the decomposed DOS and

GGM calculations. As mentioned, the decomposed values of the DOS from the NRL-LAPW

do not add up to the total DOS at any given energy level. This was due to the fact that the

calculations for decomposed DOS take place only in the muffin-tin spheres. Therefore, it was

important to understand how the choice of muffin-tin radii can influence the calculations of
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the parameter η.

The choice of a muffin-tin radius of 2.0 a.u. came from the decision to perform optimized

calculations. It is impossible to perform energy minimization correctly with the varying of

the muffin-tin size. Varying the muffin-tin radius influences the total energy calculation

and thus needs to be set constant. Since muffin-tin radii are not allowed to overlap in the

NRL-LAPW code, a muffin-tin radius that met the overlap criteria at smaller volumes had

to be chosen. The value of 2.0 a.u. was chosen, since this met the overlap criteria at low

volumes and still provided good coverage of the atomic space in the computational cell.

Once the optimization was complete and the choice of experimental parameters for the

DOS calculations were made, secondary calculations with another muffin-tin radius were

performed to understand their effect on the calculations.

Table 4.1: Total and decomposed DOS of FeSe at the Fermi level for two muffin-tin radii.
Once again the decomposed values do not add up to the total DOS due to the use of
muffin-tin spheres.

rmt N(EF ) Fes Fep Fed Fef Ses Sep Sed Sef

2.0 45.11 0.03 0.40 36.80 0.01 0.01 1.25 0.22 0.06
2.2 45.10 0.04 0.60 37.80 0.02 0.01 1.49 0.34 0.11

Table 4.1 shows the total and decomposed DOS of FeSe with experimental structural

parameters for two different muffin-tin radii, 2.0 a.u. and 2.2 a.u.. The first thing to note

about this table, is how similar the DOS values are for each radii. In other words, the

muffin-tin radius seems to have little influence on the total and decomposed DOS at the

Fermi level for FeSe. Figure 4.1 shows the total and decomposed DOS of both muffin-

tin radii calculations. Just like the table of values at the Fermi level, this figure shows

remarkable similarities between the two calculations. A first glance would suggest there are

no differences at all between the two. However, upon closer inspection, one can see that

the decomposed Se-p states (lime green) in the first peak fill in the total DOS (red) slightly

more in figure 4.1(b), where rmt = 2.2 a.u.. The second difference that is noticeable is the
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Se-p (blue) states filling more total space than the rmt = 2.0 a.u. figure. Although the

figures are near identical and the values in Table 4.1 seem very close, the rmt = 2.2 a.u.

calculations, do hint that some information of the decomposed DOS was missing from

the 2.0 case. This is much more noticeable for the Se states. Due to these minor, yet

potentially significant differences, superconductivity calculations must also be performed

for both choices of muffin-tin radii.
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 0

 20

 40

 60

 80

 100

 120

 140

-1 -0.8 -0.6 -0.4 -0.2  0  0.2

S
ta

te
s
/R

y
/U

n
it
 C

e
ll

Energy(Ry)

εF

Total DOS
DOS Fe-s
DOS Fe-p
DOS Fe-d
DOS Se-s
DOS Se-p

(b) FeSe - DOS (rmt = 2.2)

Figure 4.1: Density of States of tetragonal (PbO-like) FeSe using NRL-LAPW with (a)
rmt = 2.0 and (b) rmt = 2.2. Fermi level is given by the dashed vertical line, given at zero.

GGM Calculations of Iron-Selenium

As Table 4.1 and Figure 4.1 have shown, the muffin-tin radius seems to have little influence

on the DOS at the Fermi level and other energy levels. However, the muffin-tin radius can

still potentially influence the calculations of the GGM theory. Table 4.2 gives the Hopfield

parameters, electron-phonon coupling constants, and critical superconductivity temperature

of FeSe using the two different muffin-tin radii. These calculations were performed using

the experimental lattice parameters, experimental Debye temperature[45] and a Coulomb

pseudopotential of 0.10. The table shows extremely similar results between the two different

muffin-tin radii.

As discussed prior to the GGM calculations, the DOS at the Fermi level were quite
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Table 4.2: Superconductivity related parameters (Hopfield parameters (η), electron-phonon
coupling constants (λ) and critical superconductivity temperature (Tc)) of FeSe using the
GGM theory with NRL-LAPW code for two muffin-tin radii. A Debye temperature of
240K[45] and µ∗ = 0.10 were used for both sets of calculations.

rmt ηFe ηSe λFe λSe λ Tc

(a.u.) (eV/Å2) (K)

2.0 1.50 0.36 0.513 0.090 0.6032 4.6
2.2 1.52 0.46 0.522 0.115 0.6373 5.4

comparable between the two muffin-tin radii. However, the Se contribution to the DOS

does increase some. This translates into a slightly larger Hopfield parameter and electron-

phonon coupling constant of Se. The increases contribute to an increase to the total electron-

phonon coupling constant and thus an overall higher superconductivity temperature. These

increases are worth noting, but do not suggest any significant changes in the overall picture

of the electron-phonon coupling mechanism of superconductivity.

Returning to the calculations performed with a muffin-tin radius of 2.0 a.u., further

GGM calculations were performed for FeSe under pressure. The 2.0 a.u. muffin-tin radius

had to be used, as overlapping spheres became an issue at volumes less than 510 a.u.3.

To perform these calculations under pressure, a modification of the Debye temperature

had to be made in order to approximate its change under pressure. The following linear

representation of the Debye temperature for our calculations is given as

ΘD = C(V − V ) + ΘD , (4.10)

where C is given as the slope between experimental Debye temperature[45] at ambient

and 6.9 GPa pressures, V is the experimental volume, and ΘD is the experimental Debye

temperature at ambient pressure.

Table 4.3 gives the total DOS at the Fermi level, Hopfield parameters, electron-phonon

coupling constants, Debye temperature, Coulomb pseudopotential, and critical supercon-

ductivity temperature of FeSe using the GGM theory. Calculations were performed with the
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Table 4.3: Total DOS at EF , N(EF ), Hopfield parameters, η, electron-phonon coupling
constants, λ, Debye temperature, ΘD, Coulomb psuedopotential, µ∗, and critical supercon-
ductivity temperature, Tc of FeSe at various volumes, corresponding to pressures as high as
8GPa. Values are calculated using a fixed c/a and z taken from experimental parameters
(c/a=1.4656 and z=0.260). Debye temperature is taken from equation (4.10).

V N(EF ) ηFe ηSe λFe λSe λ µ∗ ΘD Tc

(au3) ( states
Ry/cell ) (eV/Å2) (K) (K)

530 45.11 1.52 0.46 0.522 0.115 0.637 0.10 240.0 5.4
460 37.05 2.15 0.47 0.558 0.088 0.646 0.0951 276.1 6.8
430 34.23 2.58 0.53 0.600 0.089 0.689 0.0930 291.4 8.5
420 33.44 2.75 0.55 0.618 0.088 0.707 0.0927 296.6 9.4

experimental lattice parameters and experimental internal parameter, with one calculation

of the optimized internal parameter for comparison. The Coulomb pseudopotential in the

table were taken from equation (4.9), such that the constant was made to make µ∗ = 0.10 at

the equilibrium volume. Again, these calculation were performed with a muffin-tin radius

of 2.0 a.u., with the exception of the 530 a.u.3, which used the rmt = 2.2 a.u. results.

Before discussing the pressure related GGM calculations, it is important to discuss the

differences found between these results and those performed by other groups[4, 64]. These

groups have performed calculations of superconductivity properties for FeSe under ambient

conditions, but found the electron-phonon coupling constant to be insufficient at describ-

ing superconductivity. Linear response theory was used for describing the electron-phonon

coupling interaction in the system. With this method, both groups found total electron-

phonon coupling constants of around 0.15. The real reasons for this discrepancy are not

certain, but possible reasons could be the use of Debye temperature is an oversimplifica-

tion, or the Brillouin-zone sampling for the linear response calculations are not sufficiently

converged. Further understanding of this dependency would be useful for future study of

high-temperature superconductors. However, if the experimental results of Ksenofontov[45]

are used to invert the McMillan equation, a total λ of 0.65 is calculated. This value is

comparable to the one shown in Table 4.3.
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Returning to the NRL-LAPW calculations, the calculated superconductivity tempera-

ture of FeSe at ambient pressure agrees reasonably well to experimentally measured 8 K.

The larger muffin-tin radius calculation raised the calculated Tc closer to experiment. Al-

though the total DOS monotonically decreases with increasing pressure (decreasing volume,)

the parameters η experiences monotonic increases. The calculated Debye temperature is

also found to increase under pressure. Equations (4.1) and (4.6) tell us that both values are

important for the electron-phonon coupling of the system. So although the η parameters

increase to almost double at approximately 8 GPa, the increased Debye temperature limits

the increase in λ. However, we still see an increase in λ over the pressure range. Thus,

the influence of the electron-phonon coupling of the system seems to increase only slightly

under pressure. The overall trend of increasing superconductivity temperature exists for the

calculations performed. However, these values do not get anywhere near the experimentally

measured values of about 37 K under 6 GPa. This suggests that electron-phonon coupling

mechanism is adequate for superconductivity of FeSe in equilibrium conditions, but not

under pressure.

4.2.2 Superconductivity of Iron-Tellurium

GGM calculations were performed for the FeTe system as well. For these calculations, the

experimental structural parameters were used with the experiment internal parameter. FeTe

was found to not superconduct under equilibrium conditions using the GGM theory. This

is consistent with experimental measurements of the superconductivity of FeTe. Supercon-

ductivity calculations were performed using the same computational details as discussed in

section 3.2.2.

The experimental Debye temperature of FeTe, 290 K[65], was used to perform the GGM

calculations. Like the FeSe calculations, a µ∗ of 0.1 was used at the equilibrium volume.

Unlike FeSe, there were no experimental values of the Debye temperature of FeTe under

pressure. Therefore, calculations of superconductivity under pressure were not performed

for FeTe. Assuming the Debye temperature behaves similarly to the FeSe system, the
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superconductivity of FeTe should remain non-superconducting under pressure.

Table 4.4: Total DOS at EF , N(EF ), Hopfield parameters, η, electron-phonon coupling
constants, λ, Debye temperature, ΘD, Coulomb psuedopotential, µ∗, and critical super-
conductivity temperature, Tc of FeTe under ambient conditions. Experimental values are
calculated using a fixed c/a and z taken from experimental parameters (c/a=1.6406 and
z=0.250).

V N(EF ) ηFe ηTe λFe λTe λ µ∗ ΘD Tc

(au3) ( states
Ry/cell ) (eV/Å2) (K)

620 50.83 1.62 0.16 0.388 0.017 0.405 0.10 290.0 1.1

Table 4.4 gives the total DOS at the Fermi level, Hopfield parameters, electron-phonon

coupling constants, Coulomb pseudopotential, Debye temperature and critical supercon-

ductivity temperature of FeTe under ambient conditions. The Hopfield parameters of FeTe

are found to be comparable to those of FeSe. The total DOS is larger in the FeTe sys-

tem than in FeSe. This leads to a larger value of the Hopfield parameter of Fe. However,

the Hopfield parameter of Te is less than the Se of FeSe. This seems reasonable as the

decomposed DOS of Te were less than the decomposed DOS of Se which were shown in

Table 3.3 and Table 3.5. Although the Hopfield parameter of Fe is larger in this system,

the Debye temperature is also much larger. This increase in Debye temperature suppresses

the effects of the increased Hopfield parameter in the electron-phonon coupling interaction.

The suppressed Fe contribution and generally reduced chalcogen Hopfield parameters pro-

duce a total electron-phonon coupling constant of 2
3 that of the FeSe system. All of these

factors lead to a superconductivity temperature of 1.1 K. Although this value is not zero,

it suggests the material is not superconducting under these conditions.

4.2.3 FeSeTe GGM Calculations

The GGM theory seems to accurately predict superconductivity in FeSe and suggests no su-

perconductivity for FeTe under ambient conditions. With this success, it seems reasonable
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to expect the theory to continue to provide an adequate representation of the supercon-

ductivity of the other FeSeTe systems. Due to limitations in the NRL-LAPW code, GGM

theory based calculations were only performed for the FeSe0.5Te0.5 system. These results

are discussed in this section.

Table 4.5: Superconductivity related parameters (Hopfield parameters (η), electron-phonon
coupling constants (λ), specific heat (γ), Debye temperature (ΘD), and critical superconduc-
tivity temperature (Tc)) of FeSe, FeTe, and FeSe0.50Te0.50 systems using the GGM theory
with NRL-LAPW code.

ηFe ηSe ηTe λFe λSe λTe λ γ ΘD Tc

(eV/Å2) ( mJ
molK2 ) (K) (K)

FeSe 1.52 0.46 0.522 0.115 0.637 6.23 240 5.4
FeSe0.50Te0.50 3.17 0.18 0.06 0.928 0.037 0.008 0.973 9.09 262 14.5
FeTe 1.62 0.16 0.388 0.017 0.405 6.19 290 1.1

Table 4.5 gives the Hopfield parameters, electron-phonon coupling constants, electronic

specific heat, Debye temperature and critical superconductivity temperature of all three

FeSeTe based systems under ambient conditions. As previously mentioned the results of

FeSe and FeTe calculations compare well with each other. The addition of the 50% sys-

tem follows these results as well, although significant increases in the Fe contribution are

seen. For the FeSe0.50Te0.50 system, we again see an increase of ηFe, specific heat and

Debye temperature from FeSe. In this calculation, we see the ηFe is about double that

of either FeSe or FeTe. Both chalcogen Hopfield parameters are reduced by almost half

those found in the corresponding extreme systems. This is consistent with the DOS values

discussed previously for FeSe0.50Te0.50. The increase in ηFe is obviously the largest contri-

bution to the electron-phonon coupling interactions of this system. These electron-phonon

coupling constants calculate a specific heat of FeSe that is comparable to the experimental

results of 9.17 mJ/molK2[66]. The calculated specific heat of FeTe is significantly underes-

timated from the experimental value of 34 mJ/molK2[67]. Experimental specific heat for

FeSe0.50Te0.50 could not be found, but our calculated value is a prediction of experiment.
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The Debye temperature is found to be in between the FeSe and FeTe Debye tempera-

tures. This increase in Debye temperature is much less significant than the large increase

of ηFe. Thus, the electron-phonon coupling constant is calculated to be nearly double the

FeSe value. This increase in λ causes the calculated Tc to be larger than both FeSe and

FeTe. The calculated value of Tc = 14.5 K agrees particularly well with the experimentally

measured temperature of 13 K[5].

Table 4.5 tells us a few things about the FeSeTe system as a whole. For one thing, the

addition of Te into the FeSe system seems to greatly increase the electron-ion interactions

of Fe. However, the chalcogenides themselves do not contribute much directly to the overall

electron-ion and electron-phonon coupling interactions in the systems. The electron-phonon

coupling interaction is able to predict superconductivity in both FeSe and the 50% system,

while predicting no superconductivity for FeTe. While these Fe-based superconductors can

be explained by electron-phonon interactions, other interactions are needed to explain more

complex Fe-based superconductors.

Calculations of the LaFeAsO system were performed by various groups[68–70]. In all

these calculations, the electron-phonon coupling constants of LaFeAsO were in agreement,

approximately λ = 0.2. Reference [70] and reference [69] both performed the superconduc-

tivity calculations using linear response methods. However, the LAPW calculation based

on ref. [68] find λ = 0.23 when using the Gaspari-Gyorffy-McMillan theories of supercon-

ductivity. It is important to note that LaFeAsO is on the verge of magnetic instability,

which may suggest spin-fluctuations are important in this material. Table 4.6 provides the

superconductivity related parameters of the LaFeAsO material.

Gaspari-Gyorffy-McMillan calculations of the VCA based FeAs0.50Se0.50 systems were

also performed. Table 4.7 show the calculated total DOS, Hopfield parameters, electron-

phonon coupling constants, Debye temperature and superconductivity temperature for the

two VCA methods. The total DOS of these calculations are much higher than those found

for FeSe and FeTe. Fe η values are significantly higher than FeSe and FeTe, but As/Se
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Table 4.6: Calculated DOS and superconductivity related results of LaFeAsO using LAPW
with LDA functional. Experimental critical temperature result is taken from Takahashi et.
al[71]

LaFeAsO

N(EF ) (states/Ry/cell)
53.964

Ns(EF ) Np(EF ) Nd(EF ) Nf (EF ) η (eV/Å2) λ

Fe 0.029 0.562 44.052 0.014 0.967 0.19
As 0.006 0.826 0.439 0.119 0.186 0.03
La 0.006 0.126 0.330 0.278 0.034 0.003
O 0.009 0.264 0.042 0.005 0.008 0.006

ΘD(K) λTotal µ∗ Tc Tc (exp)
319 0.23 0.13 0.0 45.0

η results are comparable. Using an estimated Debye temperature of 240 K, the experi-

mental FeSe result, we calculate total λ values close to 1. This provides superconductivity

temperatures much higher than those found for FeSe.

Table 4.7: Superconductivity related parameters (total DOS at Fermi level (N(EF )), Hop-
field parameters (η), electron-phonon coupling constants (λ), Debye temperature (ΘD) and
superconductivity temperature (Tc)) of FeAs0.50Se0.50 using the GG theory with NRL-
LAPW code. The first row represents the direct LAPW VCA method, while the second is
the averaged potential VCA method.

N(EF ) ηFe ηAs/Se λFe λAs/Se λTotal ΘD Tc

( states
Ry/unitcell ) (eV/Å2) (K) (K)

VCA 77.85 2.62 0.39 0.898 0.010 0.998 240 13.8
Pot/VCA 83.23 2.07 0.42 0.711 0.107 0.818 240 9.7

As of this dissertation, experimental and computational work on this material have

not been published. It is possible this material is difficult to produce in a laboratory

setting. Without an experimental Debye temperature to base further calculations on, the

electron-phonon coupling and superconductivity temperatures are estimates. However, if

a larger Debye temperature is used, such as the experimental FeTe value, the results still
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provide electron-phonon coupling constants large enough to suggest superconductivity in

this material.

4.2.4 Final Remarks on Superconductivity

The results discussed here reiterate the claim that the Gaspari-Gyorffy-McMillan theories do

an adequate job in predicting superconductivity of FeSe, as well as FeTe and FeSe0.50Te0.50.

This affirms that the electron-phonon coupling cannot be ignored in these materials. For

more complex iron-based superconductors such as LaFeAsO, the electron-phonon picture is

clearly not enough. The calculations presented here, lead to the conclusion that electron-

phonon coupling has a significant role in explaining superconductivity in the FeSeTe system

under ambient conditions. However, spin-fluctuations may become important to explain the

increase of Tc under pressure and also in the more complex Fe-based superconductors.
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Chapter 5: Tight-Binding Theory and Calculations

5.1 Tight-Binding Methodology

In Chapter 2, we discussed solving Schrödinger’s equation using first-principles methods.

This chapter considers another approach for solving Schrödinger’s equation known as the

Tight-Binding (TB) method of Slater and Koster (SK)[72]. This method is much faster than

the first-principles based APW/LAPW methods owing to the size reduction of matrices

that need to be diagonalized. The TB method was originally developed to reduce the

large number of integrals involved in the Linear Combination of Atomic Orbitals (LCAO)

method. The reduction considers the integrals to be adjustable constants, determined by

first-principles calculations.

5.1.1 Tight-Binding Basics

In the TB method, the atomic orbitals are replaced by Bloch sums, which give wave func-

tions of the form

ψ~kiα = N−1/2
∑
n

eı
~k· ~Rnψiα(~r − ~Rn − ~bi) , (5.1)

where ~k is the Bloch wave vector, N is the number of unit cells in the sum, ~Rn are the

lattice vectors , i is the atom type associated with position ~bi, and α denotes both orbital

and angular quantum numbers of the atomic site. The Hamiltonian with an orthogonal

basis set can then be written as

Hiα,jβ(~k) =
∑
n

ei
~k· ~Rn

∫
ψ∗iα(~r − ~Rn − ~bi)Hψjβ(~r − ~bj)d

3r. (5.2)
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The potential associated with this Hamiltonian is given by

V (~r) =
∑
nk

Vk(~r − ~Rn − ~bk). (5.3)

Using equation (5.2), there are four different categories of integrals:

1. On-site integrals: Used if all three locations are on the same atom;

2. Two-center integrals: Used if the location of the potential is the same as one of the

wave functions;

3. Three-center integrals: Used when the potential and wave functions are located at

different sites;

4. Crystal field integrals: Used when wave functions come from the same site, but the

potential is on a different site.

In general, implementations of the TB method use only the first two integral types.

This means that the integrals only depend on the displacement between two atoms. The

Slater-Koster TB formalism skips the calculation of the integrals all together and replaces

them by disposable parameters. These parameters are determined by fitting first-principles

calculations at points in the Brillouin zone. The best fit parameters can then be use to

interpolate the eigenvalues in the entire Brillouin zone. The parameter fitting is done using

a non-linear least squares method.

Using the SK formalism, there are three kinds of TB parameters: on-site, Hamiltonian

and overlap parameters. On-site parameters describe the energy needed to place an electron

in a specific orbital. The Hamiltonian parameters represent the orthogonal ”hopping” of

electrons from one atomic site to another. Overlap parameters express the ”hopping” inter-

actions between non-orthogonal orbitals. These parameters construct the TB Hamiltonian,

which is given by

H =
∑
iα

hiαc
†
iαciα +

∑
ij,αβ

Piα,jβc
†
iαcjβ , (5.4)
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where ij are atomic sites, αβ are the atomic orbitals, h are the on-site parameters, and P

are the Hamiltonian and overlap matrix elements. The total number of parameters that are

used in a fit depends on the system in question.

5.1.2 NRL Implementation of the TB Method

In DFT, the total energy can be written as

E [ρ(r)] =
∑
i

f(µ− εi)εi + F [ρ(r)] , (5.5)

where ρ(r) is the electronic density, µ is the chemical potential, εi is the Kohn-Sham eigen-

value of the ith electronic state and F [ρ(r)] is the total energy from Equation (2.3) without

the kinetic term. The NRL-TB formalism uses a unique method for solving Equation (5.5),

based on the fact that the Kohn-Sham method allows for an arbitrary shift in the potential.

This is done by shifting the first-principles eigenvalues by a constant potential, V0, prior to

the fit. This potential is defined by

V0 = F [ρ(r)] /Ne , (5.6)

where Ne is the number of valence electrons in the system. The total energy with the shift

applied becomes

E [ρ(r)] =
∑
i

f(µ′ − ε′i)ε′i , (5.7)

where ′ designates the shifted value and specifically ε′i = εi + V0.

In general, on-site parameters have off-diagonal terms due to overlapping of wave func-

tions. However, traditionally only the diagonal terms are used, as they correspond to the

orbital type (s, p, d, . . . ). The on-site parameters take the form

hiγ = aαγ + bαγρ
2/3
i + cαγρ

4/3
i + dαγρ

2
i , (5.8)
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where γ denotes the orbital type, a, b, c, d are coefficients, and ρ is the atomic density of

the atoms. In the NRL-TB formalism, the density of each atom is given by

ρi =
∑
j 6=i

e−λ
2
αβRijF (Rij) , (5.9)

where Rij is the distance between the atomic sites i and j, αβ is the type of atom on the

ij sites, respectively, and λ is an additional fitting coefficient. F (Rij) is the smoothing

function

F−1(Rij) = (1 + e
Rij−Rc

l ) . (5.10)

Here, Rc is a constant cut-off distance, usually determined by the number of nearest neigh-

bors to include in the fit. The smoothing function helps to limit the interactions between the

current atom and distant atoms, which have a negligible effect relative to nearest neighbors.

Originally, the NRL-TB method used four types of on-site parameters corresponding

to the s, p, dt2g and deg interactions. This leads to sixteen coefficients for the on-site

parameters. However, these can be expanded into s, px, py, pz, dxy, dxz, dyz, dx2−y2 and

d3z2−r2 , requiring nine on-site parameters. These extra on-site parameters can potentially

improve the fit for a system where common orbital symmetries are not found.

Both the Hamiltonian and overlap parameters take the form

Pµ = (eµ + fµR+ f̄µR
2)e−g

2
µRF (R) , (5.11)

where e, f, f̄ , g are coefficients and µ corresponds to the type of orbital interactions

involved. For example, µ = ssσ would represent the interaction between the s orbital of the

first atom with the s orbital of the second atom parallel to the bond, σ. Two other types of

bonds are used in the NRL-TB implementation, which include π and δ bonds[73–75]. For a

binary system, there are a possible total of fourteen Hamiltonian parameters and fourteen

overlap parameters. The fourteen orbital interactions for these parameters are ssσ, spσ,
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sdσ, psσ, ppσ, ppπ, pdσ, pdπ, dsσ, dpσ, dpπ, ddσ, ddπ and ddδ. Symmetry reduces the

number of interactions when both atoms are the same element. The symmetry couples

spσ = −psσ, sdσ = dsσ, pdσ = −dpσ and pdπ = −dpπ.

For monoatomic TB calculations, a total of 97 coefficients are used. As previously

discussed, a total of seventeen coefficients are used to describe the on-site parameters for

a single element. The on-site parameters include s, p, deg and dt2g , and the λ coefficient.

The Hamiltonian and overlap parameters require four coefficients for all ten symmetric

parameters above. This corresponds to eighty total coefficients for the Hamiltonian and

overlap parameters.

For diatomic materials, a total of 346 parameters are used, disregarding the p and d

symmetries of px = py = pz and deg/dt2g . Instead of seventeen coefficients, there are now

9*4+λ → 37 for each element, which is 74 coefficients for the on-site parameters. Consid-

ering only the Hamiltonian parameters, we have 4*10 coefficients for each monoatomic pair

of elements; for two types of elements, this comes to eighty coefficients. We also have 4*14

coefficients for the cross-element pair. The same goes for the overlap parameters, which

gives a total of 272 coefficients between both sets of ”hopping” parameters.

The NRL-TB method minimizes total energies, eigenvalues and their corresponding

charge contributions by differencing the TB and first-principles calculations. This is done

using a Levenberg-Marquardt least squares algorithm. Minimization is written as

Minimize

[∑
s

(
ws(E

TB
s − ELAPWs )2 +

∑
k

∑
b

wsb(ε
TB
skb − εLAPWskb )2

+
∑
k

∑
b

∑
e

wsbe(q
TB
skbe − qLAPWskbe )2

)]1/2
, (5.12)

where s are the lattice structures to be fit, k are the k-points used, b is the band number

for a given k-point. The eigenvalues at band b of k-point k are given by ε and q are the

charges for a given eigenvalue. The weight for the total energy fit is ws, wsb is the weight
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of the b band for the s structure, and wsbe is the weight of the charge type of eigenvalue of

the given band and structure.

In the end, we are left with a Hamiltonian of size nxn, where n is the total number of

atoms and orbitals included. A Hamiltonian is calculated at each k-point. The number of

on-site parameters and k-points are determined on a per system basis. This means that the

size of the Hamiltonian will vary depending on the total number of atoms and the type of

structure of the system. These details are discussed in the following sections.

5.2 Tight-binding Fits of FeSe and FeTe

5.2.1 Introduction

First-principles results of FeSe and FeTe from the NRL-LAPW code (see Chapter 3) were fit

using the NRL-TB method, with up to eighteen bands from the LAPW results. These bands

include the Se/Te s-states well below the Fermi level, the rest of the bands that are below the

Fermi level, and around four bands above the Fermi level. Other calculations with 14, 16 and

20 bands were also performed, but either did not contain enough information to accurately

fit, or contained more data than was necessary for a good fit. One fit concentrated on fitting

the total energy accurately and used multiple lattice structures and volumes results from the

LAPW. Another fit particularly focused on the energy bands, using only the experimental

lattice parameter structure. The primary fit was based on the DOS and charge information

of the systems under experimental equilibrium conditions. This DOS fit was later used to

perform further calculations for the FeSeTe systems.

Tight-Binding Fitting Process

Before discussing the exact details of the fits and their final results, it is important to

understand the process for finding good fits for a system. The process has several iterative

steps. The first step is to perform first-principles based calculations of the total energy and

energy bands, as a function of volume and c/a. For this study, this step was performed
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using the NRL-LAPW code. These results were used as an input to the NRL-TB code,

which follows Eq. (5.12), to produce good transferability of the TB parameters for different

volumes. The starting point of the minimization requires an initial set of TB coefficients

estimated from the eigenvalues calculated by the first-principles results. This is done by

setting the first coefficient of each on-site parameter to the eigenvalues calculated at the

Γ point. The remaining coefficients are usually set to values below 10−3, but sometimes

need adjustments to begin iteration. Once the initial coefficients are set, these coefficients

and some chosen structural lattice parameters are input into the fit. The initial structural

inputs were chosen as the calculated LAPW equilibrium result, plus one or two results

that straddle the calculated minimum LAPW total energy. Next, the TB fitting is run

until convergence is met. Recall, the initial coefficients may need to be adjusted to achieve

convergence. Once a good fit is produced, additional structures are added to the previous

best fit coefficients and then input into the fitting process. This procedure is done as many

times as desired, but is stopped once the additions start negatively effecting the fit. A good

fit is usually considered to have an overall RMS band error of about 10 mRy and an overall

total energy RMS error of 1 mRy. However, these values are only estimates and can vary

from system to system.

During the fitting process, additional steps can be taken to produce good fits. For

example, we can add block diagonalization of high symmetry k-points to the fit input.

This can either be done prior to the initial fit or after a decent initial fit is obtained.

Block diagonalization better determines the proper placement of bands and their angular

momentum character. It is also common to remove certain parameters from the fit if they

become too large or too small, which leads to poor fits. For the Hamiltonian and overlap

parameters, this is done by setting the poor parameter to zero and forcing the program to

ignore that term. For on-site parameters, removal is done by setting the first coefficient of

the on-site parameter to a large value and freezing it there. We cannot set these parameters

to zero because instead of removing them from the fit, this would set the orbital interaction

at 0.0 Ry.
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After a good fit is found the coefficients are used to calculate properties of the material,

such as total energies, band structures, phonon frequencies, and DOS. A complete set of

TB coefficients should be transferable, meaning the coefficients can be used to calculate

properties for structural information not input directly into the fit. The TB based results

can then be compared to first-principles results or experimental data.

This entire process requires intuition, as well as physical understanding from the user.

There are no universal initial sets of coefficients that can be used for every case.

5.2.2 Computational Details

As mentioned in the previous section, FeSe and FeTe were fit emphasizing total energy, en-

ergy bands and DOS, in turn. For these fits, the 346 coefficient base was used. However, we

reduced the number of coefficients owing to results found in section 3.1.4 and section 3.2.4.

In these sections, the Fe-p and Se/Te-d states had little influence on the electronic structure

of the fitted bands. This allowed for the removal of all the related parameters in the TB

fits. Specifically, the Fe-p on-site parameters were frozen to 10 and the Se/Te-d on-site pa-

rameters were frozen to 20; The Hamiltonian parameters involving the Se/Te-d interactions

were frozen to 0. However, the Hamiltonian parameters involving Fe-p interactions were

allowed to vary because traces of Fe-p DOS were calculated in the fitted LAPW results;

This reduced the fits of 346 coefficients to as low as 130 coefficients. However, some fits

were performed with the Fe-p states included to see if they could provide a better fit. The

following few paragraphs explain the explicit details of the best overall fits for the total

energy, energy bands, and DOS/charge based fits.

All fits were based on the NRL-LAPW with LDA functional results of FeSe and FeTe.

Recall, these calculations had four atoms in the unit cells. These TB fits contained the s,

p, and d character for each atom. Therefore, the size of secular equation, or the size of the

Hamiltonian at each k-point, was a 36x36 matrix, which was effectively reduced to 20x20

by removing the Fe-p and Se/Te-d states.

For the total energy based fit, seventeen structure calculations of FeSe were used to
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fit the system. This fit also included calculations of the hexagonal NiAs-type structure of

FeSe that experimentally only exists at high pressures, greater than 12 GPa. A total of

twelve PbO-type structures were fit, with the remaining five as NiAs-type. Both sets of

structures were based on experimental c/a and z. This fit was also performed with most of

the coefficients free to vary. Since Fe-p states were found slightly above the included bands,

these parameters were not frozen. However, Se-d states have much higher energy and were

therefore excluded from the system. The on-site parameters of Fe were reduced to the p and

d symmetries, meaning px = py = pz, dxy = dxz = dyz and d3r2−z2 = dx2−y2 . The Se on-site

parameters used the p symmetries, but d was frozen, as mentioned above. This fit used

only orthogonal interactions, which further reduced the overall number of coefficients used.

Only bands of the calculated equilibrium PbO-type structure were included and the charges

were weighted at zero. The overall RMS energy error was 0.83 mRy, while the overall RMS

band error was 14 mRy. These errors suggest a very good fit of the FeSe system.

The total energy based fit of FeTe used less total structures in the minimization. Specifi-

cally, twelve NRL-LAPW with LDA calculations were fitted, with eight of these being based

on the experimental c/a and z, and the remaining four were based on the optimized LDA

calculations. Since the Fe-p states were again found just above the contained bands, these

Fe-p on-site parameters were allowed to vary. The Te-d on-site parameters were removed

entirely. Only the p symmetry was used, meaning all the Fe-d on-site parameters were

allowed to vary independently. The fit was orthogonal and thus only the Hamiltonian pa-

rameters were used. Again, only bands of the calculated equilibrium structure of FeTe were

fit, with no weight given to the charges. The overall total energy RMS error was 1.03 mRy,

while the overall RMS error of the bands was 18 mRy.

Energy band based fits were performed for FeSe and FeTe using the NRL-LAPW with

LDA functional band calculations with the nonuniform 904 k-point mesh. Total energy and

charges were weighted to zero for both fits. The FeSe fit used only the experimental c/a

ratio and z parameter calculation. Only the Se-d on-site parameters were removed from

the fit. The p symmetry was used for both atom types, while the Fe-d on-site parameters
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were all independent of each other, except for dxz = dyz. The overall RMS band error

was found to be 10.7 mRy and was a non-orthogonal fit. For FeTe, the best fit used the

experimental calculation. This fit included the Fe-p on-site parameters and allowed pz to

vary independently from px and py. The Fe-dxz and dyz parameters were set equal to each

other. The fit used an orthogonal base. The overall RMS band error for this fit was found

to be 15.1 mRy.

For DOS based calculations, only the experimental lattice parameter results of the NRL-

LAPW code with LDA functional were fit for both the FeSe and FeTe systems using the

uniform 196 k-point mesh. The total energy weight was set to zero, while the charge weight

was set to 1/500. The Fe-p and Se/Te-d on-site parameters were removed. All other on-site

parameters were allowed to vary independently of the others. Although the Fe-p on-site

parameters were removed, the ”hopping” Fe-p parameters were allowed to vary. Again,

these fits were orthogonal based. An overall RMS band error for FeSe was 13.5 mRy, with

the largest band error found in the eighth band at 23.3 mRy. For FeTe, the overall RMS

band error was given as 12.5 mRy, with the largest error of 18.5 mRy at the third band.

Both of these fits provide good RMS errors for the DOS.

5.2.3 Using the Fitted TB Parameters

Tight-Binding Total Energy Calculations

Figure 5.1 shows the total energy plots of FeSe in the PbO-like structure and NiAs-like

structure using the TB results. Both of these structures were fit with the NRL-TB method.

Recall, the fit used the experimental c/a ratio and z parameters as input. The energy curve

of the PbO-like calculations predict the equilibrium volume to be 464.5 a.u.3. This is fairly

close to the optimized NRL-LAPW with LDA functional result of 472.5 a.u.3. The NiAs-like

calculations had a higher energy than the PbO-like calculations, which was expected. These

calculations predict the equilibrium volume to be 371.1 a.u.3. The bulk modulus was also

calculated for both curves. For the PbO-like structure, the bulk modulus was 142.2 GPa,

while the NiAs-like bulk modulus was 376.4 GPa. These values are significantly higher than
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Figure 5.1: Total energy plots of the tetragonal PbO-like and hexagonal NiAs-like structures
of FeSe using the Tight-Binding and LAPW results. The experimental volume is given by
Kumar, et. al.[44].

the NRL-LAPW results.

Table 5.1 provides the final TB coefficients for the FeSe total energy-based fit. Only the

coefficients that were included in the fit are presented in the table. Again, both the on-site

and ”hopping” parameters that contained Se-d interactions were removed from the fit. This

fit was orthogonal, meaning all overlap coefficients were zero and not included in the table.

A total of 141 coefficients were used in this fit.

Figure 5.2 shows the total energy plot of NRL-TB experimental PbO-like FeTe. This

fit predicts the equilibrium volume of FeTe to be 592.7 a.u.3, which is actually closer to

experiment than the NRL-LAPW results. Again, this was fit using the experimental c/a

and z parameters as well as some of the optimized results discussed in Chapter 3. Although

some optimized results were involved in the fit, the NRL-TB parameters were unable to

produce a smooth energy curve when using their structural input for the calculation of

total energy. The bulk modulus was predicted to be mush higher though, with a value of
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Table 5.1: Tight-binding coefficients for the total energy-based FeSe fit.

Coefficient Coefficient Coefficient

Fe λ 1.04074550 Se cy −98.35725403 Se f̄ssσ −14.50675297
Fe as 0.79037011 Se dy 2916.05786133 Se gssσ 1.00000000
Fe bs −3.85532212 Se az 0.57968342 Se espσ 771.53460693
Fe cs −67.57326508 Se bz −3.73370290 Se fspσ −9.23446369
Fe ds 678.48132324 Se cz −98.35725403 Se f̄spσ −15.20286655
Fe ax 0.24236092 Se dz 2916.05786133 Se gspσ 1.00000000
Fe bx 0.31090668 Fe essσ 3.28240132 Se eppσ −1009.02374268
Fe cx −16.81315804 Fe fssσ −0.86473733 Se fppσ 35.72250748
Fe dx 382.52609253 Fe f̄ssσ 0.05531130 Se f̄ppσ 15.99949074
Fe ay 0.24236092 Fe gssσ 0.56201625 Se gppσ 1.02264977
Fe by 0.31090668 Fe espσ −30.88891983 Se eppπ −782.80541992
Fe cy −16.81315804 Fe fspσ −6.08658648 Se fppπ 165.16844177
Fe dy 382.52609253 Fe f̄spσ 2.16998196 Se f̄ppπ −6.97320604
Fe az 0.24236092 Fe gspσ 1.00000000 Se gppπ 1.00000000
Fe bz 0.31090668 Fe eppσ −67.24925995 Fe-Se essσ −41.44359589
Fe cz −16.81315804 Fe fppσ −48.48870087 Fe-Se fssσ 1.99207914
Fe dz 382.52609253 Fe f̄ppσ −4.34365797 Fe-Se f̄ssσ 2.74189496
Fe ayz 0.13475570 Fe gppσ 1.30933940 Fe-Se gssσ 1.08950412
Fe byz 1.03740466 Fe eppπ 7.62456083 Fe-Se espσ −22.89796448
Fe cyz −7.07714081 Fe fppπ −21.28631592 Fe-Se fspσ 3.68959713
Fe dyz 103.08042145 Fe f̄ppπ 4.27471066 Fe-Se f̄spσ −0.01981102
Fe axz 0.13475570 Fe gppπ 1.01926863 Fe-Se gspσ 1.00000000
Fe bxz 1.03740466 Fe esdσ 688.70593262 Fe-Se eppσ 456.01055908
Fe cxz −7.07714081 Fe fsdσ −1.57170069 Fe-Se fppσ −161.15187073
Fe dxz 103.08042145 Fe f̄sdσ −19.81988144 Fe-Se f̄ppσ −77.10799408
Fe axy 0.13475570 Fe gsdσ 1.31946468 Fe-Se gppσ 1.46372819
Fe bxy 1.03740466 Fe epdσ 1.63366520 Fe-Se eppπ −0.73331422
Fe cxy −7.07714081 Fe fpdσ −0.40202522 Fe-Se fppπ 2.01693559
Fe dxy 103.08042145 Fe f̄pdσ 0.02712457 Fe-Se f̄ppπ −0.44232374
Fe ax2−y2 0.32691318 Fe gpdσ 0.49895480 Fe-Se gppπ 1.00000000
Fe bx2−y2 −2.46214676 Fe epdπ 41.19293213 Fe-Se epsσ −4.36741066
Fe cx2−y2 −20.80017281 Fe fpdπ −0.48562828 Fe-Se fpsσ 0.44560799
Fe dx2−y2 470.00033569 Fe f̄pdπ −1.31066239 Fe-Se f̄psσ 0.23779057
Fe a3z2−r2 0.32691318 Fe gpdπ 1.00262678 Fe-Se gpsσ 0.85807490
Fe b3z2−r2 −2.46214676 Fe eddσ −211.16706848 Fe-Se edsσ 36.48718643
Fe c3z2−r2 −20.80017281 Fe fddσ 69.73640442 Fe-Se fdsσ −7.03932142
Fe d3z2−r2 470.00033569 Fe f̄ddσ −5.48511600 Fe-Se f̄dsσ −1.17955494
Se λ 0.99533558 Fe gddσ 1.00000000 Fe-Se gdsσ 1.02513921
Se as −0.53249127 Fe eddπ −494.84747314 Fe-Se edpσ 5.59420156
Se bs 1.27065158 Fe fddπ −161.00187683 Fe-Se fdpσ 0.40000820
Se cs −80.07010651 Fe f̄ddπ 53.25040436 Fe-Se f̄dpσ −0.16165493
Se ds 1305.34814453 Fe gddπ 1.20045924 Fe-Se gdpσ 0.86289167
Se ax 0.57968342 Fe eddδ 1.23081100 Fe-Se edpπ 0.33103356
Se bx −3.73370290 Fe fddδ −0.02199572 Fe-Se fdpπ −1.23522317
Se cx −98.35725403 Fe f̄ddδ −0.07591713 Fe-Se f̄dpπ −0.01363446
Se dx 2916.05786133 Fe gddδ 0.76730031 Fe-Se gdpπ 1.00000000
Se ay 0.57968342 Se essσ −503.39953613
Se by −3.73370290 Se fssσ 172.37174988

88



  
 0

.0
0

  
 0

.0
1

  
 0

.0
2

  
 0

.0
3

 560.00  577.50  595.00  612.50  630.00

E
n
e
rg

y
 (

m
R

y
)

Volume (a.u.
3
)

Vexp = 617.4au
3

VTB = 592.7au
3

TB LAPW

Figure 5.2: Total energy plots of the tetragonal PbO-like structure of FeTe using the Tight-
Binding and LAPW results. Energy curves are based on the experimental c/a and z pa-
rameters. The experimental volume is given by Finlayson et. al.[59].

B = 111.8 GPa.

Table 5.2 presents the final TB coefficients of the FeTe total energy-based fit. Again,

only the used coefficients of the fit are presented in the table. The orthogonal base removed

all overlap parameters from the fit. The coefficients that involved Se-d were also removed

from the fit. Like the FeSe total energy-based fit, we were left with a total of 142 coefficients

for this fit.

Tight-Binding DOS

The DOS were calculated using the NRL-TB method for FeSe and FeTe using the fits

discussed above. Figure 5.3 shows the total DOS from the NRL-LAPW results overlaid with

the NRL-TB results for FeSe (5.3a) and FeTe (5.3b). Both panels of the figure show that

the NRL-TB DOS is in good agreement with the NRL-LAPW DOS. We see in Figure 5.3a

that the TB results predict the same general structure of the DOS throughout the energy
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Table 5.2: Tight-binding coefficients for the total energy-based FeTe fit.

Coefficient Coefficient Coefficient

Fe λ 1.02972209 Te cy −137.05931091 Te f̄ssσ 10.04300117
Fe as 0.09575267 Te dy 2359.46508789 Te gssσ 1.30949759
Fe bs 0.41640300 Te az 0.53245795 Te espσ −160.84097290
Fe cs −14.95510197 Te bz −2.63346338 Te fspσ −14.18148613
Fe ds 441.91253662 Te cz −137.05931091 Te f̄spσ 4.53809547
Fe ax 0.18364148 Te dz 2359.46508789 Te gspσ 1.00000000
Fe bx 1.12482858 Fe essσ 29.05669785 Te eppσ 15.11514091
Fe cx 1.73608065 Fe fssσ 0.40643018 Te fppσ −25.25718307
Fe dx 253.34585571 Fe f̄ssσ −0.95387864 Te f̄ppσ 3.17394638
Fe ay 0.18364148 Fe gssσ 1.00000000 Te gppσ 0.94583619
Fe by 1.12482858 Fe espσ −21.99173737 Te eppπ 5.10377073
Fe cy 1.73608065 Fe fspσ −1.13533175 Te fppπ 9.46372223
Fe dy 253.34585571 Fe f̄spσ 0.70573235 Te f̄ppπ −1.31177461
Fe az 0.18364148 Fe gspσ 1.00358689 Te gppπ 0.84871167
Fe bz 1.12482858 Fe eppσ −90.53153229 Fe-Te essσ 240.07279968
Fe cz 1.73608065 Fe fppσ −11.25663948 Fe-Te fssσ 1.50956428
Fe dz 253.34585571 Fe f̄ppσ 0.34707510 Fe-Te f̄ssσ −13.64760685
Fe ayz 0.04489431 Fe gppσ 1.16995907 Fe-Te gssσ 1.19084144
Fe byz 0.66583282 Fe eppπ −6.62954378 Fe-Te espσ −0.02917978
Fe cyz 2.74255347 Fe fppπ 0.25033674 Fe-Te fspσ −0.61173117
Fe dyz 146.71618652 Fe f̄ppπ 0.80212069 Fe-Te f̄spσ −0.01327198
Fe axz 0.07733063 Fe gppπ 1.11986697 Fe-Te gspσ 1.00000000
Fe bxz 0.77684200 Fe esdσ 6.99462032 Fe-Te eppσ −23.21195412
Fe cxz 1.47659814 Fe fsdσ 2.21414852 Fe-Te fppσ 4.16017389
Fe dxz 92.89398956 Fe f̄sdσ 0.03787647 Fe-Te f̄ppσ 0.23646605
Fe axy 0.05892282 Fe gsdσ 1.06904840 Fe-Te gppσ 1.00000000
Fe bxy 0.78196758 Fe epdσ 1.78592587 Fe-Te eppπ 22.04906845
Fe cxy 4.92304897 Fe fpdσ −0.00601421 Fe-Te fppπ −0.37230593
Fe dxy 248.75355530 Fe f̄pdσ −0.02007457 Fe-Te f̄ppπ −0.99022424
Fe ax2−y2 0.51376987 Fe gpdσ 0.63095170 Fe-Te gppπ 0.94103771
Fe bx2−y2 −3.29643798 Fe epdπ 17.81668091 Fe-Te epsσ 4.74289131
Fe cx2−y2 −8.38007259 Fe fpdπ −1.30904233 Fe-Te fpsσ 3.54650187
Fe dx2−y2 71.75533295 Fe f̄pdπ −0.45424110 Fe-Te f̄psσ −0.65310216
Fe a3z2−r2 0.44508547 Fe gpdπ 0.93507278 Fe-Te gpsσ 1.00000000
Fe b3z2−r2 −3.62744522 Fe eddσ −3.57384205 Fe-Te edsσ 5.80567646
Fe c3z2−r2 −7.73834181 Fe fddσ −1.20072317 Fe-Te fdsσ −3.48812079
Fe d3z2−r2 110.53488159 Fe f̄ddσ 0.57797039 Fe-Te f̄dsσ 0.49473786
Te λ 0.97154653 Fe gddσ 1.00000000 Fe-Te gdsσ 0.89484090
Te as −0.54105967 Fe eddπ −74.66387177 Fe-Te edpσ 0.11398563
Te bs 1.19040513 Fe fddπ −13.86046124 Fe-Te fdpσ 0.22444968
Te cs −87.54024506 Fe f̄ddπ 5.26521397 Fe-Te f̄dpσ 0.02621157
Te ds 1212.64270020 Fe gddπ 1.05696487 Fe-Te gdpσ 0.82138622
Te ax 0.53245795 Fe eddδ −1.36689031 Fe-Te edpπ 7.33093166
Te bx −2.63346338 Fe fddδ 0.38245890 Fe-Te fdpπ −0.54200119
Te cx −137.05931091 Fe f̄ddδ −0.03361005 Fe-Te f̄dpπ −0.31840372
Te dx 2359.46508789 Fe gddδ 0.61812407 Fe-Te gdpπ 0.92311865
Te ay 0.53245795 Te essσ 6965.93408203
Te by −2.63346338 Te fssσ −1280.79101562
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Figure 5.3: Comparison of the total Density of States between NRL-LAPW (solid red) and
NRL-TB (dashed green) of tetragonal (PbO-like) (a) FeSe and (b) FeTe. Fermi level is
given at 0.0 Ry by the vertical dashed (blue) line.

region, with minor discrepancies. The only difference is the prediction of a small gap in the

LAPW DOS around −0.2 Ry, which is shown as a minimum in the TB results. The TB

DOS in Figure 5.3b for FeTe has very good overall agreement with the LAPW DOS.

Figure 5.4 shows the comparisons of the Se/Te-p and Fe-d DOS between the TB and

LAPW methods. The differences in decomposed DOS are quite pronounced for the Fig-

ure 5.4a and Figure 5.4c. Between the energies of −0.20 Ry and 0.0 Ry in Figure 5.4a, the

decomposed p states are more than doubled for the TB method. This energy range shows a

decrease in the Fe-d DOS for the corresponding Figure 5.4b. Outside this energy range, the

TB decomposed DOS of FeSe are in good agreement with the LAPW decomposed DOS.

The TB decomposed DOS of FeTe have a broader range of energies in which significant

differences in the decomposed DOS are found. The energy range between −0.30 Ry and

0.0 Ry in Figure 5.4c and Figure 5.4d shows approximately double the Te-p DOS and less

decrease of the Fe-d DOS for the TB method. The remainder of the energies in these figures

are in good agreement with decomposed DOS of the LAPW calculations.

Overall the DOS-based TB fit seem to suggest great agreement with the total DOS of

the LAPW calculations. This is specifically true between −0.15 Ry and 0.1 Ry, which
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Figure 5.4: Comparison of decomposed Density of States between NRL-LAPW (solid red)
and NRL-TB (dashed green) of tetragonal (PbO-like) FeSe and FeTe. Comparison between
Se-p states of FeSe are given in (a), Fe-d of FeSe are given in (b), Te-p states of FeTe are
shown in (c), and Fe-d of FeTe are shown in (d). Fermi level is given at 0.0 Ry by the
vertical dashed (blue) line.

contains the Fermi level in both panels of Figure 5.3. Decomposed DOS produced by the

TB method has substantially more Se/Te-p states. This difference is most sizable between

−0.3 Ry and 0.0 Ry. In this region, the Fe-d DOS is reduced by a comparable amount, due

to the increase of Se/Te-p. The reasons for these significant difference in the decomposed

DOS, while total DOS is essentially the same, is discussed in more detail below.
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Tight-Binding Bands

Energy bands calculations of the TB method were performed using the band-based fit

discussed above. Figure 5.5 shows a comparison of the energy bands of the TB and LAPW

methods. In both panels of this figure, we see comparable band structures between the two

methods. Specifically, the energy ranges for the 18 bands that are plotted are comparable.

The two methods agree particularly well for the Se/Te-s like bands, given between −1.1 Ry

and −0.8 Ry. Outside of these s character bands, the remaining bands do not compare quite

as well as the DOS results discussed previously. Some high symmetry points, specifically

between X and M, do show good agreement between methods. In fact, the entire direction

of the Brillouin zone, X-M, have TB energy bands that show the same features as the

LAPW energy bands. The Γ point shows the worst agreement. Single degenerate bands

that were predicted by the LAPW method are calculated to be double degenerate with the

TB method. As mentioned previous, this is caused by misplaced eigenvalues at the k-points.

Even though the overall RMS band error is good, the specific eigenvalues are not always

found with the right angular momentum character.
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Figure 5.5: Comparison of the energy bands between NRL-LAPW (solid red) and NRL-TB
(dashed green) of tetragonal (PbO-like) (a) FeSe and (b) FeTe. Fermi level is given at
0.0 Ry by the horizontal solid (black) line.
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Recall, the results presented in Figure 5.5 are calculated based on the energy band-based

fit and not the DOS-based fit discussed for the DOS comparisons. Therefore, the results

in Figure 5.5 are not produced from the same parameters used in Figure 5.3. Even if the

latter parameters are used to calculate the energy bands, the results look comparable to

those presented here. So, even though the decomposed DOS compared well between the

two methods, they do not fix the problem with eigenvalue placement at the k-points.

Block diagonalization of some high symmetry k-points were attempted to correct for the

band issues. However, attempts at finding such block diagonalization were not satisfactory.

The addition of charge information (see last term of Equation (5.12) in Section 5.1.2) to the

fitting process was proposed to help with this issue. Although the charges did help reduce

the RMS error of specific bands, it did not solve the problem at the Γ point. Even with

this limitation, the overall DOS and bands calculated by the TB parameters compared well

with the NRL-LAPW results.

The Final TB Parameters

Table 5.3 provides the calculated on-site and ”hopping” parameters from the uniform DOS

k-point mesh fit of FeSe. We show the ten on-site parameters and six sets of Hamiltonian

parameters that were used in this fit. The on-site parameters that were removed from the

fit are not presented in this table. As for the Hamiltonian parameters, there were found

to be six different distances between atom types within the provided cutoff length. Two of

these distances are between the Fe atoms, one three are between Se atoms, and only one

distance is found for the unlike atoms. There are no overlap parameters presented, as the

fit was orthogonal. Recall the Fe-p ”hopping” interactions were allowed to vary, while the

Se-d ”hopping” interactions were not. Therefore, the table shows the parameters involving

Fe-p interactions have large values, which keep the Fe p-like states high above EF . The

parameters involving Se-d are all zero.

Table 5.4 shows the on-site and ”hopping” parameters from the uniform DOS k-point

mesh fit of FeTe. Similar to the FeSe parameters, there are ten on-site parameters and six
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sets of Hamiltonian parameters. All removed on-site parameters are not shown in this table.

The sets of Hamiltonian parameters are given for the six different atomic distances found

within the cutoff length. Again, we have two sets from Fe-Fe distances, three sets from

Te-Te distances and one set from a Fe-Te distance. Since this was also an orthogonal fit, no

overlap parameters are calculated. The Hamiltonian parameters involving Fe-p interactions

are nonzero, while parameters involving Se-d interactions are zero.

These final parameters from the Table 5.3 and Table 5.4 are used in the follow chapter

(Chap.6.) The values of each parameter is different between the two tables, but the cor-

responding on-site and Hamiltonian parameters between the tables are comparable. For

example, the Se/Te-p on-sites are similar between the two systems and Fe-dxy are identical

in the two tables. Other parameters can be compared to see the similarities between the

two fits. Overall these final parameters should prove adequate in use of the TB virtual

crystal and coherent potential approximations discussed in the next chapter.

5.2.4 Conclusions

Total energy, DOS, and energy bands calculations using the NRL-LAPW were fit with the

TB method. The best parameters for these fits produced comparable total energies, DOS,

and energy bands to those found in Chapter 3. Total energies compared with experiment

just as accurately, and in the case of FeTe better than, as the LAPW results. The total

DOS, but not the l-components of the DOS, calculated by the TB method showed very good

agreement with the LAPW method DOS. This was specifically true near the Fermi level.

The TB energy bands were in less agreement with those calculated by the LAPW method,

showing small differences in some directions, which are not detectable in the DOS. This

has shown that the produced parameters have good transferability to be used in further

calculations. We consider the RMS error of 15 mRy in this fit, good enough to proceed

with the tight-binding virtual crystal approximation and coherent potential approximation

for the FeSeTe system. These methods and their results are discussed in Chapter 6.
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Table 5.3: Final SK TB on-site and ”hopping” parameters for the DOS-based FeSe fit.

On-site parameters

Fe-s 0.110
Fe-dyz −0.108
Fe-dxz −0.128
Fe-dxy 0.041

Fe-dx2−y2 −0.034
Fe-d3z2−r2 0.039

Se-s −0.968
Se-px −0.211
Se-py −0.192
Se-px −0.017

”Hopping” parameters

RFe-Fe = 5.03774

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

−0.0264 −0.2634 5.4976 5.6591 0.0110 0.0509 −0.2874
−0.0040 −0.0335 0.0088

RFe-Fe = 7.12444

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

−0.0017 0.1231 0.4302 0.8125 0.0251 0.740 0.2321
0.0505 0.0255 −0.0039

RFe-Se = 4.47883

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ psσ dsσ dpσ dpπ

−0.0421 −0.0617 0.7255 0.4696 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 −0.1882 0.0145 −0.0189 −0.0686

RSe-Se = 7.10630

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

−0.0021 0.0024 0.0329 0.0046 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

RSe-Se = 7.12444

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

−0.0024 0.0088 0.0344 0.0042 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

RSe-Se = 7.40680

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

−0.0047 0.0639 0.0504 −0.0002 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
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Table 5.4: Final SK TB on-site and ”hopping” parameters for the DOS-based FeTe fit.

On-site parameters

Fe-s 0.529
Fe-dyz −0.082
Fe-dxz −0.106
Fe-dxy 0.041

Fe-dx2−y2 −0.051
Fe-d3z2−r2 0.072

Te-s −0.754
Te-px −0.144
Te-py −0.153
Te-px −0.078

”Hopping” parameters

RFe-Fe = 5.11229

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

−0.1974 0.3592 7.9431 3.7398 0.0686 −0.2748 0.2662
−0.0079 0.0255 −0.0306

RFe-Fe = 7.22988

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

0.02836 0.6355 0.8218 0.9121 −0.0382 −0.1125 0.1230
0.0404 0.0239 0.0024

RFe-Te = 4.67255

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ psσ dsσ dpσ dpπ

0.0325 −0.0199 0.7119 0.5169 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 −0.1802 −0.1117 −0.0092 −0.0666

RTe-Te = 7.22988

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

−0.0142 −0.0229 −0.0072 0.0286 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

RTe-Te = 7.82274

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

−0.0064 −0.0152 0.0120 −0.0044 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
RTe-Te = 7.83712

ssσ spσ ppσ ppπ sdσ pdσ pdπ
ddσ ddπ ddδ

−0.0062 −0.0149 0.0122 −0.0048 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
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Chapter 6: Coherent Potential Approximation and Related

Methods

6.1 Virtual Crystal Approximation

A form of the Virtual Crystal Approximation (VCA) was discussed previously in Section 3.4.

This section discusses the VCA used in conjunction with the TB method (TB-VCA). The

TB-VCA uses the results of the TB method to calculate results for virtual systems. This

is done by first performing TB fits for two systems to be coupled, using the coefficients of

the final TB fit to create independent Hamiltonians for each system, and then averaging

the Hamiltonians to produce a single Hamiltonian for the virtual system. The averaging

is performed similarly to the potential-based VCA discussed previously. Specifically, the

virtual system’s Hamiltonian is given by

HV CA = HA(x)−HB(1− x) , (6.1)

where HA and HB represent the Hamiltonian of systems A and B, respectively, and x is

the concentration number between 0 and 1.

For this method of the VCA to produce reasonable results, the fits of both systems have

to be performed using the same number of orbitals and bands, as well as similar starting

parameters. For example, if an on-site parameter is removed from the fit of system A, then

system B must also freeze this on-site parameter. Moreover, the removed on-site parameters

must be frozen with similar values, otherwise the virtual Hamiltonian will have significantly

different values compared to either of the original Hamiltonians. In addition, the individual

fits should be of the same quality, i.e. have similar RMS errors.
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6.2 FeSexTe1−x with the Tight-Binding Virtual Crystal Ap-

proximation

We studied the substitutional alloy FeSexTe1−x with the TB-VCA. This was accomplished

using the Hamiltonians from the DOS-based fits discussed in Section 5.2.3. Calculations

were done for x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. The values of 0.0

and 1.0 correspond to the TB results given in the previous chapter for FeTe and FeSe,

respectively.

Figure 6.1 shows the total and decomposed DOS of the Te heavy TB-VCA calcula-

tions. The first panel shows the total (red) DOS with the same features as discussed in

Section 5.2.3. It is clear that the Se/Te-s states (light blue) are the major contributors to

the first peak of the total DOS. The Se/Te-p states (blue) supply the bulk DOS for the

next three DOS peaks below the Fermi level. However, the Fe-d states (green) make up

the majority of the DOS near and above the Fermi level. These results look similar to

the DOS results discussed in Section 3.2.4. They differ primarily in the amount of Se/Te-p

contribution to the total DOS. This is largely owing to the fact that these decomposed DOS

are not limited to the projections onto the muffin-tin spheres.

The total DOS with x = 0.0 is very close to the TB FeTe results Figure 5.3. However,

it is not identical because we used the coherent potential approximation code, in which we

set the self-energy to zero and calculate the DOS using Green’s function (see Equation (6.5)

in Section 6.3.) As the concentration of Te decreases (Figs. 6.1a→6.1f) the DOS peaks

found between −0.4 Ry and −0.15 Ry change dramatically, merging into a single peak

when x = 0.5. The contributions from the Se/Te-p states is also enhanced near the Fermi

level. The biggest difference between these results and the NRL-LAPW results is the lack

of two independent Se-s and Te-s peaks near the −1.0 Ry energy level.

Figure 6.2 shows the total and decomposed DOS of the Se heavy TB-VCA results. These

results are similar to those in Figure 6.1. The results of Figure 6.2(f) correspond to x = 1.0

and the TB FeSe DOS found in the previous chapter. As mentioned for the TB results,
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(b) FeSe0.10Te0.90 - VCA DOS
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(c) FeSe0.20Te0.80 - VCA DOS
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(d) FeSe0.30Te0.70 - VCA DOS
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(e) FeSe0.40Te0.60 - VCA DOS
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(f) FeSe0.50Te0.50 - VCA DOS

Figure 6.1: Total and decomposed Density of States of FeSexTe1−x using the Virtual Crystal
Approximation. Includes (a) x = 0.0 (FeTe) DOS, (b) x = 0.1 DOS, (c) x = 0.2 DOS, (d)
x = 0.3 DOS, (e) x = 0.4 DOS, and (f) x = 0.5 DOS.
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(c) FeSe0.70Te0.30 - VCA DOS
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Figure 6.2: Total and decomposed Density of States of FeSexTe1−x using the Virtual Crystal
Approximation. Includes (a) x = 0.5 DOS, (b) x = 0.6 DOS, (c) x = 0.7 DOS, (d) x = 0.8
DOS, (e) x = 0.9 DOS, and (f) x = 1.0 (FeSe) DOS
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the total DOS compares well with the NRL-LAPW DOS of FeSe. The decomposed DOS

also show similar overall results to the NRL-LAPW calculations. Again, the Se/Te-p states

are contributions are higher than those in Figure 3.3 at the two DOS peaks that appear

between −0.4 Ry and −0.15 Ry. Between −0.15 Ry and 0.05 Ry, both methods agree that

the largest contribution comes from the Fe-d states. Around −1.0 Ry, Figure 6.2 indicates

that the lowest energy peak contains mostly Se/Te-s states, which is also consistent with the

LAPW calculations. The primary difference is occurs above the Fermi level, where the Fe-s

contribution is significant for the VCA results. However, this high energy level corresponds

to unoccupied energy bands that do not play a role in the electronic structure for ambient

conditions.

Just as in Figure 6.1, we see a dramatic change in the overall DOS between −0.4 Ry

and −0.15 Ry when the concentration of Se is decreased (Figs. 6.2a→6.2f). The two peaks

that exist in this energy range in Figure 6.2f merge into one peak as the Se concentra-

tion approaches 50%. Again, the Se/Te-s states near −1.0 Ry do not split into the two

independent Se-s and Te-s dominated DOS peaks that are found in the LAPW calculations.

This shows that the TB-VCA method is unable to predict the two independent Se/Te-

s state DOS peaks that exist in the supercell LAPW calculations. The averaging of the

Hamiltonians does not provide the individual Se/Te-s and Se/Te-p states to be stored. The

following section discusses a method to retain the full information and improve these results.

6.3 Coherent Potential Approximation

The Coherent Potential Approximation (CPA) was introduced by Soven[76] to study the

electronic states of random substitutional alloys. The randomness, with which the different

sites are treated, is ignored in the TB-VCA. It is a mean-field theory that treats the alloys

as an effective medium with zero average scattering. The effective medium is determined
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self-consistently within the CPA. Zero average scattering must satisfy

N∑
i

cittti = 0 , (6.2)

where ci is the concentration of the corresponding element, i, in the alloy, and N is the

number of elements in the alloy. The ttti in Equation (6.2) is the scattering matrix, which

has the form

ttti = (εεεi −ΣΣΣ)[1− (εεεi −ΣΣΣ)GGG]−1 , (6.3)

such that εεεi is the matrix of the on-site SK parameters, discussed in Section 5.1.2. The ΣΣΣ

in Equation (6.3) is the diagonal CPA self-energy matrix, and GGG is Green’s function over

the irreducible Brillouin zone, given by

GGG(zzz,ΣΣΣ) =

∫
IBZ

dk

zzz −HHHCPA(ΣΣΣ, k)
. (6.4)

Here, zzz is the complex energy matrix, such that the real component represents a given

energy level and the imaginary part relates to temperature broadening. The HHHCPA(ΣΣΣ, k) in

Equation (6.4) is related to the periodic Hamiltonian from Section 5.1.1. For this study, only

diagonal disorder was applied, meaning that HHHCPA = HHHV CA from Equation (6.1), except

that the diagonal elements replaced by ΣΣΣ. BothGGG and ΣΣΣ are solved self-consistently through

a Newton-Raphson procedure[77]. After solving for GGG, the decomposed DOS, Nl(E), can

be calculated by

Nl(E) = − 1

π
lim
z→E+

Im[TrGGGl(zzz,ΣΣΣ)] , (6.5)

where l is the decomposed angular momentum. However, Equation (6.5) does not produce

the individual contributions of each substitutional element. The decomposed DOS for the
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substitutional element is given by

NA
l (E) = − 1

π
lim
z→E+

Tr
GGGRl +GGGIl (ΣΣΣ− εεεB)

εεεB − εεεA
, (6.6)

where A and B are the two substitutional atoms, and GRl and GIl are the real and imaginary

parts of the Green function, respectively.

We can also solve for the spectral density function, A(k,E). This is analogous to the

energy function, E(k), in the band structure of ordered solids. It is given by

A(k,E) = − 1

π
Im
∑
l

Gll(k,E) (6.7)

.

6.4 Developed Code Discussion

An elaborated discussion of the code developed for this dissertation is given in Appendix C.

However, the general procedures and methods are discussed in this section. Specifically, I

discuss the Newton-Raphson method and matrix inversion. These procedures can be found

in most numerical method books as well.

The Newton-Raphson method is an iterative procedure designed to locate roots of a

function[78]. For this method, an initial guess of the solution is chosen, x1. This initial

guess is then used to calculate the function’s value, f(x1), and the function’s derivative,

f ′(x1). The value of f(x1)
f ′(x1)

is then subtracted from x1 to get a new solution. This is done

multiple times until a convergence criterion is met. For one-dimensional functions, the

general solution is given by

xn+1 = xn −
f(xn)

f ′(xn)
, (6.8)
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where n is the number of iterations performed, f(x) is the function value at x and f ′(x)

is the derivative of the function at x. Convergence is met when two consecutive solutions

have the same value up to a given decimal place. The procedure can also be performed for

higher dimensional functions:

~xn+1 = ~xn − JJJ−1(~xn)FFF (~xn) , (6.9)

where ~x are vectors, FFF (~x) is a matrix of solutions to the functions at ~x, and JJJ−1(~x) is the

inverted Jacobian of FFF (~x). The Jacobian is the derivative matrix given as JJJ = ∂FFF
∂~x . Since

the inverse of the Jacobian is used to solve for this general case, JJJ must be non-singular, or

invertible. Mathematically, this means that JJJJJJ−1 = III, where III is the identity matrix.

Matrix inversion can be performed in many ways. This code used LU decomposition in

conjunction with forward and backward substitution to find the inverse of a matrix. LU

decomposition converts any general nxn matrix, AAA, into a lower triangular matrix, LLL, and

an upper triangular matrix, UUU . This is given by

LLLUUU = AAA . (6.10)

The LU decomposition was performed using Crout’s algorithm with partial pivots. For our

code, matrix inversion is used to solve for Green’s function (Eq. (6.4).)

Once Green’s function is found for a given self-energy, our multidimensional function

from Equation (6.9) becomes

FFFCPA(ΣΣΣ) = GGGΣΣΣ2 + (III − εεεBGGG− εεεAGGG)ΣΣΣ +GGGεεεAεεεB −
1

2
(εεεA + εεεB) , (6.11)

such that A and B represent our FeSe and FeTe parameters, respectively. The Jacobian of

FFFCPA is thus

JJJCPA(ΣΣΣ) = 2IIIGGGΣΣΣ + (III − εεεBGGG− εεεAGGG) . (6.12)
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Therefore, for our calculations, Equation (6.9) can be written as

ΣΣΣn+1 = ΣΣΣn −FFFCPA(ΣΣΣn)/JJJCPA(ΣΣΣn) . (6.13)

This is done until some specified convergence is met for each self-energy. The final converged

self-energies are then used to solve for a final Green’s function for the given energy level

and DOS can be calculated. The following section discusses the results calculated by the

code for FeSexTe1−x.

6.5 Coherent Potential Approximation of FeSexTe1−x

Using the parameters discussed in Section 6.2, the CPA was applied to the substitutional

alloy, FeSexTe1−x. A diagonal disordered CPA was used for this study. The Hamiltonian

discussed in Section 6.2 was modified for the CPA by replacing the diagonal elements of

Se/Te with self-energies. These modified elements correspond to the Se/Te-s and p on-site

parameters, specifically diagonal matrix elements 19-22 and 28-31 in the secular equations.

The Se/Te-d on-site parameters are ignored as they were already removed from the fit.

Initial guesses for these self-energies are approximated by the average of the two systems’

on-site parameters. The off-diagonal terms are treated in a VCA manner, i.e. they are

evaluated as an arithmetic mean.

6.5.1 Results of the TB-CPA

TB-CPA DOS of FeSexTe1−x

The concentrations investigated for this system were the same as discussed in Section 6.2.

Figure 6.3 shows the total and some decomposed DOS calculated using the CPA for the Te

rich systems, x = 0.0 to x = 0.5. The Fermi level, EF , is given by the vertical solid (blue)

line at 0.0 Ry. Panel 6.3a of this figure shows the pure FeTe system. The TB-CPA DOS

results are identical to the TB-VCA results shown in Figure 6.1. As we move from the pure

FeTe system to the 50% concentration (6.3a→6.3f), we see some significant changes between
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(a) FeTe - CPA DOS
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(c) FeSe0.20Te0.80 - CPA DOS
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(d) FeSe0.30Te0.70 - CPA DOS
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(e) FeSe0.40Te0.60 - CPA DOS
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(f) FeSe0.50Te0.50 - CPA DOS

Figure 6.3: Total and decomposed Density of States of FeSexTe1−x using the Coherent
Potential Approximation shifted by the calculated Fermi level. Includes (a) x = 0.0 (FeTe)
DOS, (b) x = 0.1 DOS, (c) x = 0.2 DOS, (d) x = 0.3 DOS, (e) x = 0.4 DOS, and (f)
x = 0.5 DOS. Fermi level (εF ) is given at 0.0 Ry by the vertical solid (blue) line.
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the TB-VCA and TB-CPA global DOS features. Between the energy range of −0.4 Ry and

−0.15 Ry we see two DOS peaks that contain Te-p states, Fe-d states, and trace amounts

of Fe-s states. These two DOS peaks merge into one single peak as we approach x = 0.5,

Figure 6.3f. This merged DOS peak is still comprised mainly of Se/Te-p states with some

Fe-d states as well. Near the Fermi level, the DOS features stay relatively consistent as Se is

added to the system. In this range, between −0.15 Ry and 0.25 Ry, the DOS is comprised

mainly of Fe-d states, some Se/Te-p states and trace amounts of Fe-s states. The most

significant changes to the DOS occur between −1.2 Ry and −0.8 Ry. In Figure 6.3a, one

peak of Te-s states, with trace amounts of Fe-s, is located within this energy range. When

Se is added to the system, a second DOS peak begins to form at an energy below the Te-s

DOS peak. As the Se concentration continues to increase, the Te-s peak decreases, while

the lower energy peak increases. This secondary peak contains almost entirely Se-s states.

When the concentration of Se and Te are equal, these two peaks are comparable in total

DOS value, but are now composed entirely of Se-s and Te-s, respectively.

Figure 6.4 shows the DOS of the Se rich systems. Panel 6.4f displays the pure FeSe

system, which is equivalent to the TB-VCA results. The global DOS changes dramatically

as Te is added to the system (6.4f→6.4a). The energy range surrounding the Fermi level,

between −0.15 Ry and 0.05 Ry, changes insignificantly as Te is added. Here, the major

contributor to the DOS is Fe-d, with some Se/Te-p states. The DOS above this energy range

changes greatly with increased concentration of Te. This is because of the large amount of

Fe-s like states found around 0.2 Ry, which decreases with increasing Te. Between −0.4 Ry

and −0.15 Ry, the two DOS peaks that exist in Figure 6.4f merge into one as Te is added to

the system. This range contains mostly Se/Te-p and Fe-d states, with the Fe-d contribution

decreasing somewhat as Te concentration increases. DOS peaks between −1.2 Ry and

−0.8 Ry undergo a significant change in the features. Specifically, in Figure 6.4f, only one

DOS peak of entirely Se-s is found within this energy range. A small addition of Te to the

system, Figure 6.4e, creates a small DOS peak of Te-s states at slightly higher energy than

the original. As Te concentration increases, the total DOS of the first peak decreases while
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(a) FeSe0.50Te0.50 - CPA DOS
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(c) FeSe0.70Te0.30 - CPA DOS
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(d) FeSe0.80Te0.20 - CPA DOS

 0

 20

 40

 60

 80

 100

 120

 140

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2

S
ta

te
s
/R

y
/U

n
it
 C

e
ll

Energy(Ry)

EF

Total DOS
DOS Fe-s
DOS Fe-d
DOS Se-s
DOS Se-p
DOS Te-s
DOS Te-p

(e) FeSe0.90Te0.10 - CPA DOS
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(f) FeSe - CPA DOS

Figure 6.4: Total and decomposed Density of States of FeSexTe1−x using the Coherent
Potential Approximation shifted by the calculated Fermi level. Includes (a) x = 0.5 DOS,
(b) x = 0.6 DOS, (c) x = 0.7 DOS, (d) x = 0.8 DOS, (e) x = 0.9 DOS, and (f) x = 1.0
(FeSe) DOS. Fermi level (εF ) is given at 0.0 Ry by the vertical solid (blue) line.

109



the second increases. In Figure 6.4a, these two peaks have comparable total DOS values.

Table 6.1: Total, Fe-d, Se-p and Te-p decomposed DOS of FeSexTe1−x at the Fermi level
using the TB-CPA.

x EF N(EF ) Fed Sep Te-p Se/Te-p

0.0 0.0086 23.97 18.28 0.00 4.72 4.72
0.1 0.0120 20.43 15.42 0.40 3.74 4.13
0.2 0.0257 23.47 17.32 1.01 3.97 4.97
0.3 0.0357 24.51 18.08 1.52 3.51 5.02
0.4 0.0392 25.59 19.84 1.63 2.60 4.21
0.5 0.0418 26.70 20.25 2.12 2.34 4.45
0.6 0.0206 29.02 21.49 2.90 1.96 4.86
0.7 0.0197 31.96 23.54 3.67 1.60 5.27
0.8 0.0150 25.55 20.13 3.57 0.89 4.46
0.9 0.0111 22.97 17.77 4.18 0.40 4.58
1.0 0.0083 21.70 14.98 6.01 0.00 6.01

As mentioned in Section 5.2.3, the TB Hamiltonians that were used in the TB-CPA

calculations were shifted such that the calculated Fermi level was natively set to 0.0 Ry.

Theoretically, the calculated Fermi level should remain very close to 0.0 Ry, since the shift

was applied prior to the TB-CPA calculations. However, due to the merging of the Se/Te-p

states, the calculated Fermi levels were higher than 0.0 Ry. The calculated Fermi level is

based on the integration of the total DOS, which is also the number of electrons in the

system at each energy level.

Table 6.1 presents the total, Fe-d, Se-p, and Te-p decomposed DOS calculated by the TB-

CPA method at the calculated Fermi energies. The table shows the total and decomposed

DOS are sporadic throughout the Se/Te concentrations. The only clear DOS trend is

the near monotonic increase/decrease of Se/Te−p DOS when Se is added to the system.

However, the total, Fe-d, and Se/Te-p decomposed DOS values have large fluctuations. We

see some trends emerging from the EF values. The calculated EF at the two extremes

are essentially the same (approximately 0.008,) but monotonically increase to 0.04 at the

50% concentration. It is important to note that in all the TB-CPA calculations, integrated
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electron count of the two DOS peaks between −1.2 Ry and −0.8 Ry provides four of the

28 valence electrons, as found in the LAPW calculations.

6.6 Concluding Remarks

When comparing the figures in the VCA section (Sec. 6.2) with the figures of the CPA section

(Sec. 6.5.1), there are only minor differences. The largest, and most significant difference, is

found in the −1.2 Ry and −0.8 Ry energy range. Recall that the VCA gives only one DOS

peak within this region for all concentration values. This is because the TB-VCA method

is unable to provide independent information for the Se and Te contributions. Within the

diagonal disorder of TB-CPA method, this information is recoverable. Specifically, within

this low energy region, both Se- and Te-s states are contained within two separate DOS

peaks, comparable to the NRL-LAPW results.

The diagonal disorder CPA results are consistent with the NRL-LAPW supercell calcu-

lations. In more detail, the two separate Se- and Te-s DOS peaks are found, the specific

features are not identical between the NRL-LAPW and the TB-CPA results. The TB-CPA

finds both of these peaks with comparable total DOS values, while the NRL-LAPW results

find the Se-s peak to be broader and shorter than the Te-s peak. However, the primary

problem is the merging of the two DOS peaks within the −0.4 Ry and −0.15 Ry energy

range. Although integration of the DOS suggests approximately the same number of elec-

trons are contained in this region as the NRL-LAPW results. The total DOS in this region

is misrepresented, however, which causes the minor changes in the Fermi level location for

the TB-CPA results.
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Chapter 7: Final Conclusions and Future Work

7.1 Summary

First-principles electronic structure calculations of FeSe, FeTe, FeSe0.75Te0.25, FeSe0.25Te0.75,

and FeSe0.50Te0.50 were performed with the NRL-LAPW and Wien2k software. I present

the total energies, energy bands, DOS, and Fermi surface first-principles results agree well

with other computational and experimental findings. Specifically, the DOS have similar

features in all calculations, with Fe-d DOS the major contribution to the total DOS at the

Fermi level. The Lorentzian broadened DOS calculations of FeSe were compared with ex-

perimental photoemission spectrum. Predictions of photoemission spectrum for FeTe and

FeSe0.50Te0.50 showed comparable results to those found for FeSe.

Superconductivity first-principles calculations from the Gaspari-Gyorffy-McMillan the-

ories also show good agreement with the experimental results of FeSe and FeSe0.50Te0.50 in

ambient conditions. The main conclusion of this work regarding superconductivity is that

the electron-phonon mechanism can explain the modest Tc = 7.5 K observed in FeSe at

ambient conditions. Also, electron-phonon explains qualitatively the increase of Tc under

pressure, but cannot provide a quantitative agreement with the observed Tc = 35 K. The

Gaspari-Gyorffy-McMillan superconductivity calculations of the FeSexTe1−x systems sug-

gest that the electron-phonon coupling interaction of the BCS theory is important in these

materials.

The NRL-TB method was used with the first-principles results of FeSe and FeTe to fit

TB parameters. These parameters were able to reproduce total energy curves and total

DOS of the first-principles LAPW results. I developed code to perform coherent potential

approximation calculations on the FeSexTe1−x material, using the fitted TB parameters and

their corresponding Hamiltonians. These results also find good agreement with the total
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DOS of the LAPW calculations.

7.2 Future Work

My current coherent potential approximation code only applies diagonal disorder to the Se

and Te atoms, but treats off-diagonal effects within the virtual crystal approximation of

the FeSexTe1−x system. The introduction of off-diagonal disorder would further improve

the coherent potential approximation calculations and I hope to attempt such a calculation

in the future. Molecular dynamics calculations could also be performed based of the TB

parameters fit for this system. This is also a project to consider in future work.
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Electronic Structure of Francium

Alexander P. Koufos* and Dimitrios A. Papaconstantopoulos

This article presents the first calculations of the electronic

structure of francium for the bcc, fcc, and hcp structures,

using the linearized augmented plane wave (LAPW) method.

Both the local density approximation (LDA) and generalized

gradient approximation (GGA) were used to calculate the

electronic structure and total energy of francium (Fr). The

GGA and LDA both found the total energy of the hcp struc-

ture to be slightly below that of the fcc and bcc structures,

respectively. This is in agreement with similar results for

the other alkali metals where the bcc structure is found not

to be the ground state in contradiction to experiment.

The equilibrium lattice constant, bulk modulus, and

superconductivity parameters were calculated. Calculations of

the enthalpy of the system suggest a structural transition

from hcp to bcc under a pressure of 0.57 GPa. Using the

McMillan-Gaspari-Gyorffy theories, we found that under fur-

ther pressures, in the range of 3–14 GPa, Fr could be a

superconductor with critical temperature up to 7 K. This is

consistent with the other alkali metals and originates from

an increase of the d-like density of states at the Fermi level,

which makes the alkali metals behave like transition metals.

VC 2013 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24466

Introduction

Francium (Fr) is one of the rarest elements on the planet.

Around 20–30 g of the element is found on the earth’s crust at

any given moment and the longest half-life of all its isotopes is

about 20 min.[1] Fr is the last element in the alkali metal group,

thus having one electron in its valence shell. It has an atomic

number of 87 and atomic weight of 223.0197.[2] Fr also has radi-

oactive properties similar to cesium (Cs). Due to Fr’s rare nature,

the only current way to study any of these properties is to opti-

cally trap it.[3] Even with these methods, the study of its elec-

tronic structure is hard to conduct.

In this article, we perform calculations of the electronic

structure of Fr using density functional theory, more specifi-

cally using the linearized augmented plane wave (LAPW)

method in its full potential form. These calculations were per-

formed for the local density approximation (LDA) and the gen-

eralized gradient approximation (GGA). The calculations were

performed using a scalar-relativistic Hamiltonian. Tests incorpo-

rating spin–orbit coupling were performed to study the effect

of spin–orbit interaction.

Computational Details

All calculations performed in this article used the NRL LAPW

code (This LAPW code was originally written by Krakauer and

Singh, modified by Mehl. The rigid muffin-tin approximation

(RMTA) code was written by Papaconstantopoulos and Klein.)

using the Hedin-Lundqvist method, for LDA calculations, or

Purdue-Wang 1991 (PW91) method for GGA calculations. Vari-

ous C-centered k-point meshes were used for the calculations

contained in the manuscript. Specifically, k-point meshes of

285, 505, and 918 were used for the bcc, fcc, and hcp calcula-

tions, respectively. All calculations used a basis set size of

5 3 5 3 5, 24 core states (equilibrium state of radon), one va-

lence electron, and local orbitals with energies of 21.8 and

20.47 Ry. However, we also performed total energy calcula-

tions with 22 core states, seven valence electrons, the local

orbitals, and the 6s and 6p states treated as bands. Calcula-

tions involving superconductivity, those found in Superconduc-

tivity section, used touching muffin-tin radii, while all other

calculations used a fixed muffin-tin radius of 4.3 bohr.

Total Energy of Fr

In this section, we discuss the results for the total energy of Fr,

and related properties, calculated using the LAPW with both

the LDA and GGA functionals. All LAPW calculations performed

for the total energy of Fr found that the fcc and hcp structures

have slightly lower total energy than the bcc structure. This is

consistent with similar calculations for the other alkali met-

als,[4,5] which are experimentally known to be bcc. Table 1

shows the total energies, lattice parameters and bulk moduli

of the alkali metals using the LAPW method with both func-

tionals. The LDA results contained in Table 1 for all the alkali

metals, excluding Fr, were obtained from the paper by Sigalas

et al.[4] Additional calculations were performed to obtain the

GGA information presented in Table 1. The GGA functional

improves the total energy results by making the difference in
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fcc and bcc energies, DE, smaller, but only lithium (Li) is calcu-

lated to have bcc as the equilibrium structure. The lattice

parameter results are, in general, closer to experimental values

using the GGA functional rather than the LDA. With the excep-

tion of Li and sodium (Na), the GGA generally overestimates

the lattice parameter while the LDA typically underestimates

the experimental value. For all the LDA calculations, we find

the fcc has lower energy than bcc, with the exception of

rubidium (Rb). With the GGA functional we see that

DE50:04 mRy for Rb, but the fcc structure is still found to

have lower energy than the bcc structure. Table 1 suggests

that Fr is very malleable. This is in agreement with the

well-known malleable properties of the other alkali metals.

The bulk modulus of this material is extremely small,

0.014 MBar at equilibrium, implying a compressibility of

71:4 3 10211m2=N .

Figure 1 shows the general trends of the lattice constants

and bulk moduli from the lighter alkalis to heavier ones for

the bcc structure. The general trend for the lattice constant is

to increase with increasing atomic number, while the bulk

modulus follows the opposite trend, that is, decreases with

atomic number (in agreement with experiment). The results

found for Fr follow both trends.

We also examined the hcp structure of Fr using the LAPW

method with both LDA and GGA functionals. The value of

c=a51:60 was found to be the optimized value for the

LDA functional, while c=a51:633 was obtained for the GGA

functional. We calculated the lattice constants for the

two functionals as well as the total energies. The results are

shown in Table 1. Spin–orbit calculations for the LDA func-

tional were also performed, as discussed in Spin–orbit calcula-

tions section, and showed little effect in the total energy

results.

Figure 2 shows the total energy of Fr using the GGA func-

tional. Following the trends of the other alkali elements, the

total energy of the fcc structure is lower than the bcc struc-

ture by only 0.24 mRy.

We also examined the possibility of phase transition in Fr.

As with many materials, pressure can have a significant impact

Table 1. Total energy, lattice parameters, and bulk moduli for all alkali

metals Li, Na, K, Rb, Cs, and Fr

Generalized gradient

approximation

Local density

approximation

Tot.

energy

(mRy)

Lat.

const.

(au)

Bulk

mod.

(MBar)

Tot.

energy

(mRy)

Lat.

const.

(au)

Bulk

mod.

(MBar)

Lithium (Li)

bcc 0 6.410 0.296 2.8[4] 6.380[4] 0.148[4]

fcc 0.86 8.134 0.196 0[4] 7.950[4] 0.156[4]

exp[6] 6.597 0.116 6.597 0.116

Sodium (Na)

bcc 0.08 7.964 0.076 0.96[4] 7.690[4] 0.087[4]

fcc 0 10.040 0.076 0[4] 9.680[4] 0.090[4]

exp[6] 7.984 0.068 7.984 0.068

Potassium (K)

bcc 0.23 10.432 0.029 0.75[4] 9.540[4] 0.047[4]

fcc 0 13.379 0.025 0[4] 12.010[4] 0.046[4]

exp[6] 9.877 0.032 9.877 0.032

Rubidium (Rb)

bcc 0.04 10.753 0.032 0[4] 10.130[4] 0.042[4]

fcc 0 13.563 0.031 0.37[4] 12.820[4] 0.049[4]

exp[6] 10.558 0.031 10.558 0.031

Cesium (Cs)

bcc 0.23 11.661 0.023 2.2[4] 10.760[4] 0.020[4]

fcc 0 14.740 0.023 0[4] 13.880[4] 0.033[4]

exp[6] 11.423 0.020 11.423 0.020

Francium (Fr)

bcc 0.29 11.702 0.014 0.22 10.842 0.017

fcc 0.05 14.815 0.015 0.20 13.809 0.022

hcp 0 a 5 10.491;

c 5 17.132

0.011 0 a 5 9.785;

c 5 15.657

0.021

exp[6] (0.020) (0.020)

Total energies are given with respect to the lowest total energy for the

given structures represented by 0 mRy.

Figure 1. Lattice constants and bulk moduli with bcc structure of the alkali metals. Information within the figure corresponds to calculated values using

the LAPW method with the GGA functional. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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on the structure of the material. Therefore, enthalpy, H5E1pV ,

where E is total energy, p is pressure, and V is volume, was cal-

culated to locate any structural transitions that might occur

under pressure. These results all suggest a transition from hcp

to bcc under some small pressure, with no other transitions

for the pressures investigated. Figure 3 shows the enthalpy

plot of the LAPW with GGA, without spin–orbit interaction.

The transition from hcp to bcc occurs around 0.57 GPa for the

GGA functional.

Electronic Structure

In this section, we discuss the Density of States (DOS) and

energy band calculations of Fr performed for various lattice

parameters. The DOS and energy bands discussed in this sec-

tion correspond to touching muffin-tin LAPW. Our use of the

RMTA, which requires touching muffin-tin spheres, makes the

results consistent with scattering theory. This method is dis-

cussed in the Superconductivity section in regards to calculat-

ing the electron-phonon interaction. The DOS and bands do

not show any significant differences between LDA and GGA.

Calculations with spin–orbit interaction were obtained using

the LDA functional. We find little difference between the GGA

and LDA functional calculations with the spin–orbit coupling,

as discussed in more detail in the Spin–orbit calculations

section.

Density of states

The DOS of Fr were calculated by the tetrahedron method[7]

and are shown in Figure 4(b). This figure shows the total DOS

and the angular momentum (l-) decomposed DOS of Fr for

the bcc structure. There are great similarities in the calculated

DOS when compared with Cs, Figure 4(a), and other alkali

metals.[8] In both images of Figure 4, the Fermi level, EF, is

shown by the vertical dashed line. At EF, and below, the DOS

of both elements have s- and p-like character, while the

d-states appear well above EF. The similarities between these

figures suggest an accurate prediction of Fr’s true DOS, which

are consistent with the other alkali metals. Table 2 shows the

calculated values of the total, and l-decomposed, DOS at the

Fermi energy for both Cs and Fr using the GGA functional.

Summation of the l-decomposed DOS do not equal the total

DOS, since these are projections on to the muffin-tin spheres.

Table 2 shows that the s-component of the DOS, at EF, is

the largest contributor to the total DOS of Fr at equilibrium.

We also perform band structure calculations as a function of

pressure. When pressure is increased the s-component begins

to decrease, while the d-component increases. The d-compo-

nent becomes the largest contribution to the total DOS after a

pressure of 2 GPa as shown in Figure 5. In Figure 5, the values

of N EFð Þ and its angular momentum components are plotted

as a function of pressure as Fr transitions from hcp to bcc.

This behavior is also found in other alkali metals and is due to

increased s-d hybridization under pressure, see Energy bands

and Superconductivity sections.

Spin–orbit calculations

Spin–orbit interaction calculations were performed for the LDA

functional to observe any influences on the total energy and

DOS of the system. These results showed little difference from

the non-spin–orbit interaction calculations for the occupied

states. Table 3 shows the total energy results for the LDA func-

tional with spin–orbit interaction. The results given in Table 3

compare well with the LDA functional without spin–orbit inter-

action results, with less than 1% difference when compared to

Table 1.

Figure 2. Total energy of Fr using the LAPW method with GGA functional.

Notice the hcp structure is calculated to have lower total energy than the

fcc structure by 0.05 mRy at equilibrium. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 3. Enthalpy of the three structures, fcc, bcc, and hcp, calculated

using LAPW with GGA functional. All enthalpies are given with respect to

the hcp enthalpy. A transition from hcp to bcc occurs at 0.572 GPa. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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We performed calculations using the LDA functional with

spin–orbit interaction for volumes down to 34% of the equilib-

rium volume. The total and l-decomposed DOS with spin–orbit

interaction had similar results to the LDA without spin–orbit

interaction in the calculations. This is demonstrated in Table 4,

Figure 4. The total and decomposed density of states for bcc Cs (a) and Fr (b). The total, s-component, p-component, d-component, and f-component of

the DOS, is given from top to bottom, respectively. The Fermi level is shown by the vertical dotted line.

Table 2. The total and decomposed DOS at the Fermi level for bcc ce-

sium and bcc francium using LAPW with GGA functional at zero pressure

Element NTotal Ns Np Nd Nf

Cs 21.113 6.621 2.772 4.228 0.070

Fr 19.772 7.198 1.897 3.909 0.094

Figure 5. Total and s,d-components of the DOS vs. pressure of Fr at EF,

using the GGA functional with no spin–orbit interaction. The l-components

of the DOS are normalized with respect to the equilibrium MT radius,

Req =R, to correct for the fact that we are using touching spheres. The hcp

structure is given by a dashed (blue) line and the bcc structure as a solid

(red) line. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Table 3. Total energy and related results for francium with LDA func-

tional with spin–orbit interaction

Total energy

(mRy)

Lattice

constant (au)

Bulk modulus

(mBar)

bcc 0.20 10.836 0.018

fcc 0.17 13.802 0.022

hcp 0.0 a 5 9.788; c 5 15.661 0.020

Table 4. Total and decomposed DOS at EF for bcc francium using LAPW

with LDA functional, both with and without spin–orbit interaction

Vol. (au3) Press. (GPa) DOS, total DOS, s DOS, p DOS, d DOS, f

No spin–orbit

595.5 0.20 16.146 5.192 1.396 3.825 0.106

500 1.01 14.968 4.279 1.224 3.975 0.1280

364.5 4.39 18.289 3.230 1.083 6.771 0.276

275.7 11.57 23.069 3.080 1.283 9.147 0.650

Spin–orbit

595.5 0.20 16.503 5.257 1.477 3.889 0.107

500 1.00 15.337 4.280 1.318 4.045 0.134

364.5 4.32 18.767 3.267 1.170 6.898 0.281

275.7 11.388 23.956 3.172 1.434 9.416 0.660

FULL PAPERWWW.Q-CHEM.ORG

International Journal of Quantum Chemistry 2013, 113, 2070–2077 2073

117



for four bcc pressures. The inclusion of spin–orbit results in

the DOS values at the Fermi level show negligible differences

from the non-spin–orbit calculations. The largest percent dif-

ference is between the total DOS at 275.5 au3 at 3.7%.

Fr, similarly to the other alkali metals, has its lowest band

half occupied and is almost entirely of s-character. We know

from quantum mechanics that there is no spin–orbit splitting

for these “s” states. Although the states above EF have p- and

d-character, which do split, they are irrelevant to the Fermi

level values of the DOS, phase shifts, etc.

Table 5 shows splitting at high-symmetry k-points. The C250

state is a triple degenerate state that splits into a single

degenerate state and a double degenerate state by spin–orbit

interaction. H250 is also a triple degenerate state that splits into

a single degenerate and a double degenerate state. the P4

point also splits from triple degenerate states to a single and

a double degenerate state, with the values given respectively

in the WSO row of Table 5. Figure 6, in Energy bands section,

shows the location of these points. As EF is at 0, we conclude

that the spin–orbit interaction effects only the states above EF.

This is the case both at equilibrium and under pressure.

We find that the results using the GGA functional, which

does a better job with predicting total energy related calcula-

tions, without spin–orbit interaction can accurately describe

the properties of Fr, including superconductivity.

Energy bands

Figure 6 shows the energy bands of Fr for the bcc structure

using the LAPW method with GGA functional. Figure 6(a)

shows the bcc band structure at equilibrium pressure, while

Figure 6(b) shows the bcc band structure under the largest

calculated pressure, corresponding to a volume of 34% of the

GGA equilibrium volume. As pressure is increased, the d-like

energy bands begin to cross the Fermi level, allowing

increased s- and d-band hybridization. For example, Figure 6

shows H12, which is of entirely d-character, drop below the

Fermi level. Comparisons with the other alkali metals show

similar features in the energy bands.[8] With the increased con-

tribution of the d-bands, these metals begin to show charac-

teristics of the transition metals, which is discussed further in

Superconductivity section.

Superconductivity

The results presented in this section were produced with

touching muffin-tin spheres. Using the touching muffin-tin

results makes the calculations consistent with the scattering

theory of the RMTA. To calculate the electron–ion matrix ele-

ment known as the Hopfield parameter, g,[9] we use the fol-

lowing formula,[10]

g5N EFð ÞhI2i (1)

where N is the total DOS and hI2i is the electron–ion coupling

matrix, which is calculated with the Gaspari and Gyorffy theory

(GG)[10] using the angular momentum components of the DOS

and the phase shifts. The following equation gives the elec-

tron–ion coupling matrix,

hI2i5 EF

p2N2 EFð Þ
X1
l50

2 l11ð Þsin2 dl112dlð ÞNl11Nl

N
1ð Þ

l11N
1ð Þ

l

(2)

where Nl are the angular momenta, l2, components of the

DOS at EF, dl are scattering phase shifts calculated at the muf-

fin-tin radius and at EF, and N
ð1Þ
l is the so-called free-scatterer

DOS calculated from the radial wave functions, ul. The Hopfield

parameter is then used to calculate the electron-phonon

Table 5. Spin–orbit splitting and energies at high symmetry k-points of

bcc francium at equilibrium

C250 H250 P4

NSO 0.258 0.484 0.149

WSO 0.255 0.264 0.479 0.493 0.121 0.161

DE 0.009 0.014 0.040

Figure 6. The GGA energy bands for bcc Fr at equilibrium (a) and a pressure of �14 GPa (b).
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coupling constant, which is obtained using the following

equation from McMillan’s strong-coupling theory[11]

k5
g

Mhx2i (3)

where M is the atomic mass and hx2i is the average of the

phonon frequency squared, which is related to the Debye tem-

perature by

hx2i5 1

2
H2

D (4)

Since there are no experimental values for the Debye tem-

perature of Fr, the formula by Moruzzi et al.[12] was used to

calculate the Debye temperature,

HD5131:6

ffiffiffiffiffiffiffi
r0B

M

r
(5)

where r0 is the Wigner-Seitz radius in au and B is the bulk

modulus in GPa. The equilibrium volume was found to be

VGGA eq
5801; 182 au 3 for the bcc structure, with a Debye tem-

perature from eq. (5), HD525 K , which is consistent with the

experimental trend of reducing HD as we go from the lighter

to the heavier alkali metals. The critical temperature is given

by the McMillan equation,[11]

TC5
HD

1:45
exp

21:04 11kð Þ
k2l� 110:62kð Þ

� �
(6)

where l� is the Coulomb pseudopotential, which was set to

0.13 for our calculations. We also calculated TC for values of l�

between 0.1 and 0.16. These are the most accepted values

used, based on fits to experimental data. The critical tempera-

ture varies, between 5.9 and 7.8 K, at the highest pressure

calculated.

The GG theory has been criticized as being designed for

transition metals only. However, we have shown that the GG

also works well for the alkali metals, which behave like transi-

tion metals under pressure.[13,14] These results not only com-

pare well with experimental results for Li,[15–18] but are

equivalent, if not better, than those produced by other recent

methods.[19–21] Furthermore, Profeta et. al.[22] and Sanna et.

al.[23] using an elaborate DFT formalism, predict superconduc-

tivity for potassium in agreement with our earlier results,[13]

which were based on the GG and McMillan theories. We also

point out that while calculations for the hcp structure neglect

the nonspherical corrections, we expect these corrections to

be small. Furthermore, superconductivity occurs at pressures

after the transition to the bcc structure.

Returning to Fr, our calculations of the Debye temperature,

superconducting critical temperature, electron-phonon cou-

pling constant, bulk modulus, and pressure were performed

using the GGA functional for volumes down to 34% VGGA eq
.

Results discussed in this section correspond to the GGA

functional. We calculated, similarly to the other alkali metals,

that Fr has near-zero superconducting critical temperature at

equilibrium.

Figure 7(a) shows a monotonic increase of Debye tempera-

ture with increased pressure. The Debye temperature contin-

ues to increase past 110 K at pressures beyond the plotted

pressures. In Figures 7(b) and 7(c), we show the electron–ion

interaction and electron-phonon coupling constant values.

Both the trends increase with increased pressure. The k values

stay under 1.5 for pressures beyond those plotted in the fig-

ures, corresponding to a percent volume below 34%VGGA eq
. As

discussed in Energy bands section, the increased contribution

of the d band at the Fermi level greatly influences the elec-

tron–ion interaction. This contribution is demonstrated by the

monotonic increase in the g values for increased pressure. We

also see in Figure 7(b) that the p-d component of g has the

largest contribution to the overall g values. These features are

similar to those found for the other alkali metals.[14] The transi-

tion metals, at equilibrium pressures, also see g values similar

to the alkalis under compression, due to the influence of the

d-bands at the Fermi surfaces. Figure 7(d) shows the increasing

trend of the superconducting critical temperatures with

increasing pressure, reaching 7 K for pressures up to 14 GPa

for GGA.

Integration of the DOS suggests a transfer of charge from

s- to d-like under pressure. We calculate the initial charge at

zero pressure to be 72% s-like, 16% p-like, 12% d-like, and 0%

f-like. However, under a pressure of 14 GPa, we see the charge

become 59% d-like, 30% s-like, 8% p-like, and 3% f-like. Calcu-

lations for pressures in between show charge transfer to

d-like, while the s-like decrease, with p- and f-like charges

remaining approximately constant.

It should be noted that superconductivity seems to occur

for even the most compressible metal when under pressure.

Furthermore, our prediction of superconductivity in Fr is con-

sistent with the results of Shi and Papaconstantopoulos,[13,14]

who predicted that the alkali metals, with the exception of So-

dium, will become superconducting at temperatures between

5 and 20 K when subjected to high pressure. It has also been

experimentally verified that lithium becomes superconducting

above pressures of 20 GPa at temperatures of 15 K.[15]

Ferromagnetism

Since the d-DOS dominates at pressures beyond 2 GPa, we

performed calculations for the possible ferromagnetism of Fr.

The Stoner parameter,[24] I given by Eq. (7), and DOS at the

Fermi level are used to calculate the ferromagnetism criterion

of Stoner (N EFð ÞI > 1).

I5

ð
drc2 rð ÞjK rð Þj

where c5
1

N EFð Þ
X

i

Nl EFð Þu2
l EFð Þ

(7)

In Eq. (7), ul EFð Þ is the value of the radial wave function at

the Fermi level and K(r) is a kernel giving the exchange and
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correlation enhancement of an external magnetic field. When

N EFð ÞI< 1, there is no implied ferromagnetism. We found that

the alkali metals have Stoner parameter values that suggest

no ferromagnetism at equilibrium or under pressure. Table 6

shows values of the Stoner parameter for various volumes.

Conclusions

Fr is a rare element and very little work has been done experi-

mentally or theoretically. This article has predicted the proper-

ties and structure of Fr using density functional theory. These

calculations complete the systematic study of superconductiv-

ity in the alkali metals discussed by Shi et al.[13,14]

In most alkali metals using the GGA or LDA functional, it is

found that fcc is the ground state instead of bcc. However, due

to energy differences of much less than 1 mRy between hcp, fcc,

and bcc, we conclude that density functional theory has diffi-

culty obtaining an accurate description of the equilibrium struc-

ture for the alkali metals. This is due to the very small DE, which

are within the computational error of the methods used, and

possibly due to zero point motion effects. Fr was calculated to

be an hcp structure but with an energy difference of only 0.29

mRy between bcc and hcp. The material displayed neither

superconducting properties at equilibrium nor did it display any

ferromagnetic properties. This is consistent with the other alkali

metals. However, under small pressure we see a phase transition

from hcp to bcc, and under larger pressures we see supercon-

ducting properties, with a superconducting critical temperature

of approximately 7 K at 14 GPa. This was found to be caused by

increasing s-d hybridization that begins to appear at the Fermi

surface under pressure. We also found the spin–orbit interaction

to have little effect on Fr at equilibrium or under pressure

because it only effects the states above the Fermi energy.

Table 6. Stoner parameter and Stoner criterion of bcc francium for vari-

ous volumes

Volume (au3) Stoner parameter, I (Ry) N EFð ÞI

595.5 0.020 0.333

500 0.018 0.273

364.5 0.014 0.271

275.7 0.013 0.293

Results using LAPW with GGA functional.

Figure 7. Debye temperature, HD (a), electron–ion interaction, g (b), electron-phonon coupling constant, k (c), and critical temperature, TC (d), versus pres-

sure of Fr. LAPW using GGA functional with no spin–orbit interaction. The hcp structure is given by a dashed (blue) line, and the bcc structure as a solid

(red) line. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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We have performed density functional theory calculations using the linearized augmented plane wave method
(LAPW) with the local density approximation (LDA) functional to study the electronic structure of the iron-based
superconductor iron-selenium (FeSe). In our study, we have performed a comprehensive set of calculations
involving structural, atomic, and spin configurations. All calculations were executed using the tetragonal
lead-oxide or P 4/nmm structure, with various volumes, c/a ratios, and internal parameters. Furthermore,
we investigated the spin polarization using the LDA functional to assess ferromagnetism in this material. The
paramagnetic LDA calculations find the equilibrium configuration of FeSe in the P 4/nmm structure to have
a volume of 472.5 a.u.3 with a c/a ratio of 1.50 and internal parameter of 0.255, with the ferromagnetic
having comparable results to the paramagnetic case. In addition, we calculated total energies for FeSe using a
pseudopotential method, and found comparable results to the LAPW calculations. Superconductivity calculations
were done using the Gaspari-Gyorffy and the McMillan formalisms and found substantial electron-phonon
coupling. Under pressure, our calculations show that the superconductivity critical temperature continues to rise,
but underestimates the measured values.

DOI: 10.1103/PhysRevB.89.035150 PACS number(s): 71.15.Mb, 71.20.−b, 74.20.Pq, 74.70.Xa

I. INTRODUCTION

Iron-based superconductors are the newest addition to high-
temperature superconductivity. Current experimental findings
have made many believe that the superconductivity may not be
due to electron-phonon interaction [1–3]. Spin fluctuations and
spin-density waves have been suggested as mechanisms for the
high-temperature superconductivity, but without quantitative
assessment. It is therefore important to fully study the
electronic structure of these materials, and its implications
on superconductivity.

Iron-selenium (FeSe) has the simplest structure of the
current iron-based superconductors. As shown in Fig. 1, under
ambient conditions [1–5] it forms in the tetragonal PbO
structure, Strukturbericht B10 [6], space group P 4/nmm-D7

4d

(No. 129). The Fe atoms are fixed at the (2a) Wyckoff position
(000), while the Se atoms are at the (2c) Wyckoff position
(01/2z).

There have been several studies of iron-selenium both
computationally and experimentally [1–5,7–12]. Most of the
computational works use the experimental equilibrium results
as input without optimization of all parameters through first
principles. In this work we have performed calculations using
the experimental parameters as well as calculations based on
first-principles energy minimization.

II. COMPUTATIONAL DETAILS

Most calculations performed in this paper used the lin-
earized augmented plane wave (LAPW)[13] implementation
of density functional theory [14]. LAPW wave functions were
used for the valence band, further augmented by local orbitals
for the semicore states, using a code developed by Krakauer,
Wei, and Singh [15,16]. Exchange and correlation effects were

approximated by the Hedin-Lundqvist [17] parametrization of
the local density approximation (LDA) [18]. The rigid muffin-
tin approximation code developed by Papaconstantopoulos
and Klein [19] was used to apply the Gaspari-Gyorffy theory
[20]. A �-centered k-point mesh of 75 points was used for
total energy and density of states (DOS) calculations. A larger
mesh of 904 k points was used for the calculations of energy
bands. All calculations used a basis set size of 6 × 6 × 6,
seven core states (equilibrium state of argon) for iron and
nine core states (argon + 3d states) for selenium resulting in
28 total valence electrons. Local orbitals were also used with
energies of 0.308 Ry for 3s and 3p iron and −0.548 Ry and
0.158 Ry for 3s and 3p selenium, respectively. All calculations
used fixed muffin-tin radii of 2.0 a.u. for Fe and Se atoms.
Structural optimization was executed via energy minimization
with respect to both the tetragonal lattice constants a and
c and the internal selenium parameter z. As a check on
our LAPW results, we performed calculations on the B10
structure using the Vienna ab initio simulation package (VASP)
[21–23] using the VASP implementation [24] of the projector
augmented-wave (PAW) method [25]. To ensure convergence
we used a plane-wave cutoff of 500 eV, and used the same
k-point mesh as in the LAPW calculations.

III. TOTAL ENERGY OF IRON-SELENIUM

Figure 2 shows the optimized (variation of volume, c/a, and
internal parameter z) total energy calculations performed with
our LAPW code, as well as our optimized VASP calculations
with the LDA functional. Both LAPW and VASP methods
with the LDA functional underestimate the measured lattice
parameters by 4.5% and 2.2% for the a and c parameters,
respectively. This was expected since the LDA functional
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FIG. 1. (Color online) Ground state structure of FeSe, Struk-
turbereicht designation B10. The space group is P 4/nmm-D7

4d

(No. 129). The iron atoms are on (2a) Wyckoff sites, while the
selenium atoms are on (2c) sites.

usually underestimates the lattice parameters, although for
simple materials the difference is usually smaller. Bulk
modulus results were overestimated by 3.9% using the LAPW
method. The calculated and experimental structural results
and bulk moduli of FeSe are given in Table I. Structural
results from another optimized study of FeSe using PAW
and the LDA functional completed by Winiarski et al. [12]
agree with our calculations. They found lattice parameters of
a = 6.7902 a.u., c = 10.177 a.u., and z = 0.257. Although
it is not explicitly stated in their paper, these correspond to
underestimations of experimental values of 4.7% and 2.5%

   
0.

00
   

0.
01

   
0.

02
   

0.
03

 395.00  441.00  487.00  533.00

E
ne

rg
y 

(m
R

y)

Volume (a.u.3)

FeSe LDA, tetra-PbO

Vexp = 529.5au3VLAPW = 472.5au3

VVASP = 465.7au3

Bexp = 31.0GPa
BLAPW = 32.2GPa
BVASP = 34.8GPa

*c/a and internal parameter varied
 to optimize energy minimization

LAPW VASP

FIG. 2. (Color online) Total energy of FeSe using the LAPW
with the LDA functional and VASP code with the LDA functional. Both
methods performed energy minimization to obtain the optimal energy
for each volume. Although the equilibrium volume is underestimated,
the bulk modulus value is in very good agreement with experiment.

TABLE I. Volume, structural parameter, a, c/a ratio, internal pa-
rameter, z, and bulk moduli for FeSe at ambient pressure. Calculated
results are from optimized calculations of the corresponding method
and the LDA functional. Experimental results are taken from Kumar
et al. [10] and Ksenofontov et al. [11].

Volume a c/a z Bulk mod.
(a.u.3) (a.u.) (GPa)

LAPW
472.5 6.804 1.50 0.255 32.2

VASP

465.7 6.771 1.50 0.256 34.8
Experiment

529.5 [10] 7.121 [10] 1.465 [10] 0.269 [10] 31.0 [11]

for a and c parameters, respectively. Comparing our structural
results under pressure with the Winiarski [12] paper, we find
comparable results for all pressures.

All calculations presented in this paper are for paramagnetic
FeSe. We also performed ferromagnetic calculations which
yield nearly the same results for total energy to the param-
agnetic calculations. Furthermore, the calculated equilibrium
parameters are nearly equivalent to the paramagnetic case,
and therefore show no significant difference between the two
cases. Further calculations using the ferromagnetic, antiferro-
magnetic, and other magnetic orders should be considered for
further study, but are beyond the scope of this paper.

IV. ELECTRONIC STRUCTURE

DOS and energy band calculations were performed using
the LAPW results from the optimized LDA total energy
calculations. These calculations are performed down to 76%
Vexp, where Vexp = 529.5 a.u.3 from Table I. This corresponds
to pressures as high as 8 GPa. The DOS results are then used
to calculate superconductivity properties.

Figure 3 shows the total, Se-p, and Fe-d decomposed DOS
for FeSe at ambient pressure, i.e., Vexp. The d component of
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FIG. 3. (Color online) Total, Se-p, and Fe-d density of states of
FeSe at ambient pressure. Notice that the Fe-d component is the
largest contributor to the total DOS around the Fermi level. Dashed
vertical (blue) line represents the Fermi level.
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FIG. 4. (Color online) Energy bands of FeSe at ambient pressure.
Solid horizontal (black) line represents the Fermi level.

the Fe DOS is the largest contributor to the total DOS near
and at the Fermi level, EF . Around EF , these Fe-d states are
localized and do not extend into the interstitial region, while
the Se-p and the Fe-d tails have significant contributions in
the interstitial space as shown in Fig. 3. The Se-s semicore
states, not shown in Fig. 3, are found approximately 1 Ry
below EF . Figure 4 displays the energy bands of FeSe at
ambient pressure. These two figures are in agreement with
calculations of the DOS and energy bands performed by
other groups [7–9]. Table II gives a comparison of the DOS
between our results for the experimental lattice parameters
with those from Subedi et al. [7] and Bazhirov and Cohen [9].
The specific lattice parameters used for the DOS calculations
presented in Table II are a = 7.114 a.u., c = 10.1154 a.u., and
z = 0.2343 for both Subedi et al. [7] and us. However, it is
unclear what structural parameters were used in Ref. [9]. DOS
calculations for various a, c, and z lead to different values at
the Fermi surface. These differences in structural parameters
are influencing the calculation of superconducting properties
and will be discussed in more detail in the following section.
The differences in N (EF ) shown in Table II are probably due
to the details of the method used to calculate the DOS and
possibly the number of k points.

V. SUPERCONDUCTIVITY

As mentioned, the DOS calculations are used to calcu-
late superconductivity parameters. For each atom type, we

TABLE II. Comparison of the total DOS at the ambient pressure.
Our DOS calculations, as well as those of Subedi et al. [7], are for the
experimental structural parameters with the internal parameter z =
0.2343. It is not entirely certain what were the structural parameters
used to calculate the values given by Bazhirov and Cohen [9].

N (EF ) (states/Ry/cell)

This paper 32.3
Subedi [7] 26.0
Bazhirov [9] 21.0

calculate the electron-ion matrix element known as the
Hopfield parameter, ηi [26], using the following formula [20]:

ηi = N (EF )〈I 2〉i , (1)

where N (EF ) is the total DOS per spin at EF and 〈I 2〉i is
the electron-ion matrix element for each atom type, which
is calculated by the Gaspari and Gyorffy theory [20]. The
electron-ion matrix element is given by the following equation:

〈I 2〉i = EF

π2N2(EF )

2∑
l=0

2(l + 1)sin2
(
δi
l+1 − δi

l

)
Ni

l+1N
i
l

N
(1),i
l+1 N

(1),i
l

,

(2)

where Ni
l are the per spin angular momenta (l) components

of the DOS at EF for atom type i, N
(1),i
l are the so-called

free-scatterer DOS for atom type i, and δi
l are scattering phase

shifts calculated at the muffin-tin radius and at EF for atom
type i. Free-scatterer DOS are calculated by

N
(1)
l =

√
EF

π
(2l + 1)

∫ Rs

0
r2u2

l (r,EF )dr (3)

and scattering phase shifts are calculated by

tan δl(RS,EF ) = j ′
l (kRS) − jl(kRS)Ll(RS,EF )

n′
l(kRS) − nl(kRS)Ll(RS,EF )

, (4)

where RS is the muffin-tin radius; jl are spherical Bessel
functions; nl are spherical Newnaun functions; Ll = u′

l/ul

is the logarithmic derivative of the radial wave function, ul ,
evaluated at RS for different energies; k = √

EF ; and ul is
computed by solving the radial wave equation at each k point
in the Brillouin zone. The Hopfield parameter is then used
to calculate the electron-phonon coupling constant, which
is obtained using the following equation from McMillan’s
strong-coupling theory [27]:

λ =
2∑

i=1

ηi

Mi〈ω2〉 , (5)

where Mi is the atomic mass of atom type i, and 〈ω2〉 is
the average of the squared phonon frequency taken from the
experimentally calculated Debye temperature of Ksenofontov
et al. [11]. The Debye temperature is related to the phonon
frequency by

〈ω2〉 = 1
2�

2
D, (6)

where �D is found to be 240 K [11]. The critical supercon-
ductivity temperature is given by the McMillan equation [27]

Tc = �D

1.45
exp

[ −1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
, (7)

where μ∗ is the Coulomb pseudopotential, given by the
Bennemann-Garland equation [28]

μ∗ = 0.13
N (EF )

1 + N (EF )
. (8)

In Eq. (8), N (EF ) is expressed in eV and given in a per cell
basis. The prefactor 0.13 was chosen such that μ∗ = 0.10 at
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TABLE III. Total DOS at EF , N (EF ), Hopfield parameters, η,
electron-phonon coupling constants, λ, Coulomb pseudopotentials,
μ∗, and critical superconductivity temperature, Tc, for FeSe at various
volumes, corresponding to pressures as high as 8 GPa. Experimental
values are calculated using a fixed c/a and z taken from experimental
parameters (c/a = 1.4656 and z = 0.260/z = 0.2343).

V N (EF ) ηFe ηSe λFe λSe λ μ∗ Tc

(a.u.3) ( states
Ry/cell ) (eV/Å

2
) (K)

Experimental c/a; optimized z (c/a = 1.4656; z = 0.2343)
530 32.28 1.47 0.46 0.500 0.114 0.614 0.10 4.9

Experimental parameters (c/a = 1.4656; z = 0.260)
530 44.82 1.50 0.36 0.513 0.090 0.603 0.10 4.6
460 37.05 2.15 0.47 0.558 0.088 0.646 0.095 6.8
430 34.23 2.58 0.53 0.600 0.089 0.689 0.093 8.5
420 33.44 2.75 0.55 0.618 0.088 0.707 0.0927 9.4

the experimental volume. �D was calculated as a function of
volume, V , by the following formula:

�D = C(V − V ) + �D, (9)

where C is given as the slope between the experimental
Debye temperature of Ksenofontov et al. [11] at ambient and
6.9 GPa pressures at their corresponding volumes. We have
C = −0.513, where V = 530.3 a.u.3.

In Table III, we show the total DOS at the Fermi level,
Hopfield parameters, electron-phonon coupling constants,
Coulomb pseudopotentials, and critical superconductivity
temperature for FeSe at various volumes, using our LAPW
results. We have included constant c/a and z calculations in
Table III, where c/a is set at the experimental value.

First we note that at the experimental volume we obtain
Tc ≈ 5 K reasonably close to the measured value of 8 K.
We also note that if the c/a ratio and z are held constant,
specifically at the experimental values, throughout the DOS
calculations for the given volumes, an increase in all Tc values
is found for increased pressure (decreasing volume), as seen in
Table III. Although the total N (EF ) is found to monotonically
decrease during the increase in pressure, the parameter η

undergoes a rapid increase. This decrease in total N (EF ) also
contributes to a subtle reduction in the μ∗ at larger pressures.
It is also of interest that the change of internal parameter does
not seem to influence the overall superconductivity properties.
We continue to see the increase of η due to the complexity
of Eq. (2), which gives the electron-ion matrix elements 〈I 2〉.
This shows that the total DOS at the Fermi level is not the
only, or the major, influence in calculating superconductivity
properties. It is important to note from Table III that λFe

is approximately six to seven times larger than λSe. This
is not surprising since the Fe states dominate near EF , but
also justifies our use of the Debye temperature in estimating
the average phonon frequency. Varying the c/a ratio for a
given volume does, however, cause a significant change in
the superconductivity properties. This makes the search of
absolute optimized parameters quite hard and time consuming.
We show the trend of increasing superconductivity critical
temperature for increasing pressure using the experimental

TABLE IV. Calculated DOS and superconductivity related results
of LaFeAsO using LAPW with the LDA functional. Experimental
critical temperature result is taken from Takahashi et al. [32].

LaFeAsO

N (EF ) (states/Ry/cell)

53.964

Ns(EF ) Np(EF ) Nd (EF ) Nf (EF ) η (eV/Å
2
) λ

Fe 0.029 0.562 44.052 0.014 0.967 0.19
As 0.006 0.826 0.439 0.119 0.186 0.03
La 0.006 0.126 0.330 0.278 0.034 0.003
O 0.009 0.264 0.042 0.005 0.008 0.006
�D(K) λTotal μ∗ Tc Tc (exp)

319 0.23 0.13 0.0 45.0

structural parameters, with a value of about 9 K, which is too
small to account for the measured value of 30 K.

At ambient conditions, our electron-phonon coupling
constant calculation λ = 0.603 is consistent with the value
calculated by Ksenofontov et al. [11], λ = 0.65, by inverting
the McMillan equation using the measured θD .

Other computational papers [7,9] find values of approxi-
mately λ = 0.15 using linear response theory. It is not clear to
us what is the source of discrepancy between our calculations
based on the Gaspari-Gyorffy theory and the linear response
theory-based calculations. It is possible that our use of the
relationship between average phonon frequency and the Debye
temperature is an oversimplification or, on the other hand,
the Brillouin-zone samplings performed in the linear response
codes are not sufficiently converged. It would be helpful for
resolving this issue to have separate calculations of 〈I 2〉 by
the linear response method. In any case, our results presented
in the following paragraphs regarding our agreement with
the small λ = 0.23 we obtained for LaFeAsO need to be
understood.

In this other iron-based superconducting material,
LaFeAsO, electron-phonon coupling constants of approxi-
mately 0.2 [29,30] have been reported. We have also performed
superconductivity calculations of LaFeAsO using the results
of Ref. [31]. Our calculations of the electron-phonon coupling
constant for LaFeAsO is consistent with the results of these
groups. LaFeAsO is known to be on the verge of magnetic
instability [29,30]. This suggests that spin fluctuations are
important in this material.

Table IV shows our calculated LAPW DOS and supercon-
ductivity results using the LDA functional and experimental
parameters for LaFeAsO. The Hopfield parameter of the Fe
atom is seen to be quite low for the LaFeAsO material, in
contrast to what we find in FeSe. Similarly, the electron-
phonon coupling is much larger for FeSe.

VI. CONCLUSIONS

In this paper we present calculations of the band structure of
FeSe which are in good agreement with other works regarding
mechanical and electronic properties of this material. We
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have also presented calculations of the parameters entering
the McMillan equation for the superconducting critical tem-
perature. Our view is that an electron-phonon mechanism
can explain superconductivity in FeSe at zero pressure, but
it does not give enough of an enhancement to the value
of Tc under pressure. Comparing with the multicomponent
compound LaFeAsO we see the following picture emerging:
In LaFeAsO, a combination of the small value of the
calculated parameter η and a large value of the measured θD

invalidates the electron-phonon coupling. On the other hand,

in the case of FeSe, the combination of large η and small θD

supports electron-phonon coupling, at least at zero pressure.
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Appendix C: Coherent Potential Approximation Code

This appendix includes all source code written for the Coherent Potential Approximation

program. All code was written in Fortran, with each subroutine as its own file. Global

variables were used and stored in global.f90. The file cpagen.f90 is the Fortran program,

which sets the overall verboseness of the code and calls the ”mainn” subroutine. The

”mainn” subroutine calls some initialization subroutines, the subroutine to calculate the

self-energies, the subroutine to calculate DOS using the final Green’s function, and the

subroutine to integrate the Fermi level.

Initialization for most of the global variables are performed in the subroutines ”readin”,

”setOnsites”, ”kpts”, ”readSec”, set ”setInitHam”. Descriptions of the function of each

subroutine are given at the start of the files. The subroutine ”calcSig” calls and performs

the mathematics to solve for the self-energies, such as initializing the Hamiltonian with the

diagonal disorder, calling the greens subroutine for solving Green’s function and performing

the Newton-Raphson method for an energy level. Once the Green’s function and self-

energies are solved for, the ”cpaDOS” subroutine is run to calculated the DOS from the

final Green’s function. Using the calculated DOS at each energy level, the subroutine ”simp”

calculates the Fermi level. Figure C.1 shows the connection of each of these subroutines.

The remainder of the appendix is the source code.

program cpagen

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> This program i s f o r t e t r a g o a n l p e r v o s k i t e s with d i s o r d e r in the s & p

! ! o r b i t a l s o f the second atom i . e . FeSe/Te , where Se/Te i s the second atom .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

i m p l i c i t none

v l v l = 0

verbose = . f a l s e .

c a l l mainn ( )
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cpagen

mainn

readin setOnsites kpts readSec setInitHam calcSig

setHam greens

cmplxInv

ccrlu clubk

newton

cpaDOS

setHam cmplxInv

simp

Figure C.1: Coherent Potential Approximation subroutine flow chart. Level-1 subroutines
that are called directly from the mainn subroutine are outlined in red. Level-2 subroutines
called from any Level-1 program are outlined in orange. Similarly, Level-3 subroutines are
outlined in green; Level-4 subroutines in blue. The dashed lines indicate procedures that
are called by more than one subroutine.

wr i t e (∗ , 1000)

stop

1000 format (/ , ’ Program f i n i s h e d running . Check cpaper . out f o r f i n a l &

r e s u l t s ’ , / )

end program cpagen

module g l o b a l

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Current ly t h i s g l o b a l f i l e i s setup f o r c a l c u l a t i o n s o f P4/nmm Fe2Se/Te2

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param j s z − Number o f kpo int s

!> @param mode − Used to dec ide how the program i s run

! ! 1 − Perform f u l l CPA prgoram , i n c l u d i n g GG c a l c u l a t i o n s

! ! 2 − Perform only GG c a l c u l a t i o n s . Must have run mode 1 or 3 p r e v i o u s l y
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! ! 3 − Perform VCA with DOS and GG c a l c u l a t i o n s . E s s e n t i a l l y s k i p s

! ! s e t t i n g and c a l c u l a t i n g s e l f −e n e r g i e s .

!> @param ntype − Number o f d i f f e r e n t atom types

!> @param natom ( ntype ) − Number o f d i f f e r e n t atoms (# of atoms in should

! ! be g iven a l p h a b e t i c a l order ; i . e . UPd2Al3 should be ( 3 , 2 , 1 ) )

!> @param nse − Number o f s e l f e n e r g i e s

!> @param pi Mathematical va lue o f p i

!> @param sec − Number o f s e c u l a r equat ions

!> @param smal l Real va lue cons ide r ed to be ” smal l ”

!> @param t i t l e − T i t l e from cpaper . in to be used in a l l output f i l e s

!> @param verbose − Log i ca l f o r debugging f l a g s ( . t rue . = debug i n f o on )

!> @param v l v l − Level o f debugging verbosenes s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Notes f o r f u tu r e r e l e a s e :

!

! Some o f the se parmeters should not be e x p l i c i t l y s e t in the g l o b a l

! module and j u s t dec l a r ed to be s e t from one o f the read ing subrout ine s .

! This w i l l a l low f o r more f l e x i b i l i t y in the fu tu r e and make i t e a s i e r

! to modify the code f o r more than j u s t the FeSe/Te system .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none

i n t e g e r ( kind=4) : : v l v l

i n t e g e r ( kind=4) : : mode

i n t e g e r ( kind =4) , parameter : : j s z = 196 ! 904 ! From TB band c a l c u l a t i o n

i n t e g e r ( kind =4) , parameter : : ntype = 2 ! Fe & Se

i n t e g e r ( kind =4) , parameter : : natom ( ntype ) = (/ 2 , 2 /) ! Fe = 2 , Se/Te = 2

i n t e g e r ( kind =4) , parameter : : nse = 4∗natom (2) ! s (1 ) + p (3) f o r each Se/Te

i n t e g e r ( kind =4) , parameter : : s e c = 9∗2∗2 ! sum( natom ) ! 9 ( s (1 ) + p (3) + d ( 5 ) )

l o g i c a l : : verbose

r e a l ( kind =8) , parameter : : p i = 4 .0 d0∗datan ( 1 . 0 d0 ) , pp = 1 .0 d0/ p i

r e a l ( kind =8) , parameter : : smal l = 1 .0 d−20
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cha rac t e r ( l en =75) : : t i t l e

save

end module g l o b a l

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module converge

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Module f o r the convergence c r i t e r i o n r e l a t e d v a r i a b l e s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param cr − Convergence c r i t e r i o n f o r the r e a l part o f the

! ! Newton−Raphson procedure

!> @param c i − Convergence c r i t e r i o n f o r the imaginary part o f the

! ! Newton−Raphson procedure

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none

r e a l ( kind=8) : : c r

r e a l ( kind=8) : : c i

save

end module converge

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module concent ra t i on

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Module f o r the concent ra t i on r e l a t e d v a r i a b l e s o f the CPA program

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param con − The concent ra t i on o f the f i r s t atom type ( e . g .

! ! \ f$FeSe {con}Te {1−con}\ f $ )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none
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r e a l ( kind=8) : : con

save

end module

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module o n s i t e s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Module f o r the o n s i t e s parameters and r e l a t e d v a r i a b l e s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param ons ( natom ( 2 ) , s e c ) − The o n s i t e parameters o f the systems

!> @param ons bar ( s ec ) − Average o n s i t e parameters between the two systems

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

i m p l i c i t none

r e a l ( kind=8) : : ons ( natom ( 2 ) , s e c )

r e a l ( kind=8) : : ons bar ( s ec )

complex ( kind=8) : : onsA ( nse , nse )

complex ( kind=8) : : onsB ( nse , nse )

complex ( kind=8) : : onsAvg ( nse , nse )

save

end module o n s i t e s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module hami l ton ians

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Module f o r hami l ton ians o f the two systems and r e l a t e d v a r i a b l e s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param hma( j s z , sec , s e c ) − Real part o f i n i t i a l Hamiltonian o f system A

! ! ( e . g . FeSe )
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!> @param vsa ( j s z , sec , s e c ) − Imaginary part o f i n i t i a l Hamiltonian o f

! ! system A

!> @param hmb( j s z , sec , s e c ) − Real part o f i n i t i a l Hamiltonian o f system B

! ! ( e . g . FeTe)

!> @param vsb ( j s z , sec , s e c ) − Imaginary part o f i n i t i a l Hamiltonian o f

! ! system B

!> @param ham( j s z , sec , s e c ) − Average Hamiltonian between the two systems

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

i m p l i c i t none

r e a l ( kind=8) : : hma( j s z , sec , s e c )

r e a l ( kind=8) : : hmb( j s z , sec , s e c )

r e a l ( kind=8) : : vsa ( j s z , sec , s e c )

r e a l ( kind=8) : : vsb ( j s z , sec , s e c )

complex ( kind=8) : : ham( j s z , sec , s e c )

save

end module hami l ton ians

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module green

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Module f o r greens func t i on matrix and r e l a t e d v a r i a b l e s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param grn ( sec , s e c ) − Green ’ s func t i on

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

i m p l i c i t none

complex ( kind=8) : : grn ( sec , s e c )

save

end module green
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!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module sigma

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Module f o r the s e l f −e n e r g i e s and r e l a t e d v a r i a b l e s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param s i g ( nse ) − S e l f e n e r g i e s o f the system

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

i m p l i c i t none

complex ( kind=8) : : s i g ( nse )

save

end module sigma

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module un i t conver t

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Module f o r a l l un i t conve r s i on s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param ang2m − Angstroms to s i un i t s , meters

!> @param bohr2ang − Atomic radius , bohrs , to angstroms

!> @param bohr2m − Atomic radius , bohrs , to s i un i t s , meters

!> @param eV2J − Elect ron v o l t s to s i un i t s , Jou l e s (kgmˆ2/ s ˆ2 or Nm)

!> @param K2eV − Kelvin to e l e c t r o n v o l t s

!> @param u2kg − Atomic mass to s i un i t s , k i lograms

!> @param u2eVc2 − Atomic mass to e l e c t r o n v o l t s per speed o f l i g h t squared

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

i m p l i c i t none
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r e a l ( kind =8) , parameter : : ang2m = 1.0 d−10

r e a l ( kind =8) , parameter : : bohr2ang = 0.52917721092 d0

r e a l ( kind =8) , parameter : : bohr2m = 0.52917721092d−11

r e a l ( kind =8) , parameter : : eV AA2kg ss = 16.0217656 d0

r e a l ( kind =8) , parameter : : eV2Hz = 2.417989348 d14

r e a l ( kind =8) , parameter : : eV2J = 1.602176565d−18

r e a l ( kind =8) , parameter : : K2eV = 8.621738d−5

r e a l ( kind =8) , parameter : : K2meV = 8.621738d−2

r e a l ( kind =8) , parameter : : kg ss2eV AA = 6.2415094d−2

r e a l ( kind =8) , parameter : : meV2Hz = 2.417989348 d11

r e a l ( kind =8) , parameter : : Ry2ev = 13.60569253 d0

r e a l ( kind =8) , parameter : : u2kg = 1.660538921d−27

r e a l ( kind =8) , parameter : : u2eV c2 = 931.494061 d6

r e a l ( kind =8) , parameter : : uKK2eV AA = 1.776386273d−6

r e a l ( kind =8) , parameter : : uKK2eV AA2 = 4.504401531323d−8

save

end module un i t conve r t

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> D i s c r i p t i o n o f func t i on .

!> @brie f

! Function f o r doing i n t e r p o l a t i o n o f the Fermi l e v e l .

!

!> @param [ in ] j 1

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

r e a l ( kind=8) func t i on i n t e r p ( xx , x , f , j1 , n )

i m p l i c i t none

i n t e g e r ( kind=4) : : i , i s t a r t , j , j 2

i n t e g e r ( kind =4) , i n t e n t ( in ) : : j1 , n

r e a l ( kind=8) : : fx , p

r e a l ( kind =8) , i n t e n t ( in ) : : f ( 1 ) , x ( 1 ) , xx
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fx = 0 .0 d0

i s t a r t = j1 − n + n/2 + 1

j2 = i s t a r t + n − 1

do j = i s t a r t , j 2

p = f ( j )

do i = i s t a r t , j 2

i f ( i . eq . j ) c y c l e

p = p∗( xx−x ( i ) ) / ( x ( j )−x ( i ) )

end do

fx = fx + p

end do

i n t e r p = fx

return

end func t i on i n t e r p

subrout ine mainn ( )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Subrout ine to run the main par t s o f the CPA program . S p e c i f i c a l l y t h i s

! ! subrout ine does the Newton−Raphson procedure , a p p l i e s c oncen t ra t i on s

! ! and most o f the i n i t i a l i z a t i o n .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> Var iab l e s :

! ! d e l − Temperature broadening ?

! ! ep iv − Pivot energy ( he lps with N−R i t e r a t i o n s [ u s ua l l y around E F ] )

! ! eps − Imaginary part o f energy s h i f t ?

! ! emax/emin − Maximum and minimum of energy window , r e s p e c t i v e l y

! ! sag ∗∗1 − Real and imaginary parts , r e s p e c t i v e l y , o f s & p i n i t i a l o n s i t e

! ! parameters ( should be average between two s u b s t i t u t i o n atoms )

! ! s i g ∗∗ − Real and imaginary parts , r e s p e c t i v e l y , o f s & p s e l f −e n e r g i e s

! ! s i g − Complex s e l f −e n e r g i e s

! ! method − St r ing used to dec ide which zero f i n d i n g procedure to use
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!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

use hami l ton ians

use sigma

i m p l i c i t none

common /d2/ emin , emax , eps , del , ep iv

i n t e g e r ( kind=4) : : i , l , l l

i n t e g e r ( kind=4) : : i s s , i s s 1 , i top , ixyz , l9 , m, mc , mcm, mcount , &

n , nchk , ndim , nmode , num99

i n t e g e r ( kind =4) , parameter : : numit = 100

l o g i c a l : : mchk( nse )

r e a l ( kind=8) : : del , dnor f l , e , e f l , emax , emin , epiv , eps , inte rp , &

nuelec , s , s ag i 1 ( nse ) , sagr1 ( nse ) , to tvo l , dos ( s ec +1) , &

dos2 ( ntype , s e c )

r e a l ( kind=8) : : r e s (20000 ,50) , anumel (20000) , dumm(20000) , &

edum(20000) , dums1 (20000) , dump1(20000) , dums2 (20000) , dump2(20000) , &

dumxz (20000) , dumxy(20000) , dum3r (20000) , dumx2(20000) , dumsA(20000) , &

dumpA(20000) , dumsB(20000) , dumpB(20000) , d e n s f l ( 12 ) , weight ( j s z ) , &

qq ( j s z , 3 ) , spec (20000 , j s z )

complex ( kind=8) : : sag ( nse ) , sagcon ( nse )

cha rac t e r ( l en =100) : : f i l e 1 , f i l e 2 , method

i f ( verbose ) p r i n t 1000

nchk = 0 ; i s s 1 = 1 ; n = 0

t o t v o l = 0 .0 d0

open (7 , f i l e=’ cpaper . out ’ , blank=’ zero ’ )

wr i t e ( f i l e 1 , ’ (A) ’ ) ’ cpamat1 . dat ’

wr i t e ( f i l e 2 , ’ (A) ’ ) ’ cpamat2 . dat ’

verbose = . t rue . ; v l v l = 3

c a l l r ead in (ndim , nuelec , sagr1 , s ag i 1 )

! I f mode 2 , program al ready run ; Ca l cu la t e supe r conduc t i v i ty only

i f (mode . eq . 2 ) goto 9999

136



c a l l s e t O n s i t e s

verbose = . f a l s e . ; v l v l = 2

c a l l kpts ( j s z , qq , weight , t o t v o l )

c a l l readSec (hma, vsa , f i l e 1 )

c a l l readSec (hmb, vsb , f i l e 2 )

c a l l setInitHam

open (9 , f i l e=’ green . dat ’ , blank=’ zero ’ )

1111 i f ( nchk . eq . 2 ) goto 1234

sag ( : ) = cmplx ( sagr1 ( : ) , s ag i 1 ( : ) , 8 )

i f ( nchk . eq . 0 ) nmode = 1

i f ( nchk . eq . 1 ) nmode = 2

i f ( nchk . eq . 1 ) ep iv = epiv − de l

e = epiv

s i g ( : ) = sag ( : )

do ixyz = i s s 1 , 20000

! sag ( : ) = cmplx ( sagr1 ( : ) , s ag i 1 ( : ) , 8 )

i f (mode . eq . 3 ) goto 8888

s i g ( : ) = sag ( : )

wr i t e ( method , ’ (A) ’ ) ’ Newton ’

c a l l c a l c S i g ( weight , to tvo l , e , eps , mchk , numit , method , sagr1 , s ag i 1 )

i f ( a l l (mchk ) ) then

sag ( : ) = s i g ( : )

sagcon ( : ) = sagcon ( : ) + s i g ( : )

n = n + 1

! goto 9991

e l s e ! Didn ’ t converge so es t imate with some other s e l f −e n e r g i e s

do l = 1 , nse

i f (mchk( l ) . eqv . . f a l s e . ) then

! Estimate with average o f good s e l f −e n e r g i e s

! s i g ( l ) = sagcon ( l )/ dble (n)

! Estimate next s e l f −energy as the average o f the good one
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sag ( l ) = sagcon ( l )/ dble (n)

p r i n t ∗ , ’ Using average s i g ( l ) : ’ , l , sagcon ( l )/ dble (n)

end i f

! i f (mchk( l ) . eq . . f a l s e . ) s i g ( l ) = cmplx ( sagr1 ( l ) , s ag i 1 ( l ) , 8 )

end do

pr in t 1002

wr i t e (7 ,5004) e

wr i t e (∗ , 5004) e

goto 870

end i f

! nchk = nchk + 1

! goto 1111

! 9991 cont inue

wr i t e (7 ,1015) n , ( s i g ( i ) , i =1 ,4) , e

wr i t e (7 ,1016) ( s i g ( i ) , i =5 ,8) , e

! verbose = . t rue .

i f ( verbose ) then

wr i t e (∗ , 1015) n , ( s i g ( i ) , i =1 ,4) , e

wr i t e (∗ , 1016) ( s i g ( i ) , i =5 ,8) , e

end i f

! verbose = . f a l s e .

8888 cont inue

c a l l cpaDOS( dos , dos2 , spec (n , : ) , weight , to tvo l , e , eps )

! For mode 3 only , s i n c e n isn ’ t i n c r e a s e d without t h i s

i f (mode . eq . 3 ) n = n + 1

r e s (n , 1 ) = e

r e s (n , 2 ) = dble ( s i g ( 1 ) )

r e s (n , 3 ) = aimag ( s i g ( 1 ) )

r e s (n , 4 ) = dble ( s i g ( 2 ) )

r e s (n , 5 ) = aimag ( s i g ( 2 ) )

r e s (n , 6 ) = dble ( s i g ( 3 ) )
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r e s (n , 7 ) = aimag ( s i g ( 3 ) )

r e s (n , 8 ) = dble ( s i g ( 4 ) )

r e s (n , 9 ) = aimag ( s i g ( 4 ) )

r e s (n , 1 0 ) = dble ( s i g ( 5 ) )

r e s (n , 1 1 ) = aimag ( s i g ( 5 ) )

r e s (n , 1 2 ) = dble ( s i g ( 6 ) )

r e s (n , 1 3 ) = aimag ( s i g ( 6 ) )

r e s (n , 1 4 ) = dble ( s i g ( 7 ) )

r e s (n , 1 5 ) = aimag ( s i g ( 7 ) )

r e s (n , 1 6 ) = dble ( s i g ( 8 ) )

r e s (n , 1 7 ) = aimag ( s i g ( 8 ) )

r e s (n , 1 8 ) = dos (1 ) + dos (10) ! Fe−s

r e s (n , 1 9 ) = sum( dos ( 2 : 3 ) ) + sum( dos ( 1 1 : 1 2 ) ) ! Fe−p(x , y )

r e s (n , 2 0 ) = dos (4 ) + dos (13) ! Fe−p( z )

r e s (n , 2 1 ) = sum( dos ( 5 : 6 ) ) + sum( dos ( 1 4 : 1 5 ) ) ! Fe−d( xz , yz )

r e s (n , 2 2 ) = dos (7 ) + dos (16) ! Fe−d( xy )

r e s (n , 2 3 ) = dos (8 ) + dos (17) ! Fe−d(3 rˆ2−z ˆ2)

r e s (n , 2 4 ) = dos (9 ) + dos (18) ! Fe−d( xˆ2+y ˆ2)

r e s (n , 2 5 ) = dos (19) + dos (28) ! Se/Te−s

r e s (n , 2 6 ) = sum( dos ( 2 0 : 2 1 ) ) + sum( dos ( 2 9 : 3 0 ) ) ! Se/Te−p(x , y )

r e s (n , 2 7 ) = dos (22) + dos (31) ! Se/Te−p( z )

r e s (n , 2 8 ) = dos2 (1 ,19 ) + dos2 (1 ,28 ) ! Se−s

r e s (n , 2 9 ) = sum( dos2 ( 1 , 2 0 : 2 1 ) ) + sum( dos2 ( 1 , 2 9 : 3 0 ) ) ! Se−p(x , y )

r e s (n , 3 0 ) = dos2 (1 ,22 ) + dos2 (1 ,31 ) ! Se−p( z )

r e s (n , 3 1 ) = dos2 (2 ,19 ) + dos2 (2 ,28 ) ! Te−s

r e s (n , 3 2 ) = sum( dos2 ( 2 , 2 0 : 2 1 ) ) + sum( dos2 ( 2 , 2 9 : 3 0 ) ) ! Te−p(x , y )

r e s (n , 3 3 ) = dos2 (2 ,22 ) + dos2 (2 ,31 ) ! Te−p( z )

r e s (n , 3 4 ) = dos ( s ec +1) ! Total DOS

wr i t e (7 ,1030) e , ( s i g ( i ) , i =1 ,4) , dos ( s ec +1)

870 cont inue

i f (nmode . eq . 2 ) goto 51
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e = e + de l

i f ( e . l e . emax) c y c l e ! next i t e r a t i o n o f n loop

i s s = n

i s s 1 = i s s + 1

nchk = nchk + 1

goto 1111

51 e = e − de l

i f ( e . ge . emin ) c y c l e ! next i t e r a t i o n o f ixyz loop

e x i t

end do ! End o f ixyz loop

1234 cont inue

i t op = n

open (8 , f i l e=’ sigma . dat ’ )

open (9 , f i l e=’ s p e c t r a l . dat ’ )

wr i t e (7 ,3000)

wr i t e (7 ,3010)

l = i top + 1

l 9 = 0

do l l = i s s 1 , i t op

l = l − 1

l 9 = l 9 + 1

edum( l 9 ) = r e s ( l , 1 )

dums1( l 9 ) = r e s ( l , 1 8 ) ∗ 2 . 0 d0

dump1( l 9 ) = ( r e s ( l , 1 9 ) + r e s ( l , 2 0 ) ) ∗ 2 . 0 d0

dumxz( l 9 ) = r e s ( l , 2 1 ) ∗ 2 . 0 d0

dumxy( l 9 ) = r e s ( l , 2 2 ) ∗ 2 . 0 d0

dum3r ( l 9 ) = r e s ( l , 2 3 ) ∗ 2 . 0 d0

dumx2( l 9 ) = r e s ( l , 2 4 ) ∗ 2 . 0 d0

dums2( l 9 ) = r e s ( l , 2 5 ) ∗ 2 . 0 d0

dump2( l 9 ) = ( r e s ( l , 2 6 ) + r e s ( l , 2 7 ) ) ∗ 2 . 0 d0

dumsA( l 9 ) = r e s ( l , 2 8 ) ∗ 2 . 0 d0
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dumpA( l 9 ) = ( r e s ( l , 2 9 ) + r e s ( l , 3 0 ) ) ∗ 2 . 0 d0

dumsB( l 9 ) = r e s ( l , 3 1 ) ∗ 2 . 0 d0

dumpB( l 9 ) = ( r e s ( l , 3 2 ) + r e s ( l , 3 3 ) ) ∗ 2 . 0 d0

dumm( l 9 ) = r e s ( l , 3 4 ) ∗ 2 . 0 d0

wr i t e (7 , 3030 ) ( r e s ( l ,m) ,m=1 ,9)

wr i t e (7 , 3040 ) ( r e s ( l ,m) ,m=10 ,17)

wr i t e (8 , 3030 ) ( r e s ( l ,m) ,m=1 ,9)

wr i t e (8 , 3040 ) ( r e s ( l ,m) ,m=10 ,17)

wr i t e (9 ,3045) r e s ( l , 1 ) , ( spec ( l ,m) ,m=1, j s z )

end do

do l = 1 , i s s

l 9 = l 9 + 1

edum( l 9 ) = r e s ( l , 1 )

dums1( l 9 ) = r e s ( l , 1 8 ) ∗ 2 . 0 d0

dump1( l 9 ) = ( r e s ( l , 1 9 ) + r e s ( l , 2 0 ) ) ∗ 2 . 0 d0

dumxz( l 9 ) = r e s ( l , 2 1 ) ∗ 2 . 0 d0

dumxy( l 9 ) = r e s ( l , 2 2 ) ∗ 2 . 0 d0

dum3r ( l 9 ) = r e s ( l , 2 3 ) ∗ 2 . 0 d0

dumx2( l 9 ) = r e s ( l , 2 4 ) ∗ 2 . 0 d0

dums2( l 9 ) = r e s ( l , 2 5 ) ∗ 2 . 0 d0

dump2( l 9 ) = ( r e s ( l , 2 6 ) + r e s ( l , 2 7 ) ) ∗ 2 . 0 d0

dumsA( l 9 ) = r e s ( l , 2 8 ) ∗ 2 . 0 d0

dumpA( l 9 ) = ( r e s ( l , 2 9 ) + r e s ( l , 3 0 ) ) ∗ 2 . 0 d0

dumsB( l 9 ) = r e s ( l , 3 1 ) ∗ 2 . 0 d0

dumpB( l 9 ) = ( r e s ( l , 3 2 ) + r e s ( l , 3 3 ) ) ∗ 2 . 0 d0

dumm( l 9 ) = r e s ( l , 3 4 ) ∗ 2 . 0 d0

wr i t e (7 , 3030 ) ( r e s ( l ,m) ,m=1 ,9)

wr i t e (7 , 3040 ) ( r e s ( l ,m) ,m=10 ,17)

wr i t e (8 , 3030 ) ( r e s ( l ,m) ,m=1 ,9)

wr i t e (8 , 3040 ) ( r e s ( l ,m) ,m=10 ,17)

wr i t e (9 ,3045) r e s ( l , 1 ) , ( spec ( l ,m) ,m=1, j s z )
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end do

c l o s e (8 )

c l o s e (9 )

num99 = i top − 1

c a l l simp (edum ,dumm, anumel , num99 , verbose , v l v l )

anumel (1 ) = 0 .0 d0

anumel ( i t op ) = anumel (num99) + dumm( i s s )∗ de l

open (8 , f i l e=’ dosdat . cpa . p l o t ’ )

wr i t e (7 ,3000)

wr i t e (7 ,3050)

wr i t e (8 ,3060)

l = i top + 1

l 9 = 0

do l l = i s s 1 , i t op

l = l − 1

l 9 = l 9 + 1

r e s ( l , 3 5 ) = anumel ( l 9 )

wr i t e (7 ,3070) r e s ( l , 1 ) , r e s ( l , 1 8 ) , r e s ( l ,19)+ r e s ( l , 2 0 ) , r e s ( l ,21) ,&

r e s ( l , 2 2 ) , r e s ( l , 2 3 ) , r e s ( l , 2 4 ) , r e s ( l , 2 5 ) , r e s ( l ,26)+ r e s ( l ,27) ,&

r e s ( l , 3 4 ) , r e s ( l , 3 5 ) , l l

wr i t e (8 ,3080) r e s ( l , 1 ) , ( r e s ( l ,m) ,m=18 ,24) ,( r e s ( l ,m) ,m=28 ,35) , l l

end do

do l = 1 , i s s

l 9 = l 9 + 1

r e s ( l , 3 5 ) = anumel ( l 9 )

wr i t e (7 ,3070) r e s ( l , 1 ) , r e s ( l , 1 8 ) , r e s ( l ,19)+ r e s ( l , 2 0 ) , r e s ( l ,21) ,&

r e s ( l , 2 2 ) , r e s ( l , 2 3 ) , r e s ( l , 2 4 ) , r e s ( l , 2 5 ) , r e s ( l ,26)+ r e s ( l ,27) ,&

r e s ( l , 3 4 ) , r e s ( l , 3 5 ) , l

wr i t e (8 ,3080) r e s ( l , 1 ) , ( r e s ( l ,m) ,m=18 ,24) ,( r e s ( l ,m) ,m=28 ,35) , l

end do

c l o s e (8 )
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mcount = 0

do l = 1 , i t op

i f ( anumel ( l ) . gt . nue l ec ) then

i f ( mcount . ne . 0 ) c y c l e

mcount = l

end i f

end do

! l i n e a r i n t e r p o l a t i o n to f i n d the fe rmi l e v e l

open (10 , f i l e=’ dosapw . i t p ’ )

wr i t e (10 ,1003) t i t l e

mc = mcount

mcm = mc − 1

s = nue lec

e f l = i n t e r p ( s , anumel , edum ( 1 ) ,mcm, 2 )

d n o r f l = i n t e r p ( s , anumel ,dumm( 1 ) ,mcm, 2 ) / 2 . 0 d0

wr i t e (7 ,841)

d e n s f l ( 1 ) = i n t e r p ( s , anumel , dums1 ( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l ( 2 ) = i n t e r p ( s , anumel , dump1 ( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l ( 3 ) = i n t e r p ( s , anumel , dumxz ( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l ( 4 ) = i n t e r p ( s , anumel , dumxy ( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l ( 5 ) = i n t e r p ( s , anumel , dum3r ( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l ( 6 ) = i n t e r p ( s , anumel , dumx2 ( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l ( 7 ) = i n t e r p ( s , anumel , dums2 ( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l ( 8 ) = i n t e r p ( s , anumel , dump2 ( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l ( 9 ) = i n t e r p ( s , anumel , dumsA( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l (10) = i n t e r p ( s , anumel ,dumpA( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l (11) = i n t e r p ( s , anumel , dumsB( 1 ) ,mcm, 2 ) / 2 . 0 d0

d e n s f l (12) = i n t e r p ( s , anumel ,dumpB( 1 ) ,mcm, 2 ) / 2 . 0 d0

wr i t e (7 ,839)

wr i t e (7 ,840) e f l , nuelec , dnor f l , ( d e n s f l ( i ) , i =1 ,8)

wr i t e (10 ,842) e f l , nuelec , dnor f l , ( d e n s f l ( i ) , i =1 ,12)
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c l o s e (7 )

c l o s e (9 )

c l o s e (10)

9999 cont inue

c a l l cpaGG( e f l , nuelec , dnor f l , d e n s f l )

i f ( verbose ) p r i n t 2000

return

839 format (/ , ’ Fermi energy E l ec t rons Total DOS Fe−s Fe−p Fe−&

xy Fe−xz Fe−3rˆ2−z ˆ2 Fe−xˆ2−yˆ2 Se/Te−s Se/Te−p ’ ,//)

840 format (2 f10 . 5 ,3x , 7 f10 . 5 / / )

841 format (//65x ,11 h ( per sp in ) )

842 format (15( F10 . 6 , 1 x ) )

1000 format (/ , ’ Begin subrout ine mainn ’ )

1001 format (/ , ”Didn ’ t converge f o r energy ” ,F8 . 5 , / , ” Trying ” ,A, &

” method in s t ead ” ,/ )

1002 format (/ , ” S t i l l unable to converge . Something i s wrong” ,/ )

1003 format (A75)

1015 format (5X, I5 , 8 F15 . 8 , F10 . 6 )

1016 format (10X, 8 F15 . 8 , F10 . 6 )

1030 format (//1X, F9 . 5 , 8 F12 . 8 , 10X, F10 . 5/ / )

2000 format ( ’End mainn ’ , / )

3000 format (1H1, // / )

3010 format (20X, ’ Energy Complex s e l f −e n e r g i e s ( s , px , py , pz ) ’ ///)

3030 format (F9 . 5 , 3X, 4 ( 2 ( G12 . 5 , 1X) ,2X) )

3040 format (12X, 4 ( 2 ( G12 . 5 , 1X) ,2X) )

3045 format (1 F10 . 6 , 10X,1000 ( F10 . 6 , 1X) )

3050 format (10x , ’ Energy , Fe−s , Fe−p(x , y , z ) , Fe−d( xz , yz ) , Fe−d( xz ) , Fe−&

d(3 rˆ2−z ˆ2) , Fe−d( xˆ2−y ˆ2) , Se/Te−s , Se/Te−p(x , y , z ) , &

Total DOS, e l e c t r o n s , i t e r a t i o n ’ , / )

3060 format (10x , ’ Energy , Fe−s , Fe−p(x , y ) , Fe−p( z ) , Fe−d( xz , yz ) , &

Fe−d( xz ) , Fe−d(3 rˆ2−z ˆ2) , Fe−d( xˆ2−y ˆ2) , Se−s , Se−p(x , y ) , Se−p( z ) , &
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Te−s , Te−p(x , y ) , Te−p( z ) , Total DOS, e l e c t r o n s , i t e r a t i o n ’ , / )

3070 format (2x ,11 f10 . 4 , 1 x , i 5 )

3080 format (2x ,16 f10 . 4 , 1 x , i 5 )

5004 format ( ’ sigma didn t converge f o r e=’ , f10 . 4 , / )

end subrout ine mainn

subrout ine read in (nd , ne , sagr1 , s ag i 1 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Reads inputs from cpaper . dat and w r i t e s some in fo rmat ion to output f i l e .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! c i / cr − Convergence c r i t e r i o n f o r r e a l and imaginary par t s o f Green ’ s

! funct ion , r e s p e c t i v e l y

! de l − Energy s h i f t f o r s i t e ?

! e s /ep − I n i t i a l o n s i t e s & p e n e r g i e s f o r Se ?

! nd − # of dimension (# o f s e c u l a r equat ions ; probably should remove )

! ne − Number o f e l e c t r o n s

! ons ( natom ( 2 ) , nse ) − Onsite parameters o f Se and Te r e s p e c t i v e l y

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

use converge

use concent ra t i on

use o n s i t e s

i m p l i c i t none

common /d2/ emin , emax , eps , del , ep iv

i n t e g e r ( kind=4) : : i

i n t e g e r ( kind =4) , i n t e n t ( out ) : : nd

r e a l ( kind=8) : : del , epiv , eps , es , ep , emin , emax

r e a l ( kind =8) , i n t e n t ( out ) : : ne , s ag i 1 ( nse ) , sagr1 ( nse )

cha rac t e r ( l en =500) : : modestr

i f ( verbose ) p r i n t 1000
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open (5 , f i l e=’ cpaper . dat ’ , blank=’ zero ’ )

read (5 ,1001) t i t l e

wr i t e (7 ,1001) t i t l e

read (5 ,1013) mode

read (5 ,∗ ) nd , ne , cr , c i

s e l e c t case (mode)

case (1 )

wr i t e ( modestr , ’ (A) ’ ) ’ Program i s running in mode 1 . This w i l l run the &

CPA program in i t s e n t i r i t y and c a l c u l a t e the supe r conduc t i v i ty &

p r o p e r t i e s based on the Gaspari−Gyorf fy and McMillan t h e o r i e s &

us ing an approximation o f the Hopf i e ld parameter us ing the &

c a l c u l a t e d dens i ty o f s t a t e s . ’

case (2 )

wr i t e ( modestr , ’ (A) ’ ) ’ Program i s running in mode 2 . This w i l l only &

run the cpaGG subrout ine to c a l c u l a t e the supe r conduc t i v i ty &

p r o p e r t i e s based on the Gaspari−Gyorf fy and McMillan t h e o r i e s &

us ing an approximation o f the Hopf i e ld parameter us ing the &

c a l c u l a t e d dens i ty o f s t a t e s . ’

case (3 )

wr i t e ( modestr , ’ (A) ’ ) ’ Program i s running in mode 3 . This w i l l run a &

v i r t u a l c r y s t a l approximation (VCA) o f the system with DOS and &

Gaspari−Gyorf fy c a l c u l a t i o n s . ’

case d e f a u l t

wr i t e ( modestr , ’ (A) ’ ) ’No mode was s e l e c t e d . P lease in c lude a v a l i d &

mode in your input f i l e and run the code again . ’

p r i n t 1012 , mode , modestr

stop

end s e l e c t

wr i t e (7 ,1012) mode , modestr

wr i t e (7 ,1002) nd , ne , cr , c i

do i = 1 , s ec
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read (5 ,∗ ) ons (1 , i ) , ons (2 , i )

end do

wr i t e (7 ,1008)

wr i t e (7 ,1009) ons ( 1 , : )

wr i t e (7 ,1010)

wr i t e (7 ,1009) ons ( 2 , : )

read (5 ,∗ ) es , ep

wr i t e (7 ,1004) es , ep

read (5 ,∗ ) con , emin , emax , del , ep iv

read (5 ,∗ ) ( sagr1 ( i ) , s ag i 1 ( i ) , i =1, nse )

wr i t e (7 ,1005) con , emin , emax , del , epiv , ( sagr1 ( i ) , s ag i 1 ( i ) , i =1, nse )

read (5 ,∗ ) eps

c l o s e (5 )

wr i t e (7 ,1006) eps , j s z

wr i t e (7 ,1007) cr , c i

i f ( verbose . and . v l v l . ge . 2 ) then

pr in t 1001 , t i t l e

p r i n t 1012 , mode , modestr

p r i n t 1002 , nd , ne , cr , c i

p r i n t 1008

p r in t 1009 , ons ( 1 , : )

p r i n t 1010

p r in t 1009 , ons ( 2 , : )

p r i n t 1004 , es , ep

p r i n t 1005 , con , emin , emax , del , epiv , ( sagr1 ( i ) , s ag i 1 ( i ) , i =1, nse )

p r i n t 1006 , eps , j s z

p r i n t 1007 , cr , c i

end i f

i f ( con . l t . 0 . 0 d0 . or . con . gt . 1 . 0 d0 ) then

pr in t 1011

stop
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end i f

i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine read in ’ )

1001 format (A75)

1002 format ( I5 , 5X, 3 F10 . 7 )

1003 format (2F9 . 5 )

1004 format (2 F15 . 1 0 )

1005 format (5 F10 . 4/2 (4 ( 2 F10 . 4 ) , / ) )

1006 format (// ’ eps= ’ , F15 . 6 , 10X, ’k−po in t s : ’ , i 5 //)

1007 format (// , ’ Convergence c r i t e r i o n ( r e a l and imaginary ) ’ / ,2 F15 . 9 , / / )

1008 format (// , ’ Onsite parameters o f Selenium ’ ,/ )

1009 format ( 4 ( ( 9 F12 . 8 , 1X) , / ) )

1010 format (// , ’ Onsite parameters o f Tel lur ium ’ ,/ )

1011 format (// , ’ Concentrat ion i s not an element o f [ 0 : 1 ] ’ , / , ’ Check &

cpaper . dat and rerun ’ ,//)

1012 format (// , ’Mode : ’ , I1 , / / ,A, / / )

1013 format (5X, I5 )

2000 format ( ’End read in ’ , / )

end subrout ine read in

subrout ine s e t O n s i t e s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Set s up the g l o b a l o n s i t e e n e r g i e s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! ons bar ( s ec ) − Averaged o n s i t e e n e r g i e s

! f1000 − Formatting s t r i n g f o r p r i n t i n g matr i ce s ve rbose ly

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

use concent ra t i on
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use o n s i t e s

i m p l i c i t none

i n t e g e r ( kind=4) : : l , l 1

cha rac t e r ( l en =100) : : f1000

i f ( verbose ) p r i n t 1000

onsA ( : , : ) = ( 0 . 0 d0 , 0 . 0 d0 )

onsB ( : , : ) = ( 0 . 0 d0 , 0 . 0 d0 )

onsAvg ( : , : ) = ( 0 . 0 d0 , 0 . 0 d0 )

ons bar ( : ) = ( con∗ons ( 1 , : ) + ( 1 . 0 d0−con )∗ ons ( 2 , : ) )

do l = 1 , s ec

i f ( l . ge . 1 9 . and . l . l e . 2 2 ) then

l 1 = l − 18

onsA ( l1 , l 1 ) = cmplx ( ons (1 , l ) , 0 . 0 d0 , 8 )

onsB ( l1 , l 1 ) = cmplx ( ons (2 , l ) , 0 . 0 d0 , 8 )

onsAvg ( l1 , l 1 ) = cmplx ( ons bar ( l ) , 0 . 0 d0 , 8 )

e l s e i f ( l . ge . 2 8 . and . l . l e . 3 1 ) then

l 1 = l − 23

onsA ( l1 , l 1 ) = cmplx ( ons (1 , l ) , 0 . 0 d0 , 8 )

onsB ( l1 , l 1 ) = cmplx ( ons (2 , l ) , 0 . 0 d0 , 8 )

onsAvg ( l1 , l 1 ) = cmplx ( ons bar ( l ) , 0 . 0 d0 , 8 )

end i f

end do

wr i t e ( f1000 , ’ (A, I1 ,A) ’ ) ” ( ” , nse , ” (2 ( F10 . 6 , 1 x ) ) ) ”

i f ( verbose . and . v l v l . ge . 2 ) then

pr in t 1001

p r in t f1000 , ( onsA ( l , l ) , l =1, nse )

p r i n t 1002

p r in t f1000 , ( onsB ( l , l ) , l =1, nse )

p r i n t 1003

p r in t f1000 , ( onsAvg ( l , l ) , l =1, nse )

end i f
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i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine s e t O n s i t e s ’ )

1001 format (/ , ’ Onsite e n e r g i e s f o r system A that w i l l be r ep laced ’ )

1002 format (/ , ’ Onsite e n e r g i e s f o r system B that w i l l be r ep l eaced ’ )

1003 format (/ , ’ Averaged o n s i t e e n e r g i e s to be rep laced by s e l f −e n e r g i e s ’ )

2000 format ( ’End s e t O n s i t e s ’ , / )

end subrout ine s e t O n s i t e s

subrout ine kpts (kp , q , wt , swt )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Reads in the k−point in fo rmat ion ; D i r e c t i on vector , weight at g iven

! k−point and t o t a l weight at a l l k−po in t s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! kp − Number o f k−po in t s

! q (kp , 3 ) − k−point vec to r

! wt ( kp ) − Weights f o r each k−point

! swt − Total weight

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

i m p l i c i t none

i n t e g e r ( kind=4) : : i , j

i n t e g e r ( kind =4) , i n t e n t ( in ) : : kp

r e a l ( kind =8) , i n t e n t ( out ) : : q (kp , 3 ) , swt , wt ( kp )

i f ( verbose ) p r i n t 1000

swt = 0 .0 d0 ; q ( : , : ) = 0 .0 d0 ; wt ( : ) = 0 .0 d0

open (10 , f i l e=’ cpaweights . dat ’ )

read (10 ,∗ )

do i = 1 , kp

read (10 ,1001) ( q ( i , j ) , j =1 ,3) ,wt ( i )
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swt = swt + wt( i )

end do

i f ( verbose . and . v l v l . ge . 1 ) then

do i = 1 , kp

pr in t 1001 , ( q ( i , j ) , j =1 ,3) ,wt ( i )

end do

end i f

c l o s e (10)

wr i t e (7 ,1002) swt

i f ( verbose . and . v l v l . ge . 1 ) p r i n t 1002 , swt

i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine kpts ’ )

1001 format (3 F10 . 6 , 1X, 1 F10 . 6 )

1002 format ( ’ sum of weights i s ’ , e16 . 7 )

2000 format ( ’End kpts ’ , / )

end subrout ine kpts

subrout ine readSec (h , g , fname )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Reads in the s e c u l a r equat ions o f the system given by the output o f the

! S t a t i c code .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! h ( j s z , sec , s e c ) − Real part o f the Hamiltonian f o r each k−point

! j ( j s z , sec , s e c ) − Imaginary part o f the Hamiltonian f o r each k−point

! fname − The name o f f i l e to be read

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

i m p l i c i t none

i n t e g e r ( kind=4) : : i , j , k , n
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r e a l ( kind =8) , i n t e n t ( out ) : : h ( j s z , sec , s e c ) , g ( j s z , sec , s e c )

cha rac t e r ( l en =100) , i n t e n t ( in ) : : fname

i f ( verbose ) p r i n t 1000

n = sec

g ( : , : , : ) = 0 .0 d0 ; h ( : , : , : ) = 0 .0 d0

open (16 , f i l e=fname , blank=’ zero ’ )

do i = 1 , j s z

do j = 1 , 4

read (16 ,∗ )

i f ( verbose . and . v l v l . ge . 5 ) p r i n t ∗ , ’ ’

end do

do j = 1 , s ec

do k = 1 , j

read (16 ,1001) h( i , j , k ) , g ( i , j , k )

i f ( verbose . and . v l v l . ge . 5 ) p r i n t 1001 , h( i , j , k ) , g ( i , j , k )

end do

end do

!$OMP PARALLEL &

!$OMP SHARED( i , n , g , h ) &

!$OMP PRIVATE( j , k )

!$OMP DO

do j = 1 , n

do k = 1 , n

g ( i , j , k ) = −g ( i , k , j )

h ( i , j , k ) = h( i , k , j )

end do

end do

!$OMP END DO

!$OMP END PARALLEL

end do

c l o s e (16)
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i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine readSec ’ )

1001 format (18X, 2 F15 . 1 0 )

2000 format ( ’End readSec ’ , / )

end subrout ine

subrout ine setInitHam

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Set s up the i n i t i a l Hamiltonian to be modi f i ed at each s p e c i f i c energy

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! con − The concent ra t i on o f the f i r s t atom type ( e . g . FeSe [ con ] Te−[1−con ]

! ham( j s z , sec , s e c ) − Hamiltonian o f the system

! H1( j s z , sec , s e c ) − Hamiltonian o f system A

! H2( j s z , sec , s e c ) − Hamiltonian o f system B

! f1000 − Formatting s t r i n g f o r p r i n t i n g matr i ce s ve rbose ly

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

use concent ra t i on

use hami l ton ians

i m p l i c i t none

i n t e g e r ( kind=4) : : i , kpts

complex ( kind=8) : : H1( j s z , sec , s e c ) , H2( j s z , sec , s e c )

cha rac t e r ( l en =100) : : f1000

i f ( verbose ) p r i n t 1000

kpts = 1

H1 ( : , : , : ) = cmplx (hma ( : , : , : ) , vsa ( : , : , : ) , 8 )

H2 ( : , : , : ) = cmplx (hmb ( : , : , : ) , vsb ( : , : , : ) , 8 )

ham ( : , : , : ) = ( con∗H1 ( : , : , : ) + ( 1 . 0 d0−con )∗H2 ( : , : , : ) )

wr i t e ( f1000 , ’ (A, I1 ,A) ’ ) ” ( ” , sec , ” (2 ( F10 . 6 , 1 x ) ) ) ”
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i f ( verbose . and . v l v l . ge . 2 ) then

i f ( v l v l . ge . 3 ) kpts = j s z

do i = 1 , kpts

p r i n t 1001

p r in t f1000 , t ranspose (H1( i , : , : ) )

p r i n t 1002

p r in t f1000 , t ranspose (H2( i , : , : ) )

p r i n t 1003

p r in t f1000 , t ranspose (ham( i , : , : ) )

end do

end i f

i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine setInitHam ’ )

1001 format (/ , ’ Hamiltonian f o r system A ’ )

1002 format (/ , ’ Hamiltonian f o r system B ’ )

1003 format (/ , ’ Averaged Hamiltonian be f o r e complex energy added and &

o n s i t e e n e r g i e s r ep laced with s e l f −e n e r g i e s ’ )

2000 format ( ’End setInitHam ’ ,/ )

end subrout ine setInitHam

subrout ine c a l c S i g (wt , tot , e , eps , mchk , numit , method , sagr1 , s ag i 1 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! So lve s f o r the s e l f −ene rg i e s , and thus the Green ’ s funct ion , us ing the

! Newton−Raphson method .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! G( sec , s e c ) − Green ’ s func t i on

! s i g ( nse ) − Se l f−e n e r g i e s o f the d i s o rde r ed s t a t e s

! H( j s z , sec , s e c ) − Hamiltonian o f the system

! wt ( j s z ) − Weights at each k−point in the B r i l l o u i n zone
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! t o t − Total weight from a l l k−po in t s

! d e l s (2 ) − Change in the s e l f −e n e r g i e s o f the d i s o rde r ed s s t a t e s

! de lp (6 ) − Change in the s e l f −e n e r g i e s o f the d i s o rde r ed p s t a t e s

! mchk − Flag to s p e c i f y whether rou t in e converged or not

! numit − Maximum number o f i t e r a t i o n s f o r the procedure

! method − St r ing used to dec ide which zero f i n d i n g procedure to use

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

use converge

use hami ltonians , only : ham

use sigma

i m p l i c i t none

i n t e g e r ( kind=4) : : i , n , i r ep , r e s e t ( nse )

i n t e g e r ( kind =4) , i n t e n t ( in ) : : numit

l o g i c a l , i n t e n t ( out ) : : mchk( nse )

r e a l ( kind =8) , i n t e n t ( in ) : : wt ( j s z ) , tot , e , eps , sagr1 ( nse ) , s ag i 1 ( nse )

complex ( kind=8) : : de l ( nse ) , H( j s z , sec , s e c ) , G( sec , s e c ) , &

s i g s (2 , nse )

cha rac t e r ( l en =100) , i n t e n t ( in ) : : method

r e s e t = 0

do n = 1 , numit

i f ( verbose ) p r i n t 1000

de l ( : ) = ( 0 . 0 d0 , 0 . 0 d0 )

wr i t e (7 ,1001) n , ( s i g ( i ) , i =1 ,4)

wr i t e (7 , 1002 ) ( s i g ( i ) , i =5 ,8)

i f ( verbose . and . v l v l . ge . 1 ) then

wr i t e (∗ , 1001) n , ( s i g ( i ) , i =1 ,4)

wr i t e (∗ , 1002 ) ( s i g ( i ) , i =5 ,8)

end i f

i r e p = 0

mchk ( : ) = . f a l s e .
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s i g s ( : , : ) = ( 0 . 0 d0 , 0 . 0 d0 )

H( : , : , : ) = −ham ( : , : , : )

c a l l setHam (H, e , eps )

c a l l g reens (H,G, wt , to t )

! i f (n . eq . 1 ) then

! wr i t e (9 ,1004) e , G(19 , 19 ) , G(20 , 20 ) , G(21 , 21 ) , G(22 , 22 ) , G(28 , 28 ) , &

! G(29 , 29 ) , G(30 , 30 ) , G(31 , 31 ) , ( s i g ( i ) , i =1 ,4)

! end i f

i f ( verbose . and . v l v l . ge . 1 ) p r i n t 1008 , tr im ( method )

s e l e c t case ( method )

case ( ’ Newton ’ )

s i g s ( 1 , : ) = s i g ( : )

c a l l newton (G, s i g s ( 1 , : ) , de l )

case ( ’ Fixed ’ )

s i g s ( 1 , : ) = s i g ( : )

! c a l l f i x p t (G, s i g s , de l )

case ( ’ Fa l se Pos i t i on ’ )

! c a l l f a l s i (G, de l )

case ( ’ B i s e c t ’ )

! c a l l b i s e c t (G, de l )

case d e f a u l t

s i g s ( 1 , : ) = s i g ( : )

c a l l newton (G, s i g s ( 1 , : ) , de l )

end s e l e c t

s i g ( : ) = s i g s ( 1 , : )

i f ( verbose . and . v l v l . ge . 1 ) p r i n t 1003 , de l

do i = 1 , nse

i f ( abs ( dble ( de l ( i ) ) ) . l e . c r . and . abs ( aimag ( de l ( i ) ) ) . l e . c i ) &

mchk( i ) = . t rue .

end do

i f ( a l l (mchk ) ) then
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i f ( verbose . and . v l v l . ge . 2 ) p r i n t 1005

do i = 1 , nse

i f ( aimag ( s i g ( i ) ) . gt . 1 . 0 d−15) then

i r e p = 1

i f ( verbose . and . v l v l . ge . 2 ) p r i n t 1006 , i , abs ( aimag ( s i g ( i ) ) )

s i g ( i ) = cmplx ( dble ( s i g ( i )) ,−aimag ( s i g ( i ) ) , 8 )

e l s e i f ( aimag ( s i g ( i ) ) . gt . 0 . 0 d0 . and . aimag ( s i g ( i ) ) . l t . 1 . 0 d0−15) then

i f ( verbose . and . v l v l . ge . 2 ) p r i n t 1006 , i , abs ( aimag ( s i g ( i ) ) )

s i g ( i ) = cmplx ( dble ( s i g ( i ) ) , 0 . 0 d0 , 8 )

e l s e

i f ( verbose . and . v l v l . ge . 2 . and . i . eq . 1 ) p r i n t 1007

end i f

end do

e l s e

do i = 1 , nse

i f ( dble ( s i g ( i ) ) . l t .−4.0 d0∗abs ( sagr1 ( i ) ) . or . &

dble ( s i g ( i ) ) . gt . 4 . 0 d0∗abs ( sagr1 ( i ) ) ) then

r e s e t ( i ) = r e s e t ( i ) + 1

pr in t ∗ , ’RESET: ’ , r e s e t

i f ( r e s e t ( i ) . ge . 2 ) re turn

s i g ( i ) = cmplx ( sagr1 ( i ) , s ag i 1 ( i ) , 8 )

end i f

end do

end i f

i f ( i r e p . eq . 1 ) c y c l e

i f ( a l l (mchk ) . or . n . eq . numit ) then

wr i t e (9 ,1004) e , G(19 , 19 ) , G(20 , 20 ) , G(21 , 21 ) , G(22 , 22 ) , G(28 , 28 ) , &

G(29 ,29 ) , G(30 , 30 ) , G(31 , 31 ) , ( s i g ( i ) , i =1 ,4)

i f ( verbose ) p r i n t 2000

e x i t

end i f
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end do

i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine c a l c S i g ’ )

1001 format (2X, I5 , 4 ( F14 . 9 , E14 . 6 ) )

1002 format (7X, 4 ( F14 . 9 , E14 . 6 ) )

1003 format ( 4 ( 2 ( F12 . 8 , 1X) ) )

1004 format (F8 . 5 , 1X, 1 2 ( 2 ( F12 . 8 , 1X) ) )

1005 format ( ”Didn ’ t you j u s t converge ?” )

1006 format ( ”Yes , but | imaginary [ s i g ( ” , I2 , ” ) ] | i s g r e a t e r than zero . ” , &

E15 . 8 )

1007 format ( ”Yes , you are c o r r e c t ” )

1008 format (/ , ”Running ” ,A, ” method f o r f i n d i n g the s e l f −e n e r g i e s . ” , / )

2000 format ( ’End c a l c S i g ’ , / )

end subrout ine c a l c S i g

subrout ine setHam (H, e , eps )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Set s up the Hi l t on ian to be used in the greens and cpaDOS

! subrout ine s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! H( j s z , sec , s e c ) − Hamiltonian o f the system at s p e c i f i c energy l e v e l

! ons bar ( s ec ) − Averaged o n s i t e e n e r g i e s

! s i g ( nse ) − Se l f−e n e r g i e s f o r d i s o rde r ed s t a t e s

! f1000 − Formatting s t r i n g f o r p r i n t i n g matr i ce s ve rbose ly

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

use concent ra t i on

use on s i t e s , only : ons bar

use sigma
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i m p l i c i t none

i n t e g e r ( kind=4) : : i , l , kpts

r e a l ( kind =8) , i n t e n t ( in ) : : e , eps

complex ( kind =8) , i n t e n t ( inout ) : : H( j s z , sec , s e c )

cha rac t e r ( l en =100) : : f1000

i f ( verbose ) p r i n t 1000

do l = 1 , s ec

H( : , l , l ) = H( : , l , l ) + cmplx ( e , eps , 8 )

i f (mode . eq . 1 ) then

i f ( l . ge . 1 9 . and . l . l e . 2 2 ) then

H( : , l , l ) = H( : , l , l ) − s i g ( l −18) + ons bar ( l )

e l s e i f ( l . ge . 2 8 . and . l . l e . 3 1 ) then

H( : , l , l ) = H( : , l , l ) − s i g ( l −23) + ons bar ( l )

end i f

end i f

end do

wr i t e ( f1000 , ’ (A, I1 ,A) ’ ) ” ( ” , sec , ” (2 ( F10 . 6 , 1 x ) ) ) ”

i f ( verbose . and . v l v l . ge . 2 ) then

i f ( v l v l . ge . 3 ) kpts = j s z

do i = 1 , kpts

p r i n t 1001

p r in t f1000 , t ranspose (H( i , : , : ) )

end do

end i f

i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine setHam ’ )

1001 format (/ , ’ Averaged Hamiltonian with complex energy added and &

o n s i t e e n e r g i e s r ep laced with s e l f −e n e r g i e s ’ )

2000 format ( ’End setHam ’ ,/ )

end subrout ine setHam
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subrout ine greens (H,G, wt , to t )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Ca l cu l a t e s Green ’ s func t i on f o r the coherent p o t e n t i a l approximation .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! H( j s z , sec , s e c ) − Hamiltonian o f the system

! wt ( j s z ) − Weight at the k−po in t s

! t o t − Total weight o f a l l k−po in t s

! G( sec , s e c ) − Green ’ s func t i on

! s i g ( nse ) − Se l f−e n e r g i e s f o r d i s o rde r ed s t a t e s

! f1000 − Formatting s t r i n g f o r p r i n t i n g matr i ce s ve rbose ly

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

i m p l i c i t none

i n t e g e r ( kind=4) : : i , l , l 1

r e a l ( kind =8) , i n t e n t ( in ) : : wt ( j s z ) , t o t

complex ( kind =8) , i n t e n t ( out ) : : G( sec , s e c )

complex ( kind =8) , i n t e n t ( inout ) : : H( j s z , sec , s e c )

cha rac t e r ( l en =100) : : f1000

i f ( verbose ) p r i n t 1000

G( : , : ) = ( 0 . 0 d0 , 0 . 0 d0 )

wr i t e ( f1000 , ’ (A, I1 ,A) ’ ) ” ( ” , sec , ” (2 ( F10 . 6 , 1 x ) ) ) ”

i f ( verbose . and . v l v l . ge . 2 ) then

pr in t 1001

p r in t f1000 , H( 1 , : , : )

end i f

do i = 1 , j s z

c a l l cmplxInv (H( i , : , : ) , sec , verbose , v l v l )

! t h i s loop i s only f o r Se/Te s & p d i s o r d e r ( c u r r e n t l y )

do l = 19 , 22

l 1 = l + 9
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G( l , l ) = G( l , l ) + H( i , l , l )∗wt( i )

G( l1 , l 1 ) = G( l1 , l 1 ) + H( i , l1 , l 1 )∗wt( i )

end do

end do

G( : , : ) = G( : , : ) / to t

i f ( verbose . and . v l v l . ge . 2 ) p r i n t f1000 , G

i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine greens ’ )

1001 format (/ , ’ Hamiltonian at f i r s t k−point ( u s ua l l y Gamma) ’ )

2000 format ( ’End greens ’ , / )

end subrout ine greens

subrout ine cmplxInv (A, n , verbose , v l v l )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! So lve s f o r the i n v e r s e o f a complex square matrix o f s i z e nxn . This i s

! done by us ing Crout ’ s LU decomposit ion with p a r t i a l p i vo t ing .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! n − rank o f matrix A

! A(n , n) − complex matrix to be inve r s ed

! B(n , n) − I d e n t i t y matrix

! p (n) − p ivo t s f o r Crout ’ s a lgor i thm

! f ∗∗∗∗ − f o rmatt ing s t r i n g s

! verbose − Log i ca l f o r debugging f l a g s ( . t rue . = debug i n f o on )

! v l v l − Level o f debugging verbosenes s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none

i n t e g e r ( kind=4) : : i , p (n)

i n t e g e r ( kind =4) , i n t e n t ( in ) : : n , v l v l

l o g i c a l , i n t e n t ( in ) : : verbose
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complex ( kind=8) : : AA(n , n ) , B(n , n)

complex ( kind =8) , i n t e n t ( inout ) : : A(n , n)

cha rac t e r ( l en =100) : : f1000

i f ( verbose ) p r i n t 1000

wr i t e ( f1000 , ” (A, I1 ,A) ” ) ” ( ” ,n , ” ( (2 F10 . 5 , 1X) ) ) ”

AA = A; B = 0.0 d0

do i = 1 , n

B( i , i ) = cmplx ( 1 . 0 d0 , 0 . 0 d0 , 8 )

end do

i f ( verbose . and . v l v l . ge . 3 ) then

pr in t ∗ , ’A ( r e a l + imaginary ) ’

p r i n t f1000 , t ranspose (AA)

pr in t ∗ , ’B ’

p r i n t f1000 , t ranspose (B)

end i f

! Do LU decompos it ion us ing Crout ’ s a lgor i thm with p a r t i a l p i vo t ing on A

c a l l c c r l u (AA, n , p)

i f ( verbose . and . v l v l . ge . 3 ) then

pr in t ∗ , ’LU ( r e a l + imaginary ’

p r i n t f1000 , t ranspose (AA)

end i f

! Now use the PLU decompos it ion to s o l v e f o r the i n v e r s e o f A by columns

!$OMP PARALLEL &

!$OMP SHARED(AA, n , p , b ) &

!$OMP PRIVATE( i )

!$OMP DO

do i = 1 , n

c a l l c lubk (AA, n , p , b( i , : ) , verbose , v l v l )

i f ( verbose . and . v l v l . ge . 2 ) then

pr in t ∗ , ’ b ’

p r i n t 1001 , b( i , : )
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end i f

end do

!$OMP END DO

!$OMP END PARALLEL

! Write matrix B ( i n v e r s e o f A) to matrix A

A = B

i f ( verbose . and . v l v l . ge . 2 ) then

pr in t ∗ , ’ I nve r s e o f A ’

p r i n t f1000 , A

end i f

i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine cmplxInv ’ )

1001 format (2 F10 . 5 )

1002 format (18X, 1 F15 . 1 0 )

2000 format ( ’End cmplxInv ’ , / )

end subrout ine cmplxInv

subrout ine c c r l u (A, n , p)

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> LU decompostion subrout ine with p ivo t s f o r square matrix us ing

! ! Crout ’ s a lgor i thm ( from r o s e t t a code )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param n − Rank o f matrix A

!> @param A(n , n) − Complex matrix o f s i z e nxn to be decomposed

!> @param p(n) − Pivot vec to r

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none

i n t e g e r ( kind=4) : : i , j , k , p iv

i n t e g e r ( kind =4) , i n t e n t ( in ) : : n
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i n t e g e r ( kind =4) , i n t e n t ( out ) : : p (n)

r e a l ( kind =8) , parameter : : t iny = 1 .0 d−15

complex ( kind =8) , i n t e n t ( inout ) : : A(n , n)

p = (/ ( i , i =1, n) /)

do k = 1 , n−1

piv = k − 1 + maxloc ( abs ( a (p( k : ) , k ) ) , 1 )

i f ( piv . ne . k ) then

p ( (/ k , piv / ) ) = p ((/ piv , k / ) )

end i f

a (p( k +1:) , k ) = a (p( k +1:) , k )/ a (p( k ) , k )

! i f ( a (p( k +1:) , k ) . l e . t iny ) a (p( k +1:) , k ) = 0 .0 d0

f o r a l l ( j = k+1:n)

a (p( k +1:) , j ) = a (p( k +1:) , j )−a (p( k +1:) , k )∗ a (p( k ) , j )

! i f ( a (p( k +1:) , j ) . l e . t iny ) a (p( k +1:) , j ) = 0 .0 d0

end f o r a l l

end do

return

end subrout ine c c r l u

subrout ine clubk (A, n , piv , b , verbose , v l v l )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!> So lve s A∗x = b with p a r t i a l p i vo t ing from Crout ’ s LU

! ! [\ f $ (P∗L)∗U = P∗A\ f $ ]

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

!> @param n − Rank o f matrix A

!> @param piv (n) − Pivot vec to r from subrout ine c c r l u

!> @param A(n , n) − Complex matrix that i s decomposed by subrout ine c c r l u

!> @param L(n , n) − Lower decompos it ion o f matrix a

!> @param U(n , n) − Upper decompos it ion o f matrix a

!> @param P(n , n) − Pivot matrix
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!> @param y (n) − (U∗x = y )

!> @param x (n) − Working vec to r (b w i l l equal x at the end )

!> @param b(n) − Input and s o l u t i o n o f A∗x = b [\ f $ (P∗L)∗y = b \ f $ ]

!> @param verbose − Log i ca l f o r debugging f l a g s ( . t rue . = debug i n f o on )

!> @param v l v l − Level o f debugging verbosenes s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none

i n t e g e r ( kind=4) : : i , j , P(n , n)

i n t e g e r ( kind =4) , i n t e n t ( in ) : : n , piv (n ) , v l v l

l o g i c a l , i n t e n t ( in ) : : verbose

complex ( kind=8) : : L(n , n ) , U(n , n ) , y (n ) , x (n)

complex ( kind =8) , i n t e n t ( in ) : : A(n , n)

complex ( kind =8) , i n t e n t ( inout ) : : b (n)

cha rac t e r ( l en =100) : : f1000

i f ( verbose ) p r i n t 1000

P = 0 ; L = 0 .0 d0 ; U = 0 .0 d0 ; x = 0 .0 d0 ; y = 0 .0 d0

do i = 1 , n

P( i , i ) = 1

L( i , i ) = 1 .0 d0

end do

do i = 1 , n

L( i , : i −1) = A( piv ( i ) , : i −1)

end do

do i = 1 , n

U( i , i : ) = A( piv ( i ) , i : )

end do

P( : , p iv ) = P

b = matmul ( dble (P) , b )

i f ( verbose . and . v l v l . ge . 4 ) then

wr i t e ( f1000 , ” (A, I1 ,A) ” ) ” ( ” ,n , ” (2 ( F10 . 5 , 1X) ) ) ”

p r i n t ∗ , ’P ’
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pr in t f1000 , t ranspose ( dble (P) )

p r i n t ∗ , ’L ’

p r i n t f1000 , t ranspose (L)

p r i n t ∗ , ’U ’

p r i n t f1000 , t ranspose (U)

p r in t ∗ , ’ b ’

p r i n t 1001 , b

end i f

y (1 ) = b (1)/L(1 , 1 )

do i = 2 , n

y ( i ) = b( i )/L( i , i )

do j = 1 , i−1

y ( i ) = y ( i ) − L( i , j )∗y ( j )/L( i , i )

end do

end do

i f ( verbose . and . v l v l . ge . 3 ) then

pr in t ∗ , ’ y ’

p r i n t 1001 , y

end i f

x (n) = y (n)/U(n , n)

do i = n−1, 1 , −1

x ( i ) = y ( i )/U( i , i )

do j = i +1, n

x ( i ) = x ( i ) − U( i , j )∗x ( j )/U( i , i )

end do

end do

i f ( verbose . and . v l v l . ge . 2 ) then

pr in t ∗ , ’ x ’

p r i n t 1001 , x

end i f

b = x
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i f ( verbose ) p r i n t 2000

1000 format (/ , ’ Begin subrout ine clubk ’ )

1001 format (2 F10 . 5 )

2000 format ( ’End clubk ’ , / )

end subrout ine clubk

subrout ine newton (G, s ig , de l )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Set s up the matr i ce s to be inve r t ed f o r the e lements that have a s e l f −

! energy

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! d e l s (2 ) − Change in the s s t a t e s

! de lp (6 ) − Change in the p s t a t e s

! G( sec , s e c ) − Green ’ s func t i on c a l c u l a t e d from greens subrout ine

! ge ( nse , nse ) − Diagona l ly reduced Green ’ s matrix

! u s i ( nse , nse ) − Diagona l ly reduced s e l f −energy matrix

! up ( nse , nse ) − Matrix o f ge∗ u s i

! su ( nse , nse ) − Matrix to be inve r t ed

! term ( nse , nse ) − Fina l matrix with concen t ra t i on s . Resu l t s are the changes

! in s t a t e s ( de l ∗∗)

! ons (2 , s e c ) − Al l o n s i t e parameters f o r Se and Te

! Se/Te( nse , nse ) − Complex v e r s i o n s o f o n s i t e mat ices f o r c a l c u l a t i o n s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

use concent ra t i on

use o n s i t e s

i m p l i c i t none

i n t e g e r ( kind=4) : : l

complex ( kind=8) : : ge ( nse ) , term ( nse ) , F( nse ) , dF( nse ) , alpha ( nse ) , &

beta ( nse )
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complex ( kind =8) , i n t e n t ( in ) : : G( sec , s e c )

complex ( kind =8) , i n t e n t ( out ) : : de l ( nse )

complex ( kind =8) , i n t e n t ( inout ) : : s i g ( nse )

i f ( verbose ) p r i n t 1000

de l ( : ) = ( 0 . 0 d0 , 0 . 0 d0 )

! de lp ( : ) = ( 0 . 0 d0 , 0 . 0 d0 )

i f ( verbose . and . v l v l . ge . 1 ) p r i n t 1001 , s i g

ge (1 ) = G(19 ,19)

ge (2 ) = G(20 ,20)

ge (3 ) = G(21 ,21)

ge (4 ) = G(22 ,22)

ge (5 ) = G(28 ,28)

ge (6 ) = G(29 ,29)

ge (7 ) = G(30 ,30)

ge (8 ) = G(31 ,31)

do l = 1 , nse

alpha ( l ) = 1 .0 d0 − onsB ( l , l )∗ ge ( l ) − onsA ( l , l )∗ ge ( l )

beta ( l ) = ge ( l )∗onsA ( l , l )∗ onsB ( l , l ) − onsAvg ( l , l )

F( l ) = ge ( l )∗ s i g ( l )∗∗2 .0 d0 + alpha ( l )∗ s i g ( l ) + beta ( l )

dF( l ) = alpha ( l ) + 2 .0 d0∗ge ( l )∗ s i g ( l )

term ( l ) = s i g ( l ) − F( l )/dF( l )

de l ( l ) = s i g ( l ) − term ( l )

end do

! d e l s (1 ) = s i g (1 ) − term (1)

! d e l s (2 ) = s i g (5 ) − term (5)

! de lp (1 ) = s i g (2 ) − term (2)

! de lp (2 ) = s i g (3 ) − term (3)

! de lp (3 ) = s i g (4 ) − term (4)

! de lp (4 ) = s i g (6 ) − term (6)

! de lp (5 ) = s i g (7 ) − term (7)

! de lp (6 ) = s i g (8 ) − term (8)
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! verbose = . t rue . ; v l v l = 3

i f ( verbose . and . v l v l . ge . 1 ) then

i f ( v l v l . ge . 2 ) then

pr in t 1004

p r in t 1003 , F ( : )

p r i n t 1003 , dF ( : )

p r i n t 1003 , term ( : )

p r i n t 1003 , −alpha ( : ) / ( 2 . 0 d0∗ge ( : ) )

end i f

p r i n t 1002 , de l

end i f

! verbose = . f a l s e . ; v l v l = 3

do l = 1 , nse

s i g ( l ) = term ( l )

end do

i f ( verbose . and . v l v l . ge . 1 ) p r i n t 1001 , s i g

i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine newton ’ )

1001 format ( ’ Sigma : ’ , / , 4 ( 2 ( F10 . 6 , 1X) ) )

1002 format ( ’ Delta s i g : ’ , / , 4 ( 2 ( E12 . 5 , 2X) ) )

1003 format (/ ,8 (2 F10 . 6 , 1 x ) , / )

1004 format (// , ’F , dF , term ’ )

2000 format ( ’End newton ’ , / )

end subrout ine newton

subrout ine cpaDOS( dos , dos2 , spec ,w, tot , e , eps )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! So lve s f o r the DOS o f the system .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

169



! w( j s z ) − Weights at each k−point

! t o t − Total weight

! dos ( s ec +1) − Total and decomposed DOS o f the system

! H( j s z , sec , s e c ) − Working Hamiltonian matrix

! f1000 − Formatting s t r i n g f o r p r i n t i n g matr i ce s ve rbose ly

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use g l o b a l

use hami l ton ians

use o n s i t e s

use sigma

i m p l i c i t none

i n t e g e r ( kind=4) : : i , l , l 2

r e a l ( kind=8) : : gr ( sec , s e c ) , g i ( sec , s e c )

r e a l ( kind =8) , i n t e n t ( in ) : : w( j s z ) , tot , e , eps

r e a l ( kind =8) , i n t e n t ( out ) : : dos ( s ec +1) , dos2 ( ntype , s e c ) , spec ( j s z )

complex ( kind=8) : : H( j s z , sec , s e c )

cha rac t e r ( l en =100) : : f1000

i f ( verbose ) p r i n t 1000

dos ( : ) = 0 .0 d0

dos2 ( : , : ) = 0 .0 d0

spec ( : ) = 0 .0 d0

H( : , : , : ) = −ham ( : , : , : )

c a l l setHam (H, e , eps )

wr i t e ( f1000 , ’ (A, I1 ,A) ’ ) ” ( ” , sec , ” (2 ( F10 . 6 , 1 x ) ) ) ”

i f ( verbose . and . v l v l . ge . 3 ) then

pr in t ∗ , ’H: ’

p r i n t f1000 , t ranspose (H( 1 , : , : ) )

end i f

do i = 1 , j s z

c a l l cmplxInv (H( i , : , : ) , sec , verbose , v l v l )

gr ( : , : ) = dble (H( i , : , : ) )
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g i ( : , : ) = aimag (H( i , : , : ) )

do l = 1 , s ec

dos ( l ) = dos ( l ) − pp∗w( i )/ to t ∗ g i ( l , l )

spec ( i ) = spec ( i ) − pp∗ g i ( l , l )

i f ( ( ( l . ge . 1 9 . and . l . l e . 2 2 ) . or . ( l . ge . 2 8 . and . l . l e . 3 1 ) ) . and . mode . eq . 1 ) then

i f ( l . ge . 1 9 . and . l . l e . 2 2 ) l 2 = l − 18

i f ( l . ge . 2 8 . and . l . l e . 3 1 ) l 2 = l − 23

dos2 (1 , l ) = dos2 (1 , l ) − pp∗w( i )/ to t ∗( gr ( l , l )∗ aimag ( s i g ( l 2 ))+ &

g i ( l , l )∗ dble ( s i g ( l 2 ))− g i ( l , l )∗ ons (2 , l ) ) / ( ons (1 , l )−ons (2 , l ) )

dos2 (2 , l ) = dos2 (2 , l ) − pp∗w( i )/ to t ∗( gr ( l , l )∗ aimag ( s i g ( l 2 ))+ &

g i ( l , l )∗ dble ( s i g ( l 2 ))− g i ( l , l )∗ ons (1 , l ) ) / ( ons (2 , l )−ons (1 , l ) )

e l s e i f ( ( ( l . ge . 1 9 . and . l . l e . 2 2 ) . or . ( l . ge . 2 8 . and . l . l e . 3 1 ) ) &

. and . mode . eq . 3 ) then

dos2 (1 , l ) = dos2 (1 , l ) −pp∗w( i )/ to t ∗ g i ( l , l )

end i f

end do

end do

dos ( s ec +1) = sum( dos ( 1 : s e c ) )

i f ( verbose . and . v l v l . ge . 1 ) then

pr in t 1001 , e , dos ( : )

p r i n t 1003 , e , dos2 ( 1 , : )

p r i n t 1004 , e , dos2 ( 2 , : )

p r i n t 1005 , e , spec ( : )

end i f

p r i n t 1002 , e , dos ( s ec +1)

i f ( verbose ) p r i n t 2000

1000 format (/ , ’ S ta r t subrout ine cpaDOS ’ )

1001 format ( ’DOS f o r energy ’ , F10 . 6 , ’ : ’ , / ,37 F10 . 6 )

1002 format ( ’DOS f o r energy ’ , F10 . 6 , ’ : ’ ,5X, F10 . 6 )

1003 format ( ”Atom type 1 ’ s DOS f o r energy ” , F10 . 6 , ’ : ’ , / ,37 F10 . 6 )

1004 format ( ”Atom type 2 ’ s DOS f o r energy ” , F10 . 6 , ’ : ’ , / ,37 F10 . 6 )
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1005 format ( ” Spec t r a l f unc t i on f o r energy ” , F10 . 6 , ” : ” ,/ ,904 F10 . 6 )

2000 format ( ’End cpaDOS ’ ,/ )

end subrout ine cpaDOS

subrout ine simp ( xx , fx , ax , nx , verbose , v l v l )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Need to v e r i f y the purpose o f t h i s subrout ine .

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Var i ab l e s :

! verbose − Log i ca l f o r debugging f l a g s ( . t rue . = debug i n f o on )

! v l v l − Level o f debugging verbosenes s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none

i n t e g e r ( kind=4) : : i x

i n t e g e r ( kind =4) , i n t e n t ( in ) : : nx , v l v l

l o g i c a l : : verbose

r e a l ( kind=8) : : de lx

r e a l ( kind =8) , i n t e n t ( in ) : : fx (2000) , xx (2000)

r e a l ( kind =8) , i n t e n t ( out ) : : ax (2000)

i f ( verbose ) p r i n t 1000

de lx = xx (2) − xx (1 )

ax (1 ) = 0 .0 d0

do ix = 2 , nx , 2

s e l e c t case (nx−i x )

case (0 )

ax ( nx ) = delx∗(− fx (nx−2)+8.0d0∗ fx (nx−1)+5.0d0∗ fx ( nx ) ) / 1 2 . 0 d0 &

+ ax (nx−1)

re turn

case d e f a u l t

ax ( ix ) = de lx ∗ ( 5 . 0 d0∗ fx ( ix −1)+8.0d0∗ fx ( i x )− fx ( i x +1))/12.0 d0 &

+ ax ( ix−1)
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ax ( ix +1) = delx ∗( fx ( ix −1)+4.0d0∗ fx ( i x )+fx ( ix +1))/3.0 d0 + ax ( ix−1)

end s e l e c t

end do

i f ( verbose . and . v l v l . ge . 2 ) p r i n t 1002 , ax

i f ( verbose ) p r i n t 2000

return

1000 format (/ , ’ Begin subrout ine simp ’ )

1002 format ( ’ E l e c t rons ’ , F10 . 7 )

2000 format ( ’End simp ’ ,/ )

end subrout ine simp
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