
AUTOMATED EXTRACTION OF ACTION SEMANTICS FOR EMBODIED
VIRTUAL AGENTS USING TEXTUAL KNOWLEDGE BASES

by

J. Timothy Balint
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University

In Partial fulfillment of
The Requirements for the Degree

of
Doctor of Philosophy

Computer Science

Committee:

Dr. Jan M Allbeck, Dissertation Director

Dr. Dana Richards, Committee Member

Dr. Michael Hieb, Committee Member

Prof. Seth Hudson, Committee Member

Dr. Yotam Gingold, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, The Volgenau School
of Engineering

Date: Summer Semester 2017
George Mason University
Fairfax, VA

Automated Extraction of Action Semantics for Embodied Virtual Agent using Textual Knowledge
Bases

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

J. Timothy Balint
Master of Science

George Mason University, 2014
Bachelor of Science

Roanoke College, 2011

Director: Dr. Jan M Allbeck, Professor
Department of Computer Science

Summer Semester 2017
George Mason University

Fairfax, VA

Copyright c© 2017 by J. Timothy Balint
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my father.
I dedicate this dissertation to my family.

iii

Acknowledgments

I would like to thank my advisor and Dissertation Chair, Dr. Jan M. Allbeck, for instructing me on
how to research and molding me into the researcher I am today.
I would like to thank my committee members, Dr. Dana Richards, Dr. Micheal Hieb, Seth Hudson
and Dr. Yotam Gingold for their continued support and insight for this work.
I would like to acknowledge the undergraduate researchers who assisted in this work: Cameron
Pelkey, Shibble Duman and Nasrin Noor Ahmad. There support with data collection proved invalu-
able for this thesis.
I would like to thank Lubaba Tasneem, who created some of the virtual agents seen in this thesis.
I would like to thank Dr. Lisa Guo, for her invaluable donation of hard drives to store ALETs parsed
data on.
I would like to thank the mentors I had over two summer internships, Dr. Leslie Blaha and Dr.
Dustin Arendt. They expanded my breadth of research, which ultimately strengthened this work.
I would like to thank the Intelligent Virtual Agents 2015 Doctoral Consortium Committee, Specifi-
cally, Dr. Dirk Heylen, Dr. Joost Broekens, Dr. Catherine Pelachaud, Dr. Hannis Vilhjalmsson and
Dr. Khiet Truong for their comments and suggestions on the focus and direction of this thesis.
I would like to acknowledge the other members of the Games and Intelligent Animation Labs, Weizi
Li and John Mooney for their collaboration and brotherhood during my research career at George
Mason University.
I would like to thank the professors at Roanoke College who kindled the flame of discovery within
me. Specifically, I would like to thank Dr. Durrell Bouchard, Dr. Matthew Fleenor, Dr. Richard
Grant and Dr. Rama Balasubramanian, who showed me not only the value of research and explo-
ration, but of interdisciplinary discovery.
I would like to thank my family, especially my mother Maryann Balint and sister Dianna Balint, for
encouraging me throughout my entire life to keep striving for excellence.
I would like to thank my fiance Jessica Randall, without whose love, care, support and editing
abilities, I would have burnt out and not been able to finish this thesis.
I would like to thank my pride members, especially Sarah Alhbrand and Dr. Maryam Bandari who
kept me focused on this thesis on a daily basis. I would also like to thank my other pride mem-
bers, specifically Starr Marberry, Kelly McCormack, Lindsey Kravitz, Lexie Reimer, Derek Butler,
Alexis Hopkins and Rachel Desando for their love and encouragement throughout my academic and
personal life.
I would like to thank those who participated in Panda Tuesday, for providing a known and well
needed break during the week.
I would like to thank the members of the other labs that I had shared a space with.
I would like to thank the friends I have met in the virtual agent community for adding an element of
fun and excitement to an already fascinating topic.
I would like to acknowledge those friends I have not mentioned, for keeping my spirits high.
Finally, I would like to thank all those that have had a positive or negative impact on my life, without
which I would not be the person that I am today.

iv

Table of Contents

Page

List of Tables . ix
List of Figures . xii

Abstract . xvi
1 Introduction . 1

1.1 The Need for a Consistent Action Set . 3
1.2 Contributions of this Work . 4

1.2.1 Organization of Thesis . 5

1.3 Related Work . 5
1.3.1 Virtual Character Animation . 5
1.3.2 Semantics for Simulations and Animations 7
1.3.3 Generating Meta-Data . 9

1.3.4 Agent Programming Languages . 12

1.3.5 Hierarchical Task Networks . 14
1.4 The Parameterized Action Representation . 15

2 Defining the Parameterized Action Representation . 17

2.1 Agent Languages . 18

2.1.1 Representations of Actions for Virtual Characters 18

2.2 The Parameterized Action Representation Defined 22

2.2.1 A Note on Symbolic Notation . 22

2.3 Definition of Semantics S . 23
2.4 Definition of Objects OBJ . 25

2.5 Definition of Conditions and Assertions . 29
2.6 Definition of Actions . 30

2.6.1 Execution of an Action . 33
2.6.2 Roles R . 35
2.6.3 Condition and Assertions . 38
2.6.4 Semantics of Actions S . 41

2.7 Conjunctives . 42

2.8 Explanation of Tasks T . 45

v

2.8.1 Annotation . 47
2.8.2 Task Grammar and Representations . 48

2.8.3 Measure for Behavior Similarity . 51

2.9 Case Study . 54

2.10 Conclusions . 63
2.11 Summary of Key Components . 65

2.11.1 Symbols for the Language . 65

2.11.2 Key Functions . 66

3 Considerations on Action Organization . 67

3.1 Introduction . 67
3.2 Parent-Child Action Relationships . 69

3.2.1 Task Inheritance . 70
3.2.2 Semantic Inheritance . 71
3.2.3 Role Inheritance . 74
3.2.4 Condition-Assertion Inheritance . 74

3.3 An Application-based Measurement for FIDAG Organization 75

3.3.1 Narrative Planning and Behavior Selection Algorithms 76

3.3.2 Data Compression . 79

3.4 Experimentation . 81

3.5 A Quick Note on Pragmatics . 85

3.6 Conclusions . 86
4 Automated Generation of Action Hierarchies . 87

4.1 Data Sources for Automated Generation . 89
4.2 Using WordNet to Generate Ontologies . 90

4.2.1 A Multi-sense Method to determine the Sense of an Action 90
4.2.2 Hypernym Tree Generation . 94

4.2.3 Confidence Based Symbiotic Generation 94

4.3 Using Continuous Bag of Words to Generate Hierarchies 97

4.3.1 Creating a Hierarchy using Word Vectors 99

4.4 Automated Generation of FIDAGs . 101
4.5 Experimentation . 103

4.6 Conclusions . 117
5 Automated Generation of Action Semantics . 118

5.1 Connecting Objects to Actions using FrameNet 121

5.2 Agents Learning their Environment through Text (ALET) 122

5.2.1 Dependency Grammar Parsing . 123

vi

5.2.2 Co-occurance Connections . 124
5.2.3 Operational Information Population . 126

5.3 Experimentation . 128

5.3.1 Datasets used in Experiment . 129

5.3.2 Connecting Objects to FrameNet . 132

5.3.3 ALET Datasets . 133
5.3.4 Analysis of Role Connection and ALET 134

5.3.5 Analysis of Adjectives and Adverbs in Dataset 140

5.3.6 Demonstration . 147
5.4 Conclusions . 148

6 Conclusions and Future Work . 150
6.1 Summary and Conclusions . 150

6.1.1 Key Contributions . 150

6.2 Lessons Learned . 151
6.3 Future work . 153

A PARS used in Case Study . 157

A.1 Object Designation . 157

A.2 Designation of Actions . 159

B Keywords used in disambiguation tests . 167

B.1 Keyword List . 167

B.1.1 Smartbody Definition Keywords . 167

B.1.2 Smartbody Synonym Keywords . 168

B.1.3 CMU Definition Keywords . 169

B.1.4 CMU Synonym Keywords . 172

B.1.5 BLS Definition List . 174
B.1.6 BLS Synonym List . 177

B.2 Object Leafs for Experimentation Section . 179

C Automated Semantics Data . 185
C.1 Objects used in our Analysis and their Associated Synsets 185

C.1.1 ModelNet . 185
C.1.2 CalTech 101 . 216
C.1.3 Office . 221
C.1.4 Pub . 225

C.2 Actions and Frames used in our Analysis . 228

C.2.1 SmartBody . 228

C.2.2 CMU . 229

vii

C.2.3 The ICS Action Database . 232
C.2.4 The Human Motion Database . 233
C.2.5 The American Time Use Survey . 235

C.3 The Designation of Functional Elements for Each Frame 238

C.3.1 ICT SmartBody . 238

C.3.2 CMU . 242
C.3.3 ICS Action Database . 252
C.3.4 Human Motion Database . 256
C.3.5 BLS . 264

Bibliography . 269

D.1 Education . 280
D.2 Awards, Grants, and Professional Memberships 280

D.3 Appointments . 280

D.4 Journal Papers and Book Chapters . 281

D.5 Conference Papers . 281

D.6 Workshop Papers and Posters . 282

D.7 Presentations and Invited Talks . 282
D.8 Service . 283

viii

List of Tables

Table Page

1.1 A list of different names to connect action and objects in a virtual simulation. Dif-

ferent meanings of the same word have been broken up into separate entries. 8

2.1 Set components of PAR . 31

2.2 The minimum and maximum distance actions based on roles for both exact and
similar measurements. Actions that differ between similar and exact are shown in
bold. 55

2.3 The number of ties for each action, using both similarity measure and exact measure. 57

2.4 The action DistractGuard from Shoulson et al. [1] 58

2.5 The action from Table 2.4, written out as a PAR. 59

2.6 The minimum and maximum cost actions when comparing tasks using an exact

measurement. The task measurement is shown using both role cost and non-role cost. 61

2.7 The minimum and maximum cost actions when comparing tasks using Wu-Palmer

similarity measurement. The task measurement is shown using both role cost and

non-role cost. 63
4.1 An example of the polysemous word Cook taken from WordNet. Only the verb

senses are shown. 90
4.2 Statistics for single parent word vectors on each action set used in our tests. The

number of actions are the base number of actions and the total items in the hierarchy

include generalizations. The % for actions with frames is calculated from the base

number of actions. 110
4.3 The average number of parents found when generating FIDAGS, using either a sin-

gle threshold or using the highest action and a threshold. 112

4.4 Statistics on each action set used in our tests. The number of actions are the base
number of actions and the total items in the hierarchy include generalizations. The

% for actions with frames is calculated from the base number of actions. 115
5.1 Functional Elements for the Frame Cook, specifically Cooking Creation. The first

three are operational information R ∈ ACT, while the last two are NIFI S ∈ ACT. . 122

5.2 A sample of the matrix ND for the object Food.n.01, along with its counts. 125

ix

5.3 A sample of the matrix VD for the action Cook.v.01, along with its counts. 126

5.4 Statistics on each object set used in our tests. The total number of items in the

hierarchy includes objects that are generalizations of other objects. 129

5.5 Statistics on each action set used in our tests. The number of actions are the base
number of actions and the total items in the hierarchy include generalizations. The

% for actions with frames is calculated from the base number of actions. 131
5.6 The average accuracy for detection R ∈ ACT in ALET using Wikipedia as a data-

source . 134
5.7 The average accuracy for detection R∈ ACT in ALET using the Billion Word News

Corpus as a data-source . 135

5.8 The average accuracy for detection R ∈ ACT in using Pelkey and Allbeck’s Method 135

5.9 The average accuracy for detection S ∈ ACT using ALET with Wikipedia 137

5.10 The average accuracy for detection S ∈ ACT using ALET with the Billion Word

News Corpora . 138

5.11 The average accuracy for identifying functional elements as either operational in-

formation or NIFI. Errors are shown as one standard deviation. A single factor

ANOVA found significance between tests, with ρ < 0.001. 139

5.12 The average accuracy for identifying functional elements only as operational infor-

mation. Errors are shown as one standard deviation. A single factor ANOVA found

significance between tests, with ρ < 0.001. 140

A.1 Action Number 1:Hide . 159
A.2 Action Number 5:Lock . 159
A.3 Action Number 10:EscapeCell . 160

A.4 Action Number 12:Press . 160
A.5 Action Number 16:Guard . 160
A.6 Action Number 19:Trap . 160

A.7 Action Number 20:TrapGuardsAlarm . 161

A.8 Action Number 21:TrapGuards . 162

A.9 Action Number 24:Draw . 162
A.10 Action Number 26:Daze . 162
A.11 Action Number 35:Call . 163
A.12 Action Number 38:Approach . 163

A.13 Action Number 40:Give . 163
A.14 Action Number 41:Exchange . 163

A.15 Action Number 43:Open . 164

x

A.16 Action Number 44:Unlock . 164
A.17 Action Number 45:Take . 164
A.18 Action Number 47:StealKey . 164

A.19 Action Number 54:SoundAlarm . 165
A.20 Action Number 55:Close . 165
A.21 Action Number 62:DistractGuard . 165
A.22 The actions used to create a generalization set for the actions in the case study. . . . 166

xi

List of Figures

Figure Page

1.1 Two frames of a keyframe animation using a bone hierarchy. 6

1.2 A sample (a) interactional information and the equivalent (b) operational informa-

tion for the action sit and two objects. 9

1.3 A virtual environment displaying all actions that can be used on each object. The

number of actions used in this data-set is approximately sixty. There is a large

amount of overlap for actions due to objects being of a similar template. A virtual

human deciding on an action would examine all or a subset of the actions attached

to all or a subset of the objects, which would require examining several redundant

actions. 10
1.4 A sample task network decomposition for the action PickUp, which can be broken

up into several smaller actions. 14

1.5 A sample action hierarchy in PAR. 16

2.1 A high-level specification for Walk in (a) STRIPS format and (b) hierarchical task

network (HTN) format. 19

2.2 A high-level specification of Walk in Event format. 20

2.3 A high-level specification of Walk in PAR format 21

2.4 A set of sample objects connected to their generalizations. Note that in PAR, agents

are also considered as objects . 26

2.5 Two example action sets with generalizations. (a) Actions that are single entities.

(b) Actions with multiple generalizations. 32

2.6 The processing steps for executing an action in PAR. This is a flowchart of Algorithm 1 36

2.7 A blend space between three animations in a single action. This one dimensional

blend is controlled by a speed parameter . 43

2.8 A graphical depiction of the three sequential connectors, (a) AND,(b) OR, and

(c) GATHER. 44

2.9 A graphical depiction of two parallel connectors. 45

xii

2.10 The task for the action SoundAlarm with its associated roles, shown as annotations

of each leaf node in the task. This task was converted from [1] and can be found in

Appendix A. 48

2.11 Three representations for the task Exchange, adapted from [1] using their name. (a)

The task as a tree. (b) A post-order representation of the task for Exchange. (c) Our

processed representation of the task for Exchange 52

2.12 Entailment groupings for all actions in the case study when only comparing roles,

using (a) similarity metric or (b) exact comparison. This is a visual explanation of

Table 2.2 . 56
2.13 Entailment groupings for all actions in the case study when no information about

generalization is used. Red action names signifies changes between (a) and (b). . . 60

2.14 Entailment groupings for all actions in the case study when generalizations are used.

Red action names signifies changes between (a) and (b). 64

3.1 An action set of three actions, where one (Travel) is the parent of the others. 68

3.2 A motion blend of several animation, including (a)Walk and (b)Run 72

3.3 An action hierarchy with (a) semantics on the action and (b) semantics after being

combined . 73
3.4 The compression size for both Roles and Assertions for our action sets 82

3.5 The time to compute a reasoning step of Normoyle et al. vs. the method of organiz-

ing a hierarchy. 83

3.6 The time to compute a narrative plan of Kartal et al. vs. the method of organizing a

hierarchy. 84

4.1 System Overview . 89

4.2 The Multi-pass technique’s testing conditions. Each level determines word senses

with the most precise methods higher up in the pyramid. Techniques lower in the

pyramid are less precise but have greater coverage. 91

4.3 A node in an action hierarchy being added (b) matches a node in an existing tree

in (a). The hierarchies are merged at the common node and the ancestors of (b)’s

matching node are removed (c). 95

4.4 An overview of how our confidence-based method disambiguates action candidates. 97

4.5 An example bag of words, and the word vector from the sentence “jane eats”. . . . 98

xiii

4.6 A two component PCA-based word vector representation of the CMU data-set. (a)

The actions are shown with their two components. (b) DBScan measures the dis-

tance between actions, connecting any neighbors based on their distance. (c) The

final clusters are combined based on the connected neighborhoods. 100

4.7 A Sample FIDAG generated for SaccadeSpeak using a hypernym multi-sense method.102

4.8 A Sample FIDAG generated for SaccadeSpeak using the word-vector tree building

model. 103
4.9 The percent of found (a) and correct (b) senses for our ten sample test. Error bars

represent one standard deviation. A single factor ANOVA analysis provided a neg-

ligible p-value for both figures, with a Tukey-Kramer test showing significant dif-

ference between our method and the word only, definition only, and word with path

methods for CMU’s data set, and word only and definition only for Smartbody’s

data set. A Tukey-Kramer test shows significant differences between all methods

and the multi-path method for the BLS data set. 106

4.10 The percent matched vs. dataset when using keywords picked by a system compared

to those generated from text corpora. Error bars are given as one standard deviation. 108

4.11 The precision-recall graph obtained in testing the confidence-based method and the

multi-sieve method on our action data-sets over all three data-sets. 109
4.12 The percent matched vs. dataset when all keywords matched over the threshold vs.

using the highest matched over the threshold. 111

4.13 The average percentage of parents with completely compatible (a) semantics and

(b) roles for both an above-all threshold and a highest threshold. 113

4.14 The average percentage of (a) semantics and (b) roles that are the same across all

parents. 114

4.15 The percent of Frames found for each multiple parent tree building method. A single

factor ANOVA shows no difference between the three methods, with p = 0.1 . . . 116

5.1 An overview of the basic techniques for populating action roles and semantics . . . 120

5.2 A pictorial overview of the connection step. The object parameters of actions are

linked to object types in the object ontology. 121

5.3 A graphical representation of dependency parsing on text. 124

5.4 Two sample object rich virtual environments from the Unreal Game Engine Mar-

ketplace. The two environments contain a) 82 and b) 52 unique types of objects,

derived from over a 100 graphical models each. The total number of object in-

stances in each environment is (a) over 400 objects and (b) over 300 objects. . . . 130

xiv

5.5 The percent of matched object operational information when only using an action

hierarchy, only using an object hierarchy, and using an action and object hierarchy.

Error bars are shown as one standard deviation. 133
5.6 The percent accuracy of role detection vs. action data-set for ALET with two differ-

ent data-sets vs. Pelkey and Allbeck. Error bars are shown as one standard deviation. 136

5.7 The percent recall of role detection vs. action data-set for ALET with two different

data-sets vs. Pelkey and Allbeck. Error bars are shown as one standard deviation. . 137

5.8 The percent overlap vs. action set when using the matrix VD. No error bars are

shown as there was no variance between object sets. 138

5.9 The average number of adverbs connected to action sets vs the cutoff value. The

cutoff values used in our experimentation are shown as dotted lines. 141

5.10 The average number of adjectives connected to object sets vs the cutoff value. The

cutoff values used in our experimentation are shown as dotted lines. 142

5.11 The average total accuracy of the system vs. the adjective cutoff value when using

ALET. 143
5.12 The average object recall of the system vs. the adjective cutoff value when using

ALET. 143
5.13 The average accuracy of detecting operational information R ∈ ACT vs. the adjec-

tive cutoff value when using ALET. 144

5.14 The average total accuracy of the system vs. the adverb cutoff value when using

ALET. 145
5.15 The average object recall of the system vs. the adverb cutoff value when using ALET.146

5.16 The average accuracy of detecting operational information R ∈ ACT vs. the adverb

cutoff value when using ALET. 146

5.17 A virtual environment sold on the Unreal Engine Marketplace annotated with op-

erational information. The action set shown is (a) ten actions from CMU and (b)

nineteen actions from SmartBody. 147

5.18 A virtual environment sold on the Unreal Engine Marketplace automatically anno-

tated with operational information for ten actions generated with CMU action set. . 148

6.1 An example scene (a) without processing to move the objects and (b) with process-

ing to constrain the objects. 154

6.2 A possible pipeline for using scene-to-text in analytic software. Shown here is a

data-set, action-set and visualization of a wireless sensor network that is currently

being researched. We have designed the visualization for their system already. . . . 156

xv

Abstract

AUTOMATED EXTRACTION OF ACTION SEMANTICS FOR EMBODIED VIRTUAL AGENT
USING TEXTUAL KNOWLEDGE BASES

J. Timothy Balint, PhD

George Mason University, 2017

Dissertation Director: Dr. Jan M Allbeck

In games, training environments, and other virtual simulations, non-player characters (virtual

agents) perform actions to interact with the 3-D graphical objects surrounding them to accomplish

specified goals. These interactions and other components of a virtual agents behavior are generally

created by hand by a simulation author. Artificial Intelligence (AI) and planning systems then utilize

these created actions to allow virtual agents to reason over their abilities considering their environ-

ment. However, any behavior or interaction the simulation author wishes to have the virtual agent

perform must be created beforehand. When using actions that have several components, the creation

process is tedious, time consuming and possibly combinatoric. This is especially true when faced

with many objects and actions, when multiple objects can be used for an action. While this burden

is decreased to some extent with the use of hierarchies where information can be generalized, the

total number of possible connections still explodes as the number of actions and objects in a simu-

lation grow. It is also important for an AI system to have a consistent representation of the meaning

of each action. Also, a simulation author hand-crafting actions can lead to inconsistencies between

actions, such as having actions that can never be completed or should, but do not, connect actions

to all usable objects. To address this issue, we show how to automate the processes for describing,

organizing, and generating the meaning (semantics) of actions. Specifically, we formalized

and refined the Parameterized Action Representation (PAR) to better exploit its capabilities to

enable the automated generation of actions in this language. PAR is unique in that it allows for intel-

ligent organization of virtual agent actions through the use of action taxonomies. From this, we have

formulated algorithms and measures to quantify the utility of action organization strategies based

on their end application. Furthermore, we developed and evaluated novel methods to automate the

population of action taxonomies from base action names through use of existing lexical databases.

Our work culminates in a transformative pipeline to automate connections between virtual agent

actions and 3-D graphical models as well as the population of action semantics. By defining and

refining PAR, as well as automating populating the connections made between virtual agent actions

and 3-D graphical models, action sets can be transferred between different virtual environments and

ease the simulation authors burden.

Chapter 1: Introduction

Virtual humans have played an impressive role in creating more realistic virtual scenarios. They

provide ambiance as Non-Player Characters in games [2], and are essential for testing new scenarios

before physical humans work in them [3, 4]. Virtual humans require the ability to move and interact

with objects and other agents in order to have meaningful impacts in the environment. This can

be as simple as walking in a straight line in a room or as complex as ordering a drink, which

would require several animations and connections to objects and other agents in the environment.

One of the grand challenges of virtual reality in regards to increased levels of presence is taking

into account the expectation of participants as they relate to real human behaviors [5]. Behaviors

portrayed through animations performed by a virtual human can be executed either sequentially or

in parallel as long as an understanding is in place for the proper order of the actions. Some common

methods to control animations in game design and change the 3-D virtual environments is to script

actions through state machines or decision networks [6].

While virtual agents perform actions in many environments, they do not tend to utilize many

objects while in a rich virtual environment. Rich virtual environments are complex, containing

dozens or even hundreds of objects. Creating agent behavior scripts for each action and object

desired in a scenario can be a time-consuming and tedious process. For example, an Argue action

script may use a Microphone, Character, or Watering Can object. While the first two objects would

be objects that can argued at, a Watering Can would generally not be. However, it could be an object

that is held while arguing. The Microphone would also be able to be held while arguing, filling in

that action’s component in multiple respects. Therefore, each action could have several categories

of objects, with overlap between each category. Currently, a game designer works with a simulation

author to build actions. The game designer supplies the requirements to the simulation author,

who makes all the connections ad then iterates with the game designer to build up to the original

idea of the agents. For rich virtual environments, it is easy to see how this becomes a tedious

1

task. Furthermore, a mistake in one script can have immersion breaking impact on the scenario.

Modulization of domain knowledge on graphical models and animations can mitigate errors, as the

scripts can then use known information parameters, (i.e. semantics), such as density and grasp sites.

Note that these properties do not have to be directly related to the graphical objects, but instead can

provide precise knowledge that can be used in other systems of the scenario, such as qualitative

physics engines [7]. Animated actions can also have semantics attached to them in a similar way

graphical objects do, such as the goal or type of animation. Action semantics are generally used to

modularize scripts themselves, allowing high level agent decision making processes to determine

which action should be performed.

Development of actions for virtual humans is generally an author-driven process, in that it still

requires a user to provide grounded values for all components of the action. Even with templates, as

the number of unique objects and actions grows, it becomes prohibitive to author large amounts of

semantic data. Additionally, components which require several relationships in their representation,

such as connecting virtual human actions to all participant objects (seen in the above Argue exam-

ple), must have knowledge of the purpose and effect of each part of the relationship. As another

example, a mystery game might have objects such as telephones, people, and candlesticks. The

game may also have several animations like talking and fighting. A simulation author must describe

and connect each object’s role to each action if there is one. For rich environments, the necessity to

connect actions to objects causes the development of actions (their components, also called Meta-

data) to be ad-hoc in nature, crippling the intended purpose of creating domain focused knowledge;

namely transferability from one scenario to a similar one. This work creates the foundation for the

automated inclusion of action and object semantics that is critical to increasing the utility of virtual

environments. Consistent, automated methods of semantic generation would allow transferability

of relationships between scenarios, as they should in theory generate similar semantics for similar

scenarios.

In order to determine the usefulness of automated methods for actions in virtual scenarios, it

is important to understand how an action is structured and what components are required for vir-

tual agents and environments. The description and representation of the actions and objects in a

2

virtual simulation make up the agent language. Then, we are able to determine requirements for

consistent automated techniques for semantic generation for virtual agents and environments. We

accomplish this by first providing a new and novel formal definition for the Parameterized Action

Representation(PAR). We then show the effects organizing actions into an action taxonomy using

one component of PAR, namely the action parents, have on agent reasoning tools. We also dis-

cuss the implications on organizing actions. Finally, we describe novel and transformative methods

to automate the population of action-object connections, action parents, and properties of the ac-

tions. As our automated methods consider the action set simultaneously, then the set of components

(meta-data) of the actions should be understood, which requires a formalized definition of an action

representation as a base.

1.1 The Need for a Consistent Action Set

Agent languages and representations, described in more detail in the related work of Section 1.3.4,

have a common theme; the abilities of an agent need to meet the goals of both the agent and simula-

tion author as well as connect (ground) the actions into the environment. For plan languages such as

3APL [8], control of the agent occurs only at the courser scales, that is, only the final desired result

of the character is specified, and it is left up to the constructs of the language to determine a way

to meet that goal. While planning techniques have been developed for full control methods such

as behavior trees, these representations are focused and used in ways so that the author knows how

the agent is going to behave. This creates a continuum between agent control and agent emergence,

with many representations being on one extreme or another. This is not to say that representations

that strike a balance between these two extremes do not exist, with PAR being one such example.

PAR, however, has not been well defined, and so it is unclear how it strikes a balance. We have

rectified this by describing in detail the formalization of PAR.

In addition to authorial balance, an issue arises when the total abilities of a virtual character

grow. Recall that currently each individual action must be constructed by the simulation author.

Therefore, as the number of desired actions increases, more time and care must be spent to ensure

that each action is correct and that there is consistency between actions. For example, a Walk and

3

Run action should be similar in nature and utilize the same 3-D graphical objects in their execution.

However, for large environments with rich behaviors, ensuring these properties becomes unobtain-

able. Simply creating the actions will devour the simulation authors’ time, with no ability to further

examine them. This leads to issues such as many actions only effecting one object and a few actions

affecting their full set. This is inconsistent, as only a few actions have their full range of expressive-

ness. A more expressive action representation with more components will require more forethought

of the entire set, but if the expressiveness of the representation allows for action sets to be condensed

and generalized, the overall effort may decrease. However, this is only true if the set is generated

such that it is consistent. Due to the increased forethought and work, errors in a more expressive

action representation will more quickly manifest. An action set generated for consistency would

allow for more expressive sets without the worry of errors appearing in the set.

1.2 Contributions of this Work

From the above and our previous work in [9], we have presented a number of issues with virtual

agent actions. To address the issue of authoring virtual agent actions and connecting motion data to

3-D graphical objects, we make the following contributions:

• We formalized and refined an action representation (PAR) to better exploit its capabilities and

enable automated generation methods.

• We demonstrated the utility of action taxonomies through an application based measure of

efficiency gain.

• We developed and evaluated novel methods to automate the population of action taxonomies

from base action names through use of existing lexical databases, published in previous

work [10].

• We developed and evaluated a transformative pipeline, ALET (Agents Learning their Environ-

ment through Text), to automate connections between virtual agent actions and 3-D graphical

models as well as the population of action semantics, published in previous work [11].

4

1.2.1 Organization of Thesis

In exploring these contributions, we provide a better understanding of action meta-data, and how

to connect and populate high level understandings of actions to low level animations, taking into

consideration the entire environment that the virtual characters exist in. This work is formatted in

the following manner: Chapter 2 describes PAR, providing the notation and definitions used for

the rest of the work. Chapter 3 describes which components must be considered when organizing

actions into a hierarchy, taking a consistency and application based approach to the problem. Finally,

Chapter 4 and Chapter 5 describe methods to populate action meta-data, specifically on how to

generalize actions and connect them to the environment through ALET. These two chapters show

how meaning can be populated provided some meta-data about the action is known. In Chapter 3,

Chapter 4, and Chapter 5, we also provide measurements for judging different action’s components,

including the taxonomy and operational information. With test action sets, we show the utility of

automated methods to generate action components from animation meta-data.

1.3 Related Work

1.3.1 Virtual Character Animation

Virtual characters are articulated 3-D graphical models capable of performing animations for the

purpose of displaying changes to a virtual environment. In our work, all the characters are controlled

through a bone hierarchy, with vertex weights mapping from each vertex to every bone, although

other forms of agent control such as blend-shapes are also possible. These articulated characters

perform animations through the use of one or more motion controllers, which deform the character’s

graphical model from one static pose to another. These controllers can either be based on Forward

Kinematics, such as motion captured or key framed animations, or inverse kinematics. Inverse

kinematics is a technique to determine the rotation of a chain of joints of an articulated figure given

the desired end position of an end joint. Several inverse kinematic methods have been developed

for both arbitrary joint chains [12] and human joint chains [13]. Our virtual characters use forward

kinematics to perform key frame animations, resulting in either a single use gesture or to display

5

an animation on a loop while other controllers are also used, as seen in Figure 1.1. In our work,

inverse kinematics are used for variable transition controllers, such as controlling the character’s

gaze or reach state, which can change depending on the start and desired end positions. Forward

Kinematic techniques such as motion playback are used for any motion controller that changes the

position of the root joint or requires a known, constant rotation of joints (such as a walking controller

or waving gesture controller). Both techniques can be encapsulated, and connected to AI systems

through meta-data, such as the name of the motion controller.

Figure 1.1: Two frames of a keyframe animation using a bone hierarchy.

Multiple motion controllers can be used by a character simultaneously to create complex actions.

For example, a motion controller that translates the root bone along a path can be combined with a

stepping animation to create a character that walks along a path. Different motion controllers can

also be used for the same action depending on the state of the character. For example, a different

motion controller for a wave action would be used if the agent had a sitting pose vs. a lying down

pose. Understanding which motion controller or combination of controllers should be used for

a given action is therefore scenario specific based on the context. However, meta-data of each

controller, such as the name, will remain the same despite this. For this reason, we operate on

general meta-data of actions and assume that combination of motion controllers are already provided

6

by the simulation author. Specifically, our work operates on the name of an action along with a

sparse set of descriptive natural language keywords to describe the action.

1.3.2 Semantics for Simulations and Animations

In recent years, there has been much work in adding meaning to the objects of a virtual world [14].

There are various reasons for this, including creating more believable physics systems [15], pro-

cedural generation of scenes [16, 17], and character-object interaction [18]. As we are focused

on actions, character object interaction (operational information) is being considered as the most

important semantics that can be linked to objects in a game environment.

In the virtual agents’ community there have been several proposals to connect actions to objects,

mainly following the methodology of Smart Objects [18]. The terminology from these proposals is

not consistent and can be compared in Table 1.1. Since there are slight differences in the definitions,

this work will use interactional information when referring to the general case of action semantics

attached to objects, such that the interaction is known to the virtual character through the object.

Interaction information is a form of action semantics that connects 3-D graphical models with the

animations a virtual human would perform, defined in Farenc et al. [19]. Peters et al. [20] introduced

the idea of interactional information as slots, allowing multiple agents to interact using an object.

This consisted of having a simulation author create an action-site pair and link connections with

actions through a script. An action-site pair is the area on an object that a virtual agent can use

to interact with that object, and can be seen in Figure 1.2a. Donikian and Paris [21] used the

concept of affordances (general connections between actions and objects) to attach virtual objects

to animations. Heckel and Youngblood [22] created a method to have virtual agents only consider

affordances if the object was in a state that it could be operated on. Finally, Kraayenbrink et al. [3]

used interactional information to control action selection for populations of virtual humans. The

progress made in these works is meant to ease the cognitive decision process that virtual characters

must make when selecting actions to perform, given available resources in the scenario.

Interactional information connects smart objects to virtual human animation through the use of

7

Table 1.1: A list of different names to connect action and objects in a virtual simulation. Different
meanings of the same word have been broken up into separate entries.

Term Used By Meaning
Interactional Kallmann and Thal-

mann [18], Farenc et
al [19], Peter et al [20]

A site connected to an action
with which a virtual human can
activate that site to start a script
for that action

Affordance (Any
object action
connection)

Donikian and Paris [21],
Heckel and Young-
blood [22], kapadia et
al. [23]

A broadcasted action script that
can be performed using an ob-
ject

Affordance
(Graphical Only)

Gibson [24], Sequeira et
al. [25]

Determining contextual actions
that can be performed on a
graphical model based on the
physical representation of the
object.

Operational Our previous work [10] An object or set of objects con-
nected to an action that will be
used in either one step or during
the entire action

action-site combinations. This relationship between actions and objects is in almost all cases con-

nected to the object, providing the scripts to the character if the character wishes to use that object.

This has the effect of forcing the character to decide on an action through the consideration of all ob-

jects in the environment. Many of the goal directed action representations available to Belief-Desire-

Intention (BDI) agents(defined in Section 1.3.4) preform their planning over an action library, de-

termining if an action can be performed by examining STRIPS-like pre-conditions [26, 27, 23]. In

these cases, the objects in the environment become requirements to perform the action, as seen in

Figure 1.2b. Examining interactional information as a requirement of an action instead of a con-

tainer of an action (which from Table 1.1 is called operational information), has an advantage over

interactional information, in that it allows virtual characters the ability to reason over actions. Op-

erational information is another semantic of the action, and is in addition to other action semantics

such as the effects of the action on the environment. Reasoning over interactional information forces

agents to reason over objects, when in general the existence of an object in a given state is all that

matters to the creation of an action. For automated methods of interactional information in rich

environments, the sheer scale of choices can be cumbersome for virtual agents and impossible for

8

(a) (b)

Figure 1.2: A sample (a) interactional information and the equivalent (b) operational information
for the action sit and two objects.

crowds of virtual agents to reason over. For example, Figure 1.3 shows all actions connected to

objects (without site information). If a representation of semantics allows the connection that in-

teractional information provides between agent actions and objects to be converted into operational

information, such as converting Figure 1.2a to 1.2b, then operational information should be used

for virtual human decision making.

1.3.3 Generating Meta-Data

Until this point, we have discussed the uses of semantics for characters in virtual scenarios, but

have not described how these semantics are generated and added to a virtual scenario. This is

because the literature on creating semantics for virtual humans and environments is largely silent,

instead focusing on the representation of semantics. It therefore should be assumed that simulation

authors add in semantics manually, which, as discussed previously, becomes prohibitive for large,

rich virtual environments. Automatic generation of sites has been examined as an application of

part recognition in computer graphics [28, 29, 30] and this information can be transferred from

one object to another. Part recognition is valuable for interactional information, where parts can be

automatically linked to actions. This would include being able to generate a handle for a grasp site

or find large flat surfaces for a Sit action from a labeled set of parts. For complex actions involving

several objects, or for objects that use actions not based off of affordances, other methods to generate

semantics are needed.

9

Figure 1.3: A virtual environment displaying all actions that can be used on each object. The number
of actions used in this data-set is approximately sixty. There is a large amount of overlap for actions
due to objects being of a similar template. A virtual human deciding on an action would examine all
or a subset of the actions attached to all or a subset of the objects, which would require examining
several redundant actions.

Semantic information for objects and actions to be stored is in an ontology. Ontologies contain

relationships and taxonomies, such that information can be attached to an abstract concept, and

links to that abstract concept can be assumed to have relationships between them. Taxonomies also

allow semantic data to be placed at more general abstractions of an object or action, reducing the

redundancy between objects. Ontologies have been used by several virtual simulations [27, 31, 15,

32] to connect and provide meaning to the objects and actions virtual humans must interact with.

Ontology research such as Drumond and Giradrdi [33] makes a distinction between concepts with

a taxonomic relationship (IsA or IsPartOf relationships) and non-taxonomic relationships (such as

operational information). This break-down of relationships becomes a key concept in ontological

learning methods.

If we assume that the 3-D models and animation information is connected together in an ontol-

ogy, then techniques used in ontology generation become available for semantic generation. The

10

field of ontology generation and learning from large data-sets is a well studied topic, with several

books [34, 35] and survey papers written on the topic [33]. Ontology learning from structured and

semi-structured data sources generates consistent hierarchies over different parameters, as the learn-

ing methods are essentially pruning away un-needed data. Techniques to generate ontologies for

virtual humans have made some progress using semi-structured data sources such as WordNet[36].

Semantic Generation for Virtual Humans

Throughout this thesis, it has been made clear that there are two important pieces of virtual humans

interacting in virtual environments, the 3-D graphical models (objects) and animations (actions).

Objects and actions are fundamentally distinct in their design, creation, and use, but can be con-

nected through interactional or operational information. Therefore, we can divide an total virtual

simulation ontology into two distinct hierarchies, which can possibly be evaluated separately and

then connecting them together for the full ontology. Dividing the ontology into objects and actions

focuses the information extraction process and removes any confusion attempting to process both

at the same time entails. For example, graphical models and animations are related to nouns and

verbs from natural language and there are several words that can be both, such as a cook (noun) who

cooks(verb). If the names of the action or object are used to retrieve semantic information about it,

then the system must determine its proper meaning from a larger set (the set of verbs and nouns).

A smaller set would increase the accuracy of generation, and since objects and actions are disjoint,

the author can propagate this distinction before semantic generation begins.

Information retrieval for virtual humans has seen progress in each of these two sub-problems.

Pelkey and Allbeck [37] used the names of 3-D models to automate the population of a taxonomy of

objects and attach binary semantics to each object. In their work, objects such as a shrimp platter are

connected with a taxonomic relation to food and have a non-taxonomic relation to edible. Both of

these semantics are attached to all shrimp-platters in the scene, and therefore, all shrimp platter are

considered edible. For action semantics, in our previous work [10] we created a taxonomy of actions

and populated operational information from a previously generated object hierarchy, considering

only the objects in question. We motivated this with an example of cooking, which connect a cook

11

action to a food object in a pre-built object ontology. Using these two methods together would

connect cooking to a shrimp platter object. This method was tested against a ground truth, with

a maximum recall achievable at about 60%. It is discussed in the conclusion of this work that the

other 40% of the operational information was contained through binary or set semantics that would

be attached to objects.

Each of these techniques have been able to generate taxonomies and retrieve semantics for

separate pieces of a virtual simulation. However, pieces of a virtual simulation should co-exist. That

is, the actions a virtual human can perform should fit in with the objects available in an environment.

For planning systems, having operational information is useful for determining what actions can be

performed (at run-time or pre-planned), but operational connections can be determined during the

specification phase, when the ontologies are generated. Provided a set of actions and objects are

known, the important domain knowledge for virtual humans in that the system should exist before

any planning system is necessary. Having an understanding of the actions and objects in a scenario

should also allow a system to know what properties are not needed in the simulation. For example,

if a simulation author does not have objects that have the property of containing a liquid, then it

does not make sense to have an action require containing a liquid. If a simulation author then

added an object with a containing property, the automated methods should propagate this change

by rebuilding the taxonomies. From Pelkey and Allbeck, adding objects does not seriously impact

the time to create a hierarchy, and so the generation systems could stay consistent, even with this

change. Therefore, while progress has been made due to separating out the semantics, methods that

will inevitability combine the relationships are still needed.

1.3.4 Agent Programming Languages

An autonomous (or even semi-autonomous) virtual agent is not only expected to perform an action,

but be able to decide which action is appropriate to perform in a given scenario. This means they

must be able to deliberate over their actions. Virtual agents have used motion controllers with oper-

ational information as the basis of the agent’s action. However, this does not mean the agent is able

to deliberate over these tasks. Furthermore, if a human wishes to interact with virtual characters

12

(whether as a simulation author controlling characters or as an avatar treated as a separate agent),

there must be a rigid and understandable means of communication. Natural Language is known

to be ambiguous, and this ambiguity can cause undesirable effects such as removing the control

of characters from simulation authors. In order to program agents and connect them to their envi-

ronment, several agent programming languages have been developed, and a survey of multi-agent

programming languages can be found at [38]. Specifically, languages such as 3APL [8], FLUX [39],

LORA [40], and AgentSpeak [41] have been used to create heterogeneous populations of agents,

controlling their beliefs, desires, and intentions (BDI). Agent languages provide a more precise rep-

resentation of a world then natural language, and as such, can be used to control virtual agents and

provide communication between similar agents in the world.

Many agent languages, including the ones listed above, use a logical representation to describe

their environment. Axioms describe relationships between known concepts in the world and can

either be fluent based (in the case of FLUX) or state based (in the case of 3APL and LORA).

Semantic properties for objects allow an agent to form a knowledge base, and from that an agent

can deliberate on actions. This means that most agent languages are concerned with two main

areas: choosing a strong representation of the agent’s environment and providing a both grammar

and logical rules that allow an agent to determine true statements about its environment.

The utility of having a basic understanding of agent languages is two-fold. First, by exam-

ining how agent languages operate, a better understanding of how the grammar for PAR can be

established. As PAR is meant to be a mid-level action language, its syntax should be similar and

executable by higher level agent planning languages. Secondly, examining the information used

by axioms and states of these agent programming languages allows the necessary semantics to be

determined. Automatically generating semantics for PAR should coincide with what is able to be

understood by other agent languages. If this was not the case, then those semantics would not even

be needed.

13

1.3.5 Hierarchical Task Networks

Semantic representations of actions and objects allow automated methods to create complex under-

standings in a game environment. However, on their own they do not provide an implementation

of how an action should operate and need some method of decoding to do so. Therefore, a formal-

ized representation of the task must be implemented that allows for both high level actions (such as

cooking) and low level actions (such as taking a step) to be decomposed and performed. Hierarchi-

cal Task Networks(HTNs) [42, 43] are one way in which tasks for virtual humans are decomposed

into Primitive Actions(low level actions) and connected to motion controllers. By decomposing a

task into primitive animations, a virtual character can be controlled from high level commands.The

granularity of a HTN should be based upon the motion controllers a simulation author has, as in-

correct granularity would mean some primitive actions would be placeholders since they do not

have motions attached to them. An example can be seen in Figure 1.4, which shows a base action

being decomposed into several primitive actions. In this example, each primitive action would be

connected to a single animation.

Figure 1.4: A sample task network decomposition for the action PickUp, which can be broken up
into several smaller actions.

HTNs are difficult to create by hand and therefore several techniques have been introduced to

learn correct task decomposition. Nejati et al. [44] used goals, as well as desired and required

semantics, to compose tasks from a top down connection. In their earlier work [45] they attempted

to use expert traces to learn tasks, but found that by doing so the agents could not perform as well

as experts in a block world environment. In the robotic domain, Mohseni-kabir et al. [46] were able

14

to use experts to train HTNs for a car repair domain. There is an important nuance between using

expert traces for explanation based learning of HTNs and demonstrative learning of HTNs. While

they both allow HTNs to shrink the search space when learning, demonstrative learning generally

requires a feedback loop between the character and user, providing more overall data to learn from.

Therefore, care must be taken when choosing a data-source for learning HTNs, as the amount and

type of data can determine the overall success of the learning method. While we are not specifically

learning HTNs for PAR, examining HTN learning parallels populating semantics in a similar way.

By understanding the purpose of the data-sources HTN learning is performed on, we can more

accurately pin-point data-sources other semantics should be learned on.

1.4 The Parameterized Action Representation

To connect a human-like structured natural language to animations and motion controller of vir-

tual characters, we use the Parameterized Action Representation(PAR) [27]. PAR relies on actions

realized as HTNs that are controlled by finite state machines, using animation controlled through

general callback functions. Each callback function connects to a primitive PAR action(name) and

is representative of the motion controllers under that given name. PAR also allows for conjunc-

tions of actions to occur both sequentially and in parallel, allowing the success of each action to be

controlled with both AND and OR conjunctions. Actions are arranged in a Forest of IsA Directed

Acyclic Graphs (FIDAGs), with more general understandings of a given action as parents of more

specific ones. An example of a this seen in Figure 1.5. PAR also allows for representations of object

hierarchies and semantic attachment and resolution of objects. Work on automatically populating

object parents and semantics have seen promising results in Pelkey and Allbeck [37]. However, for

the most part, objects are out of the scope of this thesis and therefore will not be covered in detail

and will only be referenced in relation to the actions. One novel contribution of this work is a formal

definition of the PAR system, including all of its components, seen in Chapter 2.

One benefit of PAR is that it operates as a controlled English language at runtime. A controlled

English language is a construct of natural English that follows a regular pattern. An example would

15

Figure 1.5: A sample action hierarchy in PAR.

be having all commands to a given agent provided as Agent-Name Verb Arguments. Using con-

trolled English allows for easier communication between a physical and virtual human, provided

the system takes the method of having a physical human use the controlled language into consider-

ation [47]. Specifically, Schwitter [48] found that the usability of a controlled natural language is

highly dependent on the method with which an author can input pieces of the language. Completely

free-form text input requires the user to learn the structure of the language and can be challenging

for novice users. However, if the input of the language matches the granularity at which it is under-

stood, then the task becomes easier. The granularity of PAR during simulation consists of an action

with associated operational information.

16

Chapter 2: Defining the Parameterized Action Representation

Before discussing how to automate the generation of components of the Parameterized Action Rep-

resentation (PAR), it is important to define and differentiate the structure (syntax), meaning (seman-

tics), and specific realization (pragmatics) in which our system will populate. An agent language is

used to control virtual characters by describing how commands (and components of them) should

be written and are understood by a character interpreting them. There are a variety of choices for

agent languages [38], each with their own similarities and differences based on their application.

We use the Parameterized Action Representation [49, 27], which is a language meant to bridge the

gap between high level AI control (such as what is found in LTL [50, 51, 52] and low level graphical

control). PAR has a number of unique features among agent languages, which we describe in more

detail in Section 1.3.4. Unfortunately, there is no formal definition of PAR as a full action repre-

sentation, making it difficult to describe the components and automate them. Therefore, we create,

cement, and provide a formal understanding of PAR, describing the different components, how they

should be written by a simulation author, and the effects of an agent’s realization of an action. This

should allow for a better understanding of what the automated processes should be responsible for,

and define guidelines to create the different components of a PAR. Defining the syntax of PAR ac-

tions also allows for formal planning methods such as [40] to reason about the different components

used for higher level autonomous agent behaviors. As PAR is an action representation, it should be

noted that the syntax of PAR is designed to be used by agent authors, and that the syntax assumes

un-instantiated PARs. An instantiated PAR is realized by an agent at run-time, and is the pragmatics

of a PAR.

17

2.1 Agent Languages

The purpose of the syntax of PAR is similar to other agent languages [38, 8, 53, 39] in that it

is used to describe the domain an agent exists in. The agent domain contains all knowledge that

is necessary to the whole scenario, making it useful for planning and reasoning, as there are not

unknown unknowns. As such, we describe other action representations, to show the similarities

between PAR and these other representations.

2.1.1 Representations of Actions for Virtual Characters

To understand the need for a PAR grammar, it is important to understand different action defini-

tions that have been formulated. To motivate PAR, we describe each representation in the context

of text-to-simulation applications [10, 54, 55], specifically describing what information other rep-

resentations provide and what information would still be needed for that particular application.

While text-to-scene is an interesting application in that it requires an understanding of both human

communicable language and graphical control, it is by no means the only use for any action repre-

sentation described. We will consider a Stanford Research Institute Problem Solver (STRIPS)-like

action [26], hierarchical task network (HTN) [43], and events [1]. A STRIPS-like action is com-

prised of pre-conditions and post conditions, creating a single action. An example can be seen in

Figure 2.1a. For natural language command systems (text-to-simulation), executing a single com-

mand is impractical, as the text would have to explicitly state each action. This was solved by

connecting together STRIPS like actions to into hierarchical structures, allowing the actions to be

more complex. In essence, this is a hierarchical task network (HTN) [42]. To accommodate for the

distinction of having an action be atomic (a primitive action) or made up of other actions (a com-

plex action) more fields were added. These fields contained either a function definition (primitive

actions) or the list of sub actions that make them up. The transformation from STRIPS to HTNs

can be seen the execute field in Figure 2.1b. By allowing tasks to be chained together, HTNs solve

the issue in text-to-simulation of having to describe each action in the text. Furthermore, the roles

of objects in an HTN describe what objects are needed in a text-to-simulation system. However,

HTNs only have pre-conditions and effects to describe an action, and do not have a way to describe

18

adverbs that may play an effect on the display and understanding of an action. So, instead of a text-

to-simulation author needing to explicitly state every action, a simulation author must anticipate and

create actions for every adverb that may be used, which is still insufficient for text-to-simulation ap-

plications. This does not diminish a HTN’s usefulness, as they are still being developed today [56],

but require other fields to be efficient in a text-to-simulation system.

(a) (b)

Figure 2.1: A high-level specification for Walk in (a) STRIPS format and (b) hierarchical task
network (HTN) format.

One popular method for describing commands are behavior trees. Behavior trees are a design

paradigm meant to ease the authorial burden of connecting actions together for use in games and

simulations. A sample behavior tree can be seen in Figure 2.2. Behavior trees do not have a formal

semantic representation by themselves like HTNs do. Work such as Shoulson et al. [1] and Kapadia

et al [57] have attempted to add formal planning methods to behavior trees, either by wrapping

the behavior tree around a grounded meta-representation (an event) or planning over the behavior

tree explicitly. Planning over behavior trees fixes conflicts in parallel trees, but only if the trees are

known to run together. Events [1] is closer to PAR’s representation in that the event is similar to an

action in PAR (shown in Figure 2.3), using behavior trees only to control the graphical animation.

Combining events are done on the AI level by calling other events, suppling a similar behavior

19

to HTNs. However, events still do not contain the ability to be modified based on adverbial data.

Therefore, while events are similar to PAR actions, they are not the same, and it will be shown

that the definition of PAR provides a more expressive interface for simulation authors to command

characters.

Figure 2.2: A high-level specification of Walk in Event format.

Finally, the Parameterized Action Representation [58, 59, 27] is a method for building actions

specifically following natural language conventions. An example specification of Walk action for

PAR may be seen in Figure 2.3. Like all other shown conventions, PAR has pre-conditions and

effects of an action. Similar to HTNs and events, it also contains an executable set (which are

referred to similarly as tasks) that is built from one or more actions. This allows knowledge to

be built into an action, so that each individual command that is needed for an action to take place

does not have to be specified by a text-to-scene author. Also similar to HTNs, the task is made

up of other actions, making it easier to compare and parse tasks. Finally, PAR contains a field,

Semantics that describe important characteristics of an action not specified by the roles. While

this field is fully defined in Section 2.3, at a high level, it provides a way to control aspects of the

action other than its beginning, end, and the objects that are used. This means that Semantics are

20

able to fill in the role of adverbs in linguistics, and are meant to pass information to the task that

effects the underlying animation. Semantics may also be used to contain knowledge for planning

systems that is not contained in the prerequisites, effects, or roles (such as what is seen in the work

of [30, 14, 31, 15, 60, 47, 61]. The addition of semantics is a powerful field, one that has been

available since the inception of PAR (used in EMOTE [62, 63]), but has not been fully defined.

Furthermore, we show that the formal PAR task definition, novel to this work, can be used to

compare and contrast tasks, providing even more information not normally available to planning

systems. The rest of this chapter is as follows: We first define the language of PAR, describing all of

the components that are necessary to specify a domain using PAR. Next, we present an explanation

of Semantics, and explain how these are parsed through tasks. We then describe objects, laying

out the properties that create an object hierarchy and attach semantics to it. After that, we define

conditions and assertions, proceeding afterwards to actions. Finally, an understanding of tasks in

PAR is presented, including properties that control how tasks may be created and compared.

Figure 2.3: A high-level specification of Walk in PAR format

21

2.2 The Parameterized Action Representation Defined

We begin by defining the Parameterized Action Representation as a six-tuple system L= {S, OBJ,

�, �, ACT, F}, where S is the set of semantics in the system, OBJ is an ordered set of objects, � is

the set of conditions in the system, � is the set of assertions, ACT is the ordered set of actions, and F

is the set of task conjunctives. Unlike the HTNs of Erol et al., we do not differentiate between single

actions (referred to as primitive actions in Erol et al.) and complex actions at the language level.

The reason is due to how we treat the task network itself, and will become apparent in Section 2.6

and Section 2.8. Therefore, PAR is more closely related to the concept of events [1], and when

deviating, will be explained accordingly.

It should be kept in mind that L is described as a design-time language. This means that what

follows focuses on how a simulation author would create the PAR world, not in how they are real-

izing it. Thus, objects and actions are considered un-instanced (un-grounded) and are really object

and action types. Therefore, while virtual agents will reason about the objects, actions, and realize

behaviors created for them during a simulation, their creation and description is done prior to run-

time. It should be noted that we do provide some algorithms for realization, but they are not the

focus of this chapter.

2.2.1 A Note on Symbolic Notation

PAR has many layers, all of which are connected to one another. For symbolic consistency, we

use special notation when a symbol refers to the language or a property thereof (L or OBJ) vs.

when a symbol is a sub-property of the language (λ , a sub-property of objects and actions). Fur-

thermore, several sub-properties are themselves sets, either ordered or unordered. We denote a set

sub-property using bold face, following the style of Events [1]. Furthermore, when discussing an

item from a set, we will use a subscript notation (i.e OBJi) when the property requires two or more

items from that set or we mean to represent a specific item from that set. When any item from that

set can be used, such as in Execution (Algorithm 1), lowercase notation will be used (i.e obj) unless

that item is itself a set.

22

2.3 Definition of Semantics S

We first define the properties of the world, contained in the semantic set S. At the language level, S

defines all possible properties necessary to reason about the world. Any semantic that is not defined

in S cannot be used by the characters in their actions. This differentiates knowledge important to the

characters from knowledge that a simulation uses but is not necessary for the characters. Formally,

we define a semantic s ∈ S as:

Definition 2.3.1. Let s be a semantic in the set of semantics S. s is defined as s = {λ ,V,ω}, where

• λ is the unique label of the semantic

• V is the set of values the semantic can take

• ω is a application of the semantics, and has the value: object, action, both

Note that each semantic has a designation ω , which can be an object, action, or both. Object

properties include the graphical object assigned to a given object (described in Section 2.4). It

also allows for non-graphical properties that are necessary for reasoning about the objects. Action

properties provides context sensitive fields related to the meaning of a given action. Fields such as

the duration and purpose of a given action provide a grounded understanding of the action to an AI

planning system and are similar to adverbial clauses in natural language. They also allow for fine

grain controls of motion controllers between subsequent realizations of an action. Finally, there

are semantics that have meaning to both actions and objects, designated by ω = both. In many

cases, the semantics of an object (especially when the object is an agent) change the fine-grained

control of an action. An example is the motion personality work of Durupinar et al [64]. In their

work, the action was controlled by the desired personality of the agent, and had a direct effect on the

animations performed by that agent. So, the personality is both a property of the agent(object) with

values set on the agent and a property of the action with that value controlling parameters of the

action. In this sense, it is important that a semantic s is understandable by both actions and objects,

so that a common language may be used between them.

The set of semantic values V represents all possible grounded values that an object or action may

be assigned at run-time for that given semantic. For example, a semantic status may have possible

23

values of Idle, Busy, and Broken. Note that the value at run-time would be selected from these

possible values and is considered realized (Definition 2.3.2) at that time. We denote the difference

between unrealized semantics (V) and realized semantics as a lowercase (v), and describe it in

Definition 2.3.2. Furthermore, V may be the empty set(/0), which the system understands to be a

semantic that can take on any real value. So, if V = /0, then −∞ < V < ∞. By utilizing V = /0, PAR

can represent semantics such as Start and End, which do not have set values, and for the system to

comprehend that they shouldn’t.

Definition 2.3.2. A realized semantic {λ ,V,ω} has a single property |V|= 1, and can be denoted

as {λ ,v,ω}

Action semantics are not readily discussed in a generalized context (evident from them not ap-

pearing in Figure 2.1 and Figure 2.2) and for the most part, are widely used and tested without

being considered part of the action. Parameters such as Lexeme, Frequency, and Scale for gestures

in the Behavioral Markup Language [65] control how the action is going to unfold. This is also true

for Laban Movement Analysis Parameters [64], and commands such as Start and End in Smart-

Body [66]. The last two parameters are useful from an AI perspective as well, as they can be used

to reason about an action’s beginning and end period. It should also be noted that semantics that are

not normally considered part of a graphical control structure are important to allow for a generalized

framework of actions. Work such as Liu et al. [67] experiment on changing parameters linked to

an psychological perception of personality(extroversion and emotional stability). The base anima-

tions themselves are the same, but its movement is changed by adding a modifier onto it. This is a

action semantic change that would not effect the definition of the action, just its execution. Having

a method to generally represent these parameters allows for more general action sets to be created,

and reduces the total number of actions needed to describe a behavior.

From the above discussion, there is an important property to define between semantics, one of

how to compare semantics between actions, objects, and other semantics. Using the earlier person-

ality example, the agent may have a single personality vlue and the action may be able to process

a set of personality values, all of which derive from a personality semantic in S. To know that the

24

object personality and action personality represent the same semantic even though they have differ-

ent values (V), PAR needs some way of equating the two. We therefore define semantic equality

using Definition 2.3.3. Semantic equality is not determined by the set of values the semantics have,

but rather by the label. In Section 2.4 and Section 2.6, when actions and objects can be assigned

semantics, it is important for the character to know which sets the semantics are meant to represent.

That is why Definition 2.3.3 is not constrained to be semantic sets in the language, but any semantic

set (as long as it has a connection back to the language). The latter portion of Definition 2.3.3 is

a check to ensure that equality is only considered if the semantic exists in the language. In reality,

any semantic that exists in the system should also exist in the language.

Definition 2.3.3. Two semantics Si and S j are considered equal if λ ∈ Si = λ ∈ S j and there exists

Sk ∈ S where λ ∈ Si = λ ∈ Sk

PAR’s system of semantics are extremely general, encompassing both set and continuous values.

However, from Definition 2.3.1, there is no guidance on how they should be created or used. In

reality, S simply contains all the possible atomic instances that the agent may have to deal with

in the simulation. This can, of course, mean that a lot of information is needed in order to fully

describe the state. Work such as Pelkey and Allbeck [37] and PASTE [68] use binary properties, so

that all properties are realized. By expanding the definition to include real values and sets, a more

nuanced reasoning can be applied to semantics to better match other work such as Laban Movement

Analysis or EMOTE, in which semantic properties exist in sets or on a continuum.

2.4 Definition of Objects OBJ

OBJ is the set of all objects, such as graphical objects, that make up a virtual environment. Clearly,

for virtual agents to exist in a non-static world, they need to have some understanding of their

environment. The total set of objects in OBJ consist of a grounded representation of objects (such

that they are “tangible” in the virtual world) and their generalizations (closer in an idea to Aristotle’s

understanding of a perfect chair). This combination of the two in one format permits virtual agents

to reason at several different levels about objects, only needing to ground objects in reality during

25

interaction (described in Section 2.6.2 and Section 2.8). We define a single object, obj ∈ OBJ in

Definition 2.4.1.

Definition 2.4.1. Let obj be an object in the set of objects OBJ. obj is defined as {λ , p,S}, where

• λ is a unique label

• p is the generalization or parent object, made up of zero or one p ∈ OBJ and p 6= ob j

• S is the set of semantics of ob j, defined in Definition 2.3.1.

Note the generalization p can be another object or not exist. A graphical depiction of how

generalizations can be visualized can be seen in Figure 2.4. We define a path between objects in the

standard way that paths are defined in graphs, except that due to the nature of our generalizations,

the paths are in reverse order.

Figure 2.4: A set of sample objects connected to their generalizations. Note that in PAR, agents are
also considered as objects

26

Definition 2.4.2. A path1 between two objects OBJi and OBJ j, denoted path(OBJ j,OBJi), exists

if there is a sequence of objects OBJ = {OBJi...OBJ j} s.t OBJk =p and p ∈OBJk−1 for i≤ k≤ j.

The definition of a path allows OBJ to be structured as a (possibly) connected graph. We further

wish to restrict OBJ so that it contains no cycles. As p is the generalization of an object, then it

follows that a generalization should not be a child of a more specific object. Therefore, we give

Definition 2.4.3 describing that there are no cycles in OBJ. This also means that paths only travel

in on direction, and that there are no deviations in a path (there are no multiple paths, shown in

Lemma 2.4.1.

Definition 2.4.3. ∀obji ∈ OBJ, There does not exists obj j ∈ OBJ s.t. path(obji,obj j) exists and

path(obj j,obji) exists.

Lemma 2.4.1. There exists at most one path between any two objects in OBJ.

proof: From Definition 2.4.1, ∀ob j ∈OBJ, p∈ ob j is either another object or None. If ob j′.p=

ob j,ob j′ ∈ OBJ, then, from Definition 2.4.2, there is a single path connecting ob j′ to ob j denoted

path(obj′,obj), with the sequence being ob j,ob j′. Now, consider three objects, ob j,ob j′,ob j′′ ∈

OBJ, where ∃ path(ob j′,ob j) and path(ob j,ob j′′). From Definition 2.4.1, an object has at most one

generalization, which means that path(ob j′,ob j′′) also exists, with one of the objects in the sequence

being ob j. As ob j′.p= ob j, then the only path from ob j′ to ob j′′ is through ob j. Therefore, all paths

are unique between any two objects in the hierarchy if a path exists.

Definition 2.4.1 is similar to [15, 69] in that the semantics, and in particular graphical properties

of the object, are attached as semantics (S) instead of being a named component of the object

themselves. This separates the graphical from meta-data component, allowing agents to reason

about types of objects instead of the graphical objects themselves. We also define semantics as

non-graphical properties of the object that can be reasoned upon, such as the semantics in [25, 18].

However, we do not connect objects to actions in the semantics of objects (so we do not follow

the work of Peters et al. [20]). This compartmentalizes the objects into a representation that is

essentially a single parent hierarchy, with the only inter-relationship between objects being their

1Adapted from https://www.csee.umbc.edu/courses/undergraduate/341/fall98/frey/ClassNotes/Class14/trees.html

27

generalizations. However, this also allows for objects that may be used in a virtual environment to

not have necessary graphical properties defined for them (such as an object not having a graphical

model attached to it). In this respect, the generalizations can also be useful, as a more general object

model should be defined higher up in the tree. This departs from the definition of semantics found

in Pelkey and Allbeck [37], which stores the semantics on each object individually, providing the

semantics to object instances. As the semantics of Pelkey and Allbeck are binary properties (i.e,

every Si ∈ S is either TRUE or FALSE), generalizations of semantics have a limited effect on the

simulation, meaning continuous values such as velocity cannot be represented, only that the object

may have a velocity. Therefore, for any object, we define how semantics are stored and translated

between objects in a hierarchy using Definition 2.4.4 to define Object Semantic Assignment and

Definition 2.4.5 to define Object Semantics Inheritance.

Definition 2.4.4. Object Semantic Values:For a given semantic Sm ∈ S where S is the semantic set

of object, and there is Sn ∈ S where Sm = Sn, then the object’s possible semantic property values V

forSm is assigned as V ∈ Sm ⊂ V ∈ Sn

Definition 2.4.5. Object Semantic Inheritance: ∀OBJm,OBJn ∈ OBJ, if path(OBJm,OBJn) ex-

ists, then let V be the values of a semantic in OBJn and V’ be the values of the same semantic in

OBJm. V′ is then a subset of V.

Lemma 2.4.2. Object properties can be realized in un-instantiated objects

Proof:From Definition 2.4.5, for two OBJm,OBJn ∈ OBJ, where p ∈ OBJm = OBJn, then

S ∈ OBJm, denoted Sm is a subset of S ∈ OBJn, denoted Sn and all s ∈ Sm are subsets of s ∈ Sn.

Suppose ∃s∈ Sn where |V|∈ s= 1. This object, and any child object, can then only take on one value

during runtime, and therefore is realized. This means that the matching s ∈ Sm can only take on one

property value, which is how un-instantiated and instantiated objects can have realized properties.

The generalizations and semantics attached to all objects provides a powerful way for a simula-

tion author to describe groups of objects. By forcing specification of semantics to exist on general-

izations, an agent reasoning system can hierarchically reason about objects, and allow objects that

fail the reasoning checks to be pruned from the system quickly.

28

2.5 Definition of Conditions and Assertions

The conditions field in the Parameterized Action Representation is equivalent to the prerequisites of

other planning languages such as STRIPS [26] and defined in Definition 2.5.1. In effect, a condition

is a statement that is resolved to either true or false. Conditions can be chained together using AND

connectives.

Definition 2.5.1. A condition φ ∈ � is a conjunctive sentence that is evaluated to either TRUE or

FALSE.

Before we describe assertions, we define an important data-type to PAR that is the evaluated

ending of an assertion in an action. Unlike conditions which have a boolean evaluation, the evalu-

ation of an assertion is actually a subset of the status of an action. While this does not mean that

assertions are only the subset of the status, it will be seen that the end evaluation is an important

component of that. Therefore, we define the status of an action in PAR using Definition 2.5.2.

Note that there are four different values for this status, signifying four base states that an action can

take. Other action statuses can be added in addition to provide a more fine-grained understanding

of the action (and in fact over the life-time of PAR, several have), but what we provide is the bare

understanding needed for action operation.

Definition 2.5.2. An Action status σ is a five-valued variable, which contains a value of either

NULL, INCOMPLETE, SUCCESS, FAILURE, or FINISHED.

Similar to the condition set �, the assertions on the world state are used to update the world

model that occurs only upon completion of the action. An assertion on the world state performed

by PAR is any non-graphical modification to the virtual environment, such as updating the contents

of an agent’s possessions or setting the known pose of an agent from sitting to standing. Graphical

modifications brought about by motion controllers, such as setting the position of a character in the

world or finishing an animation, should not be considered part of these assertions, as they may be

used to determine when an action is finished. Multiple actions may run simultaneously, allowing

multiple assertions to be run together. PAR has a specific assertion, the action status, that is always

29

in the assertion sentence of an action. The status of assertions is a subset of the total status, and may

be set to either SUCCESS or FAILURE.

Definition 2.5.3. An assertion δ ∈ � is a conjunctive sentence that when evaluated changes the

world state to match the conjunctives.

As conditions and assertions may be connected to other conditions or assertions using AND, this

means that both conditions and assertions may be made up of other conditions and assertions. As

will be seen in Section 2.6, assertions are, in general, the end result of an action. It should also be

noted that the sets � and � define all of the causes and effects that each action has on the world. Like

most other things in PAR, both of these sets are parameterized, with the input values being either

objects from OBJ, actions from ACT, or semantics from S. The system also allows real-valued

variables to be set. The end result is that conditions and assertions provide a tool for the agent to

check and effect its game world.

2.6 Definition of Actions

A large component of PAR is the action set ACT. Actions allow agents to understand and change

the world state, and in essence, give the agents their volition. We define an action act ∈ ACT using

Definition 2.6.1.

Definition 2.6.1. Let act be an action in the set of actions ACT. act is defined as {λ ,P,R,Ψ,Θ,S},

where:

• λ is the name of the action,

• P are the parents of the actions, which consists of zero or more actions.

• R is a set of roles in the action, defined in Definition 2.6.9.

• Ψ is a set of condition-assertions that allow the action to reach a state of SUCCESS or

FAILURE, as well as run any other assertions necessary. Ψ is defined in Definition 2.6.14

• Θ is the set of condition task pairs, defined as 2.6.5.

30

Table 2.1: Set components of PAR

R Operational Information
Ψ Condition and Assertion statements
Θ Task Information
S Action Semantics

• S is the set of action semantics, defined in Definition 2.3.1.

λ and P are used to delineate action parents and create a hierarchy structure like the one seen

in Figure 2.5. The parents P will either be a set of some act ∈ ACT, or empty if the action does not

have a parent. For the action hierarchy, we only allow one parent, and there cannot be any cycles

in the hierarchy. Θ is the task set, defined as a set of hierarchical task networks, and described in

Section 2.8. Θ provides conditions used to select a task. Much like the object definition, S is the set

of action semantics. Many of the components of an action are themselves sets. A table with each

set can be found in Table 2.1. The notation for these sets is that the set will be uppercase, with each

individual as a lowercase element.

Similar to properties of objects from Section 2.4, we define several key properties of actions,

namely, that a path can exist between two actions (Definition 2.6.2) and that there are no cycles

between actions (Definition 2.6.3). However, there is a more relaxed definition of generalizations.

An action’s generalization is a set, meaning that there can be multiple paths from one action to

another. This means that we do not have a unique path property, and the definitions for paths and

no cycles are slightly different.

Definition 2.6.2. A path between two actions ACTi and ACT j, denoted as path(ACT j,ACTi) exists

if there is a sequence of nodes ACTi...ACT j s.t ACTk ∈ P where P ∈ ACTk−1 for i≤ k ≤ j.

Definition 2.6.3. No Action Cycles:∀ACTi ∈ ACT, there does not exist an ACT j ∈ ACT s.t. ACT j ∈

P where P ∈ ACTi and, ∀p ∈ P of ACT j, path(p,ACTi) exists.

As actions have zero or more generalizations, we can compute similarity measures between ac-

tions. One similarity measure, using Wu-Palmer similarity [70], requires a Least Common Subsumer

(LCS). We define a Least Common Subsumer in Definition 2.6.4.

31

Definition 2.6.4. A least common subsumer between two actions ACTi and ACT j, denoted as

LCS(ACTi,ACT j), is an action ACTm ∈ ACT such that there exist a path between ACTi and ACTm

and between ACT j and ACTm and there does not exists an action ACTk ∈ACT s.t. |path(ACTi,ACTk)

+ path(ACT j,ACTk)|< |path(ACTi,ACTm)+path(ACT j,ACTm)|

Definition 2.6.2 and Definition 2.6.3 allow the generalizations and specializations in ACT to

form a directed acyclic graph structure. Because there is no guarantee of the connectiveness between

generalizations, ACT can be thought of as a Forest of IsA Directed Acyclic Graphs (FIDAG). Two

examples can be seen in Figure 2.5. Note how in Figure 2.5a, the action Approach does not contain

any generalizations or specializations, whereas Argue contains two generalizations. This means that

it is possible for the least common subsumer between two actions to not exist. When Wu and Palmer

developed their similarity algorithm between words in WordNet [70] they allowed for a false root

between all words, so that if there was no least common subsumer, their similarity algorithm would

not fail. We take a similar approach, which is described in more detail in Section 2.8.3.

(a)

(b)

Figure 2.5: Two example action sets with generalizations. (a) Actions that are single entities. (b)
Actions with multiple generalizations.

32

2.6.1 Execution of an Action

Actions inevitably need to be realized by an agent. We call the recipe for the execution of the

action as the task, which is described in Section 2.8. While all of the components that make up

a given action must be defined, some components are used in the execution of the action, while

others are used in the execution of the task. Tasks of actions themselves fall into two categories:

tasks that, depending on the state of the world may need to be executed, and the task that always

needs to be executed. The ordered sequence of condition-task pairs Θ contains both of these, and is

defined in Definition 2.6.5. We also describe a special condition-task pair that is required for every

action, known as the execution task and defined in Definition 2.6.6. If the execution task is not

defined for a given action, then the action may inherit from one of its parent actions, as described in

Definition 2.6.8.

Definition 2.6.5. A condition-task Θi ∈Θ is a 2-tuple {φ ,T}, where:

• φ is unique condition sentence, defined as Definition 2.5.1

• T is the task, defined as Definition 2.8.1.

Definition 2.6.6. There exists a task, denoted the execution task, such that {φ ,T} ∈Θ and φ = /0

Definition 2.6.7. There may exists several tasks, denoted preparatory specs, such that {φ ,T} ∈ Θ

and φ 6= /0

Definition 2.6.8. Task Inheritance: For a given act ∈ ACT, if @{φ ,τ} ∈ Θ where φ = /0, then the

execution task is for act is the first parent Pi ∈ P where ∃{φ ,τ} ∈ Pi s.t φ = /0.

Definition 2.6.6 shows an important design paradigm that is unique to PAR, in that there is an

idea between what is necessary for an action and what is sufficient. The long-standing example

of this is that, to open a door, the only animation that is required is an opening action, which of

course may be broken up into a grabbing and pulling motion if the agent author has those actions

instead. However, much more goes into opening a door than those actions. For instance, to open

a door, one most likely has to be near a door, which may require walking to the door. This is a

33

canonical Preparatory Specification in that actions can be used to get into a state where the action

is more likely to succeed. Other action representations, such as STRIPS, HTNs, and events, have

pre-conditions that must be true for the action to begin. They then use the pre-conditions to plan

other actions that are needed in order to get the world state in such a configuration that the action

can be performed. Preparatory specifications in essence, cache this information at design time, so

that the agent does not need to plan at run-time. Preparatory specifications consolidates design time

plans. This is not to say that preparatory specifications cannot be created through planning at design

time. In fact, doing so eases the authorial burden of PAR. Preparatory specifications simply remove

that need at run-time. This is also why Definition 2.6.6 is important. Each action needs to have

some functionality, which is represented as the execution task. The execution task does not need

to prepare for all circumstances, as this will require processing several more components of a task

than is needed. Using Θ should strike a balance between the two.

We briefly describe the algorithm used to execute an action in Algorithm 1 (Execute). Note

that Algorithm 1 uses four other algorithms: Algorithm 3 in Section 2.6.3 (Evaluate Conditions),

Algorithm 2 (Find), Algorithm 4(Enumerate) in Section 2.8, and Algorithm 5(Step) in Section 2.8.

Executing an action contains many parts. For easy understanding, we also provide a flowchart

of the algorithm in Figure 2.6. In Figure 2.6, green lines signify the path taken when Evaluate

Conditions(Algorithm 3) returns either SUCCESS or FAILURE. Red lines indicate a return of IN-

COMPLETE. Black lines are default execution steps that are always taken when there is no path.

In Algorithm 1, there are certain steps that are called WAIT. PAR execution is based off of a

light-weight thread model, and execution of the action is halted at given frequencies. When multiple

actions are run together in a task (see Section 2.7), there is a lock-step mechanism for allowing part

of each task to run.

In order to know which tasks need to be executed, we define a Find procedure in Algorithm 2.

The astute reader will notice that all conditions are examined in Find, and are matched to equality.

Recall that all Ψ have unique condition strings φ . This does not preclude them from evaluating

to the same value, so that multiple conditions may build up a task. The only exception to this is

34

Algorithm 1 The execution of an Action
1: function EXECUTION ACTION(ACT)
2: ACT←The current action being executed, defined in Definition 2.6.1
3: finished← the action status σ , defined in Definition 2.5.2
4: finished←Evaluate(Ψ,0)
5: if finished 6= INCOMPLETE then
6: return finished
7: WAIT
8: prep task←Build(Θ,True)
9: if prep task 6= /0 then

10: repeat
11: Enumerate(prep task)
12: Step(prep task)
13: WAIT
14: until prep task.status = SUCCESS or prep task.status = FAILURE
15: exec task← Build(Θ, /0)
16: repeat
17: Enumerate(exec task)
18: Step(exec task)
19: finished←Evaluates(Ψ,1)
20: WAIT
21: until finished 6= INCOMPLETE
22: return finished

the execution task, whose condition is the empty set /0. This means that execution steps are always

created prior to simulation. Preparatory specifications must be defined prior to simulation, but the

actual task is not known until run-time. Furthermore, Algorithm 2(Build) places a restriction on

preparatory specifications that they are sequentially designed. This is a simplification based on the

set of conditions, and a simulation author may override this by writing condition strings that are

specific to each world state.

From Algorithm 1(Execute), any action that an agent performs at run-time must have an execu-

tion task, or the agent will not know how the action should be realized. We relax this requirement

slightly in Definition 2.6.8. Definition 2.6.8 uses Definition 2.6.2 to inherent tasks. This will have

further implications in Section 2.8.

2.6.2 Roles R

The set of operational items used in the action are the role set R. Recall from Table 1.1 that con-

nection between objects and actions may be a field of either the objects or the actions. We refer to

35

Figure 2.6: The processing steps for executing an action in PAR. This is a flowchart of Algorithm 1
.

this connection as the roles, and specifically when a field of an action as operational information

(although it has also been described as affordances). From the original definition of PAR, each oper-

ational object in the role set can either be a necessary object participant, whose inclusion is required

in order to perform the action, or augmentation objects, which are not required to perform the action

but allow the action to be more expressive. Roles are defined in Definition 2.6.9 as a component of

the action, which differs from interactional representations such as SmartObjects [18].

Definition 2.6.9. A role r ∈ R is a 2-tuple {OBJ,ν}, where:

• OBJ is the set of objects that can satisfy the requirements of the role. Each obj ∈ OBJ is

representative of an object in OBJ, defined from Definition 2.4.1.

• ν is a boolean representation signifying whether the role is necessary for the action to be

used.

Using an example of the action cooking, a necessary object, where ν = 1, would be the food to

cook, while a spoon would be an augmentation object, which is not necessary for cooking. This is

different from the definition of operational objects seen in Erol et al. [42] or events [1], which only

36

Algorithm 2 Task Builder
1: function BUILD(Θ,equality)
2: Θ←The set of condition-task passed in from an action
3: equality← The condition φ is being compared to
4: f inished← empty set (/0) of actions
5: for all (φτ) ∈Θ do
6: if evaluation ofφ = equality then
7: addτ to actions
8: if | f inished|> 1 then
9: return AND conjoining all actions in finished

10: return finished

consider necessary objects. Furthermore, note that OBJ is a set of objects, meaning that multiple

objects may be used in the role, and that a single object is not assigned to that role until run-time.

We define three properties of roles necessary to reason over and realize actions: equality, sim-

ilarity, and specialization. The first two properties, seen in Definition 2.6.10 and Definition 2.6.11

allow us to reason about the roles between actions. We show the use of role equality in organizing

action parents in Chapter 3. The last property, seen in Definition 2.6.12, is used when an action

is being realized (instantiated in the world). We also define the behavior of parent action roles in

Definition 2.6.13.

Definition 2.6.10. Role Equality: Let O1 be OBJ ∈ Ri and O2 be OBJ ∈ R j for two roles Ri and

R j. Ri is equal to R j if ∀obj ∈O1,obj ∈O2 and ∀obj ∈O2,obj ∈O1.

Definition 2.6.11. Role Similarity: Let O1 be OBJ ∈Ri and O2 be OBJ ∈R j for two roles Ri and

R j. Ri is similar to R j if ∃obj ∈O1 that also exists in O2 or ∃obj ∈O2 that also exists in O1.

Definition 2.6.12. Role Instantiation: For the set of possible objects that can fill a role, OBJ,

∃ob j ∈ OBJ and OBJi ∈ OBJ with path(OBJi,ob j), then OBJi can be used to instantiate the role.

Lemma 2.6.1. Two roles are similar if an object in the set of objects in one role can be used to

instantiate another role

proof:Consider two roles, Ri and R j, where Ri 6= R j and {O1,ν} = Ri and {O2,ν} = R j.

Now, suppose their are two objects, o1 ∈ O1 and o2 ∈ O2 where path(o2,o1) exists. Then, by

37

Definition 2.6.12, o2 can be used to instantiate Ri. Since o2 can be used in Ri, Ri and R j are

similar.

Definition 2.6.13. If the set of roles R in a given action act are empty, but parent actions have roles,

then the roles R ∈ act are the union of all parent sets in the action.

Definition 2.6.10 and Definition 2.6.11 have a profound effect on computing the differences

between roles, and converting one role to another. This is useful in agent reasoning systems, when

an agent is comparing two actions and is considering the roles (and in some cases, the locations

of the objects [71]). Role similarity is also important for tasks, as actions in a task may require a

role be similar in order for the task to operate (described in Section 2.8). While roles and actions

are created at design-time, an agent may be required to plan (or re-plan in the case of a failure) at

run-time. Definition 2.6.11 coupled with Lemma 2.6.1 provide a loose comparison between roles,

while Definition 2.6.10 provides an exact comparison between them. We cn also compare roles by

defining a distance function based on the symmetric difference between two sets. This is defined in

Equation 2.1. Note that the meaning of union and intersection is determined by whether roles need

to be exact or similar. We show the effects of this on a test data-set in Section 2.9 and show the use

of Equation 2.1 on comparing actions in the case study(Section 2.9).

A∆B = |(A
⋃

B)|−|A
⋂

B| (2.1)

2.6.3 Condition and Assertions

The condition and assertion set Ψ defines the conditions that allow an action to complete, and

the subsequent effects on the world Ψ is an ordered set. In many representations (STRIPS and

events), the condition φ and assertion on the world δ are separate entities. This is because there

is only one φ and δ for each action and so action failures [72] are not represented. Furthermore,

planning systems such as Kontopoulous et al. [73] found that only having one φ and δ were not

sufficient for their PDDL planning system, and that “conditional-effects” allow them to plan over

changes in their resources (similar to objects). Therefore, a single φ and δ is insufficient to fully

38

describe the path an action may take. By using Ψ, the transition between the conditions and actions

are better represented. Ψ allows for the conditions necessary for an action to succeed, fail, or

even be describable by a simulation author, providing a more nuanced understanding of actions.

Definition 2.6.14 defines a condition assertion in the ordered set.

Definition 2.6.14. A condition-assertion of an action ψ ∈Ψ is defined as {φ ,δ ,e}, where:

• φ is a unique condition from the set of conditions �, defined in Definition 2.5.1.

• δ is an effect from the set of effects �, defined in Definition 2.5.3. Each delta ends with a

σ (Definition 2.5.2) with either the value of SUCCESS or FAILURE

• e is a boolean flag signifying when φ is tested for its truth value

Note that e is not found in any other representation, and describes when a condition is tested in

the action. In reality, there are two times in which an action that is being realized may be considered

complete, either before the action begins or while the task is being realized. When e is set to 0,

then the condition is only tested before the action starts, and is known as applicability conditions.

In the original definition of PAR [27], the authors described the need for applicability conditions,

to determine if the action can even be run by the character. This is also described as pre-conditions

in STRIPS [26]. For these condition assertion pairs, δ contains FAILURE as part of its connective

sets. However, PAR treats tasks as pre-authored hierarchical task networks, which means that all

of the desired action’s effects may already be realized before the action begins. Therefore, appli-

cability conditions in PAR are extended to have σ which contain SUCCESS as well. Because the

applicability conditions describe if an action should, or even can, run, if no φ ∈ Ψ is found to be

true, then the action’s status is INCOMPLETE. A status of INCOMPLETE means that the action

did not finish, and should continue in its evaluation. Therefore, the conditions should be written

when the status of an action is resolved to either SUCCESS or FAILURE, and it is not assumed

that the conditions always tend to one or another.

In addition to condition-assertions that occur at the beginning of an action, PAR has condition-

assertions that occur during the execution of a task, when e = 1. This is analogous to culmination

conditions and post assertions found in the original definition of PAR, but allows for actions to

39

evaluate to FAILURE in addition to SUCCESS. There has been a lot of work on failures in action

execution [72, 74], and the inclusion of them in culmination conditions allows for failures to be

considered in planning, as well as providing a nice symmetry between applicability conditions and

culmination conditions. The agent evaluates Ψ using Algorithm 3, which determines which, if any

condition is true, and executes the assertions on the world state if it is.

Algorithm 3 Evaluation of a condition set
1: function EVALUATE(Ψ,type)
2: Ψ← The condition set being evaluated
3: type← The conditional boolean the agent is processing
4: End← The status σ of type SUCCESS,FAILURE,or INCOMPLETE
5: End←INCOMPLETE
6: for all {φ ,δ ,e} ∈Ψ do
7: if e = type then
8: finished← Evaluation of φ

9: if finished = True then
10: End← Evaluation of δ
11: return END

From Evaluate(Algorithm 3), It is important to note that the ordering of {φ ,δ} ∈ Ψ matters.

It is possible that the world state is in such a configuration that multiple conditions are true at the

same time. As conditions are evaluated sequentially, race conditions will not exist, as described in

Theorem 2.6.1. Therefore, the agent author must take into consideration which condition-effects

are more important, and have those at the beginning of the ordered set Φ∆.

Theorem 2.6.1. An action will never perform more than one condition-assertion for an action

Proof: Ψ is an ordered set. From Evaluate (Algorithm 3), the ordered set is executed sequen-

tially for truth values. Therefore, ∀ψ ∈ Ψ, Ψi is executed before Ψ j, as long as i < j. Also from

Algorithm 3, a state-shift occurs when the action is set to either SUCCESS or FAILURE. From

Definition 2.5.3, all assertions must contain either SUCCESS or FAILURE. Therefore, if φ ∈Ψi

is found to be true, δ ∈Ψi will cause the action to end. Because the examination of Ψ is sequential,

φ ∈Ψ j will not be evaluated, and so there will never be two conditions that are at the same time for

40

the same action.

As Theorem 2.6.1 shows, condition-assertions will only allow one δ statement to execute for a

given action. This affords flexibility in the action, as competing δ ∈Ψ can be written into the action

at design-time and due to Theorem 2.6.1, only one assertion will ever be evaluated. Thus, the total

amount of actions that need to be written by a simulation author in the system can be compacted

and reduced.

2.6.4 Semantics of Actions S

In addition to the semantics of objects, PAR’s action may also have meaning attached to them.

This is a departure from other action representations such as events or Hierarchical Task Networks,

which do not contain action semantics. From a natural language perspective, actions should have

semantics in the form of action descriptors (such as adverbs). Therefore, we define properties of

action semantics, which are analogous to the object semantic definitions of Section 2.4.

Definition 2.6.15. Action Semantic Values:For a given semantic Sm ∈ S where S is a semantic

set in an action, and there is Sn ∈ S where Sm = Sn, then the possible values V ∈ Smare a subset

ofV ∈ Sn

Definition 2.6.16. Action Semantic Inheritance:∀ACTm,ACTn ∈ ACT, if path(ACTm,ACTn) ex-

ists, then let V be V ∈ ACTm and V’ be V ∈ ACTn. Every Vi ∈ V is also in V′ and the values of Vi

are a subset of its corresponding semantic in V′.

Lemma 2.6.2. Action can have realized properties

Proof:From Definition 2.6.16, for two ACTm,ACTn ∈ ACT, where path(ACTm,ACTn), then S ∈

ACTm, denoted Sm contain a subset of the properties of S ∈ ACTn, denoted Sn and all s ∈ Sm are

subsets of s ∈ Sn. Suppose ∃s ∈ Sn where |V|∈ s = 1. This object, and any child object, can then

only take on one value during runtime, and due to Definition 2.3.2, the semantic is realized.

Lemma 2.6.2 allows us to create actions that have singular semantics attached to them. This

is a useful and important property of action semantics, as it allows a simulation author the ability

41

to implant concrete understandings of action sets before run-time. For example, if an author has

three animations, Run, Walk, and Jog, the only difference in the understanding of these three actions

are the animation itself and the movement speed. By creating three separate actions connected to

one parent action Movement, action instantiation can contain the movement speed for each three

actions, while allowing other knowledge of the action (the roles and condition-assertions) to remain

the same. We can see an example of this in Figure 2.7. In Figure 2.7, the actions and animations

are blended together based on a single property, speed. These two action semantics control which

animation and how much of each animation are played when a movement action is called. The

values each semantic has are then a set to be realized at runtime. Each animation is in that set

is then a subset of that property (the standing action is not played above a certain speed threshold

where walk begins). Lemma 2.6.2 describes this property, which is often used to create blend spaces

but is not generally in action representations.

2.7 Conjunctives

While actions are considered atomic units, it should be noted from Figure 2.3 and the definition of

an action’s task that actions can be combined together in order to create more complex behaviors.

While the exact method for doing so is described in Section 2.8, we first describe the kinds of

connectives that are defined in PAR. While we realize that these are not the only way of connecting

actions together, for now, it provides a strong base. We define six types of connectives in F: {AND,

OR, PARINDY, PARJOIN, WHILE, GATHER }, which are similar to the nodes described in

Marzinotto et al. [61].

The three sequential conjunctives, AND and OR, and GATHER operate by evaluating each

action that is a child of the conjunctive, and whose behavior can be seen in Figure 2.8. In Figure 2.8,

at each action stage, the links show the possible outcome at each step of composite node. For an

AND conjunctive, any action that fails will halt the execution of that entire branch. Likewise, an

action that is successful in an OR conjunctive halts the execution of the entire branch. This is

similar to composite in behavior trees. GATHER is a special connective, in that it operates on a

collection of items. This connective enumerates through a collection of items, preforming the same

42

Figure 2.7: A blend space between three animations in a single action. This one dimensional blend
is controlled by a speed parameter

.

43

action on each item individually. It can be thought of as an AND node that connects the same action

using different objects. The failure of one action then is the failure of the entire branch. Because

GATHER connects an unknown number of actions together at design time, it is considered a special

conjunctive, in that GATHER may only operate on a single action. This is similar to a foreach node

of [75].

(a) AND Connective (b) OR Connective

(c) GATHER connective

Figure 2.8: A graphical depiction of the three sequential connectors, (a) AND,(b) OR, and
(c) GATHER.

The three parallel conjunctives, (PARINDY, PARJOIN, and WHILE)2 execute all actions

on their branch at the same time, with a graphical representation of PARINDY and PARJOIN

depicted in Figure 2.9. Their difference lies in how the individual actions and branches advance and

halt execution. PARINDY evaluates all actions, and halts the execution of the branch when one

action finishes. The result of that branch is then the result of the first action to finish. Likewise,

PARJOIN halts the execution when the last action finishes, with the result of the branch being the

result of the last action to finish. Finally, WHILE advances each step (from the execution algorithm

in Algorithm 1) together. So, some actions that do not have preparatory specifications will halt and

allow the actions that do to evaluate those first before continuing with the execution steps. If any

action is to fail at any time, all actions will fail, so that while acts as a parallel AND.

2The names of these connections are due to historical reasons

44

(a) PARINDY Connective (b) PARJOIN Connective

Figure 2.9: A graphical depiction of two parallel connectors.

2.8 Explanation of Tasks T

Until this point, the descriptions of PAR and its components have been mainly focused on the

descriptions of actions and objects and how those are used to define a knowledge base for agents. For

a virtual character to realize and perform motion data using the virtual objects in their environment,

there needs to be some explanation of how all the components of an action come together, that

is, how the components should be realized by characters. Furthermore, actions defined so far are

autonomous sets, but it has been well documented that actions can be a composite of other actions

in the set [43, 56]. We designate tasks(T) to represent how actions are connected and realized for

virtual characters.

We define a task T as an annotated, rooted tree, where each leaf node is an action act ∈ ACT

and each interior node is a connector f ∈ F. Formally, we define a task using Definition 2.8.1 and

provide some terminology in Definition 2.8.4 and Definition 2.8.5. Also, as a task is a tree, we use

terminology consistent with trees, such as children, parents and so forth. Definition 2.8.1 is a vast

departure from the original definition of HTNs in Erol et al., and is due to the strides the community

has made in representing tasks as a whole [56, 3]. This is also different from the definition of

behavior trees found in work like [76, 61] as behavior trees allow for conditions to exist on the task

network, whereas we only allow for actions and conjunctives. Task Networks have many different

ways of connecting actions together, including parallel execution and selections of actions, and the

conjunctives in PAR are described in depth in Section 2.7. We use this representation in opposition

to decorators found in behavior trees. This is because most of the behavior tree decorators can be

replicated using action semantics, described in Section 2.3.

45

Definition 2.8.1. A task T is a directed, rooted tree constructed of nodes Ti ∈ T where:

• Interior nodes are derived from F

• Leaf nodes are act ∈ ACT, defined in Definition 2.6.1

• Each non-leaf node, with the exception of a node specified as GATHER has two or more

child nodes

Definition 2.8.2. A path between two nodes Ti and T j, denoted path(Ti,T j) exists if there is a

sequence of nodes Ti...T j s.t Tk is a parent of Tk+1 for i ≤ k ≤ j or Tk is a parent of Tk−1 for

i≤ k ≤ j.

Definition 2.8.3. The height of a task is the length of the longest path from the root node to any leaf

node.

Definition 2.8.4. A primitive task is a task with a height of one. It is therefore made up of a single

τ ∈ T. τ is then a realizable function that controls the pragmatics of the action.

Definition 2.8.5. A complex task is a task with height > 1

Note that Definition 2.8.2 describes paths that travel from parent to child nodes. This is different

than a path for an object (Definition 2.4.2) or action (Definition 2.6.2), which only observes paths as

generalizations. The reasoning behind this is that the main purpose of a task is to be enumerated by

the agent at run-time. Therefore, the agent always starts to examine a task from the root, whereas

the agent will usually examine object and action types based on the grounded world (and therefore

from a bottom-up perspective).

There is a circular, serendipitous relationship between actions and tasks. Tasks are composed

of actions, and every action that can be realized by an agent has a task or can inherit a task (Defi-

nition 2.6.8). The breakup of actions and tasks are not found in hierarchical task networks. While

events do separate out the animation component from the reasoning component (in terms of Pa-

rameterized Behavior Trees), parameterized behavior trees are not comprised of events, leading to

the need for both PBTs and other events to be defined. The original definition of events does not

46

even contain this breakup, but instead assumes it, leading to the conclusion that PBTs can contain

events, and that the animation is not removed from the reasoning. By defining actions as is done in

Definition 2.6.1, we remove most of the reasoning components from the task itself.

2.8.1 Annotation

Each leaf node of the task will have one or more pieces of semantic data, henceforth called anno-

tations of the tree. Specifically, as all roles of actions can be types of objects (objects in which obj

is not connected to a graphical object), grounded objects (ones that have graphical objects) must

be filled in during run-time. This is described on the task by annotating each leaf node with obj

where obj can be used to instantiate the role, i.e Definition 2.6.11. We further consider non-role an-

notations to be action semantic specific, in that semantics from the task’s parent action (act, where

T ∈ Θ and Θ ∈ act) can be modified and passed to each leaf in the action. An example of tree

annotations can be seen in Figure 2.10. From Figure 2.10, it should be seen that the same sub-action

is run four times in parallel (Approach), with the difference being that the agent is a different guard

each time. This forces restrictions on the parent action act based on the task. We describe how these

restrictions manifest using Definition 2.8.6.

Definition 2.8.6. Roles used in tasks: ∀T ∈ Θ, for some Θ in an action ACTm, if ∃Ti ∈ T s.t

Ti ∈ ACT, denoted ACTi, then the roles R∈ ACTi must be contained in R∈ ACTm for all necessary

roles (where ν = 1), based on role similarity (Definition 2.6.11). This is because if Ti ∈ ACT, then

it contains at least one required role, that is, it contains the agent performing that action. Also, if a

task cannot instantiate necessary roles for the sub-task, then the sub-task cannot be performed.

There is one special annotation that has been seen in Execute(Algorithm 1), the status of the

task. In reality, the status is a run-time value, and is used to understand the evaluation state of

the task. In fact, each node in PAR has a status, as will be seen in Enumerate(Algorithm 4). All

nodes start with a status of NULL, signifying that the node has not begun. While the node is being

enumerated, it has a value of INCOMPLETE, and when its evaluation is completed, has the result

of the executed assertion. Unlike role and semantic annotations, the status is not set by a simulation

47

Figure 2.10: The task for the action SoundAlarm with its associated roles, shown as annotations of
each leaf node in the task. This task was converted from [1] and can be found in Appendix A.

author, but is instead processed by the system. This does not mean that it cannot be accessed at

run-time, simply that there is no need for an author to pre-set the status.

2.8.2 Task Grammar and Representations

By definition 2.8.1, a task is a tree, with certain properties for its interior and exterior nodes. There-

fore, we can define a grammar for a task as the following:

1. τ → act

2. τ →GATHER(act)

3. τ → F(τ ′)

4. τ ′→ ττ+

5. F → AND|OR|PARINDY|PARJOIN|WHILE

48

Rule 2 in the tree grammar shows the importance of GATHER as a special action form. All

other conjunctives can appear as many times as necessary, and will have several other nodes attached

to them. Note that the tree grammar provides a string representing a pre-order traversal of the tree.

We can perform a post-order traversal by modifying rules two and three, seen below. We will

subsequently define when the post-order modified grammar is used by designating a PRE or POST

string.

2. τ → (act)GATHER

3. τ → (τ ′)F

The task grammar allows us to now define two functions used in the execution of actions from

Execution(Algorithm 1), Enumerate(Algorithm 4) and Step(Algorithm 5). These two algorithms

deal directly with the task, with Enumerate describing how the system knows which branches of the

task are the currently active ones. Because nodes on tasks can be annotated, the system uses this to

keep track of which actions are currently running on the task. Step performs the execution of each

node in the task.

Enumerate decides when to execute actions in the task, based on when the task is written. Notice

that all nodes receive a task status, described in Definition 2.5.2. The status FINISHED is only used

in parallel executions that require all actions to complete in order for that conjunctive to complete.

The only action whose status matters in a PARJOIN connective is the last one. Once an action

connected to a JOIN conjunctive has finished (and run its appropriate effects) that condition does

not matter, and so the system only needs to remember that it has run and that it is no longer running.

The INCOMPLETE status is used in tandem with Step, and describes how the system executes

actions. Line 5 of Step shows the interplay between tasks and actions, and describes how the system

processes actions hierarchically. Each action has an associated task T, either built in the prep-specs

or written by the simulation author before-hand in the execution steps. Each leaf node, as an action

in ACT, may therefore have another associated T, and so the process perpetuates. It is important

to note that in Algorithm 5 (Step), each conjunctive (internal) nodes is ignored. The processing for

conjunctive nodes is handled in Enumerate.

49

Algorithm 4 Enumerating a Task to Prepare it for execution based on PRE grammar

1: function ENUMERATE(T)
2: T← The task (or branch) to be enumerated, represented as a tree
3: τ ← root of T
4: if status of τ 6= INCOMPLETE then
5: return status of τ

6: if τ ∈ ACT then
7: status of τ =INCOMPLETE
8: return status of τ

9: if τ is AND or τ is GATHER then
10: children← children of τ

11: if any children status is FAILURE then
12: set status of τ to FAILURE
13: return status of τ

14: cur← the first node in children whose status is NULL or INCOMPLETE
15: if status of cur =INCOMPLETE then
16: return status of cur
17: else
18: return Enumerate(cur)
19: if τ is OR then
20: children← children ofτ
21: if any children status is SUCCESS then
22: set status of τ to SUCCESS
23: return status of τ
24: cur← the first current running or incomplete node
25: if status of cur =INCOMPLETE then
26: return status of cur
27: else
28: return Enumerate(cur)
29: if τ is PARINDY then
30: children← children of τ

31: if any children status is SUCCESS then
32: set status of τ to SUCCESS
33: return status of τ

34: if any children status is FAILURE then
35: set status of τ to FAILURE
36: return status of τ

37: for all child ∈ children do
38: Enumerate(child)
39: set status of τ to INCOMPLETE
40: return status of τ
41: else
42: children← children of τ
43: f in← number of finished children, initially zero
44: stat← The status of all children that completed in the last iteration
45: for all child ∈ children do
46: Enumerate(child)
47: if status ofchild = SUCCESS or status of child = FAILURE then
48: stat←status of child
49: set status of child to FINISHED
50: if status of child = FINISHED then
51: f in← f in+1
52: if f in = |children| then
53: set status of τ to stat
54: return status of τ

50

Algorithm 5 Executing a Task Step

1: function STEP(τ)
2: τ ← The task step to be executed
3: for all τi ∈ τ do
4: if status of τi =INCOMPLETE and τi ∈ ACT then
5: finished← execute(τi)
6: if finished = SUCCESS or finished = FAILURE then
7: set status τi to finished

2.8.3 Measure for Behavior Similarity

For comparison of behaviors, a consistent representation is needed, one that allows all components

of the tree to be compared. To do so, we convert each task from a tree into a post-order string. An

example of this can be seen in Figure 2.11a being converted to Figure 2.11b. In order to compare

components of sub-trees, we then convert the regular post-order string into a non-regular grammar.

To do so, we count the immediate children of each conjunctive term, converting to our post-order

representation to the representation seen in Figure 2.11c. The representation seen in Figure 2.11c

allows a quick understanding of the total number of children attached to any given conjunctive. It

removes the ability to quickly see which children are attached to which conjunctives.

To compare two tasks T1 and T2, we convert both behaviors into the representation seen in

Figure 2.11c. From Figure 2.11a, we perform a post order traversal of the tree, giving us the rep-

resentation seen in Figure 2.11b. So that we can compare the number of children attached to each

node, we then do a non-linear transformation to Figure 2.11c. This describes how many children

are under each connective explicitly. We then compute the edit distance between each tasks using

Equation 2.2. In Equation 2.2, each character in linear format between the two strings is compared,

solving smaller sub-problems to determine the total similarity. The cost of each step is calculated

as c, and d is the distance metric, seen in Equation 2.3 and Equation 2.4. The total cost is then

calculated as c(T1|T1|,T2|T1|) or the cost after comparing all parts of T1 and T2.

(2.2)
c(T1i,T2 j) = d(T1i,T2 j) + min(c(T1i−1,T2 j),

c(T1i,T2 j−1),

c(T1i−1,T2 j−1))

51

(a)

(b)

(c)

Figure 2.11: Three representations for the task Exchange, adapted from [1] using their name. (a)
The task as a tree. (b) A post-order representation of the task for Exchange. (c) Our processed
representation of the task for Exchange

52

The edit cost between two components of each behavior is an important part of the equation. Before

determining the edit cost, we determine the similarity between the two component of the tasks using

the generalizations of actions. We use the equation seen in Equation 2.3 if T1i and T2 j are primitive

actions. In Equation 2.3, the similarity is controlled by a least common subsumer (lcs), using

Definition 2.6.4. Recall that the lcs of two primitive actions is the generalization that most closely

defines the actions. Examining Figure 2.5a, the lcs of Exchange and Give is Transfer. The lcs of

Approach and Give does not exist. To compensate, we consider a false root to connect all disjoint

action sets. This makes the depth of an lcs of Approach and Give to be 1. If both components are

connective pieces, d(T1i,T2 j) is solved using Equation 2.4.

d(T1i,T2 j) =
2∗depth(lcs)

depth(T1i)+depth(T2 j)
∗Annotations(T1i,T2 j) (2.3)

d(T1i,T2 j) =

1 i f T1i = T2 j

1
5 else

(2.4)

To calculate the total costs of the annotations between two primitive behaviors (that is, calculat-

ing Annotations(T1i,T2 j)), we calculate the symmetric difference, seen in Equation 2.5. For this

step, we liberally connect the roles, meaning the symmetric difference is calculated using Defini-

tion 2.6.11. This allows our measure to consider possible connections, instead of strict connections.

Annotations(T1i,T2 j) = symmetricdifference(R ∈ T1i,R ∈ T2 j) (2.5)

The end result of Equation 2.2 is the minimum effort to transform one behavior into another. At

this stage, our measure provides the cost of changing behaviors, and may be useful for re-planning

systems. To compute similarity between behaviors, we perform L2 normalization between each

overall set of behavior. The normalized cost is then subtracted from 1 to provide an overall similarity

comparison between behaviors.

53

2.9 Case Study

To show PAR’s representation and what can be understood from the syntax of actions using PAR’s

measures, we re-create, to the best of our ability, the events from Shoulson et al. [1]. From their

paper, several events were extracted and converted over to PAR actions, specifically from their

Figure 2 and Table 1. Objects and object semantics that are mentioned by name in their work are

converted into PAR objects. We also automatically generate generalizations for both actions and

objects using WordNet as the base hierarchy. This creates a total of 62 actions and 31 objects.

For this test, there are no preparatory specifications. Semantic sets were only parsed for objects.

The reason for this is that PAR is unique in its preparatory specifications and action semantics,

so it would not make sense that when translating them over to have those fields filled out. We

found during the case study that not all events used were described in [1], and so we also added

several primitive actions from the descriptions of the behavior trees in their Table 1 as well as the

primitive action Guard, which is not described anywhere in the paper, but fits in with primitive

events mentioned in passing in the paper, such as Close and Daze. An in-depth description of each

action and object can be found in Appendix A.

The first demonstration in our case study shows the effects of using role equality(Definition 2.6.10)

vs. role similarity(Definition 2.6.11). We use Equation 2.1 to compute the total edit distance be-

tween two sets of roles in an action. We provide a qualitative analysis, in that we show, for all

actions, the most and least similar actions based on the roles, using both equality and similarity.

Ties are broken by assuming the first action is closer. We also describe the total number of ties in

Table 2.3. We also create a word-cloud to show the entailment between different actions based on

their roles in Figure 2.12.

From Table 2.2, it should be seen that, for many actions in our study, the most and least similar

actions are the same. The exception has to do with the action whose most similar action is Approach.

This is because Approach does not have a restriction on what can be approached, meaning any

physical object can be used in that setting, and so many actions have one role that is similar to

Approach. This is not reciprocal. While actions such as Press and Trap may have a role generalize

to Approach, Approach does not have a role that will generalize to them. This displays the important

54

Table 2.2: The minimum and maximum distance actions based on roles for both exact and similar
measurements. Actions that differ between similar and exact are shown in bold.

Action Minimum
Similar Action

Maximum
Similar Action

Minimum
Exact Action

Maximum
Exact Action

Hide Approach TrapGuardsAlarm Lock TrapGuardsAlarm
Lock Guard TrapGuardsAlarm Guard TrapGuardsAlarm

EscapeCell Lock TrapGuardsAlarm Lock TrapGuardsAlarm
Press Approach TrapGuardsAlarm Hide TrapGuardsAlarm
Guard Lock TrapGuardsAlarm Lock TrapGuardsAlarm
Trap Approach TrapGuardsAlarm Hide TrapGuardsAlarm

TrapGuardsAlarm TrapGuards DistractGuards TrapGuards Unlock
TrapGuards TrapGuardsAlarm Lock TrapGuardsAlarm Unlock

Draw Daze TrapGuardsAlarm Daze TrapGuardsAlarm
Daze Draw TrapGuardsAlarm Draw TrapGuardsAlarm
Call Draw TrapGuardsAlarm Draw TrapGuardsAlarm

Approach Hide TrapGuardsAlarm Hide TrapGuardsAlarm
Give Exchange TrapGuardsAlarm Exchange TrapGuardsAlarm

Exchange Give TrapGuardsAlarm Give TrapGuardsAlarm
Open Lock TrapGuardsAlarm Lock TrapGuardsAlarm

Unlock Lock TrapGuardsAlarm Lock TrapGuardsAlarm
Take StealKey TrapGuardsAlarm StealKey TrapGuardsAlarm

StealKey Take TrapGuardsAlarm Take TrapGuardsAlarm
SoundAlarm TrapGuardsAlarm DistractGuards TrapGuardsAlarm DistractGuards

Close Lock TrapGuardsAlarm Lock TrapGuardsAlarm
DistractGuard EscapeCell TrapGuardsAlarm EscapeCell TrapGuardsAlarm

point that role similarity does not happen in both directions, and is dependent upon the path between

objects.

It should also be seen that actions with more overall roles are less similar to actions that only use

one or two roles. This should be expected, as the number of possible matches is going to be lower

(and therefore cost more to transform one into the other) when there are more roles in the action.

An interesting exception to this is when an action is part of the task of another action. For ex-

ample, TrapGuardsAlarm has its task definition as And(SoundAlarm,TrapGuards). So even though

TrapGuardsAlarm contains several roles and is generally considered the least similar action, be-

cause TrapGuardsAlarm must contain the roles of its subsequent actions in the task (for annotation

purposes), it is actually considered very similar to those actions.

55

(a) Similarity word cloud (b) Exact word cloud

Figure 2.12: Entailment groupings for all actions in the case study when only comparing roles,
using (a) similarity metric or (b) exact comparison. This is a visual explanation of Table 2.2

.

One issue that occurs when examining the least and best related actions is that there may be more

than one action that fits that category. Table 2.3 describes, for both measures, the number of actions

that have the same cost and are minimum. It can be seen from Table 2.2 and Table 2.3 that for many

actions, a change in the actions between role similarity and role exactness does not correspond to

the lowest cost action changing. In several cases, such as for Daze and Close, the number of actions

that are the same decrease when using a stricter comparison, which is to be expected. However,

there are a few actions (Press for example) whose number of ties actually increase dramatically.

Specifically for Press, the most similar action changes when using different measures, which means

that the exact measure in Table 2.3 shows that there are many actions that are the least cost, but that

when using the similarity measure, they are beaten out by Approach. A larger, more varied action

set that utilizes the object hierarchy and Definition 2.6.12 would raise the number of similar cost

ties, causing the similar and exact cost ties to become more closely related.

The second example in our case study describes how Θ can be used as a storage mechanism for

plans. We first describe an event from Shoulson et al [1] and shown in Table 2.4. When translating

the actions of [1], we purposefully did not create preparatory specifications, as events does not

56

Table 2.3: The number of ties for each action, using both similarity measure and exact measure.

Action Number of
Minimum

Similar Cost
Ties

Number of
Minimum Exact

Cost Ties

Draw 3 2
EscapeCell 8 7

Daze 3 2
Press 1 11

TrapGuardsAlarm 1 1
TrapGuards 1 1

Trap 1 11
StealKey 1 1

Take 1 1
Open 4 3
Call 3 2

Exchange 1 1
Hide 1 11
Close 4 3

DistractGuard 2 2
Approach 11 11

Lock 4 3
Give 1 1

SoundAlarm 1 1
Unlock 5 4
Guard 4 3

57

recognize them. However, PAR stores this preparatory specifications as tasks, that are built up at

runtime. Therefore, we show the exponential buildup of actions based on the starting conditions

φ ∈ Ψ when e = 0 and ending effects δ ∈ Ψ when e = 1. In Table 2.5, we provide Θ, as well as

the modified Ψ for action 62 (Distract Guard). The changes to all other actions can be found in

Appendix A.

Table 2.4: The action DistractGuard from Shoulson et al. [1]

λ DistractGuard
R Guard
R Door
R Prisoner
R Prisoner
R WayPoint
R WayPoint
φ getProperty(door,”status”) ==”guarded” and canReach(agent,guard) and

canReach(prisioner1,waypoint1) and canReach(prisoner2,waypoint2)
δ setProperty(door,”status”,”Idle”)
τ AND(Hide,Hide,Draw)

From Table 2.5, it can be seen that many of the conditions in Distract Guard(φ in Table 2.4)

can actually be met by other actions, such as canReach being an effect of the action Approach. This

simplifies the overall conditions required to start to simply be that the door needs to be guarded. If

the door is not guarded, then the action has already succeeded, and there is no need to run through

any of the task. It should be noted that setting the action to SUCCESS is a design choice in this

study, one that would be made by a simulation author, and is not a forced parameter of PAR. A

simulation author could also say that an unguarded door should return FAILURE without running

DistractGuard, because the action itself would be pointless to do. What is important to realize is

that this is a design choice, and that using applicability allows a greater control over the action, as

the combination of preparatory tasks and condition-assertions allows the conditions that are needed

to be moved to ones that cause the task to be possible or impossible to perform. This flexibility in

58

Table 2.5: The action from Table 2.4, written out as a PAR.

λ DistractGuard
P Distract
R Guard
R Door
R Prisoner
R Prisoner
R WayPoint
R WayPoint

Ψ(e = 0)(PAR) getProperty(door,”status”) != ”guarded← SUCCESS
Ψ(e = 1)(PAR) Finished→ setProperty(door,”status”,”Idle”) and SUCCESS

Θ not canReach(agent,guard)→Approach(agent,guard)
Θ not canReach(prisoner1,waypoint1)→Approach(prisoner1,waypoint1)
Θ not canReach(prisoner2,waypoint2)→Approach(prisoner2,waypoint2)

Θ(φ = /0) And(Hide,Hide,Draw)

action design means that simulation authors must be more direct in which conditions they wish to

plan around and therefore differentiate between conditions that can be met by other actions in Θ and

which conditions they do not and should remain in Ψ. This is not seen in theevent representation

of Table 2.4, requiring that the entire action set be planned over or re-planned over during run-time.

By having the plan made before execution, we remove that costly bottleneck to agent simulation.

By using preparatory specifications as a previous step measure and having it be part of the language,

it is more obvious that it is necessary to consider during design time.

Another choice for the guarded condition in Table 2.5 is that the condition can be moved to

Θ if there is an action that causes the door to be guarded. If the action must take place, then it is

useful for there to be a way for the action to start. However, in the recreation of events, there is

no action that sets the door property to be guarded, which is why Table 2.5 has that property stay

a condition-assertion pair when being converted to PAR. By adding an action, Guard to the set,

this complex action can then always happen, again with what conditions are members of Ψ being a

design choice. By forcing some of the preparatory planning into the action definition, a simulation

author can also determine if their action set covers what they want to by looking at which actions

can be used in Θ. What should be understood from this is that using the condition-assertions and

59

preparatory specifications allow a simulation author options on how the system should behave that

are not available using work such as events, which do not have this designation

Finally, we show how task similarity can be used to generalize actions. The original definition

of events does not contain generalizations (act.P), but action generalizations have been used in

planning methods to help organize the actions. One method of generalizing actions is to group

actions that are most similar together. As a starting point, we take the actions in event-centric

planning, and use task edit distance to (Equation 2.2) to calculate the cost between each action. The

lowest and highest cost actions are shown in Table 2.6 and in Table 2.7. Table 2.6 assumes that

act.P = /0, so that no action starts with a parent. Table 2.7 uses WordNet [36] as a starting point,

assigning each action a parent. We include the WordNet parent assignment as additional actions

in Appendix A. Furthermore, we perform entailment on the set of tasks that are the lowest cost in

order to determine groupings between actions. The sets without using Wu-Palmer similarity can be

seen in Figure 2.13. The entailment sets with Wu-Palmer similarity can be seen in Figure 2.14.

(a) Without Roles (b) With Roles

Figure 2.13: Entailment groupings for all actions in the case study when no information about
generalization is used. Red action names signifies changes between (a) and (b).

60

Table 2.6: The minimum and maximum cost actions when comparing tasks using an exact measure-
ment. The task measurement is shown using both role cost and non-role cost.

Action Lowest Cost
Task

Highest Cost
Task

Lowest Cost
Task with Roles

Highest Cost
Task With

Roles
Hide Lock TrapGuardsAlarm Approach TrapGuardsAlarm
Lock Hide TrapGuardsAlarm Guard TrapGuardsAlarm

EscapeCell StealKey TrapGuardsAlarm StealKey Give
Press Hide TrapGuardsAlarm Approach TrapGuardsAlarm

Guard Hide TrapGuardsAlarm Lock TrapGuardsAlarm
Trap Hide TrapGuardsAlarm Approach TrapGuardsAlarm

TrapGuardsAlarm TrapGuards Hide TrapGuards Give
TrapGuards TrapGuardsAlarm Hide TrapGuardsAlarm Give

Draw Hide TrapGuardsAlarm Daze TrapGuardsAlarm
Daze Hide TrapGuardsAlarm Draw TrapGuardsAlarm
Call Hide TrapGuardsAlarm Draw TrapGuardsAlarm

Approach Hide TrapGuardsAlarm Hide TrapGuardsAlarm
Give Hide TrapGuardsAlarm Approach TrapGuardsAlarm

Exchange StealKey TrapGuardsAlarm StealKey TrapGuardsAlarm
Open Hide TrapGuardsAlarm Lock TrapGuardsAlarm

Unlock Hide TrapGuardsAlarm Lock TrapGuardsAlarm
Take Hide TrapGuardsAlarm Draw TrapGuardsAlarm

StealKey Exchange TrapGuardsAlarm Exchange TrapGuardsAlarm
SoundAlarm Exchange TrapGuardsAlarm Exchange Give

Close Hide TrapGuardsAlarm Lock TrapGuardsAlarm
DistractGuard Hide TrapGuardsAlarm StealKey TrapGuardsAlarm

Examining Table 2.6 and Table 2.7, the task with the largest tree is the most distinct from

all other actions. What is a bit surprising is how the lowest cost actions manifest themselves. If

each action grouping for Figure 2.13a and Figure 2.14a are considered their own forest, then some

obvious and not so obvious meaning between tasks appear. The first is that, using only an exact

measurement (not using act.P in the comparison), TrapGuardsAlarm is only connected to the first

part of that action TrapGuards and not the second part SoundAlarm. This is because TrapGuards

is a longer task than SoundAlarm, and so the cost estimate is much greater. Looking at the actual

cost, removing 19 components to a tree is a much greater edit than adding six. When using Wu-

Palmer similarity on the tree, the edit cost for changing an action actually decreases, so tasks with

more actions (opposed to connectives) are favored, which is why TrapGuards and SoundAlarm

61

swap clusters in Figure 2.14a. This means that clustering actions using only task similarity (and

not using roles in their cost) may not semantically capture similarity in tasks. There is a lot of

semantic meaning in the roles of an action, and therefore, they are an important consideration when

comparing actions.

One issue when examining the actions based on entailment is that there are times when an

action’s highest cost counterpart is in the same set as the lowest cost actions. This occurs specifically

when using the Wu-Palmer similarity measure, and can be seen in Table 2.7. The reason that this

occurs is that, with Wu-Palmer, the cost of action editing becomes much less than the cost of adding

or removing an action, so the edit distance creates much higher costs associated with longer actions,

which it should do. This isn’t seen in Table 2.6, because we aren’t assuming anything about the

actions themselves. At a first glance, this may seem as though using generalizations actually hinders

the comparison between actions. For primitive actions like Daze and Draw, generalizations provide

a quick relationship between the two, and as will be shown later on, can assist in end goals of the

agent. What should really be noted here is that it is not really appropriate to disambiguate complex

actions using WordNet, because the name of the action does not necessarily reflect everything that

is going on in the task. This means that other measures are needed, such as the edit distance, which

in Figure 2.13, especially Figure 2.13b connects complex tasks into two groups. Therefore, when

examining complex tasks, it is not enough to look at only the generalizations or the roles, but the

entire definition of that action.

The entailment groupings in Figure 2.14 show the effect of using both semantic generalization

knowledge and role information in creating groupings of act. Especially interesting is Figure 2.14b,

which has a grouping containing Open, Lock, Unlock, Guard and Close. This should be an obvious

grouping due to the similarity of the meaning of these five actions (based on WordNet generality)

as well as the fact that they were all generated from primitives in Shoulson et al, dealing with the

same events. Using similarity with roles has also differentiated all of the complex actions from

the primitive ones, with complex actions appearing in the left-most cloud of Figure 2.14b. While

separating complex from primitive actions is true for both Figure 2.13b and Figure 2.14b, using an

already pre-processed tree has entailed all complex actions together. This means that simply using

62

Table 2.7: The minimum and maximum cost actions when comparing tasks using Wu-Palmer simi-
larity measurement. The task measurement is shown using both role cost and non-role cost.

Action Lowest Cost
Task

Highest Cost
Task

Lowest Cost
Task with Roles

Highest Cost
Task With

Roles
Hide Open TrapGuardsAlarm Approach TrapGuardsAlarm
Lock Hide TrapGuardsAlarm Open TrapGuardsAlarm

EscapeCell DistractGuard TrapGuardsAlarm StealKey Give
Press Hide TrapGuardsAlarm Approach TrapGuardsAlarm
Guard Hide TrapGuardsAlarm Open TrapGuardsAlarm
Trap Hide TrapGuardsAlarm Approach TrapGuardsAlarm

TrapGuardsAlarm SoundAlarm Call TrapGuards Give
TrapGuards EscapeCell Call SoundAlarm Give

Draw Daze TrapGuardsAlarm Daze TrapGuardsAlarm
Daze Draw TrapGuardsAlarm Draw TrapGuardsAlarm
Call Hide TrapGuardsAlarm Draw TrapGuardsAlarm

Approach Hide TrapGuardsAlarm Hide TrapGuardsAlarm
Give Hide TrapGuardsAlarm Approach TrapGuardsAlarm

Exchange StealKey TrapGuardsAlarm StealKey TrapGuardsAlarm
Open Unlock TrapGuardsAlarm Close TrapGuardsAlarm

Unlock Open TrapGuardsAlarm Open TrapGuardsAlarm
Take Hide TrapGuardsAlarm Draw TrapGuardsAlarm

StealKey Exchange TrapGuardsAlarm Exchange TrapGuardsAlarm
SoundAlarm StealKey TrapGuardsAlarm Exchange TrapGuardsAlarm

Close Hide TrapGuardsAlarm Open TrapGuardsAlarm
DistractGuard Hide TrapGuardsAlarm StealKey TrapGuardsAlarm

WordNet to generalize complex actions may not be appropriate, as the actions are so far removed

from the primitive actions that they form one group. It also shows the importance of roles when

examining actions, as adding role similarity was able to break up the large cloud of Figure 2.14a

into more semantically meaningful sets. For these reasons, role similarity is a useful measure for

calculating distances between actions, and should not be discounted.

2.10 Conclusions

We presented a systematic description of the Parameterized Action Representation. The syntax and

semantics of PAR have, in the past, been very abstract, and what is provided is a novel, concrete

63

(a) Without Roles (b) With Roles

Figure 2.14: Entailment groupings for all actions in the case study when generalizations are used.
Red action names signifies changes between (a) and (b).

understanding of the Parameterized Action Representation. The work we have contributed thusly

allows us to better describe how actions can be organized and generated using PAR as a baseline.

PAR has several advantages over other action descriptions, including generalizations of objects and

actions, as well as the separation and co-dependence of tasks and actions. The creation of a PAR

requires several steps, as do all action languages. The additions of condition-assertions, condition-

tasks (preparatory tasks), and action semantics to the agent language repatriate provide more options

for action control, at the expense of the simulation author. Having exact definitions for each of these

components, and describing their use should standardize the creation of these, and hopefully lead to

wider adoption. The use of roles and action parents were also highlighted in a comparison measure,

tying together knowledge of the virtual agent’s environment. As we later show that the population

of these two fields, object semantics and action semantics can be automated, their use becomes

critical in allowing agents to have a larger understanding of their abilities and environment, freeing

up a simulation author to provide more control in condition-assertions and condition-tasks.

64

2.11 Summary of Key Components

2.11.1 Symbols for the Language

The PAR language is denoted as L, and contains all necessary knowledge for an agent to reason

about and interact with its virtual environment. Components of the language are listed below. Many

components have sub-components, which are listed as sub-lists. We also provide a short description

of each component when necessary with their numbered definition.

• S: Semantics-Definition 2.3.1

– λ : Semantic Descriptor (name)

– V: Set of possible values at runtime

– ω: Flag signifying what the semantic describes

• OBJ: Objects-Definition 2.4.1

– λ : Object Descriptor (name)

– p: Object generalization (parent)

– S: Semantics of object

• �: Conditions-Definition 2.5.1

• �: Assertions-Definition 2.5.3

• ACT: Actions-Definition 2.6.1

– λ : Action Descriptor (name)

– P: Action generalizations (parents)

– σ : The action status

– R: Roles-Definition 2.6.9

∗ OBJ: Set of objects that can fulfill that role

∗ ν : Flag signifying if the object is necessary in the action

65

– Ψ: Action condition assertion statements-Definition 2.6.14

∗ φ : Executable condition

∗ δ : Assertions upon the world

∗ e: Flag signifying when the condition is examined

– Θ: Action condition task statements - Definition 2.6.5

∗ φ : Executable condition

∗ T: Task description - Definition 2.8.1

– S: Semantics of action

• F: Task Connectives

2.11.2 Key Functions

There are also several key functions that allow PAR to be understood and realized by virtual agents.

We list those below, along with their argument types and references.

• path(OBJi,OBJ j)-Definition 2.4.2

• path(ACTi,ACT j)-Definition 2.6.2

• lcs(ACTi,ACT j)-Definition 2.6.4

• symdiff (ACTi,ACT j)-Equation 2.1

• ExecutionAction(act)-Algorithm 1

• Build(Θ)-Algorithm 2

• Evaluate(Ψ, type)-Algorithm 3

• Enumerate(T)-Algorithm 4

• Step(T)-Algorithm 5

66

Chapter 3: Considerations on Action Organization

3.1 Introduction

As an action representation, PAR allows for multiple parent generalization, as well as inheritance

from those generalizations. When we describe generalizations and inheritance, what we mean is

that PARs have an inherent structure based on the path, with an example seen in Figure 3.1. A

generalization is the action’s parent(s), from which the child action can inherit components of if

those components are not defined specifically for that action. In Figure 3.1, the task for Walk and

Run are inherited from Travel, as are both actions’ roles. The property of speed are specific subsets

of the property in the parent.

There are several interesting consequences to action parents in PAR. One is that action data may

come from several inherited sources, and apply action data to several, more specific actions. Given

the interplay between semantics (S), roles (R), and tasks(T ∈Θ), it should be seen that components

can be templates, with specifications constraining those templates in different manners. Figure 3.1

provides a good example of how organization of the actions reduces the overall amount of data in

the system. Ergo, a design paradigm should enable a simulation author to maintain less overall

knowledge in the system while still achieving the same fidelity. Ideally, a well created hierarchy

would also reduce bugs in the action base.

Another advantage to using a well designed hierarchy comes from the planning community.

Hierarchical task planners allow actions to be connected together into complex plans. This thought

process can be reversed, in that reasoning systems may only need to consider a subset of the to-

tal actions in the entire set of ACT. Generally, in order to prune the action space, the agent must

still examine the entire action space. A well-formed hierarchy would allow planning and reason-

ing systems to understand large swatches of the space on a general level, assisting in pruning out

undesirable actions without necessarily examining them. For rich environments consisting of many

67

Figure 3.1: An action set of three actions, where one (Travel) is the parent of the others.

actions, using a well formed hierarchy of actions means that using planning algorithms should still

be a practical approach to virtual agent behavior.

What has not yet been defined is the term “well-formed” hierarchy as it pertains to an action

hierarchy. We show that this should be thought of as an application dependent problem, in that

the hierarchy is only well-formed if it improves the reasoning abilities of virtual characters. What

is described in this chapter is not a rigid definition of a well-formed hierarchy, but on techniques

to guide agent authors to better form their hierarchies. Specifically, we focus on two particular

questions:

1. In what instances does using multiple generalizations (or specifications) require a simula-

tion author to add additional information, specifying a certain action and removing inherited

properties from the action space?

2. How does the information about actions and the organization of those actions effect the end

abilities of the virtual characters?

68

3.2 Parent-Child Action Relationships

An action’s parent-child relationship provides generality between actions, and creates a convenient

way to group actions into taxonomies, which can be seen in Figure 3.1. Actions such as Water and

Sprinkle are obviously related to Wet, and one way in which to organize these actions is to have Wet

be a parent of both Water and Sprinkle. This is certainly not the only way in which these actions

can be broken up, especially depending on the meaning of each action. If a simulation author meant

Water to mean fill with tears, then it would not be related as well to sprinkle. Creating parent-child

relationships are a precise and important task when needing to to quickly locate similar actions, and

as we will show are therefore useful to agent planning systems.

Traditionally, PAR has represented parent-child relationships as a single parent hierarchy for

both actions and objects. From Ontological literature, this relationship does not cover instances

where an action can be described by one or more parents. For example, an action for a motion

controller CrouchAndShoot which would comprise of a single motion, is best described by two dis-

similar parent actions Crouch and Shoot. To account for this, we have implemented PAR actions as

a Forest of IsA Directed Acyclic Graphs (FIDAGs). FIDAGs are a more appropriate data structure

to capture the rich information necessary to have virtual agents reason over their environment. The

basic operation of searching for an action by generalization of the hierarchy will need to be exam-

ined, as this operation will become more complex with multiple parents. Therefore, we discuss the

guidelines of FIDAG creation, including when it is appropriate for actions to have multiple parents.

FIDAGs create many issues that need to be considered. However, we first describe the utility

of FIDAGs as a data-structure. For action information that is parsed as a sequence (such as Ψ),

FIDAGs allow a simulation author to inherit from multiple sources, allowing for input into failures

from all parents. Recall from the definition of Task Inheritance(Definition 2.6.8) and Semantic

Inheritance(Definition 2.6.16) in Chapter 2 the ways in which actions inherit information from

their parents if they are absent in the action’s definition. One challenge of having an action set

that contains several actions is that the definitions must be filled in. Inheriting from action parents

eases a simulation author’s burden, as information can instead be parameterized. Multiple data-

sources provide a more nuanced inheritance, as long as the parent actions do not provide conflicting

69

inherited information.

Primarily where conflicts in FIDAGs arise is in the execution of the task of a given action. For

example, by the definition of Semantic Inheritance, the semantic set S of an action must be a subset

of the action’s generalizations, provided multiple generalizations have the semantic set. Consider

as a motivating example a semantic Si that is used as an annotation in a task. If the parents in the

FIDAG of an action that contain Si are disjoint sets, then Si is empty, and does not contain a usable

value suitable for annotation. If a task in ACT expects a grounded semantic from Si which cannot

be filled in, the action’s parents are then in conflict.

It should be noted from the definition of an action (Chapter 2, Definition 2.6.1) that the syn-

tax of an action has several components. When discussing how these components are inherited

from generalization (P), it is important to discuss which components may come into conflict with

each other. Of particular interest is the definition of Condition Tasks (Definition 2.6.5), Seman-

tic Inheritance(Definition 2.6.16), Condition-Assertions (Definition 2.6.14) and of inheriting roles

(Definition 2.6.13). Actions with multiple parents may have different components of each of these,

or may be written with components that need to be handled together. In this section, we describe

how act ∈ ACT inherit from the parent set P when there are multiple parents to inherit from. This

will led to a discussion of techniques to handle conflicts between parents, which are shown to only

appear between annotations on tasks themselves. What should be remembered is that inheritance on

the tasks, roles, and condition-assertions do not occur on a given action if the component is defined

on that action. This is a tool the simulation author can use to resolve conflicts.

3.2.1 Task Inheritance

From Figure 3.1, it should be seen that the task is essentially the same for all three actions. The only

real difference between these tasks are the speed (and usually animation itself). All other functional

code, such as actually moving the character, is the same. Therefore, it should be seen why Θ where

φ ∈Θ = /0 can be generalized for Walk and Run into the parent action Travel. As each child action is

used by the agent, it examines the generalizations in order determine the encoding of the action. An

example of this using a blendspace can be seen in Figure 3.2. Blendspaces are a common practice

70

for virtual characters1, and as can be seen in Figure 3.2, is controlled by a simple parameter (Speed).

As the speed parameter changes from Figure 3.2a to Figure 3.2b, the percentages of each animation

change. This is the thought behind task inheritance. Child actions that can be controlled by a single

parameter (which could be a semantic of each action) should have a single task that is varied by

that parameter. Organizing actions such that this is the case can reduce the burden of a simulation

author, in that most of the data he would write is stored in a single PAR, with only changes being

stored in the child action.

There are two instances when task sets from multiple parents have an effect on the action:

when multiple execution tasks are defined for an action and when multiple preparatory tasks are

defined for an action. Recall from the definition of execution step inheritance (Definition 2.6.8)

that execution steps are inherited by examining act ∈ P in order. This means that an inherited task

will always come from higher in the FIDAG. This provides an important consideration about action

ordering. The order in which actions are in P play an effect on an action’s inheritance, and so parent

actions should be ordered by how much alike they are to the child action.

3.2.2 Semantic Inheritance

S is a set of semantics for a given action, with each semantic set V ∈ S a subset of the parent

actions’. This means that generalizations play a huge role in action semantic sets. We refer to

Semantic Inheritance (Definition 2.6.16) to describe how, for one parent, the action’s semantics

operate. When there are multiple action generalizations, the semantic set must be a subset of all

parent actions, and therefore is the intersection of its parents’ semantics. This gives rise to two

issues. The most common issue is that one parent will not have a given action semantic at all,

meaning that the subset is empty. If this is not the intended case, care must be taken that subsets

are described on the parent for all actions on the set, so that they may be properly propagated to the

children. The other issue is that a simulation author may only tag an object with a semantic set, and

not fill in the parents, as seen in Figure 3.3a. This is a common occurrence, as it save the simulation

author time to only enter semantics on the actions where they are relevant. Note how manner is

1A tutorial can be found in https://docs.unrealengine.com/latest/INT/Engine/Animation/AnimHowTo/BlendSpace/

71

(a)

(b)

Figure 3.2: A motion blend of several animation, including (a)Walk and (b)Run

only on Nod in Figure 3.3a. For the action set to be correct, communicate should also contain

Manner as a semantic for the parent action. Of course, if a certain set of semantics is required on a

child action, the set can be back-propagated to all parents that do not have the semantic set during

the design phase. This will increase the total amount of data but provide a consistent meaning on

generalizations. Then, it should simply be recognized that other children of a parent would have a

possibility of those sets and would need to be defined as an empty set if that is the understanding of

the simulation author. So, in Figure 3.3a, Manner should not propagate down to Shake. This further

72

increases authorial burden, as the author must mark those semantics as empty. To compensate,

PAR contains a special back-propagation algorithm to create valid generalizations. In summary, we

assume that the semantics inherit the parent’s full set unless a simulation author specifies otherwise.

If a simulation author sets a semantic in a set that does not appear in the parent, the semantic is

not added to the parent until all other semantics are added. Thus, a simulation author only needs to

add semantics to the highest level generalization of the action for that set to be passed down. The

system should take care of correcting any set discrepancies, thereby reducing the amount of data an

author needs to generate while providing ample data to the system. This can be accomplished using

Correct Semantics (Algorithm 6), which will, in general, combine all equal components of type type

in a given action set. Correct Semantics is only used when properties are first added to the system in

order to keep consistency with Definition 2.6.16. Algorithm 6 is only used after all semantic sets are

determined, and is only meant to propagate missing semantics that are hand placed on the actions

(i.e, only as a tool to ensure correctness of S for a given action). The result of Correct Semantics

on Figure 3.3a can be seen in Figure 3.3b. Note the bold Manner, and how it is propagated up to

Communicate, but not down to Shake.

(a) uncorrected (b) corrected

Figure 3.3: An action hierarchy with (a) semantics on the action and (b) semantics after being
combined

73

Algorithm 6 Recombining semantic properties for correctness.

1: function CORRECT SEMANTICS(act)
2: for all sem ∈ S do
3: for all p∈ P do
4: PSem← S ∈ p
5: if sem /∈ Psem then
6: add sem to Psem
7: Correct Semantics(p)

3.2.3 Role Inheritance

Unlike tasks or semantics, roles by definition are an additive component of an action. Recall from

the definition of Roles (Definition 2.6.9) that a role has two components, OBJ and ν . OBJ itself is a

set of objects. Because of role similarity (Definition 2.6.11) and role instantiation(Definition 2.6.12),

roles may be similar, with one object superseding another in the role set. Using the actions of event-

centric planning as an example [75], Approach (Table A.12) and Hide (Table A.1) have a single role

each. Also, the Entity object in role supersedes the Waypoint object, an Entity is a parent of Waypoint

in OBJ (Appendix A Section A.1). For virtual agents, what is important for roles is that an object

conforms to the operational information. That is, that an object can be instantiated into the role.

Since there can be multiple objects for a role, adding more objects to that role simply widens what

can be used for that role. Therefore, having multiple parents with different objects in the role simply

adds to what can fit in the role. Following the definition for combining roles (Definition 2.6.13), an

action inheriting from both Approach and Hide would have a role defined as R : ((OBJ,1)) where

OBJ = (Entity,Waypoint), which due to role similarity, reduces to OBJ = (Entity). Of course, to

circumvent this behavior, a role on the action itself will not check the action’s parents.

3.2.4 Condition-Assertion Inheritance

There are many similarities between the condition-assertion component in an action and the task

component in an action. Both of them are ordered sets, and both of them contain a condition (φ)

string as one of the components. Therefore, inheritance of condition-assertions from parents are

similar. While tasks are broken into execution and preparatory tasks, condition-assertions can be

74

broken into once and every sets. In each set, we discuss them as a whole set (so, Ψ). This is

a limitation of the PAR system, in that the system does not examine each individual condition-

assertion when inheriting condition-assertions. We do this to ease the authorial burden, which can

become more complicated with multiple parents. From Theorem 2.6.1, two conflicting conditions

and assertions cannot occur at the same time because condition-assertions are checked sequentially.

While this could allow for multiple sets to be concatenated together, there is no mechanism in

PAR at this time to do so. Furthermore, as tasks share many components with condition-assertions,

keeping this component symmetric should assist in building hierarchies.

The understanding of task inheritance and condition-assertion inheritance in this section show

the importance of organizing action parents intelligently. Not only do the FIDAG structures have an

effect on understanding the generalizations, but the ordering of actions in P∈ ACT and ACT play an

important role in the execution of virtual agent actions. Therefore, it is up to the simulation author to

determine not only what generalizations are important for the simulation, but how they are organized

to perform the behaviors the author desires. It is important to keep in mind that a simulation author

can supersede the parent structure by keeping tasks and condition-assertions on each executing

action. This would be unfortunate, as we will describe in Section 3.3, because exploiting the parent

actions and intelligently organizing these actions can assist not only in keeping the actions easy to

read for any humans, but can make it easier for agents to reason over them. Furthermore, in the

future tools to organize action sets based on the inherited components could be developed, further

easing he burden on a simulation author.

3.3 An Application-based Measurement for FIDAG Organization

Throughout this work, we have described PAR, and how to encode meaning those actions. This

has always been under the assumed end goal of having an action representation for virtual human

reasoning and action selection. To this end, the knowledge encoding and organization of ACT

should be performed in such a way as to increase the ability of the reasoning system. One popular

and important metric to evaluate a reasoning or planning decision is time. In several cases [4, 77],

as the number of actions grow, the time to select actions grows. Ideally, an action’s parents could

75

subsume and encode the necessary information of its children on the parent, meaning fewer actions

examined by reasoning tools. It is this insight that we explore in the following sections.

3.3.1 Narrative Planning and Behavior Selection Algorithms

Virtual characters’ ultimate purpose is to appear more plausible [78] in conveying the end goals of a

simulation author. Therefore, virtual characters must be able to use the knowledge that is provided to

them. While being able to understand and realize an action is important, rote scripting of characters

is a long, arduous, and tedious process. The need for planning and reasoning tools to control agents

was realized early on in AI. Of course, if the agent decides every step in a simulation, control

is wrestled away from the author, and the chain and choice of behaviors, while interesting, may

not be appropriate. There is a belief that a balance is needed between authorial control and agent

autonomy [79]. Therefore, we briefly describe characteristics of reasoning and behavior selection

tools for virtual characters, and then explain how these tools are used to show the effects of different

parent-child arrangements.

Role-based Methods

Some user control methods that have components which are dependent on the objects in the envi-

ronment and roles are CAROSA [80] and Normoyle et al. [4]. In CAROSA, aleatoric actions consist

of sub-actions that are chosen according to an authored distribution and are meant to give variety to

a given space. The ability of these actions to be used depends on the resources (objects) available

to the virtual agent. Normoyle et al. is a stochastic method which determines transitions between

actions to maintain distributions of crowds, similar to the aleatoric methods in CAROSA. Given a

set of crowd activities, locations, and desired steady state distributions, this method determines the

probability of a given entity in the crowd choosing a new action based on the previous action. While

it does not guarantee that the system has exactly the distribution at a given time, it does maintain

roughly the distribution, taking into account distance between activities and preferences of agents

in the crowd. Because Normoyle et al. determines transitions using convex optimization, the com-

putation time increases dramatically as the number of actions and locations grow. Therefore, for

76

rich virtual environments with several actions, the pre-computational time is immense. Reducing

the total number of actions (through the use of generalizations) should reduce this problem while

still assisting the simulation author in determining distributions of crowds.

For measuring the effectiveness of action hierarchy organization, we reproduce to the best of

our abilities the role-based method of Normoyle et al [4]. From the results of that paper, the more

actions and locations that are available to a group of agent, the longer the convex optimization must

run to converge upon a solution. An action organization that reduces the number of actions should

allow the convex optimization to more quickly converge, which we postulate makes the method an

effective measure for role-based agent behavior selection.

One technique to use with Normoyle et al. is to assume that every action can be followed

by every other action, meaning that for N actions, there are NxN possible connections, which is

prohibitive for a large number of actions and locations. We then combine actions into groups of

actions ACTS ∈ ACT, based on two criteria. An acts ∈ACTS may exist if, for all actions in ACTS

the roles are the same, and there is a least common subsumer between all actions in acts. We do this

because Normoyle et al. is location based, and therefore an action at a location (that has the same

object requirements) can have all the actions with the same object requirements performed at that

location.

Goal-based Methods

While Role-Based Methods rely on the location of objects in the environment for their decision

making system, goal-based methods [81, 82, 72, 44, 77, 83] use Ψ ∈ ACT in order to determine the

next action that an agent should perform. Many of these methods are planning methods, in that the

virtual character’s end goal is provided, and the system determines how to reach that end goal. A

special kind of goal-based reasoning system is the Belief-Desire-Intention (BDI) system [8, 40]. In

this system, the agent’s understanding of their environment is stored in their beliefs. The agent’s

goals are their desires, and the action chosen to reach those goals are the intentions.

Goal-based reasoning has seen alot of attention over the years, particularly in the form of nar-

rative variation. Narrative variation attempts to construct different stories from a set of actions and

77

objects based on one or more goal states and the causal believability of the actions. In effect, it

reasons out the actions and interactions between entire sets of characters. Work such as Riedl and

Young [84] and Kartal et al. [77] plan stories using these two measures as a heuristic, attempting

to increase both the narrative variation and length of the story using different planning methods.

As narrative generation relies on design time understandings of actions, more actions will provide

more varied stories. The ANTON system [85] builds larger sets of actions by automating the build-

ing of negations of actions. Narrative planning methods, like other goal-based methods, suffer from

branching overload. As the number of action choices grows, the number of possible combinations

also grow, requiring more resources in order to build a viable story. An intelligent organization of

the actions can be used to essentially prune actions, as two actions that are similar can be grouped

together.

To show the effect action parents have on goal-based methods, we reproduce, to the best of

our abilities, the monte carlo search tree narrative generation algorithm of Kartal et al. [77]. This

algorithm uses a monte carlo search tree to generate narrative variations based on the action and

object sets. Stories are rated using a multiplicative heuristics on how many goals the current set

of tasks accomplish and how believable the current story is, based on user defined preferences. To

seed the search tree, Kartal et al. implements a random rollout of actions so that a branch can be

evaluated when no goals have yet to be reached. The method also contains a selection bias and

rollout bias based on the global times an action has been selected.

We implement the believability of a given set of actions using Equation 3.1. Equation 3.1 takes

two factors on the action set ACT into account for each branch of the monte carlo tree search algo-

rithm, the total number of actions and the total prerequisites of the actions that are met up to that

point. Recall that goal-based methods may require multiple actions in order to reach an action that

solves the goal, with the other actions being used to reach that action. Therefore, if prerequisites

for a given action are met by past actions, the entire action set should be more believable. A set that

begins with an action that requires the world state to be in a certain configuration is therefore not as

believable and those branches are pruned quickly because of the monte carlo tree search. Further-

more, we attempt to control for multiple actions having similar δ by favoring in our believability

78

smaller action sets that meet the same criteria.

believe =
1

|ACT|

|ACT|

∏
i=0

bscore(ACTi,ACT0...i−1) (3.1)

bscore(act,ACTs) =

matched(φ∈act,δ∈ACTs)

|φ∈act| , |φ ∈ act|> 0

1,else

 (3.2)

Hybrid Methods

The role-based and goal-based methods described use either R ∈ ACT or Ψ ∈ ACT in order to de-

termine an agent’s best next step. While it can be argued that goal-based methods encompass role-

based methods (as many goals require objects and roles), when roles and goals are broken up, this is

simply not the case, as R is only examined in terms of Ψ (and therefore, is not actually examined).

There do exist hybrid methods that consider agent goals and the objects in the virtual environment

as separate components. One such example are the opportunistic actions of CAROSA [80]. Op-

portunistic actions are a subset of the entire action reasoning system in CAROSA, in which actions

attempt to be selected and scheduled based on needs (i.e goals). However, while possible actions

may be selected based on goals, they are not used if the roles and timing locations do not work out.

Therefore, opportunistic actions encompass both subsets of action reasoning systems described. In

many cases, hybrid methods require examining the action sets from multiple facets in order to get a

useful hierarchy.

3.3.2 Data Compression

We have described several different agent reasoning tools, and discussed the implementation of two

of them using the PAR system. During this discussion, one important issue appeared multiple times,

that is that the size of the considered action set has an effect on the ability of the reasoning tools.

Easily, the considered action set may be a subset of the total action set, in that actions appear the

same to the reasoning mechanism. If we know that a specific component of the action (i.e R or

79

Ψ) is used by the reasoning system, then we can determine if one hierarchy is more appropriately

structured than another. To do so, we use Algorithm 7 (Combine Properties) to determine how well

a component of our action set generalizes. In Combine Properties, type refers to the component of

the action that is being examined, and Roots are all the root actions in ACT.

Algorithm 7 Combining data on action properties.

1: function COMBINE PROPERTIES(Roots,type)
2: for all root ∈ Roots do
3: stack← empty stack
4: Perform Breadth First Search on root, inserting each node into stack
5: while stack is not empty do
6: top← pop(stack)
7: parents← P ∈top
8: for all parent∈parents do
9: Children← all children ofparent

10: type∈parent←type∈parent∪eChildren
c type ∈ c

11: Par← queue initialized with parents of all sink nodes in root
12: while Par is not empty do
13: first← dequeue(Par)
14: Children← all children offirst
15: for all child∈Children do
16: Remove from type∈child type∈first

Algorithm 7 describes how components of an action may be moved around in a FIDAG. To

understand the effects it has on the hierarchy as a whole, we provide Equation 3.3, which describes

how many fewer actions a system needs to examine if it is only using one component.

reduction = 1− |type ∈ ACT|−|type ∈ CombineProperties(ACT)|
|type ∈ ACT|

(3.3)

While Equation 3.3 is useful in determining the amount of redundancy in an action hierarchy,

there are several occasions (shown in Section 3.4) in which it is too optimistic a measure. As

Algorithm 7 moves partial information around, it may not be applicable to components of actions

that require the entire component to be moved. In those instances, it is preferable to use a binary

80

reduction, seen in Equation 3.4. As binary reduction determines the change in the number of actions

with a component, it provide a more realistic approximation of how the hierarchy is structured and

how much information is un-necessary for actual processing.

reduction = 1− |ACT with type|−|CombineProperties(ACT)withtype|
|ACT with type|

(3.4)

3.4 Experimentation

Up until this point, we have discussed different considerations when organizing actions into an ac-

tion hierarchy. To show the effects of organization, we examine an application based approach. We

have implemented, to the best of our abilities, two different agent reasoning algorithms: Normoyle

et al. [4] as an aleortic action selection mechanism and Kartal et al. [77] as a narrative generation

mechanism. Each of the methods, as well as any changes made to them, are described earlier in this

chapter. The purpose of these two methods are to display the changes in run-time that intelligently

organizing action sets afford. We use the actions from event-centric planning [1](Appendix A).

We wish to show the effect structuring ACT has for our two application based components, roles

and condition-assertions. Therefore, we run our compression algorithm on different tree structures

for both components, with the results being seen in Figure 3.4. Note that a couple of tree structures,

the WordNet Hypernym Single Parent trees (shown in Appendix A) and Word vector clusters were

generated using the methods described in Chapter 4. The two hand-done trees use the WordNet

Hypernym Single Parent tree as a base generation. For roles, actions were placed under the same

parent as long as their exact semantic difference (using Equation 2.1) is zero. A similar procedure

was performed for condition-assertions. In Figure 3.4, we show two measures for compression,

partial (Equation 3.3) and binary(Equation 3.4). This is to show the contrast and how similar each

are when measuring movement of information in the hierarchy.

As can be seen from Figure 3.4, using P allows for components of an action set to be combined

together, causing compression in the actions. This occurs, for the most part, whether the method

of building an action is focused on those components or not. What is important to keep in mind is

81

Figure 3.4: The compression size for both Roles and Assertions for our action sets

non-binary compression is being measured on the components, and not the actions themselves. So,

a role focused method may have actions that are exact in all of their roles as siblings, but partial

matches will also be compressed down. While we do not explore moving r ∈ R in our tests, it is an

interesting and possibly useful effect of Algorithm 7.

In should also be noted from Figure 3.4 the FIDAG word-vector method showed negative com-

pression. This is because the actions’ parents branch just after each defined action. This causes

the roles and condition-assertions to go to multiple parents, which means any compression would

be undermined by the component existing on multiple parents. Compression may occur on differ-

ent word-vector models, or if property movement was cleaned up by removing the multiple parent

redundancies

We first show the effects of role compression on run-time using a role-based action selection

mechanism, Normolye et al. [4]. We compute the change probabilities for each tree based on the

roles in the system. To do so, our algorithm finds all actions with roles attached to them, and

considers this the action set the virtual agents have access to. End probabilities and connectivity

82

between actions are randomized for each run. It should be noted that a single action set of twenty

is a small set for this algorithm, and so we exaggerate the computational effects by allowing each

action with roles to have ten locations (so that the system is calculated on ten times as many actions).

This test was run on an Intel Xeon 2.3GHz eight core processor on a single thread. We run 1000

trials, reporting the average in Figure 3.5.

Figure 3.5: The time to compute a reasoning step of Normoyle et al. vs. the method of organizing
a hierarchy.

What is not surprising from Figure 3.5 is that, as the compression of the roles in the action

tree increases (so overall number of actions decrease), the average time to run decreases. As the

number of actions decrease, the number of equations the convex optimization algorithm must solve

decreases, and so the result is expected. What is a bit more interesting is that the standard deviation

83

decreases dramatically as the compression increases. This should also be expected. As the con-

nectivity of the system is controlled by the overall number of considered actions, then reducing the

total number of actions will reduce the total possible connectivity. Less variance in the connectivity

will mean less variance overall. Figure 3.5 follows the binary effect shown in Figure 3.4, showing

that for this method, the measure presented in Equation 3.3 is useful for quickly calculating if an

organization is useful.

We also test out the effect different organizations of the same hierarchy have on conditions-

assertions Note from Figure 3.4 that the compression ability of condition-assertions were much

less than roles. Condition-assertions are much more varied than roles, and are therefore harder to

compress. We use Kartal et al. [77] as our goal based testing algorithm, with the changes described

previously. Each tree was tested with five random assertions to complete nineteen times on an Intel

i5 four core processor on a single thread. We report the average runtime in Figure 3.6.

Figure 3.6: The time to compute a narrative plan of Kartal et al. vs. the method of organizing a
hierarchy.

84

As can be seen from Figure 3.4, the binary hand-done condition-assertion focused is the best

for condition-assertion reduction, whereas there is not as much difference when using Equation 3.3.

Figure 3.6 shows that the binary reduction better reflects how the change effects the runtime for

Kartal et al. This is because reduction on the search tree is affected by the total number of actions.

If all actions are included, then the tree is in a terminal state. With less actions, the chance of

all actions increases, as the the probability that are the assertions being searched for are found.

The action sets consisting of only the actions, the role-focused set, and the WordNet hypernym set

all performed similarly, but not as well as the hand-done condition-assertions. From Figure 3.4,

the binary roles are different for the hand-done condition-assertion set, but are similar to the others.

Therefore, when choosing which compression measure to use on the taxonomies, how the reasoning

method works should be taken into consideration.

3.5 A Quick Note on Pragmatics

Until this point, we have discussed virtual agent actions during their design phase. At runtime,

the realization of virtual agent actions is the pragmatics of the action, that is, the context specific

instantiation of it. In PAR, the pragmatics of an action are assigned during simulation, creating

Instantiated Parameterized Action Representations (IPARS). IPARS are stored per-agent in an action

table, and are useful for examining how agents act in the environment. Correct IPAR generation is

assisted by defining semantics for a given action, but is outside the scope of this work.

Pragmatics of actions are useful when defining plans for agent architectures, such as BDI-agents.

Because pragmatics are defined based on the exact state of the environments, situations [86] can be

defined. Using the semantics of an action allows the placeholders to be set-up for having experts

define pragmatics, and agent behavior can be created from techniques such as Explanation-Based

Learning [87]. Since the amount and flow of knowledge is pyramid-like, rule-sets for defining

pragmatics are left to future work.

85

3.6 Conclusions

In this chapter, we have shown the considerations required for structuring ACT in FIDAGs. Due to

inheritance on the FIDAG, properties of an action such as the roles and condition-assertions can be

organized so as to reduce the total information that a simulation author or virtual agent must parse

through. While this understanding is useful for reasoning tools, it is also important to note that

there are many cases where this is simply not possible. Conflicts between multiple parents may not

allow for generalizations to happen in order to assure that the components of an action are what the

simulation author intended.

To assist in understanding this assumption, we have shown several different organizations of

the same action set 2. Each of these organizations have been used in two different agent reasoning

and action selection algorithms, and the difference in time is shown. This should further build the

case for the intelligent organization of actions. In many cases, the actions themselves are not as

important to the system as the agent’s ability to reason about them, and so properties of actions that

assist in an agent’s reasoning ability are extremely important components of an action set.

2the action set is found in Appendix A

86

Chapter 4: Automated Generation of Action Hierarchies

The addition of a definition and description of PARs does not by itself ease the authorial burden of

creating actions. It is difficult, even with data structures such as FIDAGs that allow inheritance, to

fill out all the parameters of PAR actions (such as P, OBJ and S in ACT). Methods to automate

the generation of parameters of actions would reduce the overall effort creating actions, affording

virtual characters more abilities by connecting more motion controllers and having more nuanced

actions for AI reasoning systems. Having automated methods operating over a pool of data will

also create more consistent actions, as semantic parameters that appear in several actions in a given

data-set should be picked up by an automated system.

Methods to generate ontologies have been well studied in the case of general information re-

trieval [34, 33, 88]. When generating ontologies, it is normal to compare the generation system to a

gold standard ontology. This provides an accuracy, precision and recall factor that can be compared

to other generation systems. Some variations on this include posterior precision (in addition to prior

precision) and comparing generation to human ontology building. Comparing to human labelers is

one method that is used in this chapter to determine the ability of the system and is useful for un-

derstanding how similar the automated systems function when comparing it to humans. However,

specifically examining actions and generating an action FIDAG (P ∈ ACT) for motion controllers

has not been examined before. The restrictions that are inherent to a virtual character operating

in a rich virtual environment must be taken into account during the generation process. Mainly,

it is important that the information can be retrieved quickly by an agent and not contain a lot of

redundant information, as redundant information must still be compared in an AI system to ensure

it is the same during reasoning phases. Also, as described in Chapter 3, action information that can

be generated on a more general parent (and higher up the action hierarchy) means that there is less

information for the simulation author to examine, in that the information percolates downward to

child actions. Therefore, the amount of information should be compact. Another metric to show the

87

efficacy of automating the generation of P is to measure the change of the system when it undergoes

Algorithm 7(Data Compression) from Chapter 3, and use the metrics associated with that.

In order to automate semantic generation of actions, the exact meaning of an action must be

understood by the system, such that ambiguities inherent in action understanding are removed. To

do so, we use the name of the action as the identifier and then the proper sense of that action’s

name is determined, when possible. From natural language, this is a process known as Word Sense

Disambiguation and a survey can be found at [89]. To dismabiguate a word’s sense, the word must

have context, which generally comes from a sentence. There has been some effort to build features

of descriptions based on motion parameters [90]. There has also been some work on determining

how humans perceive differences in motion [71] and in semantically segmenting actions [91] which

could be used to examine properties of motion data. The work on building and segmenting features

from motion data has been focused on describing character movements such as walk and limp.

More complex actions that could use several motion controllers, such as actions like water plant

and cook are not described by a single motion parameter, and are more naturally described through

language. Motion data with lower resolution, such as a character that does not have finger joints for

an animation, would also not work though motion controller parsing, but would work by looking at

meta-data like the name. Higher level actions such as Live Life have not been examined, and are

outside the scope of this work. From this, we formulate the overall hypothesis for this chapter as:

• H 4: The creation of action generalizations (P ∈ ACT) can be automated from text if some

prior knowledge of the actions are provided.

To explore H 4, we create three different methods of automated action generalization. Two use

a natural language knowledge base in order to cement the exact meaning of the action and build

up generalizations. The other uses machine learning to determine relationships between the names

of actions. We explore these methods in order to determine how a change in the process affects a

change in the generation and to provide a baseline to compare each method to. The general form

of this process is seen in Figure 4.1. Note that this process uses user supplied names and keywords

and a data-source such as a lexical database, and creates an action taxonomy that can be examined

by the simulation author, who can then change the keywords to produce different results.

88

Figure 4.1: System Overview

4.1 Data Sources for Automated Generation

Converting action names into an action hierarchy requires understanding the sense of a given action,

that is, the proper context a given action would exist in. This can manifest itself through either its

related words or meaning, as seen in Table 4.1. As another example, the phrase pick up has at

least two senses, to lift an object or to understand an idea. Other properties of an action that can

participate are vastly different depending on which sense the user desires, and different animations

for a virtual human would accompany each sense. To disambiguate polysemous words, physical

humans will examine a word’s context, and determine which definition best fits the context. This is

known as word sense disambiguation. A good survey of the topic can be found in [89]. Most word

sense disambiguation techniques focus on a given context, such as the sentence in which the word

is found. Unfortunately, even well named motion clips and processes do not readily appear in full

sentences with enough context to determine their sense.

For both word sense disambiguation and meaning generation, the choice of knowledge bases

impacts our system’s abilities. For our system, we use a knowledge base that captures a linguistic

89

Table 4.1: An example of the polysemous word Cook taken from WordNet. Only the verb senses
are shown.

Term Synonyms Definition
Cook n/a Prepare a hot meal
Cook Fix, Ready, Make, Prepare Prepare for eating by applying heat
Cook n/a Transform and make suitable for con-

sumption by heating
Cook Fudge, Manipulate, Fake, Fal-

sify, Wangle, Misrepresent
Tamper, with the purpose of deception

understanding of actions, WordNet [36]1. We use WordNet to determine our initial sense due to

its larger collection of verbs and the more prevalent parent-child relationships. The tree structure

of WordNet allows verbs to be understood more generally, which we exploit in our process. In

generating the hierarchy, we are more concerned with WordNet as our knowledge-base.For some of

our tests, we also utilize FrameNet [92]2. FrameNet contains operational information in the form

of Frame Elements (FE), which are the participants of a frame of a verb. For example, a sleep

verb contains the FEs Sleeper and Place. Shi and Mihalcea have connected FrameNet frames to

WordNet senses [93]. To show the efficacy of our approach (Section 4.5), we use FrameNet Frames

to show that connections made in later chapters are possible.

4.2 Using WordNet to Generate Ontologies

4.2.1 A Multi-sense Method to determine the Sense of an Action

To determine parent actions and build an action hierarchy, our method first reasons about the ac-

tions that a simulation author has created. Figure 4.1 illustrates how these lexical databases fit into

our overall system. The list of actions available to be performed in the scenario are disambiguated,

mapped to WordNet verb synsets, and formed into an action taxonomy. These actions can come

from a variety of sources such as low level atomic animations or procedural controllers (e.g. pick-

ing up an object). The sense candidates chosen from WordNet are directly related to the name a

1Also found online at http://wordnet.princeton.edu
2Also found online at https://framenet.icsi.berkeley.edu

90

Figure 4.2: The Multi-pass technique’s testing conditions. Each level determines word senses with
the most precise methods higher up in the pyramid. Techniques lower in the pyramid are less precise
but have greater coverage.

simulation author provides for the action. Therefore, the level of detail and ability of an author to

describe an action has a large impact on the system’s ability to derive its sense, with more general

methods being used to disambiguate fuzzy situations as is done cognitively by physical humans [94].

To enable this ability in our system and provide more information to an agent reasoning about ac-

tions, we maintain much of the synset hierarchy as a taxonomy of actions. The hierarchical nature

of verbs also lends itself naturally to a hierarchical, or multi-sieve, approach, as seen in Figure 4.2.

Our hierarchical method examines word senses using information on the word itself, its children,

definition, and the relationship to other found senses.

Unlike previous word sense disambiguation methods, our method examines an action name λ

given a small constrained set of user provided keywords k = {k1, . . . ,kn} and determines the proper

sense of λ from the set of candidate senses c = {c1, . . . ,cm}. λ can be any word or word phrase,

such as pick up or duck and shoot. For the verb cook, a user might provide the keywords food and

heat. As our domain specifically focuses on actions for virtual agents, we assume that λ contains at

least one verb that can be performed by a virtual actor. This is an important assumption as it greatly

prunes the search space of candidate senses for a given verb. It is also a reasonable assumption

for our target applications. The keywords should contain some context to the given sense of λ ,

however, due to the descriptions found in animations, this may not always be the case. The name

of the motion itself may only give a partial clue to its nature. We process λ to determine c by first

91

searching for c using λ . If no results are found, we determine if λ is a phrase, and search for c from

each verb in the phrase. If no results are found at this stage, c is considered unresolvable.

Once our system has determined the set of candidate senses c, we search for the most likely

candidate sense, cfound, which will be the label for the parent action. We find cfound by testing c

against each method seen in Figure 4.2 and described in more detail in the following paragraphs,

using Equation 4.1. α is used to reject cfound for low matching senses, and allows other methods to be

tested in an attempt to find a better match, while not undermining high probability matches. Through

testing we have found that α = 0.23 provides a strong threshold while not being too discriminating.

s f ound = argmax(method(s))> α (4.1)

Word Disambiguation: The first methods used in our system attempts to disambiguate using

only the sense set c and a set of k, similar to the disambiguation of agent commands done in [96].

As was done in [96], we use the lemmas of a sense, which are closely related to synonyms, as

well as the parent verbs in WordNet’s hierarchy, and determine the number of k that matches each

candidate in c on these metrics. We have also added a third technique, which compares the lemmas

of the sense’s child verbs in WordNet’s hierarchy to k by performing a Breadth First Search on the

tree of the sense. In order to get a percentage score to compare to α , we divide the total matches by

|k|. For our example of cook with keywords food and heat, this method results in a score of zero.

Neither keyword is found in the set of synonyms for cook.

Definition Disambiguation: If the above technique cannot disambiguate the sense of the word

from its given components, we then examine the definition of each sense. The definition of a

sense is a more relaxed search, and provides context to each sense in c. Testing the definition of

a sense against k is a relaxed string matching approach. If a keyword matches any of the words

in the definition, then it is considered a match, and is scored similarly to the word disambiguation

technique. We also determine a percentage score for these techniques by dividing the total matching

found by |k|. Here our cook example yields a score of 0.5, because the keyword heat is found in
3After a more extensive analysis, we found experimentally that 0.2 is a good cutoff metric for sense matching using

Equation 4.1. This differs from our work that was published in [95], in which we used 0.3. In reality, the choice of α is
dependent on the dataset used, which is why it is left as a free parameter.

92

one of the sense definitions, but food is not. As we have found a sense whose score is higher than

our α , this sense is chosen.

Frame Clustering (Confidence Based Symbiotic Actions Only4): This disambiguation metric

is only used for disambiguating actions and object information about the virtual environment when

the objects are already known. It uses k combined with λ , for each λ ∈ OBJ (added to k) to de-

termine how many connections there are. Frame Clustering is based upon the Functional Elements

of FrameNet [92]. Our heuristic computes the number of keywords that appear in the FrameNet

frame compared to all other keywords. Any candidate that does not have an corresponding frame

in FrameNet (using its hypernyms) is removed from consideration. These heuristics, including our

novel functional heuristic, are scored using the Jaccard index seen in Equation 4.2. The Jaccard

index does not consider order, and so the end result of Equation 4.2 is how similar the frame is to

whichever set (keywords or object names) it is being compared to.

scoreh(ci) =
|param(ci)∩ k|
|param(ci)∪ k|

(4.2)

Path Disambiguation: The final automated technique used to determine the sense of λ is

to compare c to the already disambiguated verb senses. This technique follows [97], which has

been previously used to connect WordNet senses and FrameNet frames. Provided the system has

determined one correct sense, this technique uses the Wu-Palmer Similarity [70] of c to determine

the percent similarity to the already found senses of actions. This method is an iterative approach,

and so will attempt to connect senses until no new senses are found.

For our confidence based method, we perform a slightly different version of path disambigua-

tion. We still compute a global context score using the Wu-Palmer similarity metric [70] between all

candidates of all other actions/objects. This metric keeps the highest similarity score, All similarity

scores for a given action and object are normalized between all candidates. Note that this is a slight

departure from path similarity mentioned earlier, as it compares the paths between all candidates,

4Through testing, we found it had no effect on the multi-sieve method. We postulate that this is due to the inclusion
of an object hierarchy in the confidence based method

93

and not just between the ones that were found. As our confidence based method does not deter-

mine confidence until after all measures are tested, we do not have known actions to compare to.

Therefore, we simply compare to the candidates.

Hand Clustering: When there is not enough information to disambiguate c or if none of the

techniques are able to resolve the sense of a verb, then manual disambiguation is necessary. Our

system provides tools for a user to choose the correct sense given a definition and list of synonyms of

each sense in c. If the user cannot find a given sense at this stage, then the action name is considered

unresolvable.

4.2.2 Hypernym Tree Generation

After the initial examination and disambiguation of verbs, we build a FIDAG, which exploits Word-

Net’s hypernym hierarchy for its creation. This allows a virtual agent to reason about an action using

a broader definition (e.g. being able to understand that a pirouette is a turn or that baking is a form

of cooking which is in turn a creation action). To construct ACT, we first generate the full parent

list of each disambiguated verb. For example, in Figure 4.3(b), the black circle is an action, and all

other circles are the hypernym parents of that action. We then perform a node comparison, using

Wu-Palmer path similarity [70] to the leaves of all previously generated trees to find candidate trees

that the sense may belong to (See Figure 4.3(a)). We then examine all nodes in the list and candidate

trees, searching for a direct string match for a given verb sense. When one is found, that node and

all child nodes are directly connected to the tree. This allows a large amount of information to be

reasoned over, increasing the total coverage of the system.

Once the actions’ word senses have been determined and the action taxonomy created, the

actions can be further processed, such as linking the actions to object participants, thus providing

agents with information about how the objects can be used in virtual worlds.

4.2.3 Confidence Based Symbiotic Generation

Our method of symbiotic generation for actions and objects relies on the idea that a virtual character

has a known set animations and graphical objects and that there is some underlying meaning in the

94

Figure 4.3: A node in an action hierarchy being added (b) matches a node in an existing tree in
(a). The hierarchies are merged at the common node and the ancestors of (b)’s matching node are
removed (c).

connections between actions and objects. We start with the same assumptions as our multi-sieve

method. Our method first builds a taxonomy of objects and actions, starting from an input list of

actions and objects in the scenario. Each action represents a meaningful name of a motion controller

and each object name represents the meaningful name of a graphical object. A high level explanation

of our population algorithm can be seen in Algorithm 8. This algorithm disambiguates objects using

keywords provided by the simulation author as well as the base names of the actions, generates

potential properties for each object, and then uses that information to augment the keywords a

simulation author uses for actions. A disambiguated object set (OBJ) may also be used, removing

the need for steps 5-12. It is important to note that the population phase is now based on keywords

(similar to [37, 10]) and information inherent to the simulation (i.e. the other actions and objects).

The information inherent to the simulation helps the population algorithm determine global context,

as the virtual agent can only perform the actions in the simulation and only interact with objects in

it.

The disambiguate function on lines 10 and 17 of Algorithm 8(Confidence Based Generation)

provides the most likely candidate sense for a given object or action, provided one exists. To deter-

mine both the most likely sense of an action/object and the confidence that the given sense represents

the animation/graphical model, we compute a set of features that are processed using a Regression

Decision Tree [98] model. The decision tree uses mean squared error as its splitting function, and

95

Algorithm 8 Our Hierarchy Population Algorithm

1: function CONFIDENCE BASED GENERATION PROCEDURE(OBJ,ACT)
2: OBJ←The set of object names and associated keywords
3: ACT←The set of action names and associated keywords
4: C← new Hash Table
5: for all obj ∈ OBJ do
6: c← candidates of obj
7: k← keywords of obj ∪ λ ∈ ACT
8: insert (c,k) into C
9: H← new Hierarchy of OBJ

10: insert Disambiguate(C) into H
11: Empty(C)
12: for all act ∈ ACT do
13: c← candidates of act
14: for i from 1 to —c— do
15: if ci has an attached frame then
16: add f rame(ci).FE to keywords only for ci
17: else
18: remove ci from consideration
19: k← keywords of act ∪ λ ∈ OBJ
20: insert (c,k) into C
21: insert Disambiguate(C) into H
22: return H

we only require two samples for nodes in the decision tree to split. As we have a heuristic that is

specific to actions, we train a separate model for object disambiguation and action disambiguation.

Finally, when we insert the disambiguated terms into lines 10 and 17, we insert the WordNet [36]

sense with its entire hypernym tree, creating a forest of hierarchies for actions and a single hierarchy

for objects.

ci = set(
score(ci)

avg(score(c− ci))
) (4.3)

In order to compute features to predict the confidence of a candidate, we provide several heuris-

tics. Many of these heuristics use the context provided by the scenario and simulation author (such

as the names of the objects and other descriptors for actions) and are contained in the set k, discrim-

inated to each set of candidates. We use all the heuristics found in Section 4.2.1, but each candidate

receives a score for each heuristic, shown in Figure 4.4.

A note on the global context heuristics, using the frames and action paths. Obviously, both of

96

Figure 4.4: An overview of how our confidence-based method disambiguates action candidates.

these heuristics are sensitive to the global context and data with which they derive their scores. This

has the possibly unintended effect of biasing the actions and objects towards one action, making

different animations and graphical objects which are not meant to be considered synonymous syn-

onyms. For example, if a virtual character can run a program and run on a treadmill, the global

context heuristics do not pick up the difference, but instead score based on the same candidate.

However, as all other heuristics are keyword based, they may not be able to find a connection if the

set of keywords are not descriptive enough.

4.3 Using Continuous Bag of Words to Generate Hierarchies

In the past few years, there have been recent developments in word representations. Work such as

WordNet [36] represents words as synsets, which contain links to generalizations, specializations,

synonyms, antonyms, and other information about the word in a human readable format. Another

way to represent a word is by a Bag of Words representation [99]. A bag of words assumes a finite,

unchanging set of words in a dictionary. The entire set can then be represented as a vector, where

97

each position of the vector corresponds to a word in the set. An example five item bag of words is

shown in Figure 4.5. In the example, a word vector is created for the sentence “jane eats”, where

each word corresponds to a given position in the bag. Multiple sentences can then be compared

to each other as vector differences. Note that the position is lost between words in a bag of words

model, so that some semantic information is lost on the sentence level.

Figure 4.5: An example bag of words, and the word vector from the sentence “jane eats”.

Similar to traditional bag-of-words models are Continuous Bag of Words and Skip-gram mod-

els [100]. However, instead of each word having a specific position in the vector representation,

the vector representation is a (generally unknown) set of features. Words are then categorized by

continuous values of these features. Word Vector models have grown in popularity since their intro-

duction in [101], including such work as Word2Vec [100], Sense2Vec [102], and Shape2Vec [103]

Shape2Vec combines word vectors with vectors describing 3-D graphical models in an attempt to

have a common language between graphical objects and words. Word vectors have also been de-

scribed as being able to contain levels in their knowledge representation [104]. If they can contain

graphical objects and generalizations, then word vectors may be useful as an abstract method of

representation. Because word vectors are not human-readable, then it wouldn’t be appropriate to

present them to a simulation author as is. Furthermore, one of the benefits of the PAR language is

that actions can be added and removed by a simulation author without affecting other actions. A

98

pure skip-gram generalization (such as what is claimed in [104]) would need to be retrained for each

new concept, making that hierarchy more static. Word Vectors could, however, be used in place of

WordNet sysnsets for the population of action generalizations, just not for the actual representation.

Therefore, we test out the effects of creating hierarchies from word vectors.

4.3.1 Creating a Hierarchy using Word Vectors

Once a model has been created, a vector representation of each action can be determined. However,

the vector by themselves does not indicate relationships between the actions. We wish to find an

indeterminate known grouping of words that may exist on multiple levels between actions. Further-

more, we wish for this hierarchical grouping to have a human understandable meaning. Therefore,

the word vectors developed are used to determine generalizations between groups of words. We

cluster word vectors together, using DBScan [105] in order to determine similar words. DBScan

is a neighborhood searching method that builds clusters by examining distances between differ-

ent data-points (word vector), clustering points that fall under a given threshold. If enough points

are within the threshold (chained together, see Figure 4.6), then the cluster will be created. Any

points that cannot be clustered together are labeled as such. DBScan is generally used on large

data-sets because its clustering method is fast. For small data-sets, we reduce the number of mini-

mum samples needed to create a cluster (such as allowing two close enough data-points to create a

cluster). Because word vectors are trained on large corpora, verbs and nouns generally have several

similar components. Therefore, we run PCA analysis on each word vector before using DBScan,

transforming the data-points into their two most representative components.

Once a preliminary grouping is determined, a generalization of the grouped words is needed.

Unlike WordNet, which has a rote generalization for many actions, word vectors do not have gen-

eralizations trained. Furthermore, the words that should be generalized together will change based

on the clustering parameters. Therefore, generalizations between words are based on the word most

closely related to all other words in the cluster. We do this through cosine similarity on the vector

space. The generated word becomes a new action in our hierarchy, and the process is run until no

more actions can be clustered together or a desired height of the hierarchy is reached.

99

(a) (b)

(c)

Figure 4.6: A two component PCA-based word vector representation of the CMU data-set. (a) The
actions are shown with their two components. (b) DBScan measures the distance between actions,
connecting any neighbors based on their distance. (c) The final clusters are combined based on the
connected neighborhoods.

One issue with using a continuous bag of words model is the semantic meanings of action par-

ents. Work such as Mikolov et al. [101] describe the ability of these models to determine features

such as changing one feature can transform a singular to plural word or that makes a word masculine

or feminine. This is done by examining the transformation from one word to another for several

pairs of words, and essentially learning the transformation from this data-set. This is important be-

cause combining several word vectors together finds the most similar word to all of them, which is in

reality another word from the total set of words and not what would be considered the generalization

100

of that word. So long as the action hierarchy can be nonsensical (i.e so long as the parent of Talk and

Walk can be Laughter), word vectors are a great representation for actions and their generalizations.

What may also be desired is determining the topic from a set of word vectors [106]. Topic modeling

using word vectors has been performed in Liu et al. [106], and combines Latent Direlecht Alloca-

tion [107] with word vectors to determine topics based on the clustered words. They provide three

different models, two in which topics are considered as pseduo words and one in which the topic

word embeddings are simply concatenated to the word embedding. The real difference between the

three is simply in how the topic is used as context, and show that the three produce different results.

While each of these methods produce different relationships between words, they all rely on the

same idea, that words can be represented as a vector, and that relationships between vectors corre-

spond to meaningful relationships between words. If the relationship between words is known, then

relationships between vectors can be determined. Without that knowledge, methods to determine

relationships between vectors are needed, in order to build some semantic understanding of the set.

4.4 Automated Generation of FIDAGs

Single generalizations are not the only generalizations that can be populated using our methods.

As described in Chapter 2 Definition 2.6.1, actions may have multiple generalizations, creating a

Forest of IsA Directed Acyclic Graphs (FIDAGs) structure instead of an IsA hierarchy. In Chapter 3,

we have described the use and consideration of FIDAGs in regards to traditional IsA hierarchies.

Therefore, here we also describe how to populate FIDAG generalizations for actions.

One way to populate the FIDAG is to associate more direct generalizations (candidates) with

a given action or object. Note that both the multi-sieve and symbiotic generation algorithms use a

cutoff threshold α when determining which candidate best suits the action or object. By keeping

more candidates, a FIDAG can be generated (seen in Figure 4.7). The two methods we examine for

FIDAG creation slightly change Equation 4.1, such that we are able to consider multiple candidates

as actual parents. The first, which is an all parents method, uses Equation 4.4. This assumes any

candidate that is greater than α during the phase α is compared is a parent of the action. The second,

a highest parent method, still assumes that the correct parent is the highest parent greater than α

101

during the phase α is compared. This means that only the highest ties are considered disambiguated

parents of the action, instead of having ties being broken arbitrarily as is done in the single parent

method of our multi-sieve method [95].

Figure 4.7: A Sample FIDAG generated for SaccadeSpeak using a hypernym multi-sense method.

sfound = si,∀s,method(s)> α (4.4)

In addition to multiple generalizations being determined during disambiguation, creating a word

vector FIDAG can be accomplished by assuming many actions or objects are actually compound

words. Splitting up these words increases the chances of finding a word vector for that word, and

associates more word vectors with the given action or object name. An example of this can be

seen in Figure 4.8. Due to the nature of word vector tree creation, the parents have a tendency to

converge, although its ability to is dependent on the number of cluster models used and their size.

Both of these methods produce similarly structured FIDAGs, in that much of the multiplicity

occurs lower in the structure. This allows us to assume something about the tree itself, in that much

102

Figure 4.8: A Sample FIDAG generated for SaccadeSpeak using the word-vector tree building
model.

of the considerations discussed in Chapter 3 are going to occur close to the action and object itself,

meaning conflict resolution can be performed on each action, without having to examine most of

the FIDAG structure. This was found when combining properties in Figure 3.4 Lowering the total

number of nodes in the entire tree that need to be examined by a simulation author eases the authorial

burden while still providing expressibility in generalizing our action sets.

4.5 Experimentation

In order to test out H 4 and the ability of our method to determine the sense of an action from its

name and keywords, we have formulated and tested several hypotheses:

• H 4.1: A consistent action hierarchy can be created using well named motion data and on-line

lexical databases.

• H 4.2: Using a mutli-pass method is a more accurate way of determining the sense of a verb

103

obtained from an animation’s name than any one method.

• H 4.3: The keywords attached to each action should describe the sense of the action, and

therefore count occurrence should not be used to disambiguate the actions.

• H 4.4: Using a confidence based decision method produces a higher precision-recall curve

than using a multi-sieve method

• H 4.5: Both a word vector tree-building method and hypernym tree-building method are able

to connect to FrameNet frames

• H 4.6: Using FIDAGs connection provides more first parent generalizations, and those first

parent generalizations are compatible with one another

• H 4.7: An all-above threshold for FIDAG generates less fully compatible parents than a

highest threshold method, and does not more accurately match ground truth

• H 4.8: Using a hypernym tree-building method produces more functional action and object

FIDAGs than using a word vector model for both single parent hierarchies and FIDAGs

The first three hypotheses are concerned with the ability to connect actions to a knowledge base

in order to build up generalizations. This is the core of H 4 in that H 4.1 and H 4.2 show that

actions can be better understood if they are connected to other knowledge sources. H 4.3 adds that

the ability of the system is only as good as the data going in, and that the keyword descriptors play

a vital role in the ability of the system. H 4.4 and H 4.5 examine more methods to determine action

disambiguation, which shows more generally that these action semantics can be realized through

text. To consider the multiple parents of PAR, H 4.6, H 4.7, and H 4.8 are tested, which describes

P∈ACT instead of a single parent. These hypotheses support H 4 for multi-parent actions instead of

just single parent actions, which H 4.1-5 are concerned with. While H 4.7 and H 4.8 are not required

to prove H 4, it does provide some understanding into the effects of having more information on an

action set.

To test H 4.1 and H 4.2 we used action names from CMU’s motion capture library [108], a scan

of the SmartBody documentation [66], and a higher level data set that represents common behaviors

104

listed in tables provided by the Bureau of Labor Statistics (BLS) [109]. There is some overlap

between senses from the SmartBody and CMU action sets. This creates a list of sixty actions, fifteen

actions, and forty two actions respectively that a virtual human would be capable of. Naturally,

behaviors in the BLS set do not inherently correspond to virtual human capabilities, but the set

provides us with another source of potential behaviors. We create a ground truth for each data-set

that contains the correct sense for each action by hand examining the senses in WordNet. This

was performed by two encoders, one of which only had knowledge that the action was performed

by a virtual human. The other coder had access to the animations, but did not reference them

when determining ground truth. There agreement between the two coders was around 50%. For

each dataset, we also create two lists of keywords5: a definition list from the Merriam Webster’s

dictionary definition6 (generally the longest words in the definition) and a list containing synonyms

from both Merriam Webster’s dictionary and thesaurus.com7. We then create several tests from the

set of keywords, choosing either the definition or synonym set for each action. These are used to

compare our overall method to each of its components. The results can be seen in Figure 4.9. As

the path similarity metric requires one action sense to examine WordNet paths, we combine that

method with each of our other metrics.

As can be seen from Figure 4.9a almost all of the multi-pass methods that included path disam-

biguation [97] were able to overwhelmingly find a sense to attach to an action’s name. This means

that, more often then not, using path disambiguation [97] will allow for some sense to be found and

an action taxonomy to be generated for most of the actions without the need for an author to man-

ually add them. Using our word disambiguation with path disambiguation for CMU’s data set was

an exception. This is because this method did not find enough senses using word disambiguation to

connect senses using [97]. A lower α value would allow the process to find more senses, but may

reduce the overall accuracy of the system. As a result, the high percentage of found senses confirms

H 4.1. When examining Figure 4.9b, there is an overall decrease in the system’s ability to choose

5The definition and synonym lists can be seen in Appendix B.
6www.dictionary.com
7www.thesaurus.com

105

(a)

(b)

Figure 4.9: The percent of found (a) and correct (b) senses for our ten sample test. Error bars
represent one standard deviation. A single factor ANOVA analysis provided a negligible p-value
for both figures, with a Tukey-Kramer test showing significant difference between our method and
the word only, definition only, and word with path methods for CMU’s data set, and word only
and definition only for Smartbody’s data set. A Tukey-Kramer test shows significant differences
between all methods and the multi-path method for the BLS data set.

106

the correct sense. Therefore, while [97] allows for a hierarchy to be created, it may not be the cor-

rect one. However, compared to methods that did not use a path method, Figure 4.9b shows that a

multiple pass method is preferred when creating an action hierarchy from action names, confirming

H 4.2.

To examine H4.3, we compare keywords generated from a variety of sources. We use the

keywords generated for H 4.1 and H 4.2 as intelligently chosen hand-done keywords. We also auto-

generate keywords from several text sources, including the entirety of Wikipedia, the Billion Word

News Corpus, and a selection of two genres (fantasy and mystery) from Project Gutenberg [110].

Each corpus found the top keywords generated from ALET (Chapter 5), and were broken up into

descriptors and verb-noun co-occurances. The action descriptors were unable to disambiguate c

for any word, and were dropped from the analysis for that reason. We believe that because the

action descriptors mainly provided adverbs to describe the actions, which did not fit into any of our

disambigaution metrics. The top three and five keywords were chosen for each generated corpus,

and ten samples were created by mixing combinations of the three to five keywords. These were

then compared to two human disambiguation participants, and accuracy was determined if one

matched either of them. The results can be seen in Figure 4.10. Test were performed both in and

between data-sets for significance, showing that there is a pairwise significance between data-sets

and between both the human chosen keywords and the automated keywords for each data-set.

From Figure 4.10, it should be seen that having a human choose the keywords over an automated

method is generally preferred. This is because automatically generating the keywords creates a

chicken and egg scenario. The disambiguated words are needed to know what keywords better

describe the action, and the keywords are used to know how the action is disambiguated. The one

inconsistency in this is in the BLS dataset, where the automated connections actually connect better.

This is because the actions themselves are higher level, and both the system and humans had trouble

determining a WordNet sense that accurately described the action. By having the default be that the

action cannot be disambiguated, when human coders have more trouble, poorer data (through the

keywords) actually performs better. This confirms H 4.3, in that keywords chosen to represent the

action are more useful to the disambiguation of the action, meaning that the human needs to remain

107

Figure 4.10: The percent matched vs. dataset when using keywords picked by a system compared
to those generated from text corpora. Error bars are given as one standard deviation.

in the loop when disambiguating actions.

To test H 4.4, we have included 4 object datasets. Two data-sets are the names of graphical

objects from two environments on the Unreal Engine Marketplace. Both of these object sets have

close to 100 objects, although many are different models of the same object. We also have two

academic datasets, the 101 Object Set [111] and ModelNet [112]. ModelNet has over 600 3D

graphical models. Each of these sets were disambiguated by hand to create an object hierarchy. We

then train a decision tree regressor by choosing one action and object data-set, training the regressor

on all candidates, and using that regressor to determine confidences for all other combinations of

each other data-set. This is done for each combination of actions and objects. To get different values

of precision and recall, we change the value of α . We test each action dataset against each object

dataset. The results can be found in Figure 4.11.

As can be seen from Figure 4.11, the confidence-based method produces a similar precision to

that of the multi-sieve method for low recall levels. At each of the bounds (precision = 1.0 or recall

= 1.0) the multi-sieve method outperforms the confidence based method. However, in Figure 4.11

where there is more area where the precision is closer to the recall for the confidence-based method,

108

Figure 4.11: The precision-recall graph obtained in testing the confidence-based method and the
multi-sieve method on our action data-sets over all three data-sets.

such as when recall = 0.4. This means that the confidence based method produces more balanced

results between precision and recall than the multi-sieve method, thereby confirming H 4.4.

In addition to our multi-sieve method and confidence-based method, we show the effect of our

word-vector model on the data-set. We generate our word2Vec models (using gensim [113]) from

two separate large text corpora, a plain text parsing of the entirety of Wikipedia 8 and the The 1

Billion Word Language Model Benchmark9. We generate Word2Vec models that have window

sizes of 3 and 5 words, and a word was not trained in the model unless it had a count frequency

of greater than 50 occurrences. For clustering actions, we used scikits-learn [114] DBSCAN, with

epsilon sizes of 2 and 3.5 and a minimum leaf size of 2. All word vectors for a given set are

first processed using Principle Component Analysis, keeping the two most descriptive terms. We

examined how many actions were identified, as well as the total size of the tree and how many

actions were able to connect to FrameNet in Table 4.2.
8en.wikipedia.org
9http://www.statmt.org/lm-benchmark/

109

Table 4.2: Statistics for single parent word vectors on each action set used in our tests. The number
of actions are the base number of actions and the total items in the hierarchy include generalizations.
The % for actions with frames is calculated from the base number of actions.

Name # of Actions % of
Found
Actions

Total
Actions

and
General-
izations

% of
Actions

with
Frames

Smartbody 19 65.8±3% 22.5±0.5 68.4±0%
CMU 58 69.8±1% 70.5±2.5 40.5±1%
The American Time Use Survey 43 25.6±0% 46.75±2.25 19.2±7%

From Table 4.2, it should be seen that the word vectors were able to identify more actions for the

two lower level action sets (Smartbody and CMU) than for BLS actions. This should be apparent, as

lower level actions are more likely to have a single unique word identifier, whereas the higher level

actions in BLS would not. This also accounts for the lower number of FrameNet frames connected

to each action. It should also be noted that the total number of parent actions is lower for this

method than for any method that uses a WordNet hypernym structure. Because our word-vector

model clusters several actions together, the branching factor for the tree should be greater than the

long chains that are seen in the hypernym models. The ability of the system to recognize actions

and cluster them into a hierarchy proves H 4.5.

H 4.6 and H 4.7 focus on how automated FIDAG generation affects the action generation as a

whole. Using Multi-sieve WordNet generation, we provided two methods to prune candidate senses

for an action. Before being able to describe how these generation methods effect the hierarchy, we

examine the two methods and their ability to match to human participants. This, like in H 4.1, gives

a baseline to the extent of using FIDAG generation methods. To do so, we determine the number of

matches between our each method and human generation, showing the percent that one sense using

automated generation methods is matched to one of the human selected senses. The results can be

seen in Figure 4.12. We also show, on average, how many parents are generated for each action

data-set. A higher average means that more candidates are selected for a given action. The results

are shown in Table 4.3. For this analysis, we do not consider the action sets that do not receive a

sense.

110

Figure 4.12: The percent matched vs. dataset when all keywords matched over the threshold vs.
using the highest matched over the threshold.

From Figure 4.12, using a threshold to determine good candidates is able to more often match to

a sense generated by human coders. This is due to the fact that using the all-parents method provides

more parents than if we look for only the highest action, as shown by Table 4.3. The lower total

number of actions shows that, in general, one synset is found to be more favorable than others by

the system. In many respects, using a highest parent model produces similar results to those found

in the multi-sense method of Figure 4.9b to the hand selected keywords of Figure 4.10, showing that

using a highest parent cutoff value is similar to using a single parent hierarchy method. However,

H 4.6 only discusses the ability of either method to produce FIDAGs, which both methods are able

to do. Therefore, either method proves the first part of H 4.6, in that either method can produce

FIDAGs. The ability of the all-parent method to identify possible connections that are similar to

human taggers also disproves the first portion of H 4.7.

To completely examine H 4.6, we must also look at the compatibility of each parent. To do

so, we examine the number of roles and semantics that connect to each action, and the amount of

111

Table 4.3: The average number of parents found when generating FIDAGS, using either a single
threshold or using the highest action and a threshold.

Dataset Average Number of parents
for all-parent method

Average Number of parents
for highest-parent method

ICT Smartbody 5.3 3.4
CMU 6.1 3.8
BLS 7.5 4.8

Average over all three
data-sets

6.3 4

overlap between each set. For both an above-all threshold and highest parent threshold, the disam-

biguated senses become the parents of the action. For automated generation, this means that the

properties of actions are determined through the parents. We therefore determine how many prop-

erties of these parents match for each method. Parent properties are attached to the disambiguated

senses, and so for this experiment we do not build a complete tree, but only examine parents one

level deep. We compare complete properties for which all semantics and roles match for all par-

ents, with the results in Figure 4.13 This uses the binary components equation (Equation 3.3). We

also determine what percentage of overlap between parents exists for an individual action, with the

results in Figure 4.14. Semantics and roles are automatically generated using ALET, which is de-

scribed in Chapter 5. It is also because of ALET that these two measures provide an understanding

of how varied the parents generated for actions for the two methods are.

From Figure 4.13, it should be seen that using an above-all threshold provides significantly less

fully compatible actions then using a highest-sense threshold, for both semantic generation and role

generation. Part of this is simply due to there being fewer parents per action (as seen in Table 4.3).

It also means that, when multiple parents are determined by automated methods, having a large

number of parents is not necessarily better, because the parents might not be compatible with one

another and a simulation author would have to go in and rectify this information. Therefore, using

an above-threshold method would increase the work a simulation author has to perform, which

proves the second part of H 4.6 for the highest-parent threshold method, but shows that there are

many incompatibilities for the above-all threshold method, and shows that H 4.6 does not hold for

112

(a)

(b)

Figure 4.13: The average percentage of parents with completely compatible (a) semantics and (b)
roles for both an above-all threshold and a highest threshold.

that method.

One interpretation of the child action is that it would be a composite of all the parent actions (i.e

113

(a)

(b)

Figure 4.14: The average percentage of (a) semantics and (b) roles that are the same across all
parents.

for R ∈ ACT). In that case, the amount of overlap between actions parent actions shows the agree-

ment between parent actions. Figure 4.14 shows the average percent overlap between actions, using

114

automated semantic tagging tools. This gives us an idea about how much redundant information is

available. As can be seen from Figure 4.14, using a highest parent method produces more redun-

dant information than using the all-parents method, and this occurs for both semantic properties in

Figure 4.14a and roles in Figure 4.14b. When examining Figure 4.14 with Figure 4.13, it should be

noted that there are many cases in which the total compatibility between properties on the parent

is much lower when the threshold for what actions are allowed to be a parent is much lower. As

the highest-parent method provides that extra constraint on choosing a sense, that technique can be

useful to prune out knowledge such that there is more confidence in the ability of the system. This

proves the latter half of H 4.7, but as the first portion of H 4.7 was dis-proven, means that it is dif-

ficult to say if one method for FIDAG creation is more useful than another. In reality, it depends on

the needs of the simulation author. If a simulation author wants more information about the action

to sift through, then using an above-all threshold will provide the author with those tools. However,

if the simulation author wishes for the system to only find parents that are the most obvious par-

ents, then the highest-parent method will not provide as many parents, creating a smaller and more

similar tree.

For our final experiment, we examine FIDAG creation using word-vectors. We use the same

set-up as we did for experiment H 4.5, but now attempt to split any action name into multiple

parents. We test for the same parameters and using the same word-vector models as was previously

discussed. The results can be seen in Table 4.4.

Table 4.4: Statistics on each action set used in our tests. The number of actions are the base number
of actions and the total items in the hierarchy include generalizations. The % for actions with frames
is calculated from the base number of actions.

Name # of Actions % of
Found
Actions

Total
Actions

and
General-
izations

% of
Actions

with
Frames

Smartbody 19 97.7±2.7% 43.25±2.5 100%
CMU 58 97.7±0.7% 169.25±2.5 82.9±1.4%
The American Time Use Survey 43 100% 169.25±2.5 96±6%

115

Figure 4.15: The percent of Frames found for each multiple parent tree building method. A single
factor ANOVA shows no difference between the three methods, with p = 0.1

It should be immediately apparent from Table 4.4 that assuming multiple parents in a word-

vector model has a significant impact in the ability of the system to identify the action, as well as

connect it to FrameNet frames. This is most noticeable for the BLS dataset, which was able to

determine a parent for all actions using multiple parents. Because our word-vector method breaks

up the word when there are multiple parents, it shows that this particular action set are not singular,

atomic actions, but are more complex, higher level actions. The increase in total frames found when

compared to Table 4.2 for all action sets also show that having more possible actions and more data

from the parent really assists this method’s ability to connect to FrameNet frames.

While the results from Table 4.4 show that multiple parents for a word vector are beneficial,

H 4.8 is concerned with the number of Frame connections that can be made. Therefore, we average

the number of FrameNet frame connections and compare to the average number for a WordNet

hypernym generated tree using the highest-parent method. The results can be seen in Figure 4.15.

Surprisingly, Figure 4.15 shows that a word-vector method is able to identify frames for the

action as often or more often than using either hypernym method. This is most likely due to the

116

word-vector tree building method searching for frames using the lemma, which equates to the names

of the action and its parents using. Since the word vector method, when action names are examined

on their parts is more likely to find parents and cluster actions together, it is more likely that those

parents will have a frame. Our Multi-sieve WordNet methods connect frames using [93], which is

a more precise method of connecting frames. While the hypernym tree method is more precise in

its connection of FrameNet frames, the ability of a “data-dumb” method to perform so well is quite

fascinating. It also disproves H 4.8 in that, for simply finding frame connections, our word-vector

tree building model is as capable as our hypernym model.

4.6 Conclusions

We presented methods to automate the population of parents given the name of an action. The

parents of an action can be generated from either a well-understood data-set or well defined key-

words that accurately represent the action in question. We also showed how different methods and

different data-sets effect the ability of the system, and how newer techniques such as word-vectors

can be used to populate parents. By generating action parents, we have laid the foundation work

for Chapter 5 to populate both the roles and semantics of actions, providing a more complete and

concrete connect for agents interacting in rich environments.

The ability of word-vectors and clustering to create action parents is important because of the

work connecting graphical models to names (i.e shape2Vec [103]). While this work is concerned

with graphical models, it is not unreasonable to hypothesis that animations could also be con-

nected to word-vectors. In this case, simply connecting the animations to names is not enough

to be able to reason about it (as shown by the inability of the single parent word-vectors models

to find FrameNet Frames). However, by using multiple parents and building a hierarchy (using

the word-vector method) it is conceivable that there is overlap between what is presented here and

future endeavors with word-vectors. What we provide here is proof that word-vectors are a viable

option to build an agent’s understanding of the generalizations to their actions. As we will show in

Chapter 5, having parent actions are crucial to populating semantic information.

117

Chapter 5: Automated Generation of Semantics

In addition to populating action parent sets in Chapter 4, a simulation author would still need to fill

in all other components of an action set. Even if the simulation author has a completed set, new

properties or requirements of the characters may appear, and components would need to be added

to or changed. This is especially true if new objects were added (as R ∈ ACT would need to be

updated) or if S were modified. In these instances, a simulation author would be required to recreate

or modify all actions to include this change, which creates a burden on the simulation author. In

commercial cases [115] where this recreation is not feasible, actions become inconsistent, and can

lead to undesired results and incorrect simulations. Most previous work in semantic information for

virtual scenarios (or actions) focused on how ontologies for virtual agent environments should be

structured. While we have described how the object and action sets fit together, the contribution of

this chapter is in generating those semantics from text in a system we call ALET1 (Agents Learning

their Environment through Text). ALET is similar to both Fast et al.’s Augur system [116] for

activity recognition and our work in [10] (with a component seen in Chapter 4) for operational

population. However, our system provides several marked improvements over both systems for

semantic information generation. ALET uses a combination of our action sets and text to infer

attributes of the action and attributes of objects, which neither previous work is concerned with.

This allows us to populate more operational information than we were previously able to in [10]

and described in Section 5.1, as this works was only concerned with the object’s name and semantic

type. Furthermore, as our domain has a specified finite set of actions and objects based on the

animation and model sets, the text parsing is only concerned with that set, removing any actions and

objects that do not fall within that set from consideration.

As another strategy employed to ease the burden of creating operational information connec-

tion, some researchers have tried to use human computing, also known as crowd sourcing. Human
1Published in [11]

118

computing [117] relies on simplifying a problem into smaller pieces and having humans perform

the simpler computation. Human computing has been used to create complex behavior [118] and

operational information [119]. While the technique is an interesting method to ease the authorial

burden, in reality it only works well for tasks that the “average” person can perform. For highly

scientific action sets, the human created actions may not work well. This is because the “average”

person may not have the required domain knowledge, which means that not as many people will

perform the computation. Furthermore, humans can be inconsistent in their labeling, making it dif-

ficult to get more reliable, replicatable results. Therefore, human computing is limited in its ability

to create action sets.

At a high level, ALET relies on the idea that a virtual character has a known set of animations

and graphical objects and that there is some underlying meaning in the connections between ac-

tions and objects. We assume that each action and object are have parental information. This can

be accomplished by having a simulation author choose the correct sense given a graphical model

or animation clip, or through automated processes such as Pelkey and Allbeck [37] for graphical

models or one of the methods seen in Chapter 4. We further assume no other information in our

ontology, that is, that there is no interactional information or object semantics connected. We also

assume our ontology contains all the models a virtual human would encounter and all motion data

that the character can use. This means that we would simply re-perform our method if new actions

or objects became available to the simulation. We show a graphical representation in Figure 5.1.

In addition to resources that contain generalizations of actions such as WordNet, there are

several resources that attempt to connect actions and objects. Two well known resources are

FrameNet [92] and PropBank [120]. Both of these are large, semantic databases that describe roles

attached to verbs. In some instances, these roles are similar to R ∈ ACT, but may also include Non-

Interactional Functional Information that describes the actions (and is more similar to S ∈ ACT).

Both of these resources are used as templates in Semantic Role Labeling [121], which diagrams

a sentence based on the components of the sentence and the necessary components that should be

attached to the verb. Semantic role labeling has started to be used for virtual agent animation [104],

specifically for text command and simulation. Ludwig et al [104] uses prop-bank and a bayesian

119

Figure 5.1: An overview of the basic techniques for populating action roles and semantics

system to identify the objects used with actions in a text. However, it makes no mention of if these

are the correct objects to use, just that they are identified as the role. Without ontological support,

an agent designer has no knowledge or control over what objects actually fit in that role, which is

partially do to the generality of prop-bank. On the other hand, FrameNet has been shown to provide

excellent coverage in identifying roles, especially over other ontologies such as dbpedia [122]. We

therefore demonstrate how to populate semantics of virtual environments (S ∈ OBJ,S ∈ ACT, and

R ∈ ACT) using FrameNet as a base for these connections. These are methods to add meaning to

virtual agent actions, continuing the trend from Chapter 4 in populating an understanding of virtual

agent actions. The core of this chapter is therefore to examine H 5, shown below. The utility of

H 5 arises in that resources to help populate actions ease the simulation authors burden and allows

virtual characters to have more abilities.

H 5: Meaning can be generated for actions using the knowledge of objects, knowledge bases,

and large textual data-sets.

120

5.1 Connecting Objects to Actions using FrameNet

Object operational information requires a connection between a given action and the objects that

can be used in it. For several basic actions, this simply forms a triplet (agent, action, object),

where agent is the agent initiating the action on an object. However, actions can become very

complex, requiring not only knowledge of what objects can participate, but how they can as well.

For example, an agent mopping a floor requires not only a space in which to mop, but an instrument

with which to perform the action. This creates a two-fold process, in which the correct sense of a

frame must be disambiguated. Disambiguating the correct ordering of such an action combination

is essential to streamlining an agent’s decision making process [21].

Figure 5.2: A pictorial overview of the connection step. The object parameters of actions are linked
to object types in the object ontology.

One component of the FrameNet database are Functional Elements (FEs), which are functional

(operational and semantic) information related to a verb. An example for the verb cook can be seen

in Table 5.1. It should be noted from Table 5.1 that not every FE is related to graphical objects.

121

In fact, only Cook, Heating instrument and Produced food are graphical in nature and the rest

are NIFI. NIFI such as Manner in Table 5.1 can be used to control how an action is performed.

Therefore, in addition to connecting roles, at this stage we also extract NIFI (S ∈ ACT). This does

not mean ALET plans motions based on NIFI, just that it finds NIFI that can be used in motion

planning. Motion planning based on NIFI is left to future work. There are also FEs that, while

useful for the action, do not match any object that exists in the simulation. We cannot only use

FE as R ∈ ACT, but need to match them with object types in the system so the agent knows what

objects are matched with a given role.

Table 5.1: Functional Elements for the Frame Cook, specifically Cooking Creation. The first three
are operational information R ∈ ACT, while the last two are NIFI S ∈ ACT.

Functional
Element

Definition

Cook The Cook prepares the Produced food.
Produced food The Produced food is the result of a Cook’s efforts.

Heating instrument This FE identifies the entity that directly supplies heat to the Food.
Manner This FE identifies the Manner in which the cooking creation is performed.
Purpose This FE identifies the Purpose for which the cooking creation is

performed.

5.2 Agents Learning their Environment through Text (ALET)

Creating rich semantic environments requires connecting all possible actions to every object that

could be used in that action, in what is known as operational information [9] or roles [1]. Particu-

larly for virtual agents, operational information must be available prior to simulation so the infor-

mation is retrievable in real-time during simulation. Operational information can be programmed in

by hand, but becomes infeasable as the number of actions and objects grow. Methods that generate

affordance2 information from 3-D models [28] are unable to connect virtual human actions that rely

2Affordance information here is from Gibson’s original definition: that the actions that can be performed on objects
are perceivable by the shape of the object

122

on non-graphical properties of objects. For example, an eat action would not have its operational

information resolved based on graphical properties of 3-D models. Other methods use knowledge

bases for natural language processing and ontologies to resolve operational information [10], but

these methods only create connections based on the name and generalization of the objects. These

methods are not able to resolve connections described using adjectives. For example, a knowledge

base using ingestible (an adjective) as the item to eat and not food (a noun) would be unable to con-

nect edible items to eating. To connect operational information based on properties, the objects must

contain those properties. For non-graphical properties, this would be done ad-hoc by a simulation

author, leading to inconsistent or omitted connections. Therefore, textual knowledge bases offer

candidates for operational information, though they still may require expert knowledge to know

which connections are appropriate for a given simulation. Our method uses large textual corpora

to determine candidate semantics for use in virtual environments. We delineate two matrices that

contain our semantics, a noun-description matrix for semantic information, and a verb-description

information to describe actions. Two of the matrices are generative, in that only the rows are known

before examining the text.

5.2.1 Dependency Grammar Parsing

The construction of co-occurrence data-tables begins with ALET parsing large textual corpora to

find verbs and nouns matching the labels of actions and objects (λ ∈ ACT and λ ∈ OBJ) in the

system. We note that this problem is a highly functional one, in that the co-occurrences represent

relationships between words in the text. Spacing co-occurrence, in which words co-occur based on

their spacing, suffers from ambiguity when phrases contain descriptors that could describe either

actions or objects. Therefore, we use a Dependency Parser [123], to read through the text, and parse

out Universal Functional Dependencies [124] creating 3-tuples that give meaningful relationships

between the text. The output of parsing is a list of 3-tuples denoted t. Each ti ∈ t contains a

designation d and two words (denoted wti
j where j = (0,1)). At this stage, we can prune t to only

include d that have meaningful matches to the co-occurrences we are searching for. Specifically,

we search for d ={amod, nmod} dependencies when construction our noun-descriptor data-table

123

and d = {advmod} when constructing our generative verb-description table. Pruning the tuples at

this stage allows for only important tuples to be compared, allowing the system to have a better

understanding of the data for later processing. A graphical depiction of this process can be seen in

Figure 5.3.

Figure 5.3: A graphical representation of dependency parsing on text.

5.2.2 Co-occurance Connections

While ALET is determining desired dependency tuples, it also disambiguates a more meaningful

representation of each wti themselves. While base words may appear as action and object labels in

our representation, the actual meaning of the word can be quite different. This problem is known as

Word Sense Disambiguation. Recall our action and object representation has a generalization field

P ∈ ACT and p ∈ OBJ. When using automated generation tools such as [37, 10], these generaliza-

tions can represent WordNet hierarchies and preserve more detailed information on the action and

object. To generate descriptors that more closely match the meaning, ALET disambiguates each wti

into an associated synset.

To better understand matches in our system, we use Lesk’s Algorithm [125] to determine the

WordNet synsets for each word in a tuple. Lesk’s algorithm is a simple and well-studied algorithm

for word sense disambiguation. The algorithm takes the context of all the surrounding words in the

sentence that the object came from, similar to the definition method presented in Chapter 4. Specif-

ically, for each word wti in each tuple ti, we calculate the probability that each sense w.candidate

124

contains the correct meaning given the sentence s that wti originates from using the WordNet def-

inition, w.candidate.de f attached to each sense and Equation 5.1. As we know the context of wti
j

from parsing the tuples, we only need to consider each possible meaning of that type (such as only

considering verbs if we know cook is an action). Equation 5.1 is run for each possible meaning of

wti , and the sense with the highest probability is considered the correct sense. We then only use the

tuples who match the row term in our ontology.

w = argmax{c.de f ∈ w.sense :
|s∩ c.de f |
|s|∗|c.de f |

} (5.1)

It should be noticed that a large textual corpora should contain a given disambiguated tuple

multiple times if the connection is truly salient. Furthermore, many disambiguated words will not

contain between each other as well. The end result of ALET are two data-tables created from

COO sparse matrix3, where each row is a term in our ontology and each column is a term found

connected to an object in our text. We generate two data-tables that correspond to different semantic

information, with an example of our noun-descriptor table in Table 5.2. A sample of our verb

descriptors can be seen in Table 5.3. Our two matrices describe semantics attached to each hierarchy.

The object-adjective matrix ND contains nouns N and generated descriptions D and the action-

adverb VD has verbs V and the descriptions D that were found in the corpora.

Table 5.2: A sample of the matrix ND for the object Food.n.01, along with its counts.

Noun Descriptor Count
Food.n.01 fresh.a.01 587
Food.n.01 natural.a.01 250
Food.n.01 fried.s.01 106
Food.n.01 american.a.01 124

3Also known as an ijv or triplet matrix

125

Table 5.3: A sample of the matrix VD for the action Cook.v.01, along with its counts.

Verb Descriptor Count
Cook.v.01 frequently.r.01 64
Cook.v.01 immediately.r.01 16

5.2.3 Operational Information Population

The results of Section 5.2.2 are two data-tables, with an example of object descriptors seen in

Table 5.2. Each object and descriptor represents a link found in the text, with count being the

number of times that link was found in the text. However, while these connections are meant to

assist generating roles (R ∈ ACT) and action semantics (S ∈ ACT), the connections only provides

descriptions of actions and objects. To specify the roles of each object in an action, we combine the

results of our co-occurrence algorithm with FrameNet [92] in order to embed a deeper understanding

of each virtual object’s role

We first leverage the matrix VD to determine the set of action descriptions S ∈ ACT for a given

action set. As the set of operational and NIFI information is disjoint, we build the action descriptions

first so that each R∈ ACT is only generated from FEs that we know are not descriptors. To generate

S∈ ACT, we extract a unique set of all descriptors from VD as a set of keywords using Equation 5.2.

The keywords are compared to the FEs connected to an action, with matches for a given action

creating S ∈ ACT. Note that we use FE as our action descriptors, and not VD. The descriptions

in VD are numerous for several of the actions, whereas FE tends to be a smaller set across several

actions. Creating a proper subset of descriptions for each S ∈ ACT is outside of the scope of this

work and left to future work.

S =
⋃

i=act∈ACT
V DV=λ∈i (5.2)

Keyword generation for operational information R∈ ACT comes from our object representation

and noun-description data-table ND. We first consider the set of keywords K = {λ ,obj ∈ OBJ}. In

other words, our set of keywords is the set of the names and generalizations of objects available to

the agents in our scenario.

126

There are also FEs that do not represent an object but rather a property that can be applied to

several objects. In order to capture this functional information, we use the matrix ND created in

Section 5.2.2. Recall that this data-table consists of nouns that possibly objects from our virtual

environment, as well as candidate semantics described through adjectives in the text, with counts

representing the number of co-occurances in the corpora. Therefore, we attach the descriptions

found in data-table ND as keywords in our search, using only the descriptions that match objects in

the hierarchy, using Equation 5.3. This is done with the set of object label keywords. However, the

matches on FE from this require an extra step to link the descriptors that were matches back to the

objects they are matched with.

Kd =
⋃

i=obj∈OBJ
NDN=λ∈i (5.3)

We also connect the object descriptors on the objects as the set S ∈ OBJ, which become impor-

tant object properties in our virtual environment. FEs that were added to R ∈ ACT using Kd link

to a descriptor in ND. Therefore, for each linked descriptor FEi, we determine the set of objects

that contain that descriptor using Equation 5.4. We then add FEi to S ∈ OBJ for each object. This

is done in addition to adding the object to R ∈ ACT because the descriptions in ND are treated as

possible properties of an object, which may or may not exist on different objects of the same type

in a virtual environment. Creating a two stage connection provides the simulation author with more

control, in that the system provides the agent with the objects to look for, as well as the properties

to check on, the objects after they are found. So, an agent may know that an apple is ingestable for

the action Eat, and will also know to check the property on an apple to make sure it is ingestable.

Do = NDD=FEi (5.4)

It is important to understand the difference between ALET and Pelkey and Allbeck [37]. Pelkey

and Allbeck determined S ∈ OBJ by examining part of speech tags on WordNet definitions that

matched λ ∈ OBJ for all objects in the hierarchy. The insight in Pelkey and Allbeck was that

certain parts of speech tags (such as NOUN and ADJECTIVE) are representative of descriptors,

127

and if they are part of the definition, must be descriptors used to describe the object. ALET, by

comparison, uses textual relations that are known to describe objects and actions, and connects those

textual descriptions back to the actions in the data-set. This provides two marked improvements:

the descriptions found through relations are known to describe the data-set, and there is much more

data in the system to smooth out the noise inherent in natural language.

The use of more data was also seen in Augur [116], which ALET is another inspiration of ALET.

Augur uses verb-noun co-occurrences on a large data-source (modern fiction) in order to learn roles.

These roles are different from R∈ACT in that they are unordered, which for their application (action

recognition in video) is useful. However, for agents to know how the roles operate, especially when

objects may fill multiple roles in an action, R∈ ACT is assumed to be ordered (or at least have some

semantic meaning for the different roles). We do not consider co-occurrences between descriptors

for the same reason we used dependency parsing over part of speech tagging in Pelkey and Allbeck.

5.3 Experimentation

To show the efficacy of using FrameNet and text corpora to populate action semantics, we postulate

several hypotheses, namely:

• H 5.1:The resolution provided by FrameNet and a virtual object ontology covers the usable

objects in a scenario.

• H 5.2:The use of generalizations provide better coverage then when generalizations are absent

• H 5.3:S ∈ OBJ will provide a higher recall of identifying R ∈ ACT, but lowers the overall

accuracy

• H 5.4:Verb descriptors can populate S ∈ ACT when used in conjunction with FrameNet

• H 5.5:The use of verb descriptors and noun descriptors produces a higher overall accuracy on

the system over only noun descriptors

• H 5.6:The choice of text data has an impact on ALET’s behavior and abilities.

128

H 5.1 and H 5.2 show the ability of FrameNet to act as a starting point for determining R ∈ ACT,

but requires more, unstructured data(shown in H 5.3, H 5.4, and H 5.5) to fully compute a par-

tial semantic representation of the actions. Using unstructured data requires other considerations,

proven in H 5.6. The combination of these hypotheses build an understanding of the requirements

in populating actions, and their combined realization show that action roles and semantics can be

populated using large textual corpora and knowledge bases, proving H 5.

5.3.1 Datasets used in Experiment

In order to test our method, we populate several sources of objects and actions. Objects are gen-

erated from ModelNet [112], the Caltech 101 object image data-set [111], and two virtual envi-

ronments that can be downloaded from the Unreal Game Engine Marketplace, seen in Figure 5.4.

The Unreal Game Engine scenes represent different time periods and different authors. Each object

data-set is disambiguated by hand and connected to WordNet sysnets. The generalizations are also

created in our representation, allowing us to fill in p ∈ OBJ. Information on each set can be seen

in Table 5.4. The most important statistic in this table is the percent of objects that were matched

with a WordNet synset (% of found objects). As ALET determines WordNet synsets during its

disambiguation phase, objects that do not have a synset are not included in OBJ.

Table 5.4: Statistics on each object set used in our tests. The total number of items in the hierarchy
includes objects that are generalizations of other objects.

Name # of Objects % of
Found

Objects

Total
Objects

and Gener-
alizations

ModelNet 656 93% 1063
CalTech 101 101 95% 331
Office (Figure 5.4a) 82 84% 192
Pub (Figure 5.4b) 52 88% 181

Our action data-sets are comprised of a total of five data sources. Motion data makes up three

129

(a)

(b)

Figure 5.4: Two sample object rich virtual environments from the Unreal Game Engine Market-
place. The two environments contain a) 82 and b) 52 unique types of objects, derived from over a
100 graphical models each. The total number of object instances in each environment is (a) over
400 objects and (b) over 300 objects.

130

data-sets, and there is one action recognition source and one plain text action source. Both of the

non-motion data sources could be turned into animations. The motion data sources that we use are

Behavioral Markup Language actions from SmartBody [66], a subset of the CMU motion capture

database [108], and The ICS Action Database [126]. Our action recognition source is The Human

Motion Database [127], and our plain text actions are from The American Time Use Survey [109].

We also provide statistics for this data-set, as seen in Table 5.5. In addition to connecting action

names to synsets, we also connect each action to a FrameNet frame if one exists.

Table 5.5: Statistics on each action set used in our tests. The number of actions are the base number
of actions and the total items in the hierarchy include generalizations. The % for actions with frames
is calculated from the base number of actions.

Name # of Actions % of
Found
Actions

Total
Actions

and
General-
izations

% of
Actions

with
Frames

Smartbody 19 100% 49 89%
CMU 60 98% 150 75%
The ICS Action Database 25 96% 51 76%
The Human Motion Database 51 90% 123 75%
The American Time Use Survey 43 83% 96 47%

To determine matches for ALET, we examine the FEs of all found frames connected the test

action set, and separate known FEs for each actions into roles R ∈ FE and NIFI S ∈ FE4, if pos-

sible. This is a multi-step process, where the first step examines the generalization designated by

FrameNet of each FE, if one exists. Any FE that is generalized to a Physical Entity, Goal, or

Source are placed into R ∈ FE, and any FE that can be generalized into Attribute, Time, or State of

Affairs is considered part of S ∈ FE. However, this only sorts a fraction of the FEs that are inherent

to the frames attached to our ontology. Therefore, we have identified a few special cases if a given

FE does not have a generalization. These exceptions search for keywords in the definition of an FE

(searching for person or entity for R ∈ FE). We also use keywords in the name (path or entity for

4The designation of FEs can be found in Appendix C.3

131

R ∈ FE and Event or Duration for S ∈ FE). Finally, we compare all remaining FEs to those that

are already designated in R ∈ FE and S ∈ FE. Some FEs have a set of excluded FEs that cannot be

used with them, and if an excluded FE is in R ∈ FE or S ∈ FE we add it to the same set. So, if a

place is excluded from an area, and an area is known to be in R ∈ FE, we assume that place is also

in R ∈ FE. Any FE that is not identified as R ∈ FE or S ∈ FE using this process is left as unknown

and not used for these experiments. Placing FEs into sets provides some feedback into the ability

of each system to generate R ∈ ACT and S ∈ ACT without confusing those sets.

5.3.2 Connecting Objects to FrameNet

In order to test H 5.1 and H 5.2, we examine the full connections and determine the percent coverage

for using the object and action data-sets described in the previous section. Our method then com-

putes coverage for each of the found object trees, using our automated method. We also compute a

maximum ground truth using the ground truth action hierarchy for each data set. For H 5.1, frames

are connected to each action or a generalization of that action (i.e, using all act ∈ Act). For com-

parison, we show the result of not using generalizations when populating R ∈ ACT in two ways. In

one, we only use leaf objects (any objects that are not a parent or generalization of another object).

We also do the same for actions. The results can be found in Figure 5.5.

When using an action hierarchy to get a fuller definition of an action, it can be seen from

Figure 5.5 that the closer to ground truth the starting senses are, the closer the expected connections

are to the maximum coverage using our method. As there is a statistically significant difference for

each data-set using each method, we cannot confirm H 5.1 and the true ability of the coverage. We

can infer from the operational connections in the ground truth seen in Figure 5.5 that our method

can resolve over half of the operational connections between our object and action ontologies. This

already greatly reduces the effort needed by a simulation author and encourages further work in this

area.

When no action hierarchy is used, the ability to determine expected operational information

decreases drastically, as seen by the low percentages in Figure 5.5. This should be expected as the

likelihood for a WordNet sense to have a corresponding FrameNet frame using [93] will increase

132

Figure 5.5: The percent of matched object operational information when only using an action hi-
erarchy, only using an object hierarchy, and using an action and object hierarchy. Error bars are
shown as one standard deviation.

when a more general sense understanding can be exploited, because many of these connections are

stored as generalizations in the system. This is more apparent when object generalizations are not

used, and only the names of graphical objects (and their associated synsets) are connected as R ∈

ACT without an associated hierarchy. From Figure 5.5, the standard deviation is larger than the total

accuracy, because the roles in R∈ FE are general terms. Therefore, the use of object generalizations

is crucial to a complete understanding and connection, with the use of action generalizations still

being important. This confirms H 5.2.

5.3.3 ALET Datasets

Our system populates semantic information for autonomous virtual agents’ use in virtual environ-

ments by examining large textual sources and combining the results with FrameNet functional el-

ements. The system uses several data-structures in order to generate and discriminate between

operational information R ∈ ACT and (NIFI) S ∈ ACT for actions in our set. FrameNet provides a

base for both R ∈ ACT and S ∈ ACT, which are matched to the data-tables for actions and objects

that ALET generates, and the actual graphical objects that a simulation author has procured for

133

their virtual environment. We compare ALET to two other generation methods, our work in [10]

and Pelkey and Allbeck [37], showing the abilities of each method. Furthermore, to show the effect

that the data-source has on the ability of our system, we use two text corpora, Wikipedia5 and The 1

Billion Word Language Model Benchmark6 .

5.3.4 Analysis of Role Connection and ALET

We also test the effect matrix ND has on finding operational information in connection with our

object ontology. Recall that we use ND in conjunction with the object ontology to build a larger set

of keywords with which to match to FE. Using ND to find noun descriptors is analogous to the work

of Pelkey and Allbeck. Therefore, we compare against their method of finding object descriptors,

and its overall effect on populating R ∈ ACT. At this stage, we are only concerned with finding

R ∈ ACT, and so are not examining the total comparison with NIFI. Cross tables for our test action

and object sets can be found in Table 5.6(ALET with Wikipedia), Table 5.7 (ALET with the Billion

Word News Corpus), and Table 5.8 (Pelkey and Allbeck’s method). The average accuracy over all

object data-sets are shown in Figure 5.6. A two factor ANOVA on Figure 5.6 with replication shows

no difference over the action sets (ρ = 0.1), but does not show no difference between data-sets and

methods (ρ < 0.001).

Table 5.6: The average accuracy for detection R ∈ ACT in ALET using Wikipedia as a data-source

BLS CMU Human
Motion

Database

ICS
Action

Database

ICT
Smart-
body

101 Object 44.69% 49.24% 47.26% 44.71% 50.80%
ModelNet 43.44% 52.28% 50.40% 50.75% 59.46%
Office 49.29% 55.56% 53.65% 52.89% 59.45%
Pub 49.29% 55.56% 53.65% 52.89% 59.45%

From Figure 5.6, we can see the effect of using properties to connect actions and objects. It was

5https://dumps.wikimedia.org/backup-index.html
6http://www.statmt.org/lm-benchmark/

134

Table 5.7: The average accuracy for detection R ∈ ACT in ALET using the Billion Word News
Corpus as a data-source

BLS CMU Human
Motion

Database

ICS
Action

Database

ICT
Smart-
body

101 44.69% 49.24% 47.26% 44.71% 50.80%
ModelNet 48.65% 57.58% 54.95% 55.01% 65.73%
Office 49.75% 55.56% 53.65% 52.89% 59.45%
Pub 71.53% 76.33% 75.53% 78.08% 76.36%

Table 5.8: The average accuracy for detection R ∈ ACT in using Pelkey and Allbeck’s Method

BLS CMU Human
Motion

Database

ICS
Action

Database

ICT
Smart-
body

101 37.76% 42.37% 41.28% 39.17% 46.26%
ModelNet 40.70% 46.21% 44.98% 46.87% 52.70%
Office 35.71% 37.79% 37.10% 35.62% 42.61%
Pub 49.68% 58.83% 58.55% 61.60% 65.94%

suggested in our previous work [95] that using properties could assist in finding operational infor-

mation. We find using adjective descriptors does increase the amount of operational information

connected, whether or not that set should belong to R ∈ ACT or S ∈ ACT. The fact that the action

sets are statistically similar is also useful, in that the action sets span a range of specificity, with BLS

being the most high level actions. However, this does not mean that each individual set is the same,

as can be well seen in Table 5.7. In the table, the accuracy of model sets has a strong impact on

the overall accuracy. This is to be expected. Different sets have varying objects, and those objects

have varying descriptors, which may or may not connect well with FrameNet. Not connecting with

FrameNet should not be seen as an error, as the objects may just not exist, and so the role should

not exist.

The accuracy difference between data-sets (Wikipedia and The Billion Word News Corpus) and

135

Figure 5.6: The percent accuracy of role detection vs. action data-set for ALET with two different
data-sets vs. Pelkey and Allbeck. Error bars are shown as one standard deviation.

methods also shows that object descriptors by themselves cannot generate all R ∈ ACT. The de-

scriptors found may connect to other information (such as that found in S∈ FE), thereby decreasing

the total accuracy of connecting R∈ ACT. This also means that Figure 5.6 cannot prove or disprove

H 5.3 by itself. Therefore, we also look at the systems ability to find any objects, described as the

recall of the system. We compare the the data-sets and methods in Figure 5.7. A two factor ANOVA

on the methods and action sets shows no significant difference between the methods and between

the action sets, with ρ = 0.05 for both.

From Figure 5.7, it can be seen that the ability of each method to connect roles is much higher

than the overall accuracy. The recall does not take into account mis-classifications of S ∈ FE as R ∈

ACT, which means that each data-set is able to find most of the operational information in FrameNet.

This is much higher than only using the object hierarchy, but due to the mis-classifications, does not

produce more accurate results because their are more mis-classifications, thereby proving H 5.3.

Figure 5.6 shows an increase in classification of NIFI information as operational information. As

the system also discovers action descriptors, we test to see the effect matrix VD has in determining

NIFI information from FEs. In our system, VD is used to classify potential FE as being part of the

136

Figure 5.7: The percent recall of role detection vs. action data-set for ALET with two different
data-sets vs. Pelkey and Allbeck. Error bars are shown as one standard deviation.

set S ∈ ACT. We compare our sets against using all the found descriptors of VD that appear for a

particular ontology. Therefore, if one action has quickly as a descriptor, we assume that it is possible

for any action in that particular test data-set to have that as a descriptor, using the FEs to determine

if another particular actions in the set should have that descriptor. We show the results in Figure 5.8.

For three of the five action sets, no operational information was found using the matrix VD.

Table 5.9: The average accuracy for detection S ∈ ACT using ALET with Wikipedia

BLS CMU Human
Motion

Database

ICS
Action

Database

ICT
Smart-
body

101 38% 30% 32% 36% 26%
ModelNet 38% 30% 32% 36% 26%
Office 38% 30% 32% 36% 26%
Pub 38% 30% 32% 36% 26%

Figure 5.8 shows how using the matrix VD can classify several NIFI elements in a given FE,

137

Table 5.10: The average accuracy for detection S ∈ ACT using ALET with the Billion Word News
Corpora

BLS CMU Human
Motion

Database

ICS
Action

Database

ICT
Smart-
body

101 37.58% 29.72% 32.16% 35.76% 25.63%
ModelNet 37.58% 29.72% 32.16% 35.76% 25.63%
Office 37.58% 29.72% 32.16% 35.76% 25.63%
Pub 37.58% 29.72% 32.16% 35.76% 25.63%

Figure 5.8: The percent overlap vs. action set when using the matrix VD. No error bars are shown
as there was no variance between object sets.

proving H 5.4. The American Time Use Survey data-set was able to classify fewer of the FEs for

actions in that ontology. There are two possible causes for this, either that the data-set itself did

not have many descriptors in the text, or that the descriptors in the text did not match. For both

circumstances, it shows the effect the text corpora has on the system’s ability as a whole. The

American Time Use Survey has much higher level actions (like ”GoToStore” and ”Research”) than

the other action sets, which may be described less or differently than lower level data-sets based off

138

of more primitive actions.

Figure 5.8 also shows that the matrix VD mainly classifies NIFI. For two of the data-sets, the

descriptors match to FEs that are expected to be operational information. Therefore, using the

matrix VD may have an impact on the overall system’s ability to classify operational information.

For a majority of the data-sets, we see no overlap in operational information, since most of the FEs

found using VD are descriptions. However, because some of the data-sets had action descriptors

we expect to be operational information, the system may suffer in its classification of the two sets.

Therefore, care must be taken when finding NIFI information for actions.

To determine the efficacy of our approach, we compare ALET to the method described in our

previous work [10]. We also compare ALET to a combination of our previous work [10] and Pelkey

and Allbeck, which shows the effect of using semantics to find operational information. We test

for both the accuracy of each method in finding operational information and NIFI, which previous

methods are completely unable to do. The averaged results over each action and object set are seen

in Table 5.11.

Table 5.11: The average accuracy for identifying functional elements as either operational informa-
tion or NIFI. Errors are shown as one standard deviation. A single factor ANOVA found significance
between tests, with ρ < 0.001.

Method % Average Accuracy
Object Ontology Only 30.7%±12.9%
Pelkey and Allbeck 30.0%±7.0%
ALET (News) 53.9%±20.8%
ALET (Wikipedia) 51.6%±12.4%

Table 5.11 shows that ALET had a higher average accuracy than previous methods. This is

mostly due to ALET’s ability to detect and describe action descriptors. Previous methods can only

determine operational information. As ALET is able to determine action descriptions, we can more

fully describe an action with terms such as duration and frequency, which are widely used when

139

controlling virtual characters, and appear in specifications such as the Behavioral Markup Lan-

guage [66]. We also examine each system’s ability to identify roles compared to our FE break-

down. This second test takes into account mismatches between S ∈ FE and R ∈ ACT. This shows

the ability of ALET to correctly detect only roles. The results can be seen in Table 5.12.

Table 5.12: The average accuracy for identifying functional elements only as operational infor-
mation. Errors are shown as one standard deviation. A single factor ANOVA found significance
between tests, with ρ < 0.001.

Method % Average Accuracy
Object Ontology Only 60.9%±25.9%
Pelkey and Allbeck 45.9%±14.0%
ALET (News) 62.2%±25.7%
ALET (Wikipedia) 71.4%±20.7%

Table 5.12 shows that there is an upper bound in matching objects to roles, replicating the results

in [10]. However, simply adding descriptors to objects, using Pelkey and Allbeck, actually decreases

the overall accuracy of the system. This is because the semantics described there are too greedy,

and match object to S ∈ FE. As ALET first determines S ∈ ACT before matching roles, it reduces

the number of false positives that it finds, while increases the overall accuracy of the roles found.

The data-source used affects ALET’s ability, with the larger data-source (Wikipedia) having more

accurate results. The ability of ALET using both the Billion Word News Corpus and Wikipedia

against methods that do not take this data into account prove H 5.5.

5.3.5 Analysis of Adjectives and Adverbs in Dataset

ALET generates co-occurrence values based on the relational tuples searched for. Co-occurrences

of the same type are summed up, and a cutoff value can be established, removing relations that are

not found often in the corpus. This presents the interesting question of ”What is an optimal cut-off

value?”. Furthermore, is there a given number of descriptors that are adequate to match R ∈ ACT

and S ∈ ACT correctly while minimizing mis-matches. To answer this question, we examine the

140

descriptors, searching for an optimal threshold based on the object and action data-sets. Figure 5.9

and Figure 5.10 show the effect of the cutoff value on the average number of descriptors provided

to the system, based on the objects and actions in the test data-set. We also show the values that we

used for the experiments in Section 5.3.4.

Figure 5.9: The average number of adverbs connected to action sets vs the cutoff value. The cutoff
values used in our experimentation are shown as dotted lines.

Both Figure 5.9 and Figure 5.10 display a steep drop-off curve as the cutoff value is increased.

As expected, the descriptors of the News data-set are initially much less, and drop off quicker than

the number of descriptors in the Wikipedia data-set. This is simply due to the size of the data-set

in general, with the Wikipedia data-set being much larger than the News data-set. This means that

the optimal cutoff value should be less for the news data-set than the Wikipedia data-set. Based on

the cut-off values used and the score similarity in Section 5.3.4, this is what we found. This fact is

similar for both Figure 5.9 and Figure 5.10, showing that the size of the data-set has an effect on the

cutoff value, without having a large effect on the ability of the system. Therefore, care should be

taken for choosing cutoff values for tuples based on the size of the data-set.

We further examine the effect the cutoff value has on the metrics we used in Table 5.11. As

141

Figure 5.10: The average number of adjectives connected to object sets vs the cutoff value. The
cutoff values used in our experimentation are shown as dotted lines.

the cutoff value has an effect on the amount of information being fed into the system, it follows

that a good cutoff value would show better results for the system. We show the effect the adjective

cutoff value has on the total accuracy in Figure 5.11, object recall in Figure 5.12, and accuracy in

detecting roles in Figure 5.13. For all three experiments, the adverb cutoff value was held constant,

with Wikipedia being 10000 and the news Corpus being 1500, which are beyond the control cut-off

lines.

Figure 5.11 shows the effect different data-sets has on the total accuracy of the system. What

should be noted from the figure is that the two data-sets converge onto a given accuracy. This is

due to having cutoff values high enough that adjectives are not matched in the system, and therefore

only objects are considered as matches. This is an important consideration for a simulation author.

Attempting to use only the most used adjectives does not necessarily mean that the adjectives will

be connected to funtional elements. It should also be noted that the two data-sets display similar

shape, but at different adjective cutoff values. This should also be expected, as the size of the two

data-sets are different, and so the data-set with less overall data (Billion Words News) should have

smaller cutoff values than Wikipedia. Therefore, the cutoff value for adjectives are dependent on

the size of the data. Examining Figure 5.10 with Figure 5.11, it can be seen that there is an optimal

142

Figure 5.11: The average total accuracy of the system vs. the adjective cutoff value when using
ALET.

Figure 5.12: The average object recall of the system vs. the adjective cutoff value when using
ALET.

143

Figure 5.13: The average accuracy of detecting operational information R ∈ ACT vs. the adjective
cutoff value when using ALET.

number of adjectives for both data-sets, and the optimal value is around 200. While not all adjectives

in the optimal value are used to connect actions to objects, 200 is a large enough mix to make the

connections.

In addition to Figure 5.11, we examine the effect adjectives have on the recall and accuracy of

populating R ∈ ACT. Similar to Figure 5.11, the two data-sets converge on a single value, which

is mostly due to them being related measurements (Figure 5.13 is a component in Figure 5.11).

Figure 5.12 shows that the adjectives have an effect on finding operational information to a given

point, and so if a simulation author is only concerned with populating R ∈ ACT, then lower values

are more useful in this task. However, the total accuracy of populating R ∈ ACT increases with

the cutoff value (to a point), because information that should be considered NIFI are also being

found. Examining the Wikipedia data-set in Figure 5.13, it can actually be seen that the accuracy

decreases for certain cut-off values, because it is finding information from S ∈ FE and categorizing

it as R ∈ ACT.

In addition to the effect the cutoff value for adjectives have on ALET, we examine the effect

the adverbs have on ALET. Recall that action descriptors are used to find S ∈ ACT before roles are

determined, causing adverbs to affect both NIFI population and role population. As such, we use

144

the same three metrics that we used when describing adjectives. We present the result of changing

the adverb cutoff value on ALET’s whole ability in Figure 5.14. The residual effects of adverbs on

role information can be seen in Figure 5.15 and Figure 5.16.

Figure 5.14: The average total accuracy of the system vs. the adverb cutoff value when using ALET.

Unlike Figure 5.11, Figure 5.14 does not converge between the two data-sets. This has sev-

eral possible reasons. As we see this effect for Figure 5.14, Figure 5.15 and Figure 5.16 (where

Figure 5.15 and Figure 5.16 are concerned with objects), we can infer that the false positive role

matches hve an inverse relation with the adverb cutoff value. This should be expected, as the verb

descriptors matched to Functional Elements are removed from role consideration. It should also be

inferred from Figure 5.14 that there is not much difference after the cutoff plateau. This can also be

seen in Figure 5.9, which shows that the total number of descriptors does not decrease much after a

certain point (appearing as exponential decay). Therefore, the descriptors that are removed in later

sets do not have, for these test cases, have much of an impact on finding roles or action semantics.

145

Figure 5.15: The average object recall of the system vs. the adverb cutoff value when using ALET.

Figure 5.16: The average accuracy of detecting operational information R ∈ ACT vs. the adverb
cutoff value when using ALET.

146

5.3.6 Demonstration

ALET is meant to ease the burden of connecting objects in a virtual environment to performable

actions. To that end, we show ALET connecting action sets to roles for two environments, using the

Wikipedia text corpora. The results of different action sets on the same environment can be seen

in Figure 5.17. In this example, we can see that many actions have similar roles, such as objects

being a Theme of actions Kick(Figure 5.17a) or Nod(Figure 5.17b). This is not true for all roles, as

most objects are not connected to Place(Figure 5.17a) and that it is specialized to the building itself.

Thus, ALET can take several action sets and generate connections for the same object set, taking

into account the differences in the virtual agent actions and their objects.

(a) (b)

Figure 5.17: A virtual environment sold on the Unreal Engine Marketplace annotated with opera-
tional information. The action set shown is (a) ten actions from CMU and (b) nineteen actions from
SmartBody.

We also show how changing the environment on the same action set affects the operational

information. Figure 5.18 uses the CMU action set on a different constructed virtual environment

from a different time period. While the object sets are different, and from different time periods, the

fact that actions can be used on a variety of objects shows the the overall roles are similar. Thus,

ALET can find descriptors to connect different sets of objects to the same action. This is the work

a simulation author would have to perform, meaning ALET can be used as a tool to assist agent

authors in populating the knowledge of virtual humans.

147

Figure 5.18: A virtual environment sold on the Unreal Engine Marketplace automatically annotated
with operational information for ten actions generated with CMU action set.

5.4 Conclusions

We present methods to automate the creation of semantics for actions, specifically focusing on

R ∈ ACT and S ∈ ACT. One way to create R ∈ ACT is to use knowledge bases such as FrameNet as

an intermediary between OBJ and ACT. Using FrameNet does not determine S ∈ ACT and leaves

out several possibly important connection. Therefore, we developed ALET to connect intelligent

virtual human actions and objects and create an understanding of how the objects can participate in

actions. The system can also provide candidate description slots, providing a virtual human with

more information about the actions it can perform. ALET leverages text to find candidates for both

ontological connections as well as object and action descriptions. FrameNet is used to provide a

base and describe the roles objects play in a given action.

Our system of learning candidate descriptions of our virtual environment is based on the avail-

able objects, actions, and text. While the first two are obvious and should effect determining de-

scriptions (as virtual characters should not worry about actions they are never able to perform and

have no knowledge of), the choice of text is a bit more nuanced, and has an effect on the system,

as seen in Table 5.11 and Table 5.12. The difference between data-sets in Table 5.11 clearly shows

that the choice of knowledge base for ALET has an effect on the ability of the system. Figure 5.11

and Figure 5.14 strengthen that understanding, and show the dual effect that verb descriptors play

on the system as a whole. The combined efforts of the system are such that R ∈ ACT and S ∈ ACT

148

are disjointed even when, from a natural language perspective, they may not need to be.

AELT is also able to determine NIFI for actions. NIFI are used to control graphical aspects

of actions, such as the manner in which an action is performed. Currently, ALET only detects

when this data is available to actions, but does not classify how to fill in these fields and connect

them to the animations. Future work will also examine how to cluster action descriptors for NIFI

generalizations. This will expand ALET to assist in not only virtual human planning, but also in

motion planning, which is currently outside the scope of this work.

149

Chapter 6: Conclusions and Future Work

6.1 Summary and Conclusions

The overall research goal of this work was to advance the ability of simulation authors in creating

actions based on their animations. We did this by first defining actions, and then though the use

of automated semantic generation that encapsulates the animations along with important meta-data

that instruct both AI and graphical systems in the action’s use. We summarize the key contributions

of this work as follows:

6.1.1 Key Contributions

• In Chapter 2, we formalized and refined an action representation (PAR) to better exploit its

capabilities and enable automated generation methods.

• In Chapter 3, we demonstrated the utility of action taxonomies through an application based

measure of efficiency gain.

• In Chapter 4, we developed and evaluated novel methods to automate the population of action

taxonomies from base action names through use of existing lexical databases, published in

previous work [10].

• In Chapter 5, we developed and evaluated a transformative pipeline, ALET, to automate con-

nections between virtual agent actions and 3-D graphical models as well as the population of

action semantics, published in previous work [11].

To show the efficacy of our approach, we have provided a task based examination of action

hierarchies, as well as proven and dis-proven several hypotheses about our automated generation

150

approaches using more traditional measures when possible. We have shown that automated meth-

ods can be used to create generalizations if we understand some textual information about the action,

such as its name and some intelligently examined keywords. With known action parents, text cor-

pora and an object hierarchy, we have shown that connections between 3D graphical models and

animations can be made. Using large text corpora, it is also possible to add in non-interactional

meaning to actions, increasing the overall understanding of action sets.

6.2 Lessons Learned

Throughout this work, we were careful to use the term automated instead of automatic. This is

due to the fact that generalization methods are not perfect, but instead provide candidate solutions

to action parents, roles, and semantics. The experimentation that we performed in Chapter 4 and

Chapter 5 also supports this. In reality, action generation will never be 100% accurate. The work

presented in these chapters should be thought of as a tool to aid a simulation author instead of replace

a simulation author. In the field of information retrieval, there is the concept of precision-recall, a

metric that we have used for some of our experimentation as well. Ideally, a system should maximize

the true positives while minimizing the false positive results, and there is a trade-off between the

two. By providing the author with a lot of candidates (relying more on recall than precision), the

simulation author can remove connections that are unnecessary. One lesson learned is that our

generation methods will never be perfect, but that the focus should be more on maximizing recall

(finding action-object connections) than minimizing precision(pruning connections to only have

correct ones), with the best solution being a happy medium between the two.

Chapter 4 and Chapter 5 use action and object hierarchies, whose names come from motion data

and 3-D graphical models. The names of this data and models play an important role in the overall

ability of our system. If the name has no relation to the graphical component that it represents, then

our automated methods will not be able to represent that graphical component. Therefore, naming

conventions are important. We stated in Chapter 4 that each action name must have at least one verb

in order for WordNet to generate candidates. Similarly, a noun must appear for objects in Pelkey

and Allbeck [37]. One lesson learned is that naming conventions for graphical objects and motion

151

data does not always follow this convention. In reality, the names of graphical data vary widely

between authors, with different capitalization patterns and mis-spellings being abundant. Our rules

for naming actions in Chapter 4 are general, but understand that a simulation author may have to

rename downloaded data in order to meet these requirements.

Also in Chapter 4, we discussed a user defined α for our multi-sieve and confidence based

method. The choice of α has an effect on the system’s ability to disambiguate the actions. Recall

that the comparison method determines a percent, which means α can range from zero to one. When

α is low, the higher heuristics of the multi-sieve method dominate, such that the data-set appears

closer to only using the word heuristic. At higher α , the word and definition methods do not find

synsets, which means there is no set to seed the path heuristic. We found through this work and

previous work [10] that an α value of 0.2− 0.4 strikes a balance between too low and too high,

based on our test sets. In reality, multiple values for both the Multi-sieve and Confidence based

methods should be attempted by the simulation author in order to generate the taxonomy that is

desired.

Another important consideration we discovered while examining automated methods is the need

for a large amount of textual data in order to reduce the noise in our dataset. With a small amount of

textual data (on the order of a few million words), the ability of ALET and our word vector models

is greatly diminished While the deep learning literature describes the need for a large amount of

data, ALET requires a large amount of text in order to find patterns of descriptors. When there is

not much data, overall counts of descriptors are low, meaning ALET cannot prune what in reality

are strange connections. With a large amount of textual data, what are thought of as “normal”

connections appear more frequently. One of the important lessons learned is that the data chosen

is extremely important. Having the right kind and enough data is going to have an effect on the

system.

152

6.3 Future work

This work shows the possibility of populating actions from descriptive names of animations. From

this work, we are able to populate the action’s parents (P), the roles of the action (R) and seman-

tics types of actions (S from λ ∈ S). These are not the only components of actions, and future

work should focus on populating the other components of actions. Several planning methods exist

to create complex action chains that describe entire plans and phenomena [42, 45], which in PAR,

would be automating the generation of Θ. Recently, interactive action creation has examined task

creation from a human centered approach in which the human has complete control of the con-

nections [46, 57]. With these approaches, the actions that are being constructed are also domain

specific, and require an expert in action creation to build the semantic base (primitive set) of the

actions, which require the cause and effects of the primitive set of actions. Work in causal chains

of actions has also seen some progress towards constructing complex actions [128]. However, this

work has seen little progress because it attempts to build chains from overly-specified domains such

as a cooking domain (using only recipes) and construction domain (using instruction manuals). The

data that they are using for these domain already have the causal chains laid out in them, such that

the process is really just memorizing the instructions, usually under the assumption that any verb

is an action. Since we have also used the assumption that a verb can be matched to an action, we

believe that one promising future direction is to generate both task and condition-assertion genera-

tion. The action recognition domain is also starting to examine learning the prerequisites of actions

from a variety of sources [129, 128]. This is because if the cause of an action is known, the action

can be better predicted. Specifically, Yordanova et al. [128] examines causal steps for actions in a

cooking domain. However, the cooking domain is a step by step domain, in which the cause of one

action can be clearly inferred from the end of another action. This means that the examined action

generation techniques would not work on domains where the cause cannot be clearly inferred, such

as a scientific journal domain or human behavior domain. To examine these domains, the effects,

as well as the prerequisites, of the action must be able to be learned from a data-set. While it is

possible to learn primitive (base) actions from motion meta-data, generating the correct complex

actions is a more open-ended task, as shown with STRIPS actions in Branavan et al. [130].

153

(a) (b)

Figure 6.1: An example scene (a) without processing to move the objects and (b) with processing
to constrain the objects.

While action generation is an important goal to provide a larger, more nuanced repertoire, it does

not by itself increase the abilities of virtual agents. However, by increasing action understanding,

new abilities that require a more nuanced understanding can be developed. Two such applications

are text-to-scenario generation and agent inference methods. Text-to-scene generation has been ex-

plored over the past decade [54, 131, 55]. Similarly, work on automated scene generation [132, 133]

has been able to create virtual environments based on either learned or programmed rules. However,

this work mainly focuses on static scenes, with the exception being Ma’s work [55], which focused

on text to a single animation. Because of the cost associated with creating actions, it becomes pro-

hibitive to connect motion data to text, especially when the motion data is expected to change the

surrounding environment over time. While current text to scene systems can spatially place objects

based on the verbs in a given text, any temporal conflicts manifest themselves immediately, and

require an artist to simulate the system. Using actions can account for some temporal conflicts, and

can also be used to show where parts of the scene are under or over specified, shown in Figure 6.1.

Larger action sets would have more actions accounted for in the scene, allowing for greater fidelity

in a text-to-simulation system.

In a similar manner, having consistent and well defined actions would advance the ability of

machines to understand the world around them. Besides having high fidelity agents, generating

154

consistent action sets would allow domain expert agents to be created. These agents could assist

researchers in analyzing their simulations. This is the stance of the action recognition community,

who have started to identify actions by object roles from domain corpora such as amateur modern

fiction [116]. This work identifies objects in a video, and guesses the most likely action from that.

Having a machine understand more complex scientific visualizations is going to require a more

complete understanding of that domain. But with this understanding, the scientific community can

have machines start to mine visualizations and describe the patterns that it finds. This is known as

scene-to-text, and has seen some work on simplistic visualizations [134], using mainly object and

action connections. Being able to mine a visualization and describe what is occurring in the visu-

alization would allow for new analytics tools, assisting researchers in discovering the underlying

phenomenons. A possible example for wireless network sensor data can be seen in Figure 6.2. In

Figure 6.2, the action set is used by the observer agent to match and identify actions in the visual-

ization. The visualization is a 3-D environment simulating real data from a wireless sensor network.

The observations of the agent should be considered a data transformation, allowing the transforma-

tion to be analyzed in terms of the actions themselves. One application of this transformation is that

researchers would have a system to check their simulations, to determine if the simulation matches

the researcher’s expectation. If the analysis from the agent came back incorrect for one simulation

and not for others, then the researcher could check that one simulation and debug it.

In Chapter 4, we presented three methods to generate action parents and organize actions based

on their meta-data. However, we did not attempt to combine different creation and organization

methods. An interesting extension of Chapter 4 would be to use word-vectors to disambiguated the

actions into WordNet synsets, and then use create hypernym trees. Disambiguated synsets could

also be converted into a word-vector representation, and clustered based on their similarity. Simple

changes to our provided techniques could be used to combine the techniques, and future work will

examine these combinations.

155

Figure 6.2: A possible pipeline for using scene-to-text in analytic software. Shown here is a data-
set, action-set and visualization of a wireless sensor network that is currently being researched. We
have designed the visualization for their system already.

156

Appendix A: PARS used in Case Study

The case study from The Syntax of PAR was converted over from the work of Shoulson et al. ??.

Below is all the information used in that case study.

A.1 Object Designation

Each object obj ∈ OBJ has a designation of {λ , p,S}, which we display below.

1. λ = Entity p = None S =

2. λ = Physical Entity p = Entity S =

3. λ = CausalAgent p = Physical Entity S =

4. λ = Object p = Physical Entity S =

5. λ = Person p = CausalAgent S =

6. λ = Agent p = CausalAgent S =

7. λ = Whole p = Object S =

8. λ = Location p = Object S =

9. λ = Preserver p = Person S =

10. λ = Unfortunate p = Person S =

11. λ = Artifact p = Whole S =

12. λ = Point p = Location S =

13. λ = Defender p = Preserver S =

14. λ = Prisoner p = Unfortunate S = { status:[’Free’, ’Idle’, ’Active’, ’Trapped’]}

157

15. λ = Instrumentality p = Artifact S =

16. λ = Structure p = Artifact S =

17. λ = WayPoint p = Point S =

18. λ = Guard p = Defender S = { status:[’Free’, ’Dazed’, ’Idle’, ’Active’, ’Trapped’]}

19. λ = Device p = Instrumentality S =

20. λ = Obstruction p = Structure S =

21. λ = Key p = Device S =

22. λ = Mechanism p = Device S =

23. λ = Trap p = Device S = { status:[’Idle’, ’Active’]}

24. λ = Alarm p = Device S = { status:[’Idle’, ’Active’]}

25. λ = Barrier p = Obstruction S =

26. λ = Control p = Mechanism S =

27. λ = MovableBarrier p = Barrier S =

28. λ = Switch p = Control S =

29. λ = Door p = MovableBarrier S = { status:[’Guarded’,’Idle’] locked:[’Lock’, ’Unlock’]

open:[’open’, ’close’]}

30. λ = PushButton p = Switch S =

31. λ = Button p = PushButton S =

158

A.2 Designation of Actions

We include in this set of tables the actions that are defined in event-centric planning as well as

ones that are assumed to be part of the action set (i.e Guard and Open). We also provide a WordNet

hierarchy representation of the actions, generated through the hand-selection of a single synset, such

that each action can be generalized.

Table A.1: Action Number 1:Hide

λ Hide
P None
R WayPoint

Ψ(e = 1)(PAR) finishedAction(self.id)→SUCCESS
Θ Hide

Table A.2: Action Number 5:Lock

λ Lock
P Fasten
R Door

Ψ(e = 0)(PAR) canReach(agent,Door)→FAILURE
Ψ(e = 1)(PAR) finishedAction(self.id)→setProperty(Door,”lock”) = ”locked” AND

SUCCESS
Θ not getProperty(Door,”open”) = ”closed”→Close
Θ Lock

159

Table A.3: Action Number 10:EscapeCell

λ EscapeCell
P Escape
R Guard
R Door

Ψ(e = 0)(PAR) not contains(Guard,Key)→FAILURE
Ψ(e = 1)(PAR) finishedAction(self.id)→changeContents(agent,Key) AND

setProperty(Guard,”status”) = ”trapped” AND setProperty(Door,”look”)
= ”locked” AND setProperty(Door,”open”) = ”closed” AND SUCCESS

Θ not canReach(Guard,Door)→Approach
Θ not getProperty(Door,”open”) = ”closed”→Close
Θ not getProperty(Door,”lock”) = ”locked→Lock
Θ And(Call,Flee,Daze,And(Approach,Take) ,And(Lock,Lock))

Table A.4: Action Number 12:Press

λ Press
P Touch
R Button

Ψ(e = 1)(PAR) finishedAction(self.id)→SUCCESS
Θ Press

Table A.5: Action Number 16:Guard

λ Guard
P Watch
R Door

Ψ(e = 0)(PAR) getProperty(Door,”status”) = ”guarded”→SUCCESS
Ψ(e = 0)(PAR) getProperty(agent,”status”) = ”dazed”→FAILURE
Ψ(e = 1)(PAR) finishedAction(self.id)→setProperty(Door,”status”) = ”guarded” AND

SUCCESS
Θ not canReach(agent,Guard)→Approach
Θ Guard

Table A.6: Action Number 19:Trap

λ Trap
P Capture
R Trap

Ψ(e = 1)(PAR) finishedAction(self.id)→setProperty(Agent,”status”) = ”Trapped” AND
SUCCESS

Θ Trap

160

Table A.7: Action Number 20:TrapGuardsAlarm

λ TrapGuardsAlarm
P Trap
R Guard
R Guard
R Guard
R Guard
R Prisoner
R Button
R Trap
R Button

Ψ(e = 0)(PAR) hasProperty(alarm,”status”) = ”active”→FAILURE
Ψ(e = 0)(PAR) not controls(Button2,alarm)→FAILURE
Ψ(e = 0)(PAR) not hasPath(Guard3,waypoint) = trap→FAILURE
Ψ(e = 0)(PAR) not controls(Button1,trap)→FAILURE
Ψ(e = 0)(PAR) hasProperty(trap,”status”) = ”active”→FAILURE
Ψ(e = 0)(PAR) not hasPath(Guard1,waypoint) = trap→FAILURE
Ψ(e = 0)(PAR) not hasPath(Guard2,waypoint) = trap→FAILURE
Ψ(e = 0)(PAR) not hasPath(Guard4,waypoint) = trap→FAILURE
Ψ(e = 1)(PAR) finishedAction(self.id)→setProperty(Guard1,”status”) = ”trapped”

AND setProperty(Guard2,”status”) = ”trapped” AND
setProperty(Guard3,”status”) = ”trapped” AND
setProperty(Guard4,”status”) = ”trapped” AND

setProperty(trap,”status”) = ”active” AND setProperty(Button,”status”)
= ”active” AND SUCCESS

Θ not canReach(Prisoner,Button2)→Approach
Θ not canReach(Agent,Button1)→Approach
Θ And(And(Press,Join(Approach,Approach,Approach,Approach))

,And(Approach,Join(Call,Call,Call,Call)
,Join(Approach,Approach,Approach,Approach)

,Press,Join(Trap,Trap,Trap,Trap)))

161

Table A.8: Action Number 21:TrapGuards

λ TrapGuards
P Trap
R Guard
R Guard
R Guard
R Guard
R Prisoner
R Button
R Trap
R WayPoint

Ψ(e = 0)(PAR) not hasPath(Guard3,waypoint) = trap→FAILURE
Ψ(e = 0)(PAR) not controls(Button,trap)→FAILURE
Ψ(e = 0)(PAR) hasProperty(trap,”status”) = ”active”→FAILURE
Ψ(e = 0)(PAR) not hasPath(Guard1,waypoint) = trap→FAILURE
Ψ(e = 0)(PAR) not hasPath(Guard2,waypoint) = trap→FAILURE
Ψ(e = 0)(PAR) not hasPath(Guard4,waypoint) = trap→FAILURE
Ψ(e = 1)(PAR) finishedAction(self.id)→setProperty(Guard1,”status”) = ”trapped”

AND setProperty(Guard2,”status”) = ”trapped” AND
setProperty(Guard3,”status”) = ”trapped” AND
setProperty(Guard4,”status”) = ”trapped” AND

setProperty(trap,”status”) = ”active” AND SUCCESS
Θ not canReach(Agent,Waypoint)→Approach
Θ not canReach(Prisoner,Button)→Approach
Θ And(Approach,Join(Call,Call,Call,Call)

,Join(Approach,Approach,Approach,Approach)
,Press,Join(Trap,Trap,Trap,Trap))

Table A.9: Action Number 24:Draw

λ Draw
P Change
R Guard

Ψ(e = 1)(PAR) finishedAction(self.id)→SUCCESS
Θ Draw

Table A.10: Action Number 26:Daze

λ Daze
P Stun
R Guard

Ψ(e = 1)(PAR) finishedAction(self.id)→setProperty(Guard,status) = dazed AND
SUCCESS

Θ not canReach(Agent,Guard)→Approach
Θ Daze

162

Table A.11: Action Number 35:Call

λ Call
P Order
R Guard

Ψ(e = 1)(PAR) finishedAction(self.id)→SUCCESS
Θ Call

Table A.12: Action Number 38:Approach

λ Approach
P Come
R Entity

Ψ(e = 1)(PAR) finishedAction(self.id)→SUCCESS
Θ Approach

Table A.13: Action Number 40:Give

λ Give
P Transfer
R Prisoner
R Key

Ψ(e = 1)(PAR) finishedAction(self.id)→SUCCESS
Θ Give

Table A.14: Action Number 41:Exchange

λ Exchange
P Give
R Prisoner
R Key

Ψ(e = 0)(PAR) not contains(Agent,Key)→FAILURE
Ψ(e = 0)(PAR) contains(Prisoner,Key)→SUCCESS
Ψ(e = 1)(PAR) finishedAction(self.id)→SUCCESS

Θ not canReach(Agent,Prisoner)→Approach
Θ And(Approach,Give)

163

Table A.15: Action Number 43:Open

λ Open
P None
R Door

Ψ(e = 0)(PAR) not getProperty(Door,”open”) = ”closed”→SUCCESS
Ψ(e = 0)(PAR) getProperty(Door,”lock”) = ”locked”→FAILURE
Ψ(e = 1)(PAR) finishedAction(self.id)→setProperty(Door,”open”) = ”open” AND

SUCCESS
Θ not canReach(Agent,Door)→Approach
Θ Open

Table A.16: Action Number 44:Unlock

λ Unlock
P Open
R Door
R Key

Ψ(e = 0)(PAR) getProperty(Door,”open”) = ”closed”→FAILURE
Ψ(e = 0)(PAR) not getProperty(Door,”lock”) = ”locked”→SUCCESS
Ψ(e = 0)(PAR) not getProperty(Door,”status”) = ”guarded”→FAILURE
Ψ(e = 1)(PAR) finishedAction(self.id)→setProperty(Door,”lock”) = ”unlocked” AND

SUCCESS
Θ not canReach(Agent,Door)→Approach
Θ Unlock

Table A.17: Action Number 45:Take

λ Take
P None
R Guard
R Key

Ψ(e = 1)(PAR) finishedAction(self.id)→SUCCESS
Θ Take

Table A.18: Action Number 47:StealKey

λ StealKey
P Steal
R Guard
R Key

Ψ(e = 0)(PAR) not contains(Guard,Key)→FAILURE
Ψ(e = 0)(PAR) contains(Agent,Key)→SUCCESS
Ψ(e = 1)(PAR) finishedAction(self.id)→changeContents(Agent,Key) AND SUCCESS

Θ not canReach(Agent,Guard)→Approach
Θ not getProperty(Guard,”status”) = ”dazed”→Daze
Θ And(Approach,Take)

164

Table A.19: Action Number 54:SoundAlarm

λ SoundAlarm
P Alarm
R Guard
R Guard
R Guard
R Guard
R Alarm
R Button

Ψ(e = 0)(PAR) not control(Button,alarm)→FAILURE
Ψ(e = 0)(PAR) getProperty(alarm,”status”) = ”active”→SUCCESS
Ψ(e = 1)(PAR) finishedAction(self.id)→setProperty(alarm,”status”) = ”active” AND

SUCCESS
Θ not canReach(Agent,Button)→Approach
Θ And(Press,Join(Approach,Approach,Approach,Approach))

Table A.20: Action Number 55:Close

λ Close
P None
R Door

Ψ(e = 0)(PAR) finishedAction(self.id)→setProperty(Door,”open”) = ”closed” AND
SUCCESS

Ψ(e = 0)(PAR) not getProperty(Door,”open”) = ”open”→FAILURE
Θ not canReach(Agent,Door)→Approach
Θ Close

Table A.21: Action Number 62:DistractGuard

λ DistractGuard
p Distract
R Guard
R Door
R Prisoner
R Prisoner
R WayPoint
R WayPoint

Ψ(e = 0)(PAR) getProperty(door,”status”) != ”guarded← SUCCESS
Ψ(e = 1)(PAR) Finished→ setProperty(door,”status”,”Idle”) and SUCCESS

Θ not canReach(Agent,guard)→Approach(Agent,guard)
Θ not canReach(prisoner1,waypoint1)→Approach(prisoner1,waypoint1)
Θ not canReach(prisoner2,waypoint2)→Approach(prisoner2,waypoint2)

Θ(φ = /0) And(Hide,Hide,Draw)

165

Table A.22: The actions used to create a generalization set for the actions in the case study.

Action ID Action Name Parent Name
2 Connect None
3 Attach Connect
4 Fasten Attach
6 Leave None
7 Scat Leave
8 Flee Scat
9 Escape Flee
11 Touch None
13 Analyze None
14 Check Analyze
15 Watch Check
17 Get None
18 Capture Get
22 Change None
23 Desensitize Change
25 Stun Desensitize
27 Move None
28 Transfer Move
29 Convey Transfer
30 Communicate Convey
31 Request Communicate
32 Ask Request
33 Request Ask
34 Order Request
36 Travel None
37 Come Travel
39 Transfer None
46 Steal Take
48 Act None
49 Interact Act
50 Communicate Interact
51 Inform Communicate
52 Warn Inform
53 Alarm Warn
56 Make None
57 Arouse Make
58 Upset Arouse
59 Embarrass Upset
60 Confuse Embarrass
61 Distract Confuse

166

Appendix B: Keywords used in disambiguation test

B.1 Keyword List

Samples for our experimentation section were generated by sampling the list from either the defini-

tion or synonym section for each word in the list below.

B.1.1 Smartbody Definition Keywords

• SaccadeTalk : rapid,movement,eye,fixation

• SaccadeSpeak : rapid,movement,eye,fixation

• SaccadeListen : rapid,movement,eye,fixation

• Waggle : move,short,quick,side

• Speak : forming, nouns,manner,characteristic

• Shake : tremble,vibrate

• Nod : lower,raise,head,slightly,briefly

• PointAt : direct,attention,position,direction,finger

• Gaze : look,steadily,intently

• Step : lift,set,foot

• Walk : move,regular,slow,pace

• Jog : run,steady,gentle,pace

• PickUp : collect,something,left,elsewhere

• PutDown : move,place,particular,position

• Toss : throw,lightly,easily

167

• Touch : close,contact,come

• Jump : push,surface,air,muscles,legs,feet

• Run : move,speed,faster,walk,feet

• Wiggle : move,down,side,rapid,movements

B.1.2 Smartbody Synonym Keywords

• SaccadeTalk : jerk,jerking,jolt

• SaccadeSpeak : jerk,jerking,jolt

• Speak : address,communicate, converse, declaim, deliver

• Shake :agitate, appal, appall, brandish, churn

• Nod : agree, concur, dip

• PointAt : beckon, indicate

• Gaze : gix, google,peer,stare

• Waggle : faw, wobble,wag

• Step : march,pace,stride

• Walk : accompany,amble,hike

• Jog : canter, clip,trot

• PickUp : collect,fetch

• PutDown : lay,set

• Toss : chuck,fling,heave

• SaccadeListen : jerk,jerking,jolt

168

• Touch : meet,join,contact

• Jump : leap,spring,bound,hop

• Run : spring,race,dart,rush,dash,scurry

• Wiggle : jiggle,wriggle,twitch,shimmy

B.1.3 CMU Definition Keywords

• FowardJumps : move,body,upward,pushing

• Climb :move,up,feet,hands

• Hang:Attach place,held,support

• Swing:move,backward,side,hanging

• Sit:Position,bottom,resting,upright

• Lean:incline,bend,support

• Walk:move,legs,slower

• Jog :run,steady,gentle,pace

• Jump: move,body,upward,pushing

• Balance : weight,spread,equally,fall

• Punch : hit,hard,fist

• Fencing:activity,skill,fencing

• WashSelf:clean,water

• Dance:move,guide,music

• Pirouette:full turn,front

169

• ArabesqueDance: ballet,foot,arm

• FoldArms: lay,another

• CartWheel : athletic,movement,hand,ground

• JeteDance:springing,jump,ballet

• Dribble : fall,flow

• Shoot: eject,impel,release

• Run:move,legs,speed

• Kick:strike,foot,feet

• Screw:attach,fasten,twist

• UnScrew:loosen,remove

• Drink:take,liquid,mouth,swallow

• Laugh:show,happy,funny,smiling

• Box:hit,hand

• WashWindows:clean,water

• DirectTraffic :give,order,instruction

• Sweep:clean,brush,dirt,litter

• Wave:move,hand,greeting

• Point:direct,attention,position,direction

• JumpingJack : conditioning,exercise,legs,spread

• SideTwist:cause,rotate,turn

• flick:propel,sudden,movement,fingers

170

• BendOver:incline,body,downward

• Squat:crouch,sit,knees,thighs

• Stretch:straighten,extend,body

• Mop:clean,soak,wiping

• SwingLegs:move,backward,side,hanging

• LayUp:shot,near,basket,backboard

• Pass:move,direction

• Dive:plunge,head,water

• EgyptianWalk:dance

• Hobble:walk,awkward,pain

• Shake:move,up,side,rapid,forceful

• Pull:exert,force,

• Resist:withstand,action,effect

• Lead:cause,go,holding,moving,forward

• Catch:intercept,hold

• Wait: stay,delay,action,time

• SpinRope:turn,whirl

• GenieDance:move,guide,music

• Yawn:involuntarily,open,mouth,inhale,deeply

• Skip:move,lightly,stepping,hop,bounce

• Hammer:hit,beat

• Eat:Food,mouth,chew,swallow

171

B.1.4 CMU Synonym Keywords

• FowardJumps : bound, hop, leap, spring, vault

• Climb: clamber, scrabble, scramble, swarm

• Hang:clamber, scrabble, scramble, swarm

• Swing:sway, oscillate, vibrate

• Sit:set

• Lean:incline

• Walk:ambulate,step

• Jog:run,steady,gentle,pace

• Jump : bound, hop, leap, spring, vault

• Balance :counterpoise, equilibration, equilibrium, equipoise, poise

• Punch:bang,bash,clobber,whack

• SwordPlay:activity,skill,fencing

• WashSelf:bathe, lap, lave, lip, splash

• Dance:step,shake

• Pirouette:spin, reel, revolution, roll, rotation, twirl, wheel, whirl

• Arabesque: ballet,foot,arm

• FoldArms:crease,bend

• CartWheel: athletic,movement,hand,ground

• Jete:springing,jump,ballet

• Dribble:drip, drop, trickle

172

• Shoot:blast,loose

• Run:sprint, race, dart, rush, dash, hasten, hurry, scurry

• Kick:boot, punt, drop-kick

• Screw:fasten, secure, fix, attach

• UnScrew:loosen,remove

• Drink:swallow,gulp,quaff,guzzle

• Laugh:chuckle,chortle,guffaw,cackle

• Box:fight,spar

• WashWindows:bathe, lap, lave, lip, splash

• DirectTraffic:: instruct, tell, command, order

• Sweep:brush, clean, scrub, wipe, mop

• Wave:gesture, gesticulate, signal

• Point:direct,attention,poisition,direction

• JumpingJack:conditioning,exercise,legs,spread

• SideTwist:turn,twirl,spin,rotation

• flick:click, snap, flip, jerk

• BendOver:stoop, bow, crouch, hunch,

• Squat:crouch,hunker

• Stretch:extend

• Mop:wash, clean, wipe, swab

• SwingLegs:sway, oscillate, vibrate

173

• LayUp:shot,near,basket,backboard

• Pass:go, proceed, move, progress

• Dive:plunge, nosedive

• EgyptianWalk:dance

• Hobble:limp

• Shake:jiggle,joggle,agitate

• Pull:tug, haul, drag, draw, tow,

• Resist:withstand,combat,endure

• Lead:cause,go,holding,moving,foward

• Catch:seize, grab, snatch

• Wait:hold,stand,sit

• SpinRope:revolve, rotate, turn

• GenieDance:step,shake

• Yawn:involuntarily,open,mouth,inhale,deeply

• Skip:caper, prance, trip, dance, bound, bounce

• Hammer:beat, forge, shape, form, mold

• Eat:consume, devour, ingest

B.1.5 BLS Definition List

• Sleeping:rest,asleep

• Grooming:brushing,cleaning

174

• HealthRelatedSelfCare:provide,need

• PersonalActivities:do,thing

• Eating:chew,swallow

• Drinking:liquid,swallow

• HouseWork:cleaning,shopping,cooking

• FoodPreparation:food,selection,preparing

• FoodCleanUp:wiping,brushing,santizing

• LawnCare:provide,yard,look

• GardenCare:provide,plant,look

• HouseholdManagement:dealing,controlling,home

• InteriorMaintenance:preserving,caring,internal

• InteriorRepair:fix,mend,internal

• InteriorDecoration:adorning,internal

• ExteriorMaintenance:preserving,caring,external

• ExteriorRepair:fix,mend,external

• ExteriorDecoration:adorning,external

• Purchase:acquire,buy,pay

• GroceryShopping:purchasing,store,foodstuffs

• Banking:finance,services,business

• EducateChild:instruct,guide,youngster

• Work:activity,effort,achieve

175

• InterviewForJob:meet,consult,examine

• TravelToJob:journey,move,work

• AttendClass:present,lecture

• DoHomeWork:schoolwork,home

• DoResearch:investigation,study

• AttendMeeting:present,gathering

• AttendConference:present,lectures

• AttendTraining:present,trained

• Socialize:mix,others

• Relax:lessen,tense,loosen

• Communicate:share,information,exchange

• WatchTV:observe,television

• PlaySports:engage,activity,compete

• Exercise:activity,physical,effort,skill

• PaintArt:cover,decorate,depict,produce

• WatchSports:observe,exercise

• CallPhone:contact,telephone

• CallOut:yell,word

• WriteEmail:compose,document

• SendEmail:deliver,document

176

B.1.6 BLS Synonym List

• Sleeping:doze,nap,catnap

• Grooming:brush, comb,clean

• HealthRelatedSelfCare:tend,nurse,attend

• PersonalActivities:pursuit

• Eating:feed,snack,ingest,consume

• Drinking:guzzle,imbibe,sip,consume

• HouseWork:housecleaning,housekeeping,homemaking

• FoodPreparation:cleaning,cooking,sanitizing

• FoodCleanUp:wash,cleanse,wipe,sponge,scrub,mob

• LawnCare:tend,attend,minister

• GardenCare:tend,attend,minister

• HouseholdManagement:administration,managing,organization,running

• InteriorMaintenance:conserving,perpetuation,keeping

• InteriorRepair:restore,overhaul,service

• InteriorDecoration:ornament,bauble,trinket,spangle

• ExteriorMaintenance:conserving,perpetuation,keeping

• ExteriorRepair:restore,overhaul,service

• ExteriorDecoration:ornament,bauble,trinket,spangle

• Purchase:obtain,take,procure

• GroceryShopping:get,obtain,purchase

177

• Banking:investing

• EducateChild:tutor,coach,drill,train

• Work:labor,toil,slog,exertion

• InterviewForJob:meeting,discussion,conference,examine

• TravelToJob:voyage,explore,wander

• AttendClass:participate

• DoHomeWork:work

• DoResearch:analysis,fact-finding,fieldwork

• AttendMeeting:participate

• AttendConference:participate

• AttendTraining:participate

• Socialize:converse,interact,mingle

• Relax:slacken,ease

• Communicate:commune,interface,interact

• WatchTV:view,eye,gaze

• PlaySports:amuse,entertain,enjoy,leisure

• Exercise:workout,task

• PaintArt:coloring,portray,picture

• WatchSports:view,eye,gaze

• CallPhone:ring,buzz

• CallOut:cry,shout,hail

178

• WriteEmail:note,register

• SendEmail:dispatch,mail,consign,forward

B.2 Object Leafs for Experimentation Section

This is a list of items that we used to create the object hierarchy. The names provided below are the

names of the graphical models that could be used in our environments.

• Human : person actor human virtual

• Lectern : desk

• StudentDesk : desk furniture

• Sofa : furniture sit

• Printer : machine paper ink

• Light : source heat

• ComputerServer : computer machine

• Microwave : machine food heat

• Sink : kitchen wash water

• EyeWash : wash water

• Toilet : water bathroom

• Pen : handheld ink write

• Mirror : reflect

• WhiteBoard : write erase notes

• Storage : store hold

179

• GarbageCan : trash

• WaterJug : water jug

• Locker : storage

• Plant : plant living organism leaves

• OfficeChair : chair furniture

• OfficeDesk : furniture

• TrashCan : garbage

• LabDesk : furniture

• RoundTable : table furniture surface

• Bookshelf : furniture

• CopyMachine : copy

• LectureDesk : furniture

• Server : person

• LoungeChair : furniture relax

• Laboratory : room place

• Office : room place

• LoungeArea : room place

• Restroom : room place

• Hallway : place

• ClassRoom : room place learn

• Weapon : fight attack

180

• Sawhorse : horse toy

• Shovel : equipment work dig tool

• BoltCutter : equiment work tool

• Hammer : tool equipment hand

• NeedlenosePliers: tool pliers

• Wrench : tool

• Syringe : medical

• Drum : instrument music

• Key : door lock

• Coffee : drink bean

• WaterFountain : drinking

• Bookcase : books furniture

• Fork : silverware food

• Spoon : silverware dinner food serve

• Knife : silverware dinner food serve

• Plate : dinnerware dinner food serve

• Sponge : cleaning device

• ClothNapkin : cleaning wipe

• PaperNapkin : cleaning wipe

• Mop : cleaning tool

• Broom : cleaning tool

181

• Register : machine electronic money

• Receipt : paper

• Bill : money currency

• Coin : money currency

• CreditCard : money bank

• Rag : cleaning device cloth

• Bowl : food server container

• Pot : food cook prepare

• Pan : cook food

• BarSegment : table furniture

• BarCorner : table furniture

• BoothTable : table seat furniture diner

• Booth : table seat furniture diner

• MidTable : table furniture

• Shelf : hold furniture

• CoffeeMug : cup mug drink

• Counter : table surface

• Grill : food cook heat

• BarStool : stool seat chair

• NapkinHolder : napkin container holding device

• KetchupBottle : condiment

182

• Clock : time

• CoffeeToGo : coffee drink

• DessertPlate : food

• DipBowl : food chips

• ExitSign : sign exit

• FireExtinguisher : fire

• Flute : instrument music

• FullPlate : food

• MeatTray : food

• OliveBowl : food

• Phone : talk machine device

• Pilsner : beer alcohol

• ShrimpPlatter : seafood food tray

• SnackTower : food

• SoupBowl : food

• SweetsTower : food

• KitchenSink : sink kitchen dishes water wash

• Cup : cup drink abstraction object

• FilingCabinet : file paper furniture

• Chair : furniture sit seat

• Fridge : furniture machine food cold

183

• CorkBoard : cork board notes

• Axe : tool

• Room : location general abstraction

• TurkeyLeg :

• Soup : liquid,food,meat

184

Appendix C: The data and Associated Synsets used for Automated

Population

C.1 Objects used in our Analysis and their Associated Synsets

We describe the object data-sets that we used for each analysis, as well as their associated synsets.

This does not include the generalizations, but only the graphical models and their synsets. We also

only show unique objects, so that if there is a object1 and object2, it will be displayed here as object.

C.1.1 ModelNet

• wine glass:Synset(’glass.n.02’)

• windsheild:No Synset

• skeleton:Synset(’skeletal system.n.01’)

• hooks:Synset(’hook.n.05’)

• ice:Synset(’ice.n.01’)

• railing:Synset(’railing.n.01’)

• chair:Synset(’chair.n.01’)

• track light:Synset(’light.n.02’)

• trolley:Synset(’streetcar.n.01’)

• desk drawer:Synset(’drawer.n.01’)

• photo album:Synset(’album.n.02’)

• bicyclee:No Synset

• trousers:Synset(’trouser.n.01’)

185

• cable box:Synset(’cable television.n.01’)

• chess set:No Synset

• wall divider:Synset(’wall.n.01’)

• display case:Synset(’case.n.20’)

• blanket:Synset(’blanket.n.01’)

• screwdriver:Synset(’screwdriver.n.01’)

• vase:Synset(’vase.n.01’)

• spoon:Synset(’spoon.n.01’)

• fan:Synset(’fan.n.01’)

• person walking:Synset(’person.n.01’)

• fireplace:Synset(’fireplace.n.01’)

• coffee table:Synset(’table.n.02’)

• tricycle:Synset(’tricycle.n.01’)

• button:Synset(’button.n.01’)

• metal shutter:Synset(’shutter.n.02’)

• magnet:Synset(’magnet.n.01’)

• air conditioner:No Synset

• candelabra:Synset(’candelabrum.n.01’)

• rack:Synset(’rack.n.01’)

• bulletin board:Synset(’display panel.n.01’)

• clothes:Synset(’apparel.n.01’)

186

• toy car:Synset(’toy.n.02’)

• fence:Synset(’fence.n.01’)

• wine rack:Synset(’rack.n.01’)

• sign:Synset(’signboard.n.01’)

• dirt track:Synset(’racetrack.n.01’)

• clock:Synset(’clock.n.01’)

• sun:Synset(’sun.n.01’)

• stool:Synset(’stool.n.01’)

• suv:Synset(’sport utility.n.01’)

• net:Synset(’net.n.06’)

• microchip:Synset(’chip.n.07’)

• gazebo:Synset(’gazebo.n.01’)

• bird:Synset(’bird.n.01’)

• tie fighter:Synset(’fighter.n.02’)

• commercial:No Synset

• paper roll:Synset(’paper.n.01’)

• bookcase:Synset(’bookcase.n.01’)

• baseball:Synset(’baseball.n.02’)

• sink:Synset(’sink.n.01’)

• box:Synset(’box.n.01’)

• luggage:Synset(’baggage.n.01’)

187

• leaves:Synset(’leaf.n.01’)

• soap bottle:Synset(’bottle.n.01’)

• bunk bed:Synset(’bunk bed.n.01’)

• pillow:Synset(’pillow.n.01’)

• shovel:Synset(’shovel.n.01’)

• handrail:Synset(’bannister.n.02’)

• apple:Synset(’apple.n.01’)

• scales:Synset(’scale.n.10’)

• lumberr:No Synset

• cane:Synset(’cane.n.01’)

• lamppost:Synset(’lamppost.n.01’)

• duck:Synset(’duck.n.01’)

• faucet:Synset(’faucet.n.01’)

• glass box:Synset(’box.n.01’)

• cloud:Synset(’cloud.n.02’)

• cd disk:Synset(’compact disk.n.01’)

• projector:Synset(’projector.n.02’)

• model boat:Synset(’model.n.04’)

• game table:Synset(’table.n.02’)

• coins:No Synset

• bush:Synset(’shrub.n.01’)

188

• camera:Synset(’camera.n.01’)

• iphone:No Synset

• balustrade:Synset(’bannister.n.02’)

• calculator:Synset(’calculator.n.02’)

• pencil:Synset(’pencil.n.01’)

• entrance:Synset(’entrance.n.01’)

• bidet:Synset(’bidet.n.01’)

• door:Synset(’doorway.n.01’)

• bottle:Synset(’bottle.n.01’)

• grand piano:Synset(’grand piano.n.01’)

• person sitting:Synset(’person.n.01’)

• dishwasher:Synset(’dishwasher.n.01’)

• chocolate:Synset(’chocolate.n.02’)

• glass:Synset(’glass.n.02’)

• flag:Synset(’flag.n.01’)

• train:Synset(’train.n.01’)

• chess piece:No Synset

• stick:Synset(’stick.n.02’)

• rabbit:Synset(’rabbit.n.01’)

• blinds:Synset(’blind.n.03’)

• grill:No Synset

189

• berth:Synset(’berth.n.03’)

• plastic chair:Synset(’chair.n.01’)

• scaffolding:Synset(’scaffolding.n.01’)

• palm tree:Synset(’palm.n.03’)

• tea pot:Synset(’teapot.n.01’)

• tunnel:Synset(’tunnel.n.01’)

• car:Synset(’car.n.01’)

• cap:Synset(’cap.n.04’)

• roof:Synset(’roof.n.01’)

• cat:Synset(’cat.n.01’)

• soap dish:Synset(’dish.n.01’)

• hot air balloon:Synset(’balloon.n.01’)

• can:Synset(’can.n.01’)

• glass set:Synset(’glass.n.07’)

• shark:Synset(’shark.n.01’)

• fish tank:Synset(’tank.n.02’)

• lock:Synset(’lock.n.01’)

• dolphin:Synset(’dolphin.n.02’)

• light bulb:Synset(’light bulb.n.01’)

• drawer:Synset(’drawer.n.01’)

• single leg:Synset(’peg.n.04’)

190

• airplane:Synset(’airplane.n.01’)

• dress:Synset(’dress.n.01’)

• extractor hood:Synset(’hood.n.09’)

• court:Synset(’court.n.04’)

• sailboat:Synset(’sailboat.n.01’)

• door way:Synset(’doorway.n.01’)

• newtonian toy:Synset(’toy.n.02’)

• machine:Synset(’machine.n.01’)

• lamp:Synset(’lamp.n.02’)

• refridgerator:No Synset

• sword:Synset(’sword.n.01’)

• coffee machine:Synset(’machine.n.01’)

• gate:Synset(’gate.n.01’)

• furnace:Synset(’furnace.n.01’)

• flying bird:Synset(’bird.n.01’)

• pencil holder:Synset(’holder.n.01’)

• plant:Synset(’plant.n.02’)

• cupboard:Synset(’cupboard.n.01’)

• briefcase:Synset(’briefcase.n.01’)

• staircase:Synset(’stairway.n.01’)

• ladder:Synset(’ladder.n.01’)

191

• train car:Synset(’car.n.02’)

• towel rack:Synset(’rack.n.01’)

• notebook:Synset(’notebook.n.01’)

• arch:Synset(’arch.n.04’)

• plank:Synset(’board.n.02’)

• coat:Synset(’coat.n.01’)

• mezzanine:Synset(’mezzanine.n.01’)

• counter:Synset(’counter.n.01’)

• swimming pool:Synset(’pool.n.01’)

• switch:Synset(’switch.n.01’)

• truck:Synset(’truck.n.01’)

• wrench:Synset(’wrench.n.03’)

• biplane:Synset(’biplane.n.01’)

• sprinker:No Synset

• wine:Synset(’wine.n.01’)

• eye glasses:Synset(’spectacles.n.01’)

• deck:Synset(’deck.n.04’)

• conveyor belt:No Synset

• plant pot:Synset(’pot.n.04’)

• jacuzzi:No Synset

• motorcycle:Synset(’motorcycle.n.01’)

192

• oven:Synset(’oven.n.01’)

• keyboard:Synset(’keyboard.n.01’)

• butcher knife:Synset(’knife.n.01’)

• monitor:Synset(’monitor.n.04’)

• conference table:Synset(’table.n.02’)

• chips:Synset(’chip.n.04’)

• backpack:Synset(’backpack.n.01’)

• frying pan:Synset(’pan.n.01’)

• mattress:Synset(’mattress.n.01’)

• forecourt:Synset(’forecourt.n.01’)

• dolly:Synset(’dolly.n.02’)

• orange:Synset(’orange.n.01’)

• conical:No Synset

• carton:Synset(’carton.n.02’)

• grille door:Synset(’grille.n.02’)

• dam:Synset(’dam.n.01’)

• dock:Synset(’pier.n.01’)

• snake:Synset(’snake.n.01’)

• hairdryer:No Synset

• decorative platter:Synset(’platter.n.01’)

• headboard:Synset(’headboard.n.01’)

193

• easel:Synset(’easel.n.01’)

• door knob:Synset(’doorknob.n.01’)

• side table:Synset(’table.n.02’)

• ray roll:No Synset

• slide:Synset(’slide.n.04’)

• insrument panel:Synset(’control panel.n.01’)

• embankment:Synset(’embankment.n.01’)

• rock:Synset(’rock.n.02’)

• tray:Synset(’tray.n.01’)

• trailer:Synset(’trailer.n.04’)

• field grass:Synset(’grass.n.01’)

• hanger:Synset(’hanger.n.02’)

• map:Synset(’map.n.01’)

• fish:Synset(’fish.n.01’)

• torch:Synset(’torch.n.01’)

• spider:Synset(’spider.n.01’)

• water fountain:Synset(’fountain.n.01’)

• fruit bowl:Synset(’bowl.n.01’)

• hay roll:Synset(’hay.n.01’)

• satellite dish:Synset(’dish.n.05’)

• harp:Synset(’harp.n.01’)

194

• album:Synset(’album.n.01’)

• swingset:No Synset

• flower:Synset(’flower.n.01’)

• jeep:Synset(’jeep.n.01’)

• school desk:Synset(’desk.n.01’)

• military tank:Synset(’tank.n.01’)

• hangers:Synset(’hanger.n.02’)

• umbrella:Synset(’umbrella.n.01’)

• cables:Synset(’cable.n.02’)

• cart:Synset(’handcart.n.01’)

• traffic light:Synset(’light.n.02’)

• geographic map:Synset(’map.n.01’)

• toy:Synset(’plaything.n.01’)

• flower box:Synset(’box.n.01’)

• one peak tent:Synset(’tent.n.01’)

• filing cabinet:Synset(’cabinet.n.01’)

• coffee pot:Synset(’coffeepot.n.01’)

• shelves:Synset(’shelf.n.01’)

• headphones:Synset(’earphone.n.01’)

• safety belt:Synset(’belt.n.02’)

• mailbox:Synset(’mailbox.n.01’)

195

• round:Synset(’round.n.01’)

• router:Synset(’router.n.02’)

• castle:Synset(’palace.n.01’)

• wooden plank:Synset(’board.n.02’)

• blind:Synset(’blind.n.03’)

• cheese:Synset(’cheese.n.01’)

• bouquet:Synset(’bouquet.n.01’)

• crib:Synset(’crib.n.01’)

• ring:Synset(’ring.n.08’)

• razor:Synset(’razor.n.01’)

• horse:Synset(’horse.n.01’)

• basketball:Synset(’basketball.n.02’)

• lego:Synset(’lego.n.01’)

• elevator:Synset(’elevator.n.01’)

• shower head:Synset(’showerhead.n.01’)

• potted plant:Synset(’plant.n.02’)

• streetlight:Synset(’streetlight.n.01’)

• banana:Synset(’banana.n.01’)

• cabin:Synset(’cabin.n.02’)

• gear:Synset(’gear.n.01’)

• cuddly toy:Synset(’plaything.n.01’)

196

• shorts:Synset(’short pants.n.01’)

• shelf:Synset(’shelf.n.01’)

• ceiling fan:Synset(’fan.n.01’)

• green screen:Synset(’screen.n.01’)

• hut:Synset(’hovel.n.01’)

• rifle:Synset(’rifle.n.01’)

• wardrobe:Synset(’wardrobe.n.01’)

• flowers:Synset(’flower.n.01’)

• stairs:Synset(’stairs.n.01’)

• ipad:No Synset

• television:Synset(’television receiver.n.01’)

• room divider:Synset(’partition.n.01’)

• iceberg:Synset(’iceberg.n.01’)

• race car:Synset(’car.n.01’)

• tree:Synset(’tree.n.01’)

• bed:Synset(’bed.n.01’)

• bee:Synset(’bee.n.01’)

• shower:Synset(’shower.n.01’)

• trex:No Synset

• large sail boat:Synset(’boat.n.01’)

• light:Synset(’light.n.02’)

197

• sculpture:Synset(’sculpture.n.01’)

• bridge:Synset(’bridge.n.01’)

• display stand:Synset(’rack.n.05’)

• french bread:Synset(’bread.n.01’)

• multiple peak tent:Synset(’tent.n.01’)

• one story home:Synset(’dwelling.n.01’)

• sconce:Synset(’sconce.n.04’)

• space shuttle:No Synset

• soap dispenser:Synset(’dispenser.n.01’)

• cistern:Synset(’cistern.n.03’)

• lid:Synset(’lid.n.02’)

• mountain:Synset(’mountain.n.01’)

• microphone:Synset(’microphone.n.01’)

• escalator:Synset(’escalator.n.02’)

• dishes:Synset(’dish.n.01’)

• washbasin:Synset(’washbasin.n.01’)

• chessboard:Synset(’chessboard.n.01’)

• projector screen:Synset(’screen.n.01’)

• couch:Synset(’sofa.n.01’)

• bagel:Synset(’bagel.n.01’)

• equipment:Synset(’equipment.n.01’)

198

• chest:Synset(’chest.n.02’)

• folding door:Synset(’doorway.n.01’)

• exercise machine:No Synset

• soap:Synset(’soap.n.01’)

• paintbrush:Synset(’paintbrush.n.01’)

• butterfly:Synset(’butterfly.n.01’)

• window frame:Synset(’window.n.01’)

• printer:Synset(’printer.n.03’)

• vending machine:Synset(’machine.n.01’)

• pail:Synset(’bucket.n.01’)

• track:Synset(’path.n.04’)

• blackboard:Synset(’blackboard.n.01’)

• eggs:Synset(’egg.n.02’)

• basket:Synset(’basket.n.01’)

• place mat:Synset(’mat.n.01’)

• sheets:Synset(’sheet.n.03’)

• sedan:Synset(’sedan.n.01’)

• medal:No Synset

• webcam:Synset(’webcam.n.01’)

• stereo:Synset(’stereo.n.01’)

• mineral:Synset(’mineral.n.01’)

199

• wooden planks:Synset(’board.n.02’)

• urn:Synset(’urn.n.01’)

• napkin:Synset(’napkin.n.01’)

• dog:Synset(’dog.n.01’)

• face:Synset(’face.n.01’)

• pipe:Synset(’pipe.n.01’)

• ingots:Synset(’ingot.n.01’)

• barren:Synset(’barren.n.01’)

• barrel:Synset(’barrel.n.02’)

• stones:Synset(’rock.n.02’)

• candleholder:No Synset

• walking:No Synset

• stove:Synset(’stove.n.01’)

• crate:Synset(’crate.n.01’)

• chandelier:Synset(’chandelier.n.01’)

• radio:Synset(’radio receiver.n.01’)

• shoe:Synset(’shoe.n.01’)

• ottoman:Synset(’ottoman.n.03’)

• blender:Synset(’blender.n.01’)

• tire:Synset(’tire.n.01’)

• jar:Synset(’jar.n.01’)

200

• basketball hoop:Synset(’hoop.n.02’)

• tree sculpture:Synset(’sculpture.n.01’)

• tape:Synset(’tape.n.01’)

• piano:Synset(’piano.n.01’)

• finger:Synset(’finger.n.01’)

• plate:Synset(’plate.n.04’)

• handle:Synset(’handle.n.01’)

• watch:Synset(’watch.n.01’)

• billiard table:Synset(’table.n.02’)

• cushion:Synset(’cushion.n.03’)

• hedge:Synset(’hedge.n.01’)

• handgun:Synset(’pistol.n.01’)

• chimney:Synset(’chimney.n.01’)

• ping pong table:Synset(’table.n.02’)

• skull:Synset(’skull.n.01’)

• ashtray:Synset(’ashtray.n.01’)

• floor lamp:Synset(’lamp.n.01’)

• two story home:Synset(’dwelling.n.01’)

• bag:Synset(’bag.n.01’)

• microscope:Synset(’microscope.n.01’)

• paper:Synset(’paper.n.01’)

201

• cell phone:Synset(’cellular telephone.n.01’)

• workbench:Synset(’workbench.n.01’)

• pizza box:Synset(’box.n.01’)

• frame:No Synset

• pedestal:Synset(’pedestal.n.03’)

• cologne:Synset(’cologne.n.02’)

• computer:Synset(’computer.n.01’)

• hammer:Synset(’hammer.n.02’)

• exit sign:Synset(’signboard.n.01’)

• hourglass:Synset(’hourglass.n.01’)

• loudspeaker:Synset(’loudspeaker.n.01’)

• wire:Synset(’wire.n.02’)

• closet:Synset(’wardrobe.n.01’)

• aqueduct:Synset(’aqueduct.n.01’)

• feline:Synset(’feline.n.01’)

• wooden pillar:Synset(’pillar.n.03’)

• mug:Synset(’mug.n.04’)

• skyscraper:Synset(’skyscraper.n.01’)

• music keyboard:Synset(’keyboard.n.01’)

• tent:Synset(’tent.n.01’)

• soccer ball:Synset(’ball.n.01’)

202

• dome:Synset(’dome.n.04’)

• projection screen:Synset(’screen.n.01’)

• guitar:Synset(’guitar.n.01’)

• aircraft:Synset(’aircraft.n.01’)

• wall stand:Synset(’stand.n.04’)

• storage rack:Synset(’rack.n.01’)

• drum:Synset(’drum.n.04’)

• cow:Synset(’cow.n.01’)

• trash can:Synset(’rubbish.n.01’)

• drawer knob:Synset(’knob.n.02’)

• vault:Synset(’vault.n.01’)

• canopy:Synset(’canopy.n.03’)

• lemon:Synset(’lemon.n.01’)

• litter bin:Synset(’litterbin.n.01’)

• jersey:Synset(’jersey.n.03’)

• vent:Synset(’vent.n.01’)

• loaf:Synset(’loaf of bread.n.01’)

• light switch:Synset(’switch.n.01’)

• hot dogs:Synset(’hotdog.n.02’)

• cleaner:Synset(’cleansing agent.n.01’)

• fighter jet:Synset(’jet.n.01’)

203

• armchair:Synset(’armchair.n.01’)

• pot:Synset(’pot.n.01’)

• jeans:Synset(’jean.n.01’)

• plastic box:Synset(’box.n.01’)

• cd:Synset(’compact disk.n.01’)

• filing shelves:Synset(’shelf.n.01’)

• pole:Synset(’pole.n.01’)

• stalacite:No Synset

• table:Synset(’table.n.02’)

• bench:Synset(’bench.n.01’)

• boat:Synset(’boat.n.01’)

• belt:Synset(’belt.n.02’)

• lighthouse:Synset(’beacon.n.03’)

• comb:Synset(’comb.n.01’)

• motorbike:Synset(’minibike.n.01’)

• lamp shade:Synset(’lampshade.n.01’)

• stamp:Synset(’revenue stamp.n.01’)

• window:Synset(’window.n.01’)

• american flag:Synset(’flag.n.01’)

• submarine:Synset(’submarine.n.01’)

• eraser:Synset(’eraser.n.01’)

204

• curtain:Synset(’curtain.n.01’)

• brick:Synset(’brick.n.01’)

• fire alarm:Synset(’alarm.n.02’)

• flashligh:No Synset

• control tower:Synset(’tower.n.01’)

• air vent:Synset(’vent.n.01’)

• multi fuselage:Synset(’fuselage.n.01’)

• arcade machine:Synset(’machine.n.01’)

• x wing:No Synset

• flower with stem:Synset(’flower.n.01’)

• bulb:Synset(’light bulb.n.01’)

• glider:Synset(’glider.n.01’)

• case:Synset(’case.n.05’)

• phone handle:Synset(’telephone.n.01’)

• tank:Synset(’tank.n.01’)

• door lock:Synset(’lock.n.01’)

• kitchen items:Synset(’item.n.03’)

• ceiling lamp:Synset(’lamp.n.01’)

• monster truck:Synset(’truck.n.01’)

• rope:Synset(’rope.n.01’)

• flower pot:Synset(’pot.n.01’)

205

• bathtub:Synset(’bathtub.n.01’)

• spotlight:Synset(’spotlight.n.02’)

• bin:Synset(’bin.n.01’)

• pyramid:Synset(’pyramid.n.03’)

• pickup:Synset(’pickup.n.01’)

• sticker:No Synset

• coffee cup:Synset(’cup.n.01’)

• purse:Synset(’bag.n.04’)

• telephone:Synset(’telephone.n.01’)

• cone:No Synset

• violin:Synset(’violin.n.01’)

• mouse:Synset(’mouse.n.04’)

• fire escape:No Synset

• rectangular table:Synset(’table.n.02’)

• helmet:Synset(’helmet.n.02’)

• shopping cart:Synset(’handcart.n.01’)

• balloon:Synset(’balloon.n.01’)

• toaster:Synset(’toaster.n.02’)

• bowl:Synset(’bowl.n.03’)

• lava:Synset(’lava.n.01’)

• flying saucer:No Synset

206

• speaker:Synset(’loudspeaker.n.01’)

• dome church:Synset(’church.n.02’)

• balcony:Synset(’balcony.n.01’)

• pan:Synset(’pan.n.01’)

• wheel:Synset(’wheel.n.01’)

• satellite:Synset(’satellite.n.01’)

• ball:Synset(’ball.n.01’)

• rail:Synset(’rail.n.04’)

• ice rink:Synset(’ice rink.n.01’)

• fruit:Synset(’fruit.n.01’)

• grandstand:No Synset

• person skiing:Synset(’person.n.01’)

• wooden toy:Synset(’plaything.n.01’)

• slot machine:Synset(’slot.n.07’)

• ice cream:Synset(’ice cream.n.01’)

• file box:Synset(’box.n.01’)

• catus:No Synset

• river water:Synset(’river.n.01’)

• drain:Synset(’drain.n.03’)

• charger:Synset(’charger.n.02’)

• hatchery:Synset(’hatchery.n.01’)

207

• person:Synset(’person.n.02’)

• tombstone:Synset(’gravestone.n.01’)

• usb drive:Synset(’drive.n.10’)

• awning:Synset(’awning.n.01’)

• cash register:Synset(’cash register.n.01’)

• antique car:Synset(’car.n.01’)

• snowman:Synset(’snowman.n.01’)

• pool ball:Synset(’ball.n.01’)

• coaster:Synset(’coaster.n.03’)

• kettle:Synset(’kettle.n.01’)

• money:No Synset

• laptop:Synset(’laptop.n.01’)

• desk:Synset(’desk.n.01’)

• cutting board:Synset(’board.n.03’)

• footbridge:Synset(’footbridge.n.01’)

• stretcher:Synset(’stretcher.n.03’)

• human:Synset(’homo.n.02’)

• sailboat with oars:Synset(’sailboat.n.01’)

• dish rack:Synset(’rack.n.01’)

• ham:Synset(’ham.n.01’)

• cup:Synset(’cup.n.01’)

208

• remote control:Synset(’remote control.n.01’)

• bell:Synset(’bell.n.01’)

• desktop:No Synset

• pallet:Synset(’pallet.n.02’)

• board:Synset(’board.n.02’)

• tissue box:Synset(’box.n.01’)

• bread:Synset(’bread.n.01’)

• hat:Synset(’hat.n.01’)

• knob:Synset(’knob.n.02’)

• deck chair:Synset(’chair.n.01’)

• radiator:Synset(’radiator.n.02’)

• ruler:Synset(’rule.n.12’)

• stall shower:Synset(’shower.n.01’)

• baggage cart:Synset(’handcart.n.01’)

• lockheed airplane:Synset(’airplane.n.01’)

• security camera:Synset(’camera.n.01’)

• furniture:Synset(’furniture.n.01’)

• dirigible:Synset(’airship.n.01’)

• tree trunk:Synset(’trunk.n.01’)

• desk chiar:Synset(’desk.n.01’)

• towel:Synset(’towel.n.01’)

209

• onion:Synset(’onion.n.02’)

• semi:Synset(’trailer truck.n.01’)

• sofa:Synset(’sofa.n.01’)

• pillar:Synset(’column.n.06’)

• xbox:No Synset

• window shelf:Synset(’shelf.n.01’)

• voting booth:Synset(’booth.n.02’)

• tower:Synset(’tower.n.01’)

• eletric box:Synset(’box.n.01’)

• sneaker:No Synset

• stacked chairs:Synset(’chair.n.01’)

• doll:Synset(’doll.n.01’)

• foot rest:Synset(’footstool.n.01’)

• church:Synset(’church.n.02’)

• night stand:Synset(’stand.n.04’)

• garage door:Synset(’doorway.n.01’)

• sponge:Synset(’sponge.n.04’)

• palm:Synset(’palm.n.03’)

• mirror:Synset(’mirror.n.01’)

• billboard:Synset(’billboard.n.01’)

• dining chair:Synset(’chair.n.01’)

210

• dvd player:No Synset

• fire extinguisher:Synset(’fire extinguisher.n.01’)

• scale:Synset(’scale.n.07’)

• shrub:Synset(’shrub.n.01’)

• teddy bear:Synset(’teddy.n.01’)

• tube:Synset(’tube.n.01’)

• steering wheel:Synset(’steering wheel.n.01’)

• microwave:Synset(’microwave.n.02’)

• pen:Synset(’pen.n.01’)

• cradle:Synset(’cradle.n.01’)

• saucepan:Synset(’saucepan.n.01’)

• knife:Synset(’knife.n.01’)

• paper cup:Synset(’cup.n.01’)

• drawer handle:Synset(’handle.n.01’)

• corn:Synset(’corn.n.03’)

• trampoline:Synset(’trampoline.n.01’)

• skate board:Synset(’skateboard.n.01’)

• rug:Synset(’rug.n.01’)

• topiary:Synset(’topiary.n.01’)

• headstone:Synset(’gravestone.n.01’)

• stage:Synset(’stage.n.03’)

211

• trophy:No Synset

• stone:Synset(’stone.n.02’)

• placard:No Synset

• necklace:Synset(’necklace.n.01’)

• altarpiece:Synset(’altarpiece.n.01’)

• newspapers:No Synset

• whiteboard:No Synset

• magazine:Synset(’magazine.n.02’)

• road:Synset(’road.n.01’)

• rocky mountain:Synset(’mountain.n.01’)

• heater:Synset(’heater.n.01’)

• dishcloth:Synset(’dishrag.n.01’)

• brush:Synset(’brush.n.02’)

• cubicle:Synset(’booth.n.02’)

• van:Synset(’van.n.05’)

• vegetables:Synset(’vegetable.n.01’)

• column:Synset(’column.n.06’)

• synthesizer:Synset(’synthesizer.n.02’)

• windmill:Synset(’windmill.n.02’)

• hen:Synset(’hen.n.02’)

• valley:Synset(’valley.n.01’)

212

• globe:Synset(’globe.n.03’)

• fork:Synset(’fork.n.01’)

• building:Synset(’building.n.01’)

• head:Synset(’head.n.01’)

• person skating:Synset(’person.n.01’)

• jug:Synset(’jug.n.01’)

• bus:Synset(’bus.n.01’)

• pitcher:Synset(’pitcher.n.02’)

• cabinet:Synset(’cabinet.n.01’)

• door frame:Synset(’doorframe.n.01’)

• cloth:Synset(’fabric.n.01’)

• bar of soap:Synset(’soap.n.01’)

• helicopter:Synset(’helicopter.n.01’)

• bookshelf:Synset(’bookshelf.n.01’)

• crane:Synset(’crane.n.04’)

• ear:Synset(’ear.n.01’)

• wine bottle:Synset(’bottle.n.01’)

• pavilion:Synset(’pavilion.n.01’)

• range hood:Synset(’hood.n.06’)

• bucket:Synset(’bucket.n.01’)

• pool table:Synset(’table.n.02’)

213

• suitcase:Synset(’bag.n.06’)

• cake:Synset(’cake.n.03’)

• grass:Synset(’grass.n.01’)

• alarm:Synset(’alarm.n.02’)

• window seat:Synset(’seat.n.03’)

• toilet:Synset(’toilet.n.02’)

• sticks:Synset(’stick.n.06’)

• traffic cone:Synset(’cone.n.01’)

• pig:Synset(’hog.n.03’)

• stealth bomber:Synset(’bomber.n.01’)

• curb:Synset(’curb.n.01’)

• ship:Synset(’ship.n.01’)

• sports car:Synset(’car.n.01’)

• bread roll:Synset(’bun.n.01’)

• cream:Synset(’cream.n.03’)

• street sign:Synset(’signboard.n.01’)

• computer monitor:Synset(’monitor.n.04’)

• antenna:Synset(’antenna.n.01’)

• boot:Synset(’boot.n.01’)

• book:Synset(’book.n.01’)

• person standing:Synset(’person.n.02’)

214

• branch:Synset(’branch.n.02’)

• papers:Synset(’paper.n.01’)

• saucer:Synset(’saucer.n.02’)

• roll:Synset(’bun.n.01’)

• dresser:Synset(’chest of drawers.n.01’)

• tv stand:Synset(’rack.n.05’)

• door handle:Synset(’doorknob.n.01’)

• fluorescent tube:Synset(’fluorescent.n.01’)

• coat hanger:Synset(’hanger.n.02’)

• football:Synset(’football.n.02’)

• swivel chair:Synset(’chair.n.01’)

• console table:Synset(’console table.n.01’)

• podium:Synset(’dais.n.01’)

• pool:Synset(’pool.n.01’)

• cliff:Synset(’cliff.n.01’)

• pottery:Synset(’pottery.n.01’)

• mantel:Synset(’mantel.n.01’)

• bow window:Synset(’window.n.01’)

• dvd:Synset(’videodisk.n.01’)

• standing bird:Synset(’bird.n.01’)

• water heater:Synset(’heater.n.01’)

215

• mask:Synset(’mask.n.04’)

• desk lamp:Synset(’lamp.n.02’)

• toilet paper holder:Synset(’holder.n.01’)

• jacket:Synset(’jacket.n.01’)

• mast:Synset(’mast.n.01’)

• weights:Synset(’weight.n.02’)

• washing machine:Synset(’machine.n.01’)

• rocking chair:Synset(’chair.n.01’)

C.1.2 CalTech 101

• stop sign:Synset(’stop.n.05’)

• lotus:Synset(’lotus.n.03’)

• laptop:Synset(’laptop.n.01’)

• crocodile:Synset(’crocodile.n.01’)

• chandelier:Synset(’chandelier.n.01’)

• faces easy:Synset(’face.n.01’)

• chair:Synset(’chair.n.01’)

• joshua tree:Synset(’tree.n.01’)

• sunflower:Synset(’sunflower.n.01’)

• accordion:Synset(’accordion.n.01’)

• mandolin:Synset(’mandolin.n.01’)

216

• scorpion:Synset(’scorpion.n.03’)

• ewer:Synset(’pitcher.n.02’)

• schooner:Synset(’schooner.n.02’)

• dragonfly:Synset(’dragonfly.n.01’)

• stegosaurus:Synset(’stegosaur.n.01’)

• menorah:Synset(’menorah.n.02’)

• cannon:Synset(’cannon.n.04’)

• watch:Synset(’watch.n.01’)

• sea horse:Synset(’seahorse.n.02’)

• llama:Synset(’llama.n.01’)

• leopards:Synset(’leopard.n.02’)

• tick:Synset(’tick.n.02’)

• flamingo:Synset(’flamingo.n.01’)

• stapler:Synset(’stapler.n.01’)

• electric guitar:Synset(’guitar.n.01’)

• emu:Synset(’emu.n.02’)

• saxophone:Synset(’sax.n.02’)

• brontosaurus:Synset(’apatosaur.n.01’)

• butterfly:Synset(’butterfly.n.01’)

• lobster:Synset(’lobster.n.02’)

• umbrella:Synset(’umbrella.n.01’)

217

• gramophone:Synset(’gramophone.n.01’)

• panda:Synset(’giant panda.n.01’)

• car side:Synset(’car.n.01’)

• pigeon:Synset(’pigeon.n.01’)

• revolver:Synset(’revolver.n.01’)

• rhino:Synset(’rhinoceros.n.01’)

• buddha:Synset(’buddha.n.01’)

• flamingo head:Synset(’flamingo.n.01’)

• soccer ball:Synset(’ball.n.01’)

• bass:Synset(’freshwater bass.n.01’)

• trilobite:Synset(’trilobite.n.01’)

• kangaroo:Synset(’kangaroo.n.01’)

• gerenuk:Synset(’gerenuk.n.01’)

• pagoda:Synset(’pagoda.n.01’)

• ibis:Synset(’ibis.n.01’)

• dalmatian:Synset(’dalmatian.n.02’)

• cup:Synset(’cup.n.01’)

• faces:Synset(’face.n.01’)

• octopus:Synset(’octopus.n.02’)

• motorbikes:Synset(’minibike.n.01’)

• headphone:Synset(’earphone.n.01’)

218

• pyramid:Synset(’pyramid.n.03’)

• scissors:Synset(’scissors.n.01’)

• yin yang:No Synset

• wild cat:Synset(’wildcat.n.03’)

• camera:Synset(’camera.n.01’)

• crab:Synset(’crab.n.01’)

• helicopter:Synset(’helicopter.n.01’)

• cougar body:Synset(’cougar.n.01’)

• starfish:Synset(’starfish.n.01’)

• grand piano:Synset(’grand piano.n.01’)

• ceiling fan:Synset(’fan.n.01’)

• brain:Synset(’brain.n.01’)

• metronome:Synset(’metronome.n.01’)

• minaret:Synset(’minaret.n.01’)

• strawberry:Synset(’strawberry.n.01’)

• cougar face:Synset(’cougar.n.01’)

• ferry:Synset(’ferry.n.01’)

• snoopy:No Synset

• anchor:Synset(’anchor.n.01’)

• inline skate:Synset(’skate.n.01’)

• nautilus:Synset(’chambered nautilus.n.01’)

219

• platypus:Synset(’platypus.n.01’)

• dolphin:Synset(’dolphin.n.02’)

• hedgehog:Synset(’hedgehog.n.02’)

• rooster:Synset(’cock.n.04’)

• ant:Synset(’ant.n.01’)

• euphonium:Synset(’euphonium.n.01’)

• garfield:Synset(’garfield.n.01’)

• water lilly:No Synset

• beaver:Synset(’beaver.n.07’)

• binocular:No Synset

• dollar bill:No Synset

• lamp:Synset(’lamp.n.02’)

• elephant:Synset(’elephant.n.01’)

• hawksbill:Synset(’hawksbill turtle.n.01’)

• pizza:Synset(’pizza.n.01’)

• bonsai:Synset(’bonsai.n.01’)

• windsor chair:Synset(’chair.n.01’)

• background google:Synset(’background.n.07’)

• airplanes:Synset(’airplane.n.01’)

• cellphone:Synset(’cellular telephone.n.01’)

• wheelchair:Synset(’wheelchair.n.01’)

220

• ketch:Synset(’ketch.n.01’)

• wrench:Synset(’wrench.n.03’)

• okapi:Synset(’okapi.n.01’)

• mayfly:Synset(’mayfly.n.01’)

• barrel:Synset(’barrel.n.02’)

• crayfish:Synset(’crayfish.n.03’)

• crocodile head:Synset(’crocodile.n.01’)

• person walking:Synset(’person.n.01’)

C.1.3 Office

• heater:Synset(’heater.n.01’)

• chair guest:Synset(’chair.n.01’)

• light switch:Synset(’switch.n.01’)

• book mesh:Synset(’book.n.02’)

• paper bin:Synset(’bin.n.01’)

• curtain rod:Synset(’curtain.n.01’)

• part door glass:Synset(’door.n.01’)

• wall frame:Synset(’frame.n.10’)

• fileholder:No Synset

• ceiling tiles edge:Synset(’tile.n.02’)

• cup:Synset(’cup.n.01’)

221

• radio:Synset(’radio.n.03’)

• ceiling light:Synset(’light.n.02’)

• pen:Synset(’pen.n.01’)

• sm god ray:Synset(’beam.n.04’)

• wall hanger:Synset(’hanger.n.02’)

• chair:Synset(’chair.n.01’)

• calendar:No Synset

• paper box:Synset(’box.n.01’)

• fanblade:No Synset

• wall award:No Synset

• fuseline:No Synset

• antenna:Synset(’antenna.n.01’)

• fuse box:Synset(’fuse.n.01’)

• blinds top:Synset(’blind.n.03’)

• paper pile:Synset(’paper.n.01’)

• smoke detector:Synset(’detector.n.01’)

• manilla papers:Synset(’paper.n.01’)

• part door:Synset(’door.n.01’)

• light switch wire:Synset(’wire.n.01’)

• window:Synset(’window.n.07’)

• camera:Synset(’camera.n.01’)

222

• folder holder:Synset(’folder.n.02’)

• oscillo:No Synset

• papers:Synset(’paper.n.01’)

• flagpole:Synset(’flagpole.n.02’)

• curtain:Synset(’curtain.n.01’)

• blinds:Synset(’blind.n.03’)

• electro:No Synset

• hat:Synset(’hat.n.01’)

• fireex:No Synset

• wall map:Synset(’map.n.01’)

• map:Synset(’map.n.01’)

• wires desk:Synset(’wire.n.01’)

• wall clock:Synset(’clock.n.01’)

• ceiling fan:Synset(’fan.n.01’)

• fusebox:No Synset

• corkboard:Synset(’corkboard.n.01’)

• cart:Synset(’handcart.n.01’)

• wall clock second hand:Synset(’clock.n.01’)

• phone:Synset(’telephone.n.01’)

• binder:Synset(’binder.n.03’)

• notebook:Synset(’notebook.n.01’)

223

• fan:Synset(’fan.n.01’)

• part wall:Synset(’wall.n.01’)

• desk:Synset(’desk.n.01’)

• ceiling vent:Synset(’vent.n.01’)

• decal plane:Synset(’airplane.n.01’)

• reel:Synset(’reel.n.01’)

• desklamp:No Synset

• monitor:Synset(’monitor.n.04’)

• box:Synset(’box.n.01’)

• reeltoreel:No Synset

• window blinds:Synset(’blind.n.03’)

• paper pad:Synset(’pad.n.01’)

• trash can:Synset(’toilet.n.01’)

• ceiling fan blade:Synset(’blade.n.08’)

• ashtray:Synset(’ashtray.n.01’)

• nameplate:Synset(’nameplate.n.01’)

• shelf:Synset(’shelf.n.01’)

• trim straight:Synset(’trimming.n.02’)

• cigarettes:Synset(’cigarette.n.01’)

• blinds only:Synset(’blind.n.03’)

• folder:Synset(’folder.n.02’)

224

• wall speaker:Synset(’loudspeaker.n.01’)

• confolder:No Synset

• ceiling tiles:Synset(’tile.n.02’)

• filecab:No Synset

• book:Synset(’book.n.02’)

• planter:Synset(’planter.n.03’)

• fuse line clamp:Synset(’clamp.n.01’)

• person walking:Synset(’person.n.01’)

C.1.4 Pub

• m tavern inside cann:No Synset

• m tavern inside pillars module:Synset(’pillar.n.03’)

• m winecast:No Synset

• m tavern inside woodrack:No Synset

• straw:Synset(’straw.n.01’)

• m tavern inside candle holders:Synset(’holder.n.01’)

• m tavern inside floor brick:Synset(’floor.n.04’)

• m tavern inside ladder:Synset(’ladder.n.01’)

• m tavern inside window:Synset(’window.n.01’)

• m tavern inside cupboard:Synset(’cupboard.n.01’)

• m cupboard:Synset(’cupboard.n.01’)

225

• m tavern inside basket:Synset(’basket.n.01’)

• m tavern inside candles:Synset(’candle.n.01’)

• m tavern inside square table:Synset(’table.n.02’)

• m high stool:Synset(’stool.n.01’)

• m tavern inside fabric:Synset(’fabric.n.01’)

• m tavern inside straw:Synset(’straw.n.01’)

• basic material:Synset(’material.n.01’)

• m tavern inside bag:Synset(’bag.n.04’)

• m tavern inside kiwi fruit:Synset(’kiwi.n.03’)

• m tavern inside bench:Synset(’bench.n.01’)

• m tavern inside bar counter:Synset(’counter.n.01’)

• m tavern inside apple:Synset(’apple.n.02’)

• m tavern sunshine:Synset(’sunlight.n.01’)

• m tavern inside windows:Synset(’window.n.01’)

• m tavern inside firewood:Synset(’firewood.n.01’)

• m tavern inside bowl:Synset(’bowl.n.03’)

• m tavern inside roof:Synset(’roof.n.01’)

• m tavern inside bread:Synset(’bread.n.01’)

• m tavern inside wincast:No Synset

• m tavern inside spoon:Synset(’spoon.n.01’)

• m tavern inside candle sword:Synset(’sword.n.01’)

226

• m tavern inside round table:Synset(’table.n.02’)

• m tavern inside plate:Synset(’plate.n.04’)

• m tavern inside chain:Synset(’chain.n.05’)

• m tavern inside stove:Synset(’stove.n.01’)

• m tavern inside wall brick:Synset(’wall.n.01’)

• m iron pan:Synset(’pan.n.01’)

• m tavern inside step:Synset(’step.n.04’)

• m tavern inside square stool:Synset(’stool.n.01’)

• m tavern inside candle stick:Synset(’candle.n.01’)

• m tavern inside winepot:No Synset

• m tavern inside orange:Synset(’orange.n.03’)

• m tavern inside pillars:Synset(’pillar.n.03’)

• m tavern inside:Synset(’inside.n.02’)

• m tavern inside old chair:Synset(’chair.n.01’)

• m tavern inside door:Synset(’doorway.n.01’)

• m iron drum:Synset(’drum.n.04’)

• m tavern inside grill:Synset(’grill.n.02’)

• m tavern inside gavelock:No Synset

• m tavern inside floor wood:Synset(’floor.n.04’)

• m tavern inside door rock:Synset(’door.n.01’)

227

C.2 Actions and Frames used in our Analysis

We also show the synsets for actions used in our analysis. If the action has a FrameNet frame

connected to it, the FrameNet Frame is also connected to it.

C.2.1 SmartBody

• saccade speak:Synset(’speak.v.03’):Statement

• point at:Synset(’indicate.v.02’):Telling

• run:Synset(’run.v.34’):Motion

• nod:Synset(’nod.v.02’):Body movement

• toss:Synset(’flip.v.06’):Cause motion

• shake:Synset(’shake.v.09’):Gesture

• pick up:Synset(’pick.v.02’):Gathering up

• put down:Synset(’put.v.01’):Placing

• walk:Synset(’walk.v.04’):Path shape

• jump:Synset(’jump.v.08’):No Frame

• wiggle:Synset(’jiggle.v.01’):Body movement

• step:Synset(’step.v.07’):Self motion

• gaze:Synset(’gaze.v.01’):Perception active

• jog:Synset(’jog.v.03’):Self motion

• touch:Synset(’touch.v.01’):No Frame

• waggle:Synset(’wag.v.01’):Body movement

• saccade talk:Synset(’talk.v.01’):Chatting

228

• saccade listen:Synset(’listen.v.02’):Perception active

• speak:Synset(’talk.v.02’):Chatting

C.2.2 CMU

• wash windows:Synset(’wash.v.03’):Grooming

• fence:Synset(’fence.v.03’):Hostile encounter

• point:Synset(’indicate.v.02’):Telling

• dance:Synset(’dance.v.02’):No Frame

• lean:Synset(’lean.v.01’):Posture

• resist:Synset(’resist.v.04’):Quarreling

• shake:Synset(’shake.v.09’):Gesture

• swing legs:Synset(’swing.v.01’):Cause to move in place

• sweep:Synset(’sweep.v.03’):Placing

• walk:Synset(’walk.v.01’):Self motion

• jump:Synset(’jump.v.01’):Self motion

• catch:Synset(’catch.v.04’):Manipulation

• side twist:Synset(’twist.v.03’):No Frame

• laugh:Synset(’laugh.v.01’):Make noise

• pass:Synset(’pass.v.20’):Cause motion

• egyptian walk:Synset(’walk.v.10’):Motion

• hammer:Synset(’hammer.v.01’):Cause harm

229

• screw:Synset(’screw.v.04’):Closure

• stretch rope:Synset(’unfold.v.03’):No Frame

• squat:Synset(’squat.v.01’):Posture

• lead:Synset(’lead.v.04’):Cotheme

• sit:Synset(’sit down.v.01’):Posture

• stretch:Synset(’stretch.v.02’):Body movement

• pirouette dance:Synset(’pirouette.v.01’):No Frame

• eat:Synset(’eat.v.01’):Ingestion

• jumping jack:Synset(’jump.v.08’):No Frame

• skip:Synset(’hop.v.01’):Self motion

• bend over:Synset(’crouch.v.01’):Posture

• kick:Synset(’kick.v.01’):No Frame

• fold arms:Synset(’fold.v.01’):Reshaping

• box:Synset(’box.v.02’):Cause impact

• mop:Synset(’wipe up.v.01’):No Frame

• direct traffic:Synset(’direct.v.01’):Request

• run:Synset(’run.v.01’):Self motion

• wash self:Synset(’wash.v.02’):Grooming

• cart wheel:Synset(’cartwheel.v.01’):Moving in place

• dive:Synset(’dive.v.02’):Path shape

• drink:Synset(’drink.v.01’):Ingestion

230

• hang:Synset(’hang.v.01’):No Frame

• punch:Synset(’punch.v.01’):Cause harm

• jete:Synset(’dance.v.02’):No Frame

• wave:Synset(’beckon.v.01’):Gesture

• un screw:Synset(’unscrew.v.02’):Closure

• yawn:Synset(’yawn.v.01’):Body movement

• penalty kick:Synset(’kick.v.07’):Finish competition

• jog:Synset(’trot.v.01’):Self motion

• hobble:Synset(’limp.v.01’):Self motion

• foward jumps:Synset(’jump.v.01’):Self motion

• arabesque dance:Synset(’dance.v.02’):No Frame

• dribble:Synset(’dribble.v.03’):No Frame

• pull:Synset(’pull.v.04’):Manipulation

• shoot:Synset(’shoot.v.16’):Finish competition

• lay up:No Synset:No Frame

• genie dance:Synset(’dance.v.02’):No Frame

• spin rope:Synset(’whirl.v.02’):Cause to move in place

• paint wall:Synset(’paint.v.02’):Filling

• wait:Synset(’wait.v.01’):No Frame

• swing:Synset(’swing.v.03’):Path shape

• climb:Synset(’climb.v.01’):Self motion

• balance:Synset(’poise.v.04’):No Frame

231

C.2.3 The ICS Action Database

• walking:Synset(’walk.v.04’):Path shape

• showing hand:Synset(’show.v.04’):No Frame

• jump:Synset(’jump.v.08’):No Frame

• lying on back:Synset(’lie down.v.01’):Change posture

• look away:Synset(’look.v.01’):Perception active

• standing:Synset(’stand.v.10’):Placing

• sit down:Synset(’sit.v.01’):Posture

• stand still:Synset(’stand.v.03’):No Frame

• on four limbs:No Synset:No Frame

• sitting on chair:Synset(’sit.v.01’):Posture

• stand up:Synset(’stand.v.10’):Placing

• fold arms:Synset(’fold.v.01’):Reshaping

• sitting:Synset(’sit down.v.01’):Posture

• get up:Synset(’up.v.01’):No Frame

• look down:Synset(’look.v.01’):Perception active

• reach out:Synset(’reach.v.01’):Arriving

• running:Synset(’run.v.01’):Self motion

• sitting on floor:Synset(’sit.v.01’):Posture

• turn:Synset(’turn.v.01’):No Frame

• look up:Synset(’look.v.01’):Perception active

232

• lie down:Synset(’lie down.v.01’):Change posture

• lying on side:Synset(’lie down.v.01’):Change posture

• lying on face:Synset(’lie.v.02’):Posture

• lying:Synset(’lie down.v.01’):Change posture

• keep down:Synset(’keep.v.01’):Activity ongoing

C.2.4 The Human Motion Database

• chew:Synset(’chew.v.01’):Grinding

• golf:Synset(’golf.v.01’):Competition

• sword exercise:Synset(’practice.v.01’):Transitive action

• fence:Synset(’fence.v.03’):Hostile encounter

• walk:Synset(’walk.v.01’):Self motion

• jump:Synset(’jump.v.08’):No Frame

• pour:Synset(’decant.v.01’):No Frame

• laugh:Synset(’laugh.v.01’):Make noise

• shoot gun:Synset(’gun.v.01’):Use firearm

• run:Synset(’run.v.01’):Self motion

• turn:Synset(’turn.v.01’):No Frame

• ride bike:Synset(’ride.v.10’):Operate vehicle

• swing baseball:Synset(’swing.v.03’):Path shape

• draw sword:Synset(’withdraw.v.09’):Removing

233

• sit:Synset(’sit.v.01’):Posture

• dribble:Synset(’dribble.v.03’):No Frame

• stand:Synset(’stand.v.10’):Placing

• pushup:No Synset:No Frame

• sword:No Synset:No Frame

• pullup:No Synset:No Frame

• smile:Synset(’smile.v.01’):Making faces

• shake hands:Synset(’shake.v.09’):Gesture

• shoot ball:Synset(’shoot.v.08’):No Frame

• kick:Synset(’kick.v.03’):Cause harm

• somersault:Synset(’somersault.v.01’):No Frame

• drink:Synset(’drink.v.01’):Ingestion

• flic flac:No Synset:No Frame

• hug:Synset(’embrace.v.02’):Manipulation

• hit:Synset(’hit.v.03’):Cause impact

• dive:Synset(’dive.v.02’):Path shape

• kick ball:Synset(’kick.v.07’):Finish competition

• cart wheel:Synset(’cartwheel.v.01’):Moving in place

• punch:Synset(’punch.v.01’):Cause harm

• wave:Synset(’beckon.v.01’):Gesture

• hand stand:Synset(’stand.v.01’):Posture

234

• kiss:Synset(’snog.v.01’):No Frame

• catch:Synset(’catch.v.01’):Experiencer obj

• eat:Synset(’eat.v.02’):Ingestion

• throw:Synset(’hurl.v.03’):Text creation

• climb stairs:Synset(’climb.v.01’):Self motion

• ride horse:Synset(’ride.v.01’):Motion

• fall floor:Synset(’fall.v.23’):No Frame

• brush hair:Synset(’brush.v.01’):Placing

• clap:Synset(’clap.v.06’):Body movement

• smoke:Synset(’smoke.v.01’):Ingest substance

• pick:Synset(’pick.v.02’):Gathering up

• push:Synset(’push.v.01’):Manipulation

• climb:Synset(’climb.v.01’):Self motion

• talk:Synset(’talk.v.02’):Chatting

• situp:No Synset:No Frame

• shoot bow:Synset(’shoot.v.01’):Hit target

C.2.5 The American Time Use Survey

• food clean up:Synset(’clean.v.01’):No Frame

• exterior maintenance:No Synset:No Frame

• grocery shopping:Synset(’shop.v.01’):Getting

235

• sleeping:Synset(’sleep.v.01’):Sleep

• exterior decoration:No Synset:No Frame

• send email:Synset(’e-mail.v.01’):Contacting

• health related self care:Synset(’care.v.02’):Assistance

• do research:Synset(’research.v.01’):Scrutiny

• play sports:Synset(’play.v.05’):No Frame

• watch sports:Synset(’watch.v.04’):Seeking

• personal activities:No Synset:No Frame

• attend training:Synset(’attend.v.01’):No Frame

• call out:Synset(’call.v.26’):Discussion

• household management:No Synset:No Frame

• interior decoration:No Synset:No Frame

• interior maintenance:No Synset:No Frame

• house work:Synset(’work.v.01’):No Frame

• educate child:Synset(’educate.v.01’):No Frame

• travel to job:Synset(’travel.v.05’):Travel

• garden care:Synset(’garden.v.01’):Assistance

• write email:Synset(’write.v.05’):Contacting

• food preparation:No Synset:No Frame

• exercise:Synset(’exercise.v.04’):No Frame

• eating:Synset(’eat.v.02’):Ingestion

236

• relax:Synset(’relax.v.05’):Transitive action

• interior repair:Synset(’repair.v.01’):No Frame

• communicate:Synset(’communicate.v.05’):No Frame

• socialize:Synset(’socialize.v.01’):No Frame

• paint art:Synset(’paint.v.01’):No Frame

• do home work:Synset(’solve.v.01’):Coming to believe

• attend class:Synset(’attend.v.01’):No Frame

• drinking:Synset(’drink.v.01’):Ingestion

• watch t v:Synset(’watch.v.01’):Perception active

• purchase:Synset(’buy.v.01’):Commerce buy

• interview for job:Synset(’interview.v.03’):Chatting

• call phone:Synset(’call.v.09’):Discussion

• attend conference:Synset(’attend.v.01’):No Frame

• work:Synset(’work.v.08’):No Frame

• exterior repair:Synset(’repair.v.01’):No Frame

• banking:Synset(’bank.v.03’):No Frame

• lawn care:Synset(’care.v.02’):Assistance

• attend meeting:Synset(’attend.v.01’):No Frame

• grooming:Synset(’groom.v.03’):Grooming

237

C.3 The Designation of Functional Elements for Each Frame

This section shows the designation of each functional element for each action that contains a frame

in our data-set. The designations correspond to operational information FER, Non-Interaction Func-

tional Information FENI , and data that does not have a designation FEU .

C.3.1 ICT SmartBody

point at:

• FER = Addressee, Speaker, Place

• FES = Means, Manner, Time, Message

• FEUn = Medium, Iteration, Topic, Descriptor, Epistemic stance

run:

• FER = Goal, Source, Theme, Path, Place

• FES = Degree, Purpose, Containing event, Manner, Time, Duration, Speed

• FEUn = Depictive, Distance, Direction, Area, Frequency, Iteration, Carrier, Path shape, Re-

sult

nod:

• FER = Goal, Body part, Source, Path, Agent, Addressee, Place

• FES = Coordinated event, Degree, Cognate event, Purpose, Manner, Time, Duration, Mes-

sage

• FEUn = Area, Internal cause, Sub-region, Re encoding, Depictive, Result, External cause

toss:

• FER = Goal, Agent, Source, Theme, Instrument, Path, Cause, Subregion, Place

238

• FES = Degree, Means, Manner, Time

• FEUn = Depictive, Distance, Handle, Area, Explanation, Initial State, Result

shake:

• FER = Body part, Indicated entity, Addressee, Communicator, Place

• FES = Means, Manner, Time, Message

• FEUn = Instrument

pick up:

• FER = Agent, Instrument, Individuals, Path, Place

• FES = Containing event, Means, Manner, Time

• FEUn = Co participant, Source, Aggregate, Frequency, Goal, Purpose

put down:

• FER = Goal, Agent, Source, Theme, Path, Cause, Place

• FES = Degree, Means, Reason, Manner, Time, Duration, Speed, Purpose

• FEUn = Depictive, Distance, Area, Beneficiary, Cotheme, Result

walk:

• FER = Goal, Source, Path, Road, Place

• FES = Degree, Purpose, Means, Manner, Time, Speed

• FEUn = Depictive, Distance, Direction, Area, Path shape, Result

saccade speak:

• FER = Medium, Addressee, Speaker, Place

239

• FES = Event description, Containing event, Means, Manner, Time, Message

• FEUn = Depictive, Group, Degree, Particular iteration, Iteration, Internal cause, Topic, Epis-

temic stance, Frequency, Occasion

wiggle:

• FER = Goal, Body part, Source, Path, Agent, Addressee, Place

• FES = Coordinated event, Degree, Cognate event, Purpose, Manner, Time, Duration, Mes-

sage

• FEUn = Area, Internal cause, Sub-region, Re encoding, Depictive, Result, External cause

step:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

gaze:

• FER = Expected entity, Perceiver agentive, Body part, Phenomenon, Place

• FES = Means, Manner, Time, Duration, Purpose

• FEUn = Depictive, Direction, State, Location of perceiver, Obscuring medium, Ground

jog:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

240

• FEUn = Internal cause, Path shape, Concessive, External cause

waggle:

• FER = Goal, Body part, Source, Path, Agent, Addressee, Place

• FES = Coordinated event, Degree, Cognate event, Purpose, Manner, Time, Duration, Mes-

sage

• FEUn = Area, Internal cause, Sub-region, Re encoding, Depictive, Result, External cause

saccade talk:

• FER = Interlocutor 2, Interlocutors, Interlocutor 1, Place

• FES = Means, Purpose, Time, Duration, Manner

• FEUn = Depictive, Language, Topic, Means of communication

saccade listen:

• FER = Expected entity, Perceiver agentive, Body part, Phenomenon, Place

• FES = Means, Manner, Time, Duration, Purpose

• FEUn = Depictive, Direction, State, Location of perceiver, Obscuring medium, Ground

speak:

• FER = Interlocutor 2, Interlocutors, Interlocutor 1, Place

• FES = Means, Purpose, Time, Duration, Manner

• FEUn = Depictive, Language, Topic, Means of communication

241

C.3.2 CMU

wash windows:

• FER = Patient, Body part, Agent, Instrument, Place

• FES = Means, Time, Duration, Purpose, Manner

• FEUn = Medium, Sub region, Frequency, Result

fence:

• FER = Side 2, Side 1, Instrument, Sides, Place

• FES = Degree, Means, Reason, Purpose, Time, Duration, Manner

• FEUn = Depictive, Result, Particular iteration, Internal cause, Issue

point:

• FER = Addressee, Speaker, Place

• FES = Means, Manner, Time, Message

• FEUn = Medium, Iteration, Topic, Descriptor, Epistemic stance

skip:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

shake:

• FER = Body part, Indicated entity, Addressee, Communicator, Place

242

• FES = Means, Manner, Time, Message

• FEUn = Instrument

swing legs:

• FER = Agent, Instrument, Theme, Place

• FES = Degree, Means, Reason, Manner, Time, Duration, Purpose

• FEUn = Bodypart of agent, Direction, Result, Angle, Periodicity, Locus, Fixed location,

Cause

sweep:

• FER = Goal, Agent, Source, Theme, Path, Cause, Place

• FES = Degree, Means, Reason, Manner, Time, Duration, Speed, Purpose

• FEUn = Depictive, Distance, Area, Beneficiary, Cotheme, Result

walk:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

jump:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

243

cook:

• FER = Container, Heating Instrument, Cook, Recipient, Place

• FES = Degree, Means, Purpose, Time, Manner

• FEUn = Ingredients, Produced food

laugh:

• FER = Sound source, Path, Addressee, Subregion, Place

• FES = Degree, Noisy event, Reason, Manner, Time

• FEUn = Sound, Depictive, Location of source, Particular iteration, Internal cause, Iterations,

Circumstances

pass:

• FER = Goal, Agent, Source, Theme, Instrument, Path, Cause, Subregion, Place

• FES = Degree, Means, Manner, Time

• FEUn = Depictive, Distance, Handle, Area, Explanation, Initial State, Result

egyptian walk:

• FER = Goal, Source, Theme, Path, Place

• FES = Degree, Purpose, Containing event, Manner, Time, Duration, Speed

• FEUn = Depictive, Distance, Direction, Area, Frequency, Iteration, Carrier, Path shape, Re-

sult

hammer:

• FER = Body part, Instrument, Victim, Agent, Place

244

• FES = Degree, Means, Reason, Purpose, Time, Containing event, Manner

• FEUn = Cause, Result, Explanation, Circumstances, Period of iterations, Subregion bodypart,

Concessive, Re encoding, Depictive, Frequency, Iterations, Duration, Patricular iteration

screw:

• FER = Agent, Beneficiary, Instrument, Place

• FES = Degree, Means, Manner, Time

• FEUn = Depictive, Manipulator, Enclosed region, Containing object, Fastener, Container portal,

Circumstances, Result

squat:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

lead:

• FER = Goal, Cotheme, Area, Source, Theme, Direction, Path, Road, Place

• FES = Means, Explanation, Purpose, Result, Distance, Time, Depictive, Manner, Duration,

Speed, Event

• FEUn = Handle, Mode of transportation, Following distance

sit:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

245

stretch:

• FER = Goal, Body part, Source, Path, Agent, Addressee, Place

• FES = Coordinated event, Degree, Cognate event, Purpose, Manner, Time, Duration, Mes-

sage

• FEUn = Area, Internal cause, Sub-region, Re encoding, Depictive, Result, External cause

lean:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

bend over:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

fold arms:

• FER = Undergoer, Instrument, Cause, Deformer, Subregion, Place

• FES = Degree, Means, Reason, Manner, Time, Purpose

• FEUn = Result, Resistant surface, Locus, Iterations

shoot:

• FER = Competitor, Prize, Place

• FES = Means, Manner, Time

246

• FEUn = Particular iteration, Venue, Rank, Competitors, Score, Competition, Margin, Oppo-

nent

direct traffic:

• FER = Medium, Addressee, Speaker

• FES = Containing event, Means, Manner, Time, Message

• FEUn = Depictive, Beneficiary, Iteration, Topic

run:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

wash self :

• FER = Patient, Body part, Agent, Instrument, Place

• FES = Means, Time, Duration, Purpose, Manner

• FEUn = Medium, Sub region, Frequency, Result

dive:

• FER = Goal, Source, Path, Road, Place

• FES = Degree, Purpose, Means, Manner, Time, Speed

• FEUn = Depictive, Distance, Direction, Area, Path shape, Result

drink:

247

• FER = Source, Ingestibles, Instrument, Ingestor, Place

• FES = Degree, Means, Manner, Time, Duration, Purpose

• FEUn = None

cart wheel:

• FER = Theme, Place

• FES = Manner, Time, Purpose

• FEUn = Depictive, Direction, Angle, Fixed location, Periodicity, Path shape, Cause, Result

punch:

• FER = Body part, Instrument, Victim, Agent, Place

• FES = Degree, Means, Reason, Purpose, Time, Containing event, Manner

• FEUn = Cause, Result, Explanation, Circumstances, Period of iterations, Subregion bodypart,

Concessive, Re encoding, Depictive, Frequency, Iterations, Duration, Patricular iteration

wave:

• FER = Body part, Indicated entity, Addressee, Communicator, Place

• FES = Means, Manner, Time, Message

• FEUn = Instrument

un screw:

• FER = Agent, Beneficiary, Instrument, Place

• FES = Degree, Means, Manner, Time

• FEUn = Depictive, Manipulator, Enclosed region, Containing object, Fastener, Container portal,

Circumstances, Result

248

yawn:

• FER = Goal, Body part, Source, Path, Agent, Addressee, Place

• FES = Coordinated event, Degree, Cognate event, Purpose, Manner, Time, Duration, Mes-

sage

• FEUn = Area, Internal cause, Sub-region, Re encoding, Depictive, Result, External cause

penalty kick:

• FER = Competitor, Prize, Place

• FES = Means, Manner, Time

• FEUn = Particular iteration, Venue, Rank, Competitors, Score, Competition, Margin, Oppo-

nent

jog:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

catch:

• FER = Agent, Bodypart of agent, Instrument, Entity, Place

• FES = Means, Reason, Manner, Time, Duration, Purpose

• FEUn = Depictive, Particular iteration, Locus, Result

foward jumps:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

249

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

eat:

• FER = Source, Ingestibles, Instrument, Ingestor, Place

• FES = Degree, Means, Manner, Time, Duration, Purpose

• FEUn = None

pull:

• FER = Agent, Bodypart of agent, Instrument, Entity, Place

• FES = Means, Reason, Manner, Time, Duration, Purpose

• FEUn = Depictive, Particular iteration, Locus, Result

box:

• FER = Impactee, Impactor, Agent, Instrument, Impactors, Subregion, Place

• FES = Means, Manner, Time, Purpose, Speed

• FEUn = Result, Force, Cause, Period of iterations

resist:

• FER = Medium, Arguers, Arguer2, Arguer1, Place

• FES = Means, Manner, Time, Duration, Purpose

• FEUn = Depictive, Amount of discussion, Frequency, Issue

spin rope:

250

• FER = Agent, Instrument, Theme, Place

• FES = Degree, Means, Reason, Manner, Time, Duration, Purpose

• FEUn = Bodypart of agent, Direction, Result, Angle, Periodicity, Locus, Fixed location,

Cause

paint wall:

• FER = Goal, Agent, Source, Theme, Instrument, Path, Subregion, Place

• FES = Degree, Means, Purpose, Reason, Manner, Time

• FEUn = Depictive, Cause, Result

hobble:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

swing:

• FER = Goal, Source, Path, Road, Place

• FES = Degree, Purpose, Means, Manner, Time, Speed

• FEUn = Depictive, Distance, Direction, Area, Path shape, Result

climb:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

251

C.3.3 ICS Action Database

standing:

• FER = Goal, Agent, Source, Theme, Path, Cause, Place

• FES = Degree, Means, Reason, Manner, Time, Duration, Speed, Purpose

• FEUn = Depictive, Distance, Area, Beneficiary, Cotheme, Result

fold arms:

• FER = Undergoer, Instrument, Cause, Deformer, Subregion, Place

• FES = Degree, Means, Reason, Manner, Time, Purpose

• FEUn = Result, Resistant surface, Locus, Iterations

walking:

• FER = Goal, Source, Path, Road, Place

• FES = Degree, Purpose, Means, Manner, Time, Speed

• FEUn = Depictive, Distance, Direction, Area, Path shape, Result

sit down:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

sitting:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

252

• FEUn = Depictive, Point of contact, Dependent state

reach out:

• FER = Goal, Source, Theme, Place, Path

• FES = Event description, Means, Purpose, Manner, Time

• FEUn = Depictive, Degree, Cotheme, Period of iterations, Frequency, Mode of transportation,

Re encoding, Goal conditions, Circumstances

sitting on chair:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

sitting on floor:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

stand up:

• FER = Goal, Agent, Source, Theme, Path, Cause, Place

• FES = Degree, Means, Reason, Manner, Time, Duration, Speed, Purpose

• FEUn = Depictive, Distance, Area, Beneficiary, Cotheme, Result

lying on side:

• FER = Goal, Location, Source, Protagonist, Path

253

• FES = Purpose, Means, Manner, Time

• FEUn = Depictive, Distance, Direction, Point of contact, Result

running:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

look up:

• FER = Expected entity, Perceiver agentive, Body part, Phenomenon, Place

• FES = Means, Manner, Time, Duration, Purpose

• FEUn = Depictive, Direction, State, Location of perceiver, Obscuring medium, Ground

lie down:

• FER = Goal, Location, Source, Protagonist, Path

• FES = Purpose, Means, Manner, Time

• FEUn = Depictive, Distance, Direction, Point of contact, Result

lying on back:

• FER = Goal, Location, Source, Protagonist, Path

• FES = Purpose, Means, Manner, Time

• FEUn = Depictive, Distance, Direction, Point of contact, Result

look down:

254

• FER = Expected entity, Perceiver agentive, Body part, Phenomenon, Place

• FES = Means, Manner, Time, Duration, Purpose

• FEUn = Depictive, Direction, State, Location of perceiver, Obscuring medium, Ground

lying on face:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

look away:

• FER = Expected entity, Perceiver agentive, Body part, Phenomenon, Place

• FES = Means, Manner, Time, Duration, Purpose

• FEUn = Depictive, Direction, State, Location of perceiver, Obscuring medium, Ground

lying:

• FER = Goal, Location, Source, Protagonist, Path

• FES = Purpose, Means, Manner, Time

• FEUn = Depictive, Distance, Direction, Point of contact, Result

keep down:

• FER = Agent, Place

• FES = Event description, Means, Explanation, Subevent, Purpose, Time, Manner

• FEUn = Depictive, Activity, Duration, Circumstances

255

C.3.4 Human Motion Database

chew:

• FER = Goal, Undergoer, Instrument, Grinding cause, Place

• FES = Means, Manner, Time, Duration, Purpose

• FEUn = Result, Grinder, Locus

golf :

• FER = Place

• FES = Degree, Means, Time, Duration, Purpose, Manner

• FEUn = Prize, Participant 2, Participant 1, Venue, Rank, Participants, Score, Competition,

Frequency

laugh:

• FER = Sound source, Path, Addressee, Subregion, Place

• FES = Degree, Noisy event, Reason, Manner, Time

• FEUn = Sound, Depictive, Location of source, Particular iteration, Internal cause, Iterations,

Circumstances

fence:

• FER = Side 2, Side 1, Instrument, Sides, Place

• FES = Degree, Means, Reason, Purpose, Time, Duration, Manner

• FEUn = Depictive, Result, Particular iteration, Internal cause, Issue

walk:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

256

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

shoot bow:

• FER = Target, Agent, Instrument, Subregion, Place

• FES = Means, Purpose, Time, Manner

• FEUn = None

sword exercise:

• FER = Depictive, Patient, Agent, Place

• FES = Means, Time, Cause, Event, Manner

• FEUn = Result

shoot gun:

• FER = Goal, Agent, Source, Path, Firearm, Place

• FES = Means, Purpose, Time, Manner

• FEUn = Depictive, Area, Iteration

run:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

257

ride bike:

• FER = Goal, Source, Driver, Path, Place

• FES = Degree, Means, Purpose, Time, Manner, Duration, Speed, Event

• FEUn = Cotheme, Area, Vehicle, Result, Explanation, Circumstances, Distance, Route, De-

pictive, Particular iteration, Frequency

swing baseball:

• FER = Goal, Source, Path, Road, Place

• FES = Degree, Purpose, Means, Manner, Time, Speed

• FEUn = Depictive, Distance, Direction, Area, Path shape, Result

draw sword:

• FER = Goal, Theme, Cause, Path, Source, Agent, Place

• FES = Degree, Means, Time, Subevent, Manner

• FEUn = Cotheme, Instrument, Vehicle, Direction, Result, Explanation, Purpose, Circum-

stances, Distance, Depictive, Particular iteration

sit:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

throw:

• FER = Honoree, Author, Text, Instrument, Addressee, Place

258

• FES = Means, Reason, Manner, Time, Purpose

• FEUn = Depictive, Form, Components

smile:

• FER = Body part, Agent

• FES = Degree, Cognate event, Manner, Time

• FEUn = Depictive, Intended perceiver, Internal cause, Location of expressor, Path of gaze,

External cause

shake hands:

• FER = Body part, Indicated entity, Addressee, Communicator, Place

• FES = Means, Manner, Time, Message

• FEUn = Instrument

kick:

• FER = Body part, Instrument, Victim, Agent, Place

• FES = Degree, Means, Reason, Purpose, Time, Containing event, Manner

• FEUn = Cause, Result, Explanation, Circumstances, Period of iterations, Subregion bodypart,

Concessive, Re encoding, Depictive, Frequency, Iterations, Duration, Patricular iteration

hug:

• FER = Agent, Bodypart of agent, Instrument, Entity, Place

• FES = Means, Reason, Manner, Time, Duration, Purpose

• FEUn = Depictive, Particular iteration, Locus, Result

259

hit:

• FER = Impactee, Impactor, Agent, Instrument, Impactors, Subregion, Place

• FES = Means, Manner, Time, Purpose, Speed

• FEUn = Result, Force, Cause, Period of iterations

dive:

• FER = Goal, Source, Path, Road, Place

• FES = Degree, Purpose, Means, Manner, Time, Speed

• FEUn = Depictive, Distance, Direction, Area, Path shape, Result

drink:

• FER = Source, Ingestibles, Instrument, Ingestor, Place

• FES = Degree, Means, Manner, Time, Duration, Purpose

• FEUn = None

cart wheel:

• FER = Theme, Place

• FES = Manner, Time, Purpose

• FEUn = Depictive, Direction, Angle, Fixed location, Periodicity, Path shape, Cause, Result

punch:

• FER = Body part, Instrument, Victim, Agent, Place

• FES = Degree, Means, Reason, Purpose, Time, Containing event, Manner

260

• FEUn = Cause, Result, Explanation, Circumstances, Period of iterations, Subregion bodypart,

Concessive, Re encoding, Depictive, Frequency, Iterations, Duration, Patricular iteration

wave:

• FER = Body part, Indicated entity, Addressee, Communicator, Place

• FES = Means, Manner, Time, Message

• FEUn = Instrument

hand stand:

• FER = Agent, Location

• FES = Degree, Time, Duration, Purpose, Manner

• FEUn = Depictive, Point of contact, Dependent state

catch:

• FER = Stimulus, Experiencer

• FES = Degree, Means, Manner

• FEUn = Depictive, Result, Explanation, Time, Circumstances

eat:

• FER = Source, Ingestibles, Instrument, Ingestor, Place

• FES = Degree, Means, Manner, Time, Duration, Purpose

• FEUn = None

climb stairs:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

261

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

kick ball:

• FER = Competitor, Prize, Place

• FES = Means, Manner, Time

• FEUn = Particular iteration, Venue, Rank, Competitors, Score, Competition, Margin, Oppo-

nent

ride horse:

• FER = Goal, Source, Theme, Path, Place

• FES = Degree, Purpose, Containing event, Manner, Time, Duration, Speed

• FEUn = Depictive, Distance, Direction, Area, Frequency, Iteration, Carrier, Path shape, Re-

sult

brush hair:

• FER = Goal, Agent, Source, Theme, Path, Cause, Place

• FES = Degree, Means, Reason, Manner, Time, Duration, Speed, Purpose

• FEUn = Depictive, Distance, Area, Beneficiary, Cotheme, Result

stand:

• FER = Goal, Agent, Source, Theme, Path, Cause, Place

• FES = Degree, Means, Reason, Manner, Time, Duration, Speed, Purpose

• FEUn = Depictive, Distance, Area, Beneficiary, Cotheme, Result

262

smoke:

• FER = Ingestor, Place

• FES = Means, Purpose, Time, Duration, Manner

• FEUn = Substance, Entry path, Delivery device, Frequency

pick:

• FER = Agent, Instrument, Individuals, Path, Place

• FES = Containing event, Means, Manner, Time

• FEUn = Co participant, Source, Aggregate, Frequency, Goal, Purpose

push:

• FER = Agent, Bodypart of agent, Instrument, Entity, Place

• FES = Means, Reason, Manner, Time, Duration, Purpose

• FEUn = Depictive, Particular iteration, Locus, Result

climb:

• FER = Goal, Cotheme, Area, Source, Direction, Self mover, Path, Place

• FES = Coordinated event, Result, Means, Reason, Purpose, Distance, Time, Depictive, Man-

ner, Duration, Speed

• FEUn = Internal cause, Path shape, Concessive, External cause

talk:

• FER = Interlocutor 2, Interlocutors, Interlocutor 1, Place

• FES = Means, Purpose, Time, Duration, Manner

263

• FEUn = Depictive, Language, Topic, Means of communication

clap:

• FER = Goal, Body part, Source, Path, Agent, Addressee, Place

• FES = Coordinated event, Degree, Cognate event, Purpose, Manner, Time, Duration, Mes-

sage

• FEUn = Area, Internal cause, Sub-region, Re encoding, Depictive, Result, External cause

C.3.5 BLS

watch sports:

• FER = Sought entity, Cognizer agent, Ground, Place

• FES = Means, Manner, Time, Purpose

• FEUn = Degree, Outcome

eating:

• FER = Source, Ingestibles, Instrument, Ingestor, Place

• FES = Degree, Means, Manner, Time, Duration, Purpose

• FEUn = None

call out:

• FER = Interlocutors, Interlocutor 2, Interlocutor 1, Place

• FES = Means, Containing event, Manner, Time, Duration, Purpose

• FEUn = Depictive, Domain, Language, Period of iterations, Topic, Amount of discussion,

Means of communication, Frequency

264

lawn care:

• FER = Goal, Instrument, Focal entity, Place

• FES = Degree, Means, Duration, Manner, Time, Purpose

• FEUn = Domain, Helper, Explanation, Frequency, Benefited party

travel to job:

• FER = Goal, Area, Travel means, Source, Direction, Path, Co participant, Traveler, Place

• FES = Means, Reason, Purpose, Manner, Distance, Time, Depictive, Result, Duration, Speed

• FEUn = Period of Iterations, Baggage, Mode of transportation, Descriptor, Frequency, Itera-

tions

relax:

• FER = Depictive, Patient, Agent, Place

• FES = Means, Time, Cause, Event, Manner

• FEUn = Result

grocery shopping:

• FER = Beneficiary, Source, Theme, Recipient, Place

• FES = Means, Reason, Purpose, Time, Manner

• FEUn = Result, Concessive

sleeping:

• FER = Sleeper, Place

• FES = Degree, Manner, Time, Duration

265

• FEUn = None

purchase:

• FER = Seller, Place

• FES = Means, Reason, Purpose, Time, Manner

• FEUn = Goods, Money, Period of iteration, Purpose of goods, Rate, Buyer, Recipient, Unit

send email:

• FER = Addressee, Communicator, Intermediary, Place

• FES = Time, Reason

• FEUn = Depictive, Medium, Location of communicator, Communication, Topic, Address,

Frequency

garden care:

• FER = Goal, Instrument, Focal entity, Place

• FES = Degree, Means, Duration, Manner, Time, Purpose

• FEUn = Domain, Helper, Explanation, Frequency, Benefited party

write email:

• FER = Addressee, Communicator, Intermediary, Place

• FES = Time, Reason

• FEUn = Depictive, Medium, Location of communicator, Communication, Topic, Address,

Frequency

do home work:

266

• FER = Cognizer, Place

• FES = Degree, Means, Content, Manner, Time

• FEUn = Depictive, Topic, Medium, Evidence

call phone:

• FER = Interlocutors, Interlocutor 2, Interlocutor 1, Place

• FES = Means, Containing event, Manner, Time, Duration, Purpose

• FEUn = Depictive, Domain, Language, Period of iterations, Topic, Amount of discussion,

Means of communication, Frequency

interview for job:

• FER = Interlocutor 2, Interlocutors, Interlocutor 1, Place

• FES = Means, Purpose, Time, Duration, Manner

• FEUn = Depictive, Language, Topic, Means of communication

drinking:

• FER = Source, Ingestibles, Instrument, Ingestor, Place

• FES = Degree, Means, Manner, Time, Duration, Purpose

• FEUn = None

watch t v:

• FER = Expected entity, Perceiver agentive, Body part, Phenomenon, Place

• FES = Means, Manner, Time, Duration, Purpose

• FEUn = Depictive, Direction, State, Location of perceiver, Obscuring medium, Ground

267

health related self care:

• FER = Goal, Instrument, Focal entity, Place

• FES = Degree, Means, Duration, Manner, Time, Purpose

• FEUn = Domain, Helper, Explanation, Frequency, Benefited party

do research:

• FER = Instrument, Medium, Phenomenon, Cognizer

• FES = Degree, Means, Manner, Purpose

• FEUn = Direction, Time, Ground

grooming:

• FER = Patient, Body part, Agent, Instrument, Place

• FES = Means, Time, Duration, Purpose, Manner

• FEUn = Medium, Sub region, Frequency, Result

268

Bibliography

[1] A. Shoulson, M. L. Gilbert, M. Kapadia, and N. I. Badler, “An event-centric planning ap-
proach for dynamic real-time narrative,” in Motion in Games. Doublin, Ireland: ACM,
2013, pp. 121–130.

[2] B. Sunshine-Hill and N. I. Badler, “Perceptually realistic behavior through alibi generation,”
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment; Tenth Ar-
tificial Intelligence and Interactive Digital Entertainment Conference, 2010.

[3] N. Kraayenbrink, J. Kessing, T. Tutenel, G. de Haan, and R. Bidarra, “Semantic crowds,”
Entertainment Computing, vol. 5, no. 4, pp. 297–312, 2014.

[4] A. Normoyle, M. Likhachev, and A. Safonova, “Stochastic Activity Authoring with Direct
User Control,” in Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, ser. I3D ’14. New York, NY, USA: ACM, 2014, pp.
31–38.

[5] M. Slater, “Grand challenges in virtual environments,” Frontiers in Robotics and AI, vol. 1,
p. 3, 2014.

[6] I. Millington and J. Funge, Artificial Intelligence for Games, Second Edition, 2nd ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009.

[7] M. Cavazza, S. Hartley, J.-L. Lugrin, and M. Le Bras, “Qualitative Physics in Virtual
Environments,” in Proceedings of the 9th International Conference on Intelligent User
Interfaces, ser. IUI ’04. New York, NY, USA: ACM, 2004, pp. 54–61. [Online]. Available:
http://doi.acm.org/10.1145/964442.964454

[8] K. V. Hindriks, F. S. De Boer, W. Van Der Hoek, and J.-J. Ch. Meyer, “Agent Programming
in 3apl,” Autonomous Agents and Multi-Agent Systems, vol. 2, no. 4, pp. 357–401, Nov. 1999.

[9] J. T. Balint and J. M. Allbeck, “Generating Semantic Information for Virtual Environments.”
in Workshop on Virtual Humans and Crowds for Immersive Environments. Greenville:
IEEE, Mar. 2016, p. 5.

[10] J. T. Balint, J. M. Allbeck, and M. R. Hieb, “Automated Simulation Creation from Military
Operations Documents,” in Interservice/Industry Training, Simulation and Education Con-
ference. Orlando, Florida: I/ITSEC, 2015, p. Paper 15227.

269

http://doi.acm.org/10.1145/964442.964454

[11] J. T. Balint and J. Allbeck, “ALET: Agents Learning their Environment through Text,” Com-
puter Animation and Virtual Worlds, vol. 28, no. 3-4, 2017.

[12] E. Yoshida, J.-P. Laumond, C. Esteves, O. Kanoun, T. Sakaguchi, and K. Yokoi, “Whole-
Body Locomotion, Manipulation and Reaching for Humanoids,” in Motion in Games, ser.
Lecture Notes in Computer Science, A. Egges, A. Kamphuis, and M. Overmars, Eds.
Springer Berlin Heidelberg, Jan. 2008, vol. 5277, pp. 210–221.

[13] M. Kallmann, “Analytical inverse kinematics with body posture control,” Computer Anima-
tion and Virtual Worlds, vol. 19, no. 2, pp. 79–91, 2008.

[14] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. D. Kraker, “The Role of Semantics in Games
and Simulations,” Comput. Entertain., vol. 6, no. 4, pp. 57:1–57:35, Dec. 2008.

[15] J.-L. Lugrin and M. Cavazza, “Making Sense of Virtual Environments: Action Represen-
tation, Grounding and Common Sense,” in IUI. New York, NY, USA: ACM, 2007, pp.
225–234.

[16] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. De Kraker, “Rule-based layout solving and
its application to procedural interior generation,” in Proceedings of the CASA Workshop on
3D Advanced Media In Gaming And Simulation. Amsterdam, Netherlands: CASA, 2009,
p. 10.

[17] D. Camozzato, L. Dihl, I. Silveira, F. Marson, and S. R. Musse, “Procedural floor plan
generation from building sketches,” The Visual Computer, vol. 31, no. 6, pp. 753–763, 2015.
[Online]. Available: http://dx.doi.org/10.1007/s00371-015-1102-2

[18] M. Kallmann and D. Thalmann, “Direct 3d Interaction with Smart Objects,” in Proceedings
of the ACM Symposium on Virtual Reality Software and Technology, ser. VRST ’99. New
York, NY, USA: ACM, 1999, pp. 124–130.

[19] N. Farenc, S. R. Musse, E. Schweiss, M. Kallmann, O. Aune, R. Boulic, and D. Thalmann,
“A paradigm for controlling virtual humans in urban environment simulations,” Applied Ar-
tificial Intelligence, vol. 14, no. 1, pp. 69–91, 2000.

[20] C. Peters, S. Dobbyn, B. MacNamee, and C. O’Sullivan, “Smart Objects for Attentive
Agents,” in Proceedings of 11th International Conference in Central Europe on Computer
Graphics, Plzen - Bory, Czech Republic, 2003, p. 11.

[21] S. Donikian and S. Paris, “Towards Embodied and Situated Virtual Humans,” in Motion in
Games, A. Egges, A. Kamphuis, and M. Overmars, Eds. Springer Berlin Heidelberg, 2008,
pp. 51–62.

[22] F. Heckel and G. Youngblood, “Contextual Affordances for Intelligent Virtual Characters,” in
Intelligent Virtual Agents, ser. Lecture Notes in Computer Science, H. Vilhjlmsson, S. Kopp,
S. Marsella, and K. Thrisson, Eds. Springer Berlin Heidelberg, 2011, vol. 6895, pp. 202–
208.

[23] M. Kapadia, J. Falk, F. Znd, M. Marti, R. W. Sumner, and M. Gross, “Computer-assisted
Authoring of Interactive Narratives,” in Proceedings of the 19th Symposium on Interactive
3D Graphics and Games, ser. i3D ’15. New York, NY, USA: ACM, 2015, pp. 85–92.

270

http://dx.doi.org/10.1007/s00371-015-1102-2

[24] J. Gibson, “Perceiving, Acting and Knowing,” R. Shaw and J. Bransford, Eds. Lawrence
Erlbaum, 1977.

[25] P. Sequeira, M. Vala, and A. Paiva, “What Can I Do with This?: Finding Possible Interactions
Between Characters and Objects,” in Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multiagent Systems, ser. AAMAS ’07. New York, NY, USA:
ACM, 2007, pp. 5:1–5:7.

[26] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the application of theorem prov-
ing to problem solving,” Artificial intelligence, vol. 2, no. 3, pp. 189–208, 1972.

[27] R. Bindiganavale, W. Schuler, J. M. Allbeck, N. I. Badler, A. K. Joshi, and M. Palmer,
“Dynamically Altering Agent Behaviors Using Natural Language Instructions,” in
Proceedings of the Fourth International Conference on Autonomous Agents. New York,
NY, USA: ACM, 2000, pp. 293–300. [Online]. Available: http://doi.acm.org/10.1145/
336595.337503

[28] O. van Kaick, A. Tagliasacchi, O. Sidi, H. Zhang, D. Cohen-Or, L. Wolf, and
G. Hamarneh, “Prior Knowledge for Part Correspondence,” Computer Graphics Forum,
vol. Computer Graphics Forum, no. 2, pp. 553–562, 2011. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2011.01893.x

[29] Y. Wang, S. Asafi, O. van Kaick, H. Zhang, D. Cohen-Or, and B. Chen, “Active Co-analysis
of a Set of Shapes,” ACM Trans. Graph., vol. 31, no. 6, pp. 165:1–165:10, Nov. 2012.

[30] X. Zhang, T. Tutenel, R. Mo, R. Bidarra, and W. F. Bronsvoort, “A Method for Specifying
Semantics of Large Sets of 3d Models.” in GRAPP/IVAPP, 2012, pp. 97–106.

[31] M. Gutierrez, D. Thalmann, and F. Vexo, “Semantic virtual environments with adaptive mul-
timodal interfaces,” in Proceedings of the 11th International Multimedia Modelling Confer-
ence, 2005. MMM 2005. IEEE, 2005, pp. 277–283.

[32] F. Worgotter, E. Aksoy, N. Kruger, J. Piater, A. Ude, and M. Tamosiunaite, “A Simple Ontol-
ogy of Manipulation Actions Based on Hand-Object Relations,” Autonomous Mental Devel-
opment, IEEE Transactions on, vol. 5, no. 2, pp. 117–134, Jun. 2013.

[33] L. Drumond and R. Girardi, “A Survey of Ontology Learning Procedures.” WONTO, vol.
427, pp. 1–13, 2008.

[34] P. Buitelaar, P. Cimiano, and B. Magnini, Ontology learning from text: methods, evaluation
and applications. IOS press, 2005, vol. 123.

[35] P. Cimiano, Ontology Learning and Population from Text: Algorithms, Evaluation and Ap-
plications. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[36] P. University, “About WordNet,” Princeton University, Tech. Rep., 2010. [Online]. Available:
http://wordnet.princeton.edu

[37] C. Pelkey and J. M. Allbeck, “Populating Virtual Semantic Environments,” Computer Ani-
mation and Virtual Worlds, vol. 24, no. 3, pp. 405–414, May 2014.

271

http://doi.acm.org/10.1145/336595.337503
http://doi.acm.org/10.1145/336595.337503
http://dx.doi.org/10.1111/j.1467-8659.2011.01893.x
http://wordnet.princeton.edu

[38] R. H. Bordini, L. Braubach, M. Dastani, A. E. F. Seghrouchni, J. J. Gomez-Sanz, J. Leite,
G. O’Hare, A. Pokahr, and A. Ricci, “A survey of programming languages and platforms for
multi-agent systems,” Informatica, vol. 30, no. 1, 2006.

[39] M. Thielscher, “FLUX: A Logic Programming Method for Reasoning Agents,” Theory
Pract. Log. Program., vol. 5, no. 4-5, pp. 533–565, Jul. 2005. [Online]. Available:
http://dx.doi.org/10.1017/S1471068405002358

[40] M. J. Wooldridge, Reasoning about rational agents. Cambridge, MA: MIT press, 2000.

[41] K. Vikhorev, N. Alechina, and B. Logan, “Agent programming with priorities and deadlines.”
International Foundation for Autonomous Agents and Multiagent Systems, 2011, pp. 397–
404.

[42] K. Erol, J. A. Hendler, and D. S. Nau, “UMCP: A Sound and Complete Procedure for Hier-
archical Task-network Planning.” vol. 94, 1994, pp. 249–254.

[43] K. Erol, J. Hendler, and D. S. Nau, “Semantics for Hierarchical Task-Network Planning,”
University of Maryland,College Park,MD,20742, Computer Science Department,Institute for
Systems Research,, Tech. Rep. T.R. 95-9, 1995.

[44] N. Nejati, T. Knik, and U. Kuter, “A Goal- and Dependency-directed Algorithm for Learning
Hierarchical Task Networks,” in Proceedings of the Fifth International Conference on
Knowledge Capture, ser. K-CAP ’09. New York, NY, USA: ACM, 2009, pp. 113–120.
[Online]. Available: http://doi.acm.org/10.1145/1597735.1597755

[45] N. Nejati, P. Langley, and T. Konik, “Learning Hierarchical Task Networks by
Observation,” in Proceedings of the 23rd International Conference on Machine Learning,
ser. ICML ’06. New York, NY, USA: ACM, 2006, pp. 665–672. [Online]. Available:
http://doi.acm.org/10.1145/1143844.1143928

[46] A. Mohseni-Kabir, C. Rich, S. Chernova, C. L. Sidner, and D. Miller, “Interactive
Hierarchical Task Learning from a Single Demonstration,” in Proceedings of the
Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, ser.
HRI ’15. New York, NY, USA: ACM, 2015, pp. 205–212. [Online]. Available:
http://doi.acm.org/10.1145/2696454.2696474

[47] M. Tenorth and M. Beetz, “A unified representation for reasoning about robot actions,
processes, and their effects on objects,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, Oct. 2012, pp. 1351–1358.

[48] R. Schwitter, “Controlled Natural Languages for Knowledge Representation,” in Proceedings
of the 23rd International Conference on Computational Linguistics: Posters, ser. COLING
’10. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010, pp.
1113–1121. [Online]. Available: http://dl.acm.org/citation.cfm?id=1944566.1944694

[49] W. Schuler, L. Zhao, and M. Palmer, “Parameterized action representation for virtual human
agents,” Embodied conversational agents, p. 256, 2000.

272

http://dx.doi.org/10.1017/S1471068405002358
http://doi.acm.org/10.1145/1597735.1597755
http://doi.acm.org/10.1145/1143844.1143928
http://doi.acm.org/10.1145/2696454.2696474
http://dl.acm.org/citation.cfm?id=1944566.1944694

[50] H. Kress-Gazit, G. Fainekos, and G. Pappas, “From Structured English to Robot Motion,”
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on,
pp. 2717–2722, Oct. 2007.

[51] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Translating structured english to robot
controllers,” Advanced Robotics, vol. 22, no. 12, pp. 1343–1359, 2008.

[52] J. M. Allbeck and H. Kress-Gazit, “Constraints-based Complex Behavior in Rich
Environments,” in Proceedings of the 10th International Conference on Intelligent Virtual
Agents, ser. IVA’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 1–14. [Online].
Available: http://dl.acm.org/citation.cfm?id=1889075.1889077

[53] P. Langley, N. Trivedi, and M. Banister, “A Command Language for Taskable Virtual
Agents.” 2010.

[54] B. Coyne and R. Sproat, “WordsEye: an automatic text-to-scene conversion system.” ACM,
2001, pp. 487–496.

[55] M. Ma, “Automatic conversion of natural language to 3d animation,” 2006.

[56] B. Hayes and B. Scassellati, “Autonomously constructing hierarchical task networks for plan-
ning and human-robot collaboration.” IEEE, 2016, pp. 5469–5476.

[57] M. Kapadia, F. Znd, J. Falk, M. Marti, R. W. Sumner, and M. Gross, “Evaluating the au-
thoring complexity of interactive narratives with interactive behaviour trees,” Foundations of
Digital Games, 2015.

[58] N. Badler, B. Webber, M. Palmer, T. Noma, M. Stone, J. Rosenzweig, S. Chopra, K. Stanley,
H. Dang, and R. Bindiganavale, “Natural language text generation from Task networks,”
Technical Report, CIS, University of Pennsylvania, Philadelphia, USA, Tech. Rep., 1997.

[59] J. C. Bourne, “Generating effective natural language instructions based on agent expertise,”
1999.

[60] L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot description languages,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference on, May 2011, pp.
5589–5595.

[61] A. Marzinotto, M. Colledanchise, C. Smith, and P. gren, “Towards a unified behavior trees
framework for robot control.” IEEE, 2014, pp. 5420–5427.

[62] D. Chi, M. Costa, L. Zhao, and N. Badler, “The EMOTE model for effort and shape.” ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 173–182.

[63] N. Badler, J. Allbeck, L. Zhao, and M. Byun, “Representing and parameterizing agent be-
haviors.” IEEE, 2002, pp. 133–143.

[64] F. Durupinar, M. Kapadia, S. Deutsch, M. Neff, and N. I. Badler, “PERFORM: Perceptual
Approach for Adding OCEAN Personality to Human Motion Using Laban Movement
Analysis,” ACM Trans. Graph., vol. 36, no. 1, pp. 6:1–6:16, Oct. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2983620

273

http://dl.acm.org/citation.cfm?id=1889075.1889077
http://doi.acm.org/10.1145/2983620

[65] H. Vilhjlmsson, N. Cantelmo, J. Cassell, N. E. Chafai, M. Kipp, S. Kopp, M. Mancini,
S. Marsella, A. N. Marshall, C. Pelachaud, Z. Ruttkay, K. R. Thrisson, H. van Welbergen,
and R. J. van der Werf, “The Behavior Markup Language: Recent Developments and Chal-
lenges,” in Intelligent Virtual Agents: 7th International Conference, IVA 2007 Paris, France,
September 17-19, 2007 Proceedings, C. Pelachaud, J.-C. Martin, E. Andr, G. Chollet, K. Kar-
pouzis, and D. Pel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 99–111.

[66] M. Thiebaux, S. Marsella, A. N. Marshall, and M. Kallmann, “SmartBody: Behavior
Realization for Embodied Conversational Agents,” in AAMAS, Richland, SC, 2008, pp.
151–158. [Online]. Available: http://dl.acm.org/citation.cfm?id=1402383.1402409

[67] K. Liu, J. Tolins, J. E. Fox Tree, M. Neff, and M. A. Walker, “Two Techniques for Assessing
Virtual Agent Personality,” IEEE Trans. Affect. Comput., vol. 7, no. 1, pp. 94–105, Jan.
2016. [Online]. Available: http://dx.doi.org/10.1109/TAFFC.2015.2435780

[68] A. Shoulson, M. Kapadia, and N. I. Badler, “Paste: A platform for adaptive storytelling with
events,” Intelligent Narrative Technologies, vol. 6, p. 216, 2013.

[69] J. Kessing, T. Tutenel, and R. Bidarra, “Services in game worlds: A semantic approach to
improve object interaction,” in Entertainment ComputingICEC 2009, ser. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2009, vol. 5709, pp. 276–281.

[70] Z. Wu and M. Palmer, “Verbs Semantics and Lexical Selection,” in Proceedings of
the 32Nd Annual Meeting on Association for Computational Linguistics, ser. ACL ’94.
Stroudsburg, PA, USA: Association for Computational Linguistics, 1994, pp. 133–138.
[Online]. Available: http://dx.doi.org/10.3115/981732.981751

[71] A. Normoyle and N. I. Badler, “How Do Stylistic Motions Differ Numerically from Neutral
Ones?” in Proceedings of the Seventh International Conference on Motion in Games,
ser. MIG ’14. New York, NY, USA: ACM, 2014, pp. 184–184. [Online]. Available:
http://doi.acm.org/10.1145/2668064.2677080

[72] M. Paolucci, D. Kalp, A. Pannu, O. Sheholy, and K. Sycara, “A Planning Component for
RETSINA Agents,” Intelligent Agents VI. Agent Theories, Architectures, and Languages,
vol. 1757, pp. 147–161, 2000. [Online]. Available: http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/pleiades-1/papers/atal99-pln.pdf

[73] E. Kontopoulos, D. Vrakas, F. Kokkoras, N. Bassiliades, and I. Vlahavas, “An Ontology-
based Planning System for e-Course Generation,” Expert Syst. Appl., vol. 35, no. 1-2, pp.
398–406, Jul. 2008. [Online]. Available: http://dx.doi.org/10.1016/j.eswa.2007.07.034

[74] T. Sugawara, S. Kurihara, T. Hirotsu, K. Fukuda, and T. Takada, “Predicting Possible
Conflicts in Hierarchical Planning for Multi-agent Systems,” in Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems, ser.
AAMAS ’05. New York, NY, USA: ACM, 2005, pp. 813–820. [Online]. Available:
http://doi.acm.org/10.1145/1082473.1082597

[75] M. Kapadia, A. Shoulson, C. Steimer, S. Oberholzer, R. W. Sumner, and M. Gross,
“An Event-centric Approach to Authoring Stories in Crowds,” in Proceedings of the 9th
International Conference on Motion in Games, ser. MIG ’16. New York, NY, USA: ACM,
2016, pp. 15–24. [Online]. Available: http://doi.acm.org/10.1145/2994258.2994265

274

http://dl.acm.org/citation.cfm?id=1402383.1402409
http://dx.doi.org/10.1109/TAFFC.2015.2435780
http://dx.doi.org/10.3115/981732.981751
http://doi.acm.org/10.1145/2668064.2677080
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pleiades-1/papers/atal99-pln.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pleiades-1/papers/atal99-pln.pdf
http://dx.doi.org/10.1016/j.eswa.2007.07.034
http://doi.acm.org/10.1145/1082473.1082597
http://doi.acm.org/10.1145/2994258.2994265

[76] A. Shoulson, F. M. Garcia, M. Jones, R. Mead, and N. I. Badler, “Parameterizing Behavior
Trees,” in Proceedings of the 4th International Conference on Motion in Games, ser. MIG’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 144–155.

[77] B. Kartal, J. Koenig, and S. J. Guy, “User-driven Narrative Variation in Large Story
Domains Using Monte Carlo Tree Search,” in Proceedings of the 2014 International
Conference on Autonomous Agents and Multi-agent Systems, ser. AAMAS ’14. Richland,
SC: International Foundation for Autonomous Agents and Multiagent Systems, 2014, pp.
69–76. [Online]. Available: http://dl.acm.org/citation.cfm?id=2615731.2615746

[78] N. Avradinis, T. Panayiotopoulos, and R. Aylett, “Continuous planning for virtual environ-
ments,” Intelligent Techniques for Planning, pp. 162–193, 2005.

[79] J. Dormans, “Integrating emergence and progression,” Hilversum, the Netherlands, 2011,
p. 15.

[80] J. M. Allbeck, “CAROSA: A tool for authoring NPCs,” in Motion in Games. Springer,
2010, pp. 182–193.

[81] P. R. Telang, F. Meneguzzi, and M. P. Singh, “Hierarchical Planning About Goals and
Commitments,” in Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems, ser. AAMAS ’13. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems, 2013, pp. 877–884. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2484920.2485059

[82] M. Sheehan and I. Watson, “On the Usefulness of Interactive Computer Game
Logs for Agent Modelling,” in PRICAI 2008: Trends in Artificial Intelligence, ser.
Lecture Notes in Computer Science, T.-B. Ho and Z.-H. Zhou, Eds. Springer
Berlin Heidelberg, Jan. 2008, vol. 5351, pp. 1059–1064. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-89197-0 107

[83] M. Dastani, M. B. van Riemsdijk, and M. Winikoff, “Rich Goal Types in Agent Program-
ming,” in The 10th International Conference on Autonomous Agents and Multiagent Systems
- Volume 1, ser. AAMAS ’11. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2011, pp. 405–412.

[84] M. O. Riedl and R. M. Young, “Narrative Planning: Balancing Plot and Character,”
J. Artif. Int. Res., vol. 39, no. 1, pp. 217–268, Sep. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1946417.1946422

[85] J. Porteous, A. Lindsay, J. Read, M. Truran, and M. Cavazza, “Automated Extension
of Narrative Planning Domains with Antonymic Operators,” in Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems, ser. AAMAS
’15. Richland, SC: International Foundation for Autonomous Agents and Multiagent
Systems, 2015, pp. 1547–1555. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2772879.2773349

[86] J. Thangarajah, L. Padgham, and S. Sardina, “Modelling Situations in Intelligent Agents,”
in Proceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, ser. AAMAS ’06. New York, NY, USA: ACM, 2006, pp. 1049–1051.
[Online]. Available: http://doi.acm.org/10.1145/1160633.1160819

275

http://dl.acm.org/citation.cfm?id=2615731.2615746
http://dl.acm.org/citation.cfm?id=2484920.2485059
http://dx.doi.org/10.1007/978-3-540-89197-0_107
http://dx.doi.org/10.1007/978-3-540-89197-0_107
http://dl.acm.org/citation.cfm?id=1946417.1946422
http://dl.acm.org/citation.cfm?id=2772879.2773349
http://dl.acm.org/citation.cfm?id=2772879.2773349
http://doi.acm.org/10.1145/1160633.1160819

[87] W. Li and J. M. Allbeck, “The Virtual Apprentice,” in Proceedings of the 12th International
Conference on Intelligent Virtual Agents, ser. IVA’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 15–27.

[88] P. Buitelaar and P. Cimiano, Ontology learning and population: bridging the gap between
text and knowledge. Ios Press, 2008, vol. 167.

[89] R. Navigli, “Word Sense Disambiguation: A Survey,” ACM Comput. Surv., vol. 41, no. 2, pp.
10:1–10:69, Feb. 2009.

[90] K. Frger and T. Takala, “Animating with style: defining expressive semantics of motion,” The
Visual Computer, vol. 32, no. 2, pp. 191–203, 2015.

[91] D. Bouchard and N. I. Badler, “Segmenting Motion Capture Data Using a Qualitative
Analysis,” in Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games,
ser. MIG ’15. New York, NY, USA: ACM, 2015, pp. 23–30. [Online]. Available:
http://doi.acm.org/10.1145/2822013.2822039

[92] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley FrameNet Project,” in COLING,
vol. 1. Stroudsburg, PA, USA: Association for Computational Linguistics, 1998, pp.
86–90. [Online]. Available: http://dx.doi.org/10.3115/980451.980860

[93] L. Shi and R. Mihalcea, “Putting Pieces Together: Combining FrameNet, VerbNet and Word-
Net for Robust Semantic Parsing,” in Computational Linguistics and Intelligent Text Process-
ing, ser. Lecture Notes in Computer Science, A. Gelbukh, Ed. Springer Berlin Heidelberg,
2005, vol. 3406, pp. 100–111.

[94] M. M. Botvinick, Y. Niv, and A. C. Barto, “Hierarchically organized behavior and its neural
foundations: A reinforcement learning perspective,” Cognition, vol. abs/1109.2130, 2008.

[95] T. Balint and J. Allbeck, “Automated Generation of Plausible Agent Object Interactions,”
in Intelligent Virtual Agents, ser. Lecture Notes in Computer Science, W.-P. Brinkman,
J. Broekens, and D. Heylen, Eds. Springer International Publishing, 2015, vol. 9238, pp.
295–309.

[96] C. Fernndez, P. Baiget, F. X. Roca, and J. Gonzlez, “Augmenting Video Surveillance Footage
with Virtual Agents for Incremental Event Evaluation,” Pattern Recogn. Lett., vol. 32, no. 6,
pp. 878–889, Apr. 2011. [Online]. Available: http://dx.doi.org/10.1016/j.patrec.2010.09.027

[97] E. Laparra and G. Rigau, “Integrating WordNet and FrameNet using a Knowledge-based
Word Sense Disambiguation Algorithm,” in Proceedings of the International Conference
RANLP-2009. Borovets, Bulgaria: Association for Computational Linguistics, Sep. 2009,
pp. 208–213. [Online]. Available: http://www.aclweb.org/anthology/R09-1039

[98] W. Loh, “Classification and regression trees,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 1, no. 1, pp. 14–23, 2011.

[99] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval. New York, NY,
USA: McGraw-Hill, Inc., 1986.

276

http://doi.acm.org/10.1145/2822013.2822039
http://dx.doi.org/10.3115/980451.980860
http://dx.doi.org/10.1016/j.patrec.2010.09.027
http://www.aclweb.org/anthology/R09-1039

[100] O. Levy and Y. Goldberg, “Dependency-Based Word Embeddings.” 2014, pp. 302–308.
[Online]. Available: http://www.aclweb.org/anthology/P14-2050.pdf

[101] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations
in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[102] A. Trask, P. Michalak, and J. Liu, “sense2vec-A fast and accurate method for word sense
disambiguation in neural word embeddings,” arXiv preprint arXiv:1511.06388, 2015.

[103] F. P. Tasse and N. Dodgson, “Shape2vec: Semantic-based Descriptors for 3d Shapes,
Sketches and Images,” ACM Trans. Graph., vol. 35, no. 6, pp. 208:1–208:12, Nov. 2016.
[Online]. Available: http://doi.acm.org/10.1145/2980179.2980253

[104] O. Ludwig, Q. Do, C. Smith, M. Cavazza, and M. F. Moens, “Learning to Extract Action
Descriptions from Narrative Text,” IEEE Transactions on Computational Intelligence and AI
in Games, vol. PP, no. 99, pp. 1–1, 2017.

[105] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering
clusters in large spatial databases with noise.” vol. 96, 1996, pp. 226–231.

[106] Y. Liu, Z. Liu, T.-S. Chua, and M. Sun, “Topical Word Embeddings.” 2015, pp. 2418–2424.

[107] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of machine
Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[108] G. Guerra-Filho and A. Biswas, “The human motion database: A cognitive and parametric
sampling of human motion,” Image and Vision Computing, vol. 30, no. 3, pp. 251–261, 2012.

[109] B. o. L. Statistics, “American Time Use Survey,” Tech. Rep., 2010. [Online]. Available:
http://www.bls.gov/news.release/atus.nr0.htm

[110] M. Hart, “Project Gutenberg.” [Online]. Available: http://www.gutenberg.org/

[111] L. Fei-Fei, R. Fergus, and P. Perona, “Learning Generative Visual Models from Few Train-
ing Examples: An Incremental Bayesian Approach Tested on 101 Object Categories,” in
Computer Vision and Pattern Recognition Workshop, 2004. CVPRW ’04. Conference on.
Amsterdam, Netherlands: Elsevier, Jun. 2004, pp. 178–178.

[112] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep rep-
resentation for volumetric shapes,” in the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1912–1920.

[113] R. ehek and P. Sojka, “Software Framework for Topic Modelling with Large Corpora,” in
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Valletta,
Malta: ELRA, May 2010, pp. 45–50.

[114] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Ma-
chine Learning Research, vol. 12, pp. 2825–2830, 2011.

[115] H. Lee, “mergeCGF AI,” Dec. 2015. [Online]. Available: realtimevisual.com

277

http://www.aclweb.org/anthology/P14-2050.pdf
http://doi.acm.org/10.1145/2980179.2980253
http://www.bls.gov/news.release/atus.nr0.htm
http://www.gutenberg.org/
realtimevisual.com

[116] E. Fast, W. McGrath, P. Rajpurkar, and M. S. Bernstein, “Augur: Mining Human Behaviors
from Fiction to Power Interactive Systems.” Santa Clara, California: ACM, 2016, pp. 237–
247.

[117] A. J. Quinn and B. B. Bederson, “Human computation: a survey and taxonomy of a growing
field.” Vancouver, BC, Canada: ACM, 2011, pp. 1403–1412.

[118] M. Guzdial, B. Harrison, B. Li, and M. O. Riedl, “Crowdsourcing Open Interactive Narra-
tive,” in International Conference on the Foundations of Digital Games. Pacific Grove, CA:
FDG, 2015, p. 9.

[119] M. Rouhizadeh, M. Bowler, R. Sproat, and B. Coyne, “Collecting semantic data by Mechan-
ical Turk for the lexical knowledge resource of a text-to-picture generating system,” in Ninth
International Conference on Computational Semantics. Association for Computational Lin-
guistics, 2011, pp. 380–384.

[120] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An annotated corpus of
semantic roles,” Computational linguistics, vol. 31, no. 1, pp. 71–106, 2005.

[121] M. Palmer, D. Gildea, and N. Xue, “Semantic role labeling,” Synthesis Lectures on Human
Language Technologies, vol. 3, no. 1, pp. 1–103, 2010.

[122] Y. Hahm, Y. Kim, Y. Won, J. Woo, J. Seo, J. Kim, S. Park, D. Hwang, and K.-S. Choi,
“Toward Matching the Relation Instantiation from DBpedia Ontology to Wikipedia Text:
Fusing FrameNet to Korean,” in Proceedings of the 10th International Conference on
Semantic Systems, ser. SEM ’14. New York, NY, USA: ACM, 2014, pp. 13–19. [Online].
Available: http://doi.acm.org/10.1145/2660517.2660534

[123] S. Kbler, R. McDonald, and J. Nivre, “Dependency parsing,” Synthesis Lectures on Human
Language Technologies, vol. 1, no. 1, pp. 1–127, 2009.

[124] Y. Goldberg and J. Nivre, “Training deterministic parsers with non-deterministic oracles,”
Transactions of the association for Computational Linguistics, vol. 1, pp. 403–414, 2013.

[125] S. Banerjee and T. Pedersen, “An Adapted Lesk Algorithm for Word Sense Disambiguation
Using WordNet,” in Proceedings of the Third International Conference on Computational
Linguistics and Intelligent Text Processing, ser. CICLing ’02. London, UK, UK:
Springer-Verlag, 2002, pp. 136–145. [Online]. Available: http://dl.acm.org/citation.cfm?id=
647344.724142

[126] T. U. of Tokyo, “ICS Action Database,” 2003. [Online]. Available: http://www.ics.t.u-tokyo.
ac.jp/action/

[127] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: A large video database
for human motion recognition,” in 2011 International Conference on Computer Vision.
Barcelona, Spain: IEEE, Nov. 2011, pp. 2556–2563.

[128] K. Yordanova and T. Kirste, “A Process for Systematic Development of Symbolic Models
for Activity Recognition,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 20:1–20:35,
Dec. 2015. [Online]. Available: http://doi.acm.org/10.1145/2806893

278

http://doi.acm.org/10.1145/2660517.2660534
http://dl.acm.org/citation.cfm?id=647344.724142
http://dl.acm.org/citation.cfm?id=647344.724142
http://www.ics.t.u-tokyo.ac.jp/action/
http://www.ics.t.u-tokyo.ac.jp/action/
http://doi.acm.org/10.1145/2806893

[129] J. Ye, G. Stevenson, and S. Dobson, “USMART: An Unsupervised Semantic Mining
Activity Recognition Technique,” ACM Trans. Interact. Intell. Syst., vol. 4, no. 4, pp.
16:1–16:27, Nov. 2014. [Online]. Available: http://doi.acm.org/10.1145/2662870

[130] S. R. K. Branavan, N. Kushman, T. Lei, and R. Barzilay, “Learning High-level
Planning from Text,” in Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers - Volume 1, ser. ACL ’12. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2012, pp. 126–135. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2390524.2390543

[131] R. Lu and S. Zhang, Automatic Generation of Computeranimation: Using AI for Movie Ani-
mation. Berlin, Heidelberg: Springer-Verlag, 2002.

[132] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun, “Interactive Furniture Layout
Using Interior Design Guidelines,” ACM Trans. Graph., vol. 30, no. 4, pp. 87:1–87:10, Jul.
2011. [Online]. Available: http://doi.acm.org/10.1145/2010324.1964982

[133] L.-F. Yu, S.-K. Yeung, C.-K. Tang, D. Terzopoulos, T. F. Chan, and S. J.
Osher, “Make It Home: Automatic Optimization of Furniture Arrangement,” ACM
Trans. Graph., vol. 30, no. 4, pp. 86:1–86:12, Jul. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2010324.1964981

[134] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hockenmaier, and
D. Forsyth, “Every picture tells a story: Generating sentences from images.” Springer,
2010, pp. 15–29.

279

http://doi.acm.org/10.1145/2662870
http://dl.acm.org/citation.cfm?id=2390524.2390543
http://doi.acm.org/10.1145/2010324.1964982
http://doi.acm.org/10.1145/2010324.1964981

Curriculum Vitae

D.1 Education

• Ph.D in Computer Science George Mason University, July 2017

• Ph.D Candidate in Computer Science, George Mason University, May 2016.

• Masters of Science in Computer Science, George Mason University May 2014

• Bachelors of Science in Physics with honors, Roanoke College May 2011

D.2 Awards, Grants, and Professional Memberships

• Provost Dissertation Completion Grant Recipient, George Mason University, 2016

• Graduate Student Travel Fund Recipient, George Mason University, 2016

• Distinguished Graduate Teaching Award, George Mason University, 2015-2016

• Graduate Student Travel Fund Recipient, George Mason University, 2015

• Outstanding Graduate Teaching Award, George Mason University, 2011-2012

• President, Sigma Pi Sigma, Roanoke College, 2010-2011 Secretary, Pi Mu Epsilon, Roanoke
College, 20110-2011

D.3 Appointments

• Graduate Research Assistant, Games and Intelligent Animations Lab, George Mason Univer-
sity, 2017

• Graduate Teaching Assistant, Introduction to Computer Science (SPARC), George Mason
University, Fall 2016

• Ph.D Intern, Visual Analytics, Pacific Northwest National Laboratory, Summer 2016

• Graduate Teaching Assistant, Introduction to Computer Science (SPARC), George Mason
University, 2015-2016

280

• Repperger Intern, Air Force Research Laboratories, Wright Patterson Air Force Base, Sum-
mer 2015

• Graduate Research Assistant, Games and Intelligent Animations Lab, George Mason Univer-
sity, 2012-2015

• Graduate Teaching Assistant, Introduction to Computer Science, George Mason University,
2011-2012

• Undergraduate Tutor, Physics I and II, Roanoke College, 2010-2011

• Undergraduate Research Assistant, Roanoke College, 2007-2011

D.4 Journal Papers and Book Chapters

• J. Timothy Balint and Jan M. Allbeck. 2017. ALET: Agents Learning their Environment
through Text. Computer Animation and Virtual Worlds. 28.3-4 Best Paper Nominee

• J. Timothy Balint, Brad Reynolds, Leslie M. Blaha, Tim Halverson. Visualizing Eye Move-
ments in Formal Cognitive Models, In Eye Tracking and Visualization: Foundations, Tech-
niques, and Applications. ETVIS 2015, Springer International Publishing, 2017, pp. 93-111

• John T. Balint and Jan M. Allbeck, Multi-sense Attention for Autonomous Agents, in Vir-
tual Crowds: Steps Toward Behavioral Realism, 1st ed., vol. 8, Morgan and Claypool, pp.
117130.

• Weizi Li, John T. Balint, and Jan M. Allbeck, Using a Parameterized Memory Model to
Modulate NPC AI, in Virtual Crowds: Steps Toward Behavioral Realism, 1st ed., vol. 8,
Morgan and Claypool, pp. 149157.

D.5 Conference Papers

• J. Timothy Balint, Jan M. Allbeck, Michael R. Hieb. 2015. Automated Simulation Creation
from Military Operations Documents. In Proceedings of I/ITSEC 2015. Paper 15227

• J. Timothy Balint and Jan M. Allbeck. 2015. Automatic Generation of Plausible Agent
Object Interactions. In Intelligent Virtual Agents (IVA 15). 295-309

• Tim Balint and Jan M. Allbeck. 2014. Is That How Everyone Really Feels? Emotional
Contagion with Masking for Virtual Crowds. In Intelligent Virtual Agents (IVA 14). 26-35

• Tim Balint and Jan M. Allbeck. 2013. Whats Going on? Multi-sense Attention for Virtual
Agents. In Intelligent Virtual Agents (IVA 13). 349-357

• Weizi Li, Tim Balint, and Jan M. Allbeck. 2013. Using a Parameterized Memory Model to
Modulate NPC AI. In Intelligent Virtual Agents (IVA 13). 1-14

281

D.6 Workshop Papers and Posters

• J. Timothy Balint, Dustin Arendt, and Leslie M. Blaha. 2016. Storyline Visualizations of
Eye Tracking in Movie Viewing. In Proceedings of the Second Workshop on Eye Tracking
and Visualization (ETVIS 2016). Best Paper Award

• J. Timothy Balint and Jan M. Allbeck. 2016. Generating Semantic Information for Virtual
Environments. In Proceedings of the Workshop on Virtual Humans and Crowds for Immer-
sive Environments (VHCIE 2016).

• J. Timothy Balint, Brad Reynolds, Leslie M. Blaha, Tim Halverson. 2015. Visualizing
Eye Movements in Formal Cognitive Models. In Proceedings of the First Workshop on Eye
Tracking and Visualization (ETVIS 2015)

• Tim Balint, Yotam Gingold, and Jan M. Allbeck. 2014. Agent Script Generation using
Descriptive Text Documents. In Proceedings of the Seventh International Conference on
Motion in Games (MIG ’14). 181-181.

• John T. Balint and Jan M. Allbeck. 2013. MacGyver Virtual Agents: using Ontologies and
Hierarchies for Resourceful Virtual Human Decision-Making. In Proceedings of the 2013 in-
ternational conference on Autonomous agents and multi-agent systems (AAMAS ’13). 1153-
1154

D.7 Presentations and Invited Talks

• ALET: Agents Learning their Environment through Text at Computer Animation and Social
Agents, Seoul, South Korea, 2017. – Also presented at George Mason University, 2017

• Knowing the World: Semantics in Video Games at East Coast Gaming Conference 2017,
Raleigh, North Carolina, 2017. Invited Talk – Also presented at George Mason University,
2017

• Storyline Visualizations of Eye Tracking in Movie Viewing at ETVIS, Baltimore, Maryland,
2016

• Automated Simulation Creation from Military Operations Documents at I/ITSEC, Orlando,
Florida, 2015

• Automatic Generation of Plausible Agent Object Interactions at Intelligent Virtual Agents,
Delft, The Netherlands, 2015

• Making Cortanas Friends: Embodying Video Game Characters at Roanoke College, Salem
VA, 2015. Invited Talk

• Agent Script Generation using Descriptive Text Documents (Poster Presentation) at Motion
in Games, Playa Vista, CA 2014

• Is that How Everyone Really Feels? Emotional Contagion with Masking for Virtual Crowds
at Intelligent Virtual Agents, Boston MA 2014

282

• Using a Parameterized Memory Model to Modulate NPC AI at Intelligent Virtual Agents,
Edinburgh U.K. 2013 – Also presented at George Mason University 2013

• What’s going on? Multi-Sense Attention for Virtual Agents at Intelligent Virtual Agents,
Edinburgh U.K. 2013 – Also presented at George Mason University 2013

• Microsoft Kinect and Motion Capture at Roanoke College, Salem VA, 2010 Shared talk with
Dr. Durrell Bouchard

D.8 Service

• Reviewed for the Following Conferences and Journals

– Journal of Graphics Tools

– Transactions on Affective Computing

– IEEE Transactions on Computational Intelligence and AI in Games

– Computational Animation and Social Agents 2017

– Autonomous Agents and Multi Agent Systems 2017

– Motion in Games 2015

– Motion in Games 2014

– Intelligent Virtual Agents 2014

– Motion in Games 2013

– Intelligent Virtual Agents 2013

– Autonomous Agents and Multi Agent Systems 2013

• Assisted in University Recruiting Activities

– Appeared in a promotional video for George Mason Universitys Computer Science De-
partment

– The first participant presenting their graduate experience to perspective students in the
Volgenau School of Engineering Perspective Applicant Session

– Student Recruitment Czar at George Mason Universitys Computer Science Department
for perspective Ph.D. students

• Mentored undergraduate students in virtual agent research

283

	List of Tables
	List of Figures
	Abstract
	 Introduction
	The Need for a Consistent Action Set
	Contributions of this Work
	Organization of Thesis

	Related Work
	Virtual Character Animation
	Semantics for Simulations and Animations
	Generating Meta-Data
	Agent Programming Languages
	Hierarchical Task Networks

	The Parameterized Action Representation

	 Defining the Parameterized Action Representation
	Agent Languages
	Representations of Actions for Virtual Characters

	The Parameterized Action Representation Defined
	A Note on Symbolic Notation

	Definition of Semantics S
	Definition of Objects OBJ
	Definition of Conditions and Assertions
	Definition of Actions
	Execution of an Action
	Roles R
	Condition and Assertions
	Semantics of Actions S

	Conjunctives
	Explanation of Tasks T
	Annotation
	Task Grammar and Representations
	Measure for Behavior Similarity

	Case Study
	Conclusions
	Summary of Key Components
	Symbols for the Language
	Key Functions

	 Considerations on Action Organization
	Introduction
	Parent-Child Action Relationships
	Task Inheritance
	Semantic Inheritance
	Role Inheritance
	Condition-Assertion Inheritance

	An Application-based Measurement for FIDAG Organization
	Narrative Planning and Behavior Selection Algorithms
	Data Compression

	Experimentation
	A Quick Note on Pragmatics
	Conclusions

	 Automated Generation of Action Hierarchies
	Data Sources for Automated Generation
	Using WordNet to Generate Ontologies
	A Multi-sense Method to determine the Sense of an Action
	Hypernym Tree Generation
	Confidence Based Symbiotic Generation

	Using Continuous Bag of Words to Generate Hierarchies
	Creating a Hierarchy using Word Vectors

	Automated Generation of FIDAGs
	Experimentation
	Conclusions

	 Automated Generation of Action Semantics
	Connecting Objects to Actions using FrameNet
	Agents Learning their Environment through Text (ALET)
	Dependency Grammar Parsing
	Co-occurance Connections
	Operational Information Population

	Experimentation
	Datasets used in Experiment
	Connecting Objects to FrameNet
	ALET Datasets
	Analysis of Role Connection and ALET
	Analysis of Adjectives and Adverbs in Dataset
	Demonstration

	Conclusions

	 Conclusions and Future Work
	Summary and Conclusions
	Key Contributions

	Lessons Learned
	Future work

	 PARS used in Case Study
	Object Designation
	Designation of Actions

	 Keywords used in disambiguation tests
	Keyword List
	Smartbody Definition Keywords
	Smartbody Synonym Keywords
	CMU Definition Keywords
	CMU Synonym Keywords
	BLS Definition List
	BLS Synonym List

	Object Leafs for Experimentation Section

	 Automated Semantics Data
	Objects used in our Analysis and their Associated Synsets
	ModelNet
	CalTech 101
	Office
	Pub

	Actions and Frames used in our Analysis
	SmartBody
	CMU
	The ICS Action Database
	The Human Motion Database
	The American Time Use Survey

	The Designation of Functional Elements for Each Frame
	ICT SmartBody
	CMU
	ICS Action Database
	Human Motion Database
	BLS

	Bibliography
	Education
	Awards, Grants, and Professional Memberships
	Appointments
	Journal Papers and Book Chapters
	Conference Papers
	Workshop Papers and Posters
	Presentations and Invited Talks
	Service

