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Abstract

METHODS FOR IMPROVING THE DESIGN AND PERFORMANCE OF EVO-
LUTIONARY ALGORITHMS

Jeffrey K. Bassett, PhD

George Mason University, 2012

Dissertation Director: Dr. Kenneth A. De Jong

Evolutionary Algorithms (EAs) can be applied to almost any optimization or

learning problem by making some simple customizations to the underlying represen-

tation and/or reproductive operators. This makes them an appealing choice when

facing a new or unusual problem. Unfortunately, while making these changes is often

easy, getting a customized EA to operate effectively (i.e. find a good solution quickly)

can be much more difficult.

Ideally one would hope that theory would provide some guidance here, but in these

cases, evolutionary computation (EC) theories are not easily applied. They either

require customization themselves, or they require information about the problem

that essentially includes the solution. Consequently most practitioners rely on an

ad-hoc approach, incrementally modifying and testing various customizations until

they find something that works reasonably well.

The drawback that most EC theories face is that they are closely associated with

the underlying representation of an individual (i.e. the genetic code). There has been



some success at addressing this limitation by applying a biology theory called quanti-

tative genetics to EAs. This approach allows one to monitor the behavior of an EA by

observing distributions of an outwardly observable phenotypic trait (usually fitness),

and thus avoid modeling the algorithm’s internal details. Unfortunately, observing a

single trait does not provide enough information to diagnose most problems within

an EA. It is my hypothesis that using multiple traits will allow one to observe how

the population is traversing the search space, thus making more detailed diagnosis

possible.

In this work, I adapt a newer multivariate form of quantitative genetics theory

for use with evolutionary algorithms and derive a general equation of population

variance dynamics. This provides a foundation for building a set of tools that can

measure and visualize important characteristics of an algorithm, such as exploration,

exploitation, and heritability, throughout an EA run. Finally I demonstrate that the

tools can actually be used to identify and fix problems in two well known EA variants:

Pittsburgh approach rule systems and genetic programming trees.



Chapter 1: Introduction

Evolutionary Algorithms (EAs) are software techniques that use the principles of

evolution, such as reproduction-with-variation and survival-of-the-fittest, to solve op-

timization and learning problems [De Jong, 2006]. One advantage that EAs have

over many other algorithms is that their design is quite modular. This allows them to

be easy and quickly customized for different tasks, making them an appealing choice

when facing a new or unusual problem.

There are several defining features of an EA, but when adapting one to a new

type of problem, two features that are of particular concern are the representation

and the reproductive operators. In an EA, an individual is simply a potential solution

to the given problem and the representation is the form that an individual takes. For

example, it might be a string of numbers, a graph, or a matrix. The reproductive

operators then make copies of individuals, but with slight variations in order to aid

the search process.

Perhaps the most common and well studied representation is that of a fixed length

string of numbers. These numbers might be binary, integer, or real valued. For lack

of a better term I will refer to these as conventional EAs. At an abstract level, this

representation is similar to the form that DNA takes. This is not surprising given

that EAs were inspired by biological evolution. As a result, each piece of data that

an individual contains is called a gene, and all of it together is called the genotype.

Conventional EAs have wide applicability, but they also have limitations. These

include situations where complex constraints exist between genes, where a variable
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length string is required, or where another structure altogether is required. In these

situation it is often necessary to create a customized EA.

One problem domain that has yielded numerous customized EAs is machine learn-

ing. A wide variety of representations have been used to perform EA learning, includ-

ing finite state machines [Fogel et al., 1966], rule sets [Holland, 1976, Smith, 1980],

artificial neural networks [Whitley, 1989], and LISP programs [Cramer, 1985,Koza,

1992]. Many different reproductive operators have also been created for each of these

representations.

When creating a customized representation corresponding reproductive operators

must also be created. One common approach is to design operators that are analogous

to the biological notions of mutation (small genetic perturbations) and recombina-

tion (creating individuals from the genetic material of multiple parents). For many

representations it is easy to envision simple ways of performing these tasks, and so

the process of creating custom operators often seems fairly straight-forward. Un-

fortunately, because complex interactions sometimes occur between EA components,

making sure that these customizations are effective (i.e. they lead to good solutions

quickly) can be much more difficult.

With conventional representations EA theory has played an important role in

understanding the behavior of the reproductive operators. This has led to several

improvements in the operators as well [Syswerda, 1989] [Bäck, 1996]. Unfortunately,

EA theory is often not applicable when customized representations and operators are

used, unless a whole new set of equations are derived. For example, Holland’s schema

theorem [Holland, 1992] is limited to fixed length genomes with finite gene alphabets.

While some have successfully extended and generalized the theory [Radcliffe, 1991]

[Poli and McPhee, 2003], these versions still have some limitations in their application.
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Customizing Vose’s dynamical systems based theory [Vose, 1999] may be some-

what more straight forward, but it is far from a trivial task. To then use it to answer

questions that would help one customize an EA would involve running simulations

that require detailed information about the fitness function [De Jong et al., 1995].

This is also true of EA theory based on statistical mechanics [Prügel-Bennett and

Shapiro, 1994]. Most practitioners would not need an EA in the first place if they

had this much information about their problem.

Consequently, theory is rarely used when performing customizations. Instead,

practitioners typically create new representations and reproductive operators, and

then collect empirical results to determine how well they worked. In other words, an

ad-hoc approach to customization is the most common.

There is one branch of EA theory, called evolvability theory [Altenberg, 1994],

that has had some success in addressing customization issues. The basic notion is

to measure an algorithm’s ability to produce offspring that are more fit than their

parents. Typically there is a strong emphasis on the combination of representation

and operators, and the effect these have on the algorithms behavior. Using this

theory, practitioners are able to compare various reproductive operators and make

reasonable predictions about which one will perform best on a given fitness landscape

[Manderick et al., 1991].

Evolvability theory is derived from quantitative genetics theory [Rice, 2004, Fal-

coner and Mackay, 1981] and the key to its success in this case is its focus on fitness.

Fitness has the advantage that it can be measured without any knowledge of the

underlying representation of an individual. Almost every other EA theory makes

assumptions about the representation, which is why they must be modified when

the representation changes. Quantitative genetics manages to avoid making such

assumptions.
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In quantitative genetic parlance, fitness is a quantitative phenotypic trait, and

there are potentially a large number of such traits. A phenotypic trait is any feature

of an individual that can be measured without directly examining the genotype.

Typical examples in living organisms include height, eye color and blood type.

Quantitative genetics is the study of phenotypic traits at the population level.

Statistical measures such as mean, variance and covariance are used to characterize

the populations. Several equations then model the effects of selection, reproduction

and genetic drift over time. One of the key concepts in quantitative genetics is

heritability, which defines, on average, the similarity between parents and offspring

for a given trait. Heritability can be estimated with the following equation,

h2 = τ
cov(oi , pi)

var(pi)
, (1.1)

where oi is the value of the phenotypic trait for offspring i, and pi is the trait values

of the parents of i averaged together (also known as the midparent). The constant

τ indicates the number of parents per offspring, which would be two in the cases of

sexual reproduction (e.g. recombination), and one in the case of asexual reproduction

(e.g. cloning and mutation). The symbol h2 has historically been used to represent

heritability, even though h alone has no real meaning.

Those acquainted with evolvability theory will probably find equation 1.1 familiar.

The effectiveness of a reproductive operator is often measured using fitness as the

phenotypic trait, and some sort of covariance relationship between the parents and

offspring. This relationship may be a straight covariance measure [Altenberg, 1995],

a correlation [Manderick et al., 1991], or a regression coefficient [Grefenstette, 1995].

Unfortunately, evolvability theory is limited in what it can accomplish. While

it is possible to identify the existence of problems in a customized EA, evolvability
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theory offers very little in the way of advice for making improvements. In practice,

using these methods does make it easier to conduct ad-hoc customization, but a more

principled approach is still needed.

While the use of fitness as the phenotypic trait has its advantages, it may also be

part of the problem. It is true that fitness is ultimately the most accurate measure

for determining the effectiveness of the reproductive operators, so in a sense it is the

gold standard. But it cannot provide much information about why a problem exists

or how it can be fixed. If we are to use quantitative genetics to diagnose problems,

then other phenotypic traits will need to be examined as well.

I believe that the key to diagnosing EA design problems lies in examining the

way the algorithm explores the search space. If we define a set of phenotypic traits

that describe the search space in a representation independent way, we will be able to

monitor the search process. Quantitative genetics and the notion of heritability then

provide us with a way of evaluating the search, as well as techniques for understanding

how and why the search might be going astray.

The concept of a phenotypic search space bears some explanation. A simple

example can be found with function optimization problems. There are a number of

possible encodings for an individual, including standard binary encoding, Gray codes,

or real valued genes. Despite this, the EC community tends to think of these search

spaces in terms of a set of real valued parameters. Each of these parameters can be

considered to be a phenotypic trait that is encoded in some form in the genome. The

phenotype can perhaps be thought of as the “natural” description of the problem.

Applying quantitative genetics techniques to new EA applications may require the

identification of new sets of phenotypic traits. These may not always be as obvious

as the example just given, so I will offer advice about how to choose them.

Since we are now considering examining multiple traits that define a search space,
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we need to be sure that the quantitative genetics equations can manage this. Equa-

tion 1.1, for example, is defined for a single trait only. Fortunately, biologists have

developed an extension to the theory called multivariate quantitative genetics [Lande,

1979, Lande and Arnold, 1983]. The equations essentially mirrors the standard uni-

variate equations, but they use vectors and matrices to simultaneously manage several

traits, and the interactions between them.

These equations require a certain amount of adaptation before they can be applied

to EAs however. In particular, the equations tend to assume that every individual

has the same number of parents, an assumption that many EAs violate. One of my

key contributions is to derive a new equation that describes the change in population

variance from one generation to the next. I do this by reducing the tight coupling

between parents and offspring that exists in the standard equations. As a result, my

equation contains new terms that turn out to be particularly useful. They suggest

ways to measure the intuitive concepts of exploration and exploitation that are often

used as analogies for understanding the internal process of all search algorithms.

This theoretical work lays the foundation for my second major contribution, the

development of a suite of tools that can be used to diagnose problems within an EA.

The first component are a tools that can be used to instrument any EA, and collect

measurements while it runs. The second component aggregates these measurements

and visualizes the results, allowing one to analyze the behavior of the algorithm, and

determine the extent to which it is conducive to an effective search. A wealth of

information is then available in the raw matrices to allow one to track down and fix

the causes of any problems.

My final contribution is to provide several examples of these tools in use, demon-

strating that they can indeed be used to identify and fix problems within different

EAs. I first examine several EAs and problems that have received a great deal of
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study. Using conventional representations and reproductive operators, I examine

landscapes that are known to cause difficulties for EAs, such as epistatic landscapes.

In addition to providing validation that are the tools are in fact showing us what we

would expect to see, this allows me to provide a tutorial on how to go about using

them.

From there I examine two representations that are commonly used for executable

objects. An executable object is essentially a program that is evolved by an EA. The

representations used are Pittsburgh approach rule systems, and Genetic Program-

ming (GP) LISP trees. These are not as well understood as conventional EAs, and

there is a real opportunity to identify and improve both the representations and the

reproductive operators that typically accompany them. This is particularly true in

the case of operators that can modify the size or structure of an individual.

I conclude with a review of my key discoveries and contributions, as well as a

discussion of interesting directions for future work that could improve upon the what

is presented here.
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Chapter 2: Background

This chapter offers a brief review of quantitative genetics, focusing particularly those

areas that pertain to my work. I will also review two areas of EC research that

have, at least at times, applied quantitative genetics theory: evolvability theory and

estimation of distribution algorithms (EDAs). I conclude with a brief review of some

of the most prominent EC theories.

2.1 Quantitative Genetics

Quantitative genetics [Falconer and Mackay, 1981,Hartl and Clark, 2007] is concerned

with measurable phenotypic traits that are statistically modeled at a population level.

Statistical measures like mean, variance, and covariance are used to characterize pop-

ulations and the relationships between them. Various equations are then used to

model the effects of selection, reproduction and genetic drift over time.

Quantitative genetics equations are often decomposed into meaningful terms and

factors, each of which represents some important aspect of the evolutionary process.

Price’s theorem [Price, 1970] is a useful example because it separates the average

effects of selection and reproduction into two separate terms. Another example is the

equation for population variance, which includes terms for the effects of heritability,

epistasis and variation due to the environment. These decompositions have the po-

tential to offer insights into how and why certain operators and representations are

not performing well.
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Perhaps the most notable of these equations is the breeder’s equation [Falconer

and Mackay, 1981] which models the response to selection,

R = h2S (2.1)

Here S represents the selection differential, h2 is heritability and R is the response

to selection. In very simplistic terms, S describes the change in the average value of

a trait caused by selection culling low fitness individuals from the population. This

description is not completely accurate though since high fitness individuals that are

selected multiple times to be parents are counted as if multiple copies of them were

in the population as well.

The response to selection (R) describes the change in the trait’s average within

the population from one generation to the next. Heritability (h2) is a statistical

measure of similarity between the selected parents and their offspring. It can also be

thought of as indicating how well a trait is transmitted from a parent to its offspring

during reproduction [Arnold, 1994]. In this light, the breeder’s equation can be read

as follows: If selection causes an increase or decrease in the mean value of a trait,

then the closer heritability is to 1, the more that change will also be manifested in

the next generation.

Heritability is often estimated as a regression coefficient between parent and off-

spring trait values using equation 1.1. Values for h2 tend to fall in the range 0 to 1,

but are not limited to this.

So far these equations have dealt with only a single phenotypic trait, but we

need to apply them to a set of traits that define the search space. An extension to

this theory called multivariate quantitative genetics [Lande, 1979,Lande and Arnold,

1983] was developed to address these kinds of issues. The equations essentially mirrors
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the standard equations, but they use vectors and matrices to simultaneously manage

several traits, and the interactions between them. For example, here is the modified

version of the breeder’s equation:

∆z = GP−1S (2.2)

An individual is described by a group of traits and is represented as a vector, as

is the selection differential (S) and the response to selection (∆z). G is the cross-

covariance matrix between parent and offspring trait vectors times τ , the number of

parents per offspring, and P is the variance-covariance matrix describing the popu-

lation distribution of the selected parents. Heritability is now defined by the matrix

GP−1.

Biologists tend not to think in terms of heritability when using the multivariate

form of the breeder’s equation though. Instead they have worked under the assump-

tion that the G and P matrices will remain stable over time, especially in the short

term. If this is true, it is not difficult to see that heritability will remain constant,

and therefore the breeder’s equation could still be used to do prediction. A great deal

of effort has been expended on testing this stability assumption, and in the process a

number of tools (such as the Common Principle Component technique or CPC [Flury,

1988]) have been adapted to the task of comparing these variance-covariance matrices

to determine if they do in fact remain constant.

At this point the general consensus among biologists is that G and P do tend

to remain stable enough so that short term predictions can be made. There is little

doubt, though, that these matrices change over time. As a result, the focus of research

has now shifted to understanding when and how these matrices are likely to change,

and what causes such changes. The same comparison tools used to test the stability
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assumption appear to be useful for this task as well, and so development on them has

continued.

As a basis for EC theory, quantitative genetics is valuable because it is quite

general. Nonetheless, simplifying assumptions are often made that are consistent

with most forms of biological life. For example, in most cases biologists can assume

that each offspring in a population will have the same number of parents, and the

few exceptions can be easily treated as special cases. In the case of an EA though,

these situations are the norm instead of the exceptions, and so a certain amount of

adaptation is required.

2.2 Evolvability

There are several cases where quantitative genetics theory has already been applied

to EAs. One of the first was research done by Altenberg [Altenberg, 1995] in which

he used Price’s theorem [Price, 1970] as the foundation for an infinite population

dynamical systems model of EAs. His main result was to re-derive the schema the-

orem and show that recombination was essential for the theory to hold. His work

also provided a theoretical justification for using the covariance between parent and

offspring fitness as a predictor of EA performance, which up until then had been just

a heuristic.

Interestingly Altenberg might have found it easier to derive this result from the

variance equations rather than Price’s theorem, which measures changes in population

means. Asoh and Mühlenbein did just this when they examined heritability in EAs

[Asoh and Mühlenbein, 1994].

The importance of the relationship between parent and offspring fitness was known

in the EA community before Altenberg’s and Mühlenbein’s work, and is one of the
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most effective tools for assisting the customization process. By measuring the corre-

lation of these fitnesses, one can compare two operators to see which is more likely

to improve an EAs performance [Manderick et al., 1991]. Unfortunately it offers no

indication of why an operator is performing poorly, and no suggestions for how to

improve it.

Parent-offspring covariance is also used as a measure of fitness landscape difficulty

[Weinberger, 1990, Stadler, 1992, Jones and Forrest, 1995]. For example, consider a

landscape where the fitness of neighboring points have no relationship to one-another.

Without near perfect knowledge of the landscape, no set of operators could perform

well on this problem. On the other hand, a poor choice of reproductive operators

can have a similar effect since it could create offspring that are nowhere near their

parents on the landscape. Unfortunately, it is difficult to tell which case one is faced

with.

Some have built tools based on quantitative genetics for evaluating the components

of an EA either before or during a run. Langdon [Langdon, 1998] used both Price’s

theorem and Fisher’s fundamental theorem [Price, 1972b] to build his tools, but

these make certain assumptions about the structure of the genome which makes them

somewhat representation dependent. Potter, Bassett and De Jong [Potter et al., 2003]

also explored building tools with Price’s equation. Their results demonstrated the

importance of reproductive variance in analyzing operators. They then explored

approaches for measuring variance using Price’s equation as well [Bassett et al., 2004,

Bassett et al., 2005].
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2.3 Estimation of Distribution Algorithms

Mühlenbein and Schlierkamp-Voosen [Mühlenbein and Schlierkamp-Voosen, 1993]

used the breeder’s equation [Falconer and Mackay, 1981] to guide the design of their

Breeder Genetic Algorithm (BGA). An analysis of crossover using this same equa-

tion led to the development of gene-pool crossover operators and then to the devel-

opment of Estimation of Distribution Algorithms or EDAs [Mühlenbein and Paaß,

1996,Mühlenbein et al., 1996]. EDAs differ from typical EAs in that they do not

use standard reproductive operators. Instead, each generation they estimate the

probability distributions of the gene frequencies in the selected parents and use this

information to generate a new population of offspring. Quantitative genetics has

played a continuing role in the various EDAs that Mühlenbein’s has developed over

the years.

A newer branch of EDA research, called continuous EDAs [Yuan and Gallagher,

2005,Yuan and Gallagher, 2006], takes an approach that is more like modeling pheno-

typic traits. As the name implies, an individual is represented by a set of real valued

traits. This allows population distributions to be modeled using joint Gaussian distri-

butions instead of just tracking gene values. The use of covariance matrices also allows

epistatic relationships to be captured by orienting the distribution along a diagonal.

The disadvantage to this approach is that it limits the types of genetic structures that

can be modeled, only being applicable to real-valued function optimization problems.

2.4 Evolutionary Computation Theory

A number of different approaches have been developed for modeling evolutionary

algorithms. Some are specific to certain algorithms or applications, while others

attempt to be more generally applicable. Here I briefly review some of the more
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influential theories, and indicate some of the difficulties in applying them to the

customization problem.

Schema theory [Holland, 1992] is a dynamical systems model of EAs that group

individuals within a population based on genes that they share in common. Changes

in the relative sizes of these groups are then considered as a result of selection and

reproduction. With perfect information the overall behavior of the algorithm can be

predicted, but the theory is rarely used this way. Rather, the idea is to provide a

model of EA behavior that identifies important aspects of the process.

This theory seems to be particularly useful for EAs that use recombination [Al-

tenberg, 1995], and has been useful in the development of improved recombination

operators, such as uniform crossover [Syswerda, 1989]. Because of its focus on the

specific gene structures though, extending the theory to new representations can be

an involved process [Poli and Langdon, 1998].

A similar type of dynamical systems model is the one developed by Vose [Vose,

1999]. The main abstractions in this model involve the trajectories of populations

through the space of all possible populations, and basins of attractions that the pop-

ulations tend to be drawn towards. This theory has less of an emphasis on represen-

tation than the schema theory, but new reproductive operators must still be modeled

in order to determine how populations transition from one state to the next.

As with schema theory, Vose’ model tends to be used as a way of identifying

important elements of the process. Nonetheless, attempts have been made to make the

model more predictive by combining the theory with a Markov Model that describes

the likelihood of the population being in any given state. This just complicates the

modeling process because detailed knowledge of the fitness landscape must now be

included. The models also quickly become intractable with anything but very small

genome sizes and population sizes.
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The one theory that is perhaps the most similar to quantitative genetics uses statis-

tical mechanics techniques from the physics community to model EAs [Prügel-Bennett

and Shapiro, 1994]. Cumulants are used to characterize the fitness distributions of

populations, and update rules are devised to describe how these distributions change

from one generation to the next. These models tend to be used to predict algorithm

behavior, and so they also require specific knowledge about the fitness landscape in

order to do so. Using this approach for analyzing a customized EA on a new problem

could involve modeling new update rules and fitness landscapes, making it difficult

for the practitioner to apply easily.

The final set of theoretical tools I will discuss here are application specific, focusing

on optimization problem domains. They have largely been developed and used by

the Evolution Strategies (ES) community, a subgroup within the EA community, and

consist of local progress measures and global measures such as algorithm runtime

analysis [Beyers, 2000].

Local progress measures examine the behavior of an EA within a single generation.

Such measures include population progress toward an optimum and operator success

rate. Operator success rate measures the percentage of offspring produced by an

operator that have better fitness than their parents. Identifying ideal values for these

progress measures requires certain knowledge about the fitness landscape, but they

have been shown to be robust across a set of simple fitness landscapes. This work

has led to the development of useful rules-of-thumb for operator design, such as the

1/5th success rule used for adapting mutation rates.

The global measures consider the behavior of the algorithm throughout its entire

run. Building on the local progress measures, theorists have developed techniques

that allow them to estimate average runtime analyses of certain algorithms on very

specific fitness landscapes. These calculations often become intractable if any sort of
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complex landscape is considered, though.

Each of the theories discussed in this chapter have played important roles in

understanding and improving EAs. Unfortunately, For the general practitioner they

remain difficult to apply to new problems and representations. Techniques based on

quantitative genetics theory, such as parent-offspring fitness correlation, remain some

of the most useful tools available for identifying problems. In the next chapter I

will adapt multivariate quantitative genetics theory to EAs so that practitioners can

diagnosing these problems as well.
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Chapter 3: Quantitative Genetics Theory for

Evolutionary Algorithms

In this chapter I will re-derive the quantitative genetics equations for population

variance in order to adapt it for use with EAs. In the process I will expose another

component that I call “perturbation”, and discuss what role this might play in the

search process. Finally I will identify the key quantities that I believe will yield the

information necessary for identifying problems in customized EAs.

3.1 Price’s Theorem

Both Altenberg and Rice [Altenberg, 1994,Rice, 2004] have identified Price’s Theorem

as a central equation for modeling the dynamics of the evolutionary process. In

fact, Rice demonstrates that many of the equations used in evolutionary biology can

ultimately be derived from Price’s Theorem. For this reason, I plan to use it for the

starting point of my derivation. Before doing that though, I will review the theorem,

and make a few modifications that will make it more easily applicable to evolutionary

algorithms.

To help understand Price’s theorem, we refer to figure 3.1. It provides an example

of an arbitrary single generation of an evolutionary algorithm. The nodes on the left

represent individuals in the parent population and the nodes on the right represent

offspring. Edges connect each parent to it’s associated offspring, thus making a

directed graph.
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Figure 3.1: Reproduction of a population
in an arbitrary generation using only asex-
ual reproduction.

Table 3.1: Marginal fitness (wi), λ() and
λ�() values associated with figure 3.1

i wi

1 2
2 1
3 1
4 0

k λ(k) λ�(k)

1 1 1
2 1 2
3 2 3
4 3 4

The vectors φ and φ� contain all the phenotypic traits of the parent and offspring

populations respectively. Associated with each parent i is a phenotypic trait φi.

Similarly, each offspring j has a phenotypic trait φ�
j. Each parent also has what

biologists refer to as a marginal fitness wi, which is defined as wi = Wi/W . Here Wi

is the number of descendents of parent i, and W is the mean number if descendents

per individual in the parent population. Note that this has very little to do with what

we typically think of as fitness in an evolutionary algorithm.

Two functions λ(k) and λ�(k) are defined in order to represent the edges in the

graph. For any edge k, λ(k) returns the index of the parent node in φ, and λ�(k)

returns the index of the offspring node in φ�. This allows us to access the parent traits

and offspring traits for any given edge k using φλ(k) and φ�
λ�(k). Table 3.1 indicates a set

of appropriate return values of these functions for the generation shown in figure 3.1.

Given an arbitrary ordering of all edges, we construct a vector φλ containing the
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trait values of all parent nodes that are the tail (starting node) of an edge. Some

traits may be duplicated in this vector if the corresponding node is the tail of multiple

edges. Other traits from φ will be dropped from φλ if a parent node is not the tail of

any edge. Using the same arbitrary ordering of edges, we construct a similar vector

φ�
λ� containing trait values of all offspring nodes that are the head (end node) of an

edge.

Price’s theorem can now be written as follows:

∆φ = cov (w,φ) + E (φ�
λ� − φλ) , (3.1)

where ∆φ = E(φ�) − E(φ). Here ∆ is used to denote a change over time, and the

function E() calculates an expected value.

Price’s theorem simply describes the change in the mean value of a phenotypic

trait within a population from one generation to the next. Unlike most theories,

Price’s theorem is not predictive, but instead descriptive. Its usefulness lies in how it

models the evolutionary process and in how it partitions the different forces that are

at work. For example, the first term on the right hand of equation 3.1 (the covariance

term) calculates the effects that selection has on the phenotypic mean, while the

second term calculates the effects that the reproductive operators have. The hope

here is that by creating meaningful decompositions of the system, one can examine

the parts in isolation, while still understanding their relationship to the system as a

whole.

3.1.1 Sexual Reproduction

A common approach biologists use in modeling sexual reproduction in an evolutionary

system is to perform a mid-parent calculation. Whenever a pair of parents produce
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an offspring, the phenotypic traits of both parents are averaged and treated compu-

tationally as if there were really only one parent. Some parents may participate in

multiple pairings, but this does not cause any problems for the mid-parent approach

since each pairing is treated separately.

Price’s theorem does not actually require the use of mid-parent calculations in

order to achieve the correct results. As long as every edge is properly considered, and

every offspring has the same number of parents, then the equivalent of the mid-parent

calculation will be performed automatically. I have chosen not to use mid-parent

calculations, which will make some opportunities available to us later, as we will see.

3.1.2 Mixing Sexual and Asexual Reproduction

In EAs that use recombination, mixing sexual and asexual reproduction is quite com-

mon. Let us consider recombination and mutation as two separate steps. Typically

when recombination operators are applied, it is only to a portion of the selected

individuals, and the rest remain unchanged (or are cloned, depending on the imple-

mentation). This means that some offspring will have one parent, while others have

two.

Mutation can be applied before or after recombination, but each application is

only to a single individual. This means that it will have no ultimate effect on the

number of parents an individual has. Individuals that were recombined and mutated

will still have two parents, and those that were cloned and mutated will still have

only one.

Unlike EAs, in most biological systems the number of parents that an offspring

has tends to be fixed. In other words, all individuals tend to be produced using only

asexual or only sexual reproduction, so any issues related to this tend to be of little

concern.
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Figure 3.2: Reproduction of a population
in an arbitrary generation using a mixture
of sexual and asexual reproduction.

Table 3.2: Marginal fitness (wi), λ() and
λ�() values associated with figure 3.2

i wi

1 2
2 4
3 2
4 0

k λ(k) λ�(k)

1 1 1
2 1 2
3 2 1
4 2 2
5 2 3
6 2 3
7 3 4
8 3 4

As it turns out, Price’s original description of his theorem had a built in assump-

tion that the number of parents per offspring is fixed. Price actually addressed this

issue in his first paper on the topic [Price, 1970]. His solution was to divide the

equation into two parts in order to deal with both cases separately, thus creating

four terms instead of two. However, this approach can be a bit awkward since the

populations need to be divided appropriately.

Fortunately there is a relatively simple solution to this problem for EA practition-

ers. In cases where an offspring only has one parent, we create two edges connecting

parent and offspring. See figure 3.2 for and example.

The key is that each edge in the graph must carry the same amount of “influence”

as all the others. If each edge represents half influence, then two edges must be drawn

to represent the whole influence that cloning actually provides. Essentially this just

comes down to properly adding fractions. In order to add 1
2 and 1, we must first
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recast 1 as 2
2 before adding the numerators.

This approach can, of course, be generalized for reproductive operators that re-

quire three or more parents-per-offspring. The number of edges leading to an offspring

must equal the least common multiple of the parents-per-offspring of all reproductive

operator.

3.1.3 The Importance of Variance

Intuitively we understand that in order for selection to be effective, there must be

some variation within the population. Otherwise selection would have no way to

differentiate between individuals, and no improvements could be made. This notion

can be expressed more formally using Price’s theorem.

Price showed that his theorem can be rewritten in the following way [Price, 1972a]:

∆φ =
cov(w,φ)

var(φ)
var(φ) + E (φ�

λ� − φλ)

∆φ = βw,φvar(φ) + E (φ�
λ� − φλ) , (3.2)

where βw,φ is the regression coefficient of w on φ.

The factor βw,φ describes the selection differential, which is, in a sense, a measure-

ment of selection pressure. Note that this is the same as the selection differential (S)

that was used in equation 2.1. With most standard forms of EA selection, we can

expect βw,φ to remain constant throughout the run, although fitness proportionate

selection is a notable exception. What this means is that the phenotypic variance

(var(φ)) will be the key limiting factor on the ability of selection to affect the popu-

lation.
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Because variation is so important, having a dynamical systems equation for vari-

ance that is similar to Price’s theorem is critical to having a complete model of the

evolutionary process. In the next section I will derive just such an equation.

3.2 A Re-derivation of the Variance Equation

I will be using a technique suggested by Rice [Rice, 2004, pg. 174] to derive an

equation for variance from Price’s theorem. My formulation is slightly different from

his though, in that I use the λ and λ� functions to associate parent and offspring

traits, and I avoid the use of midparent calculations. These allow me to carry the

derivation somewhat further than he does.

Rice’s insight involved replacing φ with (φ − φ)2 so that the equation measures

the change in variance instead of the change in mean. First though, I will modify the

equation somewhat to make the algebra easier. Note that the following identities are

used below: E(wφ) = E(φλ) and E(w) = 1.

∆φ = cov(w,φ) + E(φ�
λ� − φλ)

E(φ�)− E(φ) = E(wφ)− E(w)E(φ) + E(φ�
λ�)− E(φλ)

E(φ�) = E(φ�
λ�) + E(φλ)− E(φλ)
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Now we replace φ with (φ− φ)2,

E[(φ� − φ�)2] = E[(φ�
λ� − φ�

λ�)2] + E[(φλ − φλ)
2]− E[(φλ − φλ)

2]

var(φ�) = E(φ�2
λ�)− E(φ�

λ�)2 + E(φ2
λ)− E(φλ)

2 − var(φλ)

var(φ�) = E(φ�2
λ�)− 2E(φ�

λ�φλ) + E(φ2
λ)− E(φ�

λ�)2 + 2E(φ�
λ�)E(φλ)− E(φλ)

2

+2cov(φ�
λ� ,φλ)− var(φλ)

var(φ�) = E(φ�2
λ� − 2φ�

λ�φλ + φ2
λ)− E[φ�

λ� − φλ]
2 + 2cov(φ�

λ� ,φλ)− var(φλ)

var(φ�) = E[(φ�
λ� − φλ)

2]− E[φ�
λ� − φλ]

2 + 2cov(φ�
λ� ,φλ)− var(φλ)

var(φ�) = 2cov(φ�
λ� ,φλ) + var(φ�

λ� − φλ)− var(φλ). (3.3)

There is actually a much simpler derivation. Given that E(φ�) = E(φ�
λ�), and

using the identity var(aX + bY ) = a2var(X) + b2var(Y ) + 2ab cov(X, Y ), we can

derive equation 3.3 simply by setting X = φλ, Y = φ�
λ� , a = −1, and b = 1.

While equation 3.3 is interesting, there are some advantages to modifying it

slightly as follows,

var(φ�) = var(φ)
var(φλ)

var(φ)

�
2
cov(φ�

λ� ,φλ)

var(φλ)
+

var(φ�
λ� − φλ)

var(φλ)
− 1

�
. (3.4)

This equation is useful for a couple of reasons. First it separates the effects of selection

from the effects of the reproductive operators; and second, it organizes the various

components of the EA into a pipeline, so that each effect is applied in turn.

The factor var(φλ)/var(φ) is a measure of the effects of selection on population

variance. It is a ratio of the variance of the population of selected parents relative to

the population of all parents. This means it will be a value between zero and one,
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and smaller values will generally occur under stronger selection pressures.

Everything within the brackets represents the effects of the reproductive oper-

ators. These effects are divided into two terms (not counting the −1) which are

both measured relative to the selected parents. This is the appropriate denominator

for these ratios since the selected parents are the individuals that the reproductive

operators are given to work with.

The first term within the brackets should look familiar. It is very similar to the

measure of phenotypic heritability given in equation 1.1. However it is different in

one important way. There is no factor of τ to account for the number of parents per

offspring. This should be interpreted as measuring heritability from a single parent.

When performing asexual reproduction (e.g. cloning and mutation) the two concepts

are the same, but with sexual reproduction (e.g. recombination), this term will only

be half of h2. The other half is inherited from the other parent.

The second term in the brackets is not one that is commonly seen in quantitative

genetics equations that deal with variance. It is not difficult to interpret what it

represents though. By measuring the variance of the difference between parent and

offspring traits (var(φ�
λ�−φλ)), we are measuring how much variation the reproductive

operators are adding to the total variation in the population. We refer to this concept

as perturbation. Heritability, on the other hand, measures how much existing variation

is retained by the reproductive operators. At first these two concepts might seem

mutually exclusive. In other words, one might expect that they always sum to zero.

As we will see in the experiments, though, this is not always the case.

There is a slightly unintuitive approach needed to combine the concepts of heri-

tability and perturbation. For example, the factor of 2 in front of the heritability term

is probably best considered to be part of this approach, and separate from the actual

notion of heritability. The final −1 term within the brackets is also best thought of
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as part of this approach.

It is important to reiterate that the notion of perturbation is absent from quan-

titative genetics theory. One important aspect of this has to do with midparent

calculations. If midparent calculations were used as part of these equations, the val-

ues attained for perturbation would not be accurate. This is particularly true when

working with multivariate trait space, which is what we will be looking at next.

3.3 Multivariate Phenotypic Traits

The goal of this research is to diagnose problems by observing how a population tra-

verses the search space. Since an individual’s location in the search space is generally

best described by multiple phenotypic traits, the equations we use must be able to

manage them all. Multivariate quantitative genetics theory [Lande, 1979,Lande and

Arnold, 1983] was developed to deal with just these types of problems. The basic

approach involves taking the trait associated with an individual (φi and φ�
j) and re-

defining them as vectors of multiple traits of length m, where m is the total number

of traits. Then the standard equations can be rewritten in such a way as to properly

handle these vectors, and all the interactions that occur between the traits.

I will perform a similar rewriting of the new variance equation I derived in the

last section. First, though, I will review the multivariate forms of the variance and

covariance functions, as well as the covariance matrices that they produce.

3.3.1 Multivariate Normal Distributions

The multivariate version of the normal distribution will probably be very recognizable

to those familiar with the univariate version. The surface shown in figure 3.3 provides

an illustration of the probability density function (PDF) of the standard normal
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Figure 3.3: A Multi-variate normal distribution. The points on the plane indicate
samples in two-dimensional space. The surface above the plane displays the corre-
sponding probability density function (PDF). The ellipse on the plane is a contour
line indicating constant density, and corresponds to one standard deviation.

distribution over two variables. The familiar bell shape is clearly visible, although

it is now three dimensional. One hundred sample points drawn randomly from the

distribution have been plotted on the plane below the surface, and you can see that

they are much more densely packed near the origin (which is also the mean) than out

toward the edges of the distribution.

An ellipse (which in this case would actually be a circle if viewed from above) has

also been plotted on the plane, among the sample points. This is a contour line along

which the distribution has equal density. The specific ellipse plotted corresponds to

one standard deviation. If it is not clear what this means, consider the following. If

we were to create another plane that passes through the origin and was perpendicular

to the plane in the figure, it would bisect the surface. The cross section produced

would be the familiar univariate bell curve. We could also determine the locations on

either side of the mean along that cross-section that indicate one standard deviation.
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Figure 3.4: A nonsymmetric multivariate normal distribution. The points indicate
randomly generated samples and the ellipse is a density contour corresponding to one
standard deviation.

No matter what bisecting plane we chose, these locations will always lie directly on

the ellipse.

While the distribution shown in figure 3.3 is radially symmetric (the same in every

direction relative to the center), not all multivariate normal distributions have this

quality. In other words, sometimes a multivariate normal distribution can be longer

than it is wide. Figure 3.4 provides an example, although without the PDF surface

in this case. Note that the ellipse drawn is no longer circular. Each cross section of

the corresponding PDF would still produce a univariate normal bell curve, but the

variance of the curve will be different depending on where the cut is made. Also

note that the orientation of the distribution does not necessarily lie along one of the

standard basis vector (i.e. x, y, z, etc), and so any representation of multivariate

variance must be able to represent these rotations as well. Clearly there is more to

the notion of multivariate variance than can be captured in a single number.
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3.3.2 Covariance Matrices

One common way to represent multivariate variance is as a covariance matrix. Their

main advantage is that they can be used in multivariate equations in much the same

way that univariate variance can be used in univariate equations. A covariance matrix

takes the form of an m ×m matrix, where m is the number of variables or traits in

our case. The function Var calculates variance as a covariance matrix, and is defined

as follows:

Var(x) =





var(x1) cov(x1, x2) . . . cov(x1, xm)

cov(x2, x1) var(x2) . . . cov(x2, xm)

...
...

. . .
...

cov(xm, x1) cov(xm, x2) . . . var(xm)





(3.5)

where x is a set of vectors [x1, x2, ...xm] describing the entire population of samples,

and xi is a vector of scalar values containing all the sample values for the ith variable.

The term covariance matrix can be somewhat confusing, because in this case

we are actually using it to representing just variance. The term “covariance” is

used to describe these matrices because the non-diagonal elements of the matrix are

calculated using the covariance function. These covariances end up describing any

diagonal aspects of the distribution. In a sense, they can be thought of as describing

the rotations away from the standard basis vectors.

To add to this confusing terminology, covariance matrices can also be used to

define the multivariate form of covariance. In this case it is called a cross-covariance
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matrix. The equation for multivariance covariance is defined as follows:

Cov(x,y) =





cov(x1, y1) cov(x1, y2) . . . cov(x1, ym)

cov(x2, y1) cov(x2, y2) . . . cov(x2, ym)

...
...

. . .
...

cov(xm, y1) cov(xm, y2) . . . cov(xm, ym)





(3.6)

where again x is a set of vectors [x1, x2, ...xm] describing the entire population of

samples, and xi is a vector of scalar values containing all the sample values for the

ith variable. The second parameter y is defined just as x is, but describes a different

population.

Univariate covariance describes how two variable vary together. In much the same

way, the Cov function describes how two sets of vectors vary together. This produces

a measure of similarity between the vectors in x and the corresponding vectors in

y. For example, if x and y are identical, the resulting covariance matrix will be the

same as both Var(x) and Var(y) (i.e. Cov(x,y) = Var(x) = Var(y)). On the other

hand, if the vectors in x and their corresponding vectors in y are unrelated, all the

elements of the resulting cross-covariance matrix will likely contain values that are

close to zero. This is true even if x and y are drawn from the exact same distribution

(i.e. Var(x) = Var(y)).

3.3.3 The Multivariate Form of the Variance Equation

Creating a multivariate version of the variance equation is really relatively simple at

this point. As mentioned earlier, each φi and φ�
j now represents a vector of traits. The

multivariate forms of Var and Cov operate on these vectors, and produce covariance

matrices in return. Otherwise, the form of the equation remains essentially the same.
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If we define the following covariance matrices: Q = Var(φ), P = Var(φλ), O =

Var(φ�), G� = Cov(φ�
λ� ,φλ), and D = Var(φ�

λ� −φλ), we can then rewrite equations 3.3

and 3.4 as follows:

O = 2G� +D−P (3.7)

O = Q ·PQ−1[2G�P−1 +DP−1 − I], (3.8)

where I is the identity matrix.

In standard quantitative genetics theory, theG andPmatrices are used frequently,

as can be seen in multivariate response-to-selection equation (equation 2.2). As was

discussed in section 2.1, heritability can now be thought of as the covariance matrix

GP−1. It is important to note that I have defined a slightly different form of the G

matrix that I call G�. Simply put, G = τG�, where τ is the number of parents per

offspring. This really just goes back to the discussion earlier in this chapter. The

version of heritability in my equation (G�P−1) should be thought of as heritability

from a single parent.

The effects of selection on population variance are now described by the matrix

PQ−1, perturbation is defined by the matrix DP−1, and heritability is defined by

G�P−1. There is one other relationship that can be drawn from these equations, the

one between the O and P matrices (i.e. OP−1), which I will discuss further in the

next section.

3.3.4 Two Forms of Heritability

Estimation of Distribution Algorithms (EDAs) were developed based on observations

drawn from quantitative genetics theory [Mühlenbein and Paaß, 1996]. Since then

the EDA community has moved towards the heuristic that the offspring population
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distribution should be similar to the parent population distribution [Pelikan et al.,

2000]. This has turned out to be an effective strategy, and has served the community

well. This is essentially achieved by comparing the O and P matrices, which is

what the term OP−1 does. Since OP−1 is a measure of how similar the parent and

offspring populations are, rather than how similar the individuals are, I will refer to

it as “population heritability”.

Both forms of heritability that we care about – standard heritability (G�P−1) and

population heritability (OP−1) – are useful for analyzing and diagnosing reproductive

operators. The re-derivation of the variance equation has identified the new term that

I refer to as perturbation (DP−1), which will also prove useful, as we will see. Now

that we have identified the aspects of reproductive operators the we wish to observe,

we need to develop methods for measuring and tracking them during an EA run. This

is what we will explore in the next chapter.
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Chapter 4: Analysis Methods Based on

Quantitative Genetics

To review, the goal of this research is to assist practitioners in customizing EAs for

novel problems. At a very high level, the plan is to examine how the population

traverses the search space from generation to generation, identify the learning biases

associated with the reproductive operators, and check to see if they are consistent

with a well functioning EA. We can then use this information to diagnose problems

with the customized EA components.

This chapter lays out some of the details of this plan. These include approaches

to quantifying the search space traits, statistical tools for testing the heritability of

traits, and various types of plots that can provide insight into the internal workings

of an EA.

4.1 Quantifying the Search Space

The way practitioners identify phenotypic traits that quantify the search space will

be crucial to the success of this approach, and it may not always be obvious what

to measure. Unfortunately there cannot be any generally defined set of traits. New

traits will need to be determined for each new class of problem. Here I provide some

advice about identifying what phenotypic traits to measure, and how to measure

them.

The most important thing to remember is that each trait should define some

important quality of the individual in the phenotypic landscape. What this means is

33



that the value of a trait should have an effect on the fitness of the individual. The

design of phenotypic trait measures is similar to designing a fitness function for EA

— they are problem-specific, and it is more an art and an iterative process to come

up with one or more measurements that capture the important aspects of a problem.

Some classes of problem have been well studied, and the important aspects that

describe the search space are well understood. Defining traits in these cases is often

straight-forward. For example, function optimization problems have been a staple of

EC test problems for quite some time [De Jong, 1975,Goldberg, 1989], so much so that

they essentially act as the basis by which we view fitness landscapes in general. The

fitness function is defined as taking a set of parameters, and each parameter defines

a dimension over which the function is defined. Since the values of the parameters

are the only things that effect the fitness of an individual, we can consider them to

be the phenotypic traits that describe the landscape.

For more complex problems like agent domains or machine learning problems,

measuring phenotypic traits will be more difficult, and so they make good examples

to consider. When ECs are applied to these domains, the solutions often take the

form of executable objects (i.e. programs). These could take many forms including

rule-sets, neural networks, finite state machines and LISP s-expressions, among other

representations. Many such problems can be solved using any of the representations

just mentioned. One of our goals is to create a representation independent description

of the fitness landscape, so a good set of traits should be usable with any of these

representations without changing how the traits are measured.

There are a number of issues that should be kept in mind when devising a set of

traits. Considering how to balance these different properties will help one to think

about how to proceed with this design process.
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4.1.1 Issues

Coverage/Completeness

Ideally we would like to develop as complete a set of traits as possible. By “complete”

I mean that we would like to have a set of traits that describe the whole phenotypic

search space as well as possible. Another way of viewing this is to ask “Do the traits

that we have uniquely define an individual?” Previous applications of quantitative

genetics to EAs have used fitness alone, providing a very limited and incomplete view

of the nature of the fitness landscape. Part of the problem was that individuals that

are very different can have the same fitness. Similarly an incomplete set of traits can

fail to illuminate certain important aspects of a problem.

Machine learning problems are particularly susceptible to this issue because gen-

eralization is a critical part of the learning process. We expect our systems to be able

to handle new situations that they never faced during training. One way address this

issue is to create traits that are, in a sense, general too. Traits that measure a set of

behaviors that all fall into a broad category will be able to achieve the best coverage

of the search space. For example, trying to measure behaviors at a high level instead

of response to stimuli at a low level, creates an opportunity for more general traits.

This may require some imagination as well as some insight into the problem domain

itself.

It is difficult to offer advice as to how one can recognize when their trait set

is incomplete. Asking the question mentioned above about uniqueness of individu-

als seems to be a good starting point. It may be wise to ask oneself this question

throughout the design and implementation process.

If we fail to find a set of traits that provide complete coverage, all is not lost. One

convenient quality the quantitative genetics equations is that they degrade gracefully
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when given an incomplete set of traits. In other words, all the equations are still

completely accurate, at least within the context defined by that subset of traits. Of

course we will be looking at an incomplete picture of what is going on, and crucial

information could be missing.

Unnecessary traits

Unnecessary traits can come in a number of forms. For example, they may just not

affect the fitness, they may always by constant, or they may be so closely correlated

with another trait that they essentially are measuring the same thing. These can be

problematic because they can affect our ability to perform the necessary calculations.

I will discuss matrix computation issues in more detail in section 4.2. It is important

to realize that some of these issues can be avoided if we are careful in how we choose

our traits.

Linking Phenotype to Genotype

If one’s goal in using these tools is to identify and fix problem in an algorithm, then

it becomes important to identify connections between the traits and any aspects

of the representation or reproductive operators that are affecting those traits. The

more abstract the traits are, the more difficult this becomes, and so very low-level

descriptions of behaviors may be more appropriate to achieve this.

Unfortunately, this can creates a conflict with the issue of trait completeness

described above. There I suggested that higher-level traits may be better for getting

the best landscape description possible. For example, consider a problem where we are

trying to teach an agent to track another agent without being detected. A high-level

set of traits might measure things like: how much distance an agent keeps between

itself and the target, the length of time that it is able to maintain surveillance, and
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the number of times it is detected. These traits may be ideal for covering all the skills

that are necessary for describing the fitness landscape, but they may not be very

helpful for identifying what aspect of a representation or reproductive operators are

problematic for effective learning in this domain. Such connections would be tenuous

at best.

At the other end of the scale, a low-level phenotype (conceptually, at least) might

be something as simple as the input-output map that exactly describes the actions

the agent would take for any given set of inputs. Here we have a much better chance

of relating such information to the representational structure, and the effects of the

reproductive operators. Unfortunately, it becomes much more difficult to define a

complete set of traits. Such a set would have to describe the entire map, and this

might mean thousands of traits, one for each possible input. The only viable option

is to create sample sets of inputs that are hopefully representative in some way. If one

can define enough traits to get a reasonable sampling of the input space, or identify

important samples that yield particularly valuable information, then this approach

could still be useful.

Multivariate Normality

One important aspect of defining phenotypic traits that should be addressed are the

assumptions that are built into the quantitative genetics equations. Most important

among these is the expectation that the underlying distributions are normal, or at

least close to normal. In order to achieve this, biologist often remap the traits to

another scale using a variety of transformation functions [Falconer and Mackay, 1981,

Hartl and Clark, 2007].

There are a few qualities that any remapping function should have. First, it

should be a one-to-one mapping so that no information is lost. Also, if comparing
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one generation against another, the functions should be the same in both cases. In

general this means that the same mapping functions should be used throughout the

entire run of the algorithm. Ultimately, it is ideal if the combined set of remapped

traits is multivariate normal. In practice however, making sure each trait alone is

normally distributed is often enough.

Some functions are very commonly used, such as taking the exponent of a trait.

We have found that the sigmoid function is effective at reducing or eliminating out-

liers, which can be problematic. There are also some techniques, like Box-Cox es-

timation [Box and Cox, 1964], that may be able to provide general, and somewhat

automated, mapping solutions.

4.2 Computational Issues with Matrices

Up to this point I have implied that covariance matrices are equivalent to normal joint

probability distributions. It should be noted that not every M ×M matrix describes

a valid distribution. In order to do so, a matrix must have two properties. The first is

that it must be a Hermitian matrix. For our purposes, this essentially means that the

matrix is symmetric, and that the eigenvalues are real-valued (i.e. not imaginary).

The second property is that none of the eigenvalues can be negative. This type of

matrix is referred to by two equivalent names: positive semidefinite and nonnegative

definite. We can expect the P, O and D matrices to have this quality.

There is an important degenerate case for positive semidefinite matrices that oc-

curs when a matrix is singular. This means that the determinant is zero, and since the

determinant is essentially equal to the product of the eigenvalues, one or more of the

eigenvalues is therefore zero as well. Such a matrix defines a probability distribution

that has no density, and it causes problems when performing certain calculations, like
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finding the matrix inverse (e.g. P−1). A matrix in which all eigenvalues are greater

than zero is called positive definite, and if possible, we would like to work with such

matrices whenever possible.

Poorly chosen traits are one factor that can lead to singular matrices. There are

at least two situations that are likely to cause such problems. The first occurs when

selecting traits that show little to no variance, and the second involves selecting two

traits that essentially measure the same thing, or are at least very highly correlated.

Sometimes calculation errors can result in non-positive definite matrices also (matrices

with negative eigenvalues). These may be caused by roundoff error, or these can occur

when the number of samples (individuals in the population) is relatively small.

To deal with calculation errors, I use the techniques described by [Opgen-Rhein

and Strimmer, 2007], that was implemented in the corpcor package for the R statistics

program [Schaefer et al., 2010]. Simply stated, the idea is to create a covariance matrix

that describes an oversized probability density function for the given data, and then

iteratively shrink the distribution down until it roughly covers the appropriate region.

With this approach, the shrinkage can be halted in any direction before the associated

eigenvalue becomes negative or zero. I use this package in my analyses to calculate

all covariance matrices that are the result of the Var function (equation 3.5) as well

as any associated inverse matrices.

While the matrix version of Var should theoretically always result in a positive

semidefinite matrix, the same cannot be said of the cross-covariance function Cov

(equation 3.6). This function can result in perfectly valid negative definite matrices.

This means we have no guarantee that the G� matrix will be positive semidefinite.
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4.3 Matrix Similarity Metrics

When biologists consider the multivariate notion of heritability, they tend to think

in terms of the degree of similarity between the two probability distributions that P

and G describe. The more similar the two matrices are, the closer the heritability

will be to the identity matrix.

Matrix comparisons are often performed using statistical techniques like Common

Principle Component Analysis [Flury, 1988,Game and Caley, 2006]. In preliminary

experiments with CPCA, I found its output to be too course grained to be useful as

a diagnostic tool. This has led me to consider other approaches.

I had a number of goals in mind for the metric that I wanted to use.

1. Scalar: The resulting value produced by the metric should be a scalar number.

Matrices are too complex to analyze easily. Having scalar values that can be

plotted for each generation makes it much simpler to create plots that can be

understood, even if the metric is not perfect.

2. Identity: If a matrix is compared with itself, the resulting scalar value should

equal one. In other words, m(A,A) = 1, where m is the metric function and

A is a matrix.

3. Addition: The scalar results of the metric should retain a similar additive

quality to those of the original matrices that produced them. In other words, if

AX−1 + BX−1 = I, then m(A,X) +m(B,X) = 1. The hope is that this will

provide some insight into the interplay between various matrices that will help

with diagnosing problems.

4. Tractable: It is important that the calculations for the metric are tractable in

a wide variety of situations. If this is not the case, then some EAs and problem
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Figure 4.1: Geometric interpretation of the trace function.

domains could become impossible to analyze using such a comparison metric.

I have developed two metrics that come close to achieving the goals above. Both

are based on the matrix trace function.

4.3.1 The Trace Function

The trace function of a matrix is defined as follows:

tr(A) =
M�

i=1

aii, (4.1)

where A is an M×M matrix, and aij refers to the element of the matrix at row i and

column j. It is essentially a sum of all the diagonal elements of the matrix. It is also

equal to the sum of the eigenvalues, so it is essentially the sum of all the variation in

the matrix.

The trace function provides a useful basis for a similarity metric because it has
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an intuitive geometric interpretation. Consider the M dimensional hyper-rectangle

defined by the the eigenvectors of the matrix. Now consider a vector drawn from the

origin to a corner of this hyper-rectangle. The trace function returns a value equal to

the length of this vector. See figure 4.1 for an illustration.

In previous work I had developed a metric that was based on determinants [Bassett

and De Jong, 2011]. Determinants are particularly susceptible to problems related to

singular matrices. I have found the trace function to be much more robust to these

problems, thus making a better basis for a metric.

4.3.2 Similarity Metrics

The first metric I will use is defined as follows:

m1(A,B) =
tr(AB−1)

M
(4.2)

where A and B are both M ×M covariance matrices. This means, for example, that

our scalar metric for heritability will be tr(G�P−1)/M .

This metric meets the first three of the goals I described above quite well. First,

the result is a scalar. Second, m1(A,A)/M = tr(I)/M , which is guaranteed to equal

1. And third, it is not hard to show that the additive quality I discussed holds true

for this metric.

The one concern about this metric is in regards to tractability. As discussed earlier,

calculating the inverse of a matrix can sometimes be problematic. Because of this,

I decided to define a second metric that would be less susceptible to computational
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problems. It is defined as follows:

m2(A,B) =
tr(A)

tr(B)
(4.3)

Using this metric, heritability would be measured as tr(G�)/tr(P), population

heritability becomes tr(O)/tr(P), and perturbation becomes tr(D)/tr(P).

With this metric I have made a trade-off. Tractability is improved, but I have

sacrificed a certain amount of accuracy in the calculations in order to achieve it. In

other words, the “additive” quality that I described as a goal no longer holds under

all circumstances. Fortunately all the other goals are still met.

4.4 Plots

4.4.1 Matrix Ellipse Plots

Covariance matrices are not easily interpreted by just looking at the numbers. One

approach that can give some insight is to plot density contours associated with a

covariance matrix as ellipses. As described in section 3.3.1, an ellipse can represent

one standard deviation of the multivariate normal distribution. Plotting ellipses from

multiple distributions on the same plot also provides a method for visually comparing

matrices.

The ellipse in figure 4.2 is an example of just such a plot. What follows is a brief

description of how to calculate and plot one of these ellipses. We begin with the

matrix A for which we want to plot an ellipse. Our first step is to use the singular
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Figure 4.2: A matrix ellipse plot shows an ellipse representing one standard deviation
of the joint probability distributions described by the covariance matrix. This ellipse
is projected onto a 2 dimensional plane.

value decomposition (SVD) function to calculate a transformation matrix.

B = svd(A) (4.4)

The SVD function is essentially the matrix equivalent of the square root function,

so the new matrix B now represents standard deviations instead of variances. While

the B matrix is defined for all the traits, an ellipse plot has to be plotted on a 2

dimensional surface, so we will need to reduce it to represent only a subset of entire

matrix. The simplest approach is to choose only 2 traits to plot. This has the effect

of projecting the entire ellipsoid onto the plane defined by those two trait dimensions.

For example, if we are most interested in the traits t1 and t2, we can create a subset
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of the matrix as follows:

C =




bt1,t1 bt1,t2

bt2,t1 bt2,t2



 , (4.5)

where bi,j refers to the element of matrix B at row i and column j.

Finally, we create a set of points that are evenly spaced around a unit circle, and

then multiply these by the transformation matrix C. The equation for the points is

as follows,

pi =




xi

yi



 =




cos(2πiN )

sin(2πiN )



C (4.6)

where i ∈ [1, 2, · · ·N ], and N is the total number of points generated. These points

can then be plotted as a polygon, giving us an approximation of an ellipse, such as

the one in figure 4.2.

4.5 Eigenvalue plots

As mentioned earlier, when transforming all the variation in a matrix into a single

scalar value, a lot of information is lost. For example, by using the trace function,

we are summing all the eigenvalues together. This means that two very different

matrices could actually have the same scalar value associated with them. Sometimes

it may be useful to get more detailed information about the state of the matrix, while

still avoiding all the detail. One technique that allows us to get achieve this middle

ground is to examine and compare the individual eigenvalues instead of summing

them together.

In general I will be plotting the trace values of the various matrices (P, O, etc.),
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or the m1 or m2 metrics for perturbation and both forms of heritability for each

generation in the run. When I need more detailed information, I will also generate

eigenvalue plots for these matrices. The X axis will indicate the generation of the

algorithm and the Y axis will indicate the magnitude of the eigenvalue. For a single

N ×N matrix, N lines will be plotted, one for each eigenvalue.

This plot will allow us to see how much distortion exists in the matrix. If all

the lines have very similar values, then the distribution is essentially spherical (equal

variance in every direction). But when eigenvalues are quite different from one an-

other, it means that the variances are much higher in some directions than in others.

This indicates a distortion, and may be useful for identifying when the distribution

is changing shape, even if the total amount of variance remains the same.

With the various metrics and tools outlined in this chapter, we now have what we

need to examine the internal behavior of an EA as it proceeds through a run. In the

next chapter we will apply these tools to some simple EAs on some well understood

function optimization problems, so that we can get a sense for how they actually

behave in specific situations.
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Chapter 5: Methods Validation with Function

Optimization

For many, equations do not provide enough of a handle for really understanding a

theory. A set of simple examples can often expose some of the insights that a theory

has to offer. This chapter is devoted to working through some commonly used EAs

when applied to some relatively simple problems. I expect this will help some to attain

an intuitive understanding of the equations from chapter 3. These experiments will

also give us a chance to validate that the tools are, in fact, showing us what we would

expect to see.

The class of problems we will be looking at is function optimization. The particular

advantage here is that fitness landscapes become very easy to visualize. Our very

notion of a fitness landscape is almost synonymous with a multivariate function, and

these are the first types of problems that many who are learning about EAs will see.

5.1 Random Search

Before we look at a proper EA, as a baseline we will examine an algorithm that is

less complex. The random search algorithm is often used as a baseline of comparison

in EA research. It also offers us some interesting insights as it represent an extreme

case in the spectrum of possible evolutionary behaviors.

When a random search is performed, a series of randomly generated potential

solutions are examined one by one. The only information that is retained is the best

solution found so far; in other words, the solution with the best fitness. Random
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potential solutions can be generated in a number of way, but typically the parameter

values that define a solution are drawn from a uniform distribution of the set of

all possible values. When one possesses some specific knowledge of the search space,

values can be drawn from a subset of possible values, thus allowing for a more focused

search.

5.1.1 EA Framework

In order to adapt the random search algorithm for use with my tools I essentially

need to implement it within an EA framework. This is easy to do with just a couple

of simple changes.

First, we use an EA with non-overlapping generations, along with determinis-

tic selection. In other words, every individual is selected once, and only once, for

reproduction. This has the effect of providing no selection pressure.

The second step involves creating a new reproductive operator that just generates

new individuals completely randomly. No genetic information is passed from parent

to offspring.

5.1.2 The Problem Function

The choice of a test problem is not really important, since this algorithm has no bias

to guide it toward better solutions. This means that the only important factor is the

overall distribution of fitness values among the potential solutions. Nonetheless, we

will begin with a problem that is fairly simple for an EA to solve. Specifically, we

will examine what is often referred to as the sphere function:

f(X) =
N�

i=1

x2
i (5.1)
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where X is a vector of size N and xi is the ith component of X.

5.1.3 Representation

Individuals will be represented as a string of real-valued numbers. These numbers

will be referred to as genes.

During initialization for this problem, all genes are generated within the range

[−5.12, 5.12). Due to the way our random search reproductive operator works, this

also means that all genes will always fall within this range. This constraint may not

be enforced for other reproductive operators we look at later in this chapter, though.

In this experiment, we use N = 10. This number is chosen somewhat arbitrarily,

but I wanted to have enough dimensions so that examining every possible gene-gene

combination would be an involved process.

5.1.4 Defining Traits

When defining traits, our goal is to define a set that best describe the search space.

For function optimization problems, the most straight-forward conceptualization of

the search space is that of the parameter space. In other words, the inputs to the

fitness function. So for equation 5.1, each parameter xi will also be treated as a

quantitative trait. Traits will be defined similarly for all problems in this chapter.

5.1.5 Algorithm Behavior

Using a population size of 50, the algorithm was run for 200 generations. This means

that 10,000 individuals were examined during the course of each run. To get a sense

for how the algorithm performs, see the the best-so-far curve in figure 5.1. This plot

was averaged over 10 runs, and the whiskers indicate the 95% confidence intervals for
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Figure 5.1: Best-so-far plot for the random
search algorithm Results are averaged over
10 runs, and the whiskers represent 95%
confidence intervals.
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Figure 5.2: Scatter plot of parent and off-
spring traits during random search. Points
are projected onto a plane defined by two
traits.

the average. As we would expect with such an undirected search, there appears to be

plenty of room for improvement.

To understand what is happening inside the algorithm, we can plot some of the

operator’s characteristics by applying the metric m1 to them. Before we do that,

though, we will take a more detailed look at the populations from a phenotypic

perspective so that we can get a feel for how those metrics are calculated, and what

they are really indicating.

Figure 5.2 shows a scatter plot of population traits at the first generation of one

of the runs. There are 10 traits in our experiment, but this type of plot only shows

two. This is mainly because it is too difficult to visualize more than two dimensions

at a time. This means that all the points are projected onto the plane defined by

traits 1 and 2. Because we know that our landscape has a high degree of symmetry,
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we can expect to see the same thing no matter which two traits we choose. With a

different landscape we would have no such guarantee.

The plot shows both the selected parents and the resulting offspring. In addition,

I have plotted the ellipses for the covariance matrices P and O that are calculated

from these populations. These ellipses indicate density contours that are one standard

deviation from the mean. As you can see, the ellipses are very similar in size. The

centers of the ellipses are placed at the population means, which is why they look

offset from each other. It should be noted, though, that the mean has no effect on

the metrics that are ultimately calculated. These metrics only compare the variances

of the distributions.

The scatter plot does not give us any sense of the relationship between parents

and offspring. In figure 5.3 I replot these two populations, but with lines connecting

each parent with its offspring. Of course it is very difficult to make any sense of this

plot. Figure 5.4 recasts this information in a way that is hopefully easier to read,

while still being intuitive. Imagine taking each line in figure 5.3 and translating it

so that the parent is at the origin. This gives a sense for how much variation in

the offspring population is a result of the reproductive operators. This is what the

D matrix represents, and is calculated using the full N dimensional versions of the

points shown in the plot. I have plotted the ellipse for D in figure 5.4 as well.

Now we put these pieces together so that we can start to get a picture of how our

algorithm is behaving. Figure 5.5 plots all three of the ellipses we have seen so far

for the first generation. As I mentioned before, the P and O ellipses are very similar

in size. Interestingly though, the D ellipse is much larger.

While the scatter plots and ellipses provide us with useful information in a very

intiuitive form, they become quite difficult to use when one cannot rely on their

landscape having a high degree of symmetry, as we have done here. You would have
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search algorithm. A line is drawn from ev-
ery offspring to its parent.

−10 −5 0 5 10

−1
0

−5
0

5
10

Trait 1

Tr
ai

t 2

offspring − parent
D ellipse

Figure 5.4: Scatter plot of offspring rela-
tive to their parents during random search.
Parent trait values are subtracted from off-
spring values. Ellipse indicates one stan-
dard deviation.
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Figure 5.5: Standard deviation ellipses for
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ence) matrices for random search.

52



to create such a plot or all trait combinations to be confident that you knew what

was really going on with the populations. This is where the metrics described in

section 4.3 become useful. They aggregate critical information about each matrix

into a single number so that only a few plots are needed.

In figure 5.6 I plot the trace of the four matrices (P, O, D and G�) from equa-

tion 3.7 throughout the run of our random search algorithm. To be more precise,

what is plotted are the traces averaged over 10 runs. The whiskers indicate 95%

confidence intervals. Here we see much of the same information we learned from the

scatter and ellipse plots. It may be a little difficult to see from the plot, but lines

for P and O matrices are plotted right on top of one another, confirming that the

variation in the two populations is very similar. We can also see that they remain the

same throughout the runs. In other words, our populations are not converging at all

in phenotypic space, but instead continue to search the entire search space through-

out the run. Since we are not using any selection pressure this should not come as a

surprise, but as we will see in the next section there is more to it than that.

Instead of trying to explain the D and G� curves on this plot, consider figure 5.7,

where we plot m1 metrics for both forms of heritability, as well as perturbation. As

discussed before, in a multivariate analysis these concepts are best described using the

matrices G�P−1, OP−1 and DP−1. Here we have reduced these matrices to scalars

using the m1 metric, while hopefully retaining useful and important information.

We can see a number of things from this plot. First, the population heritability

remains close to 1, indicating the the parent and offspring populations remain sim-

ilar throughout the runs. Next we notice that while the heritability is quite small

(almost zero), the perturbation is relatively large. This means that the operators are

responsible for most of the variation in the population. In our example here, variation

in the offspring population can only come from two sources. It is either created by
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Figure 5.6: Matrix trace curves of P, O, D
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Figure 5.7: Trace of matrix ratios for ran-
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Results are averaged over 10 runs.
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the reproductive operators (perturbation), or it is retained from the variation that

already existed in the original parent population (heritability). So we see that with

our random search operator, populations retain no variation from previous genera-

tions. Of course this makes sense, since each new individual generated is completely

independent of its parent.

5.1.6 Adding Selection

Next we take a this algorithm one step closer to being an EA by adding some selection

pressure. In fact I have added quite a high selection pressure in order to exaggerate

the effects and make them more obvious. I have used truncation selection, with a

truncation ratio of 50%, and therefore the bottom 50% least fit individuals never get

to reproduce.

As we know, individuals are always generated within the same bounds, no matter

what form the population of selected parents takes. We should expect then that

adding selection will not have any effect on the performance of the algorithm. This

is verified by the best-so-far plot in figure 5.10. The curve for 50% truncation is not

significantly different from the curve representing no selection pressure.

The traces of the matrices P, O, D and G� are plotted for this version of random

search in figure 5.8. Now we see that thePmatrices, which are the covariance matrices

associated with the selected parent populations, are much smaller throughout the run.

They are smaller than they were in the previous experiment shown in figure 5.6, and

they are also smaller that the corresponding O matrices in this experiment.

One way to view selection is as a mechanism to constrain the search to more

promising parts of the search space. From this perspective, selection’s job is essen-

tially to exploit existing knowledge about the landscape. In this experiment, selection

is doing its job, but this is not enough. The reproduction operators need to provide
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Figure 5.10: Best-so-far plot of random search algorithm with and without selection.
Results are averaged over 10 runs. The whiskers indicate 95% confidence intervals.

support in order to maintain those constraints. In other words, the offspring popu-

lation should occupy the same general part of the phenotype space as the selected

parent population. Said another way, the population heritability (OP−1) needs to be

as close to the identity matrix as possible. If this were the case, then tr(OP−1)/N

would equal 1. As we can see in figure 5.9, this is not the case.

One simple approach to maintaining the constraints set by selection is to retain

some of the variation of the selected parent population in the offspring population.

This means that operators with good heritability (G�P−1) should be able to achieve

this goal. This is why I believe there is a relationship between heritability and ex-

ploitation, even though population heritability (OP−1) is the better measure of ex-

ploitation.
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5.2 Selection and Cloning

We will consider one more baseline example, which in many ways is at the opposite

end of the spectrum from random search. In this case, the reproductive operator

creates no variation.

Consider an algorithm where the only reproductive operator is cloning. In other

words, every offspring produced is an exact copy of the parent. Thus the only thing

that changes the composition of the population is selection. In this case I use a rank

proportional selection with stochastic universal sampling (SUS) [Baker, 1987]. The

result is a selection pressure that is the same as binary tournament selection, but

with much less genetic drift [De Jong, 2006, pg. 125].

Looking at figure 5.11, we can see that, as opposed to the random search algorithm,

the population definitely converges in phenotype space. Also, the curves for the P

and O matrices seem to lie directly on top of one another. The trace of G� is not

plotted on this graph, because it also lies directly on the curves for P and O, and

makes the plot too difficult to read. Another thing to notice is that the trace of the

D matrix remains at zero throughout the run.

In figure 5.12, we can see that despite the fact that the populations are converging,

the metrics for perturbation and both forms of heritability remain fairly constant

throughout the run, at least until generation 10 or so. At this point the parent

population has converged to a single point in phenotype space, thus eliminating all

variance, and making these ratios undefined.

Most importantly though, when we compare figure 5.12 with its counterpart in

random search, figure 5.7, we can see that both maintain values near 1 for population

heritability, but they do so in very different ways. In the random search algorithm,

all phenotypic variation is derived from perturbation, and none is retained through
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heritability, but in the cloning algorithm, just the opposite is true.
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Figure 5.11: Matrix trace curves for
cloning-only EA on the sphere func-
tion. Results are averaged over 30 runs.
Whiskers indicate 95% confidence.
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Figure 5.12: Trace of matrix ratios for
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Results are averaged over 30 runs.

Despite the fact that the cloning-only algorithm is able to converge on a solution,

its performance is really not very good, as can be seen in figure 5.13. This will come

as no surprise to anyone familiar with EAs. Without additional variation from the

reproductive operators, the algorithm is unable to explore beyond the solutions that

exist in the initial population.

For that matter, neither of these algorithms perform particularly well. This high-

lights the fact that, while both perturbation (exploration) and heritability (exploita-

tion) are important, neither one alone is sufficient to create a high performance search

algorithm. The best algorithms (and operators) will have to achieve a proper balance

between the two.
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Figure 5.13: Best-so-far curve for cloning-only EA on the sphere function. Results
are averaged over 30 runs. Whiskers indicate 95% confidence interval.

5.3 Gaussian Mutation

Now that we have examined two baselines at the extreme ends of the spectrum, we

will look at a relatively simple EA to see how it behaves in comparison. I have chosen

an EA that uses just Gaussian mutation with a fixed standard deviation, along with

some form of selection. For each gene in the genome, the mutation operator adds a

number drawn from from a Gaussian distribution. The selection operator will again

be the SUS rank proportional selection, and the fitness landscape will be the Sphere

function (equation 5.1) with N equal to 10.

For this experiment, I will compare the behavior of the algorithm using varying

amounts of mutation. Specifically, I use standard deviation values of 0.05, 0.1 and

0.2. Figure 5.14 shows the best-so-far curves for the differing amounts of mutation.

As we can see, larger amounts of mutation allow the algorithm to zero in on the
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solution much more quickly. But when we zoom in on the curves toward the end of

the runs, as in figure 5.15, we can see that better solutions can be found when using

the smaller amounts of mutation.
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Figure 5.14: Best-so-far curves for Gaus-
sian mutation EA with 3 different standard
deviations on the sphere function.
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Figure 5.15: The same best-so-far curves
as in figure 5.14, but zoomed-in to allow
easier comparison of the final results.

We will start by looking at some of the ellipse plots for one of EAs to get a sense

for what is happening. Figures 5.16 through 5.19 show a progression for a single run

of the EA at generations 1, 6, 10 and 199. These were done with a mutation standard

deviation value of 0.2. There are a few things we can notice here. First, the D ellipse

remains the same shape and size throughout the run. This is the result of the fixed

standard deviation value for the Gaussian mutation.

The second thing we can see is that the P and O ellipses are very similar through-

out the runs, although a close examination of generation 199 (figure 5.19) will show

that they do diverge a bit towards the end of the run. Also, the population has con-

verged down to an area that is similar in size to the D matrix ellipse. In fact what
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has happened is that the amount of variation provided by the Gaussian mutation

has come into balance with the reduction in variation caused by selection. Once this

occurs, the population can no longer converge, and the search turns into something

more closely resembling random search within that small area.

Finally, we can see that by generation 10 (figure 5.18), the population has largely

converged on an area that is not near the optimum, which is at the origin. From

that point forward, the algorithm must explore beyond the bounds defined by the

population in order to make its way to the optimum.

Instead of pouring through all these plots of the populations in trait-space, we

can look at our simplified metrics. In figure 5.20, I plot the trace values for the D

matrices throughout the runs. Each line is averaged over 10 runs. Since we are using

a fixed standard deviation for the mutations, what we see is that the variance in the

D matrix also remains fixed throughout the run, just as we saw with the ellipse plots.

Looking at figure 5.21, we see that the phenotypic variation among the selected

parents decreases in the early part of the runs. As the search proceeds, the population

converges on an optima in the search space. Eventually these curves level off, though.

This happens somewhere between generation 25 and 50, depending on which curve

we are looking at. This leveling off occurs when the loss in variation due to selection

and drift begins to balance the increases due to mutation.

Putting these two components together, we can examine the amount of perturba-

tion created by the operators, as seen in figure 5.22. Since this measure is a ratio, it

describes the amount of exploration relative to the region defined by the population of

selected parents. This is why the curves increase over time, even though the mutation

standard deviations are fixed. What we see, at least on this fitness landscape, is that

higher perturbations tend to lead to faster convergence times.

Turning our attention from exploration to exploitation, figures 5.23 and 5.24 plot
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Figure 5.16: Standard deviation ellipses for
Gaussian mutation EA at generation 1.
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Figure 5.17: Standard deviation ellipses for
Gaussian mutation EA at generation 6.
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Figure 5.18: Standard deviation ellipses for
Gaussian mutation EA at generation 10.
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Figure 5.19: Standard deviation ellipses for
Gaussian mutation EA at generation 199.
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Figure 5.20: Trace of the D matrix for
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Figure 5.21: Trace of the P matrix for
Gaussian mutation EA with 3 different
standard deviations on sphere function.

heritability and population heritability respectively. We can see that heritability

maintains a consistent value near 1.0 throughout the run for all mutation standard

deviations. Population heritability, on the other hand, moves away from 1.0 at dif-

ferent rates for the different mutation standard deviation values. The more quickly

it moves away from 1.0, the more quickly it seems to lose its ability to converge on a

solution.

This emphasizes an important point. Both forms of heritability may be important

for diagnosing an EAs behaviors. In fact, ultimately population heritability may be

a more accurate measure of exploitation than standard heritability.
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Figure 5.22: Perturbation (tr(DP−1)/3)
for the Gaussian mutation EA with
3 different standard deviations on the
sphere function.
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Figure 5.23: Heritability (tr(G�P−1)/3)
for the Gaussian mutation EA with
3 different standard deviations on the
sphere function.
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Figure 5.24: Population heritability
(tr(OP−1)/3) for the Gaussian muta-
tion EA with 3 different standard de-
viations on the sphere function.
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5.3.1 Side-Effects of Using Fixed Sigmas

With the sphere function, using the same standard deviation on each gene seems

perfectly reasonable. When we examine a different fitness landscape though, we see

that some problems arise. For example, take the following function which I call the

valley function:

f(X) = |x1|+ 10

����
N�

i=2

x2
i , (5.2)

where X is a vector of size N and xi is the ith component of X. The result is a valley

that runs the length of the first dimension (x1). The valley walls are fairly steep,

coming to a sharp edge at the valley floor. The valley floor itself has a gentle slope

toward the origin, which is the location of the global minimum. For this problem we

will use a value of N = 3 to help exagerrate some of the effects so they are easier to

recognize.

The same EA from the previous experiment (Gaussian mutation only) was run

on this landscape, with a fixed standard deviation of 0.1. The best-so-far curves of

this EA are plotted in Figure 5.25, as run on both the sphere function and the valley

function. We can see that the performance on the valley function is significantly

worse.

Figure 5.26 shows the quantitative genetics metrics when run on the valley func-

tion. Most interesting is to compare both population heritability (OP−1) here, with

the sphere function (figure 5.24). The value has increased from approximately 1.3 on

the sphere function, to close to 1.7 on the valley function. The metrics do no really

provide enough information to diagnose the situation any further, so we will have to

try one or two other approaches.

Figures 5.27 gives a much clearer view of the problem. Note in this plot that the
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valley floor is aligned along trait 1, and so it runs along the x-axis. It is important

that trait 1 is visualized in this figure in order to see this effect. This provides a

further reminder that without the metrics, all trait combinations need to be plotted

to be sure of what is happening.

In figure 5.27 we see is that as the population converges on a solution, certain

dimensions (in this case trait 2, but the same happens with trait 3 also) cannot

converge any further because it has reached a limit set by the Gaussian standard

deviation in that direction. In other words, the standard deviations are not well

tuned to the problem, and as a result it keeps exploring up the sides of the valley

instead of along the valley floor, where the fitnesses are better. In particular, this can

be seen by the fact that the O ellipse is larger along trait 2 than the P ellipse is.

Figure 5.28 gives another view of this effect. Here, at each generation, the OP−1

matrix is averaged over the 30 runs, and the eigenvalues are then calculated and

plotted. Recall that the trace function is equal to the sum of the eigenvalues. Also, if

the O and P matrices were identical, the eigenvalues should all be close to 1. Instead

what we see is that two of the eigenvalues are much larger than 1, while a third seems

to be very close to 1. Eigenvalue 3 corresponds to trait 1, which is easily verified by

examining the corresponding eigenvector.

What this means is that we can improve performance of the algorithm by adjusting

the standard deviation in each of the dimensions to something that is appropriate for

the particular problem. As we will see though, there are several EA operators which

can perform this adjustment automatically.
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Figure 5.25: Best-so-far curves for Gaus-
sian mutation EA on the sphere and valley
test functions.
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Figure 5.26: Heritability, population her-
itability, and perturbation for Gaussian
mutation EA on the valley function.
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Figure 5.27: Standard deviation ellipses of
the P, O and D matrices for Gaussian mu-
tation EA on the valley function at gener-
ation 15.
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lation heritability (OP−1) matrix for the
Gaussian mutation EA on the valley func-
tion. Results are averaged over 30 runs.
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5.4 Recombination

Another frequently used reproductive operator, especially within the Genetic Algo-

rithm (GA) community, is recombination. This operator, also referred to as crossover,

has some interesting properties that actually balance out the weaknesses of mutation,

and so I will spend a little time here examining it.

The specific recombination operator I will be examining is called uniform recom-

bination, and it is typically implemented in the following way. After two parents are

selected, they are both given to the recombination operator. The operator iterates

through the genomes of both parents simultaneously, and with each step i, the genes

that occupy location i in each genome are swapped with some probability pswap. The

resulting individuals are either passed on to the next reproductive operator (mutation

for example), or placed in the offspring population.

We begin by examining an EA that uses uniform recombination, but no mutation.

It would be unusual to use such an EA in practice, because recombination is known

to have trouble maintaining diversity in the population. For this reason, I will use a

population size of 1000 individuals instead of 100. I will again be using the SUS rank

proportional selection to reduce genetic drift. Finally, the probability of swapping two

genes is pswap = 0.5, and the probability of performing recombination is pcross = 1.0.

In other words, every individual that is selected will participate in recombination,

and none will just be cloned. The genome will again contain 3 genes (N = 3) to make

comparisons with certain other experiments easier.

Ten runs of the EA were performed on the sphere function. Figure 5.29 gives

us a snapshot of the parent and offspring trait values in the first generation of one

of those runs. Note that lines are also drawn between the parents and the offspring

that they produced. Because we are using the sphere function again, these plots are
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duced it for generation 1 of an EA using
only uniform recombination. Parent trait
values are subtracted from offspring trait
values.

representative of what is happening in all dimension despite the fact that only 2 traits

are considered.

One thing that jumps out immediately is the large number of vertical and hori-

zontal lines connecting parents and offspring. This is a well known feature of recombi-

nation. When one gene is swapped and the other is not, the traits values will change

on one axis but not the other. This can also be seen in figure 5.30, which shows

the offspring traits relative to those of their parent’s. A large number of offspring lie

along either the x or y axis.

There is another limitation to recombination that may not be as obvious at first

glance. Examining figure 5.29 carefully will reveal that recombination never generates

individuals outside of the bounds set by the individuals it is given to work with, which
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in this case is the selected parents. This means that once the population begins to

converge on an area of the search space, it will never be able to explore beyond there

using recombination alone. This is one of the reasons that recombination is usually

used along with some form of mutation.

These two observations highlight an important weakness in the statistical tech-

niques presented here. Because the covariance matrices represent aggregates of points,

certain biases in the data may be hidden or obscured. Some parts of the search space

may be rarely (or even never) reached by certain reproductive operators, while others

are over-sampled. This may not be obvious by just looking at the covariance matrices.
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Figure 5.31: Matrix trace values for an EA
using only uniform crossover on the sphere
function.
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Figure 5.32: Perturbation and both forms
of heritability for an EA using only uniform
crossover on the sphere function.

Nonetheless, the information we gain from these tools can still be useful despite

these limitations. To see what I mean, see figure 5.31, where I plot the trace values

for the P, O, D and G� matrices. It may be a little difficult to see, but the curves

for tr(P), tr(O) and tr(D) all follow the same path. One of the implications of this
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is that the amount of variation created by recombination adapts as the population

changes. In other words, recombination does not seem to have any limit on how far

the population can converge in phenotype space, as we saw with Gaussian mutation.

Now looking at the quantitative genetics metrics, figure 5.32 shows the curves

for perturbation and both forms of heritability. First we should note that all the

lines stop at about generation 25. At this point the phenotypes of the selected parent

population have converged to a single point, so the variance becomes zero. As a result,

all the the ratios become undefined. This is a well know issue with recombination.

Recombination never actually changes any gene values, it just rearranges them. As a

result, eventually the population will converge to a single individual. This is another

reason recombination is usually used in conjunction with mutation.

In figure 5.32, we see that perturbation (DP−1) is much higher than what we

saw with Gaussian mutation, while heritability (G�P−1) is much lower. The re-

sult, though, is that population heritability (OP−1) remains relatively stable at 1.0

throughout the run until the population converges. In many ways this appears to be

the ideal situation. Recombination is capable of much more exploration, especially

early in the run, without sacrificing population heritability.

As mentioned, the curve for tr(G�P−1)/3 is significantly lower than with the Gaus-

sian mutation operators, and maintains a level of roughly 0.5. Recall that this is

heritability from a single parent. With recombination, each individual now has two

parents, so roughly half of its traits are inherited from one parent, and half are inher-

ited from the other. This is why tr(G�P−1)/3 is close to one half. One way of viewing

this is as an exploration/exploitation trade-off. Recombination sacrifices some ability

to exploit good solutions in return for better exploratory capabilities.

It should be noted that this is where my definition of heritability differs from the
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standard biological definition. Recall that biologists tend to use midparent calcula-

tions (averages of parent traits), where I do not. The result is that the relationship

between their definition and mine is GP−1 = τG�P−1, where τ is the number of

parents per offspring. Most EC evolvability techniques use the midparent approach

as well. If we were to use this approach in the above experiment, we would see values

close to 1.0 for the tr(G�P−1)/3. This would have the advantage of making it easier to

compare operators like recombination and mutation, but we would have to reconsider

how we analyze algorithms that mix sexual and asexual reproduction.

5.4.1 Adaptation

In the last experiment we saw that recombination is able to adapt the amount of

variation in the D matrix to match that in the P matrix, thus keeping the amount

of perturbation consistent throughout the run. Here we test this capability a little

further by running our recombination EA on the valley function (equation 5.2).

As can be seen in figure 5.33, recombination is still able to achieve this adaptive

quality, even when the variation along different axes if quite different. This enables

the algorithm to still maintain values close to 1 for population heritability throughout

the run (see figure 5.34).

5.4.2 Epistasis

The recombination operators are not without their problems though. Take, for ex-

ample, the following fitness function:

f(X) =

����
x1 + x2

2

����+ 10

����(x1 − x2)2

2
+

N�

i=3

x2
i (5.3)
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Figure 5.33: Standard deviation matrix el-
lipses at generation 10 for an EA using uni-
form recombination on the valley fitness
landscape.
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Figure 5.34: Trace of matrix ratios for an
EA using uniform recombination on the
valley function.

where X is a vector if size N and xi is the ith component of X.

This function is actually very similar to the valley function from equation 5.2, but

instead of the valley floor running along the axis associated with x1, it runs along a

line that is on the diagonal between x1 and x2. Again, the value of the function at

the origin is zero, and this is the global minimum.

Landscapes like this are said to create epistasis because certain genes (in this case

genes 1 and 2) have to stay correlated in order to achieve good fitness values. In other

words, to move along the valley floor requires changing the values of two genes at the

same time. This creates difficulties for recombination operators because their search

method tends to be a lot like a line search, as we saw in figure 5.29.

I ran the same recombination-only EA on this landscape. We can see in figure 5.35

what effect epistasis has on perturbation and population heritability. Both continue
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to grow as the algorithm progresses. Figure 5.36 can help explain what is happening.

The D matrix no longer matches the P matrix, and now has the effect of removing

any correlation between genes. Visually this has the effect of expanding the O ellipse

to be “rounder” than the P ellipse. This effect is only visible with this specific trait

combination, showing once again that using the metrics is a much quicker way of

identifying problems in our algorithm.

Figure 5.37 shows the eigenvalues of the average OP−1 matrices. From this we

can see that this expansion effect continues throughout the early stages of the run,

and tends to get worse over time. Although it is not shown, in the later stages of the

run the largest eigenvalue eventually returns back to 1 just as the population finally

converges.

The behavior described above was first noted by Geirenger [Geiringer, 1944], and is

now a well understood phenomenon of recombination. What is important, though, is

that these tools can provide a method of identifying this type of problem, and guide

the practitioner to the exact genes that have the conflict. There are a number of

possible approaches that can then be taken to solve the problem, such as eliminating

recombination between these genes, or re-orienting the landscape.

5.5 Adaptive Gaussian Mutation

We saw that using Gaussian mutation with a fixed standard deviation has some

problems that make it less than an ideal reproductive operator. One possible solution

is to use Gaussian mutation in conjunction with recombination. In many cases, the

strengths and weaknesses of the two operators balance each other out. Another

approach that has been used, especially in the Evolution Strategies (ES) community,

is to modify the Gaussian mutation operator in such a way that the problems are
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Figure 5.35: Trace of matrix ratios for an EA using uniform recombination on the
diagonal valley fitness landscape.
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Figure 5.36: Matrix standard deviation el-
lipses at generation 10 for an EA using uni-
form recombination on the diagonal valley
function.
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Figure 5.37: Eigenvalues of the OP−1 ma-
trix for an EA using uniform crossover on
the diagonal valley fitness landscape. All
curves are averaged over 30 runs.
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directly reduced or eliminated.

At a very high level, what these operators do is adapt the D matrix by modifying

the Gaussian standard deviation during the running of the EA. Often this adaptation

is done using the EA itself. A typical approach is to add what I will call “shadow

genes” to the genome that carry information about the Gaussian standard deviation.

This generally means the the genome size is at least doubled, since every gene has a

shadow gene associated with it. The adaptive mutation operator I will be examining

is one described in [Schwefel, 1995]. In some cases, even more information is added

to the genome that tracks correlations between genes. This often takes the form of a

rotation that is applied to a covariance matrix that is defined by the shadow genes.

To examine the behavior of this reproductive operator, I will be working with an

EA that performs only selection and adaptive Gaussian mutation, using a population

size of 100. Unlike most ES algorithms, selection will precede mutation. In other

words, the algorithm uses parent selection instead of survival selection.

The selection operator used is much weaker than in the other EAs we have looked

at. I used truncation selection such that 90% of the population is selected, and only

10% is discarded. Every individual that is selected reproduces at least once, and a

random 10% of the selection parents also produce a second offspring. The reasons for

using such a weak selection pressure will become clear as we examine the results.

The algorithm was run on the valley function (equation 5.2), which you may recall

is the function that showed problems with the fixed Gaussian mutation operator. In

figure 5.38 we can see that, unlike before (figure 5.27), the D matrix has been adapted

so that it is proportional to the P matrix. As a result, the O and P matrices are very

similar. This is verified in figure 5.39, which shows that the eigenvalues of the OP−1

matrices throughout the run. At each generation, the OP−1 matrices where averaged

over 30 runs. When compared with figure 5.28, we can see that the adaptive version
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Figure 5.38: Matrix standard deviation el-
lipses at generation 120 for an EA using
adaptive mutation with 90% truncation se-
lection on the valley function.
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Figure 5.39: Eigenvalues of the OP−1 ma-
trix for an EA using adaptive mutation
with 90% truncation selection on the val-
ley function. All curves are averaged over
30 runs.

resolves some of the problems we were seeing before.

When O and P are similar, we know that OP−1 will be close to the identity

matrix, and therefore population heritability will be close to 1. Figure 5.40 confirms

this, as well as showing how heritability and perturbation both adapt over time. We

can see that perturbation (and thus exploration) decreases throughout the run. The

reasons for this are not completely clear, and may be an interesting area of future

research.

When we look at the best-so-far curve to this EA in figure 5.41, we can see that

with weak selection, the algorithm does a very poor job of driving towards a solution.

Runs were performed using the SUS rank proportional selection, and an even stronger

form of truncation selection in which only 20% of the population is selected. From

77



0 10 20 30 40 50

0
1

2
3

4
5

Generations

tr(OP!1) 3
tr(G'P!1) 3
tr(DP!1) 3
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Figure 5.41: Best-so-far curves for three
EAs using adaptive mutation with varying
degrees of selection pressure on the valley
function. All curves are averaged over 30
runs.

these we can also see that using progressively stronger forms of selection provides

better results. But there are some interesting side-effects that occur when selection

pressure is increased.

5.5.1 Selection Pressure and Heritability

In the algorithms we have examined so far, selection and heritability have acted like

a ratchet. Selection reduces the scope of the area being searched, thus tightening the

ratchet. The slipping of the ratchet is the analog to what happens when population

heritability is close to I. The algorithm re-samples the very same region that was

defined by the selected parents, and thus the search scope is unchanged.

This ratchet-like behavior also places a limit on the selection pressure. If selection
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is too strong, the population will converge too quickly, and there will not be enough

opportunity to perform an effective search. Selection pressure must be kept reasonably

weak or else the algorithm will converge on suboptimal locations in the space.

With fixed Gaussian mutation and recombination, heritability is a critical part of

the functioning of the algorithm. The only information those operators have about

the the current scope of the search comes from the population of selected parents, and

the only way they can maintain that scope is to retain it by having a high population

heritability.

The adaptive mutation operator is not subject to the same limitations though.

The scope of the search can be maintained by the standard deviation values stored

in the shadow genes. As a result, much higher selection pressures can be used. The

adaptive mutation operator can then expand the population back to the appropriate

scope so that the search does not converge too quickly.

Figure 5.42 shows the quantitative genetics metrics for the EA using adaptive

Gaussian mutation with the SUS rank proportional selection that we have used in

previous experiments. Now we see that perturbation and population heritability are

much higher than what we have seen in the past. Previously this would have indicated

a problem, but that is not the case here. Instead, the adaptive mutation has increased

these values in order to compensate for the higher selection pressure.

One way to verify this is to compare the distribution of offspring traits with the

distribution of the parent population before selection. I use the symbol Q to refer

to the covariance matrix of the total parent population. Figures 5.44 and 5.45 plot

tr(OQ−1) for the weak selection and the standard selection EAs. In both cases we see

that the value of the metric is at, or slightly below 1.0. As selection increases, adaptive

mutation adds more perturbation in order to bring the phenotypic distribution of the

population back close to where it started.
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Figure 5.42: Trace of matrix ratios for an
EA using adaptive mutation and SUS rank
selection on the valley function.
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Figure 5.43: Matrix standard deviation el-
lipses at generation 120 of an EA using
adaptive mutation and SUS rank selection
on the valley function.

Given that adaptive Gaussian mutation seems to be able to do everything that

recombination can do, one might ask why someone would want to use recombination

at all? Adaptive mutation has one serious limitation – the genes that it is applied to

must be real-valued genes. Recombination does not share this limitation. In theory, it

can be used on a wide variety of representations. In practice, though, when working

with a new representation, it can be quite challenging to figure out which genetic

components should be exchanged in order to achieve this adaptive effect. Using the

tools presented here, though, this should become an easier task.
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Figure 5.44: Population similarity between
generations (tr(OQ−1)) for an EA using
adaptive mutation and 90% truncation se-
lection on the valley function.
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Figure 5.45: Population similarity between
generations (tr(OQ−1)) for an EA using
adaptive mutation and SUS rank selection
on the valley function.

5.6 Comparison with ES Theory

The adaptive Gaussian mutation operator was developed within the framework of ES

optimization theory. This theory uses a number of local progress measures, which in

many ways are similar to some of the metrics that have been developed using quantita-

tive genetics theory. For example, Quality Gain measures the improvement in average

fitness of a population over a single generation. This is very similar to the measures

produced by Price’s theorem when using fitness as the phenotypic trait. Similarly,

Success Probability has a lot in common with the notion of fitness heritability, which

is often measured as parent-offspring fitness correlation.

Typically, stronger results can be derived from the ES theory than from their

quantitative genetics counterparts. This is mainly because fitness landscapes are
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taken into consideration. More importantly, though, inherent in ES theory is the

assumption that one is optimizing a set of parameters. Applying it to new and

unusual problems would only be possible after serious reworking.

One option available to the practitioner is to treat the ES local progress measures

as general rules-of-thumb, and assume that they still apply independent of the fitness

landscape. For example, one could test any new reproductive operator and judge its

effectiveness based on how close it came to achieving the 1/5th success rule. This

might be a reasonable simplification for a practitioner to make. At this point, though,

one is the left in exactly the same position as when using parent-offspring fitness

correlation. Poor operators can be identified, but there is still not enough information

available to diagnose the problem.

So, while ES optimization theory may be more useful for analyzing many of the

problems presented in this chapter, it is not ideal for assisting practitioners in cus-

tomizing an EA to new problems. In the next two chapters I will demonstrate how

quantitative genetics theory can be used to diagnose problems in reproductive oper-

ators where standard theories are difficult to apply.
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Chapter 6: Pittsburgh Approach Classifier

Systems

To illustrate the value of quantitative genetics theory, I will demonstrate its use in

diagnosing a problem with a specific recombination operator. The recombination

operators associated with the Pittsburgh approach learning classifier system (LCS)

are usually customized in order to deal with the fact that different genomes can vary

in length. In previous work [Bassett, 2002] I observed that these operators often

produced worse results than using standard EA operators on fixed length strings.

This makes them a good candidate for improvement.

I examine the behavior of a customized version of two-point recombination, one

of the more commonly used Pittsburgh operators, by applying a Pittsburgh approach

LCS to the function approximation problem [Wilson, 2001]. A comparison to the

standard two-point recombination of a conventional EA shows that the customized

operator’s behavior is characteristically different. It has poorer heritability as well as

excessive perturbation. By examining the covariance matrices, I identify the issues

with the customized operator, and devise a new, better performing version specifically

for the function approximation test problem.

This chapter expands on previously published results [Bassett and De Jong, 2011]

by applying it to a wider variety of problems in order to test the generality of the

new recombination operator.
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6.1 Learning Classifier Systems

Learning classifier systems are a machine learning technique that use evolutionary

algorithms to evolve sets of rules. The two main approaches used are the Michigan

approach [Holland, 1976] and the Pittsburgh approach [Smith, 1980]. The main

difference between the two systems is the nature of an individual.

In a Michigan approach system, an individual is a single rule, and the population

as a whole defines the solution. All the rules must cooperate during evaluation in

order to accomplish a task. This means that the result of the evaluation cannot be

assigned directly to an individual as fitness. Instead, the decision making process must

be analyzed in order to identify what role each rule played in performing the task.

Rules that contributed more to the success of the solution are assigned more credit

in the form of higher fitness. These days most Michigan systems use reinforcement

learning techniques to perform this credit assignment.

With the Pittsburgh approach, each individual is defined as a set of rules, con-

catenated together into one genome. This creates a system that is much more like

a standard EA, in that each individual defines a full solution, and is evaluated in-

dependently of other individuals. There is one important way that it differs from a

standard EA, though. One of the goals of the system is to allow the number of rules

in the genome to adapt to the complexity of the problem. A simple problem can

probably be solved with just a few rules, whereas a more complex problem may re-

quire more. To achieve this adaptation, customized reproductive operators have been

created that modify the size of the genome. The hope is that evolutionary forces will

select for individuals that are the appropriate size. Unfortunately, there are a number

of complications that prevent such a simple solution. Most important among these

is a phenomenon called “bloat”, where the size of the genome continues to grow far
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past what is necessary to actually solve the problem. The most common approach to

combating bloat is to use “parsimony pressure” techniques that penalize the fitness

of larger individuals [Smith, 1980].

Perhaps the easiest way to describe the components of an LCS and how they

interact is to discuss a specific example. Therefore I will present the function ap-

proximation problem that will be used as the testbed for the diagnosis process, and

describe how I have configured a Pittsburgh LCS to solve it.

6.2 Function Approximation Problem

The goal of this problem is to create the best approximation possible of a chosen target

function. The approximation takes the form of a piecewise linear interpolation. In

other words, a series of points, connected by lines, that attempt to create a rough

trace of the target function. See figure 6.1 for an example.

Figure 6.1: The EA learns a piecewise linear interpolation g(Γ, x) of the target func-
tion f(x). Γ represents the genome.

This is a commonly used test problem within the Michigan classifier community.

In fact, creating customized Michigan LCS specifically for this problem is an area of
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active research [Wilson, 2001]. The problem is very similar to the regression problem

commonly used with Genetic Programming [Koza, 1992], although it differs in one

important respect. There the goal is to evolve a closed form symbolic equation that

closely (and hopefully exactly) matches the target function.

I chose this problem domain for two reasons. First, it is fairly straight forward to

define real-valued traits using a sampling method that will be described in more detail

later in the chapter. Second, it is easy to adapt the difficulty of the problem just by

selecting a different target function. A function that is useful during the diagnosis

process may be very different from what is needed to test a new customized operator.

6.2.1 Representation

The genome of an individual is a string of concatenated rules. All rules have the same

length, but different genomes can have a different number of rules. The rules consist

of a single condition, which corresponds to an x value, and a single action, which

corresponds to a y. Thus each rule defines a vertex of our piecewise linear function.

One might expect that the position of a rule on the genome matches the position

of a vertex in the function. In other words, one might expect them to be sorted left

to right according to the condition value. This is not the case. Rules can be stored

in any order along the genome, and in fact there can be multiple rules that share the

same condition. It is the job of the rule interpreter to sort these issues out.

6.2.2 Rule Interpreter

The rule interpreter takes the genome and actually creates the piecewise linear func-

tion from it. In essence it creates a function y = g(Γ, x), where x is the input, y is

the output, and Γ is the genome of the individual being evaluated. For any input x,

86



the rule interpreter calculates the appropriate output y.

There are a number of steps that the rule interpreter must perform in order to

calculate the appropriate output. The first is to deal with any conflicts. All rules that

share the same condition value are identified and marked as conflicts. These could

potentially be resolved in a few different ways. Some strategies include: summing the

candidate action values, averaging them, or just selecting a single value from the set

randomly. I chose to select a value randomly, reasoning that the other approaches

could interfere with the ability of parsimony pressure to reduce genome sizes. Conflict

resolution is performed whenever an input is given to the rule interpreter, which means

that the same input evaluated on the same individual could produce different results

depending on how the conflicts are resolved.

The next step to be performed is interpolation. If there is a rule that has a

condition value matching the current input, then the corresponding output is just

returned as the appropriate output. However, in most cases there will not be an

exact match. The rule interpreter will then find the two rules with conditions that

most closely bound that input value on either side (i.e. greater than and less than

the input value). A linear interpolation is performed to calculate the appropriate

output value, which is then returned. Interpolation is essentially the generalization

mechanism for this particular system, and it has properties that are very similar to

a nearest neighbor approach.

Some input values may lie to the left of the rule with the lowest condition value,

or to the right of the rule with the highest condition. In these cases no interpolation

is possible, and so the action value of the one closest rule is returned. This means

that beyond the endpoints on either side of our set of vertices, the function will just

be a horizontal line.
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6.2.3 Fitness Calculation

There are two forms of fitness implemented in this algorithm, raw fitness and par-

simony fitness. Raw fitness is a direct measure of an individual’s performance, and

these are the values that are displayed in all plots. Parsimony fitness is used to imple-

ment parsimony pressure. This is done by penalizing the fitness of individuals that

have larger genomes. Selection operators use parsimony fitness when choosing which

individuals will reproduce.

Raw fitness is calculated using a machine learning approach. Each generation,

thirty training examples that are drawn randomly from the target function. This is

done by picking x values from a uniform distribution withing the valid range of the

function, and then calculating the corresponding y values. The raw fitness function

is defined as follows,

fitnessraw(Γ,x) =
1

N

N�

i=1

|g(Γ, xi)− f(xi)|, (6.1)

where x is a vector {x1, x2...xN} containing the training set inputs, N is the number of

training examples (30 in this case), g(Γ, x) is the piecewise linear function as defined

by the genome Γ being evaluated, and f(x) is the target function.

Parsimony fitness is calculated using the raw fitness function, and is defined as

follows,

fitnessparsimony(Γ,x) = fitnessraw(Γ,x)− pR(Γ), (6.2)

Where x is the same as in the previous equation, R is a function that returns the

number of rules in the genome Γ, and p is a penalty constant that defines the strength

of the parsimony pressure. Many of the experiments performed here use p = 0.01.
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6.3 Algorithm Design

6.3.1 Gaussian Mutation

The algorithm in these experiments uses two reproductive operators: Gaussian mu-

tation and a Pittsburgh 2-point recombination. The Gaussian mutation is simply the

standard Gaussian mutation operator used in many EAs. It is applied to every gene

in the genome with a fixed standard deviation. In most experiments this standard

deviation is 0.05.

6.3.2 Pittsburgh 2-Point Crossover

The recombination operator used is a simplified version of the standard Pittsburgh

2-point approach crossover [De Jong et al., 1993]. It is simplified in the sense that

genome cuts are performed only on rule boundaries. The standard operator allows

cuts within rules by assuring that the corresponding cut on the other genome is placed

at a semantically compatible location. For fixed length rules this means that both

cuts are placed at the same offset within the rule.

Figure 6.2 illustrates the behavior of the simplified Pittsburgh 2-point crossover

operator. Given two parents, the operator selects two cut points on each genome. The

cut points on the second parent are chosen completely independently of the cut points

in the first parent. All the rules between the two cut points on each parent’s genome

are then exchanged. The second cut point is always chosen without replacement, so

the two cut points on a genome are guaranteed to be different from one another.

Some discussion of what constitutes a legal cut point is in order. If there are N

genes on a genome, then there are N valid cut points. Any position on the genome

that is directly followed be a rule is a valid cut point. What this means is that a

cut point can be placed directly before the very first gene on the genome. A similar
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Figure 6.2: Simplified Pittsburgh 2-point crossover, where cut points are only chosen
on rule boundaries. Also, cut points on both genomes are chosen independent from
one another to allow the creation of offspring with different genome sizes.

approach is implemented in [De Jong, 2006, p. 146], with the effect of creating an

operator that acts like 1-point crossover in some cases, and 2-point crossover in others.

EAs using this approach actually produce populations with a less biased distribution

of gene values.

6.3.3 Selection

As with the experiments in previous chapters, I have used linear rank selection with

Stochastic Universal Sampling (SUS) in order to reduce the effects of genetic drift.

The parameters for the linear ranking were chosen to provide the same amount of

selection pressure as binary tournament selection.

6.3.4 Choosing Quantitative Traits

When choosing quantitative traits for analyzing the operators, two goals should be

kept in mind. First we would like our traits to be representative of the underlying
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phenotype, and second we want our traits to help lead us back to where problems are

occurring in the genetic structure of our individuals.

For a Pittsburgh approach system, I considered two possible views of the pheno-

type: 1) high-level behaviors, and 2) the input-output map. The high-level-behavior

view is particularly appropriate when one is working with an agent based model or

robotics domain. Certain behaviors that seem important for the specific domain can

be quantified. Things such as obstacle avoidance, navigation, goal seeking and track-

ing could all be quantified, often in terms of the frequency or duration of certain model

events or situations. The advantage to this approach is that, with careful thought,

the traits are very likely to accurately and comprehensively describe the phenotype

space. The disadvantage is that they could be far removed from the underlying rep-

resentation, making it difficult still to diagnose the actual problem.

Another way to think about the phenotype is as a mapping between inputs and

outputs. This approach has the advantage of being much closer to the representa-

tional structure, thus having the potential to identify problems more easily. The

disadvantage is that quantifying the entire input/output map is nearly impossible for

anything but the most trivial of problems. One compromise is to sample a subset

of points in the space to at least get some view of what is happening. A sufficiently

large set of example should provide a reasonable approximation of the input/output

map, especially when applied to a very simple problem.

Given both the ease of implementation and the likelihood of producing relevant

information, I chose to use the second approach of sampling the input/output space.

I selected a set of 10 sample inputs that will be passed to each individual. These

inputs are evenly distributed across the condition/input space. The corresponding

output at each sample point is a quantitative trait, giving us 10 traits total.
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Table 6.1: Points defining the target function used for diagnosis with the function
approximation problem.

X Y X Y
-10.00 -7.0 3.62 -10.0
-3.80 -9.0 5.11 7.0
-2.22 -6.0 6.48 -5.0
-2.15 -1.0 8.61 2.0
2.75 8.0 10.00 9.0

6.3.5 Diagnostic Testbed

While it is possible to approximate almost any function for this problem, an ideal

target function for performing diagnosis is probably not be the same as an ideal func-

tion for validating results. A very simple function seemed appropriate the diagnosis

process. A more complex function would reduce the ability of the sampled traits to

provide an accurate picture of input to output mapping. This would likely cause

important behaviors of the algorithm to be obscured.

I chose a function that could be represented exactly by an ideal individual. I

was concerned that a smooth function might encourage the EA to learn very large

rule-sets in order to get the best approximations possible. This might complicate the

analysis.

The target function is essentially a piecewise linear function defined by 10 ran-

domly chosen point. The points used are shown in Table 6.1, and the function is

plotted in Figure 6.3.

6.4 Diagnosing the Operator

Figures 6.4 and 6.5 provide a concrete example for some of the problems one en-

counters when using Pittsburgh crossover operators. Since we are trying to reduce
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Figure 6.3: The target function that will
be used during the diagnosis process.

difference between the target function and its approximation, smaller fitness values

are better. We can see that the standard 2-point crossover operator is able to con-

verge more quickly on solutions than the Pittsburgh crossover. With more complex

target functions, the standard crossover typically finds more fit solutions as well.

In this section I will walk through the process of diagnosing and improving a

customized reproductive operator. I start by getting an overview of the algorithms

behavior. This helps to identify which covariance matrices should be examined in

more detail, leading me to propose a hypothesis about what the problem might be.

I design a new recombination operator to address this problem, and examine its

behaviors to see what has changed. And finally I will compare the two operators on

a suite of target functions to see which produces better approximations.
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Figure 6.4: Best-so-far curves for Pitts-
burgh 2-point crossover and standard 2-
point crossover during training.
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Figure 6.5: Curves for Pittsburgh 2-point
crossover and standard 2-point crossover of
the best-so-far individuals, evaluated on an
independent test set.

6.4.1 Initial Behaviors

To get an initial sense of the behavior of the Pittsburgh 2-point crossover opera-

tor, I performed an experiment on the function approximation problem described in

table 6.1. A population of 100 individuals was used, and all individuals were initial-

ized to contain 15 rules, 5 more than needed to solve the problem. Crossover was

performed at a rate of 1.0, and prior to individuals being passed to the crossover

operator, Gaussian mutation is applied with a mutation rate of 1.0 and a standard

deviation of 0.05.

Because the Pittsburgh 2-point crossover can change the size of an individual,

this can often lead to a problem called bloat. The size of genomes in the population

can grow uncontrollably as the algorithm runs. In order to control bloat, parsimony

pressure is applied in the form of a fitness penalty of 0.01 per rule. All plots that
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Figure 6.6: Trace of matrix ratios for Pitts-
burgh 2-point crossover on the function ap-
proximation problem. Effects of Gaussian
mutation are not measured here. Results
are averaged over 30 runs.
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Figure 6.7: Trace of matrix ratios for an
EA using only standard uniform crossover
on the sphere function. Results are aver-
aged over 30 runs.

display fitness show the raw fitness values, before the penalty is applied.

Since our main concern here is with behavior of the recombination operator, I

chose to only measure the effects of recombination, and not the effects of Gaussian

mutation. This is achieved by measuring the phenotypic traits of individuals both

directly before and directly after recombination is applied. Since Gaussian mutation

precedes recombination, this means that the “parents” used in the calculations have

already been mutated.

Thirty runs were performed, and the average metrics are displayed in figure 6.6.

In order to diagnose any unusual behaviors indicated by these metrics, we will need to

compare them with some sort of baseline. I argue that the behavior of recombination

operators on the function optimization problem called the sphere function, described
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in section 5.1.2, is as close to the ideal that we can expect to see. There are two

main reasons I make this argument. First, population heritability (OP−1) stays close

to the ideal value of 1 throughout the runs, and second, we know that there are no

issues with epistasis on this problem.

Figure 6.7 re-plots the metrics from figure 5.32, which were generated by an EA

using uniform recombination without mutation on the sphere function. When com-

paring the two plots, we notice a couple of things. First, the perturbation curve is

much higher in the Pittsburgh 2-point crossover, ranging from 1.5 at the beginning of

the run, up to 2.0 by the end, indicating that this operator may be over-emphasizing

exploration. Perhaps more importantly though, the heritability curve is quite low,

averaging just above 0.3 as opposed to 0.5 in our baseline. This indicates that traits

are not being effectively passed on from parents to offspring, and so the algorithm

will probably have difficulty converging on high quality solutions.

While helpful, this analysis does not give us quite enough information to diagnose

any issues with the crossover operator. Next we will analyze the relationship between

the various traits to see if we can get a better understanding of what is causing the

poor heritability values.

6.4.2 Examining the Covariance Matrices

Aggregated information about the traits, and the relationships between them, is all

stored within the matrices. I thought that by carefully examining them, the source of

our problem might become clear. I was particularly concerned with the heritability

of the operator, so I chose to examine the G�P−1 matrix. We begin by examining the

G�P−1 matrix for the standard uniform crossover operator on the sphere function.

For each generation I calculated the 30 heritability matrices from each run, and

then averaged them together, producing one matrix per generation. Below I provide
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part of the average matrix from generation 5, as an example. Note that the variances

along the diagonal tend to have values near 0.5, while all the off-diagonal covariances

are fairly negligible.





0 .505 −0.002 0.004

−0.003 0 .505 −0.001

0.004 −0.001 0 .503





When we compare this with the G�P−1 matrices associated with the Pittsburgh

2-point crossover, we noticed something interesting. In the early generations of the

run, certain pairs of traits had much higher covariances than others. Based on this, I

deduced that those traits were linked in some way. I provide a matrix from generation

5 of one of the runs below, as an example.





0 .34 0.07 0.02 0.02 0.03 0.02 −0.02 −0.01 −0.01 0.00

0.06 0 .34 0.05 0.01 0.00 0.03 0.01 −0.01 −0.01 −0.02

0.02 0.02 0 .34 0.03 0.01 0.01 −0.02 0.00 −0.02 −0.01

0.01 0.00 0.03 0 .33 0.03 −0.01 −0.02 0.00 0.02 0.01

−0.01 0.01 0.01 0.04 0 .33 0.04 0.00 −0.00 −0.01 0.02

−0.02 0.03 0.04 −0.02 0.03 0 .33 0.01 −0.01 0.00 0.01

0.01 0.02 0.00 −0.01 0.02 0.01 0 .34 0.03 −0.03 −0.00

0.00 −0.01 −0.01 −0.01 0.01 −0.01 0.03 0 .33 0.03 0.01

−0.03 0.02 −0.02 −0.00 0.01 −0.00 0.00 0.01 0 .32 0.04

−0.00 0.00 −0.03 0.02 0.02 0.00 −0.01 0.01 0.02 0 .38
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Each trait is represented by both a row and a column in a covariance matrix,

with row i and column i representing the the same trait. The numbers along the

diagonal (shown in italics) are the variances of the each trait, and the other numbers

are covariances between two different traits identified by the specific row and column.

In the above example, the numbers displayed in bold indicate the unusually high

values.

Our traits were all measured using probes at consecutive input values. We can

see that the high covariance values tend to occur between neighboring traits. Since

we chose traits that would be closely related to the genes in our representation, we

can infer that rules that have similar conditions (i.e. closer together in feature space)

tend to have higher linkages between them. A crossover operator that can reduce the

frequency of cuts between highly linked genes should have a higher heritability.

6.4.3 An Improved Recombination Operator

Taking these insights into consideration, I created what I call the “condition space

crossover operator”. Since we know that rules that are near one another in condition

space have high linkages, we can reduce cuts between such genes by taking this

proximity into consideration.

In the function approximation domain we have only one condition per rule. The

new operator first merges the two parents into a single merged parent, keeping track

of which parent each gene came from. It then sorts the rules in the merged parent by

the condition value. Care is also taken to shuffle within groups of rules that have the

same condition value, to reduce any biases that might otherwise occur. See figure 6.8

for an illustration.

The merged parent has l1 + l2 possible cut points, where l1 and l2 are the num-

ber of rules within the two parents. Two cut points c1 and c2 are then selected,
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Figure 6.8: An illustration of the Condition Space Crossover operator. A temporary
merged parent is created, and the rules are then sorted by condition value. Crossover
points are selected and rules are transferred to one of the two offspring depending on
which segment of the merged parent they are in, and which parent they came from.

creating 3 segments. As with the Pittsburgh 2-point crossover, cuts are chosen only

on rule boundaries, and cuts are allowed at position zero (before the first rule) so

that it occasionally acts like a 1-point operator. The child individuals are created by

traversing the merged parent, extracting rules, and placing them in either of the two

offspring. From the first segment (before c1) rules from parent 1 are placed into child

1, while rules from parent 2 are placed into child 2. In the second segment (between

c1 and c2), this is reversed, and rules from parent 1 are placed into child 2, and the

remaining rules go to child 1. The final segment is treated just like the first segment,

with parent 1 rules going to child 1 again.

Figure 6.9 shows the metrics for an experiment run using the new crossover op-

erator. As before, 30 runs were performed with a population size of 100, a crossover

rate of 1.0, Gaussian mutation with a standard deviation of 0.05, and a parsimony
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Figure 6.9: Trace of matrix ratios for Con-
dition Space crossover on the function ap-
proximation problem. Effects of Gaussian
mutation are not measured here. Results
are averaged over 30 runs.
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Figure 6.10: A comparison of the heri-
tability of Pittsburgh 2-point crossover and
Condition Space crossover.

penalty of 0.01. As we can see, the heritability has increased to an average of close to

0.4 throughout the run. In addition, the perturbation has decreased somewhat, espe-

cially early in the run, and leveled off roughly near 1.5. Consequently, the population

heritability has also moved closer to the ideal value of 1.

Figure 6.10 shows a comparison of the heritability measures (tr(G�P−1)/10) of the

two operators. Whiskers are plotted showing the 95% confidence intervals of these

curves. The condition space crossover has a significantly higher heritability than the

Pittsburgh approach 2-point operator.

For the ultimate comparison, I plot the training (best-so-far curves) and testing

results in figures 6.11 and 6.12. Testing results are calculated using an independent

set of 30 validation examples that are chosen at the start of the run, and never used
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Figure 6.11: Best-so-far curve of an EA
using the condition space crossover on
the function approximation problem dur-
ing training. Results are averaged over 30
runs.
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Figure 6.12: Curves of the best-so-far indi-
viduals from an EA using condition space
crossover, evaluated on an independent
test set. Results are averaged over 30 runs.

during the training process. The error bars show the 95% confidence intervals for the

curves. In the training results, the condition space crossover achieves significantly

better average results throughout the run. However, the more important results are

found in comparing the testing curves. Here we see that while the condition space

crossover seems to have somewhat more accurate results, at least during parts of the

run, these differences do not seem to be significant.

While this final set of plots seem somewhat inconclusive, we will see in next

section that the condition space does indeed outperform the Pittsburgh crossover

when compared over a set of test functions.
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6.4.4 Validation

To test the generality of our results, I selected four different test functions to evaluate

our operators on. The first (figure 6.13) is piecewise linear function created from 50

points chosen randomly from uniform distributions in the range [−10, 10] in both x

and y. The second function (figure 6.14) is a sine function in the range [−10, 10]. The

third and fourth functions are commonly used with the GP regression test problem

and are referred to as the quintic and sextic functions. The quintic function (fig-

ure 6.15) is defined over the range [−1, 1] as the function f(x) = x5 − 2x3 + x. The

sextic function (figure 6.16) is defined as the function f(x) = x6 − 2x4 + x2 over the

same range.

Two sets of experiments were run on each problem. The first set comparing

crossover operators without mutation, and the second set compare crossovers while

using Gaussian mutation. The following parameters are common on all experiments:

30 runs, population size of 100 individuals, crossover ratio of 1.0, 50 initial rules per

individual, and the probability of mutation (when used) was 1.0 per gene.

Experiments on the random 50 point function used the following parameters:

parsimony penalty = 0.01 per rule, and Gaussian mutation standard deviation = 0.01.

The training and testing results for the crossover-only runs can be seen in figures 6.17

and 6.18. We can see that there is no statistical difference between the two crossover

operators here. Interestingly, though, when we add mutation (figures 6.19 and 6.20)

we see significantly better performance from the condition space crossover operator.

Runs were performed on the sine function with parsimony penalty = 0.001 per

rule and Gaussian mutation standard deviation = 0.005. Figures 6.21 and 6.22 show

the training and testing results for the crossover-only runs. In this case we do see a

significant different between crossover operators when no mutation is used, although

that difference disappears when mutation is used (figures 6.23 and 6.24). These runs
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Figure 6.13: Random 50 point function.
Piecewise linear interpolation of 50 uni-
form random points in the range [−10, 10].
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Figure 6.14: Sine function. f(x) = sin(x).
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Figure 6.15: Quintic function. f(x) = x5+
2x3 + x.
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Figure 6.16: Sextic function. f(x) = x6 +
2x4 + x2.
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Figure 6.17: Training results for Pitts-
burgh 2-point crossover and the new Con-
dition Space Crossover, using no mutation
on the random 50 point function.
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Figure 6.18: Testing results for Pittsburgh
2-point crossover and the new Condition
Space Crossover, using no mutation on the
random 50 point function.
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Figure 6.19: Training results for Pitts-
burgh 2-point crossover and the new Con-
dition Space Crossover, using Gaussian
mutation (stdev = 0.01) on the random 50
point function.
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Figure 6.20: Testing results for Pittsburgh
2-point crossover and the new Condition
Space Crossover, using Gaussian mutation
(stdev = 0.01) on the random 50 point
function.
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are not significantly different by the time we reach generation 1000. Still though,

throughout much of the run the condition space crossover did achieve significantly

better results. This means that when faces with a fixed training budget that is

relatively short, the new operator is the better choice.

The experiments for both the quintic function (figures 6.25 through 6.28) and the

sextic function (figures 6.29 through 6.32) follow a pattern very similar to that of

the sine function. In other words, condition space crossover outperforms Pittsburgh

2-point crossover when there is no mutation, but adding mutation eliminates any

significant differences in the runs.

The quintic experiments were run using with a parsimony penalty of 0.0001 and a

standard deviation of 0.005 on the Gaussian mutation, while the sextic experiments

used a parsimony penalty of 0.00001 and a standard deviation of 0.001 on the Gaussian

mutation. For the sextic experiments, rule actions were initialized in the range [−1, 1]

as opposed to [−10, 10] is in all the other experiments. This was necessary because

initialization with the larger range resulted in consistently producing poor solutions

that contained only a few rules.

6.5 Discussion

The operator developed is very specific to the function approximation problem do-

main, in the sense that it assumes that there is a single condition value along which

the genes can be sorted. However, there are opportunities for adapting it for use in

domains where the rules can have multiple conditions. A simple, but not very satisfy-

ing solution is to always sort the rules based on the value of the first condition. With

N conditions, we would have an N -dimensional condition space, and the cut points

would be equivalent to hyper-planes that are perpendicular to the first axis. But if
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Figure 6.21: Sine function training results
for Pittsburgh 2-point crossover and the
new Condition Space Crossover, using no
mutation.
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Figure 6.22: Sine function testing results
for Pittsburgh 2-point crossover and the
new Condition Space Crossover, using no
mutation on the sine function.
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Figure 6.23: Sine function training re-
sults for Pittsburgh 2-point crossover and
the new Condition Space Crossover, using
Gaussian mutation (stdev = 0.005).
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Figure 6.24: Sine function testing re-
sults for Pittsburgh 2-point crossover and
the new Condition Space Crossover, using
Gaussian mutation (stdev = 0.005) on the
sine function.
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Figure 6.25: Quintic function training re-
sults for Pittsburgh 2-point crossover and
the new Condition Space Crossover, using
no mutation.
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Figure 6.26: Quintic function testing re-
sults for Pittsburgh 2-point crossover and
the new Condition Space Crossover, using
no mutation.
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Figure 6.27: Quintic function training re-
sults for Pittsburgh 2-point crossover and
the new Condition Space Crossover, using
Gaussian mutation (stdev = 0.005).
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Figure 6.28: Quintic function testing re-
sults for Pittsburgh 2-point crossover and
the new Condition Space Crossover, using
Gaussian mutation (stdev = 0.005).
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Figure 6.29: Sextic function training re-
sults for Pittsburgh 2-point crossover and
the new Condition Space Crossover, using
no mutation.
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Figure 6.30: Sextic function testing results
for Pittsburgh 2-point crossover and the
new Condition Space Crossover, using no
mutation.
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Figure 6.31: Sextic function training re-
sults for Pittsburgh 2-point crossover and
the new Condition Space Crossover, using
Gaussian mutation (stdev = 0.001).
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Figure 6.32: Sextic function testing re-
sults for Pittsburgh 2-point crossover and
the new Condition Space Crossover, using
Gaussian mutation (stdev = 0.001).
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we can use this approach with the first axis, we can use it with any arbitrary line.

By selecting a random vector in this N dimensional space, we can sort all nearest-

neighbor rules relative to their position along this line. Once the rules are sorted, the

condition space crossover operator can then function just as before. If using different

generalization techniques, we would need to find different criteria on which to sort

the rules. In the case of range-based conditions, perhaps the centroid of the rules

would be sufficient.

Regardless of what extensions one might make to the condition space crossover,

the main value of this example is as a test case for quantitative genetics theory and the

tools that were developed with it. Given a well know customized operator (Pittsburgh

2-point recombination), I was able to show not only that it was not functioning ideally,

I was also able to diagnose what those problems were, and design a new operator that

outperformed the original.

In related work [Bassett et al., 2009], a similar crossover operator was used very

successfully for controlling bloat in conjunction with lexicographic parsimony pres-

sure [Luke and Panait, 2002]. That operator made cuts directly in condition space by

defining a hyperplane that cut the space into two sections. The two parents were cut

by the same hyperplane, and the rules on one side of cut were then swapped between

parents, creating two new offspring. The downside to this operator was that rules

that were very close together in condition space were very unlikely to be separated

by a hyperplane cut, thus creating very high linkage disequilibria. This is why the

new version was created.

In the experiments shown in this chapter, the genome sizes of individuals were not

measured to see if the new version of the condition space crossover can also control

bloat. This creates an interesting opportunity for future research.
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Chapter 7: Genetic Programming

As we have seen in previous chapters, these tools have proven useful for analyzing

conventional EAs and Pittsburgh approach classifier systems. In this chapter, I will

show how they can be effectively used to analyze GP algorithms. Several commonly

used GP benchmark problems have issues that have been detailed in the EC literature.

I will show that my techniques are capable of identifying these issues as well.

7.1 Symbolic Regression

The fitness landscape associated with the symbolic regression problem is a relatively

simple problem, having only a few basins of attraction. This makes for a good oppor-

tunity to see if a reproductive operator with a better exploration/exploitation balance

can outperform the standard subtree crossover operator.

The symbolic regression problem is very similar to the function approximation

problem described in section 6.2. In the case of GP, the goal is to learn a closed

form equation that describes the target function. The representation used is a tree

structure. The function set (i.e. internal nodes) consists of the following: Add,

Subtract, Multiply, Divide, Sine, Cosine, Exponent and Logarithm. The first four

of these take two parameters, while the last four take only one parameter. The

parameters for any given node are defined by its children.

It should be noted that some of these functions have non-standard behavior in

order to avoid undefined operations. For example, the divide function will return a

value 1.0 if the denominator is a zero. Similarly, the logarithm function will return
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Figure 7.1: Sample regression tree. The symbols ’+’, ’*’ and ’/’ are used to represent
the add, multiply and divide functions respectively. The equation described is f(x) =
x · x+ (x/x+ x/x) which is equivalent to f(x) = x2 + 2.

0.0 if the input is zero, and otherwise it will return the log of the absolute value of

the input.

A typical implementation will have a terminal set (possible leaf nodes) containing

the entities: x and ci, where x is the value of the function parameter (i.e. when

evaluating the function f(x) at a specific value, like 2.3, then x = 2.3) and ci is one

of a number of possible constant values called ephemeral random constants (ERCs).

We did not use ERCs in our experiments, in order to create a more difficult problem.

Constant values can still be achieved, such as x − x = 0 or x/x = 1, but these are

more difficult to evolve. For example, figure 7.1 shows an individual that describes

the function f(x) = x2 + 2.

7.1.1 Quantitative Traits

The phenotypic traits for the regression problem are essentially the same as those

described in section 6.3.4 for the function approximation problem. Ten different

values for x are chosen equidistant in the range [-1,1]. The function is evaluated at

each these values, and the results are the phenotypic trait values. See figure 7.2 for

an example.
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Figure 7.2: Phenotypic traits for the regression problem.

Table 7.1: Genetic programming parameter settings used for the experiments.
Parameter Value

Population size 1024
Depth limit 17
Initialization Ramped half-and-half (min 2 / max 6)
Selection Tournament
Tournament size 2

7.1.2 Initial Results

Experiments were conducted with ECJ [Luke et al., 2011] using various standard

default parameters like population size of 1024. See table 7.1 for a full list. A

tournament size of 2 was also used, which produces a weaker selection pressure than

the more commonly used value of 7. This was done because the stronger selection

pressures can have a destructive effect on the population distributions, and cause

problems for the analysis tools.

To see how the standard GP operators perform, an initial set of experiments were

conducted using the subtree crossover operator on the regression problem. Plots

for the trace values of the matrices are shown in figure 7.3 (left). These results were

averaged over 30 runs of the algorithm. We can see that both the parent and offspring

populations (P and O) converge fairly quickly in phenotype space during the early
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Figure 7.3: Matrix trace curves (left) and matrix trace ratios (right) of a GP using
subtree crossover on the regression problem. Results are averaged over 30 runs.
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Figure 7.4: Matrix trace curves (left) and matrix trace ratios (right) of a GP using
phenotypic crossover on the regression problem. Results are averaged over 30 runs.
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generations of the run. In addition, we see that the amount of variation generated

by subtree crossover (D) also converges during the early generations, much the way

uniform crossover does in a standard EA. Unlike uniform crossover though, it does

not converge down to zero. There seems to be some minimum amount of variation

generated by this operator, making it much more like a combination of crossover and

mutation that we see in a conventional EA.

Note that I use the m2 metric (described in section 4.3.2) instead of m1 for exam-

ining the ratios. The m1 metric was creating too many nonpositive definite matrices

when calculating P−1, thus making it unusable. Even the shrinkage technique imple-

mented in the R corpcor library was not sufficient to overcome these problems.

In figure 7.3 (right) the trace ratios are plotted, giving us some insight into the

exploration and exploitation capabilities of subtree crossover. Here we see that values

for perturbation (tr(D)/tr(P)) and population heritability (tr(O)/tr(P)) both move

quickly away from their ideal values near 1, and become much higher. This indicates

that we have too much exploration, and as a consequence the algorithm is not able

to exploit its knowledge of the landscape effectively. It should also be noted that the

early stages of the search are typically when most of the progress is made towards a

solution. Any problems that occur here will probably have the most serious effects.

As a first step towards creating better operators, I decided to create a proof-of-

concept to test some of our assumptions. Do do this, I modified the subtree crossover

operator to make it more balanced in terms of exploration and exploitation.

7.1.3 Phenotypic Crossover

We created a version of subtree crossover that we refer to as phenotypic crossover.

Described simply, it calculates the P covariance matrix, and then creates offspring

using subtree crossover, and rejects any that do not fall within the distribution defined
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by P. The result is an operator that produces much higher population heritability

values.

More specifically, the P matrix is used to calculate the probability that any point

(i.e. individual) in phenotype space belongs to the distribution. Two parents are

selected, and the operator is guaranteed to produce two offspring that have the same

root nodes as the parents. In other words, a son and daughter are both created, where

father and son have the same root node, as do mother and daughter.

A series of candidate sons and daughters are generated and the probability of each

belonging to the distribution is calculated. To add an element of randomness to the

process, instead of just accepting a candidate, a random number is generated in the

range [0,1]. If this number is less than the probability, the individual is accepted,

otherwise it is rejected. Once a son or daughter is accepted, candidates for that

position will no longer be considered. A maximum of 1000 candidates is considered

for each position. If either position is left unfilled at that point, the candidate that

had the lowest probability is then used to fill the slot.

As the run progresses, we will eventually reach a generation where the P matrix

is non-positive definite. The P from the previous generation is then used, and will

continue to be used for the rest of the run.

It should be noted that I do not consider this operator to be a viable alternative to

subtree crossover. It was only created to analyze how an operator that had this type

of exploration/exploitation profile would behave. If we wanted to perform a proper

comparison of this phenotypic crossover operator to subtree crossover, we would need

to consider the time spent evaluating all the individuals that were discarded. Since the

question being asked here is ”Do we have the right goals?”, it is reasonable to ignore

this additional computational effort and just treat the two operators as equivalent in

this regard.
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Figure 7.5: Best-so-far curves (left) and population average curves (right) for GPs
using standard subtree crossover and phenotypic crossover on the regression problem.
Results are averaged over 30 runs.

7.1.4 Results

The results of runs that were performed using the new phenotypic crossover operator

on the regression problem are displayed in figure 7.4. As we saw before, the plots

showing the trace of the matrices (left) indicate that the populations converge in

phenotype space, although not quite as quickly as with subtree crossover. When

we look at the ratio plots (right), we see that the phenotypic crossover operator is

indeed able to control exploration in the early generations of the run, keeping the

average value of tr(D)/tr(P) closer to 1 for the first 25 generations or so. Similarly,

the population heritability metric (tr(O)/tr(P)) maintains values close to 1 as well

during the first 25 generations, indicating that the new operator is better at exploiting

information about the landscape, and is not overly focused on exploration the way

subtree crossover was.
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The new operator appears to achieve the goals we set out for it, producing what

we believe to be an appropriate exploration/exploration trade-off. Of course, the real

test lies in its ability to achieve better fitness results. In figure 7.5 I plot the best-so-far

fitness (left) and the population average (right) for the two operators, both averaged

over 30 runs. We can see here that our new operator is able to both converge on good

solutions much more quickly, and find better overall solutions than subtree crossover.

For the regression problem, this indeed seems to be a better exploration/exploitation

trade-off for an operator than what subtree crossover provides. To be sure these re-

sults are truly general, We will test both operators on a few more problems as well.

7.2 Artificial Ant

The artificial ant problem is representative of many single agent search problems. It

is also considered to be highly deceptive for genetic programming as the grid contains

no information that the ant could use to get back on the trail once it leaves. This

results in large plateaus in the search space that provide no guiding force to encourage

the population towards areas of higher fitness. There is also evidence that the areas

of higher fitness that do exist are often quite separate from one another, creating a

multimodal landscape which makes any search even more difficult [Langdon and Poli,

2002]. Nonetheless, it has been shown that the best solutions to the problem have

been obtained using GP as compared to other heuristics such as simulated annealing,

hill climbing and GAs.

The problem consists of a grid with a trail (sometimes broken) of food pellets

(see figure 7.6). The goal is to evolve behaviors for an ant that allow it to follow the

trial and eat as many of the food pellets as possible. Agents have the ability to move

forward, turn right or left, eat food, or check to see if there is food in the next grid cell
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Figure 7.6: The Santa Fe Trail. The darker squares indicate food. The ant begins in
the upper left corner of the grid, oriented towards the right side.

in front of them. These actions make up the terminal set (possible leaf nodes) for GP

trees. The function set (possible internal nodes) is made up of two functions called

progn2 and progn3, which essentially define groups of functions or terminals that will

be executed sequentially. The elements of these groups are simply the children of the

nodes. The progn2 function has 2 children, while progn3 has 3 children.

The fitness of an individual is equal to the number of food pellets remaining when

time runs out. This means that lower fitnesses are better, and the ideal fitness is zero.

7.2.1 Phenotypic Traits

Here various metrics are devised to quantitatively measure the search behavior of an

ant. Food consumption is not used as a trait, since this is closely related to fitness.

Our goal was to identify metrics that help to define and bound the search space, and

fitness does not help to achieve this goal. Instead, we believe traits that describe

phenotypic search behaviors were more appropriate.
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1. Total Distance Wandered: Whenever the ant leaves the trail, the point p

where it does so is remembered until it returns to the trail. At each step, the

Manhattan distance from from p to the ant’s current location is calculated. All

of these distance calculations are summed over the entire run, giving a sense of

how far the agent wanders once it leaves the trail.

2. Total Distance Off-course: At each step of the simulation, the Manhattan

distance is calculated from the agent to the closest point on the trail. If the

agent ends its turn on the trail, then this number is zero during that step. These

distances are then summed over the entire simulation run. This trait measures

how far away from the trail the agent stayed during the run.

3. Total Movement During the Run: This measures the total movement (in

Manhattan distance) that the ant made during the entire run. On each step, a

one is added to this value for each forward movement that the ant takes.

4. Count of Null Movements: This is a count of the total number of null

movements during the run. A null movement is an action that does not change

the location of the ant. This includes all actions spent checking for food, turning

left or right, and actions that essentially encapsulate other moves (progn2 and

progn3).

All of these quantitative traits show exponential distributions and so we transform

them to the new set of derived traits that have a normal distribution, as suggested by

[Falconer and Mackay, 1996, Chapter 17]. Derived traits take the form td = log(t+k),

where td is a derived trait, t is one of the original trait value as described above, and

k is a constant used to avoid taking the log of zero. k is also used to adjust the

distributions slightly to make them as close to normal as possible. Only a single
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Figure 7.7: Best-so-far curves (left) and population average curves (right) for GPs us-
ing standard subtree crossover and phenotypic crossover on the artificial ant problem.
Results are averaged over 30 runs.

value of k is used for any given trait. In other words, values of k do not change from

generation to generation, or from run to run.

7.2.2 Results

Using the same parameters as with the regression problem, experiments were run on

the ant problem with both subtree crossover and phenotypic crossover. Figure 7.7

shows plots for best-so-far (left) and population average, both averaged over 30 runs.

Since smaller fitness values are better, what we see immediately in this case is that

phenotypic crossover produces worse results than standard subtree crossover. An

analysis of the quantitative genetics metrics may be able to help us identify what

exactly is causing this to happen.

Figures 7.8 and 7.9 show trait information for subtree crossover and phenotypic
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Figure 7.8: Matrix trace curves (left) and matrix trace ratios (right) from a GP using
subtree crossover on the artificial ant problem. Results are averaged over 30 runs.
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Figure 7.9: Matrix trace curves (left) and matrix trace ratios (right) from a GP using
phenotypic crossover on the artificial ant problem. Results are averaged over 30 runs.

121



crossover respectively. One important thing to point out here is that the two matrix

trace plots (left in both cases) are plotted on different scales, with the domain being

two orders of magnitude larger for subtree crossover. When we compare these two

plots, we see that subtree crossover converges much less rapidly, and never reaches

the degree of convergence achieved by phenotypic crossover.

The ratio plots for both operators (on the right in figures 7.8 and 7.9) are re-

markably similar to one another, especially the curves for population heritability. If

anything, the subtree crossover operator is able to achieve better (closer to 1) pop-

ulation heritability than the phenotypic operator. Recall that the random search

operator we examined in section 5.1 had ideal population heritability values too,

so we should not be surprised that an operator is able to do this despite the slow

convergence rate.

The differences between the operators can be seen in the other two curves. For

example, when comparing the perturbation curves (tr(D)/tr(P)) we can see that sub-

tree crossover has more exploratory power throughout most of the run, but especially

in the later generations. Heritability (tr(G�)/tr(P)), on the other hand, is lower with

subtree crossover than with phenotypic crossover. It is as if the sacrifice of heritabil-

ity is used as fuel to increase exploration, even though both operators have a similar

ability to exploit information in the populations.

So what is happening here? It should be noted that this problem is significantly

different from all the ones we have looked at so far. Until now all our landscapes have

had no plateaus and a small number of optima. This landscape does have plateaus

along with many optima. It has been shown that more exploration is appropriate

when searching these types of landscapes [De Jong, 1975]. Since subtree crossover

has higher exploratory power, it appears to be the better choice in this case.

This raises an important point. As the No Free Lunch theorem tells us, there
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is no one-size-fits-all set of operators for all problems. Consequently, there is not

ideal profile for the exploration and exploitation curves. Perhaps the best that can

achieved is to describe certain classes of problems, and then find the appropriate

exploration/exploitation trade-off for each. For now though, we will move on to our

last test problem to see how our “ideal” operator performs there.

7.3 Lawn Mower

The lawn mower problem was originally devised to test program modularity using

automatically defined functions (ADFs) [Koza, 1994]. In fact, a solution can be

evolved quite quickly if ADFs are used. In order to create a more challenging problem,

we will not be using them.

The essence of this problem is to find a solution for controlling the movement

of a robotic lawn mower so that the lawn mower visits each of the squares on two-

dimensional n × m toroidal grid. The toroidal nature of the grid allows the lawn

mower to wrap around to the opposite side of the grid when it moves off one of the

edges. The lawn mower has state consisting of the squares on which the lawn mower

is currently residing and the orientation (up,down,left and right) that it is facing.

The lawn mower has 3 actions that change its state: “left” turns the agent left by

90 degrees, “mow” moves the agent forward and results in the destination grid being

mowed, and “frog” jumps the agent to a specified location without performing any

mowing in the process.

When evaluating an individual, the tree is executed a single time. The fitness is

equal to the number of squares that remain unmowed after the tree has executed.

This means that smaller fitness values indicate more fit agents, and the perfect agent

will have a fitness of zero.
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7.3.1 Phenotypic Traits

As with with other problems, a set of quantitative traits were devised to describe the

lawn mower’s behavior in the phenotypic landscape.

• Number of Moves: This measures the total number of times that a movement

action (i.e. mow or frog) is performed during the simulation run.

• Count of Null Movements: This trait measures the total number of move-

ment actions that place the agent in exactly the same location that it was just

occupying. This can really only happen with a “frog” action.

• Sum of Distances: The Manhattan distance of each movement action is cal-

culated during the simulation run, and all of these distances are then summed.

This trait measures the distance of the entire path that the agent followed.

• Number of Orientation changes: This measures number of times the orien-

tation of the lawn mower is changed during the simulation run. In other words,

it indicates the number of times the “left” action was performed.

• Count of Revisits: This measures total number of times that the agent revisits

any location that has already been mowed during the simulation run.

During preliminary runs, we observed that in the early generations (the first 10

or so) these traits are not normally distributed, but as the generations progress the

distributions become much closer to normal. For this reason, we will consider the

analysis in these early generations be suspect.

7.3.2 Results

Separate runs were performed with subtree and phenotypic crossover, using the same

parameters described earlier. The best-so-far curves are shown in figure 7.10 (left),

124



0 20 40 60 80 100

0
10

20
30

40
50

60

Generations

Fi
tn

es
s

Subtree Crossover
Phenotypic Crossover

0 20 40 60 80 100

0
10

20
30

40
50

60

Generations

Fi
tn

es
s

Subtree Crossover
Phenotypic Crossover

Figure 7.10: Best-so-far curves (left) and population average curves (right) for GPs
using standard subtree crossover and phenotypic crossover on the lawn mower prob-
lem. Results are averaged over 30 runs.

and the difference between the two operators is striking. There is almost no improve-

ment in fitness throughout the entire run when using phenotypic crossover, whereas

subtree crossover is able to find good solutions easily. To understand what is hap-

pening here, we will once again use the quantitative genetics tools.

We use the now familiar trait plots to get a sense for what is happening inside

our algorithms. Figure 7.11 shows the plots for subtree crossover, and the phenotypic

crossover plots are shown in figure 7.12. Looking at the trace plots (left), we see

a remarkable difference. Phenotypic crossover displays the typical behavior of quick

convergence on a solution, but we see something very different with subtree crossover.

Here the populations seem to be diverging over time.

This divergence indicates that the population is covering larger and larger areas

of the phenotypic search space with each generation. The fact that such a search
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Figure 7.11: Matrix trace curves (left) and matrix trace ratios (right) from a GP
using subtree crossover on the lawn mower problem. Results are averaged over 30
runs.

0 20 40 60 80 100

0
2

4
6

8
10

Generations

tr(D)
tr(O)
tr(P)
tr(G')

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Generations

tr(D)/tr(P)  Perturbation
tr(O)/tr(P)  Pop. Heritability
tr(G')/tr(P) Heritability

Figure 7.12: Matrix trace curves (left) and matrix trace ratios (right) from a GP
using phenotypic crossover on the lawn mower problem. Results are averaged over 30
runs.
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pattern is effective implies that with each generation, better solutions continue to

lie beyond the edge of the area defined by the population. Essentially this means

that when the initial population was defined, it only covered a small portion of the

phenotypic search space, and there were no decent optima within that area.

This easily explains why the phenotypic crossover operator does not perform

well. It was designed to reduce the high amounts of perturbation created by sub-

tree crossover, and thus reduce the amount of exploration. In all of the experiments

we have performed up until now, our algorithms have managed to create initial popu-

lations that sampled large areas of the phenotypic search space, or at least areas of the

search space that contained fairly good local optima. Some of the decisions we have

made regarding ideal values for perturbation and population heritability were based

on the assumption that good optima did indeed lie within the area defined by the ini-

tial population. When this assumption is violated, the ideals should be re-evaluated.

Alternatively, new methods should be devised for initializing the population so that

a wider area is covered.

The lawn mower problem was created in order to test program modularity. One

of its features is that without ADFs a full description of every possible move must

be encoded into the tree. In other words there is no capability for doing any sort of

generalization, such as repeating small groups of actions. This means that the size of

the tree can have a critical effect on its ability to perform well on the task because

trees that are too small cannot possible encode all the necessary moves. One possible

solution to this problem is to create larger trees at initialization. This will probably

increase the phenotypic area that the initial population covers, but it may not be

quite enough to eliminate the need for more search in the reproductive operators.
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7.4 Discussion

The regression problem demonstrated that these techniques can be effective in iden-

tifying issues with the reproductive operators, confirming our expectations regarding

the appropriate trade-offs between exploration and exploitation. This provides useful

insights into how the reproductive operators should affect the population in phenotype

space for those attempting to perform customizations.

The other two problems, artificial ant and lawn mower, effectively challenged some

of the assumptions that were made in earlier chapters. They demonstrated that there

are situations where different exploration/exploitation trade-offs may be appropriate

for solving a problem. Nonetheless, the tools proved valuable for diagnosing what

the behaviors of the algorithms and operators were, and helped us gain insights that

could lead to making improvements. The ability to look under the hood to see how

an algorithm functions can be useful even if we we do not know to construct an ideal

operator for the given problem.

Given some of the exceptions we discovered, it may be worthwhile to compile

a a set of landscape classes. For each class we can then find (either empirically

or through mathematical proof) the appropriate exploration/exploitation profiles for

solving those landscapes. Such a list would be useful in others ways too. When

approaching a new problem, one may be able learn about their landscape by testing

how different reproductive operators perform. Those that perform better may indicate

to what class the underlying landscape belongs.
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Chapter 8: Conclusions

The main goal of this work has been to improve the EA practitioner’s ability to

develop customized algorithms. With only a few caveats, the techniques presented

here have been successful in achieving this. I have demonstrated that multivariate

quantitative genetics theory can provide a framework for practitioners to answer

questions about their algorithms, even when specific theories do not yet exist. Using

these tools, I have reexamined the reproductive operators of conventional EAs, and

offered new ways to think about their behaviors. And I have provided two examples

of the diagnosis process, as I identified problems in some well known customized

operators and used this knowledge to improved their performance.

Much of the effort in using this approach will be expended on developing an appro-

priate set of quantitative traits that describe that landscape that one is attempting to

solve. While this is not a trivial task, for the practitioner this is much less daunting

than developing new theory to address their problems.

8.1 Contributions

My work here provides several contributions to the field of evolutionary computation,

both theoretical and practical. On the theoretical side, I have reformulated Price’s

theorem in such a way that the relationship between parents and offspring is less

tightly coupled than in other formulations. This made it possible to separate and

rearrange certain components of the equation, enabling me to more easily model

mixed forms of reproduction, such as sexual and asexual reproduction. This is an
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important part of adapting quantitative genetics theory to evolutionary algorithms,

where mixtures like these are common.

This change to Price’s theorem also aided in another important contribution: my

development of a variance equation of evolutionary dynamics. Where Price’s theorem

measures the change in mean values of traits from one generation to the next, this

new equation measures the change in variance. My equation was derived from Price’s

theorem, and in a sense it can be thought of as the variance form of Price’s theorem.

The loose coupling of parents and offspring allowed me to derive an equation that does

not use midparent calculations, as is normally done. This made further decomposition

possible, and exposed the perturbation component, which provides insights into how

much exploration the reproductive operators are performing. Other components also

become clear from the equation, such as heritability and a component that describes

similarity between parent and offspring populations rather than individuals. I refer to

this as population heritability, and it was shown to provide a measure of exploitation.

These provide a basis for developing concrete measurements for intuitive concepts

that are used to understand and explain how a search algorithm behaves.

Another important contribution of mine was the development of a suite of analysis

tools based on the theory. These tools can be used to instrument any existing EA,

record important measurements while that EA runs, and then visualize and analyze

the search behavior of that algorithm once the runs are complete.

Critical to the visualization component of these tools was my development of

techniques that simplify and summarize the details of a covariance matrix. Based

on the trace function, these techniques take the important concepts provided by the

theory (i.e. exploration, exploitation, selection pressure and phenotypic convergence)

and make it possible visualize them in a way that is easy to interpret. This greatly

simplifies the process of diagnosing problems within a customized EA.
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My final contribution is the demonstration that these tools can in fact be used to

perform diagnoses, and make improvements to a customized EA. This demonstration

was done on a set of three different EA variants, in order to show some degree of

generality of the tools.

The first type of EA that I examined was actually a set of EAs that use fairly tra-

ditional representations. These experiments validated quite effectively that the tools

provide accurate evaluations of a number commonly encountered problems that one

faces when applying EAs. These include issues like: too much exploration, difficulties

with operators that are do not adapt to the landscape, and problems with epistasis.

While the solutions to these problems are fairly well known, it is easy to see how my

tools could lead one to finding these solutions if they were not.

The next two examples are well known EA variants: Pittsburgh approach rule

systems and genetic programming trees. Many attempts have been made over the

years to improve the reproductive operators on these systems with varying degrees of

success. With my tools, I was able to make significant improvements in both cases.

This clearly demonstrates that this approach is applicable across a variety of prob-

lems and representations with no re-derivation of theoretical equations needed. The

wide applicability to such different EAs strongly suggests that this theory identifies

fundamental aspects of the evolutionary process, and should be considered for use in

other EC theoretic endeavors as well.

8.2 Future Work

I see a number of interesting directions to take future research, using the work in this

dissertation as a starting point. These include open issues that should be addressed,

as well as ideas for extending, complementing, and making use of this theory to
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improve EA algorithm design.

One important issue that was difficult to deal with while performing experiments

involved interpreting the covariance matrices when the trait distributions are not

normal. I should emphasize that the equations are still correct and accurate in these

cases, it is just the interpretation that becomes difficult.

In some cases I was able to deal with these problems using remapping techniques

that are suggested in the biology literature. For example, some highly skewed distri-

butions could be remapped by taking the log of the trait values. Another problem

involved dealing with distributions that were largely normal, but had numerous out-

liers. In this case, remapping using a sigmoid function provided and effective solution.

But there were other situations where there remapping seemed unlikely to solve the

problem. In particular, EAs that use high amounts of selection pressure can deform

populations beyond repair. In these cases, I was simply forced to use weaker selection

operators.

An approach that I think is promising for addressing this issue is to consider how it

might be merged with the EA theory based on statistical mechanics [Prügel-Bennett

and Shapiro, 1994]. The statistical mechanics theory has a lot in common with quan-

titative genetics, in that it characterizes populations as probability distributions, and

uses a set of dynamical systems equations to describe how population distributions

transition from one generation to the next.

The two theories complement each other in the following sense. A key weakness of

the statistical mechanics theory is that it is predictive rather than descriptive. This

means that it requires a fully specified fitness function in order to perform any sort of

analysis. If one is working to optimize some sort of black box process, then defining

such a function is rarely feasible. My quantitative genetics approach does not have

this problem.
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On the other hand, the statistical mechanics theory has an interesting strength.

It is not limited to modeling populations that are normally distributed. Using a

number of higher cumulants beyond just mean and variance, it can model highly

skewed populations quite easily, which the quantitative genetic theory cannot. If

these theories could be combined in such a way that both of these strengths are

preserved, it would result in a theory that had fewer limitations, and was easier to

apply.

Another issue that should be addressed in future work involves dealing with co-

variance matrix calculations that are intractible. In particular, this occurs when the

matrices become non-positive definite, which I suspect can be caused by inaccuracies

in calculations, such as those caused by round-off errors. My use of the shrinkage

method for covariance matrix calculations [Opgen-Rhein and Strimmer, 2007], as

implemented in the R corpcor library, was effective in dealing with many of these

problems, but not all. For example, in some cases the covariance matrices that were

calculated would contain imaginary numbers in certain matrix elements. These ma-

trices could also be non-positive definite, and the corpcor library would be unable to

correct the problem.

There are even cases where a non-positive definite matrix is not caused by an error.

For example, there are situations where the G� matrix can be negative definite, while

still being perfectly valid and correct. Future work should address how to interpret

these values. Additionally, some additional work should be done to be sure that the

shrinkage technique is not introducing adverse affects into the calculations.

Along a somewhat different tack, there are techniques available in the biology

community that could complement the tools I have developed by identifying quanti-

tative trait loci (QTL) [Hartl and Clark, 2007]. A QTL describes which specific genes

affect which quantitative traits. In their current form, my tools require that special
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care be taken when designing traits so that this association can be made. QTL tech-

niques would aid the diagnosis process by allow more freedom when designing traits,

while still making it possible to observe the effects that genes have on the phenotype.

And finally, I believe my tools could be used to develop some general improve-

ments to EAs that could be applicable across a wide variety of domains and represen-

tations. Our EAs are actually quite simplistic when compared to the natural systems

that inspired them. Many complexities have been abstracted away, such as diploid

representations with dominant and recessive genes, complex gene-trait interactions

like pleiotropy (where one gene affects many traits), or mechanisms that allow one

gene to inhibit or express the effects of another gene. Experiments have been con-

ducted which explore how the addition of these mechanisms might improve our EAs,

but the results so far have indicated that there is little to no benefit to including these

complexities.

I would like to reexamine these mechanisms in light of my theory to see if they

have some value that was previously unrecognized. I have encountered research [Jones

et al., 2003] that suggests to me that pleiotropy acts as a mechanism for encoding

learning biases, and could help recombination operators in overcoming epistasis. Ad-

ditionally, a diploid representation could act as a repository for storing these alter-

native biases, allowing them to be brought back out when the need arises. My tools

are ideally suited for identifying effects like these.

134



Bibliography

135



Bibliography

[Altenberg, 1994] Altenberg, L. (1994). The evolution of evolvability in genetic pro-
gramming. In Kinnear, K. E., editor, Advances in Genetic Programming, pages
47–74. MIT Press, Cambridge, MA.

[Altenberg, 1995] Altenberg, L. (1995). The schema theorem and Price’s theorem. In
Whitley, L. D. and Vose, M. D., editors, Foundations of Genetic Algorithms III,
pages 23–49, San Francisco, CA. Morgan Kaufmann.

[Arnold, 1994] Arnold, S. J. (1994). Multivariate inheritance and evolution: a review
of concepts. In Boake, C. R. B., editor, Quantitative Genetic Studies of Behavioral
Evolution, page 1748. University of Chicago Press, Chicago.

[Asoh and Mühlenbein, 1994] Asoh, H. and Mühlenbein, H. (1994). Estimating the
heritability by decomposing the genetic variance. In Davidor, Y., Schwefel, H.-P.,
and Männer, R., editors, Parallel Problem Solving from Nature – PPSN III, pages
98–107, Berlin. Springer. Lecture Notes in Computer Science 866.
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