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Abstract

GPU BASED EULERIAN ASSEMBLY OF GENOMES

Syed Faraz Mahmood

George Mason University, 2012

Thesis Director: Dr. Huzefa Rangwala

Advances in sequencing technologies have revolutionized the field of genomics by pro-

viding cost effective and high throughput solutions. In this paper, we develop a parallel

sequence assembler implemented on general purpose graphic processor units (GPUs). Our

work was largely motivated by a growing need in the genomic community for sequence

assemblers and increasing use of GPUs for general purpose computing applications. We in-

vestigated the implementation challenges, and possible solutions for a data parallel approach

for sequence assembly. We implemented an Eulerian-based sequence assembler (GPU-Euler)

on the nVidia GPUs using the CUDA programming interface. GPU-Euler was benchmarked

on three bacterial genomes using input reads representing the new generation of sequencing

approaches. Our empirical evaluation showed that GPU-Euler produced lower run times,

and comparable performance in terms of contig length statistics to other serial assemblers.

We were able to demonstrate the promise of using GPUs for genome assembly, a computa-

tionally intensive task.

An error correction step was also incorporated into GPU-Euler to be able to process

reads containing some errors. Error correction output was benchmarked on simulated read

on three bacterial genomes with different read length.



Chapter 1: Introduction

Knowing the entire DNA sequence of an organism is an essential step towards developing

systematic approaches for altering its function. It also provide better insights into the evo-

lutionary relations among different species. In the last few years, we have seen several new,

high-throughput and cost-effective sequencing technologies that produce reads of length

varying from 36 base pairs (bp) to 500 base pairs (bp). Technological advancement in se-

quencing techniques has also increased the volume of data produced during a sequencing

process. Sequence assembly algorithms stitch together short fragment reads and put them

in order to get long contiguous stretches of the genome with few gaps.

Several assembly methods have been developed for the traditional shotgun sequencing

and new sequencing technologies. Examples include, greedy approaches like VCAKE [1],

graph oriented approach that find Eulerian tours [2], and bi-directed string graph represen-

tations [3]. ABySS [4] is one of the first distributed memory assembler. It has a unique

representation for the de-Bruijn graph that allows for ease of distribution across multiple

compute processors as well as concurrency in operations. Jackson et al. [5, 6] proposed a

parallel implementation for bi-directed string graph assembly on large number of processors

available on supercomputers like the IBM Blue Gene /L.

In this work, we develop a GPU-based sequence assembler, referred to as GPU Euler.

Specifically, we follow the Eulerian path based approach that was developed for Euler [7].

Our method is motivated by the current advances in multi-core technologies and the use of

graphic processor units (GPUs) in several computing applications. In this thesis, we inves-

tigated the effectiveness and feasibility of graph-based sequence assembly models on GPUs

using the CUDA programming interface. nVidia GPUs along with CUDA provides massive

data parallelism, that is easy to use and can be considered cost-effective in comparison to

loosely coupled Beowulf clusters.
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GPU Euler is benchmarked on three previously assembled genomes: (i) Campylobacter

Jejuni, (ii) Neisseria Meningitidis and (iii) Lactococcus Lactis. We simulated three sets of

reads for each genome with read lengths equal to 36, 50 and 256 base pairs (bps). The scope

of this work was to develop an assembler that would exploit the GPU computing resources

effectively. As such, we were focused in improving the run times of different phases of the

algorithm. We compare the performance (run-time, contig accuracy and length statistics)

of GPU-Euler to a previously developed assembler, EulerSR [8]. A detailed discussion of

the implementation, experiments and results has been presented in chapter 3.

We also extended our GPU based sequence assembler to perform error correction on

GPU. Our implementation is adapted from the Spectral Alignment that was proposed as

part of Euler [7]. Spectral Alignment belongs to embarrassingly parallel class of problems

and appeared to be a good candidate for GPU based applications. We benchmarked our

error correction implementation on the same genomes with simulated set of error containing

reads. We collected profiling statistics and accuracy measurements for our error correction

procedure in order to analyze the correctness of the implementation. The experiments,

results and discussion pertaining to error correction is presented in chapter 4.

1.1 Motivation

This work is motivated by a number of factors, most important of which is the cost effective-

ness. The project aims to find a lower cost and reliable solution for assembling genomes.

There are existing tools for genome assembly but most of them e.g Abyss[4, 9] require a

cluster of machines to achieve maximum throughput. A GPU capable of CUDA capabil-

ities typically range between $200-$500, allows a common man’s personal computer to be

utilized as a massively parallel computing device.

Another important aspect is the performance of the solution. Current generation assem-

bly tools usually use MPI based communication pattern, which involves network latency.

An on-chip array of processor working on a solution, removes the network latency. However,

2



it may introduce contention and synchronization latency issues.

Last but not the least, with current pace of advancement in microprocessor technology,

we are moving towards an era of multi-core programming. It is inevitable to have solutions

that can fully exploit the potential of the emerging paradigm of parallel computing.

1.2 Problem Statement

GPU based data parallel applications are proving to be excellent cost effective alternatives

to large scale data processing solutions. GPU based sequence assemblers will be helpful

in providing a handy tool to analyze the genome assembly at a reduce cost. This thesis

aims to develop a data parallel GPU-based de-novo sequence assembler. Evaluation will be

performed to assess the performance and correctness of the implementation. Moreover, it

will also provide a thorough assessment on the challenges presented by the General Purpose

GPU Computing platform for implementation of graph centric algorithms.

1.3 Contributions

• A GPU based parallel Eulerian path sequence assembler ,

• GPU based Error Correction for eulerian path sequence assembler,

• Publication : “GPU-Euler: Sequence Assembly Using GPGPU” [10], published by

IEEE Banff, Canada.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides a thorough review of

different sequence assemblers, parallel computing models and CUDA architecture. Chapter

3 discusses GPU based implementation of parallel eulerian assembly construction. Chapters

4 presents a GPU based approach for error correction. Chapter 5 describes several directions

for future work and provides concluding remarks.

3



Chapter 2: Literature Review

2.1 Introduction

This chapter provides an explanation of important concepts concerning sequence assembly

and parallel computation along with a literature survey of the recent research results.

2.2 Sequence Assembly

Genome of an organism serves as a biological blue print, that documents every aspect of

that organism from physical appearance to behaviours and from diseases to life span [11].

Genome sequences comprise entirely of Deoxy Ribonucleic Acid (DNA) which is present

in the nucleus of every cell of a living organism in the form of large complex compounds.

There are four nucleotides : Adenine, Guanine, Cytosine, Thymine (Table 2.1) which are

the basic building block of a DNA molecule. For the purpose of computational analysis,

these nucleotides are often referred to as A, G, C or T. A DNA molecule comprises of two

parallel strands consisting of these nucleotides known as Forward and Reverse strands. The

nucleotides exhibit a complementary relationship with other nucleotides as given in Table

2.1, such that the two strands are held together through bonding between complementary

nucleotides. For instance, Adenine on one strand binds to Thymine on the opposite strands

and similarly Cytosine binds to Guanine. This bonding give rise to the well-known double

helical structure for DNA. Given a sequence whether forward or reverse, its complement

can be easily computed by reversing the sequencing and substituting the bases with their

complements. Most computational tools therefore, deals only with one sequence only and

generates the complementary one if required.

Genome technologies do not produce complete genomes, instead they only generate a

4



Table 2.1: Nucleotides and their Complements

Nucleotide Complement

Adenine Thymine
Cytosine Guanine
Guanine Cytosine
Thymine Adenine

A A A A A AC C CT T T TG G G G G G GTC

A AAAA CCC TT TT GGGG T CC CT C

3
′ strand

5
′ strand

Figure 2.1: Double helix structure of DNA with forward and reverse strands

small sub-sequence of the whole genome. These smaller sub-sequences are known as reads.

The past few years have seen rapid development in new, high-throughput and cost effective

sequencing technologies; Roche 454, Illumina Genome Analyzer 2 (GA2) and the ABI SoLID

platform in addition to the well established Sanger sequencing protocol. These approaches

vary in their output, cost, throughput and errors produced. All approaches rely on shotgun

sequencing [12], where the genome is randomly sheared into many small sub-sequences or

reads (see Figure 2.2).

2.2.1 Sequence Assembly

The process of combining sequence reads after sequencing a genome, in order to reconstruct

the source genome is called the sequence assembly.

Sanger [13], produces longer sequence reads, of size 750 to 1000 base pairs (bps) whereas

the next generation sequencing (NGS) technologies produce reads that are shorter from 36

to 500 bps. The volume of data produced by NGS technologies demands a robust solution

to the data management, assembly, and the development of derived information. Pop [14]
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Figure 2.2: Shotgun Sequencing

and Myers et al. [15] provide a detailed review of the computational challenges involved

with sequence assembly, along with a study of the widely used approaches.

2.2.2 Sequence Assembly Algorithms

De novo assembly algorithms stitch together short fragment reads and put them in order

to get long contiguous DNA fragments called contigs [16]. Contigs are further extended to

get super-contigs and finally placed in order, to get the assembled genome. The approaches

for de novo sequence assembly can be grouped into three categories: (i) greedy [1], (ii)

overlap-layout-consensus [17] (OLC) and (iii) eulerian-based approaches.

Greedy assemblers, follow an iterative approach where at each step, the reads (or contigs)

that have the longest possible overlap with other reads are extended. An effective indexing

mechanism is used to accelerate the discovery of the reads to be used for further extension

to produce longer contigs. For assembling NGS data, greedy assembly algorithms, like

SSAKE [18], SHARCGS [19], QSRA [20] and VCAKE [1] have been developed. Due to

their greedy nature, these algorithms produce several mis-assemblies due to repeat regions

within the genomes.

The OLC approach finds potentially overlapping reads between fragments by comput-

ing pairwise alignments between the reads (overlap). The overlap between the reads can be

6



AGG GGC

GCT

CTA

TAG

GGG

GCC

CCA

C

T

AG

G

G C

C
A

AGG GGC

GCT

CTA

TAG

GGG

GCC

CCA

C

T

AG

G

G C

C
A

AGGCTAGGGCCA

Reads

de-Bruijn Graph

Euler Path

Figure 2.3: Eulerian Assembly

modeled using edges of a graph with the reads as vertices (layout). Determining a Hamil-

tonian path, i.e., a valid path that visits every vertex exactly once will lead to a sequence

assembly. However, finding the paths in presence of repeats leads to NP class of problems,

and as such the DNA sequence (consensus) is derived using several heuristics as illustrated

in methods like Celera [21], Arachne [22] and EDENA [17].

The Eulerian based de novo methods have always been widely used and were inspired

by the sequencing-by-hybridization approach [7, 23]. These algorithms represent each read

by its set of tuples (smaller sub-sequences of some fixed length k) and construct a de-Bruijn

graph. A de-Bruijn graph is a directed graph where vertices are tuples, and there exists

an edge between two vertices if they are from the same read and have an overlapping sub-

sequence of length (k − 1) between them. Finding the Eulerian path or tour, where each

edge in the de-Bruijn graph will be visited exactly once will lead to the sequence assembly

solution. Before performing the Eulerian tour, these approaches use different heuristics

to remove erroneous nodes and edges from the de-Bruijn graph, that are created due to

sequencing errors and repeat regions within the genome.

Myers presented another graph oriented approach based on the notion of bi-directed

string graph[3]. A bi-directed string graph has direction associated with both end points
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of an edge produced by modeling the forward and reverse orientation of sequence reads.

The Eulerian-tour of such a graph enforces additional constraints that leads to improved

accuracy and length of produced sequence contigs.

Euler-SR [8], Velvet [24], SHORTY [25], ALLPATHS [26] and ABYSS [4] are examples

of the different Eulerian-based approaches, developed for NGS read data. These algorithms

differ on the heuristics that they employ to perform the graph simplification, and on the

data structures used to construct the de-Bruijn graph for modeling the reads.

2.2.3 Parallel Sequence Assemblers

ABySS [4] is one of the first distributed memory de novo assembler. It has a unique

representation for the de Bruijn graph that allows for ease of distribution across multiple

compute processors as well as concurrency in operations. The location of a specific k-

mer within the reads can be computed from the sequence of the reads, and the adjacency

information for a k-mer is stored in a compact fashion that is independent of the location.

Jackson et al. [5,6] proposed a parallel implementation for bi-directed string graph assembly

on large number of processors available on supercomputers like the IBM Blue Gene/L.

2.2.4 Error Correction

With the advancement in sequencing technology, the sequencing of genome is getting less er-

ror prone, but still sequencing error are still an important consideration during the assembly

process. Sequencing tools try to overcome the error in their output by generating multiple

readings (known as coverage) of same location. This improves the confidence level that an

incorrect base call will be outnumbered by the correct one. Different assembly algorithms

devise different techniques to detect erroneous read. Some assemblers uses consensus to

determine error that are expected to be highly infrequent at any given locations. Pevzner

et. al [2] proposed a pre-processing phase to fix error prior to sequence assembly as part of

EulerSR. The idea is based on the observation that for a high coverage genome, tuples from

reads would appear more frequently. If the read contains an incorrect base than the tuple
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containing that particular base would result in less frequent tuples. The error correction

routine then tries to introduce modification for that read such that the tuples from the

modified read would cause a reduction in number of unique tuples from the whole read set

(known as read spectrum) and all its tuples would appear as more frequent tuples.

2.3 Compute Unified Device Architecture.

Graphic processing units (GPUs) have long been serving the need of parallel computation

due to the very nature of the graphics applications which benefit from ever increasing

parallelism in the hardware. For the past few years, efforts have been conducted to tap

the potential of GPU’s parallel computation capability so that it can be utilized for general

purpose computing.

Compute Unified Device Architecture (CUDA) is an initiative from nVidia that provides

programming interface to utilize the compute capabilities of GPUs. CUDA SDK provides

a compiler front end implemented as an extension of C language, augmented with several

device-specific constructs. It contains a set of run-time libraries that provide an API for

device management. CUDA-enabled GPU devices provide parallel thread execution envi-

ronment known as PTX, and can be viewed as multiple threads concurrently executing the

same piece of code called kernel. This form of architecture, can be mapped to the single

program multiple data (SPMD) style of parallel computation. The logical view of CUDA

device groups a set of thread into blocks and set of blocks into grids. Physical view of

CUDA consists of a number of streaming multiprocessors (SMs), having a set of scalar

processors (SP). The number of SPs on SMs varies depending upon the hardware revision.

CUDA threads are scheduled to run on these SPs by a CUDA thread scheduler. The actual

number of threads scheduled to run concurrently depends on the resources available to SMs.

GPU thread manager schedules the cores and manages the threads executing on the

SMs. Memory is a key resource in CUDA applications and its efficient utilization is the

basis of major performance improvements. There are different types of memory available to

the CUDA threads, which vary in terms of their presence on and off the chip, latency and
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Table 2.2: CUDA Memory Hierarchy

Memory Type Latency Location Accessibility

Global Memory High off-chip Host, All threads
Shared Memory Low on-chip Shared within block
Register File Low on-chip Local to thread
Texture Memory Low on-chip All threads
Constant Memory Low on-chip (read only) Host, All threads

accessibility to threads or to blocks. A summary of memory hierarchy present on CUDA

devices is presented in Table 2.2.

One major advantage of CUDA lies in the abstraction of computing model from the

hardware implementation, which decouples the code from the underlying hardware. This

allows the developer to focus more on the algorithmic aspect rather than the device (GPU)

specific implementation. CUDA provides a virtual instruction set, augmented with software

interfaces as the CUDA programming API to exploit the GPU devices. Applications devel-

oped against these specifications will be able to run across different compliant GPU devices

with CUDA middle-ware providing the logical to physical thread mapping. Developers can

model their solution by decomposing their problem as multiple sub-tasks. Each sub-task

can be worked upon by a group of threads in a block. The concurrent execution of sub-tasks

is handled by the GPU.

2.4 Parallel Computing Models

Developing parallel algorithms requires some assumptions regarding the underlying comput-

ing model. Over the years, researchers have proposed different models considering different

aspects of parallel computation. These models formulate how different components of a

parallel system would work to perform computation at hand. How many processors would

be in the system? What is inter-connect network and communication pattern among the

processors? How the memory would be accessed by the processors? Whether it will be

shared among the processors? Whether the model support atomicity and synchronization
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between reads and writes from different processor on a single memory location? Each com-

puting models has its advantages and disadvantages. For instance, computing model with

concurrent read / write usually have simpler algorithms but the hardware implementation

often prove to be quite daunting.

2.4.1 PRAM Model

PRAM - Parallel Random Access Machine is a theoretical model for parallel machines where

the number of processor required to execute the algorithm is defined by the algorithm itself.

All processors are assumed to be synchronous for each execution of the instructions. PRAM

model incorporates a shared memory model and all processors are assumed to have equal

access time for all the memory locations. Based on the handling of concurrent read and

concurrent write, the PRAM model is further divided into 4 categories:

• CRCW (concurrent read concurrent write),

• CREW (concurrent read exclusive write),

• ERCW (exclusive read concurrent write)

• EREW (exclusive read exclusive write)

CRCW is considered to be the strongest model, while EREW is the weakest. Strength of

a particular model is based on the ability of concurrent access, which allows more complex

algorithm to be easily implemented. Concurrent writes are resolved by defining different

strategies e.g. first writer succeed, last writer succeed, lower numbered writer succeed or

reduction operation etc. Generally CRCW algorithms can be converted to CREW model

with O (log) overhead for O (n) items to resolve write conflicts. For GPU Euler, PRAM

model is opted since it provides closer approximation for CUDA platform.

2.4.2 Flynn’s Taxonomy

Flynn Proposed a classification of computers based on the number of data and instruction

stream available [27]. Depending on the number of streams, a computing device can be
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classified as one of the four classes.

SISD

Single Instruction, Single Data (SISD) machines have one instruction stream which

operates on single data stream. Everyday computer systems are a common example

of SISD.

SIMD

Single Instruction, Multiple Data (SIMD) machines have one instruction stream and

multiple data streams. During a single fetch-decode-execute cycle, single instruction

is fetched and executed on data items from the available data stream. This class of

machine represents classic vector processing machines.

MISD

Multiple Instruction, Single Data (MIMD) machines have multiple instruction streams

but single data stream. Multiple fetch units work in tandem, to retrieve instructions

from their respective streams and operate on the data. This class of machines are not

common.

MIMD

Multiple Instruction, Multiple Data (MIMD) machines have multiple instruction and

multiple data streams. Each instruction stream can operate on the data from various

stream.

CUDA devices offer SIMT (Single Instruction, Multiple Thread) model for parallel com-

putation which resembles closely to the SIMD class. SIMT emphasize the presence of mul-

tiple ALU that are utilized by each thread to execute a certain instruction. Moreover,

SIMT differs from SIMD with respect to the execution of conditional instructions in a sense

that CUDA threads can diverge and takes different paths when they execute conditional

instructions.
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2.5 Parallel Graph Algorithms

Designing efficient graph algorithms for parallel computing architecture has always been

challenging. Computational problems dealing with graphs are inherently difficult to decom-

pose into balanced sub-problems, and the speedup achieved is usually not linear [28–31].

2.5.1 Euler Tour Construction

The “Euler tour” construction problem for a connected graph is defined as the traversal of a

graph by visiting every edge exactly once. Linear time algorithm with respect to the number

of edges, exist for the sequential algorithm. Makki [32] proposed a O (|E|+ |V |) algorithm

for distributed memory model using a modification of the original, Fleury’s sequential al-

gorithm. It works by simulating the Fleury’s algorithm on the vertices distributed among

the nodes, and each node tries to identify the successive edge.

Awerbuch et al. [33] proposed a O (log n) parallel time algorithm for a concurrent-read

and concurrent-write, CRCW model which requires O (|E|) processors. In this approach,

the concurrent writes do not require any specific ordering of the write operations, which

makes it similar and applicable on CUDA-enabled GPU platforms. Concurrent writes can

be achieved by using atomic operations.

In our work, Awerbuch’s approach has been opted for implementing the Eulerian tour

construction. This approach for determining the Euler Tour, first constructs a successor

graph by defining a successor relationship between edges. In the successor graph, the vertices

corresponds to the edges of original de-Bruijn graph and an edge represents the end points

that are related to each other by successor function. Further, the connected components

of the successor graph identifies the circuits in the graph. Two circuits will be related to

each other if they have edges incident on the same vertex. This relation is represented in

the form of circuit graph. A spanning tree of this circuit graph will yield a path connecting

each circuit, which in turn represents edges with their successors. Swapping the successors

of the edges of two circuits at the same vertex (identified by edge of the spanning tree), will

result in a Euler tour. To lower the number of edges in the circuit graph, the algorithm
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extracts connected sub-graphs from the circuit graphs. GPU Euler uses a parallel connected

component algorithm as part of parallel Eulerian tour algorithm execution.

As part of the Euler tour construction, a spanning forest is computed from the circuit

graph. The edges in the spanning forest will identify the edges of the de-Bruijn graph

that can exchange their successors, yielding to the final euler tour. The different methods

used for identifying connected components (see below) can also be used for identification of

spanning forests. There are several efficient parallel spanning forest algorithms available for

different computing models [34]. In this implementation, Kruskal’s Spanning tree algorithm

as implemented in BOOST graph library [35], is selected to calculate the spanning tree on

CPU.

2.5.2 Connected Components

For a given graph, finding connected components involves partitioning the graph such that

the vertices in the partitioned sub-graph (subset) are connected to each other through some

path and there does not exist any path between vertices of different sub-graphs.

Various approaches available for connected components are equally useful in finding the

spanning forest. In fact most of the algorithms uses a connected component construction

for constructing the spanning forest.

Johnson-Metaxas [36] proposed an O
(
log

3
2n
)

parallel time algorithm for CREW PRAM

model. Awerbuch and Shiloach[34] also proposed a CRCW PRAM algorithm which was

based on Shiloach-Vishkin’s [37] approach. Greiner [28] compared different parallel algo-

rithms for finding connected components, but the study was limited to the CRCW model.

Shiloach-Vishkin [37] proposed a O (log n) parallel time algorithm to find the connected

component of graph using n + 2m processors where n = |V | and m = |E| for CRCW

PRAM model. This algorithm finds the connected component by iterating over four steps.

For every vertex, a root pointer is maintained which points to the lowered numbered vertex

within the connected component. The algorithm starts with each vertex as a component,

with its root pointer pointing to itself. During the execution, the root pointer is repeatedly

14



1 5 4

6 8 10 11 9 7 3

13 12 2

Figure 2.4: Connected Component Example

41 5

6 8 10 11 9 7 3

13 12 2

Figure 2.5: Connected Component Example Initialization

updated. Update steps correspond to the merging of components to form larger components.

Within the iteration, the first step updates all the root pointers, in case the root vertex

itself has been updated with a new root during previous iteration. The next step requires

all vertices to examine their neighbours and update their root pointers, if the neighbour has

root pointer with smaller vertex number. Root vertices of the component that remained

unchanged in the first step, now try updating their root pointers with neighbouring lowered

number root vertices. All vertices then perform a short-cutting step to update their root

pointer with their root’s root pointer (grand-parent). These steps are performed iteratively

till there are no more updates to the root pointers.

Figure 2.4 is the example used by Shiloach-Vishkin [37]. There are two component

formed with 13 vertices and 13 edges. Figure 2.5 shows the initialization step where root

pointers for all vertices point to themselves and algorithm start the first iteration. Since

there is no prior updates to root pointer performed, the algorithm moves to second step

Figure 2.6, examining the neighbours and hooks up to smaller roots e.g vertices 5 now has

4 as its root pointer. In step 3 and 4, the algorithm performs short cutting, completing
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Figure 2.6: Iterations for Connected Component Example
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the first iteration. Since the vertices have updates applied to their roots, the algorithm

continues to the second iteration and updates the vertices to get the new root information.

At the end of iteration 3 , all vertices now point to either of the roots of two components

(vertex 4 and 3).

2.5.3 Parallel Spanning Tree Algorithms

Bader et. al. [38] proposed a parallel tree algorithm for symmetric multiprocessors which

gives an expected running time that scales linearly with number of processors. This al-

gorithm proceeds in two phases. In the first phase, a single processor generates a stub

spanning tree using p steps. Then, in the next phase this stub spanning is equally dis-

tributed among the p processors which continue to work on the sub-graph of the original

graph. Finally each sub spanning tree is joined using the stub to form the final spanning

tree. This approach provides good performance for shared memory architecture with both

sequential and parallel processors working simultaneously on the problem.

Awerbuch-Shiloach[34] proposed an O (log n) parallel time algorithm using the parallel

connected component construction algorithm proposed by Shiloach-Vishkin. The connected

component algorithm needed a concurrent write approach, which was modified such that

the lower ranked processor would have priority in case of a write conflict. Write conflicts

represent the condition when different edges compete to be included in the spanning tree

and only the least weighted one will be included at a step.

Chin et. al.[30] proposed an O
(
log2 n

)
algorithm for computing the minimum spanning

tree. The algorithm, first identifies the connected components and then grows the minimum

spanning tree by incrementally determining the least weighted edge connecting the vertices

within the same components. An adjacency matrix is used for representing the graph, while

computing the minimum spanning tree.
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Chapter 3: GPU based Sequence Assembly

3.1 Introduction

This chapter discusses the initial implementation of GPU Euler, describing the basic struc-

ture and assumptions of the application. An experimental assessment is also included to

evaluate different aspects of the implementation.

3.2 Workflow

The GPU Euler workflow is composed of following three steps:

1. de-Bruijn graph construction.

2. Euler tour construction

3. Contigs generation.

In the first step, the de-Bruijn graph is constructed by extracting tuples from the input

reads and calculating vertex and edge information. We use tuples of length l and k (where

l = k + 1) to represent edges and vertices, respectively. Tuples of length l are referred to

as l-mers while tuples of length k are referred to as k-mers . During the next step, an

Euler tour is constructed and de-Bruijn graph is annotated with the tour information. In

the final step, a walk on the graph is performed using the annotations which generates the

contigs. Figure 3.1 represents a schematic work flow of the complete process highlighting

each step. The output of each phase is labelled on the transition edges. At this moment,

GPU Euler does not employ any error correction heuristics.

18



Debruijn Graph
Construction

FASTA file
(input)

Euler Tour
Construction

Identify Contigs

FASTA file
(output)

b

b b

b

b

b
b

(reads)

(graph)

euler tour

(contigs)
GPU EULER

Figure 3.1: GPU Euler Workflow

3.3 Data Structure

The ever increasing accessibility of massive computing power has transformed the computed

bound problems into I/O bound problems. Memory bandwidth and architecture play an

important role in CUDA based applications. A desirable solution for handling massive

amount of data often associates the design of data structure with the architecture specific

recommendations and best practices. CUDA memory architecture also guides various as-

pects of the problem decomposition and data structure design. Some of the CUDA features

are described below which have heavily influenced our data representation and algorithm.

3.3.1 Design Considerations

The data structure design of GPU Euler has been influenced by the following aspects of

CUDA platform in order order to achieve optimal resource utilization.

Consecutive Thread Access

The memory manager on CUDA devices employs techniques to optimize the access to GPU

memory by combining reads originated from threads of a block. When successive threads in

a thread block issue a read from successive memory locations, i.e, thread i access memory

19



threads threads

memory memory

non-coalesced coalesced

Figure 3.2: Memory access pattern of threads

address j and thread i + 1 access memory address j + 1 and so on , the are combined

into single fetch, thus improving memory bandwidth. A major pre-requisite to exploit this

optimization dictates that the data residing in the GPU memory must be aligned at word

boundaries. Furthermore, algorithm implementations often required to revise their data

access pattern to use a sequential pattern rather than a random one.

Pointers Free Representation

Although the mode of communication between GPU memory and System memory is through

memory mapped I/O, it only maps a small portion of system memory on to GPU memory

but not the other way around. In GPU based computations, special APIs are used to move

large amount of data from System to GPU memory and then back to system memory. Ob-

jects constructed on the GPU heap use an entirely different address space than the system

heap, due to which object graphs becomes void when moved from one address to the other.

Data structure based on dynamic memory allocation and pointer reference (Linked List,

Graph etc) , therefore, can not be moved around easily and requires translation.

3.3.2 Data Structure Layout

It is often desired to strike a balance between these requirements. A compact representation

might adversely affects the thread access pattern, often yielding a random access across

threads. On the other hand, favouring thread access pattern might lead to data redundancy.

One approach for data representation is to use Structure of Arrays ( see Appendix A.3.3)
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instead of Array of Structures to represent large number of data objects.

Our de-Bruijn graph G is defined as a G = {V, E , lev , ent} where

• V: list of vertices

• E : list of edges

• lev : list of outgoing edge indexes for each vertex

• ent : list of incoming edge indexes for each vertex

Each entry in lev and ent is an index to E . The index lists lev and ent are simply

concatenated list of indexes for all the vertices. Thus, instead of keeping the list of edges

within each vertex, a vertex only contains two indexes ep and lp for storing starting index

into ent and lev respectively. A vertex also keeps respective counts i.e. ecount and lcount for

entering and leaving edges respectively. This graph structure is computed during program

execution. lev and ent thus provide an alternative representation for memory references

(pointers).

Following this scheme, each edge and vertex will be stored only once. On the other

hand, storing edge list out side the vertex allows the vertex list to be aligned in the memory

facilitating a sequential access pattern, as these list can be of arbitrary lengths. Figure 3.3

is a pictorial representation of the data structure used for de-Bruijn graph.
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Table 3.1: Nucleotides Encoding

Nucleotide Abbreviation Base4 Encoding Base2 Encoding

Adenine A 0 00
Cytosine C 1 01
Guanine G 2 10
Thymine T 3 11

The proposed data structure provides a compact representation of the whole de-Bruijn

graph as all vertices and edges along with their associated data are only stored once and

accessed through indices. The data structure also provides an alternative solution for objects

models which are dynamic in nature ( e.g., graphs) since CUDA device do not allow memory

allocation inside an executing kernel.

GPU Euler excessively utilizes the pointer free representation by exploiting element’s

index as a pseudo-pointer. Vertices and edges are linked to each other using their respective

indices.

Graph problems usually don’t facilitate sequential data access pattern. Especially during

de-Bruijn graph construction and euler tour construction, there exists an entirely random

data access pattern which can be predicted ahead even after analyzing the data.

3.3.3 Tuple Encoding

The input to the graph construction phase consists of a set of reads from the FASTA file. A

genome is composed of four nucleotides as listed in Table 3.1. These nucleotides are often

referred to with their initials for the purpose computational analysis. Formally, a genome

can be defined as a string S over alphabet Σ = {A,C,G, T} of arbitrary length . A read,

thus, is a sub-string of S. Since there are only four characters in our alphabet, we can

easily represent them as base4 digits requiring only 2 bits per nucleotide. This will lead to

a 3/4 reduction in the memory if each nucleotide were to be represented as an 8 bit ASCII

character. Using this scheme, a tuple of length k can be represented as a sequence of 2 ∗ k

bits. Table 3.1 also shows the encoding used to represent each nucleotide as Base4 and
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Table 3.2: Tuple Encoding Example

Tuple Length Encoding

5
A A G G C

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10 10 01

18
T C T C G G A A C C C A C A C G C C

00 00 00 00 00 00 00 00 00 00 00 00 00 00 11 01 11 01 10 10 00 00 01 01 01 00 01 00 01 10 01 01

24
A T C C C A T T C T C T G G G C G C C G C G A A

00 00 00 00 00 00 00 00 00 11 01 01 01 00 11 11 01 11 01 11 10 10 10 01 10 01 01 10 01 10 00 00

32
G C G C T A T C G T C G T A C G A T C G T A C G T A C G T A A C
10 01 10 01 11 00 11 01 10 11 01 10 11 00 01 10 00 11 01 10 11 00 01 10 11 00 01 10 11 00 00 01

Base2 numbers.

With 2-bit encoding per base, each tuple is mapped to a unique 64-bit value (GPU Euler

therefore only supports k ≤ 32). This scheme allows easy computation of tuple’s neighbours

by simple bit-wise operations (Shift, And, OR). A neighbour for a tuple of length k x, is

one that shares either the prefix or suffix of length k − 1 with x.

3.4 de-Bruijn Graph Construction

de-Bruijn graph construction has multiple steps. It starts with reading the input set of

reads from the FASTA file. Tuples of length l(l-mers) are extracted and encoded in an space

efficient manner for later stages. After collecting the l-mers, CUDA kernel are invoked to

construct the graph. These are described in the following subsections.

3.4.1 Tuple Extraction and Encoding

During the initial step, input file is processed by splitting the reads into batches. The size

of batch depends on the length of reads and available global memory on GPU. In a read of

length r, r − l + 1 l-mers can be extracted. A naive CUDA kernel (Algorithm 3.1) can be

designed to process these reads to extract l-mers. This kernel would operate on a batch of

n reads with n blocks, and each block having r − l + 1 threads to extract r − l + 1 l-mers
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in parallel by reading the read data from GPU memory.

Algorithm 3.1 Tuple extraction and encoding (simple)

Input:
R : Read Set
l : tuple length

Output:
T : Set of tuples of length l

1: procedure Extract-Tuples(R,l)

2: T ← ∅
3: for all Ri ∈ R do
4: for all threadj ∈ blocki do . Each block process one read

5: ti,j ← ∅
6: for k := 1→ l do
7: base← Ri,j+k . get next base

8: ti,j ← Append(ti,j , base) . Shift Left and OR with next base
9: end for

10: T ← T ∪ ti,j
11: end for
12: end for
13: return T
14: end procedure

This is clearly an inefficient approach as it would incur a lot of over-head. Same memory

location would be accessed multiple times from different thread. There will be a total

of l × (r − l + 1) read operations that will be executed if Algorithm 3.1 is used, with

(l × (r − l + 1)− r) number of redundant read operations.

In order to avoid the redundant reads and to reduce the memory latency, GPU Euler

exploits low latency shared memory as a cache. Algorithm 3.2 describes a technique where

instead of computing each tuple individually by accessing global memory directly, all threads

in a block work in tandem to fetch the read in parallel (line 5) , storing it in shared memory

and proceeds on to compute the tuple using shared memory (line 9). This would lead to r

read operations performed in parallel on global memory and l×(r−l+1) read operations on

shared memory. The improved kernel is invoked with r threads instead of r−l+1 threads to

simplify the process of copying data to shared memory. It starts with performing a parallel

copy from GPU global memory to the block shared memory where each of r thread copies
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a single base into the shared memory buffer. After copying, block level synchronization is

perform so that the write to shared memory is available to rest of the threads in the same

block. After synchronization, each thread proceeds to compute its l-mer. The l − 1 extra

threads are wrapped around to read from successive memory locations and their result is

masked in the output.

Algorithm 3.2 Tuple extraction and encoding (with shared memory)

Input:
R : Read Set
l : tuple length

Output:
T : Set of tuples of length l

1: procedure Extract-Tuples(R,l)

2: T ← ∅
3: for all Ri ∈ R do
4: for all threadj ∈ blocki do . Each block process one read

5: shared[j]← Ri,j

6: Synchronize

7: ti,j ← ∅
8: for k := 1→ l do
9: base← shared[(j + k) mod l] . Get next based from shared memory

10: ti,j ← Append(ti,j , base) . Shift Left and OR with next base
11: end for
12: T ← T ∪ ti,j
13: end for
14: end for
15: return T
16: end procedure

3.4.2 Hash Table Construction

A tuple can be a vertex of a graph and it will have corresponding information like incoming

edges, out going edges, etc. How should this kind of information be associated with a tuple

to be accessible in a multi-threaded environment without afflicting space and performance

penalties is a pertinent question that we address.

GPU Euler employs a slightly different mechanism for storage and retrieval of tuples

and their information. Consider the fact that the smallest possible representation of all
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tuples would be a list or array of tuples. Information associated with each tuple can be

stored separately in associated arrays. So, for tuple ti where i is the index of the tuple, then

in all the associated arrays containing pieces of tuples’ information, the ith index would

contain the attributes associated with ti. At a more abstract level, the index itself becomes

an attribute of the tuple. A hash table can be used to store this information which maps a

tuple to an index for an associative array based retrieval. Tuples and their indices are only

needed to be stored once as a key-value pair in the hash table.

GPU Euler uses a modified hash table implementation (Algorithm 3.3) of parallel hash

table construction proposed by Alcantara et al. [39]. The original algorithm uses two level

hashing scheme to construct an space efficient hash table. First, the keys are split into

buckets using a hash function, then each bucket is further placed in 3 sub-tables using

Cuckoo hashing with hash function for each sub-table. Cuckoo hashing is a simple hash

table implementation where multiple hash functions are used to locate the keys. During

insertion, if a key hashes to a location already occupied by an earlier key, then the earlier

key is evicted to insert the new key and the evicted entry is re-inserted into the hash

table by using another hash function. The hash table construction on CUDA, proceeds by

placing keys into bucket and then each bucket is assigned to a CUDA block where each

thread process one key and tries to insert the key in one of the 3 sub-tables, so that after

construction, a maximum of three probe would be required to locate any key. The original

algorithm depends on CUDA support for atomic operations on shared memory.

Instead of having 3 sub-tables with the 2nd level hashing, GPU Euler uses sorted buckets

and sorts (line 16- 18)all the items in every bucket. This would imply that the retrieval

operation will be implemented as a binary search operation on a single bucket. Although

the retrieval operation has increased the performance penalty, but it is bounded by O(lg n)

or in case of GPU Euler with buckets of size 512, at binary search would require at most 9

steps.
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Algorithm 3.3 GPU based Hash Table construction

Input:
K : Key List
V : Value List

ki ∈ K , vi ∈ V , ki ⇔ vi
Output:

T : HashTable such that vi = T (ki)

1: procedure ConstructHashTable(K,V)
2: totalBuckets← ComputeBucketCount(K)
3: bucketSize[ ]← 0
4: for all ki ∈ K do . threadi works on ki
5: bucket← H(ki) . H is a hash-function
6: buketSize[bucket] + + . atomic increment operation
7: end for

8: Compute bucketOffset with CUDPP Parallel-Prefix-Scan

9: for all bucketi : 1 ≤ i ≤ totalBuckets do . one block for each bucket
10: for all threadj : 1 ≤ j ≤ bucketSize[i] do

11: index← bucketOffset[i] + bucketSize[i]−− . atomic decrement
12: T K[index]← kp . copy to buffer

13: T V [index]← vp
14: end for
15: end for
16: for all bucketi : 1 ≤ i ≤ totalBuckets do . one block for each bucket
17: Sort each bucket . One thread for each block
18: end for
19: return T
20: end procedure
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Figure 3.4: de-Bruijn Graph Construction.

3.4.3 Graph Computation

The de-Bruijn graph construction is a 3 step process which involves counting the edges to

allocate memory, setting up the vertices, and creating the edges. Each of these steps are

performed as CUDA kernel invocations using the GPU as a PRAM machine. Figure 3.4

presents an schematic workflow of all three steps with each box representing a single CUDA

kernel launch.

The construction start with lists of tuples representing edges (l-mers) and vertices

(k-mers). Although its seems fairly trivial to construct the de-Bruijn graph, the GPU based

de-Bruijn graph construction requires some important considerations, such as the amount

of memory required to allocate for the complete graph (as dynamic memory allocation is

not available to the kernel). During the construction, edges are linked to corresponding

vertices and the graph data structure gets updated with the edge and vertex information.

The first step is to count the number of edges each vertex is going to have in the de-Bruijn

graph, which prepares the de-Bruijn graph data structure to hold edge information for each

vertex. In de-Bruijn graph each vertex will be the suffix or prefix of a tuple representing an

edge. Thus, a vertex is also a tuple from read with length one less than the length of the

edge tuple. This tuple can be represented as a 64 bit value using 2-bit encoding scheme and
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it can serve as unique identifier for each vertex as well. As discussed earlier, a hash table is

used to build an index map, so that a vertex information like edge count can be accessed

quickly using the vertex tuple representation.

Given an edge tuple (l-mer), with a 64 bit representation, both its source and sink ver-

tices can be easily identified by determining the tuple suffix and prefix using bit operations

(shifting and masking). Each vertex maintains the list of entering and leaving edges sepa-

rately. Once the edge vertice is determined, their respective edge counts is incremented to

reflect that the edge is part of the de-Bruijn graph. The CUDA kernel in the first step is

invoked in a PRAM model, where each thread works on one edge and updates the associated

vertices edge count. The entering and leaving edge counts are maintained in a list which

is indexed using the hash table. Since, a vertex can be part of multiple edges, updates to

the counters should be consistent across multiple read and writes. In order to achieve the

consistency during updates, the edge count is updated using atomic operations provided by

the CUDA platform.

The data structure in GPU Euler maintains one incoming edge list and one outgoing

edge list for the whole graph, which is nothing but the concatenation of all the edge list of

the individual vertices. In order to build this structure, a simple prefix scan on individual

edge count is required to calculate the offset of each individual list in the combined edge

list. GPU Euler uses CUDPP Parallel Prefix Scan [40–42] which computes the prefix scan

in parallel on GPU. With offset information calculated, the graph construction proceeds to

the next step.

During the second step of de-Bruijn graph construction, the algorithm utilizes the in-

formation gathered in the previous step, to initialize the vertices. There are several pieces

of information that must be set for every vertices before the de-Bruijn graph construction

is completed. In this step, vertices will be assigned a unique identifier based on the tuple

they represent. This step is also executed in a PRAM fashion where each thread is assigned

to initialize one vertex. The edge pointer is set to the offset calculated previously and

edge count is also updated similarly. Since there is no writes involved on shared resources,
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Algorithm 3.4 de-Bruijn Graph Construction on CUDA-based GPUs.

Input:
L : Edge List (l-mers)
K : Vertex List (k-mers)
T : HashTable (index = T (ki))

Output:
G : de-Bruijn Graph

1: procedure Construct-Debruijn-Graph(L,K,T)

2: Initialize edge counters

/* Kernel 1 for Counting Edges */
3: for all li ∈ L do
4: p← Prefix(li)
5: s← Suffix(li)
6: ecount[T (s)] + + . increment edge count
7: lcount[T (p)] + +
8: end for

9: Synchronize

10: eoffset← Prefix-Scan(ecount) . CUDPP Library Prefix-Scan
11: loffset← Prefix-Scan(lcount)

12: V ←AllocateMemory

/* Kernel 2 for Vertices Setup */
13: for all ki ∈ K do . V[T (ki)] ∈ V
14: V[T (ki)].vid← ki
15: V[T (ki)].ep← eoffset[T (ki)]
16: V[T (ki)].lp← loffset[T (ki)]
17: end for

18: Synchronize

19: E ←AllocateMemory

/* Kernel 3 for Edge Setup */
20: for all li ∈ L do
21: p←Prefix(li)
22: s←Prefix(li) . ei ∈ E
23: ei.source← T (p) . set source index
24: ei.sink ← T (s) . set sink index
25: V[T (p)].lev ← V[T (p)].lev ∪ i
26: V[T (s)].ent← V[T (s)].ent ∪ i
27: end for
28: return G← (E ,V, lev , ent)
29: end procedure
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therefore no synchronization is required between the parallel writes originating from all the

threads.

After initializing all vertices, we set the edge information in the de-Bruijn graph. To

complete this step, a CUDA kernel is invoked, (PRAM) assigning one thread to each edge.

Each thread, retrieves a tuple representing each edge, and recomputes its source and sink

vertices using tuple’s suffix and prefix as done in the first step. Edge structure is also

update with the source and sink vertex identifiers (k-mer). Next, the outgoing edge list of

the source vertex and the incoming edge list of the sink vertex are updated to include the

current edge as well. Atomic operation are used to retrieve an offset and use it to store the

edge information.

The complete de-Bruijn graph construction has been outlined in Algorithm 3.4 which

constructs de-Bruijn graph using three CUDA kernels. The algorithm expects two tuple

list L and K which represents edge and vertex tuples, respectively. Tuples in set L are

referenced as li and tuples in set K are referenced as ki. The length of tuples in K is

one less than the tuples in L (i.e |ki| = |lj | − 1 ). After some internal initialization first

kernel is launched to compute number of edges for each vertex. After computing the edge

count, CUDPP library is used to perform a parallel prefix scan to compute the offsets.

The memory required to store edge and vertex information is allocated and the algorithm

proceeds to the next step.

During the next phase, a second CUDA kernel is invoked to set the vertices with the

edge list offset and count information. During the final step, a third CUDA kernel is invoked

with each thread working on an edge to compute information regarding the source, sink

and multiplicity of the edges. Within the CUDA framework, implicit synchronization is

performed at the end of each kernel call i.e., all threads are automatically synchronized.

3.5 Euler Tour Construction

Euler tour construction is the crux of eulerian path sequence assembly. An eulerian tour

of a graph is a path that visit every edge of the graph exactly once. A de-Bruijn graph
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constructed from the tuples of the reads, represents the bases of the final sequence as its

edges, where vertex provides a context for a base pair. As sequence assembly seeks to

combine smaller sub-sequence to form a larger sequence, euler path for de-Bruijn graph

fulfils the requirements by providing a path visiting all edges in certain order that will give

the target sequence.

In any graph there can be more than one solutions for the Euler path. Moreover, error

in sequencing generates incorrect reads which result in extraneous and erroneous edges in

the de-Bruijn graph. Erroneous edges adds to the complexity of the graph, adding more

places to arbitrate which path should be part of the final Euler tour. Pevzner’s [2] proposal

offers two solutions to handle each situation separately. To combat, erroneous data, it uses

a pre-assembly error correction step to collect high quality reads. To reduce the complexity

and number of available solutions for Euler path, their approach executes several graph

transformation before computing the euler path using the read information which reduces

the graph to smaller number of vertices and edges. Graph transformation are currently not
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a part of GPU Euler.

The Euler tour construction step is a modified implementation of the algorithm proposed

by Vishkin et al.[33] for the CRCW PRAM model. The CRCW PRAM model expects that

all processors synchronize after executing each instruction. Processor synchronization is a

way through which all participating processors communicate with each. Instruction level

synchronization implies that after the execution of each instruction, values computed by any

thread should be available to all the other threads. CRCW PRAM also permits concurrent

read/write to the same memory location, making it easier to develop parallel algorithms.

Concurrent write is always considered to be a nuisance even for the current generation

computing devices. One solution that is mostly by different devices to allow concurrent

writes is to sequential executes all the writes occurring concurrently in some order.

The modifications were necessary, to adjust algorithm according to CUDA synchro-

nization semantics. CUDA follows SIMT (Single Instruction Multiple Thread) paradigm

without inherent instruction level synchronization. In addition to that, CUDA does not

support concurrent writes. However, concurrent reads are supported. CUDA offers two

kinds of synchronizations[43];

1. Block Level All threads in a single block can be synchronized using an API command.

However, threads across the blocks aren’t affected by this method.

2. Kernel Level All threads are synchronized at the launch and completion of CUDA

kernels.

These two synchronization mechanism are often used while working on CUDA platform,

to accomplish a closer implementation of PRAM model. The referenced algorithm defines

concurrent writes as one where arbitrary threads (processors) can win and it does not matter

which write succeeded. CUDA atomic APIs can be used to mimic this behavior easily as the

atomic APIs which serialize all the concurrent accesses to a memory location, so the access

would appear in a sequential manner, without any prescribed order. The net effect of such

an implementation is that only the last write will be visible. Synchronization and atomic
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operations are costly operations, and as such can lead to performance overhead. Atomic

instruction set is available on CUDA devices with compute capability 1.1 and later.

Algorithm 3.5 GPU assisted Euler Tour Construction.

Input:
G : de-Bruijn Graph

Output:
G′ : de-Bruijn graph Annotated with Euler Tour Information.

1: procedure ComputerEulerTour(G)
2: Assign Successor Edges.
3: Construct Successor Graph.
4: Find Connected Component in Successor Graph.
5: Compute Circuit Graph.
6: Compute Spanning Tree on Circuit graph.
7: Execute Swipe on Spanning Tree.
8: return G’
9: end procedure

The input to the euler tour construction consists of a graph (de-Bruijn graph in our case)

represented as a list of vertices V , list of edges, E and two supplementary lists LP and EP ,

that store the leaving and entering edges for each vertex, respectively. The intuition behind

this algorithm is to identify circuits in the given graph, and then change the successor of

those edges of a circuit, which are adjacent to an edge belonging to another circuit. To

lower the complexity of the circuit graph, a sub-graph is extracted by finding the connected

components, a spanning tree of this sub-graph would yield the edges that are required to

be switched with their neighbors. Figure 3.5 shows major components of the Euler tour

construction and are discussed below.

3.5.1 Successor Assignment

In the successor assignment step, each edge in the input de-Bruijn graph is assigned a

successor. The CUDA kernel works on each vertex, assigning one of the leaving edges as

the successor for one of the entering edges. This assignment follows a sequential pattern

i.e., the first entering edge is paired with first leaving edge, second entering edge to the

second leaving edge and so on. Successor assignment is presented in Algorithm 3.6, which
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Algorithm 3.6 AssignSuccessors

Input:
G : de-Bruijn graph

Output:
G : de-Bruijn graph with edge successor assigned

1: procedure AssignSuccessors(G)
2: for all vi ∈ V(G) do
3: count← 0
4: max←MIN(vi.ecount, vi.lcount)
5: while count < max do . connect incoming edge to outgoing
6: E [ent[vi.ep+ count]].succesor ← lev[vi.lp+ count]
7: count+ +
8: end while
9: end for

10: return G
11: end procedure

is executed by all the threads, with each thread working on a single vertex. It iterates the

edge list and connects one leaving edge to the incoming edge.

3.5.2 Successor Graph Creation

In this step, a successor graph is generated to represent the successor information we com-

puted in the previous step. This step is required, so that we can identify the circuit to

which each edge belongs. The successor graph contains all the edges as vertices and an edge

exists between two vertices, if one of them is a successor to the other. This step can be

performed in constant time, provided the number of processors are equal to the number of

edges. For the successor graph, the number of edges in our algorithm is linear in terms of

vertices. The CUDA kernel is launched for each de-Bruijn graph edge, which then sets the

information in the graph being constructed. Algorithm 3.7 describes the successor graph

creation. It uses a slightly different graph representation as an edge can be related to at

most two other edges (preceding and following).
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Algorithm 3.7 Successor Graph Creation

Input:
G : de-Bruijn graph with successor information

Output:
V : Vertex set of Successor Graph
E : Edge set of Successor Graph

1: procedure CreateSuccessorGraph(G)
2: V ← E(G) . Edges of G, becomes vertices
3: E ← ∅
4: for all vi ∈ V do
5: if vi.succ 6= ∅ then
6: E ← E ∪ (vi, vi.succ)
7: end if
8: end for
9: return (V,E)

10: end procedure

3.5.3 Connected Components

Our implementation is based on the algorithm proposed by Uzi Viskin et al.[37] for CRCW

PRAM model that requires O (log n) parallel time to completion. We modified the CRCW

model such that based on the iteration step, each thread would be in-charge of either a

vertex or edge from the successor graph, with the four steps involving updating of root

vertices performed iteratively. Algorithm 3.8 outlines the modified connected component

construction as implement for GPU Euler.

3.5.4 Circuit Graph Creation

The circuit graph creation works by calculating the edges between two circuits. At any

vertex, instead of considering all possible combination of the edges, the algorithm picks

edges which are adjacent to each other in the edge list, i.e. ei and ei+1. In order to

maintain a consistent behavior across different runs, we have stored the edge list of the

circuit graph in canonical order.

Algorithm 3.9 describes the process of computing a Circuit graph from the Component

labelling of a Successor Graph. It starts with determining the number of vertices in Circuit
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Algorithm 3.8 Parallel Connected Component

Input:
V : Vertex set of Successor Graph
E : Edge set of Successor Graph
D : Vertex component identifiers such that di identifies component for vi

Output:
D : Vertex component identifier array.

1: procedure ConnectedComponent(V,E,D)

/*temporary variables*/
Q : iteration marker for each vertex . qi is the iteration di is updated
val : temporary arrays to hold intermediate values
temp :
s : current iteration count
s′ : next iteration count

2: s← 0
3: s′ ← 0
4: for all di ∈ D do
5: di ← i . Each vertex is connected to itself
6: qi ← 0
7: end for
8: Synchronize
9: while s = s′ do

10: for all di ∈ D do
11: D[i]← D′[D′[i]]
12: end for
13: Synchronize
14: for all di ∈ D do
15: if D[i] 6= D′[i] then
16: Q[D[i]]← s
17: end if
18: end for
19: Synchronize
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Algorithm 3.8 Parallel Connected Component . contd.

20: for all di ∈ D do
21: for all edgej ∈ E(vi) : edge(vsource, vsink) do

22: if D[i] = D′[i] then
23: temp[j][i]← D[i]
24: val[j][i]← D[sink]
25: end if
26: end for
27: end for
28: Synchronize
29: for all di ∈ D do
30: for all edgej ∈ E(vi) : edge(vsource, vsink) do

31: if D[temp[j][i]] > val[j][i] then
32: D[temp[j][i]]← val[j][i]
33: end if
34: Q[val[j][i]]← s
35: end for
36: end for
37: Synchronize

Algorithm 3.8 Parallel Connected Component . contd.

38: for all di ∈ D do
39: for all edgej ∈ E(vi) : edge(vsource, vsink) do

40: if D[i] = D[D[i]] ∧Q[D[i]] < s then
41: if D[i] 6= D[sink] then
42: temp[j][i]← D[i]
43: val[j][i]← D[sink]
44: end if
45: end if
46: end for
47: end for
48: Synchronize
49: for all di ∈ D do
50: for all edgej ∈ E(vi) : edge(vsource, vsink) do

51: if D[temp[j][i]] > val[j][i] then
52: D[temp[j][i]]← val[j][i]
53: end if
54: end for
55: end for
56: Synchronize
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Algorithm 3.8 Parallel Connected Component . contd.

57: for all di ∈ D do
58: temp[i]← D[D[i]]
59: end for
60: Synchronize
61: for all di ∈ D do
62: D[i]← temp[i]
63: end for
64: Synchronize
65: for all di ∈ D do
66: if Q[i] = s then
67: s′ ← s′ + 1
68: end if
69: end for
70: s← s+ 1
71: D′ ← D
72: end while
73: return D
74: end procedure

graph, by computing the number of root vertices identified during connected component

labelling. After allocating the memory for vertices, the algorithm moves on to determine

the number of edges in the circuit graph, by counting edges of a vertex in de-Bruijn graph

that are are labelled to be in a different connected component.

3.5.5 Spanning Tree

This step is implemented serially on the CPU using the boost graph library [35], which

implements the Kruskal spanning tree algorithm and requires O (|E| log |V |) time. In our

situation |E| is of the order of O (|V |) and the actual time will be dependent on the number

of circuits identified in the successor graph.

3.5.6 Swipe Execution

The final step requires a traversal of the edges in spanning tree identified in the previous

step. Each edge of the spanning tree corresponds to a pair of edges in de-Bruijn graph

incident on same vertex, swapping their successors will connect path containing one edge

with the path containing the other edge (Algorithm 3.10), resulting in a connected Eulerian

tour. Contigs are generated by identifying the source vertices and following the successor
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Algorithm 3.9 Circuit Graph Creation

Input:
G : de-Bruijn graph
V : Vertex set of successor graph

Output:
CG : Circuit Graph

1: procedure CreateCircuitGraph(G,D)
2: for all ei ∈ E(G) do . one thread for each edge
3: C[D[i]] = 1 . mark root vertex
4: end for
5: Compute total number of root vertice
6: Allocate memory for vertices
7: for all vi ∈ V(G) do . one thread for each vertex
8: for all edge ∈ vi do
9: if D[edgei] 6= D[edgei+1] then

10: edgeCount+ +
11: end if
12: end for
13: end for
14: Allocate memory for CG edges
15: for all vi ∈ V(G) do . one thread for each vertex
16: for all edge ∈ vi do
17: if D[edgei] 6= D[edgei+1] then
18: add edge (D[edgei], D[edgei+1]) in CG
19: end if
20: end for
21: end for
22: return CG
23: end procedure
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edge information pertaining to each edge.

Algorithm 3.10 Swipe Execution

Input:
G : de-Bruijn graph
CG : Circuit Graph
STt : Spanning Tree for Circuit Graph

Output:
G : Annotated de-Bruijn graph

1: procedure ExecuteSwipe(G,ST,CG)
2: for all vi ∈ V do
3: if (D[ei], D[ei+1]) ∈ ST then
4: exchange successor of ei and ei+1

5: end if
6: end for
7: return G
8: end procedure

3.6 Time Complexity Analysis

The de-Bruijn Graph construction is a constant time operation O (1) given O (n) processors,

which can be arranged by assigning each k-mer to a single CUDA-based GPU thread. The

CRCW Euler tour construction algorithm [33] has a run time complexity of O (log n) for n

vertices. Our modifications, introduce a constant step that does not affect the complexity

of Eulerian tour construction phase, which is bounded by O (log n). Specifically, identifying

the component requires O (log n) parallel steps, and the circuit graph creation and successor

graph creation is a constant time operation in terms of number of vertices. Prefix scan for

calculating the required memory also takes O (log n) parallel time. The Kruskal spanning

tree algorithm is bounded by O (|E| log |V |) where |V | is number of vertices and |E| is

number of edges in the successor graph. The number of vertices in the successor graph tend

to be far lesser than the number of vertices in the de-Bruijn graph, and the dominating

factor in the time complexity analysis is not affected by the spanning tree algorithm. Hence,

the overall run time complexity of our GPU-Euler is bounded by O (log n), as shown by

analyzing different phases of the algorithm.
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Table 3.3: Genome size and number of simulated reads for different read lengths.

Genome Length 36 bp 50 bp 256 bp

CJ 1,641,481 911,934 656,593 128,241
NM 2,184,406 1,213,559 873,763 170,657
LL 2,635,589 1,314,216 946,236 184,812

3.7 Experimental Setup

3.7.1 Dataset

To evaluate the performance of our GPU-based assembler we used three previously assem-

bled genomes: (i) Campylobacter Jejuni (CJ), (ii) Neisseria Meningitidis (NM) and (iii)

Lactococcus Lactis (LL). These genomes have been used for benchmarking various other

assembly algorithms including Euler [7]. The genome sizes (lengths) of CJ, NM and LL

are 1.6Mbps, 2.1 Mbps and 2.3 Mbps, respectively. For each of the assembled genomes we

simulated error free reads using MetaSim [44]. The read lengths were varied to be 36 bp,

50 bp and 250 bp for three independent set of experiments, representing the NGS tech-

nologies. For each experiment, the number of reads simulated achieved a 20x coverage for

the genomes and are summarized in Table 3.3. Since, we were focused on illustrating the

performance of GPU-Euler in terms of run times we simulated only error free reads.

3.7.2 Experimental Protocol

We performed a comprehensive set of experiments that assessed the run time performance of

GPU-Euler across the three different genome benchmarks, and with varying read lengths.

We performed run time profiling of our method, evaluating and optimizing the speed of

different phases of the GPU-Euler algorithm. We also compared the performance of our

approach to well established sequence assemblers like EulerSR [8]. We ran each experiment

multiple times to ensure that the run-times remained consistent due to load factors on the

workstation. We did not notice any significant variability across multiple runs with the same

parameters, and as such do not report them in this study. The GPU-Euler algorithm has
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Table 3.4: Profiling of GPU-Euler.

Phase Computation

I/O and k-mer Extraction CPU + GPU
Hash Table Construction GPU
de-Bruijn Graph Construction GPU
Euler Tour Construction GPU + CPU

Sub-steps for Euler Tour Construction

Finding Connected Component GPU
Circuit Graph Creation GPU
Spanning Tree CPU
Swipe Execution GPU
Traversal (Other) GPU

Contig Generation (O/P) CPU

different phases of the algorithm run on the GPUs using CUDA kernel launches, whereas

some of the phases are run on the CPU and some of the steps are run on the CPU as well

as GPUs. We show in Table 3.4 the different steps of the GPU-Euler algorithm and their

execution pattern.

For contigs greater than 100 bp we report the total bases within the contigs, mean and

maximum length of contigs obtained. We also compute the N50 score, which is defined as

the length of smallest contig such that 50% of the genome length is contained in contigs of

size N50 or greater. To compute the accuracy and coverage statistics, we used the NUCMER

pipeline of MUMMER [45] that allowed for quick and fast alignment of assembled contigs

to the input genomes. NUCMER uses a suffix-tree based string matching algorithm to

search for exact matches, and extends these matches using a dynamic programming based

alignment that is considerably faster than BLAST. Using the alignment we calculate the

length weighted accuracy.

3.7.3 Hardware Configuration

The benchmarking of GPU-Euler was performed on a Dell workstation which has a quad

core Intel Xeon 2.00 GHz processor with 8 GB primary memory. This system has a nVidia

Quadro FX 5800 GPU, which has a clock rate of 1.30 GHz, 240 cores, 4 GB GPU RAM and
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Table 3.5: Run Time Performance for CJ Genome using GPU-Euler.

l I/O
GPU Hash

de-Bruijn
Euler Tour

Output GPU CPU Total
Encoding Table Comp. Sp. Tree Swipe Other

read length : 36 bp

16 30.847 0.361 0.131 0.484 4.178 0.065 0.004 0.127 1.537 5.286 34.393 39.679
18 25.952 0.372 0.138 0.511 4.245 0.011 0.004 0.052 1.576 5.321 29.500 34.821
22 22.659 0.42 0.139 0.510 4.269 0.001 0.003 0.094 1.667 5.435 26.352 31.787
24 21.076 0.444 0.138 0.509 4.229 0.001 0.003 0.063 1.692 5.386 24.789 30.175
26 19.610 0.469 0.138 0.504 4.197 0.001 0.003 0.043 1.745 5.355 23.370 28.725
28 17.947 0.494 0.137 0.499 4.162 0.001 0.003 0.036 1.771 5.331 21.732 27.063
30 16.457 0.519 0.136 0.498 4.115 0.001 0.003 0.031 1.812 5.302 20.257 25.559
32 12.702 0.545 0.132 0.475 3.856 0.001 0.003 0.03 1.832 5.041 16.475 21.516

read length : 50 bp

16 34.155 0.325 0.129 0.488 4.197 0.077 0.004 0.151 1.544 5.294 37.715 43.009
18 29.08 0.339 0.137 0.512 4.263 0.018 0.004 0.063 1.589 5.317 32.654 37.971
22 26.511 0.387 0.137 0.515 4.298 0.006 0.003 0.146 1.658 5.486 30.185 35.671
24 25.44 0.413 0.136 0.504 4.323 0.005 0.003 0.162 1.714 5.541 29.174 34.715
26 24.312 0.437 0.137 0.504 4.316 0.004 0.003 0.163 1.742 5.56 28.071 33.631
28 23.227 0.462 0.136 0.505 4.298 0.002 0.003 0.146 1.78 5.551 27.033 32.584
30 22.11 0.487 0.136 0.504 4.306 0.001 0.003 0.109 1.823 5.544 25.954 31.498
32 20.961 0.511 0.136 0.503 4.248 0.001 0.003 0.086 1.871 5.487 24.849 30.336

read length : 256 bp

16 41.054 0.559 0.128 0.488 4.365 0.126 0.004 0.24 1.587 5.785 44.699 50.484
18 35.224 0.505 0.136 0.510 4.37 0.051 0.004 0.144 1.641 5.669 38.87 44.539
22 34.335 0.532 0.135 0.510 4.413 0.036 0.004 0.266 1.727 5.86 38.096 43.956
24 34.053 0.550 0.137 0.503 4.415 0.033 0.004 0.296 1.763 5.905 37.871 43.776
26 34.114 0.572 0.136 0.503 4.424 0.03 0.004 0.317 1.787 5.956 37.911 43.867
28 33.880 0.589 0.136 0.503 4.433 0.026 0.004 0.323 1.826 5.988 37.711 43.699
30 33.661 0.608 0.136 0.502 4.484 0.026 0.004 0.321 1.872 6.055 37.563 43.618
32 33.729 0.628 0.136 0.503 4.389 0.027 0.004 0.314 1.914 5.974 37.664 43.638

The run-times are reported in seconds. The phases indicated in bold i.e.,GPU Encoding Hash Table, Component, Swipe and Other are

performed on the GPUs.

CUDA compute capability 1.3. We used the CUDA SDK version 2.3 to build GPU-Euler.

The GPU-Euler uses both CPU and GPU, whereas the EulerSR (used for comparison) was

run on a single core of the Intel processor.

3.8 Result

3.8.1 Runtime Performance

Table 3.5 shows the run times (in seconds) across the different phases of GPU-Euler per-

formed by varying the overlap parameter, k-mer size from 16 to 32 across the CJ genome.

We performed experiments across reads of length, 36, 50 and 256 bps. We report the run-

times for the different phases of the algorithm across the GPU and CPU as shown in Table

3.4. We also report the total run-time along with the total GPU and CPU run-times.

As we increase the value of k, the CPU run-time gradually increases for all the three
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genomes. A large percentage of time (approximately 90%) is spent in extracting k-mers

from the several input read sequences (denoted as I/O). During this phase, a file containing

the sequence reads (in FASTA format) is processed sequentially and a list of k-mers along

with their occurrence frequency is generated.

The different phases of GPU-Euler that are run on the GPUs do not vary significantly,

in terms of run-times as the k parameters is increases. The GPU run-time is dominated

by the connected component phase algorithm which uses 8 CUDA kernel launches in an

iterative fashion. These kernels use CUDA synchronization API to serialize writes for given

memory execution, which explains the relatively higher execution time for this phase.

When comparing the performance across the three genomes, we notice that as size of

genome increases from CJ to NM to LL, the number of input reads increase to maintain the

20x coverage (Table 3.3). As such, the I/O and k-mer extraction increases with increasing

genome sizes. The average GPU run times for the CJ, NM and LL genomes are 5.656, 7.520

and 8.184 seconds, respectively. This change in the GPU-time is primarily because of larger

de-Bruijn graph size with increasing number of input reads. In Figure 3.6 we show a plot

of the GPU run times across these three genome benchmarks for the different read lengths.

45



0

2

4

6

8

10

CJ NM LL

G
P

U
T

im
e

(s
ec

on
d

s)

Genome

36bp
50bp

256bp

Figure 3.6: GPU Time comparison across different genomes

3.8.2 Comparative Performance

We compared our assembler with EulerSR [8], a widely used Eulerian-based assembler

developed for short reads. Experiments for EulerSR were performed on a single CPU core

of our workstation. Table 3.6, Table 3.7 and Table 3.8 show the contig length statistic,

contig accuracy results and the run-time for 36, 50 and 256 bps for the CJ,NM and LL

genome benchmark, and compare it to EulerSR. We report those results for the different

assemblers that achieved the best N50 score. For EulerSR we also invoked a parameter

(minMult = 20) that will filter k-mers that do not occur at least twenty times. These

results are reported in the Tables as “EulerSR*”.

Across the three genome benchmarks, we notice that GPU-Euler consistently outper-

forms EulerSR in terms of run times. However, note GPU-Euler is utilizing the computing

capacity of the GPUs whereas EulerSR is benchmarked on single processor. As the read

length increases from 36 to 256 base pairs, we notice that the run time for GPU-Euler
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Table 3.6: Comparative Performance for GPU-Euler on CJ genome (Contigs ¿= 100 bp).

Read Len. Assembler l Time (s) N50 N Mean Max TB WA

36 bp

EulerSR*
16 122.391 5345 21 503.810 5345 10580 99.35
22 100.676 136 17 144.882 244 2463 100

EulerSR
20 176.858 17827 227 7408.696 57201 1681774 97.37
22 162.582 7386 387 4192.140 36866 1622358 98.62

GPU Euler 22 31.787 8480 720 4491.206 40255 3233668 83.23

50 bp

EulerSR*
22 101.220 6085 25 441.840 6085 11046 99.88
26 96.496 1686 9 849.667 3637 7647 99.09

EulerSR
21 151.444 79838 114 14404.965 155588 1642166 95.33
26 141.378 46497 124 13042.726 97486 1617298 97.22

GPU Euler 26 33.631 47766 307 10527.147 158836 3231834 91.01

256 bp

EulerSR*
18 114.383 511 1529 394.891 3476 603788 78.01
32 - - - - - - -

EulerSR
27 103.104 112428 69 24544.275 191547 1693555 95.38
32 - - - - - - -

GPU Euler 32 43.638 13806 597 5521.774 59742 3296499 98.25
EulerSR* represents a run of EulerSR with -minMult=20. We report for each assembler the results with k-mer size which produces the

best N50 score. For EulerSR we also report the results for the k-mer chosen for GPU-Euler. For k > 30, EulerSR produces a memory

error. N50, N, Mean, Max are the N50 scores, total number of contigs, mean contig lengths and maximum contig lengths, respectively.

TB and WA denote the total number of aligned bases within the contigs and the weighted accuracy, respectively.

increases. This is primarily because of processing longer reads during the I/O phase.

With respect to contig length statistics and accuracy, we notice that EulerSR shows

better performance. GPU-Euler shows better or comparable N50 scores and mean contig

lengths for few of the cases. The implemented GPU-Euler works on the full de-Bruijn

graph without any compaction and translation. EulerSR implements several heuristics that

analyze the de-Bruijn graph structure and help resolve repeat regions within a genome.

3.9 Conclusion

We investigated the potential of using GPUs for performing genome sequence assembly task.

We developed an Eulerian-based sequence assembler that used the GPU in conjunction with
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Table 3.7: Comparative Performance for GPU-Euler on NM genome (Contigs ¿= 100 bp).

Read Len. Assembler l Time (s) N50 N Mean Max TB WA

36 bp

EulerSR*
20 145.105 2063 23 482.826 3830 11105 83.87
22 144.716 1083 19 510.000 2852 9690 79.63

EulerSR
21 279.277 4538 894 2307.614 21195 2063007 96.73
22 257.953 3742 1011 2028.121 16374 2050430 96.90

GPU Euler 22 40.670 3909 2275 1804.153 17635 4104447 81.37

50 bp

EulerSR*
26 128.601 1020 32 399.594 5949 12787 87.88
23 136.295 688 54 321.759 6283 17375 88.27

EulerSR
25 222.046 6808 601 3370.797 25857 2025849 96.93
23 225.512 6574 594 3395.434 23693 2016888 97.89

GPU Euler 23 45.653 6596 1964 2121.377 25383 4166385 79.03

256 bp

EulerSR*
16 198.608 481 2245 367.697 5227 825479 69.87
31 22997.298 - - - - - -

EulerSR
27 162.595 31614 346 9365.142 79346 3240339 47.26
31 - - - - - - -

GPU Euler 31 57.817 7226 1610 2715.053 30965 4371235 79.72
EulerSR* represents a run of EulerSR with -minMult=20. We report for each assembler the results with k-mer size which produces the

best N50 score. For EulerSR we also report the results for the k-mer chosen for GPU-Euler. For k > 30, EulerSR produces a memory

error. N50, N, Mean, Max are the N50 scores, total number of contigs, mean contig lengths and maximum contig lengths, respectively.

TB and WA denote the total number of aligned bases within the contigs and the weighted accuracy, respectively.

the CPU. Our empirical results showed that this GPU-based assembler had better run time

performance in comparison to EulerSR on three bacterial genome benchmarks, across reads

representing NGS data. We also showed competitive contig length statistics but in terms

of accuracy there is room for improvement.
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Table 3.8: Comparative Performance for GPU-Euler on LL genome (Contigs ¿= 100 bp).

Read Len. Assembler l Time (s) N50 N Mean Max TB WA

36 bp

EulerSR*
19 158.887 5358 7 1380.143 5358 9661 92.81
21 152.476 5222 3 3045.000 5222 9135 97.52

EulerSR
20 276.670 9180 619 3862.969 31070 2391178 98.89
21 270.720 9154 631 3753.751 33986 2368617 97.12

GPU Euler 21 46.080 7234 1500 3061.075 37629 4591612 79.17

50 bp

EulerSR*
24 139.019 5381 18 590.000 5381 10620 93.68
26 133.875 5379 10 988.700 5379 9887 97.78

EulerSR
25 216.472 30133 317 7264.991 83247 2303002 96.92
26 216.281 27804 318 7168.132 83249 2279466 99.13

GPU Euler 26 48.061 23998 877 5259.621 95876 4612688 83.68

256 bp

EulerSR*
17 189.402 479 2319 377.916 3719 876388 74.71
32 - - - - - -

EulerSR
27 167.085 74484 193 11967.648 198384 2309756 96.99
32 - - - - - - -

GPU Euler 32 63.522 13789 976 4853.170 66109 4736694 93.84
EulerSR* represents a run of EulerSR with -minMult=20. We report for each assembler the results with k-mer size which produces the

best N50 score. For EulerSR we also report the results for the k-mer chosen for GPU-Euler. For k > 30, EulerSR produces a memory

error. N50, N, Mean, Max are the N50 scores, total number of contigs, mean contig lengths and maximum contig lengths, respectively.

TB and WA denote the total number of aligned bases within the contigs and the weighted accuracy, respectively.
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Chapter 4: Error Correction

This chapter discusses an error correction technique and its implementation on GPU to

improve assembly accuracy.

4.1 Introduction

The process of genome sequencing is often prone to error. Different techniques yields reads

containing different error profiles. These error containing reads can be problematic during

the assembly phase. They may introduce erroneous paths in the de-Bruijn graph which

lead to invalid paths and incorrect assembly. Other assembly techniques such as greedy or

OLC based approaches are also affected by the error during the sequencing. These error

usually lead to tangles and small branches in the read graph and thus mislead the assembly

algorithm. Each assembly algorithm handles the error containing reads in some manner

that can complement their algorithm. One common method is to estimate the errors and

filter out reads that contain errors. In order to estimate errors correctly, the genome should

be sequenced with a high coverage. Coverage is defined as the average number of times a

base is read at a position while sequencing a genome. Higher coverage can help the OLC

based approach, where during consensus phase, errors can be outnumbered by the correct

reads. Another similar technique is employed by AbySS which performs trimming as a post

processing step after constructing the read graph. During this post processing step, Abyss

tries to remove bulges and branches which are shorter than some threshold length.

The Sanger technique which attempts to collect longer reads ( ˜1500 bp long) produces

reads with a higher error rate. With newer sequencing technologies like Solexa, the focus

has been shifted to produce shorter reads with less error rate.

50



Debruijn Graph
Construction

FASTA file
(input)

Euler Tour
Construction

Identify Contigs

FASTA file
(output)

b

b b

b

b

b b

(reads)

(graph)

euler tour

(contigs)

GPU EULER with Error Correction
Error

Correction

(reads)

Figure 4.1: GPU Euler Workflow with Error Correction

4.2 Method

The selection of an error correction algorithm depends on a number of factors. Each as-

sembly method employs a certain heuristics to reduce error based on the error profiles of

different sequencing technologies to guide the error correction mechanism. Some assembly

algorithms like AbySS, incorporates error correction as an integrated step during the assem-

bly, while some assembly methods (e.g Euler), introduce error correction as a pre-processing

step.

In GPU Euler, error correction is performed as a pre-processing step before constructing

the de-Bruijn graph as shown in Figure 4.1. Since erroneous reads will cause a large number

of invalid edges in the de-Bruijn graph which can not only increase the graph complexity but

will also introduce invalid paths. This situation can even lead to graphs with no solution

at all. In order to minimize the impact of error containing reads, GPU Euler therefore,

performs error correction before performing any other operation.
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4.2.1 Spectral Alignment

Spectral Alignment is an intuitive method for error correction introduced by Pevzner [2]

for Euler. It is based on a simple principle that requires mutating an error containing read

such that it can resemble high coverage reads. Consider all tuples of length t from a set of

reads. With enough read coverage, the occurrence of certain tuple from a read should be

approximately equal to the read coverage. Now consider tuples from an error containing

read. A read with one erroneous base would give rise to approximately 2 × (n − t + 1)

tuples with very low coverage. Based on this observation, a correct mutation of an error

containing read would reduce the number of less occurring tuples by 2× (n− t+ 1) tuples.

In Pevzner’s formulation of spectral alignment problem, the tuples are partitioned into

two set; one having high occurrence rate known as solid tuple set while the other low

occurrence rate are know as weak tuples set. Tuples in the weak set are likely appeared as

a result of an error during sequencing. The goal of spectral alignment is to find minimum

mutations that can reduce the set of weak tuples. Based on the error model, a read can

contain error at multiple positions, which requires multiple mutation to be introduced during

the error correction. Often a threshold is specified to limit the number of mutations, and

any reads requiring more mutations than the threshold are simply discarded as poor reads.

This cut-off is necessary and threshold is usually kept at a minimum to avoid introducing

error as part of the error correction itself.

4.2.2 Problem Decomposition

In GPU Euler a simple method of error correction has been adopted which is based on

the spectral alignment. Spectral alignment belongs to a class of problem of known as

embarrassingly parallel problems. These problems are termed as their solution can be

obtained by decomposing them into smaller sub-problem and computing their result in

parallel. Such problems are good candidates for GPU based implementation as there is less

data dependence between the sub-problems.

Error correction in GPU Euler can be represented as the generation of solution space
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containing all possible mutations of all the reads and selection of the best mutation from

the generated solution space. Let a read r be defined as a string of some length n over the

alphabet A,G,C, T .

r = (b1, b2, . . . , bn) : bi ∈ {A,G,C, T}

The complement of the base b can be represented as b′ based on Table 2.1.

b′ =



A if b = T

G if b = C

C if b = G

T if b = T

The reverse complement r′ of a read r can be defined as a string of complement of bases

of r in reverse order.

r′ = (b′n, b
′
n−1, . . . , b

′
1)

A tuple ti of read r is a sub-string of r starting at position i with t bases. t′i can be

similarly defined for r′.

ti = (bi, bi+1, . . . , bi+t−1)

As part of error correction procedure, each read is mutated by substituting all four bases

at every position of that read, in order to obtain 4× n mutated reads of a single read. Let

Q be the set of mutations such that qj be a mutation representing a substitution at jth

position of a read r.

Q = {qj ∈ Q : 1 ≤ j ≤ n}

Let ⊗ be the mutation operator defined over a read r and mutation qj such that it
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mutates the read r to four possible reads, by substituting each nucleotide at jth position.

r ⊗ qj = {rA,j , rG,j , rC,j , rT,j} = {rs,j : s ∈ {A,G,C, T}, bj = s}

In order to determine if a mutated read r has tuples from the solid set, a tuple set

tuplest(r) needs to be calculate first. This set will contain all tuples of length t for a read

r and its complement r′. tuplest(r) can be defined as,

tuplest(r) = {{ti, t′i} : 1 ≤ i ≤ n− t}

Let R be the set of reads such that rk is the kth read.

R = {rk ∈ R : 1 ≤ k ≤ m}

Q⊗R→ Tb,j,k

⊗(qb,j , rk)→ Tb,j,k = {ti,b,j,k ∈ Tb,j,k : whereti,b,j,k}

Given the set of all possible mutations, a scoring function is required that can define

the precedence of one mutation over the other and identify the best substitution and its

position in a read from the set of its possible mutation. GPU Euler uses a simple scoring

function which is based on the number of solid tuples in the tuple set of a mutated read. A

threshold M is selected such that tuples occuring atleast M times are considered as solid

tuples.

GPU Euler initially computes the frequency count of all tuples from the input set of

reads in a function H(ti). Any tuple not present in the input set of reads is assigned 0 as its

frequency count. Using this function with a threshold M , an scoring function for any tuple

can be defined as having a value of 1 if its frequency count is at least M and 0 otherwise.

In other words, the function f(ti) simply classifies a tuple as either weak or solid.
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f(ti) =


1 H(ti) ≥M,

0 otherwise

The score of a mutated read rs,j can be represented as the number of its solid tuples.

The number of solid tuples in a read can be computed as sum of all f(ti) from the tuple set

of rs,j .

score(rs,j) =

n∑
i=1

f(ti), ti ∈ tuplest(rs,j)

score(rs,j) is computed for all possible mutations of every read. Using this score, best

substituted nucleotide at every position of all the reads is computed as the one having

maximum score among all substitutions. For every position, there will be four possible scores

pertaining to four nucleotide substitutions. The substitution function selects maximum

score from the available four score.

substitution(r ⊗ qj) =
∨

s∈{A,G,C,T}

score(rs,j)

Finally, the best position for a mutation is determined by selecting the position with

maximum substitution score among all the position of a read.

position(r ⊗Q) =
n∨

j=1

substitution(r ⊗ qj)

This solution can be applied in parallel for every read leading to a simple parallel

application. The error correction procedure can spawn parallel task for each read which

can independently compute the mutated reads, generate the tuples and assign score to each
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Table 4.1: Computations for Single Read

Read Length (bp)
tuples

(t = 16) (t = 20) (t = 26) (t = 32)

36 6048 4896 3168 1440
50 14000 12400 10000 7600
256 493568 485376 473088 460800

read. This process can further parallelized by computing all 4×n mutated reads of a single

read. Tuple generation can be performed in parallel as well as explained in the next section.

4.3 Implementation

Error correction in GPU Euler is performed as an exhaustive search of mutated reads to

find one such that all of its tuples would belong to the solid set. The search space consists

of possible mutations of every read from the input set. As part of computations, all the

mutations of every read are calculated by substituting each nucleotide (A,G,C, T ) at every

position of a read and calculate resulting tuples. For a read of length n, there are n positions

to mutate and for each position, there are four possible mutations, which leads to 4 × n

possibilities. Each of the 4 × n possible mutation would lead to 2 × (n − t + 1) tuples

(including forward and reverse strands), for a total of 4 × n × 2 × (n − t + 1). Table 4.1

shows the number of tuples computed for a single read of various length. It is evident

that with the increase in the length of reads, the tuples required to be computed increases

significantly.

Error correction step in GPU Euler performs most of its computation and filtering on the

GPU, to exploit its parallel architecture. As part of error correction, a small pre-processing

is required to count the frequency of tuples in the input set. The tuples are encoded to 64-

bit integer values. This information is stored in a hash table as key-value pair. A hash table

is a preferred data structure here, since it can store sparse indexes (tuples) and provides

near constant time look up for the required value.
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The rest of the error correction steps process the reads in batches to keep the memory

requirements within the GPU specification.The selection of batch size requires some con-

sideration as well. The computational resources (such as SMs and shared memory) on a

GPU are limited. If a large batch is selected then each kernel invocation would take longer

to finish, as it would increase the number of blocks required to finish the task. A smaller

batch size would increase the synchronization events between each kernel invocations.

Algorithm 4.1 Error Correction on GPU

Input:
R : read list

Output:
R′ : Modified Reads

1: T ← ExtracTuples(R, t)

2: batchCount← |R| /MaxRead

3: Allocate Memory for buffer,mutation, score, substitution, position, result

4: for i : 1→ batchCount do
5: buffer ← CopyBatch(R, i)
6: mutation← CalculateMutation(buffer)
7: score← AccumulateScore(mutation)
8: substituion← SelectSubstitution(score)
9: position← SelectPosition(substituion)

10: for j : 1→MaxRead do
11: result[i×MaxRead + j]← position[j]
12: end for
13: end for

14: for all ri ∈ Read do
15: R′ ← R′ ∪ApplyMutation(ri, result[i])
16: end forreturn R′

17: procedure ApplyMutation(r,result)
18: if result > Threshold then
19: r′ ← r ⊕ result
20: else
21: r′ ← ∅
22: end if

return r′

23: end procedure

Algorithm 4.1 presents the work flow of the error correction in GPU Euler. It expects a

set or read as an argument alongwith the tuple length t. The algorithm then proceeds with
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extracting tuples of length t from the input set of reads, and builds a lookup table T (line

1). After collecting the tuple set and their occurrence count, Algorithm 4.1 then computes

the number of batches and allocates the GPU memory required for each iteration (line 2 –

3).

The error correction algorithm then continue to process reads in batches containing

MaxRead reads by computing mutation and selecting the best mutation for each read (line

4 – 13). In each iteration of this loop , algorithm 4.1 invokes following 4 cuda kernels:

1. Compute Mutated tuples.

2. Accumulate Mutation Score.

3. Substitution Selection.

4. Position Selection.

At the end of each iteration, the result of CUDA kernel is copied from GPU memory

to the system memory (line 10 – 12). After processing all the batches, error correction

procedure then transform the reads using the gathered results.

During the read processing, Algorithm 4.1 invokes 4 CUDA kernels which are further

described below.

4.3.1 Mutation

ComputeMutations is first of the four CUDA kernel in the error correction process, which

performs the mutation and marks each generated tuple as solid or weak. In order to fully

exploit the CUDA shared memory, threads are grouped together in a way that can maximize

the shared memory access across a thread block. Computations are represented as launch

configurations such that one block is assigned to compute four possible mutations at a single

position of a read. For a batch of m reads of length n each, a grid of dimensions n × m

blocks is specified in the launch configuration, with each block having n threads as shown

in Figure 4.2. Each column in the grid represents mutations on a single read for a total of
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Figure 4.2: Computing Mutation

m columns. Each row of the grid column computes mutation of a read at a single position

for a total of n rows. Each block of the grid contains n threads which maps to each base

position in the read.

All blocks in a column performs scatter operation, replicating a read n times for each

block. All n threads of a block take part in replicating read to block’s shared memory by

copying single base from GPU global memory. After computing the mutation each blocks
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extract tuples and check their occurrence in the spectrum through constructed hash table.

Since the kernel extract all tuples from a read in parallel, there must be at least n-l+1

threads required in each block. To avoid unnecessary conditional statements we use n

threads and their computations are masked off at the later stages.

Algorithm 4.2 Computing Mutation

Input:
R : read list
T : Tuple Spectrum

Output:
L : Mutated tuples

1: procedure Mutate(R)
2: for all threadi ∈ blockj,k do . copy each base

3: shared[i]← Rj [i]
4: end for

5: Synchronize

6: for all threadi ∈ blockj,k do

7: for n ∈ (A,G,C, T ) do . mutate
8: tuple← ε
9: for q : 1→ tupleSize do

10: base← (q = k)?n : shared[i+ q] . compute ith tuple
11: tuple← tuple+ base . append base
12: end for
13: L← L ∪ tuple . add to list
14: end for
15: end forreturn L
16: end procedure

Algorithm 4.2 describes the operations performed by a block of thread. A blockj,k

computes the mutation at jth position of kth read. Block indexing is used to enumerate all

the sub-problems of mutation problem. At the start of computation, it is required to copy

the read from GPU global memory to the shared memory so that the access time can be

lowered for later memory read operation. As there are n threads,each thread takes part in

the copy operation, and copies a single base to the shared memory.

After copying, ith thread calculates the tuple starting at ith position and also its reverse

complement. This kernel makes use of look-up tables stored in constant memory to speedup
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much of its computation. At the start, it calculates a mask based on the block column,

to determine which position should be mutated in this block. This is done by shifting an

existing mask of length n bytes by column index. This mask is stored in constant memory,

so that each thread in every block can easily access it.

A thread then looks up the occurrence of computed tuple in T . If it is found and has

occurrence of above some threshold (i.e. belong to solid set),

4.3.2 Accumulate

The execution of first kernel thus produces the l-mer weak - strong set membership infor-

mation. The next kernel performs summation on the l-mer score to obtain read score for a

given mutation. This kernel is launched with a grid of m×4 blocks, with each block having

n threads as shown in Figure 4.3. Each thread in the block independently accumulates the

tuple score.

Algorithm 4.3 Accumulate Mutation Score

Input:
M : mutations

Output: Score : Score for all mutations for all reads

1: procedure Accumulate(M)
2: for all threadi ∈ blockj,k do
3: for i← 1→ n− t+ 1 do . mutate
4: sum← sum+M [i]
5: end for
6: Score[i][j]← sum
7: end for
8: end procedure

Threads perform their operation without collaborating with other threads in the same

block. The choice of launch configuration is made by considering the wrap size (16) on

the GPU devices, in order to maximize the device occupancy. A larger number of threads

executing in parallel would result in better utilization of the gpu resources. Algorithm 4.3

is a simple representation of the operation performed by each thread while accumulating

the mutation score.
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Figure 4.3: Accumulate Mutation Score

4.3.3 Substitution Selection

After the score has been calculated, another kernel is invoked to select the best substituted

nucleotide for each position of a read. Each position in the read has four possible substitu-

tion. This kernel is invoked as grid of m blocks containing n threads. During the execution

of this kernel, threads in the block work independently of one another. Each thread scan

through the set of 4 values calculated in the previous steps, to select the mutation repre-

senting highest score. Figure 4.4 shows a schematic arrangement and processing of the grid,

blocks and threads for this step.

4.3.4 Position Selection

As the last step of error correction, another kernel is invoked to select the best position

for mutation depending on the values calculated in the previous step. This CUDA kernel

determines which of the n position if mutated, can produce l-mers from strong set. It is
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Algorithm 4.4 Substitution Selection

Input:
Scores : Mutation scores for all posibble mutations

Output:
Substitution: Best Substitution at every position of all reads

1: procedure FindBestSubstitution(M)
2: for all threadi ∈ blockj,k do
3: for i← 1→ 4 do
4: if max < Scores[j][k][i] then
5: max← Scores[j][k][i]
6: pos← i
7: end if
8: end for
9: Substitution[i][j]← (max, pos)

10: end for
11: return Substitution
12: end procedure
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block (r2)

block (r3)

block (r4)

Grid

block (rm)

th
re
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block
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Figure 4.4: Substitution Selection

launch as grid of m blocks each containing single thread. Each thread scans n values in

parallel and records the maximum score and its position as the output.
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Algorithm 4.5 Position Selection

Input:
Substitution : Best Substitution for all positions of all reads

Output:
Positions : Best position for substitution for all reads.

1: procedure FindBestPosition(Substitution)
2: for all threadi ∈ blockj do
3: for i← 1→ n do
4: if max < Substitution[j][i] then
5: max← Substitution[i]
6: end if
7: end for
8: Positions[j]← max
9: end for

10: end procedure

block (r1)
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Grid
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Figure 4.5: Position Selection

After computing the best mutations for all the reads in a batch, reads are transformed

according to their mutation score. If the score is too low than the read is discarded, otherwise

the mutation is applied to the input set of reads and placed in a buffer for output.
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4.4 Time Complexity Analysis

The problem complexity of error correction in GPU Euler depends on the read length n

and number of reads m. For every read, there are 4 × n mutations and each mutation

contributes 2× (n− t+ 1) tuples of length t. The number of tuples for a single read is thus

bounded by O((4×n)× (2× (n− t+ 1))) or O(n2). For m reads, the total number of tuples

is bound by O(m.n2). Therefore, the solution space is linear with respect to the number of

reads m and expands quadratically with the length of read n. Time required to generate

the O(m.n2) is also bounded by O(m.n2).

The search of best mutated reads requires computing the mutation score of every mu-

tated read. Calculating the mutation score for a single read is bounded by O(n) that will

sum up all the n values to get a score. For all the O(m.n) mutated reads, the computation

time is bounded by O(m.n.n) = O(m.n2). Time required to select best substitution on any

position of any read is bounded by O(m.n) for all the reads. Hence total time required for

error correction in a linear fashion is bounded by O(m.n2).

Due to the independent nature of the sub-problems, a simple approach for parallel

computation can be implemented by performing the computation for each read in parallel

with m processors can lead to O(n2) parallel time yielding a linear speed up O(m) with

respect to the number of processors.

GPU Euler employs similar technique but since the number of threads are limited on

a CUDA device, therefore, m has to be divided into smaller batches, in order to process

the complete read set. Furthermore, tuple computation of a read is also done in parallel,

which leads to n− t+ 1 threads computing n− t+ 1 tuples concurrently. This parallel step

considerably reduces the run-time for computing the complete tuple sets and bounds the

computation by O( m
batchSize .n) parallel time.
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Table 4.2: Expected Error Correction on GPU-Euler for 36bp & 50bp reads

Genome
Expected

Error Free Erroneous
Error Free

U / M / D (%)

36 bp

CJ 596814 / 257437 / 57669 596814 315106 65.45%
LL 859860 / 370978 / 83362 859860 454340 65.43%
NM 793747 / 342360 / 77433 793747 419793 65.41%

50 bp

CJ 164013 / 233044 / 259523 164013 492567 24.98%
LL 236284 / 336012 / 373924 236284 709936 24.97%
NM 218415 / 310216 / 345129 218415 655345 25.00%

U, M and D denote Unmodified, Modified and Discarded decisions respectively.

4.5 Results

In order to evaluate the quality of error correction, we design an experiment using our three

reference genome (CJ,LL,NM) and simulated error containing reads. Error simulation was

performed using ART simulator [46], with Solexa error profile along with quality files. The

ART simulator generated error containing reads of length 36 and 50 base pairs. The total

set contained 6 error containing reads file (2 for each genome). GPU Euler is then invoked

to perform error correction with tuple size 10-32 for these 6 samples. The ART simulator

generated read files in FASTQ format which is then converted to FASTA format using

Galaxy [47–49] , a web based tool for genome analysis.

Table 4.2 summarize the read quality by reporting the number of error free and erroneous

reads across all the 6 samples. Reads of length 36 base pairs have approximately 65% error

free reads while 50 base pairs long reads have approximately 25% error free reads. The Table

also lists the expected number of decision (Unmodified, Modified and Discarded abbreviated

as U, M and D) required to remove all the errors from the sample.
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Table 4.3: Error Correction on GPU-Euler for 36bp reads

CJ

l
GPU Euler Output (%) Correct Decision (%)

Error Free
Total Reads U / M / D Total U / M / D (%)

10 911920 91.80 / 8.20 / 0.00 66.73 98.07 / 1.93 / 0.00 66.73
16 909330 65.59 / 34.13 / 0.28 92.15 70.22 / 29.55 / 0.24 92.20
22 888553 64.66 / 32.78 / 2.56 91.76 69.65 / 29.30 / 1.04 93.19
28 653485 45.76 / 25.90 / 28.34 64.73 68.53 / 25.88 / 5.59 85.28
32 227405 6.44 / 18.50 / 75.06 15.28 41.14 / 25.04 / 33.83 40.55

LL

l
GPU Euler Output (%) Correct Decision (%)

Error Free
Total Reads U / M / D Total U / M / D (%)

10 1314200 94.61 / 5.39 / 0.00 65.92 99.25 / 0.75 / 0.00 65.92
16 1310274 65.75 / 33.95 / 0.30 92.51 70.15 / 29.59 / 0.26 92.55
22 1281399 64.72 / 32.78 / 2.50 91.86 69.64 / 29.29 / 1.07 93.21
28 950281 46.74 / 25.56 / 27.69 65.96 68.71 / 25.80 / 5.49 86.21
32 345370 7.55 / 18.73 / 73.72 16.81 43.87 / 25.42 / 30.71 44.31

NM

l
GPU Euler Output (%) Correct Decision (%)

Error Free
Total Reads U / M / D Total U / M / D (%)

10 1213540 93.42 / 6.58 / 0.00 65.88 99.27 / 0.73 / 0.00 65.88
16 1209778 62.58 / 37.11 / 0.31 88.20 69.52 / 30.17 / 0.31 88.21
22 1184479 64.71 / 32.90 / 2.39 91.55 69.74 / 29.21 / 1.05 92.81
28 889563 47.83 / 25.47 / 26.70 67.33 68.86 / 25.72 / 5.42 86.88
32 349960 9.75 / 19.09 / 71.16 19.63 48.51 / 25.13 / 26.35 50.13

U, M and D denote Unmodified, Modified and Discarded decisions respectively.

4.5.1 Error Correction Performance

For any read, GPU Euler is expected to take either of three decision during error correction.

If the read has all tuple from the strong set, then it should be left unmodified (U) else if

the read can be mutated to have tuple as part of tuple spectrum, then it should be modified

(M) accordingly, else if it cannot be modified, then it must be discarded (D). It must

be noted that error correction is a heuristic approach and it tries to remove as much error

as it can during the execution, but it may incur some error due to false positive and false

negatives. The decisions of error correction are based on the information collected from the

input set of reads having erroneous read, as GPU Euler can only estimate the quality of

a read based on its coverage, the resultant output might still contain incorrect reads. For
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Table 4.4: Error Correction on GPU-Euler for 50bp reads

CJ

l
GPU Euler Output (%) Correct Decision (%)

Error Free
Total Reads U / M / D Total U / M / D (%)

10 656580 86.26 / 13.74 / 0.00 26.01 95.95 / 4.05 / 0.00 26.01
16 627927 24.25 / 71.38 / 4.36 63.34 38.00 / 55.55 / 6.45 61.96
22 579649 25.61 / 62.67 / 11.72 67.39 35.39 / 49.62 / 14.99 64.89
28 471041 22.69 / 49.06 / 28.26 67.67 30.05 / 41.67 / 28.29 67.65
32 332075 16.28 / 34.29 / 49.42 59.57 23.30 / 32.08 / 44.62 65.23

LL

l
GPU Euler Output (%) Correct Decision (%)

Error Free
Total Reads U / M / D Total U / M / D (%)

10 946220 93.48 / 6.52 / 0.00 25.09 98.96 / 1.04 / 0.00 25.09
16 902254 26.63 / 68.73 / 4.65 62.96 39.18 / 53.90 / 6.92 61.46
22 836588 12.42 / 76.00 / 11.59 56.44 20.93 / 60.82 / 18.25 52.19
28 685049 22.70 / 49.70 / 27.60 67.95 30.07 / 41.88 / 28.05 67.53
32 485114 16.66 / 34.61 / 48.73 60.09 23.72 / 32.32 / 43.96 65.68

NM

l
GPU Euler Output (%) Correct Decision (%)

Error Free
Total Reads U / M / D Total U / M / D (%)

10 873760 94.03 / 5.97 / 0.00 25.06 99.36 / 0.64 / 0.00 25.06
16 834255 26.20 / 69.27 / 4.52 62.34 39.07 / 54.09 / 6.83 60.83
22 772694 25.18 / 63.25 / 11.57 65.95 34.88 / 49.63 / 15.50 63.02
28 636684 23.89 / 48.97 / 27.13 68.89 31.07 / 41.15 / 27.78 68.28
32 461093 17.38 / 35.39 / 47.23 60.83 24.51 / 32.71 / 42.79 65.95

U, M and D denote Unmodified, Modified and Discarded decisions respectively.

instance, an incorrectly discarded read is a false negative, it should be part of the corrected

reads after either as modified or unmodified read. On the other hand a read incorrectly

left unmodified is a false positive, as it must only be part of the output with modification

otherwise it should be discarded. In this implementation, GPU Euler modifies only those

reads that require single modification. Also, in this implementation GPU Euler can not

identify if it has false negatives and false positives, resulting into certain incorrect reads.

Table 4.3 and Table 4.4 summarizes the performance of error correction procedure for

reads of length 36 and 50 base pairs, respectively. Error correction is performed on a

simulated set of reads with varying tuple length l from 10 to 32. Tables 4.3 and 4.4 report

total reads generated by GPU Euler as it performed the error correction along with the

percentage of each decision (Unmodified, Modified and Discarded which are abbreviated as
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U, M and D respectively in the Tables.) carried out by GPU Euler to generate those reads.

For the complete process. The percentage of total correct decisions taken by GPU Euler is

also reported along with the contribution of each decisions.

For 36 base pair reads, with tuple length equal to 10 , error correction does little to

improve the percentage of error free reads providing more or same less similar number

of error free reads (approximately 65%). This behaviour is explainable considering the

fact that performing error correction with tuple length 10, generates smaller length tuples

with high degree of multiplicity, thus directing the GPU Euler to conclude that most reads

are already correct. As the length of tuple increases, GPU Euler receives better hints

to guide the correction heuristics. With longer tuples, reads with less coverage can be

identified quickly as potential candidate for correction (discard or modify). The increase

tuple length contributes significantly towards the improvement of the ratio of error free

reads which reaches up to approximately 93% (93.31% , 93.35% and 92.81% for CJ ,LL

and NM respectively). It also is observed that maximum performance is achieved with

tuple length at 18-22. An increase in tuple length beyond this range impacts the correction

decision adversely. Longer tuples lies at the other extreme end of the spectrum which skews

the spectrum to contain a smaller number of tuples. This situation leads GPU Euler to

discard a lot of reads as they could not be mutated to match the spectrum, as evident by

the increase in discard decision taken by GPU Euler for longer tuple length, which decrease

the percentage of correct decisions.

Similar pattern is observed for read length of 50 base pairs where the best output is

observed with tuple length between 28-30 improving the number of error free reads from

25% to 68% (68.09%, 67.53% and 68.28% for CJ, LL and NM respectively). The increase in

read length increases the possible locations of error on a given reads. As GPU Euler only

considers single position mutation to be fixable, it discards a large number of reads when

processing longer reads, concluding that they are damaged beyond repair.

Figure 4.6 summarizes the result of error correction when performed on genome CJ

with read length 36 base pairs. The three decisions taken by error correction for each tuple
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length are shown in different colors. The number of correctly modified as well correctly left

unmodified are also marked by two line such that the region between them represents the

total number of correct decision taken by error correction procedure for various tuple length.

For CJ 36 base pairs, the number of correct decision increased as the tuple length increase

from 10 base pairs onwards. Error correction procedure reached its peak performance at 18-

20 base pairs after which the number correct decisions continue to fall due to small number

of strong tuples in the spectrum.

The number of error free reads for both 36 and 50 base pairs is summarized in Figure

4.7 where the percentage of error free reads is plotted against the increasing tuple sizes from

10 to 32 for all three genomes (CJ, LL, NM ) and read lengths.
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4.5.2 Run-time Performance

We also collected profiling statistics to analyze the performance of different steps of the GPU

based error correction. In Table 4.5, we report execution time in seconds for four steps of

error correction (Mutation, Accumulate, Substitution, Position) when performed on CJ for

36 and 50 base pair long reads. The Encoding column reports the time that GPU Euler took

to encode tuples into 64 bit representation as pre-processing step for error correction. The

Other column reports the time spent in miscellaneous operations like moving data to GPU

memory, modifying the reads according to error correction output, reading and writing to

files, etc. The error correction procedures spent most of its time during enumerating all the

mutations. The reason for such behaviour is that GPU Euler uses a very simple hash table

construction, which stores all the keys in sorted buckets. A look-up for key-value performs

a binary search in key’s bucket. Since the hash table is kept in global memory and it heavily

affects the overall performance by repeated access to the global memory. With a bucket of
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Table 4.5: Run-time Profiling for GPU based Error Correction on CJ
(in seconds)

36 base pairs
t Encoding Mutation Accumulate Substitution Position Other Total

12 0.378 185.763 1.633 0.042 0.105 6.785 194.706
14 0.378 220.683 1.514 0.041 0.105 8.911 231.632
16 0.378 221.383 1.386 0.041 0.105 11.636 234.929
18 0.385 215.316 1.258 0.043 0.105 12.119 229.225
20 0.382 216.109 1.131 0.041 0.105 11.922 229.69
22 0.378 210.865 1.006 0.041 0.105 11.26 223.654
24 0.393 200.521 0.878 0.041 0.105 10.463 212.401
26 0.377 178.142 0.749 0.041 0.105 9.563 188.977
28 0.378 187.011 0.625 0.041 0.105 8.522 196.682
30 0.378 179.258 0.501 0.041 0.105 7.137 187.421
32 0.377 168.836 0.372 0.042 0.105 5.581 175.314

50 base pairs
t Encoding Mutation Accumulate Substitution Position Other Total

12 0.373 331.242 2.768 0.041 0.100 7.432 341.957
14 0.376 473.586 2.651 0.04 0.100 14.154 490.908
16 0.374 452.676 2.512 0.039 0.100 36.848 492.55
18 0.372 673.473 2.404 0.041 0.100 48.209 724.599
20 0.375 847.962 2.289 0.042 0.100 52.309 903.078
22 0.373 863.035 2.15 0.043 0.101 53.936 919.639
24 0.374 852.272 2.008 0.043 0.100 54.131 908.929
26 0.373 854.301 1.877 0.04 0.100 53.124 909.816
28 0.374 759.304 1.722 0.041 0.100 50.922 812.463
30 0.373 656.773 1.569 0.04 0.100 47.472 706.327
32 0.374 708.347 1.436 0.04 0.100 42.629 752.927

512 items, at most 9 steps would be required to fetch a value for given tuple determining if

it belongs to strong tuple set or weak tuple set.

When the read length changes from 36 base pairs to 50 base pairs, increasing the number

of mutations increases by 2 times at tuple size 12 to 5 times at tuple size 32. However the

generation time only increased by 2 times. In most of the cases, execution time for mutation

generation time exhibited linear increase with respect to number of mutations. At the

extremes (12 and 32), different behaviour is observed. With small tuple size, mutation step

performed closer to the lower bound of the binary search during hash value retrieval, since

it smaller tuple sizes leads to large number of duplicate entries. While, on the other hand,

large tuple size, requested to look up keys from a large set of possible values, mostly return
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Table 4.6: Error Correction on GPU-Euler for 36bp CJ reads

l
GPU Euler GPU Euler + EC EulerSR

N50 Contigs Avg. Len. N50 Contigs Avg. Len. N50 Contigs Avg. Len.
20 - - - 55 139815 45.986 6917 602 2776.38
22 35 609178 33.452 55 140945 47.635 2543 1131 1421.788
24 36 611384 35.152 56 142126 49.234 907 2553 605.568
26 36 615267 36.713 56 144113 50.655 351 4554 293.988
28 36 627501 37.979 56 148945 51.533 - - -
30 36 663076 38.623 52 164901 50.691 - - -
32 36 747500 38.305 45 219018 46.39 - - -

without any value. Thus it spent most of its time closer to the upper bound of the binary

search.

4.5.3 Sequence Assembly with Error Correction

We also analyzed the affect of error correction on sequence assembly by comparing the N50

score of the assembly on error containing reads before and after the error correction. The

sequence assembly does not currently employs a graph simplification step to reduce the

complexity of graph and incorporate hints from the read set. We also compared the output

from GPU Euler with result from EulerSR to assess the performance of error correction on

sequence assembly. Table 4.6 summarizes the results of sequence assembly from GPU Euler,

GPU Euler with error correction and EulerSR for simulated reads of length 36 from CJ.

GPU Euler was first executed on the reads without any modification and than again using

the output from the error correction phase. We selected the corrected reads obtained from

error correction with tuple size 20 as it has highest percentage of error free reads.

Although the N50 score did improve when error correction is performed, the overall N50

score and mean length of the contigs remain very low compared to output from EulerSR.

However, EulerSR was not able to produce output for tuple size beyond 26. GPU Euler

does not incorporate graph transformation steps, which can provide significant hints to

guide the assembly. Furthermore, even with the corrected reads, the read set still contains

some erroneous reads which adds to the incorrect paths in the de-Bruijn graph.
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4.6 Conclusion

In this chapter we presented a GPU based error correction scheme that was able to improve

the number of error free reads from 65% to 93% for 36 bp long reads while for 50 bp long

reads, it managed to improve the number from 25% to approximately 67%.
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Chapter 5: Conclusion and Future Work

In this thesis a GPU based sequence assembly method is presented and evaluated for perfor-

mance and accuracy. The assembly algorithm is based on Eulerian path sequence assembly

where an euler path is constructed on tuple from read modeled as a de-Bruijn graph. The

GPU implementation uses a modified parallel euler tour algorithm and runs on CUDA de-

vices and was evaluated by using a set of error free reads. The result proved to be highly

motivating in terms of run-time performance as well as assembly outcome. Using EulerSR

as a benchmark to compare the assembly outcome, GPU Euler assembly produced con-

tigs of comparable size and quality. GPU Euler surpassed EulerSR in terms of execution

and contig length statistics while leaving room for improvement regarding accuracy of the

assembled contigs.

A gpu based error correction method is also proposed to augment the sequence assem-

bler. The error correction procedure used Spectral Alignment as a basis for correcting error

in the reads. Error correction performance was evaluated on different aspects using simu-

lated reads of 36 and 50 base pairs. Error correction was able to improve the number of

error free reads from 65% to 93% for reads 36 base pair long, while for 50 base pair long

with initially 25% error reads were improved to have 67% error free reads. The number of

correct decsion taken by the procedure varied with the tuple length and reached its maxi-

mum at tuple length 20 for 36 base long reads and 26-28 for 50 bases long reads. The error

correction routine faced challenges for the execution time performance due to inefficient

hash table implementation.

The contribution of this thesis for sequence assembly are presented in the paper title

“GPU-Euler : Sequence Assembly using GPGPU” [10] which was published by IEEE for

HPCC’11.
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5.1 Future Work

In future, there are primarily two direction that can provide considerable improvements as

discussed below

5.1.1 Correctness

GPU Euler provides considerable opportunity to improve upon the correctness and accu-

racy. Parallel Graph Transformation is one key which can significantly improve the assembly

accuracy for both error free and error-containing reads, as it incorporated more information

from the read set into the graph. Not only it adds valuable information to retrieve a path

closer to the correct assembly, it also reduces the graph complexity by shrinking the edges

and splitting vertices with multiple in-degree and out-degree.

There is also some room for improvement in error correction procedure. Error correction

routines can be enhanced to consider more than one substitution while computing the

mutations. Furthermore, it should be able to compensate for the insertion and deletion of

the bases as well. Allowing multiple substitution can reduce the reads that gets discarded

as they appear to have more than one error and error correction routine can not compute

all the combination with 2 or more substitution.

5.1.2 Performance

An efficient GPU based hash table implementation will be able to facilitate various task

in the assembly pipeline. It will prove an essential improvement on the performance of

GPU Euler. A hash table that can support efficient concurrent read from multiple threads

will improve the runtime statistics quite significantly. Error correction procedure will benefit

most from the improved hash table implementation.

As of now, GPU Euler does not utilize shared memory and texture memory to their

fullest extent. Moving look-ups to texture memory and splitting problem so that it can use

shared memory , will provide good improvements on the execution time.

There is also growing need to split the graph problem into smaller chunks of work item,
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so that larger genomes can be assembled using GPU Euler. This would require re-iterating

the graph problem such that sub-problem can be easily isolated from a large graph.

There is a rapid development going on for CUDA architecture and tool kit, which exposes

several new feature in each revisions. Important feature like atomic operation on shared

memory and memory allocation inside a kernel can provide a new view to look upon the

solution and would definitely lead to important performance enhancements.
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Appendix A: Compute Unified Device Architecture

nVidia CUDA is a framework for exploiting nVidia based graphics card for general purpose

computing. It brings an opportunity to harness the massive parallelism present in the

design of the graphics card. This appendix presents a summary for the architecture and

programming model of CUDA.

A.1 Hardware Architecture

Compute Unified Device Architecture (CUDA) is the culmination of efforts spanning over

decades in hardware and software design. GPU hardware is primarily targeted for high

throughput graphic operation. Figure A.1 present a schematic representation of CUDA

supported device architecture. Important aspects of CUDA hardware design are discussed

below.

A.1.1 Streaming MultiProcessors

CUDA devices have several streaming multiprocessors (SM) and each streaming multipro-

cessor has several ALU which are known as scalar processors (SP) or CUDA cores. The

number of streaming multiprocessors and scalar processors depends on the architecture gen-

eration of the CUDA devices. Earlier generation CUDA devices had 8 scalars processors

while the latest generation offers upto 32 scalar processors. Each block in CUDA kernel

invocation is executed by a single SM which assigns each thread in the block to one SP.

Streaming Multiprocessor have very fast on-chip memory known as shared memory which

is shared among all its SPs. Apart from shared memory each SM also has a register file and

local memory. The register file and local memory is split among all the executing threads,

therefore it is important keep the CUDA kernel as small as possible, otherwise it may fail

to launch due to unavailability of the resources.
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Figure A.1: CUDA Hardware Architecture

A.1.2 Parallel Thread Execution Environment (PTX)

CUDA instruction set architecture (ISA) is known as Parallel Thread Execution environ-

ment (PTX) which exposes the underlying GPU as data-parallel computing device. The

major advantage of PTX is that it offers a standard representation of the instruction for all

CUDA devices. The PTX instructions are then converted to the native GPU specific in-

structions, allowing applications to take advantage of the newer hardware without rewriting

the application from scratch.

PTX offers the underlying parallelism of the CUDA devices as Cooperative Thread

Arrays(CTA). Each CTA is represented by a CUDA thread-block. CTAs can be arranged as

into a grid depending upon the problem at hand. Threads in a CTA can communicate with

each other through shared memory and block level synchronization operations. Threads in

different CTAs can only communicate through global memory. A CTA can be arranged as

1D , 2D or 3D array of threads. Similarly CTAs can be arranged into 1D, 2D or 3D grids

of blocks. These arrangements provide a way to decompose the problem into sub-problem

and exploit it for concurrent solution.
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A.1.3 Memory Hierarchy

Memory Hierarchy is one of the most important aspect while designing solution for any

given problem. CUDA devices offer different types, each with its own benefits and short

comings. The hierarchy allows to opt for trade off between size and latency. As the memory

latency decrease, the size of available memory shrinks as well.

Global Memory

Global Memory is off-chip memory with the highest latency. It is accessible from all

the threads in every block and supports atomic instructions. This global memory is

also accessible to the Host (CPU) which uploads data required by the computation

from System Memory to GPU global memory. Writes to an address in global memory

are visible to all threads after kernel level synchronizations.

Shared Memory

Shared Memory is on-chip memory with approximately 100 times lower latency than

the global memory. It is present on each SM and can only be shared within a block

of threads. Writes to shared memory location are visible after thread level synchro-

nization.

Register File

Register file is an on-chip very low latency memory. It is a set of 32 bit register which

is split among the threads of a block. The actual number of registers available on each

CUDA devices depends on architecture generation. Register are local to each thread

are used to hold thread specific computations.

Constant

Constant provide a fast on-chip read-only memory, which can be accessed from all the

threads.

Texture Memory

Texture Memory is a fast cached memory that can be used to implement fast look-up
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tables.

A.2 Software Stack

CUDA applications require a supporting software stack in order to exploit the computing

capabilities of the underlying GPU. Figure A.2 presents a conceptual view of the CUDA

software stack and how different components of the CUDA eco-system interact each other.

There two main components of CUDA software stack as discussed below:

A.2.1 CUDA driver

CUDA device drivers are special drivers for CUDA enabled GPUs that exposes computing

capabilities to the applications executed on a CUDA capable system. nVidia maintains

two set of drivers for their GPUs. The standard driver which only provide GPU specific

interface without exposing CUDA capabilities and CUDA enabled drivers which enables

CUDA functionality and provides access to the GPU as a computing device. CUDA enabled

drivers exposes a low-level API to program the CUDA devices at a discrete level. However,

most applications rarely use CUDA driver directly and rely on CUDA run-time library
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A.2.2 CUDA run-time library

CUDA run-time library is set of APIs built over CUDA driver to provide a more coarse-

grained functions.

A.3 GPU Application Development

A.3.1 Compiler Extension

CUDA provides an extended C/C++ front-end compiler to build applications for CUDA.

CUDA has introduced few new keywords and construct in order to reflect the PTX at higher

level. Interestingly the language additions are kept to minimum, so as decrease the learning

curve. The new keywords include ( sync, shared , global , device ..etc)

A.3.2 Launch Configuration

Kernel launch configurations are central to CUDA application development as it defines

the problem decomposition. It describes the arrangement of threads into blocks and blocks

into grid. Each thread executes the same kernel code, and interacts with other other in the

same block. A grouping at the block level is not the same as the grouping at grid level,

since threads grouped in a block share a low latency memory while thread across blocks

only share global GPU memory. The first generation of CUDA devices support .

Consider an example of matrix addition of order m× n on GPU. The solution requires

m× n addition operation which can be performed in parallel given enough parallel threads

leading to O(1) run-time with m× n speedup. Considering this parallelism, each addition

operation can be mapped to a single thread. There can be multiple ways to specify the

launch configuration. A simple configuration would be to have 1 block of m × n threads.

Alternatively, we can launch m× n blocks with only one thread. Since GPUs have limited

resource to of

Deciding for a prefect launch configuration can become tricky. In order to decide which

launch configuration would yield higher throughput, depends on factors such as data sharing
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between decomposed sub-problems and the underlying hardware.

A.3.3 Programming Techniques

This section presents some programming techniques which are frequently employed during

CUDA based GPU application development.

Branch Avoidance

Conditional branch operations have always been considered as the most celebrated nemesis

not only for the optimizing compilers but for the underlying hardware as well. Therefore

CUDA devices also get benefit from straight line code while code with conditional impose

serious performance issues. For straight line code all threads of block perform same op-

eration, improving the instruction throughput. In case of conditional execution, threads

which are not on the branching path performs a no-op and wait for the branching code to

converge to the main execution path. For case with more than one branches, threads are

grouped by their evaluation of the condition expression, and then executed separately.

Therefore it is often desired to write code without using conditional statements. Such

code pattern may allow extra values to be computed by the block , but masks their writes

to only valid values. For instance, a block of m threads computes n values and if n < m, it

implies at least m − n will be not be required to participate in the computation. Instead

of guarding the situation with conditions, it is usually more feasible to compute values for

m− n threads and mask them during the write by writing at some sink location.

Data Representation

CUDA devices can take advantage of the memory access pattern through coalesced memory

access if the requested addresses refer to consecutive locations. In order to exploit this

feature, all data objects must be aligned to word boundary. Another technique which

is used frequently for avoid non-coalesced access, is that instead of representing a list of

objects as an array of object structure(Array of Structure), each attribute can be stored in
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a separate arrays containing values for single attributes from all the objects, transform the

array of structure into an structure of arrays. This provide additional benefits of loading

only the required attributes into the global memory.
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Appendix B: Source Code

B.1 de-Bruijn Graph Construction

Listing B.1: Count Edges

1 __global__ void

2 debruijnCount(

3 KEY_PTR lmerKeys , /* lmer keys */

4 VALUE_PTR lmerValues , /* lmer frequency */

5 unsigned int lmerCount , /* total lmers */

6 KEY_PTR TK , /* Keys’ pointer for Hash table*/

7 VALUE_PTR TV , /* Value pointer for Hash table*/

8 unsigned int * bucketSize , /* bucketSize: size of each bucket */

9 unsigned int bucketCount , /* total buckets */

10 unsigned int * lcount , /* leaving edge count array : OUT */

11 unsigned int * ecount , /* entering edge count array: OUT */

12 KEY_T validBitMask /* bit mask for K length encoded bits*/

13 )

14 {

15 unsigned int tid =

16 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

17 + (blockDim.x * blockDim.y * blockIdx.x)

18 + (blockDim.x * threadIdx.y)

19 + threadIdx.x;

20

21 if (tid < lmerCount)

22 {

23 KEY_T lmer = lmerKeys[tid];

24 VALUE_T lmerValue = lmerValues[tid];

25 KEY_T prefix = (lmer & (validBitMask << 2)) >> 2;
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26 KEY_T suffix = (lmer & validBitMask);

27

28 KEY_T lomask = 3; // 2 bit Mask

29 VALUE_T prefixIndex =

30 getHashValue(

31 prefix,

32 TK,

33 TV,

34 bucketSize,

35 bucketCount);

36 VALUE_T suffixIndex =

37 getHashValue(

38 suffix,

39 TK,

40 TV,

41 bucketSize,

42 bucketCount);

43 KEY_T transitionTo = (lmer & lomask);

44 KEY_T transitionFrom = ((lmer >> __popcll(validBitMask)) & lomask);

45

46 lcount[(prefixIndex << 2) + transitionTo] = lmerValue;

47 ecount[(suffixIndex << 2) + transitionFrom] = lmerValue;

48 }

49 }
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Listing B.2: Setup Vertices

1 __global__ void

2 setupVertices(

3 KEY_PTR kmerKeys ,

4 unsigned int kmerCount ,

5 KEY_PTR TK ,

6 VALUE_PTR TV ,

7 unsigned int * bucketSeed ,

8 unsigned int bucketCount ,

9 EulerVertex * ev ,

10 unsigned int * lcount ,

11 unsigned int * loffset ,

12 unsigned int * ecount ,

13 unsigned int * eoffset)

14 {

15

16 unsigned int tid =

17 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

18 + (blockDim.x * blockDim.y * blockIdx.x)

19 + (blockDim.x * threadIdx.y)

20 + threadIdx.x;

21

22 if (tid < kmerCount)

23 {

24

25 KEY_T key = kmerKeys[tid];

26

27 VALUE_T index =

28 getHashValue(

29 key,
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30 TK,

31 TV,

32 bucketSeed,

33 bucketCount);

34

35 ev[index].vid = key;

36

37 //set up leaving edge information

38 ev[index].lp =

39 loffset[(index << 2)];

40 ev[index].lcount =

41 lcount[(index << 2)]

42 + lcount[(index << 2) + 1]

43 + lcount[(index << 2) + 2]

44 + lcount[(index << 2) + 3];

45

46 //set up entering edge information

47 ev[index].ep =

48 eoffset[(index << 2)];

49 ev[index].ecount =

50 ecount[(index << 2)]

51 + ecount[(index << 2) + 1]

52 + ecount[(index << 2) + 2]

53 + ecount[(index << 2) + 3];

54 }

55 }
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Listing B.3: Setup Edges

1 __global__ void

2 setupEdges(

3 KEY_PTR lmerKeys ,

4 VALUE_PTR lmerValues ,

5 unsigned int * lmerOffsets ,

6 const unsigned int lmerCount ,

7 KEY_PTR TK ,

8 VALUE_PTR TV ,

9 unsigned int * bucketSize ,

10 const unsigned int bucketCount ,

11 unsigned int * l ,

12 unsigned int * e ,

13 EulerEdge * ee ,

14 unsigned int * loffsets ,

15 unsigned int * eoffsets ,

16 const KEY_T validBitMask)

17 {

18 unsigned int tid =

19 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

20 + (blockDim.x * blockDim.y * blockIdx.x)

21 + (blockDim.x * threadIdx.y)

22 + threadIdx.x;

23 if (tid < lmerCount)

24 {

25 KEY_T lmer = lmerKeys[tid];

26 VALUE_T lmerValue = lmerValues[tid];

27 KEY_T prefix = (lmer & (validBitMask << 2)) >> 2;

28 KEY_T suffix = (lmer & validBitMask);

29 KEY_T lomask = 3;
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30

31 VALUE_T prefixIndex =

32 getHashValue(

33 prefix,

34 TK,

35 TV,

36 bucketSize,

37 bucketCount);

38 VALUE_T suffixIndex =

39 getHashValue(

40 suffix,

41 TK,

42 TV,

43 bucketSize,

44 bucketCount);

45

46 KEY_T transitionTo = (lmer & lomask);

47 KEY_T transitionFrom = ((lmer >> __popcll(validBitMask)) & lomask);

48

49 unsigned int loffset = loffsets[(prefixIndex << 2) + transitionTo];

50 unsigned int eoffset = eoffsets[(suffixIndex << 2) + transitionFrom];

51

52 unsigned int lmerOffset = lmerOffsets[tid];

53

54 for (unsigned int i = 0; i < lmerValue; i++)

55 {

56

57 ee[lmerOffset].eid = lmerOffset;

58 ee[lmerOffset].v1 = prefixIndex;

59 ee[lmerOffset].v2 = suffixIndex;

60 ee[lmerOffset].s = lmerValues[lmerCount - 1]
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61 + lmerOffsets[lmerCount - 1];

62

63 l[loffset] = lmerOffset;

64 e[eoffset] = lmerOffset;

65 loffset++;

66 eoffset++;

67 lmerOffset++;

68 }

69 }

70 }

B.2 Euler Tour

Listing B.4: Assign Successor

1 __global__ void

2 assignSuccessor(

3 EulerVertex * ev ,

4 unsigned int * l ,

5 unsigned int * e ,

6 unsigned vcount ,

7 EulerEdge * ee ,

8 unsigned int ecount)

9 {

10 unsigned int tid =

11 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

12 + (blockDim.x * blockDim.y * blockIdx.x)

13 + (blockDim.x * threadIdx.y) + threadIdx.x;

14 unsigned int eidx = 0;

15 if (tid < vcount)

16 {
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17 while (eidx < ev[tid].ecount && eidx < ev[tid].lcount)

18 {

19 ee[e[ev[tid].ep + eidx]].s = l[ev[tid].lp + eidx];

20 eidx++;

21 }

22 }

23 }

Listing B.5: Construct Edge Graph

1 __global__ void

2 constructSuccessorGraph_Step1(

3 EulerEdge* e ,

4 Vertex * v ,

5 unsigned int ecount)

6 {

7 unsigned int tid =

8 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

9 + (blockDim.x * blockDim.y * blockIdx.x)

10 + (blockDim.x * threadIdx.y)

11 + threadIdx.x;

12 if (tid < ecount)

13 {

14 v[tid].n1 = ecount;

15 v[tid].n2 = ecount;

16 v[tid].vid = e[tid].eid;

17 v[tid].n1 = e[tid].s;

18 }

19 }

20

21 __global__ void

22 constructSuccessorGraph_Step2(
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23 EulerEdge* e ,

24 Vertex * v ,

25 unsigned int ecount)

26 {

27 unsigned int tid =

28 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

29 + (blockDim.x * blockDim.y * blockIdx.x)

30 + (blockDim.x * threadIdx.y)

31 + threadIdx.x;

32 if (tid < ecount)

33 {

34 if (v[tid].n1 < ecount)

35 {

36 v[v[tid].n1].n2 = v[tid].vid;

37 }

38 }

39 }

Listing B.6: Construct Circuit Graph

1 __global__ void

2 calculateCircuitGraphVertexData(

3 unsigned int * D ,

4 unsigned int * C ,

5 unsigned int ecount)

6 {

7

8 unsigned int tid =

9 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

10 + (blockDim.x * blockDim.y * blockIdx.x)

11 + (blockDim.x * threadIdx.y) + threadIdx.x;

12 if (tid < ecount)
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13 {

14 unsigned int c = D[tid];

15 atomicExch( C + c, 1);

16 }

17 }

18

19 __global__ void

20 constructCircuitGraphVertex(

21 unsigned int * C ,

22 unsigned int * offset ,

23 unsigned int ecount ,

24 unsigned int * cv ,

25 unsigned int cvCount)

26 {

27 unsigned int tid =

28 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

29 + (blockDim.x * blockDim.y * blockIdx.x)

30 + (blockDim.x * threadIdx.y)

31 + threadIdx.x;

32 if (tid < ecount)

33 {

34 if (C[tid] != 0)

35 {

36 cv[offset[tid]] = tid;

37 }

38 }

39 }

40

41 __global__ void

42 calculateCircuitGraphEdgeData(

43 EulerVertex* v ,
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44 unsigned int * e ,

45 unsigned vCount ,

46 unsigned int * D ,

47 unsigned int * map ,

48 unsigned int ecount ,

49 unsigned int * cedgeCount)

50 {

51

52 unsigned int tid =

53 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

54 + (blockDim.x * blockDim.y * blockIdx.x)

55 + (blockDim.x * threadIdx.y)

56 + threadIdx.x;

57 unsigned int index = 0;

58 unsigned int maxIndex = 0;

59 index = 0;

60 maxIndex = 0;

61 if (tid < vCount && v[tid].ecount > 0)

62 {

63 index = v[tid].ep;

64 maxIndex = index + v[tid].ecount - 1;

65 while (index < maxIndex)

66 {

67 unsigned int c1 = map[D[e[index]]];

68 unsigned int c2 = map[D[e[index + 1]]];

69 if (c1 != c2)

70 {

71 unsigned int c = min( c1, c2);

72 atomicInc( cedgeCount + c, ecount);

73 }

74
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75 index++;

76 }

77 }

78

79 }

80 __global__ void

81 assignCircuitGraphEdgeData(

82 EulerVertex* v ,

83 unsigned int * e ,

84 unsigned vCount ,

85 unsigned int * D ,

86 unsigned int * map ,

87 unsigned int ecount ,

88 unsigned int * cedgeOffset ,

89 unsigned int * cedgeCount ,

90 unsigned int cvCount ,

91 CircuitEdge * cedge ,

92 unsigned int cecount)

93 {

94

95 unsigned int tid =

96 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

97 + (blockDim.x * blockDim.y * blockIdx.x)

98 + (blockDim.x * threadIdx.y)

99 + threadIdx.x;

100 unsigned int index = 0;

101 unsigned int maxIndex = 0;

102 if (tid < vCount && v[tid].ecount > 0)

103 {

104 index = v[tid].ep;

105 maxIndex = index + v[tid].ecount - 1;
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106 while (index < maxIndex)

107 {

108 unsigned int c1 = map[D[e[index]]];

109 unsigned int c2 = map[D[e[index + 1]]];

110 if (c1 != c2)

111 {

112 unsigned int c = min( c1, c2);

113 unsigned int t = max( c1, c2);

114 unsigned int i = atomicDec( cedgeCount + c, ecount);

115 i = i - 1;

116 cedge[cedgeOffset[c] + i].c1 = c;

117 cedge[cedgeOffset[c] + i].c2 = t;

118 cedge[cedgeOffset[c] + i].e1 = e[index];

119 cedge[cedgeOffset[c] + i].e2 = e[index + 1];

120 }

121 index++;

122 }

123 }

124 }

Listing B.7: Execute Swipe

1 __global__ void

2 executeSwipe(

3 EulerVertex * ev ,

4 unsigned int * e ,

5 unsigned int vcount ,

6 EulerEdge * ee ,

7 unsigned int * mark ,

8 unsigned int ecount)

9 {

10 unsigned int tid =
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11 (blockDim.x * blockDim.y * gridDim.x * blockIdx.y)

12 + (blockDim.x * blockDim.y * blockIdx.x)

13 + (blockDim.x * threadIdx.y)

14 + threadIdx.x;

15 unsigned int t;

16 unsigned int index = 0;

17 unsigned int maxIndex;

18 unsigned int s;

19 if (tid < vcount)

20 {

21 index = ev[tid].ep;

22 maxIndex = index + ev[tid].ecount - 1;

23 while (index < maxIndex){

24 if (mark[ee[e[index]].eid] == 1)

25 {

26 t = index;

27 s = ee[e[index]].s;

28 while (mark[ee[e[index]].eid] == 1 && index < maxIndex)

29 {

30 ee[e[index]].s = ee[e[index + 1]].s;

31 index = index + 1;

32 }

33 if (t != index){

34 ee[e[index]].s = s;

35 }

36 }

37 index++;

38 }

39 }

40 }
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B.3 Error Correction

Listing B.8: Compute Mutation

1 __global__ void

2 calculateMutationScores(

3 char * in_read ,

4 char * mutationMask ,

5 unsigned int readLength ,

6 unsigned int lmerLength ,

7 unsigned int M ,

8 KEY_PTR TK ,

9 VALUE_PTR TV ,

10 unsigned int * bucketSize ,

11 unsigned int bucketCount ,

12

13 unsigned int* mutation , /*out param*/

14 unsigned int * buffer) /*out param*/

15 {

16 extern __shared__ char read[]; /* shared variable for read data*/

17 char * mask = read + readLength + 31; /* shared variable for mask */

18

19 VALUE_T statusF;

20 VALUE_T statusR;

21 volatile KEY_T lmer = 0;

22

23 /*convert to base4*/

24 read[threadIdx.x] = base4[

25 in_read[blockIdx.x * readLength + threadIdx.x]

26 & 0x07

27 ];

28 /*apply mutation mask*/
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29 mask[threadIdx.x] = mutationMask[

30 (threadIdx.x + readLength - blockIdx.y)

31 % readLength

32 ];

33

34 __syncthreads();

35

36 for (unsigned int k = 0; k < 4; k++)

37 {

38 lmer = 0;

39 #pragma unroll 4 //loop unroll

40 for (unsigned int i = 0; i < 8; i++)

41 {

42

43 lmer = (lmer << 8) |

44 ((KEY_T)(

45 shifter[mutator[mask[threadIdx.x + i * 4]

46 | read[threadIdx.x + i * 4]][k]][3]

47 | shifter[mutator[mask[threadIdx.x + i * 4 + 1]

48 | read[threadIdx.x + i * 4 + 1]][k]][2]

49 | shifter[mutator[mask[threadIdx.x + i * 4 + 2]

50 | read[threadIdx.x + i * 4 + 2]][k]][1]

51 | mutator[mask[threadIdx.x + i * 4 + 3]

52 | read[threadIdx.x + i * 4 + 3]][k]));

53 }

54

55 lmer = (lmer >> ((32 - lmerLength) << 1)) & lmerMask[lmerLength - 1];

56 statusF =

57 getHashValue(

58 lmer,

59 TK,
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60 TV,

61 bucketSize,

62 bucketCount);

63 statusF = ((statusF == MAX_INT) ? 0 : ((statusF >= M)) ? 1 : 0);

64

65 /*compute reverse*/

66 lmer = 0;

67 #pragma unroll 4 //loop unroll

68 for (int i = 7; i >= 0; i--)

69 {

70 lmer = (lmer << 8) |

71 ((KEY_T)

72 shifter[reverse[mutator[mask[threadIdx.x + i * 4 + 3]

73 | read[threadIdx.x + i * 4 + 3]][k]]][3]

74 | shifter[reverse[mutator[mask[threadIdx.x + i * 4 + 2]

75 | read[threadIdx.x + i * 4 + 2]][k]]][2]

76 | shifter[reverse[mutator[mask[threadIdx.x + i * 4 + 1]

77 | read[threadIdx.x + i * 4 + 1]][k]]][1]

78 | reverse[mutator[mask[threadIdx.x + i * 4]

79 | read[threadIdx.x + i * 4]][k]]);

80 }

81

82 lmer = (lmer) & lmerMask[lmerLength - 1];

83

84 statusR =

85 getHashValue(

86 lmer,

87 TK,

88 TV,

89 bucketSize,

90 bucketCount);
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91 statusR = ((statusR == MAX_INT) ? 0 : ((statusR >= M)) ? 1 : 0);

92

93 //increment solidCount

94 mutation[blockIdx.x * (readLength * NA_COUNT * readLength)

95 + blockIdx.y * readLength * NA_COUNT

96 + k * readLength

97 + threadIdx.x]

98 = (unsigned int) (statusF + statusR);

99

100 }

101

102 }

Listing B.9: Accumulate Mutation Score

1 __global__ void

2 accumulate(

3 unsigned int * mutation ,

4 unsigned int readLength ,

5 unsigned int l ,

6 /*out*/

7 unsigned int * mutationScore)

8 {

9 unsigned int sum = 0;

10 for (int i = 0; i < readLength - l + 1; i++)

11 {

12 sum = sum

13 + mutation[ blockIdx.y * (readLength * NA_COUNT * readLength)

14 + blockIdx.x * readLength

15 + threadIdx.x * readLength * NA_COUNT

16 + i];

17 }
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18 mutationScore[ blockIdx.y * (NA_COUNT * readLength)

19 + blockIdx.x

20 + threadIdx.x * NA_COUNT] = sum;

21 }

Listing B.10: Select Best Substitution

1 __global__ void

2 bestMutation2(

3 unsigned int * mutationScore ,

4 unsigned int readLength ,

5 unsigned int l ,

6 /*out*/

7 unsigned int * mutationStep)

8 {

9 unsigned int bestIdx = 0;

10 unsigned int bestScore = mutationScore[

11 blockIdx.x * readLength * NA_COUNT

12 + threadIdx.x * NA_COUNT];

13 unsigned int newScore = 0;

14 for (int i = 1; i < NA_COUNT; i++)

15 {

16 newScore =

17 mutationScore[ blockIdx.x * readLength * NA_COUNT

18 + threadIdx.x * NA_COUNT

19 + i];

20 bestIdx = bestScore < newScore ? i : bestIdx;

21 bestScore = bestScore < newScore ? newScore : bestScore;

22 }

23 mutationStep[ blockIdx.x * readLength

24 + threadIdx.x] = (bestIdx << 16 | bestScore);

25 }
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Listing B.11: Select Best Position

1 __global__ void

2 bestFinalMutation(

3 unsigned int * mutationStep ,

4 unsigned int readLength ,

5 unsigned int l ,

6 /*out*/

7 unsigned int * bestMutationPos ,

8 unsigned int * bestMutationIdx)

9 {

10 unsigned int newScoreValue = mutationStep[blockIdx.x * readLength];

11 unsigned int bestScore = (newScoreValue & 0x0000FFFF);

12 unsigned int bestIdx = newScoreValue >> 16;

13 unsigned int bestPos = 0;

14 unsigned int newScore;

15 for (int i = 1; i < readLength; i++)

16 {

17 newScoreValue = mutationStep[blockIdx.x * readLength + i];

18 newScore = (newScoreValue & 0x0000FFFF);

19 bestIdx = bestScore < newScore ? (newScoreValue >> 16) : bestIdx;

20 bestPos = bestScore < newScore ? i : bestPos;

21 bestScore = bestScore < newScore ? newScore : bestScore;

22 }

23 bestMutationPos[blockIdx.x] =

24 (bestScore > (

25 (readLength - l + 1)

26 + (readLength - l + 1) >> 1))

27 ? bestPos : readLength;

28 bestMutationIdx[blockIdx.x] = bestIdx;

29 }
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Appendix C: GPU Euler Command Line Reference

Synopsis

eulercuda ¡Required Arguments¿ [Error Correction Params] [Assembly Params] [Op-

tional Args]

Description

blabla bla bla bal

Options

General Arguments

-h | --help

display this help

Required Arguments

<-i | --input-file> <file>

Input file in FASTA format

<-o | --output-file > <file>

Output file (generated in FASTA format)

<-r --read-length> <n>

Read Length for input set of reads

Error Correction Parameters

<-e | --error-correction>

Enable error correction

<-t | --tuple> <n>

tuple size for error correction

<-m | --max-iterations> <n>(=1)

Error correction iterations
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Assembly Parameters

<-a | --assemble>

Enable Assembly

<-l | --lmer> <n>(=16)

tuple size for debruijn graph

<-b | --block-size> <n>(=512)

block size for CUDA execution

<-c | --coverage> <n>(=20)

Read Coverage

Optional Arguments

<-v | --verbose> <n>

verbose level (0 = off, 9 = full)
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