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ABSTRACT

Inductive inference is viewed as a process of generalizing and
simplifying symbolic descriptions, under a guidance of generalization rules
(representing general inference processes which generalize descriptions) and
problem environment rules (representing problem specific knowledge). Descriptions
are expressed in an extension of predicate logic which uses typed variables and
a few novel syntactic forms (a variable-valued logic system VLZ)' It is
demonstrated that various types of learning from examples (e.g., concept learning
or classification), as well as learning from observation can bhe viewed thig way.

Learning from observation is described as a Process of partitioning a
given collection of entities into clusters (or, in general, into a structure of

clusters), such that each cluster represents a single concept selected from a

set of a priori known concepts.
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INTRODUCTTION

Our understanding of inductive inference processes remains

very limited despite considerable progress in recent years., Making

progress in this area is particularly difficult, not only because of the
intrinsic complexity of these problems, but also because of their cpen—
endadness. This open-endedness implies that when we make inductive asser-
tions about some piece of reality, there is no natural limit to the level
of detail of descriptions of this reality, to the scope of concepts and
operators used in the expression cof theée assertions, or to the richness
of their forms. Consequently, in order to achieve non-trivial general
solutions, one has to circumscribe carefuily the nature and goals of the
research. This includes defining the language in which descriptions may
be written and the modes of inference which will be used. Careful defini-
tions will avoid the main difficulty of must current research: attacking

problems which are too general with techniques which are too limited.

Recently there has been a growing need for practical solutions
in the area of computer iInduction. For example, the development of
knowledge-based expert systems requires efficient methods for aecquiring and
refining knowledge. Currently, the only method of knowledge acquisiticn is
the handcrafting of an expert's knowledze in come formal systems e.g. in the
form of production rules (Shortliffe [1], Davis [2]) or as a semantic net

{(Brachman [3]). Progress in the theory of induction and the development of



efficient inductive programs can provide valuable assistance and an alter-

native method in this area. For example, inductive programs could be useful

for filling in gaps and testing the comnsistency and completeness of expert-—
derived decision rules, for removing redundancies, or for incremental improve-
ment of the rules through the analysis of their performance. They could pro-
vide a means for detecting regularities in data bases and knowledge

bases. Also, for appropriately selected problems, the programs could deter-
mine the decision rules directly from examples of expert decisions, which

would greatly facilitate the transfer of knowledge from experts into machines.

Experiments on the acquisition of rules for the diagnosis of soybean disea-

ses (Michalski and Chilausky [4]), - haveindicated that rule-lezrning from
examples is not only feasible, but in certain aspects it seems to be prefearable.

Another potential for applying computer induction is in various
areas of science, e.g., biology, microbiology, and genetics. Here it could
assist a scientist in revealing structure or detecting interesting conceptual
patterns in collections of observations or results of experiments. The
traditional mathematical techniques of regression analysis, numerical taxoenomy,
factor analysis, and distance-based clustering techniques are not. sufficiently
adequate for this task. Methods of conceptual data analysis are needed, whose
results are not mathematical formulas but conceptual descriptions of data,
involving both qualitative and quantitative relationships.

Quite different from the above are goals of research in a special
sub-area of computer inductive inference such as automatic programing
(e.g., Shaw, Swartout and Green [5], Jouannaud and Kodratoff [6], Burstall and
Darlington [7], Biermann [8], Smith [9], Pettorossi [10]). Here, the objective
1s to synthesize a program from I/b pairs or computational traces, or to

improve its computational efficiency by application of correctness—preserving



transformation rules. The final result of learning is thus a program, in a
given programming language, with its inherent sequential structure, destined
for machine rather than human "consumption” (or, in other words, a description
in "computer terms' rather than in "human terms'"). Here, the postulate of
human comprehensibility (mentioned below) is not too relevant. Quite similar
to research on automatic programming is research on grammatical inference
(e.g., Bierman and Feldman [11], Yau and Fu [12]) where the objective of
learning is a formal grammar.

This paper is concerned with computer inductive inference, which
could be called a "conceptual” induction. The final result of learning is
a symbolic description of a class (or classes) of entities (which typically
are not computational processes} which is in a form of a logical-type
expression. Such an expression is expected to be relatively "close" to a
natural language description of the same class(es) of entities, specifically

it should satisfy what we call the comprehensibility postulate:

The results of computer induction should be conceptual deseripticns of
data, similar o ine descriptions a human expert might produce observing the
same data. They should be comprehensible by hunans as single 'chunks' of
information, directly interpretable in natural language, and ean involve
both quantiiative and qualitative information.

This postulate implies that descriptions should avoid more
than one level of bracketing, more than one implication or exception symbol,
avoid recursion, avoid including more than 3-4 conditions in a conjunction
and more than 2-3 conjunctions in a disjunction, not include more than two
quantifiers, etc. (the exact numbers can be disputed, but the principle
is clear). This postulate can be used to decide when to assign a
name to a specific formula and use that name inside of another formula.

This postulate stems from the motivation of this research to provide new

methods for knowledge acquisition and techniques for conceptual data analysis.



It is also well confirmed by the new role for research in artificial intel-
ligence, as envisaged by (Michie [13]), which is to develop techniqueé for
eonceptual interface and knowledge refinement.

In this'paper we will consider two basic types of inductive

inference: learning from examples and learning from observation (specifically,

the so called "conceptual clustering').

2. COMPUTER INDUCTION AS GENERALIZATION AND SIMPLIFICATION OF SYMBOLIC
DESCRIPTIONS

2.1 Inductive Paradicm

The process of induction can be characterized as the search for an
economical and correct expression of a function which is only partially knowm.
In other words, its goal is the determination and validation of plausible
general descriptions (inductive assertions or hypotheses) which explain =z
given body of data, and are able to predict new data. Between the two aspects
of induction -- the generation of plausible inductive assertions and their
validation -- only the first is the subject of our study. We feel that the
subject of hypotheses generation, in particular tte problems of generalization
and simplification of symbolic descriptions by a computer, is a quite unexplored
and very important direction of research. The problems of hypothesis confirma-
tion, in the Carnapian (Carnapl14 ) or similar sense, are considered to be
beyond the scope of this work. 1In our approach, inductive assertions are
judged by a human expert interacting with the computer, and/or tested hy

standard statistical techniques. The research is concentrated on the following

inductive paradigm:

Given is:

(a)  a set of data rules (input rules), which consist of data deserip-

tions, {Gij}’ specifying initial knowledge about some entities

( objects, situations, processes, etc.), and the generalization



class, K,, associated with each C,. (the association is
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Descriptions Géj can be symbolic specifications of conditions
which given situations satisfy, production rules, sequences of
attribute-value pairs representing observations or results

of experiments, etc. The descriptions are assumed to be
expressions in a certain logical calculus, e.g., propositicnal
calculus, a decision tree structure, predicate calculus, or
calculi specially developed for inductive inference, such as

variable valued logic systems VLl (Michalski [15]) or VL2

{(Michalski [161]).

(b) a set of rules which define a problem environment, i.e.,
represent knowledge about the induction problem under consider-
ation. This includes definitions of value sets of all desecrip-
tors* used in the data rules, the properties of descriptors
and their interrelationships and any "world knowledge™
characteristic to the problem at hand.

(c) a preference or'(optimqlity) eriterion, which for any two
symbolic descriptions of an assumed form, and of the same

generalization class, specifies which one is more preferable,

or states that they are equally preferable.

kDasoriptors are varicbles, relations and funections which are used in symbolic
descriptions of objects or situations.



The problem is to determine a set of iInductive assertions (output deseriptions).
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which are most preferable among all sets of rules in an assumed format, that

do not contradict the problem enviromment rules, and which are, with regard to

the data rules, consistent and complete.

A set of inductive assertions is consistent with regard to data
rules, 1f any situation which satisfies a data rule of some generalization
class either satisfies an assertion of the same class, or does not satisfy
any assertion.

A  set of assertions is complete with regard to input rules, if
any situation which satisfies some data rules also satisfies some assertion
in the set.

It is easy to see that if a set of assertions is consistent and
complete with regard-to the data rules, then it is semantically equivalent
to or more general than the data rules (i.e., there may exist situations
which satisfy an assertion but do not satisfy any data rules).

From a given set of data ruies 1t is usually possible to derive
many different sets of hypotheses which are consistent and complete, and
which satisfy the problem environment rules. The role of the preference
criterion is to select one (or a few alternatives) which is (are) wost
desirable in the given application. The preference eriterion may refer to

the simplicity of hypotheses (defined in some way), their generality, the



cost of measuring the information needed for their evaluation, their degree
of approximation to the given facts, etc. (Michalski [16]).

We will distinguish following special types of.induction (this is
not an exhaustive classification):

I. Learning from examples

Within this type three subclasses of problems were studied most:

a. concept acquisition, or learning a characteristic description
of a class of entities.

b. classification learning, or learning discriminant descripiions
of related classes of objects.

¢. sSequence prediction, or discovery of a rule which generates a
given sequence of entities.

IT. Learning from observation

' or revealing a conceptual structure

("Conceptual clustering,'

underlying a collection of entities,)}

Most of the research on computer induction dealt with a special
subproblem of type Ia, namely learning a conjunctive concept (description)
characterizing a given class of entities. Here the data rules involve only
one generalization class (which represents a certain concept), ox
two generalization classes; the second class being the set of "negative
examples" (e.g., Winston [17], Vere [18], Hayés—Roth [19]). Where there is
only one generalization class (the so~called uniclass generalization) there
is no natural limit for generalizing the given set of descriptions. In such
case the limit can be imposed, e.g., by the form of expressing the inductive
assertion (e.g., that it should be a most specific conjunctive generalization

within the given notational framework, as in (Hayes-Roth [19]) and (Vere [181]1),

or by the assumed degree of generality (Stepp [20]). When there are negative



examples the concept of near miss (Winston [17]) can be used to effectively
determine the limit of generalization .

A general problem of type Ia is to learn a characteristic description
(it can be, e.g., a disjunctive description, grammar, or an algorithm) which
characterizes all entities of a given class, and does not characterize any
entity which is not in this class.

Problems of type Ib are typical pattern classification problems.

Data rules involve many generalization classes; each generalization class
represents a single pattern recognition class. In this case, the individual
descriptions Céj are generalized so long as it leads to their simpliciation and
preserves the condition of consistency (e.g., Michalski [21]). Obtained
inductive assertions are discriminant descriptions, which permit one to
distinguish one recognition class from all other classes. A descriminant
description of a class is a special case of characteristic description, where
any object which is not in the class is in one of the finite (usually quite
limited) number of other classes. Of special interest are discriminant
descriptions which have minimal cost (e.g., the minimal computational
complexity, or minimal number of descriptors involved).

Problems of type Ic are concerned with discovering a rule governing
generation of an ordered sequence of entities. The rule may be deterministic
(as in letter sequence prediction (e.g., Simon & Lea {221), or nondeterministic,
as in the card game EULESIS (Dietterich [23]). Data rules involve here only
one generalization class, or two generalization classes, where the second
class represents '"negative examples."

Problems of type II (learning from observation) are concerned with

determining a structure underlying a collection of entities. In particular,

such a structure can be a partition of the collection into clusters of entities



representing certain single concepts (''conceptual clustering,' Michalski {24]1).
Data descriptions in (1) represent in this case individual entities, and they
all belong to the same generalization class (i.e., data descriptions consist of
a single row in (1)).

Methods of induction can be characterized by the type of language
used for expressing initial descriptions cij and final inductive assertions
Céj' Many authors use a restricted form (usually a quantifier-free) of
predicate calculus, or some equivalent notation (.e.g, Morgan [25],

Fikes, Hunt and Nilsson [26], Banerji [2?1, Cohen [381], HayeshRoth and
McDermott [29], Vere [18]).
In our earlier work we used a special propositional calculus with

multiple-~valued variables, called variable-valued logic system VL Later on

1
we have developed an extension of the first order predicate calculus, called

VLZI_(Michalski [16]). It is a much richer language than VL., which includes

1°
several novel operators not present in predicate calculus, e.g., the Znternal
conjunction, internal disjunction, the exception, the selector. We found these
operators very useful for describing and implementing generalization processes;
they also directly correspond to linguistic constructions used in human
descriptions. VL21 also provides a unifying formal framework for adequately
handling descriptors measured on different scales. (The orientation toward

descriptions with descriptors of different types is one of the unique aspects

of our approach to induction.)

2.2 Relevancy of Descriptors in Data Descriptions

A fundamental question underlying any machine induction problem is
that of what information the machine is given as input data, and what inferma—
tien the machine is supposed to produce. An important specific question here

15 the question of data relevancy, i.e., of how relévant to the problem under
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consideration must be variables (in general, desecriptors) in the input data,
and how the variables in the output descriptions relate to the initial variables.
We will distinguish three cases:

1. The input data consists of descriptions of objects in terms
of variables which are relevant to the problem, and the
machine is supposed to determine a logical or mathematical
formula of an assumed form involving the given wvariables
(e.g., a disjunctive normal expression, a regression polynomial,
etc.).

2. The input data consists of descriptions of objects as in case 1,
but the descriptions may involve, in addition to relevant
variables, a relatively large number of irrelevant variables.
The machine 1s to determine a solutionm description involving
only relevant variables.

3. This case is 1like case 2, except that the initdial descriptions
may not include the relevant variables at all, They must
include, however, among irrelevant variables, also variables
whose certain functions {e.g., represented by mathematical
expressions or intermediate logical formulas) are relevant

variables. The final formula is then formulated in terms of
the derived variables.

The above cases represent problem statements which put progressively
less demand on the content of the input data (i.e., on the human defining the

problem) and more demand on the machine.

The early work on concept formation and the traditional methods of

data analysis represent case 1. The most of the recent research deals with
case 2. In this case, the method of induvction has to include efficient
mechanisms of determining irrelelvant variables. The logic provides such
mechanisms, and this is one of the advantages of logical type'solutions.

Case 3 represents the subject of what we call constructipe induction.

Our research on induction using svstem VLl and initial work
using VL21 has dealt basically with case 2. TlLater on we realized how to
approach constructive induction, and formulated

the first constructive

generalization rules. We have incorpurated them in our Inductive
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program INDUCE 1 (Larson and Michalski [30], Larson [31]) and in the newer
improved version INDUCE-1.1 (Dietterich [32]).

The need for introducing the concept of constructive induction may
not be obvious. The concept has basically a pragmatic wvalue. To explain
this, assume first that the output assertions involve derived descriptors,
which stand for certain expressions in the same formal language. Suppose that
these expressions involve, in turn, descriptors which stand for some other
expressions, and so on, until the final expressions invelve only initial
descriptors. In this case the constructive induction simply means that the
output descriptions are multi-level or recursive.

But this is mot the only interesting case. Derived descriptors in
the output assertions may be any arbitrary, fixed {(i.e., not learned) transfor-
mations of the Input descriptors, specified by a mathematical formula, a
computer program, or, even implemented in hardware (e.g., the hardware
implementation of fast Fourier transform). Their specification may require
language quite different from the accepted formal descriptive language. To
determine these descriptors by learning, in the same fashion as the output
descriptions, may be a formidable task. They can be determined, e.g., through
suggestions of possibly useful transformations provided by an expert, or as
a result of some generate-and-test search procedure. 1In our approach, the
derived descriptors are determined by constructive induction rules, which

represent segments of problem~oriented knowledge of experts.

2.3 Problem Specification and the Form of Inductive Assertions

The induction process starts with the problem specification and
ends with a set of alternative inductive assertions. The proklem specijica-

tion consists of a) data rules, b) specification of the problem envirowment
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and c) the preference criterion. We will briefly discuss each of these topics.

2.3.1 Form of data rules and inductive assertions
In program INDUCE 1.1, the data descriptions, ij, and inductive

assertions, Céj’ are c~formuilas (or VLZl terms), defined as products of VL21

selectors, with zero or more quantifiers in front. TFor example, a C%j can
be:
FP1.P2 [color(Pl) = red,blue] [weight{F1) > weight(P2)]
|length(P2) = 3..8][ontop(P1,P2)]A
[shape(Pl) < shape(P2) = box] A
(see Appendix 1 for explanation)
Since selectors can include internal disjunction and. involve concepts of

different levels of generality (as defined by the generalization tree; see
wwt sectiom), the c~formulas are more general concepts than conjunctive
wLatements of predicates.

Other desirable forms of Cij are;

® Assertions with the exception operator
(Tt vT2v ..H\ T (3)

where T, T1, T2, ... are c~formulas, and\f is the exception operator (see
Appendix 1).

The motivation for this form comes from the observation that a
description can be simpler in some cases, if it states an overgeneralized
rule and specifies the exceptions. We have introduced this concept in the
past (Michalski 74), but have not made much progress with it. Recently
Vere (1978) proposed an algorithm for handling such assertions in the frame-
work of conventional conjunctive statements. He allows several levels of
exception, which we consider undesirable because of the postulate of com-
prehensibility.

¢ Implicative assertions
T, > T |
T(T, > T, )
Production rules used in krnowledge~based inference systems are

2@ special case of (4), when T is omitted and “here is no internal disjunc-
tion. Among interesting inductive problems regarding this case are:
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1. developing algorithms for exposing contradictions in a set of implicative
assertions

. deriving simpler assertions from a set of assertions

2
3. generalizing assertions so that they may answer a wider class of questions
while being consistent.

Various aspects of the last problem within a less general frame-
work were studied, e.g., by Hedrick [34],

¢ (ase assertions

]+ Tz) Y s<a (5)

([f_= R1] > Tl) v ({f =R,

vhere R,,R...are pairwise disjoint sets.

2

This form occurs when a description is split into individual cases character-—
ized by different values of a certain descriptor.

3.2.2 Specification of the problem environment

The problem environment is defined by the specification of the
types of the descriptors, their values sets and their interrelationships.

@ Types of descriptors

The process of generalizing a description depends on the type of
descraptors used in the description. The type of a descriptor depends on the
structure of the value set of the descriptor. We distinguish among three
different structures of a value set:

1. Unordered

Elements ¢f the domain are considered to be independent
entities, no structure is assumed to relate them. A
variable or functicn symbol with this domain is called
nominal (e.g., blood-type).

2. ILinearly Ordered

The domain is a linearly ordered set. A variable or
function symbol with this domain Is called Zirear
(e.g., military rank, temperature, weight). Variables
measured on ordinal, interval,ratio and absolute scales
are special cases of a linear descriptor.

3. Tree Ordered

Elements of the domain are orvdered into a tree structure,
called a generalization tree. A predecessor node in the
tree represents a concept which is more general than the
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concepts represented by the dependent nodes (e.g., the
predecessor of nodes 'triangle, rectangle, pentagon,
etc.,' may be a 'polygon'). A variable or function
symbol with such a domain is called structured.

Each descriptor (a variable or function symbol) is assigned its

type in the specification of the problem. 1In the case of structured descriptors,

the structure of the value set is defined by inference rules (e.g., see egs.

(8, (99, (10)).

® Relationships among descriptors

In addition to assigning a domain to each variable and function

symbol, one defines properties .: variables and atomic functions characteristic

for the given problem., They are represented in the form of inference rules.

Here are a few examples of such properties.

1.

Restrictions on Variables

Suppose that we want to represent a restriction on the event
space saying that if a value of variable x, is 0 ('a person

does not smoke'}, then the variable x, is ~'not applicable’

(33 ~ kind of cigarettes the person smokes). This is repre-
sefited by a rule:

(x, = 0] = [x, = NA]

1
NA = not applicable

Relationships Between Atomic Functions

For example, suppose that for any situation in a given pro-
biem, the atomic function f£({x., xz) is always greater than

~the atomic function g(xl, XZ)' We represent this:

T =>Vxl,x2 [£(xy, 2,) > (x5 %,)]
Properties of Predicate Functions

For example, suppose that a predicate function is transitive.
We represent this:

Vxl,‘xz,xg'( [left(xy,%,) T[1eft (xy, )] => [Left Gy ,x,) 1)

Other types of relationships characteristic for the problem
environment can be represented similarly.
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The rationale behind the inclusion of the problem environment
deseription reflects our position that the guidance of the process of in- |
duction by the knowledge pertinent to the problem is necessary for nontrivial
inductive problems.

2.3.3 The preference criterion
The preference defines what is the desired solution to the problem,

i.e., what kind of hypotheses are being sought. There are many dimensions,

independent and interdependent, on which the hypotheses can be evaluated.
The weight given to each dimension depends on the ultimate use of the
hypothesis (e.g., the number of operators in it, the quantity of informa-
tion required to encode the hypothesis using operators from an a priori
defined set (Coulon and Kayser [33}), the scope of the hypothesis relating

the events predicted by the hypothesis to the events actually observed
(some form of measure of degree of generalization), the cost of measuring
the descriptors in the hypothesis, etc. Therefore, instead of defining =
specific criterion, we specify only a general form of the criterion. The
form, called a 'lexicographic functional'! consists of an ordered list of
criteria measuring hypothesis quality and a list of "tolerances' for these
criteria (Michalski [151]).

An important and somewhat surprising property of such an approach
is that by properly defining the preference criterion, the same computer

program can produce either the characteristic or discriminant descriptions

of object classes.

3. GENERALIZATION RULES
The transformation from data descriptions (1) to inductive assertions

(2) can be viewed (at least conceptually) as an application of certain
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generalization rules.

A generalization rule i1s defined as a rule which transforms one
or more symbolic descriptions (data rules) in the same generalization class
into a new description (inductive assertion) of the same class which is
equivalent or more general than the set of initial descriptions.

A description

Vi >XK (6)
is equivalent to a set of

vy :e>x3,1=1,2, ... D)
if any evernt ( a description of an object or situation) which
satisfies at least one of the vi, i1 =1, 2, ..., satisfies also
V, and conversely. If the converse is not required, the rule (6) is
said ro be more general than (7).

The generalization rules are applied to data rules under the
condition of preserving consistency and completeness, and achieving opti-
mality according to the preference criterion. A basic property of a
generalization transformation is that the resultir: rule has UNKNOWN
truth-status; being a hypothesis, its truth-status must be tested omn new
data. Generalization rules do not guarantee that the inductive assertions
are useful or plausible.

We have formalized several generalization rules, both for non-

constructive and constructive induction. (The notation Dl F: D2 specifies
that D, 1s more general than Dl).

Non~constructive rules:

(1) the extending reference rule

VIL = Rj} 22 > 1 k VL = R,]

where 1. - is an atomic function
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R le, and R

2= R

1°8s are subsets of the wvalue set,
b(L), of descriptor L.
¥V - an arbitrary descriptiomn.
This is a generally applicable rule; the type of descriptor
L does not matter
(i1) The dropping selector (or dropping condition) rule
VIL=R] :: >X Kk V1 >k
This rule is also generally applicable. It is one of the
most commonly used rules for generalizing information.
It can be derived from rule (i), by assuming that RZ in
(i) is equal the value set D(L). In this case the selector
L = Rz] has always truth-status TRUE, and as such can be

removed.

(iii) The celosing interval rule

VIL = a] :: > X
VIL = a..b] :: > K
V[L

H

bl :: > X
This rule is applicable enly when L is a linear descriptor,

To illustrate rule (iii), consider as objects two states of

a2 machine, and as a generalization class, a characterization
of the states as novymazl. The rule says that if the states
differ only in that the machine has two different temperatures,
say, a and b, then the hypothesis is made that all states

in which the temperature is in the interval [a,b] are also
normal . |

(iv) The z2ilimbing generalization tree rule

rV[L=a] 12 > K
one or
more VIL = b] :: > K
Tules < ; ¢

(1, 11 > K

Il
0
—

~~_If’[I_. = 4] 21 > X

where L Is a structured descriptor



(v)

(vi)

18

s - represents the node at. the next level of
gencrality than nodes a, b, ... and i, in the
tree domain of L.
The rule is applieable only to selectors involving structured
descriptors. This rule has been used, e.g., in (Winston [17],

Hedrick [34], Lenat [35]).

Example:

Vishape(p) = trianglel :: > X

F Vishape(p) = polygonji :: > &
Vishape(p) = rectangle] :: > K

The extension against rule

Vl[L = R1] r > X
(1 # RE] > K
Vé[L = Rz] 1 >1K
where R,M R, = g
V, and V, - arbitrary descriptions.

1 2
This rule 1is generally applicable. It is used to take
into consideration 'negative examples', or, in general,
to maintain consistency. It is a basic rule for determining
discriminant class descriptions.

The "turning constants into variables' rule

“Vip(a,¥)] i: > X

one or
more Vip(b,Y)] :: > K
rules < " <3};, Vipx,¥)] :: = K

k._If"[;:e(:.t,,*zf)] v > K
where Y stands for one cr more arguments of atomic
function p.
X is a variable whose value set includes a, b, ..., 1.

It can be proven that this rule is a special case of the
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extending reference rule (i). This is a rule of general
applicability. It is the basic rule used in works on in-
duction employing predicate calculus.

Constructive Rules:

Constructive generalization rules (metarules) generate generalized
descriptions of rules in terms of new descriptors, which are functions of the
original descriptors, and can be viewed, as knowledge-based rules for generating

new descriptors. Many such rules can be formulated; we will give here a few

examples.

(vii) The counting rule

V[attributel(Pl)=A]...[attributel(Fk)=A][attribute YFAT.

(P
17 kt+1

...[attributel(Pr)%A] 12 > K Fi VI#P-attribute,-A = k] :: > X

]

where P_,P ssng B

12F 99 P_ - are constants denoting, e.g.,

, ‘4.’
k % .parts of an object
attributel(Pi) - stands for a certain attribute

of Pi-s, e.g., color, size,
texture, ete.

P#ﬂattributel-ﬁ - denotes a new descriptor inter-
) S preted as the 'number of P.-s (e.g.,
parts) with atiribute equal Al

Examplie:
Vicolor(P1l) = RED][color(P2) = RED]{color(P3) = BLUE] :}'>_K
K [#P-color-red = 2] :: > X
(The above is a generalization rule, because a set of objects with

any two red parts is a superset of a set of objects with two parts
which are red and one part which is blue.) g

The rule can be extended to a more general form, in which in addition
to the arbitrary context formula V there is a predicate CONDITION {Pl,...,Pk),

which specifies some conditions imposed on variables Pl,...,Pk.
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The generating chain properties rule (a chain metarule)

If the arguments of different occurrences of the same

relation (e.g., relation 'above', 'left-of’, "next',

etc.) form a chain, i.e., are linearly ordered by the

relation, the rule geﬁerates descriptors relating to

specific objects in the chain and computes their properties

as potentially relevant characteristics. For example:

LST-object — the 'least object', i.e., the object at the

beginning of the chain (e.g., the bottom

object in the case of relation 'above')

MST-object - the object at the end of the chain (e.g.,
the top object)

position(object) - the position of the object in the
chain.

The variable association detection rﬁle

Suppose that in the data descriptions, in the contex of
condition &, an ascending order of values of a linear
descriptor X, corresponds to an ascending (descending) ordet
of values of another linear descriptor xj‘with the same
quantified arguments. For example, whenever descriptor
weight (P) takes on increasing values, thap also the descriptor

lenght(P) takes on the increasing values. In such situations a

two-argument predicate descriptor is generated:

+(xi,xj) - if X, grows with X

or
+(x,,x,) - if x, decreases with x,
1’73 i i

If the number of different occurrences of x. and x, is
| i
statistically significant, then the "monotonic" definition

of descriptors f(xi,xj) and +(xi,xj) can be generalized to:
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r-True, if ri{x.,x.,) > T
i
+(Xi,Kj) ] <

| False, otherwise

(positive correlation)

True, if r(x.,x.) < -T
1° _J° =
+(xi,xj) =

False, otherwise

{negative correlation)

where r(xi,xj) denotes the coefficient of statistical
correlation, and T is a certain threshold, 0 < T < 1.
The concept of generalization rule§is very useful for understanding

and classifying different methods of induction (Dietterich and Michalski [36]).

3. LEARNING FROM EXAMPLES

We will illustrate some aspects of learning from examples by a
simple problem involving geometrical constructions. Suppose that two sets of
trains, Eastbound and Westbound, are given, as shown in Fig. 1. The problem is
to determine a concise, logically sufficient description of each set of trains,
which distinguishes one set from the other (i.e., a digseriminant description,
which contains only necessary conditions for distinguishing between the two
sets}). Using this example we will first briefly describe the learning
methodolegy implemented in computer program INDUCE-1.1 (Larson and Michalski 301,
Larson [31], Dietterich [32]) which successfully solved this problem. And
next we will discuss some problems for future research.

At the first step, the initial space of descriptors was determined.

They were descriptors which seemed to be possibly relevant for the descrimination

problem.
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1. EASTROUND TRAINS

2. WESTBOUND TRAINS

1. | A[OC O"HWIBJ

Fipure 1
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Among the eleven descriptors selected in total were:

© infront{car,,car,) - ecar, is in front of car.
* : (a nominal descriptor) -

© length{car,) ~ the length of car,
= (a. linecar descriptor)

¢ car-shape(car,) ~ the shape of car .
S (a structured deScriptor with 12 nodes in the
generalization tree; see egs. (8) and (23)

¢ cont-load{(car, ,joad.) - car, contains Zaadi
* J (a nominal descripter)

e load-shape(load,) .- the shape of andi
- {a structured descriptor)
The value set:

e circle

.he¥agonh““““?::aapolygon
-trnanglee:::;ff
e vectangle

O nrpta-lead(car,) ~ the number of parts in the load of car

L {a linear descriptor) *

o nrvheels{car ) - number of wheels in car,
* | (a linear descriptor)

At the next step, data descriptions.were formulated, which charac-
terized traiﬁs-in terms of the selected descriptors, aﬁd specified the traiﬁ
set to which each train belongs., TFor example, the data aescription for the
second eastbound train was:
4,loadl,load2,...
[infront(carl,carz)][infront(carz,carB}]...[1ength(car1)=long}ﬁ

decar, ,car. ,car. ,car
1’ 2.2 3?
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[Car-ShaPE(Cﬂrl)=engine]{car—shape(carz)=U—sha;ed][cunt—lﬁad(carz,loadl)]h

[load—shape(loadl)=triangle]...[nrwheels(car3)=21“::>[class= Eastbound]
Rules describing the problem environment in this case were
rules defining structures of structured descriptors (arguments of descriptors
are omitted):
[car-shape=open rctngl,open trapezoid,U-shaped,dbl open rctngl] =
[car~shape=open top]
[car--shape=ellipse,closed retngl,jagged top,sloping top]=®[car—shape=closed top]

[load-shape=hexagon,triangle,rectangle] = [load-shape=polygon]

and that the relation 'infront' is transitive.

The criterion of preference was to minimize the number of rules used
in describing each class, and, with secondary priority, to minimize the

number of selectors (expressions in brackets) in each ruls.

The above information was given to INDUCE 1. The program produced

%
the following inductive assertions :

Eastbound trains:

:3carl[length(carl)mshort][car*shape(carl)=closed top]l::>[eclass=Eastbound]

It can be interpreted:

If a train containg a car which is short and has a closed top (
then it is an eastbound train.

Alternatively,

Jcar

l,carz,loadl,loadz [infront(carl,carz)][cont-load(car loadl)]

1,
ﬁn[cont-load(carz,laadz)][load—shape(load1)=triangle]

o b Pty Ay s S

It can be Interpreted:

*
It may be a useful exercise for the reader to try to determine his/her
own solutions, before reading the computer solutions.
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If a train contains a car whose load is a triangle, and the load of the (12
ear behind is polygon, then the train 18 eastbound.

Westbound trains:

[nrcars=3] Vv carl[car—shape(carl}=jagged—top]I::> [class=Westbound]

Either a train has three cars or there is a car with jagged top | (13
car, [nrears-length-long=2][position(car,)=3][shape(car,)=open-top,jagged-top]

::> {eclass-Westbound]

There are two long cars and the third car has open-top or jagged top. (14)

It is interesting to note that the example was constructed
with rules (l2) and (13) in mind. The rute (11) which was found by the program
as an alternative was rather sﬁrprising because it seeme to be conceptually
simpler than rule (12). This observation confirms the thesis of this research
that the combinatorial part of an induction process can be successfully
kandled by a computer program, and, therefore, programs like the above have
a potential to serve as an aid to induction processes in various practical
problems.

The descriptors underlined by the dotted lines ('nrcars-length-
long', 'position(car)') are new descriptors, generated as result of
constructive induction. How were they generated? The constructive

generalization rules (metarules) are implemented as modules which scan

the data rules and search for certain properties. For example, the counting
metarule checks for each unary descriptor (e.g., length (car)) how MAany

times a value of the descriptor repeats in the data rules.

In our example, it was found that the selector [length (car) = long]
occurs for two quantified variables in every Westbound train, and there-
fore a new descriptor called 'nr cars-length-long' was generated, and a new
selector [nr cars-length-long = 2] was formed. This selector, after pass-
Ing the 'relevancy test', was included in the set of potentially useful

selectors. During the generation of alternative assertions, this selector



was used as one of the conditions in the assertion (14). The descriptor

'position(car)' was found by the application of the chain metarule.

Now, how does the whole program work? The program is described
in papers [Larson 31lab, Michalski 16, Dietterich 32]. In the Appendix 2,
we provide a description of the top level algorittm. Here we will give a

summary of the main ideas, their limitations, and describe some problems

for future research.

The work of the program can be viewed essentially as the process
of applying generalization rules, inference rules (describing
the problen environment) and metarules {(generating new descriptors) to
the data rules, in order to determine inductive assertions which are
consistent and complete. The preference criterion is used to select the
most preferable assertions which constitute tlie sviutiom.

The prccess of generating inductive assertions is inherently
combinaterially explosive, so the major question is how to guide this

process inorder to detect quickly the most preferable assertions.

As described in Appendix 2, the first part of the program
generates (by putting together step by step the 'most relevant'seélectors)

a set of consistent c-formulas.

The relevancy test for the selectors is a function of the number
of data rules covered in the given generalization class versus rules
covered In other generalization classes.

C-formulas are represented as labelled graphs, and testing them
for consistency (i.e., the null intersection with descriptions of objects
in generalizution classes other than the class under consideration) or for
the dagree of coverage of the given class is done by testing for subgraph

1somorphism. By taking advantage of the labels on nodes and arcs, this



27

operation was greatly simplified. However, it is nevertheless quite time

and space consumming.

In the second part, the program transforms the consistent c-

formulas into VL, events (i.e., sequences of values of certain many-valued

1
variables [Michalski 15], and further generalization is done using
AQVAL/1 generalization procedure [Michalski, R. S. and Larson, J. B. 37]
During this prccess, the extension against, closing the interval and
elimbing generalization tree generalization rules are applied. The VLl
events are represented as binary strings, and most of the operations done

during this process are logical operations on binary strings. Consequently,

this part of the algorithm is very fast and efficient. Thus, the

high efficiency of the program is due to the change of the data structures
representing the rules into more efficient form, once a relevant set of

selectors have been found (by determining consistent generalizations).

A disadvantage of this algorithm is that the extension of references
of selectors, achieved by the application of the extension againet, the
elosing interval and elimbing generalization rules, is done after a (supposedly)
relevant set of selectors have been determined. It is possible, however,
that a selector from the initial data rules or generated by constructive

generalization ruies, which did not pass the 'relevance test', could turn

out tc be very relevant if its reference was appropriately generalized,

On the other hand, applying the above generalization rules to each selector
represented as a graph structure (i.e., before the AQVAL procedure takes over)
could be computationally very costly. This problem will be aggravated when
the number of metarules generating derived descriptors will be increased.

We plan to seek solutions to this problem by designing & better descriptor
relevancy test, determining more adequate data structures for representing

selectors and testing intersections with descriptions, and by applying problem
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Another interesting problem is how to provide an inductive program
with the ability to discover relevant derived descriptors, which are arithmetic
expressions of the input variables and to integrate them as parts of inductive
assertions. For example, suppose that the Eastbound trains in fig. 1 are

characterized as:

in the case of trains with 3 ears, the load of
the first two care t1s twice the the total lead
of Westbound cars, and in the case of the
longer trains, the load of the first iwo ecars
15 equal the total load of Westbound cars!

How would one design an efficient elgorithm which could discover such an

agssertion?

Let us now consider a problem of describing, say, the Eastbound
trains not in the contex of Westbound trains, but in the contex of every
possible train which is not Eastbound. This is a problem of determining
characteristic description of Eastbound trains (type Ia).

A trivial solution to this problem is a 'zero degree generaliza-
tion' description, which is the disjunction of descriptions of individual
trains. A more interesting solution (although still of 'zero degree
generalization') would be some equivalence preserving transformation of
such a disjunction, which would produce a computationally simpler description.
Allowing a 'non-zero degree generalization' leads us to a great variety of
possibilities, called the version space (Mitchell [ 38 1). As we mentioned
before (Sec.2.1l), the most studied solution is to determine the most specific
conjunctive generalization (i.e., the longest list of common properties).
Another solution is to determine the description of minimal cost whose degree
of generality is under certain threshold (Stepp [20]). INDUCE 1.1 gives a
solution of the first type, namely, it produces a set of the most specific

(longest) c~formulas (quantified logical products of VL selectors}.

21
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Here is an example of such a solution:

o dear[length(car)=short][car-shape(car)=closed topl A
A [nrwheels{car)=2]}

(In every Eastbound train there is a short car with
closed top and two wheels)

o dear{position{(car)=1]{car-shape{car)=engine]
® dcar[position(car)=2][car-shape(car)=open—top]
(The second car in each train has an open-top)
@ dcar[position{car)=2,3][shape(car)=traingle]
[nrcars=4,5]
w Vear[nrwheels=2,3]
The logical product of these formulas is a characteristic
description of Eastbound trains.
To keep this paper within reasonable limits, we will skip the
discussion of problems of type Ic (i.e., the sequence prediction), referring

reader to paper by Diettrich [23].

4. LEARNING FROM OBSERVATION

The major difference between problems of learning a characteristic
desctfiption from examples (type TA), and problems of learning from
obéervation (type II) is that in the later problem the input is usually an
arbitrary collection of entities, rather than a collection of examples
representing a single predetermined conceptual class; and that the goal is
to determine a partition of the collection into categories (in general, to
determine a structure within the collection), such that each category represents
a certain concept.

Problems of this type have been intensively studied in the area of

cluster analysis and pattern recognition (as 'learning without teacher').
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The methods which have been developed in these areas partition the entities
into clusters,such that the entities within each cluster have a high
'degree of similarity', and entities of different clusters have a low
'degree of similarity’.

The degree of similarity between two entities is typically a
function (usually a reciprocal of a distance function), which takes into
consideration only properties of these entities and not their relation to
other entities, or to some predefined concepts. Consequently, clusters
obtained this way rarely have any simple conceptual interpretation.

In this section we will briefly describe an approach to clustering
which we call conceptual clustering. In this approach, entities are assembled
into a single cluster, if together they represent some concept from a pre-
defined set of concepts.

For example, consider the set of points shown in Fig. 2.

® o

Fig. 2
A typical description of this set by a human is something 1ike
‘acircle on a straight line'. Thus, the peoints A and B, although closer
to each other than to any other points, will be put into different clusters,
because they are parts of different concepts.
Since the points in Fig. 2 do not fill up completely the circle
and the straight line, the obtained conceptual clusters represent generaliza-

tions of the initial data peints. Consequently, conceptual clustering can
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be viewed as a form of generalization of symbolic descriptions, similarly
to problems of learning from examples. The input rules are symbolic
descriptions of the entities in the collection (to interpret this problem
as a special case of the paradigm in sec. 2.1, consider the collection
as a single generalization class).

1f the concepts into which the collection is to be partitioned
are defined as C-formulas, then the generalization rules discussed before
would apply (within the restriction imposed by the problem, which is that
they cannot intersect; as each cluster should be disjoint from other
clusters).

We will despribe here briefly an algorighm for such a clustering,
assuming that the concepts are simpler constructs than C-formulas, namely,

non~quantified C-formulas with unary selectors, i.e., logical products of

such selectors. Unary selectors are relational statements:®
[x, # R, ]
where:
X is one of n predefined variables (i=1,2,...,n)
# is one of the relational operators = # > > <<
Ri is a subset of the value set of X, -

A selector is satisfied by a value of X, if this value is in
relation # with some value from Ri' Such restricted C-formulas are called
VL, complexes or, briefly, complexes (Michalski [24 ).

Individual entities are assumed to be described by events, which
are sequences of values of variables X, !

(al, Bos <+ ey an)

where a,e D(Bi)’ and D(xi) is the value set of Xy i=1, 2, ..., n.
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An event e is said to satisfy a complex, if values of X4 in e satisfy all

selectors.

Suppose E is a set of'events? each of which satisfies a complex C.
If there exist events satisfying C which are not in E, then they are called
unobserved events. The number of unobserved events in a complex is called
the sparseress of the complex. We will consider the following problem.
Given is an event set E and an integer k. Determine k pairwise disjoint
complexes such that:

l. they represent a partition of E into k subsets (a k-partition)
2. the total sparseness of the complexes is minimum.

The theoretical basis and an algorithm for a solution of this problem
(in somewhat more general formulation, where the clustering criterion is
not limited to sparseness)is described in Michalski [ 24]. The algorithm
is interactive, and its general structure is based on dynamic clustering
method (Diday and Simon [39 ]). Each step starts with k specially selected
data events, called seeds. The seeds are treated as representives of k
classes, and this way the problem is reduced to essentially a classification
problem (type 1b). The step ends with a determination of a set of k complexes
defining a partition of E. From such complex a new seed is selected,
and the obtained set of k seeds is the input to the next iteration. The
algorithm terminates with a k partition of E, defired by k complexes, which
have the minimum or subminum total sparseness (or, generally, the assumed
cost criterion).

Figure 3 (on the next page) presents an example illustrating
this process. The space of all events. is defined by wvariables X1s Xy Xq
and Xy with sires of theif value sets 2, 5, & and 2, respectively. The

space is represented as a diagram, where each cell represents an event.
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Cells marked by 1 represent data events, remaining cells segment unobserved
events. Figure 3a also shows complexes obtained in the first iteratiom.
The remaining figures show results from the consecutive iterations. Cells
representing seed events in each iteration are marked by +.

The solution with the minimun sparseness is shown in Figure 3c.

The partition is specified by complexes:

u? = [xl = 0][1{2 = 1][34 = 0]

ug = [x; = 0)[x, = 21 [x4 = 1..3)
9 = . -

C!.3 = [xl = 1} [:.'{2 1 3.]

This result was obtained by program CLUSTER/PAF implementing

the algorithm,

Another experiment with the program involved clustering 47 cases of
soybean diseases. These cases represented four different diseases, as
‘determincd by plant pathologists (the program was not, of course, glven
this information). Each case was represented by an event of 35 many-valued
variables. With k=4, the program partitioned all cases 1into four

cateporics. These four categories turned out to be precisely the

categories corresponding to individual diseases. The complexes defining

the categories 1nvolved known characteristic symptems of the corresponding

diseases.
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5. SUMMARY

We have presented a view of inductive inference as a process of
generalization and simplification of symbolic descriptions. The process is
conducted by applying generalization rules and problem environment rules
(representing problem specific knowledge) to the initial and intermediate
descriptions. It is shown that both, learning from examples and learning
from observation can be viewed this way.

Learning from examples is described as a problem of 'conceptual

clustering', defined as a problem of partitioning a collection of entities into
clusters (or, generally determining a structure of clusters) such that

each cluster represents a concept selected from a predefined space of concepts.
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APPENDIX 1

Definition of variable-valued logic calculus VEI

Data rules, hypotheses, problem environment descriptions,
and generalization rules are all expressed using the same formalism,
that of variable-valued logic calculus VLZl.* VLEl is an extension
of predicate calculus designed to facilitate a compact and uniform
expression of descriptions of different degrees and different types
of generalization. The formalism also provides a simp1¢ linguistic inter-
pretation of descriptions without losing the precision of the con-

ventional predicate calculus.

There are three major differences between VLzl and the first

order predicate caleculus:

1. 1In place of predicates, it uses selectors (or relational
statements) as basic operands. A selector, in the most
general form, specifies a relationship between one or
more atomic functions and other atomic functions or
constants., A common form of a selector is a test to
ascertain whether the value of an atomic function is a
specific constant or is a member of a set of constants.

The selectors represent compactly certain types of
logical relationships which can not be directly represented
in FOPC but which are common in human descriptions. They
are particularly useful for representing changes in the depree
of generality of dqscriptions and for syntactically uniform

treatmoent of deseripters of different types.

*VL?l is a subset of a more complete system VI

, which is a many walued-
logic extension of predicate calculus.

2
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2. TFEach atomic function (a variable, a predicate, a function)
is assigned a value set (domain), from which 1t draws values,
together with a characterization of the structure of the value set.

This feature facilitates & representation of the semantics
of the problem and the application of generalization rules apprepria
to the type of descriptors.
3. An expression in VLZl can have a truth status: TRUE, FALSE or
7 (UNKNOWN).
The truth-status '?' provides an intefpretation

of a V... description in the situation, when, e.g., outcomes of

2%

some measurcements are not known.

Definition 1: An atomic function is a variable, or a function symbol followed
by a pair of parentheses which enclose a sequence of atemic funciions
and/or constants. Atomic functions which have a defined interpretation
in the problem under consideration are called descriptors.

A eonstant differs from a variable or a function symbol in that

its value set is empty. If confusion is possible, a comstant is typed
in quotes. '

Exomples

Constants 2 % red

Atomic forms: xl color (box) On"tDP(PI:PE) ((Xl, gﬁxz))

Exemplary

Value sets: D(xl) = {0, 1,..., 10}
D{color) = {red, blue,...}
D (on~-top} = {true, false}

D) = {0,1,..., 20)

Definition 2: A selector is a form

[I. # R}

vhere L - called refercee,is an atomic function,
functions separated by '.', (The operator ':' is called the internal
eongunction. )
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#f — is one of the following relational operators:

=335 <> <

R - called reference, is a constant or atromic function, or a

sequence of constants or atomic functions separated by operator

' 9'eor '..'. (The operators ',' and '..' are called the

internal disjunction, and the range operator, respectively).

A selector in which the referce L is a simple atomic function and
the reference R is a single constant is called an elementary selector. The
selector has truth-status TRUE {or FALSE} with regard to a situation if the
situation satisfies {does not satisfy} the selector, i.e., if the referee L
is {is not} related by # to the reference R. The selector has the truth-
status '?' (and is interpreted as being a question), if there is not sufficient
information about the values of descriptors in L for the given situation. To
simplify the exposition, instead of giving a definition of what it mezns that
'L is related by # to R', we will simply explain this by examples.

linguistic description

(1) [color(boxl) = white) color of boxl is white
(ii; {length(boxl) > 2] length of boxl is greater than or equa
(iii) [weight(boxl) = 2..5] welght of boxl is between 2 and5,
(iv) [blood-type (P1) = 0,A,B] blood~type of P1 is 0 or A or B
(v) {[on-top(boxl, box2) = T] boxl is on top of box?
or simply

[on—-top(boxl, box2)]
(vi) fabove (boxl, box2) = 3"] box 1 is 3" above box?

(viii) [weight(boxl) > weight (box3)] the weight of boxl is greater than the
weightof box3

(ix) {length(boxl) + length (box2) = 31% the length of boxl and box2 dis 3

(x) [type(pl) . type (PE) = A,B] the type of Pl and the type of P

is either A or B.

2

¥ : G
Note the direct correspondence of the selectors to linpuistie

descriptions. Note also that Some selectors can not be expressed in FOPC

in a (prapratically) equivalent form (é.g., (iv), (ix), (x)).

* o : oo
This expression is equivalent tno {length(boxl)=3]11ength(hox2)=3].
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A“LTL,.l1 expression (or, here, simply VL expression) is defined by
F

the following rules:

(i) A constant TRUE, FALSE or '?' is a VL expressionm
(ii) A selector is a VL expression
(iidi) If v, Vl and VZ are VL expressions then so are:
() formula in parentheses
-V inverse
vy A v, or V,V, conjunction
Vl i v2 disjunction
Vl E_VZ exclusive disjunction
Vi\i V2 exception
Vlti}Vz metaimplication

wherc=0€ {+, o, >, =k k}
(implication, equivalence. decision assignment,
inference, generalization, semantical equivalence,
Hii,xz,...,xk(V) existenti-.iy quantified expression

Vxl,xz,...,xk(V) universally quantified expressicn

A VL. formula can have truth-status TRUE (T), FALSE (F) or UNKNOWN(?).
The interpretation given to connectives 1 Ay ¥, =+, is defined in Fig. Al. (This
interpretation is consistent with Kleen-Korner 3~valued logic). An expression
with the operator =, k or F is assumed to al@ays have the truth-status TRUE
and with operator ::>, TRUL or ?. OperatorsVN, V, and # are interpreted:
VI\V V, is equivalent to Vl(TVZ)

g ; )
vy E.Vz is equivalent (Vl v \2)\4 A

2
Vl i V2 is equivalent to (V1+V2)(V2+Vl)

The truth~status of

('
TRUE {FALSE} if, there exists

{docs not cxist) a value of x which makes

Ax (V) is the truth-status of V equal TRUE

_‘ﬂ_

? if it is not known whether there exists .
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DEFINITION OF COMNECTIVES
1.,V AND —»

IN VL,
Figure Al

TRUE {FALSE} if for every value of x
Vx(V) is the truth-status of V is {is not} TRUE

7 if it is not known whether for every . ..

A constant * ('irrelevant') is intreduced to substitute for R, in
a selector [L = R}, when R is the sequence of all possible values the L can
take,
A VI expression in the form
QFl’QFZ"" (Pl v P2 Vg oV Pl)
where QFi is a quantifier form.Hxl,xz,... or Vﬁl,xz,... and Pi is a con~
Junction of selectors (a term), is called a disjunctive stmple VL expression

(a DVL expression).
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To make possible to use a name substitution operation in VLZl’

the following notation is adopted:

® If FORMULA is an arbitrary VL,., expression then V : <FORMULA>

21
assigns name V to the FORMULA.

® If FORMULA is a VL expression containing quantified variables

21

and V is the name of the expressiomn, then

P P

l! 2! SRl | Pk!

P, (V)

dencotes the quantified variable Pi in the FORMULA.
This construct enables one to refer to any gquantified variables inside

of any VL,, expression.

21



45

APPENDIX 2

Qutline of the Top Level Algorithm of INDUCE 1.1,

1. At the first step, the data rules (whose condition parts are in the
disjunctive simple forms) are transformed to a new set of rules, in which
condition parts are ir the form of c-expressions. A c-expression (a
eonjunctive expression) is a product of selectors accompanied by zero or
more quantifier forms, i.~., forms QFXl’K2="" where QF denotes a
quantifier. (Note, that due to the use of the internal disjunction and
quantifiers, a c-expression represents a more general concept than a
conjunction of predicates.)

2. A decision class is selected, say R&, and all c¢-expressions associated

with this class are put into a set Fl, and all remaining c-expressions

are nut into a set FO ( the set Fl represents events to be covered 5

and set FQ represents constraints, i.e., events not to be covered ).

3. By application of inference rules (describing the problem environment)
and. constructive generalization rules, new selectors are generated. The

'most promising' selectors (according to-a certain criterion) are added

to the c~expressions in F1 and FO.

4. A c-~expression is selected from Fl, and a set of consistent generalizations
{a restricted star) of this expression is obtained. This is done by starting
with single selectors (called 'seeds'), selected from this c-expression

¥ a . r - . ¥
as the 'most promising' ones (according to the preference criterion). Tn each
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sthsequent next step,a new selector is added to the c-expression obtained in
the previous step (initially the seeds), until a specified number (parameter
NCONSIST) of consistent generalizations is determined. Cousistency is
achieved when a cﬁexpfession has NULL intersection with the set FO. This
‘rule growing' process is illustrated in fig, AZ2.
5. The cobtained c-expressions, and c—expressions in F0, are transformed

to two sets El and EO, respectively, of VL, events {(i.e., séquences of

1
values of certain discrete variables).

A procedure for generalizing VL, descriptions is then applied

1
to obtain the 'best cover' (according to a user defined criterion) of set El
against EQ (the procedure is a version of AQVAL/1l program Larsen & Michalski 75]

During this process, the extension against, the closing
the interval and the elimbing generalization tree rulés are applied.

The result is transformed to a new set of c-erpressions
(2 restricted star) in which selectors have.now appreopriately generalized
references.
6. The 'best' c-expression is selected from the restricted star.
7. If the c-expression completely coversTl, then the process repeats for
another decision class. Otherwise, the set Fl is reduced to contain only the
uncovered c-expressions, and steps 4 to 7 are repeated.

The implementation of the inductive process in INDUCE-1.1 consists
of a large collection of specialized algorithms, each accomplishing certain
task . Among the most important tasks are:

1. the implementation of the 'rule growing process'’

2, testing whether one c-expression is a generalization of ("covers')
another c-expression. This is done by testing for subgraph isomorphism,

3. generalization of a c~expression by extending the selector
references and forming irredundant c-expressions (includes application of

AQVAL/1l procedure).
4. generation of new descriptors and new selectors
Program INDUCE 1.1 has been implemented in PASCAL (for Cyber 175

and DEC 10); its complete description is given in (Larson [31], Dictterich[}z].
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¢ - adisgarded c-rule

® -~ an active c-rule
- a terminal node denoting a consistent c-rule

Each arc represents an operation of adding a new selector to a c-~rule

The branching factor is determined by parameter ALTER. The
number of active rules (which are maintained for the next step of the
rule pgrowing process) is specified by parameter MAXSTAR. The number of
terminal nodes (consistent generalizations) which program attempts to
generate is specified by pavameter NCONSIST.

| I1lustration of the rule growing process
(an application of “the dropping selector rule in the reverse order)

Ficure AZ.



