
 

 
 
 
 

DISCERNIBLE SPATIAL CONFIGURATIONS IN BUILT AND TRANSIENT 
SCENES 

 
by 
 

Georgios Panteras 
A Dissertation 

Submitted to the 
Graduate Faculty 

of 
George Mason University 
in Partial Fulfillment of 

The Requirements for the Degree 
of 

Doctor of Philosophy 
Earth Systems and GeoInformation Sciences 

 
 
Committee: 
 
_______________________________   Dr. Anthony Stefanidis, Dissertation Director 
 
_______________________________   Dr. Peggy Agouris, Committee Member 
 
_______________________________   Dr. Arie Croitoru, Committee Member 
 
_______________________________   Dr. Andrew Crooks, Committee Member 
 
_______________________________   Dr. Anthony Stefanidis, Department Chairperson 
 
_______________________________   Dr. Donna M. Fox, Associate Dean, Office of      

Student Affairs & Special Programs, College of 
Science 

 
_______________________________   Dr. Peggy Agouris, Dean, College of Science 
 
Date: _________________________   Fall Semester 2014 
                                                                 George Mason University 
                                                                 Fairfax, VA 



 

Discernible Spatial Configurations in Built and Transient Scenes 

A Dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at George Mason University 

by 

Georgios Panteras 

Master of Science 
University College London, 2007 

Bachelor of Science 
Harokopio University of Athens, 2006 

 
 
 

Director: Anthony Stefanidis, Professor 
Department of Geography and GeoInformation Science  

Fall Semester 2014 
George Mason University 

Fairfax, VA 



 
 

ii 

 
This work is licensed under a creative commons  

attribution-noderivs 3.0 unported license. 

 

http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/


 
 

iii 

DEDICATION 

I would like to dedicate this Doctoral dissertation to my beloved family – my father 
Dimitrios, my mother Despoina and my sister Michaela for their unconditional love and 
support throughout my entire life. The values and the ideals they have instilled in me will 
forever define my personality and motivation in my endeavors. 

Also I would like to dedicate this effort to my dear Christina for walking next to me in 
this path by illuminating each of my steps with her optimism and for her absolute faith in 
me. 

No words can be enough to express my love and my appreciation to the above-mentioned 
persons. 
 



 
 

iv 

ACKNOWLEDGEMENTS 

After all these years of working to attain my doctorate degree, contemplating my next 
steps in this journey, I have many people to thank that were able to shine a bright light 
guiding me on the path towards my future.  

My most sincere gratitude goes to my advisor, Dr. Anthony Stefanidis, who trusted my 
abilities and has continuously guided me throughout all these years. Not only has he been 
a mentor but also he seamlessly has shaped my understanding of this vast field, exposed 
me to new areas and directions, and has offered me the necessary tools to continue 
forward. Throughout the challenges that I have encountered during this process, he was 
always there to provide with answers and to guide me forward. Thank you, Anthony, for 
having given me the opportunity to work in your outstanding research group and for 
allowing me enough independency to develop and pursue my ideas.  

My sincere thanks also go to the other members of my committee who has effortlessly 
supported me throughout this journey. I want to thank Dr. Peggy Agouris for believing in 
my abilities and for her invaluable insights for my graduate studies. I value her 
prestigious scientific thought, ideas, and concepts that have influenced my dissertation; 
Dr. Arie Croitoru for his insightful comments and his constructive inputs that inspired my 
final effort as well as for the fruitful discussions we had over the technical aspects of this 
work; and Dr. Andrew Crooks for the thorough review and insightful comments on the 
draft of this dissertation 

I would also like to thank the Department of Geography and GeoInformation Science at 
George Mason University, especially the following faculty and staff for their various 
forms of support during my graduate study: Dr. Ruixin Yang, Dr. Ron Resmini, Dr. 
Jonathan R. Clark, Dr. Dieter Pfoser, Dr. Tryfona Nectaria, Dr. Donglian Sun, Mrs. 
Patricia Boudinot, Mrs. Debbie Hutton, and Mrs. Teri Fede. 

Last but not least I want to thank my colleagues and friends for their continuous 
motivation, their stimulating discussions about their each individual research efforts and 
for always being there for me.  

 
 



 
 

v 

TABLE OF CONTENTS 

Page 

List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................. viii 

List of Equations ................................................................................................................ xi 

List of Acronyms .............................................................................................................. xii 

Abstract ............................................................................................................................ xiii 

Chapter 1: Introduction ......................................................................................................15 
1.1 Problem Statement ...................................................................................................15 
1.2 Motivation ...............................................................................................................17 
1.3 Research Hypothesis ................................................................................................25 
1.4 Research Hypothesis ................................................................................................25 
1.5 Intended Audience....................................................................................................26 
1.6 Organization of the Dissertation ..............................................................................26 

Chapter 2: Current State of the Art ....................................................................................29 
2.1 Scene Similarity .......................................................................................................29 
2.2 Semantics in Similarity ............................................................................................32 
2.3 Qualitative Spatial Representation and Reasoning ..................................................40 
2.4 Spatial Relations .......................................................................................................46 
2.5 Fuzzy Set Theory and Spatial Relations ..................................................................56 
2.6 Fuzzy Spatial Relations in Semantic Scene Similarity ............................................63 

Chapter 3: Proposed Framework .......................................................................................70 
3.1 The Approach ...........................................................................................................70 
3.2 Allen Relations .........................................................................................................71 
3.3 Histogram of Forces .................................................................................................74 



 
 

vi 

3.4 Fuzzy Allen Relations Coupled With HoF ..............................................................78 
3.5 Optimal Attribute Selection .....................................................................................85 
3.6 Scene Similarity Framework ....................................................................................87 

Chapter 4: Composite Scenes in Built Environments ........................................................90 
4.1 Introduction ..............................................................................................................90 
4.2 Study Area and Data ................................................................................................91 
4.3 The Scene Model ......................................................................................................95 
4.4 Experiments and Results ..........................................................................................96 

Chapter 5: Composite Scenes in Social Media Events ....................................................109 
5.1 Introduction ............................................................................................................109 
5.2 An Updated Scene Model ......................................................................................112 
 5.2.1 A Cross-Source Triangulation Framework ..................................................114 
         5.2.2.1 Event Localization using Toponym References in Twitter ..............117 
          5.2.2.2 Impact Area Delineation through Viewshed Analysis of Flickr ......122 
          5.2.2.3 Azimuth and Angle of View Calculation .........................................124 
          5.2.2.4 Viewshed Analysis ...........................................................................126 
          5.2.2.5 Hotspot Detection .............................................................................129 
5.3 Experiments and Results ........................................................................................130 

Chapter 6: Conclusions and Future Research ..................................................................137 
6.1 Summary and Conclusions ....................................................................................137 
6.2 Future Work ..........................................................................................................143 

References ........................................................................................................................147 

Biography .........................................................................................................................166 
 



 
 

vii 

LIST OF TABLES 

Table Page 

Table 2.1: Invariance of spatial relations under four basic transformations. .................... 48 

Table 3.1: The thirteen base relations of Allen’s interval algebra. ................................... 72 

Table 4.1: Airport scenes that have been used for our study ............................................ 93 

Table 4.2: Similarity score statistics before the attribute selection. ............................... 103 

Table 4.3: Similarity score statistics after the attribute selection. .................................. 106 

Table 5.1: Similarity scores for the ten days of Waldo Canyon fire............................... 135 
  
 



 
 

viii 

LIST OF FIGURES 

Figure Page 

Figure 1.1: Example of a spatial scene as a composite structure comprising built objects 
in a satellite image…….…………………………………………………………………………..….....19 

Figure 1.2: Example of a spatial scene as a composite structure comprising crowds in an 
event…………..................…………………………………………………………………………..….....21 

Figure 2.1: Semantic similarity measures according to different notions of similarity. ... 40 

Figure 2.2: Definitions of qualitative spatial relations...................................................... 42 

Figure 2.3: The RCC-8 continuity network or conceptual neighborhood. ....................... 50 

Figure 2.4: The DE-9IM for two overlapping polygonal geometries a and b................... 52 

Figure 2.5: The OPRAm directional model for a relation x4∠133y. ............................. 54 

Figure 2.6: The reference system of the TPCC directional relation model. ..................... 55 

Figure 2.7: Classification of direction between two objects (a) based on classic 

membership function (b) based on fuzzy membership function………………………………59 

Figure 2.8: Basic conventional membership functions. .................................................... 60 

Figure 2.9: Limitations of coarse spatial relations in scene similarity assessment:.......... 64 

Figure 3.1: Scene similarity/matching based on the Histograms of Forces coupled with 

fuzzy Allen relations for pairwise combinations. ............................................................. 71 

Figure 3.2: Example of space decomposition in partitions according to Allen’s interval 

algebra. .............................................................................................................................. 74 

Figure 3.3: Calculation of histogram of forces.. ............................................................... 76 

Figure 3.4: Principle of the calculation of the histogram of forces FAB(θ) ...................... 76 

Figure 3.5: Affine properties of HoF ................................................................................ 77 

Figure 3.6: The 13 fuzzified Allen relations between two segments I and J. ................... 81 

Figure 3.7: Graphical representation of the 13 Allen’s spatial relations between segments 

of a pair of objects, the reference and the argument. ........................................................ 82 



 
 

ix 

Figure 3.8: The positioning of two objects, position of argument object A relative to 

reference object B based on HoF ...................................................................................... 83 

Figure 3.9: Main framework flowchart for the implementation of the scene similarity task

........................................................................................................................................... 89 

Figure 4.1: Distribution of the all the airport locations across the continent. ................... 92 

Figure 4.2: Infrastructural differences between varius airports. (a) Jomo Kenyatta 

International Airport of Nairobi in Kenya. (b) Dirkou Airport in Kenya. ........................ 94 

Figure 4.3: Component objects of civilian feature class, Aba Segud airport in Ethiopia . 96 

Figure 4.4: Overlap example of resulted fuzzy Allen relations coupled with HoF between 

the objects Taxiway (argument) and Aircraft Parking (reference). .................................. 98 

Figure 4.5: Disjoint example of resulted fuzzy Allen relations coupled with HoF between 

the objects Aircraft Parking (argument) and Vehicle Parking (reference). ...................... 99 

Figure 4.6: Inclusion example of resulted fuzzy Allen relations coupled with HoF 

between the objects Aircraft Parking (argument) and Terminal (reference). ................. 100 

Figure 4.7: Similarity scores for the Civilian class without the attribute selection. ....... 102 

Figure 4.8: Similarity scores for the Joint class without the attribute selection. ............ 102 

Figure 4.9: Similarity scores for the Military class without the attribute selection. ....... 103 

Figure 4.10: Similarity scores for the Civilian class after the attribute selection. .......... 104 

Figure 4.11: Similarity scores for the Joint class after the attribute selection. ............... 105 

Figure 4.12: Similarity scores for the Military class after the attribute selection. .......... 105 

Figure 4.13: Similarity scores improvement for all the ontology categories after the 

application of the attribute selection. .............................................................................. 106 

Figure 4.14: Invariance check of HoF (a) Original image, (b) distorted image. ............ 108 

Figure 5.1: Component objects of a wildfire event feature class. ................................... 110 

Figure 5.2: The cross-source triangulation framework. .................................................. 114 

Figure 5.3: Overview of the study area ........................................................................... 116 

Figure 5.4: Word-cloud of Tweeter most frequent terms and hashtags during the wildfire

......................................................................................................................................... 119 

Figure 5.5: Usage of most frequently adopted hashtags over the wildfire period .......... 120 



 
 

x 

Figure 5.6: Usage of most frequently adopted toponym terms over the wildfire period 121 

Figure 5.7: The AOV and azimuth of a given Flickr image ........................................... 125 

Figure 5.8: Number of Flickr contributions in daily basis for the total period of the 

wildfire event .................................................................................................................. 131 

Figure 5.9: Wildfire location assessment for Day 1 ....................................................... 132 

Figure 5.10: Wildfire location assessment for Day 2 ..................................................... 132 

Figure 5.11: Wildfire location assessment for Day 3 ..................................................... 132 

Figure 5.12: Wildfire location assessment for Day 4 ..................................................... 132 

Figure 5.13: Wildfire location assessment for Day 5 ..................................................... 133 

Figure 5.14: Wildfire location assessment for Day 6 ..................................................... 133 

Figure 5.15: Wildfire location assessment for Day 7 ..................................................... 133 

Figure 5.16: Wildfire location assessment for Day 8 ..................................................... 133 

Figure 5.17: Wildfire location assessment for Day 9 ..................................................... 134 

Figure 5.18: Wildfire location assessment for Day 10 ................................................... 134 

Figure 5.19: Similarity scores for the ten days event of Waldo Canyon wildfire .......... 136 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

xi 

LIST OF EQUATIONS 

Equation Page 

Equation 1: The 3 × 3 intersection matrix of DE-9IM. .................................................... 52 

Equation 2: The membership function in classical set theory. ......................................... 58 

Equation 3: Fuzzy set (Fs) in Fuzzy Logic. ...................................................................... 58 

Equation 4: The three fundamental relations in Fuzzy Set theory. ................................... 62 

Equation 5: The fuzzified Allen’s relations. ..................................................................... 80 

Equation 6: The Histogram of Forces between two objects. ............................................ 83 

Equation 7: Trapezoidal fuzzy membership function. ...................................................... 83 

Equation 8: k-combination of a set S. ............................................................................... 84 

Equation 9: Calculation of the horizontal AOV, φAOV. .................................................. 124 

Equation 10: Calculation of the geodesic azimuth, θ. .................................................... 125 

 



 

 
 

LIST OF ACRONYMS 

9IM                 9 Intersection Model   

AI                   Artificial Intelligence 

AOV               Angle of View 

API                 Application Programing Interface  

CV                  Computer Vision 

DE - 9IM        Dimensionally Extended 9 Intersection Model 

DEM               Digital Elevation Model 

Exif                 Exchangeable Image File 

GIR                 Geographic Information Retrieval  

GIS                 Geographic Information System   

GIScience       Geographic Information Science 

GSD                Ground Sample Distance 

HoF                 Histogram of Forces 

IR                    Information Retrieval 

JEPD               Jointly Exhaustive and Pairwise Disjoint 

KDE                Kernel Density Estimation  

NBTree           Naive Bayes/Decision-Tree Hybrid  

NCC                Normalized Cross Correlation 

NED                National Elevation Data  

OPRAm           Oriented Point Algebra  

QSR                Qualitative Spatial Representation and Reasoning 

RCC                Region Connection Calculus   

RS                   Remote Sensing 

TPCC              Ternary Point Configuration Calculus 

VGI                 Volunteered Geographic Information  



 

 
 

ABSTRACT 

DISCERNIBLE SPATIAL CONFIGURATIONS IN BUILT AND TRANSIENT 
SCENES 

Georgios Panteras, Ph.D 

George Mason University, 2014 

Dissertation Director: Dr. Anthony Stefanidis 

 

This dissertation addresses the development of metrics for scene similarity assessment 

using abstract spatial relations among objects comprising of a scene. This is done in the 

context of an ontological approach as it can support scene matching and ontology 

classification. We consider that abstract spatial relations are more important than absolute 

and/or quantitative spatial relationships in deriving semantic features for an ontology 

driven scene similarity. The motivation of this study arises from the semantic gap that 

currently exists in the majority of scene modeling methods and the insufficiency on 

describing higher-level knowledge representation that applies in a specific spatial 

context. Therefore there is currently a need to develop novel metrics to successfully 

describe the abstract spatial context of complex features and better communicate this 

information in the context of ontologies. Our approach is based on the creation of spatial 

signatures for complex features as they express the spatial relations of their components. 



 

 
 

These relationships, which can be articulated through an extension of fuzzy Allen 

relationship, can then be quantified through the Histogram of Forces approach. Once such 

expressions are derived two or more scenes can be compared through the correlation 

analysis. Borrowing from data mining principles, the process can become 

computationally more effective by analyzing variations in the multiple relations that exist 

among various components. The proposed framework is applied in two representative test 

cases that express established and emerging geospatial analysis challenges. The first test 

case addresses structured built environments in satellite imagery, using airport 

compounds. The second test case addresses unstructured environments in crowdsourced 

data, using social media contribution patterns in the aftermath of natural disasters.  
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement  

 
This dissertation addresses the problem of comparing scenes of objects, in order 

to find similarities among them. Accordingly, we argue that a scene is a composite 

structure, comprising individual components (e.g. objects) as they are arranged in space. 

In the context of this dissertation we consider in particular the topological and directional 

relations among such objects (rather than solely their distances), as they tend to be more 

robust to the various constraints imposed upon such scenes by the sociocultural and 

topographical particularities of places all over the world. For example, an airport has to 

have certain components in order for it to fulfill its function, and these components have 

to have a specific spatial arrangement as well. However, their particular geometric 

properties may vary: e.g. in the case of an airport, the length of the runway or the size and 

shape of a terminal vary widely among various airports, but these two entities always 

have to be adjacent to each other in order for them to fulfill their function. This 

dissertation addresses the development of an approach to compare scenes based on the 

arrangement of objects within them, and the use of this capability to label scene content. 

In order to achieve that, we developed a framework that performs scene similarity 

assessment using abstract spatial relations among the objects comprising a scene. In it, 
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abstract spatial relations are quantified and compared among object pairs, and a scene is 

defined as the aggregate of these pairwise relations across all objects defining the scene. 

This builds upon earlier work in the computer vision and artificial intelligence 

communities, more specifically on Histograms of Forces and fuzzy Allen relations to 

detect and codify relationships among objects. This developed framework will be applied 

to two different test cases, in terms of data types that comprise a scene. In the first test 

case we have developed a scene similarity framework that builds upon these solutions to 

develop a scene comparison framework, and we demonstrate its performance in built 

environments. More specifically, we have applied our approach to a dataset of various 

types of airports, and demonstrated its capability to label/classify incoming datasets to 

one of three types (civilian, military, or joint). One could consider this to be the 

equivalent of introducing ontologically-derived scene arrangement metrics into the scene 

interpretation process. Nevertheless, the focus of the work is not on the ontology part, but 

rather on the comparison. The challenge when considering this type of applications is to 

design a methodology that will avoid the limitations of a rigid quantitative scene 

matching based solely on metric information, which as it is explained in the following 

chapter was a limiting factor for the challenging task of scene similarity so far. 

In the second test case of this research we investigate the potential use of this 

approach in more abstract scenes. As an example we will apply the concept of a scene to 

the clusters of individuals reporting natural events (using wildfires as a representative 

example). This conceptual scene will be defined through the relations among clusters of 

reports and the location of the actual event, and we will investigate whether our technique 
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will allow us to detect discernible patterns in such situations. The challenge when 

considering this type of applications is that we do not know whether these scenes actually 

do have discernible spatial patterns associated with them. Whereas in an airport form 

follows function, and this leads to topologically consistent arrangements, nobody knows 

whether responses to an event actually follow any such reason.  

 

1.2 Motivation 

 
  Nowadays the growing size of geospatial databases has led to a point where the 

complexity of accessing and retrieving relevant knowledge has increased significantly. 

NASA, for example, generates about 5 TB of data per day indicating that an increase in 

volume, velocity, and variety of data products is a fact which arise the issue of the so 

called ‘Big Data.’ These vast amounts of data create new challenges in assessing the 

information accurately and timely from the geospatial databases. It becomes apparent that 

now more than ever it is necessary to develop geospatial computing techniques that will 

facilitate fast knowledge discovery and decision making that overcome the limitations of 

the existing purely quantitative measures. Therefore, an integrated framework to perform 

scene-matching using abstract metrics (e.g. topology) and assess its value for geospatial 

information retrieval consists of a challenging task. Geospatial and/or geographic 

information retrieval (GIR) (see Jones and Purve, 2009), a sub-field of Information 

Retrieval (IR) with the addition of spatial and geographical oriented indexing and 

retrieval, provides us with a strong tool to tackle these new challenges and successfully 
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manage large-scale geospatial databases. In order GIR to be meaningful it needs to 

minimize the semantic gap between analysts’ models of visual patterns and computers’ 

representation of information, so as to enable users to easily access databases using query 

methods similar to the analysts’ reasoning (Barb and Shyu, 2010). These semantics are 

not captured in the traditional pixel- and object-based classification schemes or by the use 

of low-level image features (such as, color, texture, size, and shape) since higher level 

descriptors and important spatial (topological) relationships can lead us to higher level 

semantic concepts (Vatsavai et al., 2012). 

Spatial scene similarity primarily compares objects that comprise a scene based 

on their spatial relations across different databases for various purposes.  It is perceived 

as a function of correspondence of objects, their spatial relations, or both, across spatial 

scenes or databases (Frontiera et al., 2008). This type of similarity between objects is 

examined in terms of best matching among their geometric approximations, for instance 

the minimum bounding rectangles (Papadias et al., 1995), and the sketched outlines 

(Stefanidis et al., 2002). Similarity based on the spatial relations is mainly focused on the 

matching of their geometric representations based on the individual relation of distance, 

topology, and direction, or by their combination. In any case, the majority of research 

efforts have been focused on the computation of all spatial similarity determinants based 

on solely the quantitative scales by and added up to overall similarity after the 

normalization of each determinant (Gudivada, 1998). As it becomes apparent all these 

efforts has been mainly focused on the strict comparison between objects of a scene with 

the aid of their geometric matching, searching for commonalities (intersection) and 
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differences (non-intersection) where the shape and metric information are the primary 

components. As it has been found, there are a number of limitations deriving from such a 

deterministic approaches. For instance let us consider the case of a scene-matching task 

where the area of interest where the scene similarity will be based on is an airport 

acquired from satellite imagery. A typical scene matching procedure is based initially on 

the extraction of the features of a scene. This step is very critical for the final outcome 

considering two different scenarios; the over-extraction, and the under-extraction. Both 

cases lead to a problematic description of the scene resulting in a very ambiguous scene 

matching procedure since it is very depended on the extraction quality. To this extend, 

scene-matching task can become also very confusing in cases also where physical 

changes of the feature itself have occurred. 

 

 

 

 

 

 

Figure 1.1: Example of a spatial scene as a composite structure comprising built 
objects in a satellite image. 
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Another critical issue is the variability in geometries (i.e. shape, dimensions) as 

well as the distances of a specific taxa of objects that describe a spatial scene. That 

becomes essentially critical when the scenes to be compared belong to completely 

different locations in terms of context. For instance in the case of airports in Figure 1.1, 

although each airport has some sort of configuration up to a certain point, each major 

components may significantly vary with respect its functionality, and its location. 

According to all the above mentioned, it becomes apparent that a purely quantitative 

modeling of the spatial configuration of a scene based solely on metric information of its 

key features, imposes a number of constraints to similarity task, leading to limited results. 

As it becomes obvious, in order to have a more holistic and therefore more effective 

spatial scene similarity it is of essential importance to consider the scene as a whole and 

incorporate its semantics that can provide us with higher-level information. 

Although scene matching and identification has received a great deal of attention 

in the past two decades, event detection and classification in social media creates new 

scientific questions considering the fact that the level of complexity and the heterogeneity 

of factors that are involved demand a completely new design of methodologies. 

Therefore the task of scene similarity in such cases where a scene is comprised by 

conceptual objects that form an event is still unexplored. The main focus is now shifted to 

the need to understand how such complex and high-level semantic information can be 

represented in an efficient yet accurate way. An event in social media can be considered 

as a semantically meaningful human activity that occurs in geographical space, which 

comprises of a scene that contains a set of objects. In such case a scene the refereed 
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objects do not necessarily refer to human infrastructure of physical landscape but they 

represent abstract notions of human activity related to the specific event that have 

semantic meaning. Scene interpretation and identification then can be implemented by 

monitoring abstract notions of events, location and crowd-sourced responses. Based on 

that, the opposite becomes also true; what if the semantic components of an event can be 

analyzed in objects that have geospatial properties that can resemble a scene? If that is 

true it means that event detection in social media can be converted to a scene 

understanding and similarity-matching task. An example of this case is illustrated in 

Figure 1.2, which shows Cairo's Tahrir Square in Egypt, where large groups of protestors 

have demonstrated and celebrated the expulsion of Mohamed Morsy. 

 

 

 

Figure 2.2: Example of a spatial scene as a composite structure comprising 
crowds in an event. 
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Before we proceed with an assumption such as the aforementioned, it is important 

to define the concept of a scene when it comes to event detection in social media. 

According to Fei-Fei and Li (2010), in order to achieve an event categorization and 

eventually detection in a semantic level it is essential to be able to answer three W’s; 

what (the event label), where (the scene environment label) and who (a list of the object 

categories). In a similar fashion we adapt this conceptual framework in order to 

decompose an event to its contextual parts, to show the interdependence with the scene, 

and to try to model it by using characteristic relations among its objects. At this point it is 

important to examine what are the objects that comprise a scene on an event. Although a 

scene in social media has a geographical context, it consists of a conceptual abstraction of 

a well-defined physical space where its borders are definite. A scene is created during the 

occurrence of an event according to the human activity that this event attracts.  

In other words, contributors define a scene and their semantic notion is that which 

creates the objects of that scene. The semantics in such case consists of contributors’ 

reports that have spatial and temporal context given the fact that an event occurs in a 

given time range and concerns a broad (or specific sometimes) location. Wayant et al., 

(2012), found that these semantics can be organized into spatiotemporal clusters that 

summarize the spatiotemporal semantics of the event. Therefore, these clusters by 

emending all the semantic information based on their spatio-temporal extent can be 

considered to be the objects that comprise a scene and consequently describe an event.  
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Based on that, it becomes apparent that there is a need for a conceptual kind of 

modeling in order to assess and identify patterns among these objects. What has to be 

taken under consideration though is the vagueness that is incorporated in such concepts. 

De Longueville et al. (2010), which addressed the vagueness in crowdsourced 

information, stated that a concept is known as vague if at least one of its characteristics 

does not obey to Boolean logic. That statement can be retrieved back to the work 

presented by Fisher (2001) where he used the Sorites Paradox (or paradox of the heap) to 

explain the vagueness in the geographic space (see also Barker, 2009). According to this 

paradox, by trying to answer the question “how many grains of sand do we need to have a 

heap of sand” we won’t be able to have a meaningful answer if we will be based on 

strictly numerical calculations. For example Boolean logic in this case which dictates a 

threshold value where if the number of grain is larger than this value then this is 

considered a heap otherwise it is not, is not applicable.  

The same discipline applies also in the case of spatio-temporal clusters where 

there is no definite boundary, size and shape since their meaning has semantic value. For 

example how can we set a threshold value on the distance D between two cluster A and B 

where if distance between A & B < D then A is close to B while if A & B > D then A is 

close to B? Would be meaningful a single meter to effect significantly the spatial 

relationship between these two clusters? Hence, in order to enable the description and the 

modeling of patterns created among clusters of crowd-sourced information it is essential 

to tackle this issue under the prism of Fuzzy Logic. On the parallel, as it was stated by 

Vatsavai et al., (2012), spatial (topological) relationships consist of high level descriptors 
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that capture the semantics and can efficiently discover and model patterns in complex 

objects. Under all the aforementioned considerations, the proposed methodology for 

scene matching appears to have great potential to be applied in a case of an event scene 

created by social media feeds. Its potential relies on the fact that is based on the 

extraction of topological and directional relationships in the context of qualitative spatial 

reasoning based on fuzzy logic measurements which provides quantitative results that are 

necessary for the purposes of scene matching. 

With respect the information that can be extracted from such a task, it becomes 

challenging to compare patterns of response in social media in order to assess whether 

these scenes are identifiable and therefore whether there is a spatially relevant character 

behind them. The challenge when considering this type of application is that we do not 

know whether these scenes actually do have an identifiable spatial pattern associated with 

them. Whereas in an airport form follows function, and this leads to topologically 

consistent arrangements, nobody knows whether responses to an event actually follow 

any such reason. The successful application of this task may lead to event detection in 

social media based mainly on spatial and geometric patterns among similar scenes. 

Furthermore an indirect application at the direction of event detection could be to detect 

an anomaly, which denotes the burst of a new event. As an example by monitoring the 

spatial signature, created by the fuzzy spatial relations, of a scene in a time frame (i.e. per 

day), a sudden change of the signature could indicate the creation of an event. To this 

extent, detecting data patterns in anomalies also facilitates to anticipate future activity 

and this way to predict the type of a future event. 
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1.3 Research Hypothesis  

 
Based on the above-mentioned challenges and limitations the following research 

hypothesis is formulated for this dissertation: 

 Given that a scene is a composite structure, comprising individual key 

components (e.g. objects) as they are arranged in space, a semantic similarity measure 

based on abstract spatial relations of these objects by combining topology, direction, and 

distance can provide us with a more descriptive spatial signature of each scene and 

better support scene similarity assessment in diverse applications. 

 

1.4 Research Hypothesis  
 

According to the hypothesis the present dissertation is addressing three key 

components: 

• The algorithmic development of techniques for a robust comparison of spatial 

scenes based on the topological and directional arrangement of objects within 

them by incorporating fuzzy spatial relations. 

• The use of these techniques to compare composite scenes comprising built objects 

using satellite imagery. 

• The use of these techniques to compare patterns of response in social media feeds 

in order to assess whether these scenes are identifiable, and therefore whether 

there is a spatially relevant character behind them.  
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1.5 Intended Audience 
   

This dissertation is intended for researchers and developers primarily from the 

GeoInformation Science community, including fields such as Remote Sensing, 

Geographic Information Systems, Volunteered Geographic Information, and Geographic 

Information Retrieval. The audience also includes experts from the fields of Computer 

Science, Computer Vision, Human Computer Interaction, and Artificial Intelligence as it 

relates to the intelligent retrieval of semantic information. In general we believe that this 

work will be of interest to scientists interested in scene matching, similarity assessment. 

 

1.6 Organization of the Dissertation 
 

According the structure of the present dissertation each chapter builds on 

observations and findings of previous chapters. The assessment of previous research, the 

evaluation of the hypothesis, the test cases, and the conclusions are each assembled in 

separate chapters. The remainder of the thesis is structured as follows: 

Chapter 2 reviews the research efforts that have done in the past, and presents the 

state of art in the specific domain. The ideas, technologies, and methodologies devised up 

until recently for the task of scene similarity are discussed and their limitations are 

emphasized pointing out this way the challenges that the present effort manages to 

overcome. New findings from the domain of geo-semantics and qualitative spatial 

representation and reasoning are discussed as well as the importance of fuzzy set logic in 
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conjunction with the spatial relations which they comprise the theoretical basis of the 

proposed methodology. A notion of the necessary background theory is tacking place in 

this chapter with respect the various fields that are involved. It has to be noted that a basic 

understanding of the main concepts of these fields is prerequisite for the reader, in order 

to understand the present work. 

Chapter 3 outlines the proposed framework for the scene similarity assessment. 

Each section of this chapter explains the theoretical foundations that were used for the 

synthesis and implementation of the main similarity algorithm. Specifically, the chapter 

begins with a brief description of the followed approach and continues with the 

justification of the selected types of spatial relations and their fuzzification. Also the main 

methodology of Histograms of Forces used for the modeling of the fuzzy spatial relations  

are presented and are explained of how they successfully manage to incorporate 

topology, direction, distance information. The chapter concludes by the illustration of the 

similarity metric that is proposed, which essentially manages to extract higher-level 

information from the scene via a qualitative measurement while it concludes in 

comparable, machine-readable quantitative results that are necessary for the purposes of a 

meaningful scene matching. 

Chapter 4 presents the first of the two test applications according to which our 

proposed framework is being applied in the case of a built, structured environment such 

as airport scenes from satellite imagery for the entire African continent. Specifically, an 
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ontology-driven scene similarity is implemented based on the concept of a prototypical 

ontology / airport.  

Chapter 5 extends the findings of Chapter 4 to a completely different test case 

scenario in terms of data source as well as what a scene can also be. Specifically the 

second test case consists of an unstructured spatial scene, comprised of social media 

feeds for an emergency event. In this case the scene similarity procedure is not per se 

solely ontologically driven but is using the context of the first case to apply it to a more 

abstract ‘objects’ under the viewing angle of conceptual space.  

 Chapter 6 concludes the dissertation by providing with a summary of the tasks 

that have been accomplished as well with a discussion of the major results, with respect 

the proposed methodology, and highlights the most important contributions of this study. 

Also it speculates on possible extensions of the present work and future research 

directions and outlook. 
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CHAPTER 2: CURRENT STATE OF THE ART 

While quantification of spatial arrangement is a widely researched field in the 

application of scene similarity incorporating spatial relations in geographical information 

science, its effectiveness has proved to be limited due to the semantic gap. This chapter, 

which serves as a literature review, presents and reviews the background theory of scene 

similarity and it’s semantic notion in Sections 2.1 and 2.2, while on Section 2.3 and 2.4 

are explained the importance of Qualitative Spatial Representation and Reasoning as well 

as of Spatial Relations. In Sections 2.5 and 2.6, the importance of Fuzzy Sets and their 

contribution to the spatial relations and semantic scene similarity is addressed.  

 

2.1 Scene Similarity 

 
One of the most challenging tasks in the field of Geoinformatics is that of scene 

similarity, which still is in progress as new data and new representations of them have to 

be explored. Due to the importance and the diversity of this task, it consists of an 

interdisciplinary research domain with a variety of applications stemming mainly from 

Remote Sensing (RS), Geographic Information Science (GIS), Computer Vision (CV), 

and Geographic Information Retrieval (GIR) domains. Originally the research for the 

notion of similarity was initiated in psychology where the objective was to determine 
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why and how people are grouped into categories and the reasons why some categories are 

more or less similar to each other (Medin et al., 1993; Goldstone and Son, 2005). 

According to Edelman (1995), in human cognition, people are able to respond 

intelligently faster and with greater success to a stimulus that they retrieve from previous 

responses that have been made under similar circumstances. That indicates that similarity 

holds a fundamental role in human cognition since it consists the capstone in an 

individual’s learning ability by classifying similar entities and by reasoning on similar 

situations. Gardenfors (2004) proposed conceptual spaces as a cognitively credible 

framework for the spatial representation of information that humans perceive, at a 

conceptual level, which can be modeled and quantified. 

In the broad field of Geographic Information Science (GIScience) a scene is 

considered as an aggregation of spatial objects in a specific spatial arrangement. The 

majority of efforts in the past in the direction of scene similarity have been focused 

mainly on the content of the scenes giving less attention to the spatial context which is 

able to describe a scene more comprehensively and to lead to a more integrated scene 

matching based on the scene semantics. The typical image interpretation and pattern 

recognition methodologies that can be found in RS and CV communities tend to be 

confused at the moment of distinguishing between two visually similar, though 

conceptually different objects. This problem is referred to the literature as the “semantic 

gap” according to which there is a gap between low level information, derived from 

automated feature extraction, and higher level knowledge representation that applies in a 

specific spatial context (Ehrig, 2007; Hare et al., 2006). Another definition about this 
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problem was given by Smeulders et al., (2000) according to which the semantic gap is 

“the lack of coincidence between the information that one can extract from the visual data 

and the interpretation that the same data have for a user in a given situation’’.  

In order to facilitate an approach that will incorporate the semantic information 

within a structured way, recent developments in the in the field of knowledge engineering 

have introduced the notion of ontology. By definition (Gruber, 1992), an ontology entails 

an explicit specification of a conceptualization, which consequently leads to a description 

of an abstract model. A critical issue to this point is the development of sufficient metrics 

in order to appropriately describe the spatial context of an ontology feature class so as to 

create a spatial configuration signature. That could lead to an ontology driven scene 

similarity where ontology can be used as a pattern to compare and analyze other similar 

occurrences of that feature class in other geospatial data sets (Clark, 2012). One issue that 

arises in this case is that a strict scene matching based on the ontological approach is not 

applicable since quantitative metrics cannot describe sufficiently a feature class.  

That becomes critical especially in cases where no metric information is present 

and/or the scenes to be compared, for example using satellite imagery, are of different 

scale, and orientation. Furthermore despite the complications that a rigid scene similarity 

based on metric information might cause in the case of scenes in built environments using 

satellite imagery, it can become even more complicated in cases where spatial 

information can only be described in terms of semantics and context rather than the 

content. For example the case of a scene which is comprised of crowd-sourced 
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information about an event using social media, although the components of this scene 

have geographical extend, the location information, still these components cannot be 

described in terms of shape, size, distances etc. The solution to this issue can be found in 

the field of spatial reasoning according to which higher knowledge representations like 

ontologies can be modeled through the spatial relations between the objects that comprise 

a feature class.  

Although many ontological frameworks exist that incorporate spatial relationships 

(Bateman and Farrar, 2004), there is an inadequacy on the way that these methodologies 

handle the vagueness and the subjectivity of the spatial information. The above-

mentioned semantic gap can be bridged with the progress made in the field of Qualitative 

Spatial Representation and Reasoning (QSR), and fuzzy set theory in the direction of 

spatial modeling (Wang et al., 1990). The objective of the dissertation is to develop 

metrics for scene similarity assessment using abstract spatial relations among the objects 

comprising a scene, in the context of an ontological approach for the purposes of scene 

matching and ontology classification. Therefore we consider that abstract spatial relations 

are more important than absolute and/or quantitative spatial relationships in deriving 

semantic features for the means of an ontology driven scene similarity. 

 

2.2 Semantics in Similarity  

 
Recent developments in the research field of similarity propose measures that are 

not limited to exclusively structural methods or to basic network procedures within a 
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subsumption hierarchy (see Blanchard et al., 2008). Although the goal is to identify exact 

matching, often the goal is to evaluate whether two objects have sufficient amount of 

common characteristics by looking for similarities in order to justify that the two objects 

originate from the same principle class of objects.  In semantic similarity the main 

objective is to calculate the theoretical intersection between abstract concepts and 

associations (i.e relations) and therefore constrict the gap between similarity and analogy. 

This difference is referred to as “semantic” similarity measures.  According to Rosche 

(1978) a similarity assessment can be considered principally as a classification task.  

Attributes are used as the base to classify objects in a taxonomy, which permits us to 

assess the semantic proximity between each taxa in that taxonomy, in the conceptual 

space and not necessarily on the geographic space. Due to this fact it becomes evident 

that we need to incorporate qualitative decisions about the degrees of similarity. 

Therefore as it becomes apparent, this kind of reasoning in similarity measurement 

provides bigger eligibility in information retrieval and classification tasks than in the case 

of subsumption based approaches. 

Janowich (2013) has stated the benefits of semantic similarity reasoning in 

managing with applications that incorporate fuzzy or ambiguous inputs derived from 

either human beings or from software agents. Despite the fact that this direction has 

attracted many researchers the implementation and interpretation of semantic similarity 

measures explicitly still remains a challenging task. Among the challenges, some 

questions that still need to be answered are, what is the appropriate theoretical foundation 

which can support what they measure, what kind of comparison can be between them, 
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and which of them are more suitable for a specific application. Originally semantics as a 

subject was initiated in philosophy as the mean to designate the relations between major 

concepts as well as the perception of human beings. One of the most seminal works in 

this field with respect the semantic similarity notion can be find in Tversky’s (1977) early 

work where he explained how human perception is based on a continuous search for 

similarities in objects and concepts. In the same direction, Gärdenfors (2004) introduced 

the notion of “conceptual spaces” where he described how human perception and 

description of the world, and especially about spatial environments, could be explained 

and be modeled by the aid of graph theory and eventually be quantified. Also he extended 

the notion of geographic space into the “conceptual space” by affirming that the 

mechanism where human perceives the spatial patterns in graphs and diagrams is similar 

to the one that is used in the 3-dimensional space at the physical world. The seminal work 

of Frank (1997) about the spatial ontologies provided an important linkage between the 

notion of semantics and geospatial information by explaining the uniqueness of 

geospatial data with respect their usage as semantic descriptors.  

During the mid of 1990s a new research direction was initiated, under the term 

“geo-semantics” or “geospatial semantics”, by MUSIL (Muenster Semantic 

Interoperability Lab) in Germany and the NCGIA (National Center for Geographic 

Information and Analysis) Research Initiative # 10 (Spatio-Temporal Reasoning in GIS) 

of the University of Maine1. The main objective of the field of geo-semantics is the study 

of context of geospatial data witch assembles technologies from various fields such as 
                                                 
1 http://www.ncgia.ucsb.edu/research/initiatives.html 
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Geoinformatics, AI, cognitive science, spatial databases and the Semantic Web (Kuhn, 

2005). According to the extensive research that Janowicz et al. (2013) have conducted to 

this direction, geo-semantics enable a plethora of methodologies that vary from top-down 

knowledge engineering and logical deduction to bottom-up data mining and induction by 

combining knowledge engineering with methods specialized to GIScience such as spatial 

reasoning, and geographic information analysis. One of his main contributions in his 

research about geo-semantics was that of its application in geospatial similarity. 

Specifically he enabled semantics-based geographical information retrieval by using 

semantic similarity and analogy reasoning (Janowicz et al., 2014). As Bhatt and 

Wallgruen (2013) have reported based on their extensive work on spatial cognition, 

representation, reasoning, and applied geospatial ontologies, the conceptual models in the 

direction of geospatial events’ and processes’ representation are gaining significant 

ground and proliferation since there is an extensive research focus especially in the last 

decade. There is a plethora of specific interest in the areas of geospatial semantics and 

taxonomies of geospatial events and geospatial processes under the spectrum of 

ontological methodologies and into the nature of processes in a specific spatial context 

(Galton and Mizoguchi, 2009; Hornsby and Cole, 2007; Worboys and Hornsby, 2004). 

Before we proceed with a further explanation about the application of geo-

semantics in scene similarity, also refered as semantic scene similarity, it is important to 

clarify what is so special about geo-semantics in geographic information and which is the 

motivation behind that. One of the first works addressing this critical issue belongs to 

Harvey et al., (1999), where as they mentioned geo-semantics is an essential component 
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for the needed interoperability of geospatial data and services so as the geographic 

information systems and services to have the capacity to function together without the 

need of human intervention. By achieving a sufficient degree of semantic interoperability 

it enables us to determine semantic similarities between concepts that are not limited to 

specific data structures and/or data sources. That becomes apparently true if we consider 

that although geographic information is based on the physical world there are many 

different conceptualizations that can describe the same physical processes or scenes. One 

can argue that geographic information is process-oriented and it spans across various 

levels of granularity. In the past this kind of data and functions have been processed and 

analyzed based on local understanding and properties. Nowadays though the geospatial 

data are distributed throughout the world, stressing out this way the importance of 

interoperability and common understanding in order to be able to be compared. Hence the 

question of how we can make GIS to retrieve autonomously the correct geospatial data 

and consequently find the necessary similarities among them without the subjective 

human intervention can be answered via the aid so geo-semantics. 

While the traditional similarity measures try to examine why and how the entities 

of a scene are grouped into categories and consequently are less or more comparable to 

each other, the main difference in semantic similarity is that this comparison is 

implemented between higher meanings in contrast with a purely structural comparison. 

Hence in this case the challenging task is to specify the appropriate “language” to express 

the nature of these entities as well as the necessary functions in order to determine the 

conceptual closeness of the compared entities rather than using rigid measurements that 
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could lead in inexact matches due to it’s lack of sensitivity. According to Janowicz et al. 

(2008), there are four core characteristics that should be taken under consideration in any 

measurement model in semantic similarity; 

• Properties of Semantic Similarity: In semantic similarity measures 

symmetry, transitivity, triangle inequality, and minimality are not always 

valid computations, for example if A is similar to B and B is similar to C it 

cannot be assumed that A is similar to C. Therefore in the majority of 

developed semantic similarity measures similarity is defined as an 

asymmetric relationship. 

• Semantic Similarity depends on Context: Semantic similarity is 

meaningful only under specific context for particular use cases while there 

is no universal similarity measure. For example similarity between to 

entities A and B cannot be defined without the presence of a reference 

entity C in order to describe to what both A and B are similar. 

• Semantic Similarity depends on Representation: The degree of similarity 

between two entities A and B is depending on the computational 

representation used for both of them, and therefore a certain similarity 

measure is obliged to a particular representation. 

• Semantic Similarity, Usability, and Cognitive Plausibility Comparing: The 

computed similarity rankings of compared classed, and/or scenes have to 

have a some kind of correlation with human similarity rankings 

(Rodriguez and Egenhofer, 2004).  
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As it becomes apparent from the above mentioned core characteristics, the 

selection of an appropriate similarity measure is critical as well as challenging task since 

on the one hand it has to incorporate the context of a scene without focusing only to it’s 

describing components / objects, and on the other hand to be flexible enough in order to 

avoid rigid computations (i.e Boolean values). As Sloman et al. (1998) pointed out a 

“concept is an idea that characterizes a set or category of objects”, with respect 

GIScience can be paraphrased as follows; a geospatial concept is the description of an 

idea that characterizes a geographic feature type. According to the seminal work of 

Schwering (2008) in computational cognition of spatial objects and geo-semantics, there 

are two basic constituents of a conceptualization with respect the semantic similarity, 

which are the objects and the concepts. Therefore in our case a geospatial object 

resembles a single geographic feature. One of her basic arguments was that the semantics 

of geospatial objects and concepts are described by some special characteristics, 

properties such as shape, size and location. Significant emphasis though was given in 

relations and specifically to spatial relations between the geospatial objects and concepts 

as a higher semantic descriptor for the needs of semantic similarity. Building on this 

direction, spatial relations are considered the capstone of the semantic similarity 

framework that was developed for the purposes of the present dissertation. Also she 

proposed five fundamental approaches, models as shown in Figure 2.1 as a synopsis to 

semantic similarity among geospatial datasets: 

• Geometric Models: They are based on the analogy of the semantic 

distance to the spatial distance, consequently similarity is calculated as a 
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function of spatial distance. A representative geometric model can be 

found on Gärdenfors (2004). 

• Feature Models: They are based on set-theoretic knowledge representation 

where the feature properties of a concept are Boolean. In this case two 

concepts are considered similar if only they have the same feature. A 

representative feature model can be found on Tversky (1977). 

• Network Models: They are based on graph-theoretic approaches by using 

semantic networks for knowledge representation. A representative 

network model can be found on Rada et al. (1989). 

• Alignment Models: Similarly with the feature models, the alignment 

models are based on commonalities and differences of the data with the 

difference that the latter embeds the relational structure of their properties. 

A representative alignment model can be found on Goldstone (1994). 

• Transformation Models: In contrast with the above mentioned semantic 

similarity models where they describe the concepts based on their 

properties and relations as descriptors to define their similarity, the 

transformation models use an entirely reverse approach. Similarity in this 

case is defined by the number of transformations that are necessary to 

distort a concept in order to make it transformationally equal with another 

one. A representative transformation model can be found on Hahn et al. 

(2003).  
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2.3 Qualitative Spatial Representation and Reasoning 
 

One of the key challenges in semantic scene similarity is to find the appropriate 

spatial representation and calculi in order to successfully incorporate the semantics of a 

scene and therefore to implement similarity measures based on higher-level information. 

Cohn and Hazarika (2001) seminal work on the area of spatial representation and 

reasoning, have introduced the notion of Qualitative Spatial Representation and 

Reasoning (QSR) in the field of GIScience to provide adequate solutions in challenging 

tasks such as the one of comparing spatial scenes. QSR has been traditionally applied in 

CV for visual object recognition and robot’s navigation by interpreting the results of low-

level calculations as higher-level descriptors of a spatial scene since it enables the 

incorporation of the semantic of that scene (Fernyhough et al., 2000). As Cohn and Renz 

Figure 2.1:  Semantic similarity measures according to different notions of similarity. 
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(2008) stated, “the use of qualitative predicates helps to ensure that scenes which are 

semantically close have identical or at least very similar descriptions”.  

The field of QSR involves abstraction methodologies and computational tools 

which address the representation and the reasoning about the space inside a non-metrical 

and formal frame (Freksa, 1991). This field has mainly evolved in AI (Stock, 1997) 

where spatial relations between objects in space consists the major component in this 

kind of knowledge representation. Rissland (2006) has pointed out the notion of AI in 

similarity. According to Cohn et al. (1997) the representation of QSR is based on the use 

of the spatial relations. A formal way to describe these relations given by the pre-

mentioned author is; a relation R consists of a set of tuples (d1,……,dk) of the same arity 

k, where di is the member of the corresponding domain Di and k is the number of entities 

on which the relation is formatted. Usually, the spatial relations are binary and expressed 

with the use of algebraic operators like union, intersection, complement, converse or 

composition of them. In the application filed of QSR though, the main approach is to 

define a finite set of relations that is jointly exhaustive and pairwise disjoint (JEPD) since 

the algebra of relations provides an infinite number of tuples. Borrmann and Beetz (2010) 

addressed that the basis of any formal reasoning is the calculus, which is a system of 

rules that permits us to extract new knowledge from an axiom in a logically consistent 

way. In the field of QSR the main spatial calculi entails various qualitative properties and 

relations among spatial objects and concepts, predominantly such as topology, direction, 

orientation, and distance as shown in Figure 2.2.  
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One of the most significant advantages that QSR provides is that this kind of 

reasoning and representation about the space is an abstract of the physical world, this way 

permitting computers to be able to calculate spatial relations of objects and/or concepts 

even in the case where quantitative information is absent or imprecise (Moratz et al., 

2011).  While a quantitative representation bases the measurement of relations in a unit 

that is generally available and standardized (Freksa, 1992), a qualitative representation 

enables the characterization of the essential properties of the objects of a spatial scene 

Figure 2.2: Definitions of qualitative spatial relations. 
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and their configurations. That indicates the semantic notion of qualitative spatial calculi 

since this kind of descriptions is quite natural to human cognition. Frank (1996) also 

addressed the importance of qualitative spatial calculi by stating that although the 

qualitative approach is lacking of absolute precision it is able to provide us with a 

simplified deductive reasoning when precise information is missing. To this direction, 

Chen et al. (2013), based on the extensive survey on qualitative spatial representations 

that they have contacted, mention that qualitative relationships enable a quite natural 

representation of spatial situations among the objects of a scene hence QSR results to a 

fundamental approach on reasoning and representation of spatial knowledge.  

 There are three complementary aspects, which constitute the core of spatial-

relation reasoning as stated by Egenhofer (2010), and establish a comprehensible basis 

for spatial and temporal reasoning. These are: 

• The identification of a calculus for the description and distinction of various 

spatial relations.  Current research effort in the field of QSR are mainly focused 

on closed sets of JEPD spatial relations so as there can be only one exact relation 

of any possible configuration that describes better this configuration. 

Consequently spatial relations result on the formation of an alphabet of an abstract 

language that is able to represent qualitatively any spatial configuration. 

• The arrangement of the recognized spatial relations into their conceptual 

neighborhoods in order to acquire pairs of relations of highest similarity.  

• The extraction of logical inferences that is necessary when common objects have 



 

 
 

44 

combined relations.   

Despite the fact that a significant amount of theoretical research for the 

application and the benefits of QSR formalisms in GIS already exist, only a limited 

number of implementations have been incorporated in todays existing GIS systems. The 

technological advances in formal methods in the fields of AI, QSR and spatio-temporal 

dynamics lead to intriguing innovative viewpoints of spatial informatics as a basis for 

next-generation GIS systems (Bhatt et al., 2011). Current GISs as well as web-GISs 

evolve the management of vast quantities of spatio-temporal data related with 

environmental phenomena, remote sensing imagery, and recently crowd-sourced real-

time information. The need of some or even all of these data to be combined becomes 

more critical suggesting the formation of a basis for a higher-level spatio-temporal 

analysis. Wallgrün and Bhatt (2011) pointed that the primary information theoretic 

modalities of the traditional GIS systems will undergo major changes while high-level 

ontological entities such as qualitative spatial relations, and the ability to represent and 

model them are expected to be the natural progression of next-generation GIS systems. 

The same vision is also shared from Cohn and Renz (2008) according to which next-

generation GIS systems will be based on concepts that arise from Naïve Geography 

(Egenhofer and Mark, 1995) where QSR techniques are essential. Specifically they 

pointed out the problem of human-computer interaction according to which the given GIS 

systems are incapable to incorporate intuitive and/or common sense representations, 

preventing this way human cognition abstractions of the data and queries in a qualitative 

manner. Bennett (2008) with his work in QSR addressed also the issue of flexible query 
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interpretation. Specifically, he emphasized the contrast between traditional GIS in which 

queries formation is based on a limited way depending on the way that data are stored in 

a database, and the flexibility that QSR provides by enabling more complex 

combinations. Also he discussed about another important aspect, the one of data 

consistency and integrity checking. For example it would be very useful to have spatial 

consistency constraints in a database such as “a railroad may not overlap with a 

building”. Although such constraints can be hand coded in a GIS, QSR provides the 

flexibility to formulate them with a spatial constraint language, which is more intuitive to 

the user, and therefore to create automatic inferences which allow more eligible detection 

of constraint violations.  

Bhatt and Wallgruen (2013) highlighted two basic requirement that next-

generation GIS systems should entail with respect the recent advances is QSR and in 

general the reasoning about objects, space and concepts. These are: 

- Knowledge engineering, semantics, and modeling: Competence in incorporating 

abstractions of objects, events, and processes of spatio-temporal phenomena as 

native entities, which preserve rich semantic characterizations within an 

ontological and conceptual framework which allows interoperability between 

systems and implementations. 

- Analytical reasoning: The computation of high-level reasoning mechanisms that 

are supported by the semantics of the formally modeled properties of domain-

independent and dependent aspects. 
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Despite the fact that the domain of QSR has gained significant recognition in the 

field of GIScience during the recent years, the majority of the research efforts have been 

focused on the data modeling and on finding suitable measures of similarity (Chipofya et 

al., 2013). The appropriate utilization and formalization of abstract and/or qualitative 

spatial relationships for the needs of a spatial scene similarity still remains a challenging 

task in the research domain. 

 

2.4 Spatial Relations 

QSR and consequently spatial relations gained significant recognition in the last 

decade, increasing their spectrum of applications mainly because of the need to construct 

more precise and robust systems for scene description that would be of higher-level 

understanding. Although the quantitative spatial information is an important source, there 

are cases where this kind of information is absent or even not sufficient. This becomes 

critical in applications where the context is more important than the content and 

especially when the semantics are needed describe the multidimensionality and 

complexity of a 2D scene with a more holistic way. In order to accomplish an adequate 

qualitative scene description based on an ontological approach there has to be adequate 

spatial calculi. The completeness of spatial calculi that are used for this purpose is mainly 

depended on the qualitative spatial relations who describe one or more spatial dimensions 

(Bhatt, 2010). 
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There are three major spatial dimensions or alternatively three fundamental 

aspects of space where the majority of research in spatial relations has been based on. An 

important notice is that the scientific foundation to determine spatial relationships is 

computational geometry. According to Clementini and Di Felice (1997) spatial relations 

can be classified as topological, the directional (orientation) and the metric. Topological 

relations (Egenhofer, 1989; Cui et al., 1993) are based on the geometric properties of a 

2D space and they achieve invariance in any topologic transformations (translation, 

rotation, and scaling). According to this important property also known as 

homeomorphism or topological isomorphism, even if two geometric objects have 

different shape or size, still their topological space will be equal. Directional relations 

(Freksa and Zimmermann, 1992; Papadias et al., 1995) are those that represent 

information regarding to the position of an object with respect to another and can be 

further classified as relative or cardinal. These relations are invariant to projective 

transformations by preserving collinearity and cross-ratio as well as invariant to scaling 

and translation but variant to rotations. Metric relations (Hernandez, 1991) are related 

mainly to angles and distances in the Euclidian space and are invariant to rotation or 

translation but variant to scaling. In the following table are presented the 3 fundamental 

spatial relations distinguished by their invariance under basic geometric transformations 

as shown in Table 1. 
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Table 2.1: Invariance of spatial relations under four basic transformations. 

 Topological 
Relations 

Directional 
Relations  

Distance  
Relations 

Rotation     -   

Translation       

Scaling      - 

Mirroring   -   

 

According to the notions of each type mentioned above, it can be concluded that 

the only metric and/or quantitative relations can be defied quantitatively while the 

topological and directional relations are of qualitative nature and therefore consist the 

basis of QSR. In the following paragraphs are explained some of the most representative 

models for each of these three categories which have gained significant recognition 

especially in the field of GIS since they are considered foundational in spatial cognition 

(Klippel et al., 2013). 

Topological relations: This category of spatial relations is considered as one of the most 

important since they can represent the essence of a spatial configuration (Egenhofer and 

Mark, 1995a). One of the most important reasons that this kind of relations is critical for 

applications such as the one of scene similarity is the fact that the constraints that they 

impose are mostly insignificant to subtle geometric variations. Also important is the 

ability to make qualitative distinctions among objects. The two most prominent and well-

known model for topological representation and reasoning are the Region Connection 

Calculus (RCC) (Cohn, 1997; Renz, 2002), and the n-Intersection (Egenhofer and 
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Herring 1990; Egenhofer and Franzosa, 1991). 

The RCC model is a first-order logic axiomatic theory of a set of eight binary 

topological relations and is based on a reflexive and symmetric primitive relationship 

between spatial regions C(x, y). In the literature, one can also found it as RCC-8. These 

are: disconnected (DC), externally connected (EC), partial overlap (PO), tangential 

proper part (TPP), nontangential proper part (NTPP), the inverse of TPP, the inverse of 

NTPP, and the Equal (EQ). One of the important advantages of the RCC-8 is the large 

number of topological relations that can be derived by using this model as also their 

semantics in spatial configurations are made explicit. Figure 2.3 provides an illustration 

of the RCC-8 continuity network with the 8 JEPD relations where the arrows resemble 

the sequence of the transitional relations assuming the continuous movements or objects’ 

deformations. Bellow their formal definitions as well as their interpretations are 

presented. 

𝐷𝐷(𝑥,𝑦) ≡ def  ¬𝐷(𝑥, 𝑦)                                  “x is disconnected from y” 

𝑃𝑃(𝑥,𝑦) ≡ def  𝑃(𝑥, 𝑦) ∧ ¬𝑃(𝑥,𝑦) ∧ ¬𝑃(𝑦, 𝑥)                             “x partially overlaps y” 

𝐸𝐷(𝑥,𝑦) ≡ def  𝐷(𝑥,𝑦) ∧ ¬𝑃(𝑥,𝑦)                               “x is externally connected with y” 

𝑇𝑃𝑃(𝑥,𝑦) ≡ def  𝑃𝑃(𝑥, 𝑦) ∧ ∃𝑧(𝐸𝐷(𝑧, 𝑥) ∧ 𝐸𝐷(𝑧,𝑦)  “x is a tangential proper part of y” 

𝑁𝑇𝑃𝑃(𝑥,𝑦) ≡ def  𝑃𝑃(𝑥,𝑦) ∧ ¬∃𝑧(𝐸𝐷(𝑧, 𝑥) ∧ 𝐸𝐷(𝑧,𝑦))  “x is a non-tangential proper 
part of y” 

𝑇𝑃𝑃−1(𝑥, 𝑦) ≡ def  𝑇𝑃𝑃(𝑦, 𝑥)                          “y is a tangential proper part of x” 

𝑁𝑇𝑃𝑃−1(𝑥,𝑦) ≡ def  𝑁𝑇𝑃𝑃(𝑦, 𝑥)                 “y is a non-tangential proper part of x” 

𝐸𝐸(𝑥,𝑦) ≡ def  𝑃(𝑥, 𝑦) ∧ 𝑃(𝑦, 𝑥)                                                          “x equals y” 
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Figure 2.3: The RCC-8 continuity network or conceptual neighborhood.  
 
 
 
 

The n-Intersection model is based on point-set topological theory where an object 

is described as a point set in a specified space ℝ and indicates if the interior (𝑥𝑜), which 

is the union of all open sets, the exterior (𝑥−), which is the set of all the points not 

contained in x and the boundary (𝜃𝑥), which is the intersection of the closure of x and the 

closure of the exterior of x, are intersect or not. In its simplest form, the topological 

relation between two 2D point set regions can be described by a 2 × 2 matrix also known 

as the four-intersection matrix or 4IM. 

                        

                           𝑅(𝑥,𝑦) �
𝑥𝑜 ∩ 𝑦𝑜       𝑥𝑜 ∩ 𝜃𝑦

 
𝜃𝑥 ∩ 𝑦𝑜        𝜃𝑥 ∩ 𝜃𝑦

�                                                                                   
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The 4IM model later on was evolved to the 9-Intersection model or 9IM in order 

to be able not only to classify relations between pairs of regions but also between all 

combinations of lines, point, and regions (Egenhofer et al., 1994). 9IM identifies eight 

different relations between two regions, and nineteen relations between lines and regions 

as described by the following 3 × 3 matrix. 

 

                                          𝑅(𝑥,𝑦)

⎣
⎢
⎢
⎢
⎡
𝑥𝑜 ∩ 𝑦𝑜       𝑥𝑜 ∩ 𝜃𝑦        𝑥𝑜 ∩ 𝑦−

 
𝜃𝑥 ∩ 𝑦𝑜        𝜃𝑥 ∩ 𝜃𝑦       𝜃𝑥 ∩ 𝑦−

 
𝑥− ∩ 𝑦𝑜        𝑥− ∩ 𝜃𝑦       𝑥− ∩ 𝑦−⎦

⎥
⎥
⎥
⎤

                                          

 

 

From the family of the n-Intersection models, nowadays the one that has been 

widely used and established as the basis for queries and assertions in the most popular 

GIS spatial database suites is the one proposed form Clementini et al., (1993), as an 

extension of seminal works of Egenhofer, known as DE-9IM. The “dimensionally 

extended” 9IM can describe 512 possible 2D topological relations using a Boolean matrix 

domain. All possible combinations are grouped into eight spatial predicates: equal, 

intersects, disjoint, touch, within, contains, overlap, and cross. In Figure 2.4 as illustrated 

DE-9IM is shown while Equation 1 presents the 3 × 3 intersection matrix where the 

model is based on. 
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     Figure 2.4: The DE-9IM for two overlapping polygonal geometries a and b. 
 
 
 
Equation 1: The 𝟑 × 𝟑 intersection matrix of DE-9IM. 

 
 

𝐷𝐸9𝐼𝐼(𝑎, 𝑏)       =

⎣
⎢
⎢
⎢
⎡ dim�𝐼(𝑎) ∩ 𝐼(𝑏)�      dim�𝐼(𝑎) ∩ 𝐵(𝑏)�       dim�𝐼(𝑎) ∩ 𝐸(𝑏)�

 
dim�𝐵(𝑎) ∩ 𝐼(𝑏)�       dim�𝐵(𝑎) ∩ 𝐵(𝑏)�      dim�𝐵(𝑎) ∩ 𝐸(𝑏)�

 
dim�𝐸(𝑎) ∩ 𝐼(𝑏)�       dim�𝐸(𝑎) ∩ 𝐵(𝑏)�      dim�𝐸(𝑎) ∩ 𝐸(𝑏)�⎦

⎥
⎥
⎥
⎤

 (1) 
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Directional relations: As Frank (1991) stated, the directional, or as referred to the 

literature, cardinal spatial relations describe qualitatively the orientation between two 

objects. The directional calculi are based on the assumption that a spatial object is placed 

relative to another one, by involving three principal elements: the target object, the 

reference object and the reference frame. Due to this fact, directional relations are more 

constrained than the topological ones but less than metrical information. Among the 

various directional representation models that have been proposed, two of the most 

commonly known are the ones derived from Frank’s work (Frank, 1991; Frank, 1996), 

named respectively the cone-shaped direction and the projection-based direction models. 

The first model is based on a cone-shaped calculus using four or eight disjoint sector of 

the space, which is divided by lines passing trough the reference point. The second model 

is based on a projection-based calculus using a horizontal and a vertical line across the 

reference point. An optimization that was derived by the combination of both of the 

previously mentioned models, was proposed by Isli (2004) namely cCOA, which also is 

considered to be closer to the human perception. Nowadays one of the most efficient 

directional models is the one proposed by Mossakowski and Moratz (2012) namely 

OPRAm (m is the number of lines passing through the points), which is able to 

incorporate information of different granularities in a single frame. In Figure 2.5 is 

illustrated the OPRAm model for a basic relation 𝑥4∠133 𝑦 with m=4. In this example the 

oriented point x is placed on the 3rd part of the space that is divided by the lines passing 

through the oriented point y, while y is placed on the 13th part decided by x.  
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                   Figure 2.5: The OPRAm directional model for a relation 𝒙𝟒∠𝟏𝟑𝟑 𝒚. 
 
 
Distance relations: This category of relations is the less critical than the two previous 

ones since distance relations alone are not sufficient enough for reasoning. Usually, the 

existence of at least the directional relations is necessary in order to have a meaningful 

representation and reasoning. There are two main groups in this category; the absolute 

which are based on metric measurements between two entities, and the relative which 

involve the qualitative measurement of the distance between two objects with respect a 

third one.  Some representative models in this category include the conceptual 

neighborhood graph for qualitative distance relations proposed from Burns and 

Egenhofer (1996) in which they define the relations 'zero', 'very close', 'close' and 'far'. 

Also, Clementini et al. (1997), used a combination of cone-shaped direction and absolute 

distance, Zimmermann and Freksa (1996) combined the Delta Calculus with a point-
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based directions, and Liu (1998) who proposed the qualitative trigonometry and 

qualitative arithmetic distance model. One of the most promising models nowadays is the 

ternary point configuration calculus (TPCC) proposed by Moratz and Ragni (2008), 

where it combines direction, using a double-cross calculus, with distance based one the 

two of the three points, resulting is 27 atomic JEPD relations. Figure 2.6 illustrates the 

reference system used by the TPCC model where f, b, l, r, s, d, c stand for front, back, 

left, right, straight, distant, and close. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        Figure 2.6: The reference system of the TPCC directional relation model. 
 
 
 

As it becomes apparent from the aforementioned research efforts in the direction 

of spatial representation and reasoning and especially the various spatial relation models, 
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there are still two notable limitations with respect the “features” on the terrain. According 

to Clark (2012) these are: 

 The ineligibility of basic topological relation models such as 9-Intersect and 

RCC-8 to incorporate spatial calculi between different geometric primitives. For 

instance in the two above mentioned models the calculations are implemented on 

area/area, area/line, and line/line while a real scene will require calculations such 

as line/area and/or point/area etc. 

 Due to the fact that these models are based on fundamental geometric 

computations using a defined set of primitives, it could be problematic in 

applications where abstraction of features is essential or the actual features are 

abstract concepts. 

 

2.5 Fuzzy Set Theory and Spatial Relations 

Although the present GIS systems provide a considerable number tools that 

enable spatial analysis based on relational models still are not adequate enough to 

incorporate the uncertainty as well as imprecision in modeling and decision support 

(Robinson, 2003). This becomes especially critical when metric information is absent or 

not sufficient. Stefanakis et al. (1999) addressed in detail the importance of equipping 

GIS packages with efficient tools, which are useful for decision-makers that are able to 

incorporate uncertainty of geographical phenomena. It becomes apparent that it is of 

essential importance to use alternative similarity measures to the traditional ones, which 
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will stem from axiomatic theories. Fuzzy set theory (Zadeh, 1965) consists of one of the 

most sufficient solutions in order to avoid the above-mentioned limitations. As shown by 

Cross and Sudkamp (2002), fuzzy sets, are extensively used as a panacea for applications 

involving uncertainty, they provide with an ideal explanation for the challenging tasks of 

semantic similarity and similarity in general. Given the fact that similarity is inherently 

vague, it can find a natural expression in fuzzy set theory since the majority of its 

constituted components and inference mechanisms can sophisticatedly be described via 

the use of fuzzy concepts and operations, respectively (Nedas, 2006). Therefore it 

becomes feasible to find an applicable way to measure this uncertainty by utilizing some 

type of qualitative information that can be translated into quantitative metrics. The gap 

between the qualitative and quantitative measures was bridged with the progress made in 

fuzzy set theory in the direction of spatial modeling (Dutta, 1991). Fuzzy set theory can 

be considered as an extension to the classical set theory by replacing the deterministic 

nature of the later (1-true or 0-false) with the degrees of belief. Before we proceed with 

explaining the applicability of fuzzy sets in spatial relations and consequently to semantic 

similarity it is essential to explain some fundamental disciplines and/or preliminaries of 

fuzzy set theory.  

 

Fuzzy Set Theory Preliminaries 

As discussed above, classical set theory, which is based on the Boolean logic, 

considers an object as a member or not a member of a given set. For example for a given 

set D the membership degree to which an object k belongs to the set A can be expressed 



 

 
 

58 

by the membership function μD that can hold two values, 0 or 1. Equation 2 shows the 

membership function in classical set theory, where b1, b2 are the boundaries of set A: 

Equation 2: The membership function in classical set theory. 

 

                                                      𝜇𝛢(𝑘) = �1,              𝑏1 ≤ 𝑘 ≤ 𝑏2
0,     𝑘 < 𝑏1 𝑜𝑜 𝑘 > 𝑏2

�                                         (2) 

On the contrary, the basic concept in fuzzy logic domain is the representation of the 

degree to which an object belongs to a specific set. Based on that, an object can belong 

partially in a certain set S according to the degree of belief, which is the concept that was 

introduced by the fuzzy logic domain. Following to that, each set of objects S = {si} then 

produces a fuzzy set FS, as shown by equation 3: 

 

Equation 3: Fuzzy set (Fs) in Fuzzy Logic. 

 
                                                   𝐹𝑠 = {𝑠𝑖, 𝜇𝑖 | 𝑠𝑖  ∈ 𝑆, 𝜇𝑠𝑖  ∈ [0,1]}                                           (3) 

 

where μsi the degree of belief with value ranging [0,1] with 0 indicating no-membership 

and 1 indicating full membership (Vazirgiannis, 2000). In Figure 2.7 is illustrated a 

graphical example of classification representation of the direction between two objects A 

and B. So supposing the azimuth for the two objects indicates that their direction is west, 

where θ is the azimuth, the representation of the direction will be as follows,  



 

 
 

59 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
Fuzzy Membership Function 

 One of the most critical steps in fuzzy set applications, which heavily affects the 

results of the decision-making process, is the selection of the appropriate fuzzy 

membership function. According to Burrough (1996), there are two major options 

available for selection the membership functions for fuzzy sets: (i) through an imposed 

‘expert’ model; and (ii) by a data driven multivariate procedure. In the first category an a 
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Figure 2.7: Classification of direction between two objects (a) based on classic 
membership function (b) based on fuzzy membership function. 
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priori membership function is used which is based on expert knowledge for the 

assignment of a degree of membership to individual entities with respect a lexical value 

characterizing a theme. Therefore this method is also known as the semantic import 

model (SI) (Baldwin and Zhou, 1984; Robinson, 1988). Figure 2.8 illustrates several 

basic conventional linear models that are used as membership functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8: Basic conventional membership functions. (a) L Function;   
(b)  ∧ Function; (c) ∏ Function; (d) Γ Function. 
 

 
 

In the first category the selection of the membership function is data-driven, 

meaning that the functions are locally optimized to match the data. This method is also 

known as natural classification model and its principle is similar to the one of cluster 

analysis and numerical taxonomy (Kaufman and Rousseeuw, 1990). Independently from 
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which of the two approaches will be selected, the critical issue is the form or shape of the 

membership function to be “human-like” and close to the reality. The definition of a fuzzy 

set U is based on the assignment to each element in the universe of discourse U a value 

from the real interval [0,1]. This degree resembles this element’s membership to the 

fuzzy set and relates to the degree of similarity or compatibility of this element with the 

concept described by the fuzzy set (Klir and Yuan, 1995). The assigning function is 

actually the membership function 𝜇𝑈 of the fuzzy set U, expressed as 𝜇𝑈:𝑈 → [0,1]. 

Fuzzy Relations 

 There are a variety of degrees of association or interaction between objects that 

can be used in order to formulate fuzzy relations. Each specific function of a fuzzy 

relation leads to a specific degree of membership of tuples in the relation. Hence in fuzzy 

set theory each relation is represented as an n-dimensional membership array where each 

n-tuple corresponds each entry in the universal set and for each entry is assigned a value 

in the interval [0,1]. According to Zadeh (1971) who introduced the similarity relations in 

order to specify the degree of similarity between elements of a universe U, there are two 

important types of relations. The first one is the fuzzy equivalence or similarity relation 

that is symmetric, reflexive, and transitive and resembles a generalization of the crisp 

equivalence relation. The second one is fuzzy compatibility relation, which is similar to 

the first one except the fact that is not transitive (Sudkamp, 1993). In fuzzy set theory and 

reasoning there are three fundamental concepts with respect the relations, which are 

intersections, unions, and completes corresponding to three basic scoring rules for 
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conjunctions, disjunctions, and negations (Equations 4a-c). As Klir and Yuan (1995) 

stated, “Since the fuzzy complement, intersection, and union are not unique operations, 

different functions may be appropriate to represent these operations in different contexts. 

The capability to determine appropriate membership functions and meaningful fuzzy 

operations in the context of each particular application is crucial for making fuzzy set 

theory particularly useful.” 

 

Equation 4(a-c): The three fundamental relations in Fuzzy Set theory. 

 
                  (𝐴 ∩ 𝐵)(𝑥) = min[𝐴(𝑥),𝐵(𝑥)] → 𝜇𝐴∧𝐵(𝑥) = {𝜇𝐴(𝑥),𝜇𝐵(𝑥)}                 (4𝑎) 

             (𝐴 ∩ 𝐵)(𝑥) = max[𝐴(𝑥),𝐵(𝑥)] → 𝜇𝐴∨𝐵(𝑥) = 𝑚𝑎𝑥{𝜇𝐴(𝑥),𝜇𝐵(𝑥)}           (4𝑏) 

                                𝐴(𝑥) = 1 − 𝐴(𝑥) → 𝜇¬𝛢(𝜒) = 1 − 𝜇𝛢(𝑥)                                     (4𝑐) 

 

According to the extensive research that has been conducted by Bloch (2005) on 

the direction of the development and application of fuzzy spatial relations and according 

to a more recent study (Calegari and Sanchez, 2007) there are significant advantages for 

using fuzzy spatial relations to the ontological description. The advantages of fuzzy 

spatial representation arise from the ability to decrease the semantic gap between 

quantitative information obtained from an image and higher concepts that ontology 

contains. This representation permits essentially ambiguous and indefinite concepts such 



 

 
 

63 

as “next to” to become integral aspects of a concept, especially when the semantics of 

such concepts are influenced by their environment and not solely by isolated objects. 

Hence it provides a rich framework for knowledge representation and spatial reasoning 

by avoiding the imprecision that might be caused by a deterministic approach of a 

subject-matter expert.” 

 

2.6 Fuzzy Spatial Relations in Semantic Scene Similarity 

 
As it was shown in the previous section, fuzzy set theory can play a critical role in 

the semantic similarity of spatial scenes since the degree of membership of a fuzzy set 

can be used a similarity measure. Therefore it can be considered that fuzzy set theory and 

semantic similarity are interrelated. These kinds of measurements can essentially be used 

to express the similarity and/or compatibility between a feature that belongs to a set and 

the basic concept that defines the set no matter if the concept is vague (i.e. “next to”). 

Hence the task of retrieving similar spatial scenes can be considered as a fuzzification of 

the classical information retrieval approach that was mainly based on searching for exact 

matches (Guesgen, 2002). 

Although the coarse spatial relations (topological, directional, and distance) that 

have been used extensively so far in scene matching provide simplicity and intuition, 

QSR in combination with fuzzy set theory is able to provide a coherent relaxation of the 

relational constraints imposed by them (Nedas and Egenhofer, 2008). There are two 

significant weaknesses that can be introduced by these kinds of relations in scene 
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similarity assessment. The first one is that deviations that small quantitative divergences 

may affect more the matching results than large quantitative divergences, rejecting this 

way the strong matches, while introducing less important ones. The second one is the 

incompetence of distinguishing among members of the same class, which may result to 

an assessment where all the relations of the same category to be recognized as equally 

similar. In Figure 2.9 are illustrated two examples that resemble the two above-mentioned 

limitations that coarse spatial relations present in a typical scene similarity assessment. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9: Limitations of coarse spatial relations in scene similarity assessment: 
(a) Coarse distance relationships in a conceptual graph may result in 
missmatching on highly similar candidates. (b) Incompetence of distinguishing 
among members of the same class resulting in equally similar. 
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Hudelot, et al. (2008) based on their extensive research in the direction of fuzzy 

spatial relations for spatial ontologies, have pointed out three key advantages that fuzzy 

representation offers enabling this way a bridge to the semantic gap. These are: 

• The ability to represent the inherent imprecision of a concept. For example the 

concept “next to” which by it’s nature vague and imprecise, it’s semantics are 

depending on the scale of the objects, and the context in which objects are with 

respect their surrounding environment. 

• The ability to embed expert knowledge for managing the imprecision with respect 

the concerned domain. 

• The ability to formulate an adequate framework basis for spatial knowledge 

representation and reasoning, achieving this way the deduction of the semantic 

gap between symbolic concepts and numerical information. 

 
Although fuzzy spatial relations in the context of a generic ontology can be 

successfully used in a variety of image processing tasks such as automated scene 

description (Keller and Wang, 2000), facial feature recognition (Cesar et al., 2002), and 

medical imaging (Colliot et al., 2006), our main concern in this dissertation is the use of 

fuzzy spatial relations for the representation of the structural knowledge of a scene for the 

purposes of semantic similarity. With respect the three major spatial dimensions / 

representations that were explained in previous section, what follows is their 

corresponding fuzzified definition.  
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For the fuzzy topological relations, according to Dubois (1980), there are three 

fuzzy set theoretic concepts, such as complementations c, t-norms t, and t-conorms T that 

can represent relations such as conection (i.e. intersects), inclusion (i.e. inside of), and 

exclusion (i.e. outside of) correspondingly. The fuzzification of topological relations is 

able to provide us with answers to questions such as whether the relations between two 

objects are satisfied or not and to what degree, and whether the relation of one reference 

object from the region of a conceptual space is satisfied to some degree. That becomes 

true especially in the case of inclusion and exclusion where they enable to define the 

degree of a fuzzy object that is included/excluded in another one. Concerning the 

adjacency between fuzzy sets, as Rosenfeld (1984) proposed, it can be defined using a 

non-symmetrical visibility concept or by a symmetrical way from topological concepts as 

proposed by Bloch (1996). 

Concerning the fuzzy directional relations, given the fact that this type of relations 

is inherently ambiguous and inexact, event in the case of crisp objects, the application of 

fuzzy sets can provide the best possible solution. The fuzzification of these relations 

enables a more flexible definition (Cinbis and Aksoy, 2007) that entails higher intuition 

and can describe more subjective aspects. 

The fuzzy distance relations has gained more recognition, as it can be found one 

the literature. According to Bloch (1999), there are two main categories in this type of 

fuzzy relation: distances that incorporate only membership functions and compare these 

memberships point-wise, and distances that include spatial distances in addition. These 
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definitions allow for a broader analysis of the composition and structure of images, for 

applications where structural topological and spatial relationships are of utmost 

importance. These distances achieve two goals in that they combine the membership 

values at different points in space S, while including in the calculation their proximity to 

S. The advantage of this approach is that distances are expressed algebraically and retain 

their properties, making them easier to translate to fuzzy cases. 

In the following paragraphs are presented the main approaches and algorithms 

that have attracted the majority of research focus in the direction of modeling fuzzy 

spatial relations. The following frameworks have been designed in a way that they 

incorporate calculations point – point, point – object, crisp object – crisp object and fuzzy 

object – fuzzy object. 

Aggregation of Angles: The basis of this approach as was stated by Krishnapuram et al. 

(1993) is the angular information between the two objects. Specifically the two objects 

are considered as fuzzy regions and the their properties as well as their relations between 

them are viewed as membership functions which are defined over the set of a-cut sets of 

the fuzzy regions. 

Compatibility assessment method: This method, which was introduced by Miyajima and 

Ralescu (1994), also known as Histogram of Angles, is based also on the angular 

information between two points as the previous one with the difference that the positive 

angles are calculated clockwise. Then the membership function of the spatial relation 

between these two points is derived by a trigonometric function. 
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Centroid method: As proposed by Keller and Wang (2000), this method is based on the 

computation of the centroids and following to that the fuzzy membership of the spatial 

relations is calculated, with respect the angular measurement of the centroids, using the 

same functions as in the aggregation method. A characteristic example in this category 

can be found on the work of Gudivada and Raghavan (1995) where the used the angles of 

the object centroids to define similarity based on directions. 

Projection and Dominance Method: Keller and Sztandera (1990) initially proposed this 

method, which is based on the a-level sets of the fuzzy sets’ projections onto two 

orthogonal principal axes. Following to that, a partial membership is computed based on 

a new dominance relation for each axis and then the final fuzzy set is derived by the 

combination of the partial memberships. A characteristic example in this category comes 

form the work of Nabil et al. (1996) where they proposed a projection-based method 

using conceptual neighborhoods to compute relation similarity. 

Fuzzy Morphology: This method initially proposed by Rosenfeld (1979) where he 

introduced topology in fuzzy sets but was further researched and improved by Bloch and 

Maître (1995) and especially in the direction of spatial relations. According to them, the 

proposed methodology based on mathematical morphology to describe the fuzzy 

distances incorporating the spatial information by using the present strong links between 

mathematical morphologies (i.e. dilation) and distances.  

R-Histogram: This method was initially introduced by Wang and Makedon (2003), which 

extended the idea of Histogram of Angles as a quantitative method for the definition of 
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directional relations between crisp objects. Later on, Wang et al. (2004) further improved 

this method in order to incorporate the calculation of arbitrary topology among objects. 

Histogram of Forces: This method was initially proposed by Matsakis and Wendling 

(1999) and consists of an idea that is different from the previous aggregation and 

histogram methods due to the fact that these ones were based primarily on point-to-point 

relations therefore they define objects as sets of points while this method incorporates 

crisp and fuzzy objects as longitudinal sections. A more analytical explanation of 

Histogram of Forces is given in the following chapter since is considered one of the 

building blocks of our proposed framework for the semantic similarity of spatial scenes. 
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CHAPTER 3: PROPOSED FRAMEWORK 

In this chapter it is proposed a framework for the development of sufficient 

metrics in order to appropriately describe the spatial context of a scene so as to create a 

spatial configuration signature. An ontology-driven approach (Section 3.1) based on the 

creation of spatial signatures in the component objects level, and the use of the Histogram 

of Forces of fuzzy Allen relationships are devised (Sections 3.2-3.4). In Section 3.5 a data 

mining procedure is applied in order to reduce the dimensionality and keep only the 

essential relationships that maximize the similarity scores. The similarity method applied 

on the derived histograms based on the use of a generalized Normalized Cross 

Correlation as it is explained along with the overall framework in Section 3.6. 

 

3.1 The Approach  

 The approach was designed in a way that will be able to be applicable in two 

different test cases in terms of type of geospatial data and their sources. Therefore in this 

chapter is presented the theoretical foundation as well as the explanation of the proposed 

framework and methodology, which justifies its selection and its applicability. The 

analytic presentations of the two datasets as well as the application of the similarity 

framework and its results for the two different test cases are presented in Chapters 4 & 5.  
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 We consider that a scene can be described by a prototypical ontology, which is 

comprised of a set of objects / key features that define this prototype. The terms object 

and feature are used interchangeably in the content of the present work. The scene 

similarity is mainly based on the spatial signature that characterizes the prototypical 

ontology and the comparison is based on matching spatial signatures between the 

prototypical ontology of a scene and the new unknown scenes. For the purposes of 

developing the appropriate similarity measure, Histogram of Forces coupled with fuzzy 

Allen relations have been implemented. Figure 3.1 illustrates a generic representation of 

the scene matching based on the Histograms of Forces coupled with fuzzy Allen 

relations. The analytical explanation of the proposed methods as well as its 

implementations will be discussed in the following subchapters. 

Figure 3.1: Scene similarity/matching based on the Histograms of Forces coupled 
with fuzzy Allen relations for pairwise combinations. 

3.2 Allen Relations  

 The adapted model for the representation of spatial relations is Allen’s Interval 
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Algebra, which was primarily applied on the temporal domain and mainly used in the 

field of AI (Allen, 1983). According to Allen’s Algebra, there are thirteen interval 

relations mutually exclusive and exhaustive: before, meets, overlaps, during, starts, 

finishes, their corresponding converse, and equal. Those relations can be applied on space 

by decomposing a 2D object into 1D parallel segments. In Table 3.1 the thirteen base 

relations used in Allen’s interval algebra are illustrated. The entire algebra also known as 

Allen’s interval algebra is comprised of 213 possible disjunctions of these base relations 

and has an NP-complete consistency problem (Vilain and Kautz, 1986). 

Table 3.1: The thirteen base relations of Allen’s interval algebra. 

Interval Base Relation Symbol Pictorial 
Example 

Endpoint Relations 

x before y ≺ xxx 

yyy 

 

 

 𝑋− < 𝑌−,      𝑋− < 𝑌+,   

𝑋+ < 𝑌−,       𝑋+ < 𝑌+ 

 

y after x ≻ 

x meets y m      xxxx 

        yyyy 

 

 

 𝑋− < 𝑌−,      𝑋− < 𝑌+,   

𝑋+ = 𝑌−,       𝑋+ < 𝑌+ 

 

y met by x m 

x overlaps y o       xxxx 

      yyyy 

 

 

 𝑋− < 𝑌−,      𝑋− < 𝑌+,   

𝑋+ > 𝑌−,       𝑋+ < 𝑌+ 

 

y overlapped by x o 

x during y d xxx 

yyyyyyyyyy 

 

 

 𝑋− > 𝑌−,      𝑋− < 𝑌+,   

𝑋+ > 𝑌−,       𝑋+ < 𝑌+ 

 

y includes x d 

x starts y s    xxx 

yyyyyyyyyy 

 

 

 𝑋− = 𝑌−,      𝑋− < 𝑌+,   

𝑋+ > 𝑌−,       𝑋+ < 𝑌+ 

 

y started by x s 

x finishes y f             xxx 

yyyyyyyyyy 

 

 

 𝑋− > 𝑌−,      𝑋− < 𝑌+,   

𝑋+ > 𝑌−,       𝑋+ = 𝑌+ 

 

y finished by x f 

x equals y ≡ xxxx 

yyyy 

 𝑋− = 𝑌−,      𝑋− < 𝑌+,   

𝑋+ > 𝑌−,       𝑋+ = 𝑌+ 
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According to this kind of algebra are described all the possible relations between 

two convex intervals. Every interval can be represented using the two end points of the 

interval as illustrated on the above table. When comparing the end points of two intervals 

according to the relations of the point algebra, two intervals can be related by the 13 

different JEPD base relations. 

Although Allen relations was initially invented for temporal reasoning in AI ever 

since 1983 when this seminal work was presented, these composition tables (also known 

as transitivity tables), the constructions of such tables have became a major challenge for 

the current QSR approaches (Ranfell et al., 1992). This argument was also supported by 

Guesgen, (2002) which as he stated, Allen’s logic is also applicable in spatial reasoning 

by interpreting the 13 Allen relations as spatial relations between objects. By applying 

Allen’s methodology on spatial relations it enables us to create an instrument to reason 

about space. An important work to this direction have been accomplished by El-Geresy 

and Abdelmoty (2004) where they presented a qualitative spatial reasoning engine for 

deriving automatically composition tables among various types of objects according to 

the space division theory inside the 9IM. 

This kind of spatial representation is very suitable for the present application of 

the ontology classification based on the spatial attributes of the objects for a number of 

reasons. Primarily, due to the homeomorphism between Allen’s temporal relations and 

the 1D topological relations in the spatial domain, these relations are able to extract 

combined topological and directional information as described later in the dissertation. In 
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addition, they divide the space in thirteen partitions as shown in Figure 3.2; each one for 

every relation, and the decomposition process is repeated in every direction, supporting 

the topological and directional information. 

 
Figure 3.2: Example of space decomposition in partitions according to Allen’s interval algebra. 
 

3.3 Histogram of Forces  

 
 Histogram of Forces (HoF) also known as F-histograms initially was introduced 

by Matsakis and Wendling, (1999) based on the idea that acceptable representations of 

relative position can be acquired by the deducing the handling of all the 2D and 3D 

objects to the handling of 1D entities. While this idea evolved with time, proposing 

further improvements, its basis relies on a concrete mathematical foundation for the 

evaluation of spatial relations between pairs of 2D objects, offering solid theoretical 

guarantees and nice geometric properties. It can be applied to raster as well as vector data 

and also it is very a robust method for handling fuzzy objects, as well as crisp objects, 

intersecting objects, disjoint objects, and unbounded objects, and bounded objects. Its 



 

 
 

75 

fundamental framework permits the calculation of multiple spatial representations such as 

the histograms of constant and gravitational forces. The first category of HoF offers a 

global perspective similarly to the histogram of angles, while the second one assigns 

more emphasis to the objects’ regions that are close and/or facing to each other. 

 Consider two 2D objects A and B. The forces acting between them can represent 

the spatial relation between these two objects. For every direction θ, the sum of 

elementary forces acting between those two objects is calculated in the direction θ 

(Figures 3.3 & 3.4). F-histogram 𝐹𝑟𝐴𝐵(𝜃) is the aggregation of these forces that maps  

ℝ → ℝ+ and resembles the degree of support for the proposition, “A is in direction θ of 

B”. The magnitude of each of the forces is computed as an inverse ratio of 𝑑𝑟, where d is 

the distance between the points contained in objects A and B, and r regulates modes for 

capturing different information. For instance when r = 0, the histogram of constant forces  

(𝐹0) is computed, which delivers a global perspective without incorporating the distance 

between A and B. When r = 2, the histogram of gravitational forces  (𝐹2) is computed, 

which delivers a local view that is more sensitive to nearby points but independent of the 

global scale, which means that HoF are also sensitive to distances between the objects. 
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Figure 3.3: Calculation of histogram of forces. (a) Histogram of force 𝑭𝒓𝑨𝑨(𝜽) is the resulting scalar of 
elementary forces which are extending from the points of A to those of B in the direction θ. (b) A 
spatial representation between A and B in the case of histogram of constant forces (r = 0). (c) A 
spatial representation between A and B in the case of histogram of gravitational forces (r = 2). 
 

 

Figure 3.4: Principle of the calculation of the histogram of forces 𝑭𝑨𝑨(𝜽) (adapted from Matsakis et 
al., 2010). 
 
 

(a) (b) (c) 
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Beyond the fact that HoF are an extremely suitable method for handling the 

majority of possible representations of objects/features, they also provides other 

significant benefits, which are essential for the purpose of scene similarity task. 

According to Matsakis et al. (2004), HoFs are relative position descriptors with high 

discriminative power. A great advantage that they introduce is the fact that they achieve 

invariance in affine transformations such as commutativity, orthogonal symmetry, central 

dilation (scale), stretch, translation and rotation as shown in Figure 3.5.  Likewise, any 

two of the following elements, 1) an affine transformation, 2) a relative position (via 

HoF), and 3) the “transformed” relative position, allow the third one to be recovered. 

This becomes very critical in scene matching where invariance to various transformations 

is one of the key challenges (Stefanidis et al., 2002). 

 
 

 

Figure 3.5: Affine properties of HoF. Given two objects A and B, HoF present invariance to affine 
transformations and manage to preserve the similarity between these two objects (i.e. (A0 , B0) 
matches to (A5 , B5)). 
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Another important advantage of HoF which is very suitable for the design of our 

prototype is the fact that they present great fexibility on modeling of fuzzy spatial 

relations (Matsakis et al., 1999). There are three main methods that are most common in 

the literature to achieve this; the aggregations method (Krishnapuram et al., 1993), the 

compatibility method (Miyajima and Ralescu, 1994), and the method based on force 

categorization (Matsakis et al., 2001). The fuzzy relations satisfy four fundamental 

properties wich form the axiomatic basis where the concept of HoF was built upon: in the 

case where objects are adequitely far apart, then each one can be seen as a single point in 

space; the directional relationships are insensitive to scale changes; the semantic inverse 

principle (Freeman, 1975) is preserved (i.e. object A is to the left of object B as much as 

B is to the right of A); all directions have the same importance. These properties enable 

the determination of how the fuzzy relations respond when the objects are similarity-

transformed (Matsakis et al., 2010). Although HoF were initially designed as relative 

position descriptors based primarily on directional information, they are able to 

incorporate other types of spatial relations equally successfully as it will be explained in 

the following subchapter.  

 

3.4 Fuzzy Allen Relations Coupled With HoF  

 
 There are various approaches that can be used for the fazzification of Allen 

relations. The majority of them use fuzzification based on the human defined variables, 

primarily for use in temporal domain for the qualitative aspects of temporal knowledge 
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and reasoning processes (Schockaert et al., 2008). As was already mentioned though, 

fuzzy Allen relations gained high applicability in the spatial domain also, being able to 

model all the types of spatial relations where vagueness and/or fuzziness are represented 

at the relation’s level. 

For the purposes of a complete ontology driven scene similarity in the context of 

QSR, what was considered important was to combine all the aspects of spatial relations 

according to a fuzzy approach. Despite the fact that the pre-existing models such as the 

RCC and the 9IM have already been extended so as to incorporate the fuzziness 

(Palshikar, 2004; Shi and Liu, 2007), they are still having some limitations. In general, 

the majority of the existing fuzzy relations applicable only for disjoint topological 

relations. Concerning specifically the RCC and the 9IM, although they have rich 

topological information are lacking of the directional component. For these reasons, for 

the relation’s representation method proposed by Matsakis and Nikitenko (2005) found to 

be very valuable. According to this approach the authors are utilize a fuzzy version of 

Allen’s interval algebra to extend F-histogram to the incorporation of representation of 

topological relations too (Allen, 1983). The fuzzified Allen’s relations are given by the 

following equations (Equation 5) while the graphical representation of them is illustrated 

in Figures 3.6 and 3.7. 
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Equation 5: The fuzzified Allen’s relations. 

 
𝑓<(𝐼, 𝐽) = 𝜇�−∞,−∞,−𝑏−3𝛼2 ,−𝑏−𝛼�(𝑦) 

𝑓>(𝐼, 𝐽) = 𝜇�0,𝑎2,∞,∞�(𝑦) 

𝑓𝑚(𝐼, 𝐽) = 𝜇
�−𝛽,−3𝛼2 ,−𝛽−𝛼,−𝛽−𝛼,−𝛽−𝛼2�

(𝑦) 

𝑓𝑚𝑖(𝐼, 𝐽) = 𝜇�− 𝑎
2,0,0,𝑎2�

(𝑦) 

𝑓𝑜(𝐼, 𝐽) = 𝜇�−𝑏−𝑎,−𝑏−𝑎2,−𝑏−𝑎2,−𝑏�(𝑦) 

𝑓𝑜𝑖(𝐼, 𝐽) = 𝜇�−𝑎,−𝑎2,− 𝑎
2,0�

(𝑦) 

𝑓𝑓(𝐼, 𝐽) = min (𝜇
�−𝑏+𝑎2 ,−𝑎,−𝑎,+∞�

(𝑦),𝜇
�−3𝛼2 ,−𝛼,−𝛼,−𝛼2�

(𝑦),𝜇�−∞,−∞,𝑧2,𝑧�(𝑥)) 

𝑓𝑓𝑖(𝐼, 𝐽) = min (𝜇�−𝑏−𝑎2,′𝑎𝑏′𝑏,′𝑏+𝑎/2�(𝑦),𝜇(−∞,−∞,−𝑏,−(𝑏+𝑎)/2)(𝑦),𝜇(𝑧,2𝑧,+∞,+∞)(𝑥)) 

𝑓𝑠(𝐼, 𝐽) = min (𝜇�−𝑏−𝑎2,′𝑎𝑏′𝑏,′𝑏+𝑎/2�(𝑦),𝜇(−∞,−∞,−𝑏,−(𝑏+𝑎)/2)(𝑦),𝜇(−∞,−∞,𝑧/2,𝑧)(𝑥)) 

𝑓𝑠𝑖(𝐼, 𝐽) = min (𝜇
�−𝑏+𝑎2 ,−𝑎,−𝑎,+∞�

(𝑦),𝜇
�−3𝑎2 ,−𝑎,−𝑎,−𝑎/2�

(𝑦),𝜇(𝑧,2𝑧,+∞,+∞)(𝑥)) 

𝑓𝑑(𝐼, 𝐽) = min (𝜇
�−𝑏,−𝑏+𝑎2,−3𝑎2 ,−𝑎�

(𝑦),𝜇(−∞,−∞,𝑧/2,𝑧)(𝑦)) 

𝑓𝑑𝑖(𝐼, 𝐽) = min (𝜇
�−𝑏,,−𝑏+𝑎2,−3𝑎2 ,−𝑎)�

(𝑦),𝜇�𝑧2,𝑧,+∞,+∞�(𝑦)) 

 
where a = min(x,z), b = max(x,z), x is the length of segment (I) of argument object A, z is 

the length of segment (J) of reference object B and x, y, z are the line segments of the two 

objects. The majority of the relations can be defined by single membership function and 

some of them by minimum of multiple membership functions such as d(during), 

di(during by), f ( finish), fi ( finished by). When the fuzzy Allen relations are shared 

between them then these two relations are directly neighbors. If 0 < r1(I,J) < 1 then 0 < 

(5) 
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r2(I,J) < 1 such that r1(I,J) + r2(I,J) = 1 and r1(I,J), r2(I,J) are neighbors. This indicates 

that the sum of all the Allen relations is always one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: The 13 fuzzified Allen relations between two segments 
I and J on an oriented line x is the length of I (the argument), z is 
the length of J (the referent), a is min(x,z), b is max(x,z), and y is 
the relative position of I to J (adapted from Matsakis and 
Nikitenko, 2005). 
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According to that model, the thirteen interval relations mutually exclusive and 

exhaustive as they described on previous subchapter are: < (before), m (meets), o 

(overlaps), d (during), s (starts), f (finishes), and their corresponding converse > (after), 

mi (met by), oi (overlapped by), di (contains), si (started by), fi (finished by), and = 

(equal) that can be applied in space to decompose a 2D object into 1D parallel segments. 

 

Figure 3.7: Graphical representation of the 13 Allen’s spatial relations between segments of a pair 
of objects, the reference and the argument. 

 

For the representation of the relations, we have selected the HoF, which provides 

the relative position of a pair of 2D objects (Figure 3.8). Due to the homeomorphism 

between Allen’s temporal relations and the 1D topological relations in the spatial domain, 

these relations are able to extract combined topological and directional information. The 

HoF attaches a value to the argument object A that lies in a specific relation B in 

direction θ, and it is defined as, 
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Equation 6: The Histogram of Forces between two objects. 

 
                                                𝐹𝐴𝐵(𝜃) = ∫ 𝐹(𝜃,𝐴𝜃(𝑣),𝐵(𝑣)𝑑𝑣+∞

−∞                                    (6) 

Figure 3.8: The positioning of two objects, position of argument object A relative to reference 
object B based on HoF. On the right side the relation R1 has the the highest fuzzy logic value and 
so is the correct one. 

 
 

One of the most critical steps for the fuzzy representation of the relations is the 

correct choice of membership function according to the given application. A commonly 

used trapezoidal membership function is presented with Equation 7. 

Equation 7: Trapezoidal fuzzy membership function. 

 

                                 𝜇(𝛼,𝛽,𝛾,𝛿)(𝑢) = max (min�𝑢−𝑎
𝛽−𝛼

, 1, 𝛿−𝛼
𝛿−𝛾

� ,                                     (7)   

 
where μ is the function in a set X (μ : X) [0,1] and u,α,β,γ,δ  ∈  R ˄ α ˂ β ≤ γ ˂ δ. For 

the specific case of the given study, a polygonal membership function was utilized for the 
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treatment of the longitudinal sections, which was proposed by Salamat and Zahzah 

(2012). Specifically the calculation and extraction of the component objects of each 

ontology’s feature class in a pairwise fashion. For instance, given an ontology with a 

feature class comprised of five objects A, B, C, D, and E, according to equation 8, ten 

unique pairs of objects have been derived such as [AB, AC, AD, AE, BC, BD, BE, CD, 

CE, DE].  

Equation 8: k-combination of a set S. 

 

                                                                   𝑛!
((𝑛−𝑘)!𝑘!)                                          (8)                                 

where n is the number of objects and k is the number objects under to be compared (k =2 

for pairwise calculations). 

Given two objects A and B the calculation of the HoF begins with the 

computation of the contours and edges of both objects. The algorithm begins with a fix 

angle and lines passing via the vertices of the two polygons that are drawn. Then the 

intersected line with a boundary is calculated and then the projections of these points 

create the line segment. Furthermore, the fuzzy Allen relations are calculated with the use 

of fuzzy logic connectors. This process is repeated for the remaining twelve segments, 

and all the relations are summed and multiplied by the total surface areas of the objects 

between the given line segment. Finally, the angle is increased by one degree and the 

aforementioned procedure is repeated in the range 0o– 360o. The resulting histogram of 

fuzzy Allen relations is a representation of the total area of the part of object A that faces 
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the part of object B in a predefined direction θ, under a specific relation. All this 

information has been stored in matrices of dimension 13x360 (13 relations, 360o), 

containing actual values that represent topology direction and also distance. This is very 

essential for the purposes of scene similarity which has to be based in comparable 

quantitative measurements and will enable a meaningful and accurate comparison using a 

Normalized Cross Correlation between HoFs, as it is explained in the following 

subchapter. 

 

3.5 Optimal Attribute Selection  

 
Before the application of the similarity procedure, an important step is to reduce 

the dimensionality of the extracted relations in order to compare the scenes based only on 

the most optimal relations and so to increase the overall scores. Therefore it is important 

to select only the relevant relations that purely characterize each ontology category and 

eliminate form the similarity procedure the irrelevant ones. In the data mining literature 

that issue also referred as “curse of dimensionality” (Hastie et al., 2009), which is a major 

problem that directly affects the success of data mining algorithms due to the increase of 

the sparsity. In order to cope with that issue, the solution can be found on one of the most 

essential components of data mining and machine learning, called attribute subset 

selection. In our case the word attribute refers to the spatial relations that have been used 

which are thirteen in total. Another important motivation for this optimal selection was to 

further reduce the variance caused by high differences on the attributes of the scenes, 
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contributing that way in a higher invariance in overall. 

For the attribute selection process the input that is used is the extracted relations 

from the training scenes. That selection was based on the fact that the training data are 

able to provide more information in order to determine which attributes are most optimal. 

Hence we utilize only the most essential ones in order to maximize the similarity results 

and classify with higher accuracy each of the test airport ontologies to the correct 

category. For the implementation, Weka v3.6.8 has been used which is open source 

software with a very complete inventory of algorithms for the majority of machine 

learning applications (Hall et al., 2009). The overall subset selection scheme was based 

on a wrapper approach where a data-mining algorithm is applied in order to find the best 

possible attributes subset. The selection is based on two major components; the evaluator 

algorithm, which determines the merit of single attributes or subsets of attributes and the 

search algorithm, which is the search heuristic. More specifically for the attribute 

evaluator the Classifier Subset Evaluator has been used where the classification scheme 

selected to be the NBTrees (Kohavi, 1996). NBTree is a hybrid between decision trees 

and Naïve Bayes classifiers that creates trees in which every leaf is a Naïve Bayes 

classifier for the instances that reach the leaf (Witten and Frank, 2005). For the search 

algorithm, the Best-first was used (Dechter and Pearl, 1985), which is a graph-based 

heuristic search algorithm that searches the feature space based on a greedy hill-climbing 

optimization technique. The evaluation applied at the training data set for each of the 

ontology categories separately.  
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3.6 Scene Similarity Framework 

 
The main idea in which the entire methodology is based on is to create a spatial 

signature for each prototypical ontology in the component objects level and by using the 

HoF of fuzzy Allen relationships to develop a similarity method applied on the derived 

histograms of the same objects in each scene. The similarity was based on the use of a 

generalized Normalized Cross Correlation (NCC) between the matrices that are generated 

from the Histograms of Forces. 

NCC has been traditionally used in digital image processing for applications such 

as image registration, template matching and histogram matching in general. It was 

selected as a similarity measure due to its robustness as also due to its suitability to the 

specific application. One of the main advantages of the NCC is that is invariant to Y axis 

which represents the area of pixels while the X axis remains constant for all the 

histograms. On the other side a drawback is that the typical NCC is applicable only 

between matrices of different size such as for example the image matrix and the template 

matrix that is always of smaller size (Lewis, 1995). In order to overcome this we adopted 

a generalized NCC proposed by Padfield et al. (2011), which provides the flexibility of 

comparing matrices of the same size. Specifically, as it was mentioned, HoF was 

translated into matrices that contain the values of each of the 13 relationships between an 

object pair, in the direction 0o – 360o. At this level the NCC is applied between every 

object pair of the test data set ontologies and the training data set ontologies. For 

instance, given 10 unique object combinations for each ontology (objects: A, B, C, D, 
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and E), we calculate for each pair of the training data with the corresponding of the test 

data. For example, for the extracted relations between an object A and an object B, the 

calculation will be such as: 

 

NCC1 (ABtest, ABtraining_1)… NCC (DEtest, DEtraining_1) 

NCCn (ABtest, ABtraining_2)… NCC (DEtest, DEtraining_2). 

 

After finding the correlation coefficient (0 – 1) for every corresponding object 

pair between the tested ontologies and all the other training ontologies of the same 

category then we calculate the average value of all the correlation coefficients and the 

similarity score is derived. Figure 3.9 illustrates the main framework flowchart that was 

designed for the implementation of the scene similarity task. The algorithmic 

implementation of the similarity algorithm of HoF coupled with fuzzy Allen relations as 

well as the matching assessment was developed in Matlab.  
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Figure 3.9: Main framework flowchart for the implementation of the scene similarity task 

 
 
 



 

 
 

90 

CHAPTER 4: COMPOSITE SCENES IN BUILT ENVIRONMENTS 

In this chapter it is presented the application of the proposed methodology 

described in Chapter 3. This is the first test case whereby the study is comprised of 

composite scenes in the built environment. In this test case we consider as built scenes 

the spatial scenes that consist of manmade structures. Specifically the first test case 

addresses structured built environments in satellite imagery, using airport compounds and 

how the proposed semantic similarity can overcome the local dependences and 

differences of each airport scene and provide us with comparable results. In Section 4.2 

the study area and data that was utilized are presented while in Section 4.3 is presented 

the scene model of this test case. Section 4.4 concludes with the similarity results. 

 

4.1 Introduction  
 

 In the present study we consider that composite objects comprise components of a 

spatial scene. Therefore spatial scenes can be represented as a composite of geographic 

information constructs which they convey a higher level information by encupsulating 

the interelations between the functionality, internal structure and usage of these scenes. 

Given the fact that an ontology manages to identify and model the concepts and their 

relationships between the objects comprising a scene, it enables a higher scene 
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understanding and/or description of the image content by linking also the contextual 

information in semantics level. The spatial arrangement of these components often 

implies usage and as such may be adequate to differentiate sub-classes. More specifically 

in our test case the compisite objects are considered the fundamental functional 

components, which comprise the ontology “airport”, as they are described via the spatial 

content of the satellite imagery. Based on the feature class of the aforementionent 

components that describes the ontology we calculate the spatial signature, in pairwise 

fashion, enabling this way a comparison between the prototypical/known ontologies and 

the uknown ones. 

 

4.2 Study Area and Data  
 

The dataset was comprised of fourty airport scenes that have been acquired by 

Digital Globe commercial imaging satellite WorldView-2 that were used as the main 

dataset for the collection of the feature class objects geometry. More specifically, the data 

used were the panchromatic images, level 2a, of .46m GSD at nadir, acquired in the 

period of 12/2010 – 7/2012. The study area was focused on the African continent. Figure 

4.1 illustrates the distribution of the all the airport locations accros the continent while 

Table 4.1 presents the twenty six airports that were used for our analysis since the 

remaining fourteen scenes have been considered unsaficied due to their lack of basic 

components. 
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Figure 4.3: Distribution of the all the airport locations accros the continent. 
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The main reason behind incorporating data from an entire continent was to 

provoke a more challenging scene-matching task since every region, in country or even 

state level, presents variances at the size and the shape of the airports’ basic components 

as well as at their spatial distribution. For instance, the spatial characteristics of an 

international airport in a capital city, which usually is very well structured, will 

significantly different from a less structured airport or primitive in a rural or even in a 

dessert area where sometimes just a house serves as a terminal. A visual example of this 

argument is illustrated in the Figure 4.2 where Dirkou airport located in the desert area of 

Nigeria is contrasted with Jomo Kenyatta International Airport, which is the main 

international airport serving the capital of and largest city, Nairobi in Kenya. 

 

Table 4.1:  Airport scenes that have been used for our study.  
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As it becomes apparent by the two airports in Figure 4.2, a scene-similarity 

procedure based on metric information and consequently in the shape and the size of the 

constituted components of the airports, will not provide as with sufficient results since 

they vary according to the functionality and the purpose of each airport. That becomes 

(b) 

(a) 

Figure 4.2: Infrastructural differences between varius airports. (a) Jomo Kenyatta 
International Airport of Nairobi in Kenya. (b) Dirkou Airport in Kenya. 
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especially critical when we need to compare airports from different countries in global 

level where their infrastructural standards as well as their specifications diverse.  

 

4.3 The Scene Model  
 

In order to overcome the aforementioned limitations we consider that a scene can 

be described by a prototypical ontology, which is comprised of a set of objects / key 

features that define this prototype as it was described in the previous chapters. For the test 

case of the built scenes the scene similarity is mainly based on the spatial signature that 

characterizes the prototypical ontology and the comparison is based on matching spatial 

signatures between the prototypical ontology of a scene and the new unknown scenes. 

More specifically, based on Table 4.1, three major airport categories have been 

distinguished based on the usage type, named as “Civilian”,  “Joint”, “Military”, 

consisting of nine airports scenes in the first type, eight in the second, and three in the 

third type. 

Five component objects have been selected for the description of the feature 

classes of the ontology “airport”. These components were selected in order to be the most 

descriptive as well as common to all the scenes: the runway (component A), the taxiway 

(component B), the terminal (component C), the vehicle parking (component D) and the 

aircraft parking (component E) . In cases where an component object type was more than 

one, for example in the case of taxiways, only the major ones have been selected. Figure 

4.3 illustrates an example of the airport ontology’s main components. By identifying 



 

 
 

96 

these key components of the airfield class ontology, we formulate the framework for 

deciding the appropriate qualitative measurements for use in the determinations of 

similarity. 

 
 

4.4 Experiments and Results 

 
Initially, the collection of the geometries for the airfield components was 

implemented using ArcGIS by manually digitizing geometries based on visual 

interpretation of the very well defined features, since the need for automatic feature 

detection was out of the scope of this study. For the purpose of the scene similarity, since 

the given data was used as training set, a set of synthetic airports was created based on 

Figure 4.3: Component objects of civilian feature class, Aba Segud airport in Ethiopia. 
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the summary statistics of the known airports in order to check the similarity application. 

Specifically, twenty synthetic airports have been created for each of the three ontology 

categories. Consequently the main objective was to test if a classification scheme is able 

to classify these unknown scenes to their correct category based on the proposed 

semantic similarity methodology.  

After the collection of the geometries from the training dataset and the creation of 

the synthetic components of the test dataset we proceed with the extraction of the spatial 

signatures for both datasets using the HoF. Given the fact that the airport ontology is 

comprised of five components, based on Equation 8, as it was described in Section 3.4, 

we formulate ten possible pair combinations of the constituted components. The 

following examples present a graphical illustration of the application of HoF in three 

different conditions. 

The first example, as shown in Figure 4.4, describes the case where two objects 

have a degree of overlap, in the second example, as shown in Figure 4.5, the two objects 

are disjointed, while in the third example, as shown in Figure 4.6, the one object is 

included in the other. The information of the extracted spatial signatures has been stored 

in matrices of dimension 13x360 (13 relations, 360o), containing actual values that 

represent topology direction and also distance. Since scene similarity has to be based in 

comparable quantitative measurements, the aforementioned step becomes essential and 

will enable a meaningful and accurate comparison using the NCC. As a reminder, the 

resulting histogram of fuzzy Allen relations in the following figure is a representation of 
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the total area of the part of object A that faces the part of object B in a predefined 

direction θ, under a specific relation. 

 
 
 
 
 
 
 
 
 

 
 

 

 
 
 

 
Figure 4.4: Overlap example of resulted fuzzy Allen relations coupled with HoF between the 
objects Taxiway (argument) and Aircraft Parking (reference). (upper) The two component 
objects. (lower) HoF and the percentages of each relationship. 
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Figure 4.5: Disjoint example of resulted fuzzy Allen relations coupled with HoF between the 
objects Aircraft Parking (argument) and Vehicle Parking (reference). (upper) The two 
component objects. (lower) HoF and the percentages of each relationship. 



 

 
 

100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.6: Inclusion example of resulted fuzzy Allen relations coupled with HoF between the 
objects Aircraft Parking (argument) and Terminal (reference). (upper) The two component 
objects. (lower) HoF and the percentages of each relationship. 
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As it can bee seen from the three different examles, HoF provide the flexibility on 

describing relations between more complex shapes such as objects with concave and 

convex hull shape. Aslo, It has to be noted that among the advantages of this approach, it 

is also sensitive to distance although it provides combined information about topology 

and direction. For example, if the distance of the two objects in Figure 4.5 increases, it 

will reflect on the distance between the two curves at the corresponding HoF. 

The next step for the calculation of the semantic scene similarity procedure was 

the implementation of the spatial calculus based on the NCC. The above illustrated HoFs, 

as it was mentioned, were translated into matrices that contain the values of each of the 

13 relationships between an object pair, in the direction 0o – 360o. At this level the NCC 

is applied between every object pair of the testing / synthetic airports and the training / 

real airports. Given the fact that we have 10 unique object combinations for each airport 

we calculate each pair of the training data with the corresponding of the test data. For 

example, for the extracted relations between A (Runway) and B (Taxiway) the 

calculation will be: NCC (ABtest, ABtraining_1)…NCC (DEtest, DEtraining_1). After finding the 

correlation coefficient (0 – 1) for every corresponding object pair between the tested 

airport and all the other training airports of the same category then we calculate the 

average value of all the coefficients and the similarity score is derived. 

In order to verify the proposed scene-matching scheme we tested the synthetic 

airports against the training airports to see how they classify in the correct category. We 

run the experiments before and after the subset attribute selection to check the effect on 
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the overall results. The experiments have resulted to a correct classification for all the 

three categories deriving high similarity scores. As it was proven the application of data 

mining procedure significantly affected the scores providing a more accurate 

categorization of the scenes and reducing the amount of the processing time, and the 

overall complexity. In Figures 4.7 - 4.9 the similarity score charts for the three ontology 

categories before the attribute selection are presented, while in Table 4.2 the 

corresponding average scores with the standard deviations are presented. 
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Figure 4.7: Similarity scores for the Civilian class without the attribute selection. 
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Figure 4.8: Similarity scores for the Joint class without the attribute selection. 
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Table 4.2: Similarity score statistics before the attribute selection. 

Civilian Class Civilian Joint Military 

Mean 0.834 0.667 0.633 

St. Dev. 0.001 0.004 0.004 

Joint Class Civilian Joint Military 

Mean 0.709 0.779 0.623 

St. Dev. 0.004 0.0009745 0.006 

Military Class Civilian Joint Military 

Mean 0.702 0.634 0.737 

St. Dev. 0.006 0.006 0.002 

 
As it can be seen from Table 4.2 as well as from Figures 4.7 - 4.9, the synthetic 

scenes have higher similarity scores to their corresponding category indicating a correct 
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Figure 4.9: Similarity scores for the Military class without the attribute selection. 
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categorization. The mean values denote that there is a sufficient difference of the 

correctly classified airports with respect to the category where they actually belong to. 

Concerning the standard deviation, the low values indicate that data are clustered closely 

around the mean, which shows higher reliability of the classification. In the following 

figures (Figures 4.10 - 4.12), the similarity score charts for the three ontology categories 

after the attribute selection are presented; while in Table 4.3 the corresponding average 

scores with the standard deviations are presented. An overall chart is presented in Figure 

4.13 that illustrates the improvement on the similarity scores after the application of the 

attribute selection. 
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Figure 4.10: Similarity scores for the Civilian class after the attribute selection. 
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Figure 4.11: Similarity scores for the Joint class after the attribute selection. 
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Figure 4.12: Similarity scores for the Military class after the attribute selection. 
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Table 4.3: Similarity score statistics after the attribute selection. 

Civilian Class Civilian Joint Military 

Mean 0.890 0.729 0.809 

St. Dev. 0.001 0.007 0.004 

Joint Class Civilian Joint Military 

Mean 0.767 0.837 0.795 

St. Dev. 0.008 0.0034131 0.004 

Military Class Civilian Joint Military 

Mean 0.817 0.68438 0.83 

St. Dev. 0.007 0.01 0.001 
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Figure 4.13: Similarity scores improvement for all the ontology categories after the application of the 
attribute selection. 
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As shown in Figure 4.12, there is a significant improvement after the selection of 

the most relevant spatial relations. In overall, the scene-matching for the categories of 

“Civilian” and “Military” ontologies have higher means of similarity scores as it was 

expected. The explanation is that the category “Joint” consists of less distinctive class 

object in comparison with the other two categories since ontologically this category falls 

in between the other two. Despite this outcome, the classification and consequently the 

scene-matching in this category remains completely correct and well defined. 

After the successful verification of the proposed scene-matching scheme, a final 

experiment involving the validation of the overall invariance adequacy that can be 

achieved. For this test, an airport scene from the training data, category “Joint” was 

selected and distorted by means of scale (30% rescale) and rotation (15%). In 

continuation, the two scenes, original and distorted have been compared based on the 

proposed scheme and using only five selected relations. The similarity score was found to 

be 0.941 that is very high even after the applied distortion proving the adequacy of HoF 

in invariance in affine properties, which is very critical for the scene similarity purposes. 

In Figure 4.14 the two images used for the invariance validation are presented. 
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(a) (b) 

Figure 4.14: Invariance check of HoF (a) Original image, (b) distorted image. 
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CHAPTER 5: COMPOSITE SCENES IN SOCIAL MEDIA EVENTS 

This Chapter presents an application of the proposed methodology described in 

Chapter 3 to a second test case, which is, a study area comprised of social media feeds for 

a natural disaster event. In this test case we consider as transient scenes the spatial scenes 

that consist of spatiotemporal clusters describing the responses of the crowd to a certain 

event. More specifically, in Section 5.2 we are introducing a novel social multimedia 

triangulation process that uses jointly Twitter and Flickr content in a two-step integrated 

process in order to delineate the impact area as the overlap of multiple view footprints. In 

this approach, we practically crowdsource approximate orientations from Twitter content 

and use this information to orient accordingly Flickr imagery and identify the impact area 

through viewshed analysis and viewpoint integration, modeling this way the spatial scene 

of a natural disaster event in order to explore its discernible patterns and their similarities. 

The results of the application of semantic similarity assessment in this test case are 

presented in Section 5.3. 

 

5.1 Introduction  
 

Fostered by Web 2.0, ubiquitous computing, and corresponding technological 

advancements, social media have become massively popular during the last decade. The 

term social media refers to a wide spectrum of digital interaction and information 
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exchange platforms, ranging from blogs and micro-blogs (e.g. Twitter, Tumblr, and 

Weibo), to social networking services (e.g. Facebook), and multimedia content sharing 

services (e.g. Flickr and YouTube). Regardless of the particularities of each platform, 

these social media services share the common goal of enabling the general public to 

contribute, disseminate, and exchange information (Kaplan and Haenlein, 2010). 

Traditional web-accessible information has always been rich in geographic content (Silva 

et al., 2006), and this of course remains true for social media content. But in addition to 

geographical references within the data, social media is also becoming increasingly 

geotagged as a result of the proliferation of location-aware devices (Hurst et al., 2007; 

Valli and Hannay, 2010; MacEachren et al., 2011; Stefanidis et al., 2013b). Accordingly, 

social media content is emerging as a rich source of geospatial information, presenting 

our community with many opportunities and challenges (Sui and Goodchild, 2011). The 

opportunities are primarily associated with the potential of these crowdsourced data to 

complement authoritative datasets by contributing timely information (e.g. Gao et al., 

2011). The challenges are reflections of the very nature of these datasets: diverse data 

structures and formats, and variations in quality and accuracy (Agichtein et al., 2008). 

Driven by the allure of opportunity, the geographical community has been 

experimenting over the past few years with harvesting geospatial information from social 

media content. For example, studies addressed the use of Twitter reports to gain 

knowledge regarding the breaking and progression of natural disasters such as wildfires 

(De Longueville et al., 2009), earthquakes (Crooks et al., 2013) and flooding (Fuchs et 

al., 2013). The spatiotemporal analysis of Twitter content has also been used to track 



 

 
 

111 

disease outbreaks (Signorini et al., 2011; Sugumaran and Voss, 2012), or to identify the 

formation of international communities and the communication of information during 

political crises (Stefanidis et al., 2013a). While these studies are advancing our ability to 

understand the geospatial content of social media and the manner in which they are used 

to communicate various forms of information, they were primarily focused on just a 

portion of social media content: text. However, social media content information is not 

just textual. Flickr and Instagram offer massive records of imagery, and YouTube videos 

are rich in visual content, providing an additional dimension through which information 

is communicated. Some early attempts to exploit the content of these additional services 

have primarily focused on the analysis of point patterns. For instance, Li and Goodchild 

(2012) studied point patterns of georeferenced Flickr imagery in conjunction with 

toponyms in their metadata to identify places through user references to them. Other 

efforts attempt to recognize activity and behavioral patterns by analyzing these 

spatiotemporal points of geotagged entries, such as identifying attractive destinations 

(Kisilevich et al., 2010) or constructing travel itineraries (De Choudhury et al., 2010). 

Despite these efforts, the multimedia content of social media remains 

underexplored. In this paper we contribute towards bridging this research gap by 

examining the benefits of the complementary use of heterogeneous sources of social 

multimedia feeds to assess the impact of a natural disaster. More specifically, we are 

introducing a novel social multimedia triangulation process that uses collaboratively 

Twitter and Flickr content in a two-step integrated process: Twitter content is used to 

identify toponym references associated with a disaster; this information is then used to 
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provide approximate orientation for the associated Flickr imagery, allowing us to 

delineate the impact area as the overlap of multiple view footprints and therefore to 

model the scene in order to explore its discernible patterns. In this approach, we 

practically crowdsource approximate orientations from Twitter content and use this 

information to orient Flickr imagery and identify the impact area through viewshed 

analysis and viewpoint integration. This approach allows us to triangulate numerous 

images by having them pointed towards the crowdsourced toponym location while 

avoiding computationally intensive image analysis tasks associated with image 

orientation (e.g. the identification of conjugate features). In this study case we present an 

approach and demonstrate its performance using a wildfire event as a representative 

application.  

 

5.2 An Updated Scene Model 

 
One of the most challenging tasks in this case study is the scene modeling 

adequate to incorporate the semantics of a transient formatted scene as well as capable of 

handle the ambiguity and vagueness that describes a spatial scene of this type. That 

becomes critical in the case where we do not have a scene in a built environment where 

its constituted components are well-defined buildings such as in the first test case but 

instead we have clusters of information in space, which is more conceptual and fuzzy. 

Based on the main argument of the ontologically-driven semantic similarity framework 

that was described in Chapter 3, the scene modeling and therefore scene comparison task 
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becomes a solvable problem since this approach enables us to handle this type of scenes 

and geospatial information as well.  

 As we observe there are discernible patterns when it comes to event reports in 

social media. These patterns comprise (at least) three main components: the event 

location itself, the locations (or clusters of locations) from which social media reports are 

provided, and the urban space in the event vicinity. There may be multiple granualarities 

associated with this analysis, whereby the event may be for example a major fire few 

miles away from a city, all the way down to a highly localized event in a town square. In 

this dissertation, in order to be consistent with the study that we presented in Chapter 4, 

we are focusing on events at a scale that can be monitored through traditiobnal remote 

sensing techniques, and thus focus on an event scale comparable to the former (fire some 

miles away from a city) rather than the latter (small, highly localized event). 

Consequently, in the given study case, a transient scene can be considered as an 

ontology comprised of the actual area of the natural disaster (wildfire in our case), the 

disseminated and/or user generated information about this incident and the reference 

location/area that is impacted from this event such as the nearest city. All three 

components of the event’s feature class contain both geospatial information as well as 

contextual information by the social media feeds. While the two of the three components 

have an actual spatial extend the challenging part at this point is the delineation of the 

impact area provided by the social media. In the following figure (Figure 5.1) are 

illustrated the component objects of a wildfire event feature class. 
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5.2.1 A Cross-Source Triangulation Framework 

 
As discussed above, our main objective is to integrate social media content 

referring to an event (e.g. a natural or anthropogenic disaster) across sources in order to 

advance our capability to geolocate this event and delineate its footprint. In order to meet 

this objective we introduce a novel multimedia triangulation framework2. Through this 

framework, contribution patterns are extended from simple point clouds (indicating the 

location of the contributors) to become the equivalent of views of a particular event 

(which involve an understanding of the relationship between the contributor and the 

event). These views can then be synthesized to delineate the event footprint via viewshed 

                                                 
2 Parts of this Section were published in Panteras et al. (2014) 
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Figure 5.1: Component objects of a wildfire event feature class. 



 

 
 

115 

analysis. We accomplish this goal through the two-step process that is summarized in 

Figure 5.2. The first component of our approach entails Twitter content analysis for the 

identification of toponym references associated with the event of interest (presented in 

Section 5.2.2). Using this information we then harvest Flickr imagery using geolocation 

and tag constraints: we query the Flickr Application Programing Interface (API) to 

retrieve images from the broader vicinity of the toponym, and with tags that are related to 

it as well. These images are then oriented using the toponym information as a reference 

point, and their viewable area footprints are integrated via viewshed analysis in order to 

derive an estimate of the event footprint (as a probability map), (in Section 5.2.2.2). The 

underlying assumption in our approach is that tweets contain references to the location of 

the event, whereas Flickr contributions provide views of it. This methodology represents 

a cross-platform social multimedia analysis approach for event triangulation. 

While Twitter is utilized in this framework to derive the approximate location of a 

given event (which can then be further refined using Flickr), it should be noted that other 

sources may also be exploited for the extraction of such information. For example, a 

toponym reference can be extracted from other communication avenues, such as news 

media feeds or blogs, which could substitute the Twitter reference point extraction 

process in Figure 5.2. Another source of such information may very well be Flickr itself, 

as image annotations may contain toponym references. However, such annotations in 

Flickr tend to vary in terms of their frequency (Ames and Naaman, 2007; Nitta et al., 

2014), thus potentially limiting the suitability of Flickr annotations alone for this purpose. 

This is further attenuated if we consider the data volume differences between Twitter and 
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Flickr. For example in this particular study, the number of Flickr contributions is roughly 

0.5% of the number of tweets reporting the same event. This is consistent with the reports 

of overall data traffic associated with these two social media services (Croitoru et al., 

2014). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 5.2: The cross-source triangulation framework. 
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5.2.2.1 Event Localization using Toponym References in Twitter 

 In order to best communicate how the various components of our framework are 

operating and integrated, we use the 2012 wildfire of Waldo Canyon in Colorado Springs 

(Colorado, US) as a case study. The wildfire started in June 23, 2012 and was not fully 

contained until July 12, 2012 (the study period), which is used as the study period in this 

paper. During that time, the wildfire consumed a total area of 74 km2, and was considered 

the most destructive wildfire in Colorado’s history at the time based on the extent of 

damage to property (McGhee, 2013). Figure 5.3 provides an overview of study area, 

showing Waldo Canyon to the northwest of Colorado Springs, with the actual wildfire 

area overlaid along with the location of geolocated Flickr images during the event. 

 

Figure 5.3: Overview of the study area. 
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We collected relevant Twitter data from the Twitter API using the keyword ‘Fire’ 

over the study period, resulting in a corpus of 97,866 tweets among which 41.4% are 

retweets. It is worth noting that as we analyze the content of tweets rather than their 

spatial distribution, the presence of relatively high retweet levels is likely to contribute to 

the emergence of toponyms in our data corpus, thus further facilitating the detection of 

the relevant toponyms. We therefore view retweeting as a crowdosourced curation 

process, whereby the general public weighs upon twitter content and assigns gravity to it 

in a variety of ways, with retweeting being the most prominent (e.g. Boyd et al., 2010). 

The content of the tweets corpus was analyzed in order to generate the word-

cloud shown in Figure 5.4. This entailed parsing the text to remove all non-hashtag 

punctuation (e.g. emoticons), removing articles, and converting all text to lowercase. The 

word-cloud visualizes the frequency of individual words in our Twitter data corpus, with 

larger words been encountered more frequently. It is easy to observe that, after the word 

fire (which was the keyword used to query the Twitter API for this study) the 

predominant terms that emerge are geographical in nature, with ‘Waldo’ being the 

dominant among them – either by itself or as a part of a compound hashtag. This heavy 

use of geographical references in social media narrative when reporting natural disasters 

has also been noted in other natural disaster studies. Vieweg et al. (2010) stated that in 

their studies toponym references were present in as many as 40% of tweets reporting 

wildfires and 18% of tweets reporting flooding. This is also consistent with studies 

addressing the broad presence of toponyms in reporting various types of breaking news 

(Lieberman and Samet, 2011; Stefanidis et al., 2013a). 
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The Twitter data corpus was then converted to lowercase and filtered to extract all 

hashtags. Figure 4 shows the frequency over time of the 10 most popular hashtags for the 

duration of the wildfire event. As can be seen from it, ‘#waldocanyonfire’ has emerged as 

the top hashtag associated with this event, a term which encompasses both the nature of 

the event and the location of it. The emergence of hashtags like this through a bottom-up 

process, from the crowd and adopted by the crowd, serves as further indication for the 

value that the public places on the locational information when referring to major events 

such as this. In fact, all 10 most popular hashtags were of the form 

{‘#’,<location>,<event>}. 

 
 
 
 
 
 
 
 

Figure 5.4: Word-cloud of Tweeter most frequent terms and hashtags during the wildfire. 
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Similar to Figure 5.5, in Figure 5.6 we show the frequency of the 10 most popular 

toponym references in the Twitter narrative associated with the event. The results 

confirm the popularity of Waldo Canyon, while also suggesting the emergence of a 

hierarchical structure in the toponym references, with the State (Colorado) leading, and 

the particular area within it (Waldo) following. The remaining toponym references relate 

to the areas that were secondarily affected by the wildfire event, e.g. Flagstaff Mountain, 

and the smaller towns of Manitou and Estes. In our case we selected the toponyms 

Figure 5.5: Usage of most frequently adopted hashtags over the wildfire period. 
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manually for quality control purposes, however this process can be automated using a 

gazetteer. Using Waldo Canyon as the prominent location in the Twitter corpus, we 

retrieved the point location of this toponym from a gazetteer (Google Geocoder), and 

used it as the reference point of the event in subsequent analysis. Once the approximate 

geolocation of the event is determined through the analysis of Twitter content (toponyms 

and hashtags) we proceed with the analysis of Flickr contributions to delineate the impact 

area of this event, as described in Section 5.2.2.2 below. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.6: Usage of most frequently adopted toponym terms over the wildfire period. 
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5.2.2.2 Impact Area Delineation through Viewshed Analysis of Flickr  
 

While Twitter provides textural information of the event, Flickr provides us with 

visual evidence of the event in the form of images. Such information is often 

accompanied with geolocation information either as exact geographical coordinates (via 

metadata), manual placement of the image on a map (via the Flickr map interface), or as 

an approximate location (via geographically relevant keywords, i.e. toponyms). In our 

study we utilize the imagery metadata, which is provided in the Exchangeable Image File 

(Exif). Exif data provides a range of metadata about the contributed image, including 

detailed information about the date and time, focal length (fc), image dimensions (L) and 

shutter speed. In addition, information about the model and the make of the sensor can be 

found. Based on such information, all the camera specifications can be retrieved from 

existing online databases. Finally, in some cases information concerning the direction of 

view of the image can be found under various Exif fields, for example the “GPS 

Direction” which is provided when the camera device is equipped with either GPS or 

electronic compass. However, such information is often lacking. 

Flickr data can be retrieved through a dedicated API3, similarly to Twitter, which 

supports the user-defined queries. For our study we retrieved data based on a number of 

query parameters: (a) photos must be geotagged (i.e. has_geo=1); (b) photos must have 

the tags wildfire and Colorado (i.e. tags="wildfire,colorado", tag_mode="all"); (c) 

photos must have the title or description that contains Waldo Canyon Fire (i.e. 

                                                 
3 http://www.flickr.com/services/api/flickr.photos.search.html 
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text="Waldo Canyon Fire"); (d) photos must be within a bounding box (bbox) defined by 

the study area (i.e. bbox="-105.316,38.523,-104.291,39.224"); and (e) the time stamp of 

the photo must be in the time period of the study (i.e. min_taken_date="2012-06-24", 

max_taken_date="2012-07-04"). Using these parameters a total of 427 images were 

retrieved of which only 191 (less than 50%) had Exif information. However, while for 

some of these images the angle of view (AOV) can be derived from Exif information, 

none of these images included the observer’s orientation (i.e. azimuth). This fact, which 

appears to be frequent in Flickr data (Wueller and Fageth, 2008), serves as one of the 

primary motivations for developing our viewshed analysis methodology. As a result, we 

use the coordinates of the toponyms and the Exif information to derive both the direction 

of view (as estimated by the azimuth) and the AOV (as estimated from the focal length 

and the image size), which we turn to next. 

As expected, the contributions in this case are consistent with observed social 

media and blogosphere patterns (e.g., Stefanidis et al. (2013) and Shi et al. (2007) 

respectively): approaching a power law distribution, with few users contributing large 

portions of the data, and a majority of users making minimal contributions. In our case 

study the 427 Flickr images that were retrieved were contributed by 38 distinct users, 

with the median contribution per user being 1 photo (compared to the average of 11). 

This deviation between the median and the average values is indicative of the degree of 

skewness of the contributions among users. 
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5.2.2.3 Azimuth and Angle of View Calculation 
 

The purpose of estimating the azimuth and the AOV is to orient and constrain the 

extent of the view from each image location. For this purpose, we first establish the AOV 

using the sensor parameters (i.e. focal length and image dimensions as provided by the 

image Exif file), and then orient the AOV by calculating the azimuth between the 

observer location and the event reference point. Generally, three AOVs that can be 

calculated for a given image: the horizontal, the vertical, and the diagonal. As our 

objective is to establish the extent of the footprint of the event (i.e. wildfire), we utilize 

the horizontal AOV, which is calculated as: 

 
Equation 9: Calculation of the horizontal AOV, φAOV. 

 

     𝜑𝐴𝐴𝐴 = 2𝑡𝑎𝑡−1 �
𝐿

2𝑓𝑐
�        (9) 

 
 

where L is the image width and fc is the sensor focal length. Using equation (9), the AOV 

has been calculated for the 191 images for which an Exif file was available. For the 

remaining 236 images that did not include Exif metadata, the average of the 191 AOVs 

that were calculated using the Exif data was used as an approximation. Considering that 

Flickr imagery is increasingly contributed by mobile devices with relatively similar 

camera characteristics4, the use of an average value for imagery lacking AOV 

information is a reasonable approximation (Singla and Weber, 2011). 

                                                 
4 https://www.flickr.com/cameras 
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In order to orient the AOVs, we calculated the azimuth between each image 

location and the event reference point (as described in Section 3.1). More specifically, the 

calculation of the azimuth for every image was based on the geodetic azimuth using the 

following formula (Yang et al., 1999): 

 

Equation 10: Calculation of the geodesic azimuth, θ. 

 

𝜃 = 𝑡𝑎𝑡−1 �
sin ( 𝜆2 − 𝜆1) cos(𝜑2)

cos(𝜑1) sin(𝜑2) − sin(𝜑1)𝑐𝑜𝑠(𝜑2)𝑐𝑜𝑠 ( 𝜆2 − 𝜆1)
� (10) 

 

Figure 5.7: The AOV and azimuth of a given Flickr image. 
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where, ϕ1, λ1 and ϕ2, λ2 are the geographical coordinates of the Flickr image location (or 

the observer) and the event reference point respectively. As a result of this calculation, 

each Flickr image is now associated with a geographic location and an oriented AOV 

from which a viewshed analysis can be carried out in order to delineate the footprint of 

the event. 

 

5.2.2.4 Viewshed Analysis 
 

The information extracted in the previous section (i.e. the event reference point, 

and the azimuth and AOV of each image) can be utilized for estimating the footprint of 

the event we analyze. The underlying principle of this estimation process is that observers 

that contribute images related to the event are doing so from locations at which the event 

is visible. It should be noted that here we do not assume that the viewable area of all 

images is identical, but that these viewable areas share one or more common areas that 

are of interest. Based on this, we apply a crowdsourcing approach for estimating the 

footprint of the event: while each observation may cover a different viewable area and a 

corresponding footprint on the ground, by superimposing all footprints we can derive an 

estimation of the event footprint. This process can also be seen as a spatial voting 

process, were each observer – through the contributed Flickr image – casts a vote on the 

location of the event in the form of a viewable area. The accumulation of these votes, as 

measured per unit area in the form of a heat map, can then lead to “hotspots” in which the 

event is most likely to be found. 
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In order to estimate the footprint of the event through the superimposition of the 

footprints of individual views, we must first calculate the footprint of each view 

separately. Given a viewer location, an AOV and a view direction, the problem of 

estimating the footprint can be transformed into a viewshed analysis problem. In this 

problem setting, the viewer parameters are used together with a Digital Elevation Model 

(DEM) of the area for finding the visible areas of a surface from a given observer 

location. Viewshed analysis is a well-established technique, which spans across various 

application areas, from navigation and site selection to landscape planning and 

telecommunication systems (e.g., Nagy, 1994; Fisher, 1995; De Floriani and Magillo, 

2003, Sander and Manson, 2007). In our framework, viewshed analysis is utilized to 

calculate the viewable areas (or cells in the case of a raster grid) between observer and 

points in the study area, given the reference point of interest (i.e. the event reference 

point) based on the elevation difference between these points. By systematically applying 

this calculation to all cells in the study area, we generate a binary map showing the 

viewable area for each observer.  The superimposition of all binary maps for all observers 

then results in a heat map, where each cell in the map accumulates the number of times 

the cell was flagged as viewable. It should be noted that while here we assign the same 

weight to each binary viewshed map during the superimposition process, other weighting 

schemes could be applied in order to enhance the heat map fidelity for a specific purpose. 

For example, given a time interval, viewshed maps may be weighted according to their 

timestamp in order to generate a heat map that highlights the extent of the wildfire during 
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that time interval. However, as in this case study we aim to explore the full extent of the 

fire, this option was not pursued. 

The implementation of the viewshed analysis was carried out in the ArcGIS 

environment through a workflow consisting of a set of python scripts. This workflow, 

which systematically applies the viewshed calculation for each image in our data set, 

provides the ability to control the calculation parameters used. In particular, for each 

image we set the angular limits of the viewshed calculation as the left and right azimuths 

of the AOV of the image (which can be derived from the AOV and the azimuth of each 

image), and set a minimum and a maximum range parameter (measured from the 

viewer’s location) to limit the distances from the viewer for which the viewshed 

calculation is carried out. The values of these range parameters are set as a function of the 

average distance between the event reference point and the location of each Flickr image. 

It is worth noting that in our experiments we utilized the National Elevation Data (NED) 

data, a 10-meters resolution DEM that is available through the United States Geological 

Survey (USGS). The final step of our viewshed analysis includes the superimposition of 

all viewshed raster grids, resulting in a heat map. Cells having high values in this heat 

map indicate locations that have been visible more in Flickr imagery in relation to the 

event, while cells having low or zero values indicate locations that have not been visible 

in such imagery. Based on these values, we can then we analyze hotspots the heat map in 

order to identify highly visible locations, i.e. locations that were of interest to many 

viewers on the ground. 
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5.2.2.5 Hotspot Detection 
 

In the final step of our framework we utilize the heat map that was generated in 

order to identify hotspots and delineate their extent as an approximation for the footprint 

of the wildfire event. Here, we refer to a hotspot as a spatial cluster of cells for which 

high heat map values exist, i.e. clusters that are highly visible to observers in the 

viewshed analysis. Several well-studied spatial analysis methods exist for the detection of 

hotspots, among which are Kernel Density Estimation (KDE), Moran’s I, and Getis-Ord 

(Gi*) (Kuo et al., 2012). KDE, which is based on a spatial filtering process, produces a 

smooth density surface by estimating the surface density (Silverman, 1986; Xie, 2008). 

However, a key difficulty in implementing KDE is the filter bandwidth as well as the 

ability to test the statistical significance of the results. 

Another possible measure is Moran’s I, which estimates spatial autocorrelation 

among similar (low or high) values. While Moran’s I could be used for detecting 

hotspots, its inability to automatically distinguish between high or low hotspots (Griffith, 

1987) limits its usability for our purpose. In view of these limitations, we utilize the 

Getis-Ord Gi* statistic (Ord and Getis, 1992), which enables one to identify statistically 

significant spatial clusters of both high cell values (“hotspots”) and low cell values (“cold 

spots”) in the heat map. A key advantage of the Gi* statistic is that it allows testing the 

results for statistical significance using calculated z-scores. In order to identify hotspots 

in the viewshed heat map we applied the Gi* statistic to the heat map, calculated the 

corresponding z-scores, and used them to generate four classes. Due to the fact that we 
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need to find the most significant hot spot in order to reduce the identification of hot spots 

to a single one, the null hypothesis was performed appropriately by maximizing the z-

score values (Goodchild, 1986). Hence the hot spots analysis was based on the following 

p-value thresholds: 90% significant (z-score ≥1.645), 95% significant (z-score ≥1.960), 

99% significant (z-score ≥2.576), and 99.9% significant (z-score ≥3.291). All non-

significant cells were grouped in a fifth class. It should be noted that by overlaying two or 

more significant level heat maps it is possible to generate a heat map of significance level 

ranges. For example, overlaying the 95% significance heat map on top of the 90% 

significance level would result in three types of pixels, namely pixels below 90%, 

between 90% and 95%, and above 95%. 

 

5.3 Experiments and Results 
 

In order to showcase the utility of our approach in a real-world crisis setting as 

well as to formulate the necessary ontologies for the applicability of the semantic scene 

similarity we applied it to the 2012 Waldo Canyon wildfire. For this purpose we collected 

both Twitter and Flickr data, as discussed in Section 5.1, and applied the proposed 

analysis framework in every day of the event separately in order to delineate the impact 

area of the fire using our cross-sourced triangulation approach and proceed with the 

similarity procedure based one the extracted ontologies. The impact area was estimated 

by using the toponym reference, as derived from Twitter, as the reference point for the 

AOV calculation, followed by a viewshed analysis of each Flickr image. Accordingly, in 

this mode we use Twitter content to orient Flickr data and guide the viewshed analysis. 
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For the total period of the wildfire incident we identified 10 days in accordance with the 

dataset we retrieved from the Flickr API. In Figure 5.8 the number of Flickr contributions 

per each day for the total period of ten days are presented. 

 

 

The results of the proposed methodology for the scene modeling based on the 

Cross-Source Triangulation Framework for each of the ten days are presented in the 

following figures (Figures 5.9 – 5.18). In each of these figures we present for each 

significance level range, the resulting impact area of the wildfire as an overlaid raster 

heat-map, the known wildfire impact area as provided by the US National Oceanic and 

Atmospheric Administration (NOAA, 2013) following the event as well as the polygon 

of the city cell area provided by ESRI. 
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Figure 5.8: Number of Flickr contributions in daily basis for the total period of the wildfire event. 
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Figure 5.9: Wildfire location assessment for Day 1 Figure 5.10: Wildfire location assessment for Day 2 

Figure 5.11: Wildfire location assessment for Day 3 Figure 5.12: Wildfire location assessment for Day 4 
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Figure 5.13: Wildfire location assessment for Day 5 Figure 5.14: Wildfire location assessment for Day 6 

Figure 5.15: Wildfire location assessment for Day 7 Figure 5.16: Wildfire location assessment for Day 8 
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After the predicted area/location for each day, which is considered the third 

component of our ontology, the final step was to examine the proposed methodology of 

the semantic similarity in order to examine if we can discover and model the patterns in 

transient scenes. As shown in Figure 5.1, the feature class in this test case will be 

comprised of three component objects; the actual area of wildfire (Component A), the 

impacted city (Colorado Springs) (Component B), and the assessed location/area via 

social media feeds (Component C). Concerning the component C, we consider only the 

red hot spot for further analysis since the confidence level is 99.9%. 

After the collection of the geometries for each of the ten days, we proceed with 

the extraction of the spatial signatures for all days using the HoF. Given the fact that the 

Figure 5.17: Wildfire location assessment for Day 9 Figure 5.18: Wildfire location assessment for Day 10 
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ontology in this case is comprised of 3 components, based on Equation 8, as it was 

described in Subchapter 3.4, we formulate three possible pair combinations of the 

constituted components. In contrast with the application of the proposed framework in 

the previous chapter (Chapter 4), we apply directly the optimal attribute selection to the 

extracted spatial relationships before we proceed with the similarity assessment. The final 

outcome of the similarity scores, as presented in Table 5.1, between the ten days of the 

wildfire is illustrated in the Figure 5.19. 

 

Table 5.1: Similarity scores for the ten days of Waldo Canyon fire. 

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

Day 1  0.700 0.547 0.545 0.377 0.865 0.557 0.531 0.888 0.815 
Day 2 0.700  0.592 0.674 0.412 0.578 0.848 0.829 0.582 0.660 
Day 3 0.547 0.592  0.420 0.826 0.435 0.452 0.442 0.441 0.506 
Day 4 0.545 0.674 0.420  0.645 0.681 0.775 0.828 0.671 0.860 
Day 5 0.377 0.412 0.805 0.584  0.479 0.484 0.475 0.483 0.582 
Day 6 0.865 0.578 0.435 0.681 0.479  0.682 0.652 0.991 0.916 
Day 7 0.557 0.848 0.452 0.775 0.484 0.682  0.962 0.672 0.741 
Day 8 0.531 0.829 0.442 0.828 0.475 0.652 0.962  0.644 0.762 
Day 9 0.888 0.582 0.441 0.671 0.483 0.991 0.672 0.644  0.926 

Day 10 0.815 0.660 0.506 0.860 0.582 0.916 0.741 0.762 0.926  
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Figure 5.19: Similarity scores for the ten days event of Waldo Canyon wildfire. 

 
Based on the Figure 5.19 it becomes apparent that our proposed methodology is 

able detect the discernible patterns in transient scene as well. The highest similarity 

scores (correlation coefficient ≥ 0.9) can be found among the days where the wildfire 

event is already progressed. The reason behind that is dual; firstly the actual wildfire area 

concludes in it’s final form after Day 5 and secondly the hot spot form the social media 

feeds is relocating closer to the commercial center of the city of Colorado Springs as well 

as after Day 5. That realization becomes obvious also by analyzing the similarity results 

where judging by the above chart the highest similarity scores come from the pairs of 

days 6 to 9, 6 to 10, 7 to 8, and 9 to 10 while the lowest similarity score was detected in 

the pair between 1 and 5 as it was expected. 
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CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

6.1  Summary and Conclusions 

This research has demonstrated the development and application of an approach 

to quantify the abstract spatial (topological and directional) relations among object pairs 

in a scene, and to aggregate this information in a scene description for the purpose of a 

semantic scene similarity schema. The proposed ontological scene matching uses 

ontologies for feature classes to guide the selection of metrics, and then group the metrics 

during scene similarity evaluations.  Similarity determinations using the force histograms 

of fuzzy Allen relationships, the use of NCC, and ontology-guided attribute selection 

were found to be a robust technique that is able to provide with fast and accurate results. 

Concerning the used spatial relationship model, it was proven that it is has rich support 

for defining the fuzzy topological and directional relations and fuzziness in relation’s 

semantics and they can answer the questions that where in space a certain topological 

relation exists. Abstract and/or fuzzy spatial relations are not depended on metric 

calculations of the objects, which contribute to the semantic properties of them. 

Another advantage derives from the fact that the abstract relations are not 

dependent on metric calculations of the objects, which also contributes to the semantic 

properties of them. However, despite this fact, the qualitative measurements are 
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quantified in order to get meaningful similarity results both in spatial configurations in 

built and transient scenes. Additionally, the benefits from the attribute selection and the 

reduction of the thirteen relations prove to be essential for the improvement of the 

classification. This would be even more crucial in cases where the training sets were 

larger where the dimensionality is increasing. 

Concerning the second test case, the analysis of social media content in order to 

extract geospatial information and event knowledge from such crowd-contributed data 

has become the subject of substantial research activities. This research demonstrated an 

approach that makes use of the multimedia nature of social media content by examining 

the benefits of the complementary use of heterogeneous sources of social multimedia 

feeds in order to assess the impact of a natural disaster. More specifically, we introduced 

a novel social multimedia triangulation process that uses collaboratively Twitter and 

Flickr content in a two-step integrated process. In this approach, we practically 

crowdsource approximate orientations from Twitter content and use this information to 

orient accordingly Flickr imagery and identify the impact area through viewshed analysis 

and viewpoint integration. Combined, these datasets comprise multimedia crowd 

contributions communicating the event, and complement each other with respect to their 

thematic content. Beyond the usefulness of this methodology to assess and predict the 

impact area of a natural disaster, this approach proved to be a robust method for the 

spatial modeling of more conceptual scenes such as the ones comprised of social media 

spatiotemporal clusters. 
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Our objective was to pursue an innovative solution that harnesses these diverse 

crowd contributions in order to delineate the impact area of this particular event and 

therefore to enable the spatial modeling of this scene for the purposes of an ontology-

driven scene similarity. The two-step approach that we introduced here proceeded by first 

using Twitter content to identify toponym references associated with a disaster. This 

information was then used to provide approximate orientation for the associated Flickr 

imagery, allowing us to delineate the impact area as the overlap of multiple view 

footprints. This is a two-step crowdsourcing process that crosses platforms and media in 

order to delineate an event: we use the text in Twitter to crowdsource a compass, in the 

form of a reference viewpoint, and then use this information to aggregate the views of 

another crowdsourced dataset, namely Flickr imagery. In essence, this extends the scope 

of VGI, in that crowdsourced content is not limited to the datasets, but also extends to 

harvesting information that is critical for the analysis of these datasets too. This approach 

allows us to bypass computationally intensive image analysis tasks associated with 

traditional image orientation (e.g. the identification of conjugate features), yet supports 

the aggregation of multiple image views in order to delineate the impact area as the 

aggregate of multiple views. The results of our analysis show the improvements in 

delineating and modeling the impact area through the introduction of such information is 

feasible. 

In overall, this dissertation has proven the research hypothesis test according to 

which given that a scene is a composite structure, comprising individual key components 

(e.g. objects) as they are arranged in space, a semantic similarity measure based on 
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abstract spatial relations of these objects by combining topology, direction, and distance 

can provide us with a more descriptive spatial signature of each scene and better support 

scene similarity assessment in diverse applications. The proposed methodology managed 

to identify and compare the discernible spatial patterns both in built and transient scenes 

and therefore to prove that there is a spatially relevant character behind them that present 

semantic similarities. 

As we are moving towards a wider adoption of crowdsourced content we have to 

continue being aware that such content is the outcome of a geosocial process: the level of 

participation, and the patterns of contributions are driven by the particularities of the 

corresponding physical and social environments. In our particular case, contributions 

were primarily made from the South and Southeast areas, not only due to the presence of 

urban areas in them, but also due to accessibility issues and the nature of the event itself. 

Having had a more broad distribution of contributions around the impact area would have 

resulted in further improvements. However, even for such adverse conditions as the ones 

we encountered in this case study we showed that at a confidence level of 95% we can 

increase the accuracy of the prediction when we use our two-step triangulation process. 

This supports the argument that by harvesting various types of information from diverse 

crowdsourced content we can better infer event-specific information from these citizen 

contributions. 

One thing to consider in conjunction with the level of accuracy is that it would be 

affected by the granularity of the reference point. For example, if people were referring to 

the ’Colorado wildfires’, our approach would not be able to generate meaningful results. 
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Generally, one would reasonably expect a link between the granularity level of event 

references, as they emerge through public discourse, and the type of the corresponding 

event. While some events have a rather localized footprint (e.g. wildfires), others have a 

broader impact (e.g. hurricanes). This can be viewed as an extension of the problem of 

geo-parsing text at global- and local-scales (Leidner and Lieberman, 2011). Furthermore, 

the dynamicity of an event may impact the analysis: a fire is a very dynamic event, but 

was (in this case) still spatially contained. If it were to be spreading across large areas our 

analysis would have to be segmented across temporal intervals, within which the event 

would be mapped at distinct instances, and its evolution tracked accordingly. Presumably, 

this could also lead to the emergence of sequences of toponyms for the same event. 

It is worth noting that rather focusing on fine-tuning the accuracy of the outcome 

of the analysis, our main objective in the second test case was to demonstrate the 

feasibility of our approach in the context of a rapid assessment of the impact area of an 

event given non-curated data corpus such as the one presented here and to spatially model 

a transient scene. As we have shown above, even with certain approximations, e.g. using 

average camera model values for images without Exif information, we are able to assess 

the impact area quite well. Such approximations could be further improved and refined 

by using techniques for estimating missing camera parameters (e.g. Bujnak et al. (2010) 

or de O Costa et al. (2014)). Similarly, the viewshed analysis can be refined to account 

for the combined effects of the accuracy of the DEM (e.g. Oksanen and Sarjakoski 

(2006)) as well as the accuracy of the technique used to calculate it (e.g. Fisher (1993)). 
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Nevertheless, we need to remain cognizant of the particular nature of social media 

contributions may result in biases in their patterns of contribution. For example, Li et al. 

(2013) focused on social media usage in Twitter and Flickr, finding a relationship 

between Twitter usage and well-educated high-income people, particularly white and 

Asian populations. More relevant to this work, Kent and Capello (2013) studied the use 

of social media during a crisis situation (a wildfire). Their analysis showed that 

demographic characteristics of the area impacted by the emergency situation could be 

used to reveal the propensity of its population to contribute information in social media 

during such a crisis. These works reveal some of the intrinsic nature of social media 

contributions as they relate to geospatial information, warranting the further study of such 

activities in order to gain a better understanding of the value and quality of this 

crowdsourced content. 

In order to overcome the demographics-related limitations (and resulting biases) it 

is possible to consider active social media approaches, whereby requests for contributions 

are issued for locations that are underrepresented in the harvested data. This nevertheless 

would not address the limitations of population gaps, where low population density 

results in lack of data (thus limiting the accuracy of the analysis). Towards that end, one 

could consider the integration of social media feeds with traditional geosensor networks, 

in order to collect from the latter focused information in response to the breaking events 

that are detected in the former and therefore based on its semantic similarity with the 

unknown events to enable us with a kind of automated event recognition and 

characterization. While such integration still remains largely unexplored, it clearly 



 

 
 

143 

emerges as a promising future direction due to the substantial advancements in social 

media harvesting and processing. 

 

6.2  Future Work 

In order to conclude, with respect the outlook, the experiments indicate that this 

approach could lead to an ontology-aware scene interpretation module, whereby ontology 

knowledge can be used to aid scene interpretation and/or the monitoring of a construction 

progress (assessing whether it is consistent with a specific type of compound structures) 

for the first case and for event recognition based on the discernible spatial patterns of a 

known event. This has great potential, as it could enhance traditional object extraction 

processes with the interpretative knowledge that is traditionally embedded in ontologies 

and which is typically the summarization of analyst expertise. More specifically the 

following considerations indicate a strong potential for the usefulness of the proposed 

methodology in overall for future research directions and applications.  

One of the fundamental tasks in image analysis and understanding is the 

assignment of a geographic object to image objects (Castilla and Hay, 2008). Therefore it 

becomes critical to devise a scene description methodology, which will enable an image 

content representation that will comply with the conceptual reality of an interpreter 

(Lang, 2008). That becomes essentially necessary especially in the case of a conceptual 

scene where its components are comprised of social media spatio-temporal clusters. In 

order to achieve a higher scene representation, ontologies coupled with fuzzy spatial 
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relationships can be very valuable since their main functionality is to create the 

relationships between the objects in the world that are observed, in terms of geospatial 

data, and the objects created from the spatial analysis (Bittner and Winter, 1999). In other 

words, this research directions allows the linking between real-world concepts that are 

rich in contextual information with the content information existing on a spatial scene 

either static or dynamic; either in a built environment scene or in a conceptual event 

scene. 

Another important consideration is the ability to handle both qualitative and 

quantitative information as well as to enable the quantification of qualitative information. 

The latter appears to be a very active research direction nowadays since It is challenging 

to link the qualitative and subjective knowledge with the quantitative and objective 

information, which is also refereed to the literature as the bridging of the semantic gap, as 

was mentioned to Section 2.1. Ontologies appear to be the connecting link between the 

qualitative, subjective representation of a knowledge expert in a specific domain and the 

quantitative, objective representation of a scene. 

Also a critical issue in the broad field of GIScience that needs to be addressed is 

that of change since many of the applications incorporate change detection as new 

geospatial data are acquired continuously. According to Mark et al. (2005) although the 

construction of an ontology of change and geographic processes might address this issue, 

it is a temporary solution toward constructing the ontological foundations for GIScience. 

In this manner, although the description of geographic objects of a feature class remains 

static, an ontology of object identity changes is enables an enriched framework to 
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monitor drivers of changes. An interesting research towards this research direction can be 

found on the work done by Kauppinen and de Espindola (2011) for the ontological 

representation of deforestation processes and land change trajectory in the Brazilian 

Amazon. 

In addition, another important factor that we need to consider is the open world 

assumption versus the closed word assumption concerning the possible interpretations of 

a spatial scene (Falomir et al., 2011). Let us consider a subject matter expert, analyzing 

an image using supervised classification techniques where a certain threshold is used in 

order to classify parts of the scene accordingly. So for example part of scene that exceeds 

a threshold value of e.g. 0.4, will be classified as type A while the remaining parts will be 

considered as representative of a class that is neither of type A nor a sub-class of this 

type. Such a restrictive hypothesis is quite convenient and thus regularly used in 

traditional hierarchical classifications where the conceptualization of the world is 

represented as a closed system. Similarly, in the case of the Boolean spatial relations e.g. 

in RCC, it denotes a deterministic representation which entails certain limitations. On the 

contrary, ontology engineering and consequently the geosemantics that are based on 

description logics propose an open world system where anything is true or false unless 

the contrary can be proved. Therefore the major difference between a closed and an open 

world assumption that needs to be taken under consideration for future research is a 

rigorous conceptualization and description of the concepts of interest, by assigning more 

emphasis on necessary and sufficient conditions in order to enhance the accuracy of the 

reasoners in classifying the objects correctly. 
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Finally, the appropriate description and modeling of the vague and fuzzy nature of 

geographic concepts still remains a very important research direction in GIScience 

especially nowadays where new geospatial data sources e.g. social media are stressing the 

need for new approaches in order to appropriately exploit their full potential. As Comber 

et al., 2005b arguments, much geographic information is an interpretation of reality and 

that it is possible for multiple interpretations to co-exist. For example, the ‘‘Mount 

Everest’’ concept might refers to its summit, but there is no clear threshold for which 

parts of Mount Everest are part of the mountain and which belong to its neighbors 

(Bittner and Smith, 2001). As Third et al. (2007) presented, vague concepts can be 

integrated successfully in an ontology of vague geographic concepts. The importance of 

this issue becomes especially critical when the geographic entities that describe a spatial 

scene are characterized by fuzzy boundaries and therefore by fuzzy relationships between 

the entities. 
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