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ABSTRACT 

 

  
LAND COVER/USE CLASSIFICATION USING OPTICAL AND QUAD 
POLARIZATION RADAR IMAGERY 
 
Arjun Sheoran, M.S. 

George Mason University, 2009 

Thesis Director: Dr. Barry N. Haack 

 

With the recent increase in the availability of quad polarization (Horizontal-Horizontal, 

Horizontal-Vertical, Vertical-Horizontal and Vertical-Vertical) radar data, the need to 

assess the utility of these datasets for land cover/use classification is crucial. Historically, 

most spaceborne radars were single wavelength and single polarization. For this study, 

the Japanese ALOS (Advanced Land Observing Satellite) PALSAR (Phased type L-band 

Synthetic Aperture Radar) quad polarization radar data were obtained at 12.5 meter 

spatial resolution. The second dataset to be used in this study was acquired by Landsat 

TM (Thematic Mapper) at a 28.5 meter spatial resolution.  

 The purpose of this study is to evaluate the classification of various land 

covers/uses using spaceborne quad polarization radar and optical TM data. Secondly, the 

study analyzes the utility and improvements that can be made to the radar and TM data 

with the help of using radar texture and multi sensor fusion techniques, e.g., layer 

stacking and Principal Component Analysis (PCA). 

   



 

Three study sites Bangladesh, California and Kenya were chosen for analysis in 

this study. The primary methodology was spectral signature extraction and Transformed 

Divergence (TD) separability measures to evaluate the relative utility of the various data 

types. In addition four texture measures, kurtosis, mean euclidean distance, skewness, 

and variance and four window sizes were analyzed. Supervised signature extraction and 

classification (maximum likelihood) was used to classify different land covers/uses 

followed by an accuracy assessment.  

 The combination of radar and Landsat consistently provided excellent 

classification accuracies, well over 90%.  Comparing the two datasets Landsat provided 

higher classification accuracies as compared to radar and radar texture analyzed 

individually. Variance texture was consistently the best among all four texture measures, 

as it showed the most improvement in the TD values. The use of texture on radar was 

helpful when evaluating the separability among the different land covers/uses. However, 

texture was not able to provide higher classification accuracies for the different land 

covers/uses as compared to the original radar and Landsat datasets. 
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1. Introduction 
 

 Assessing problems within environmental studies, economic planning, resource 

management, restoration projects and disaster preparedness requires a scientific analysis 

of data and using processes available within the geospatial industry. With the launch of 

new spaceborne radar systems, including RADSARSAT-2 and TerraSAR-X, the 

application and use of quad polarization radar data within the geospatial industry may 

prove beneficial. However, the full potential of quad polarization radar data for land 

cover/use classification and other applications remains in its nascent stages as a result of 

limited availability and analysis.  Only with a detailed understanding of this relatively 

new operational spaceborne quad polarization data can the scientific and application 

community maximize the benefits of these technological innovations.  To better analyze 

the utility of quad polarization radar it is imperative that the new data being collected is 

examined scientifically. 

 Traditional means of providing reliable land cover/use information is primarily 

undertaken by multispectral systems such as Landsat Thematic Mapper (TM). These 

systems, because of their limited functionality in cloud covered areas, are not able to fully 

sustain the demands for providing land cover/use information for many areas around the 

world. However, with the success of RADARSAT-1 and other operational spaceborne 

radar systems, this limitation has been addressed to a certain extent. With the recent success 
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of operational spaceborne radar systems, a geospatial framework has been established, 

which  provides accurate and continuous data for applications ranging from offshore oil 

drilling in the Gulf of Mexico to homeland security.  

 Radar systems (microwave) have distinct advantages over traditional 

multispectral sensor (visible and infrared) systems which has made the application of 

radar data indispensable to the geospatial industry. The longer wavelengths of radar are 

capable of penetrating atmospheric conditions that limit traditional spaceborne optical 

and multispectral systems (Henderson et al. 2002).  As seen in Figure 1, microwaves are 

longer than all other wavelengths with the exception of radio waves. These microwave 

wavelengths hold enormous data collecting potential for many geographic areas around 

the world that are often obscured by cloud cover.   Radar is an active sensor, which 

illuminates the surface with its own energy as opposed to being dependent on daylight as 

is the case with optical sensors. Radar sensors are capable of precisely measuring the 

amount of returned energy, i.e., backscatter, and can accurately delineate the terrain 

regardless of the time and weather (Campbell, 2002). 
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Figure 1: The Electromagnetic Spectrum (EMS). (CRISP, 2001) 

  

All objects emit and reflect electromagnetic radiation. Remote sensing can detect 

feature characteristics based on the reflectance, absorption and scattering of 

electromagnetic radiation. Every surface feature has a distinct way in which it interacts 

with electromagnetic radiation providing unique information. Radar and optical sensors 

are capable of remotely sensing these interactions and, in turn, are able to provide a better 

understanding of ground features. These sensors collect spectral information which is 

commonly referred to as digital numbers (DN).  Single surface feature exhibits a variable 

response across the EMS that is unique, and is generally referred to as the reflectance 

curve or the spectral signature (Campbell, 2002). All ground features reflect energy in a 

particular way and similar features exhibit the same reflectance properties. For example 

healthy green vegetation in the infrared bands will have high reflectance; water is 

expected to have low reflectance in the infrared bands. Gaining a better understanding of 
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how certain features interact with electromagnetic energy can help provide unique and 

validating information. 

 The surface interaction of radar is very different than optical sensors thus 

providing unique information about ground features. The response of radar is a function 

of surface roughness, geometry and internal structure as opposed to surface reflection 

with optical wavelengths. The variation in radar backscatter from a feature may be a 

result of incident angle, acquisition date, look direction, moisture on the surface or the 

physical composition of the feature itself. Backscatter is also strongly influenced by the 

orientation of the feature to the incoming radar signal. This is particularly true for cultural 

features such as slanting roof tops.  In Asian countries such as Bangladesh, houses are 

usually roofed with galvanized and corrugated steel sheets commonly referred to as tin. 

With a slight shift in the incident angle these slanting roof tops can drastically influence 

the intensity of the return signal resulting in high or low backscatter. Multispectral 

sensors have often not been beneficial in such settings.  

 One of the difficulties with the analysis of radar data is that most recent radar 

spaceborne systems only collect data using a single wavelength with a fixed polarization.  

Hence only one component of the total surface scattering is being measured, while any 

additional information contained within the returned radar signal is lost (Toyra et al. 2001; 

Dell’Acqua et al. 2003).  More recent systems, such as the Japanese PALSAR and the 

Canadian RADARSAT-2, include an increased number of polarizations. Imagery 

acquired under different polarizations will obtain different backscatter responses and 
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different informational content (Banner and Ahern, 1995; Hegarat-Mascle et al. 1997; 

Gauthier et al. 1998).   

  Like polarizations transmit and receive the same polarizations, i.e., either HH or 

VV. However, cross polarization, HV and VH are capable of transmitting and receiving 

polarizations which are orthogonal to each other (Campbell, 2002). Cross polarization, 

due to its interchangeability is able to provide unique information about surface features 

which might be lost when using like polarization. 

 Generally, the visible and infrared wavelength systems are recognized as being 

superior to radar data, due to their multispectral information content (Brisco and Brown, 

1999).  This is a strong argument for the utility of sensor fusion. Such multispectral 

systems are a fusion of several individual bandwidths of information.  However, one 

problem with these systems is that spectral responses in the optical and infrared 

wavelengths are sensitive to differential scattering and absorption caused by chlorophyll, 

green leaf areas, and leaf structure leaving some vegetation types that cannot be separated 

due to the similarity of their spectral responses (Raghayswamy et al. 1996).  Radar 

responds differently to varied terrain and dielectric factors such as plant canopy roughness 

and structure, plant moisture content and sub-canopy conditions.  As such, a combined 

sensor analysis could contribute to information regarding both the leaf composition and the 

surface geometry thereby greatly increasing the potential information content (Henderson 

et al. 2002).   
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Research objective  

 The primary objective of this study is to empirically examine the potential of 

independently using quad polarization radar and optical data to do land cover/use 

classification.  The study also evaluates improvements that can be made to the original 

datasets (radar and Landsat) to increase the overall classification accuracy by fusing 

multiple datasets together.   

  The effectiveness of applying different texture measures to the radar imagery is 

also addressed. The intent is to determine whether radar texture yields better 

classification and separability for the various land covers/uses as compared to using 

original radar. It is also important to determine which texture measures and window sizes 

provide the best classification and separability results. This question will be addressed 

using a technique called Transformed Divergence (TD). 

  The final assessment in this study focuses on determining the best procedure for 

combining multiple datasets. Layer stacking and PCA are the two procedures used to 

evaluate the effectiveness of fusing datasets. Layer stacking has been a commonly used 

technique in the field of remote sensing, where as the use of PCA for classification has 

been used sparingly.  The loss of key spectral information in an image has resulted in 

PCA not being widely used for land cover/use classification. The intent of this study is 

uncover some of the flaws in both techniques and determine which process results in 

minimal loss of key spectral information and in turn providing better classification. Three  

areas were chosen for this study.  Having three study areas eliminates any inconsistencies 

in the results and also helps to empirically verify the results from one  area to another.  
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2. Methodology and Literature Review 

 

 These sections outline the methodologies used in this study, and are arranged in 

the order in which the analysis and assessments were undertaken. The methodology for 

all study sites is the same and follows the pattern described below.  

2.1 Pre-processing of Data (Radar and Landsat) 

 The three radar datasets used in this study were acquired from Japanese ALOS 

and the PALSAR sensor at 12.5 meter spatial resolution. Each radar image covers an area 

of approximately 65 kilometers x 35 kilometers. The original PALSAR data were in a 

raw format and had to be georeferenced before it could be analyzed.  

 A software package (Map Ready 1.0.3) provided by the Alaska Satellite Facility 

(ASF), was used to convert the raw radar data into georeferenced files. The free software 

was downloaded from the ASF website. The radar data were converted from the raw 

format to four 32-bit floating point GeoTiff files (one for each band – HH, HV, VH, and 

VV). The next step in pre-processing was to convert the GeoTiff files to image (.img) 

files. It is important to convert the .tiff files to .img files as it allows for a more detailed 

analysis of the data.  The conversion to image files was done using the import module in 

ERDAS Imagine 9.2. All of the analysis undertaken in this study was done using ERDAS 

Imagine 9.2.  
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 To process the radar imagery effectively and efficiently, the four image files were 

converted from 32-bit floating point to unsigned 8 bit.  Considering ERDAS Imagine is 

only capable of displaying an 8-bit image, i.e., on a scale of 0 to 255, it was advantageous 

to use 8-bit imagery. All PALSAR images were accurately georeferenced at 12.5 meter 

spatial resolution.   

 Landsat imagery for the three study areas was acquired from the United States 

Geological Survey (USGS), via the United States Department of Foreign Agricultural 

Service. The multispectral Landsat (TM) images had a spatial resolution of 28.5 meter for 

the three visible (blue, green, red) and three infrared (near infrared, mid infrared, mid 

infrared) bands. The Landsat images have a foot print (area on ground for one image) of 

approximately 183 kilometers by 170 kilometers.  Access to the USGS imagery archive 

was a valuable resource throughout the course of this study. 

 Based on the location of the PALSAR imagery, the Landsat images were obtained 

for the three study sites. With the exception of one study site, the Landsat images for the 

other two sites had to be mosaiced together to cover the extent of the radar images. Even 

though the Landsat images cover a larger geographic area, they were at the bottom of the 

radar image and hence had to be mosaiced. The Landsat images for Bangladesh and 

California were mosaiced together using imagery from the same day. Mosaicing of the 

images was a first step prior to subsetting and resampling the images. The reason for 

doing so was to protect the overall radiometric accuracy of the datasets.  

 The next step was to register and resample the Landsat images. The Landsat 

images were resampled to 12.5 meter using a nearest-neighbor procedure. This was done 
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to maintain consistency across all images and to avoid any discrepancies during the 

process. To maintain the texture values of the data, the resampling should be to the 

smallest pixel of the original data types.  During the resampling process all six bands 

three optical and three infrared bands, were included. As part of this study, the TM 

panchromatic and the thermal band were not included. The Landsat images were 

georeferenced to the Universal Transverse Mercator (UTM) coordinate system.  

 The next step was to rescale all of the Landsat images to an unsigned 8 bit (0 to 

255) radiometric resolution. This was done in order to maintain consistency across both 

datasets (Landsat and radar).  The last step was to subset the Landsat images based on the 

location and size of the radar image. The intent was not only to reduce the overall file 

size of the Landsat image, but also to avoid any unnecessary classification of pixels.   

2.2 Transformed Divergence (TD) 

 Transformed Divergence, which is calculated from the means and covariance 

matrices of each spectral class or calibration site, is a measure of the statistical distance 

between class or site pairs of interest and provides information on their separability. This 

separability is an indirect estimate of the likelihood of correct classification between 

different datasets or derived measures (Swain and Davis, 1978).  Such an estimate 

provides information usually obtained by the time consuming and expensive process of 

actual classification and accuracy evaluations.  A TD value of 1,500 or greater generally 

indicates an acceptable separability of classes (Latty and Hoffer, 1980).  The TD 

separability level does vary as a function of the complexity of the input data.   It is lower 
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for simpler datasets and higher for more complex data. The maximum or saturated TD 

value is 2,000.  

 In previous studies undertaken by Haack (1984), TD was not only used to 

determine the best number of files/bands for classification purposes, but also for selecting 

specific datasets. Similarly, in this study, TD is used to select the optimum texture 

measure along with the best window size, for classification purposes.  The reason for 

using TD as a base for determining the classification datasets is primarily a function of 

increasing efficiency and reducing redundancy in the actual classification.  

 Prior to evaluating the TD, spectral signatures were extracted from the areas of 

interest (AOIs) for each of the three study areas.  One AOI was used for each class. These 

AOIs were identified using ancillary information such as Google Earth and other sources. 

Spectral signatures were extracted from the four AOIs for each study area and TD values 

were then calculated to evaluate the separability among the various classes. The use of 

TD was to determine the relative value of the different data for land cover/use delineation 

including the use of variance texture as compared to the original radar and TM bands.  

The separability results or TD values for the different land covers/uses were the 

foundation for selecting which radar texture measure would be used for classification 

purposes.  

2.3 Texture Measures Radar  Imagery 

 After both sensor datasets were georectified, resampled, and AOIs identified, four 

texture values were extracted from multiple window sizes (5 x 5, 7 x 7, 11 x 11 and 13 x 

13). Previous studies conducted by Idol et al. (2007) and Sheoran et al. (2007)  have 
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suggested little improvement in separability and classification values by using a 9 x 9 

window size. Therefore, the 9 x 9 window size has not been evaluated in this study.  

 In this study, texture was only applied to the PALSAR imagery and not the 

optical data.  Mean eucliden distance, variance, skewness and kurtosis are the texture 

measures available within ERDAS, and hence all four were chosen for comparison.  

Texture was calculated on radar imagery for all three study sites. A comparison was 

made between the TD values for the original radar and radar texture. The first texture 

measure applied to the radar image was mean euclidean distance (1st order)  

1
])([ 2

1
2

−

−
= ∑ ∑

n
xx ijc λλ

 
  Where,  

  
λijx  = DN (Digital Number) value for spectral band λ and pixel (i, j) of a 

multispectral image 
  λcx  = DN value for spectral band λ of a window’s center pixel 
  n = number of pixels in a window 
 

The second texture measure used on the radar images was variance (2nd order),  

1
)( 2

−

−
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n
Xxij
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x
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  Where,  
 

     ijx  = DN value of pixel (i,  j) 

      n  = number of pixels in a window 
                   X  = Mean of the moving window (kernel) 
 
The third order of texture used on the radar images was skewness,  
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  ijx  = DN value of pixel (i,  j) 

  n  = number of pixels in a window 
  X  = Mean of the moving window (kernel) 
  σ  = Variance 
 
The fourth order of texture used on the radar images was kurtosis,  

2

4

))(1(
)(

σ−

−
= ∑

n
Xxij

  

  Where,  

  ijx  = DN value of pixel (i, j) 

  n  = number of pixels in a window 
  X  = Mean of the moving window (kernel) 
  σ  = Variance  
 

  Textural information may be as important as spectral information in radar, as the 

information content of an image resides in both the intensity (spectral) of individual 

pixels and the spatial arrangement of the pixels (Anys and He, 1995; Kurosu et al. 1999).  

Standard image classification procedures used to extract information from remotely 

sensed images usually ignore this spatial information and are based on purely spectral 

characteristics.  Such classifiers may be ineffective when applied to land classes such as 

residential and urban areas that are largely distinguished by their spatial rather than their 

spectral characteristics (Solberg and Anil, 1997; Townsend, 2002).  The advantages of 

using derived radar measures, such as texture measures at different window sizes, in 

comparison to original radar data, has been demonstrated by Haack et al. (2002) and 

Herold et al. (2005).Textural information may be used in combination with the spectral 

measurements of a wavelength for analysis (Nyoungui et al. 2002; Huang et al. 2007). 

Texture is particularly useful for features in the natural environmental, because it reflects 
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the local variability of grey level in the spatial domain revealing unique information 

about the ground features (Zhang et al. 2008).  

2.4 Fusing of Data 

 Over the years the fusing of data from multiple sensors has been a common 

technique and this trend is bound to continue as the geospatial technologies improve. 

With its origin in military application, image fusion has provided a framework for the 

civilian sector which helps integrate different sensor platforms for a variety of uses 

(Roberts et al. 2008).  According to Chavez et al. (1991), one of the reasons for this 

increase in fusing multiple datasets is due to the complimentary information of the 

different datasets. It is crucial for the scientific community to harness this potentially 

useful technique as it will immensely improve the geographic knowledge of remote 

regions across the world. Fusing data from multiple sensors, i.e., Landsat and radar, has 

proved to be an exceptionally efficient technique in reducing the overall ambiguity in the 

datasets. Previous studies conducted by Huang et al. (2007) and Sheoran et al. (2007), 

have suggested an increase in the overall classification values by fusing multiple datasets 

together.  

 The availability of remotely sensed data for the  same geographic area obtained 

from separate sensors operating in different portions of the electromagnetic spectrum, 

such as Landsat TM and PALSAR, has increased greatly.  This, along with improved 

technology for the processing and fusing of such separate datasets, has made the 

synergies between optical and radar data for land applications of greater practical 

importance (Leckie, 1990; Pal et al. 2007).  The fusing of data from different sensors is 
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done in an attempt to generate an interpretation of a geographic area that is not obtainable 

from any single sensor alone. This is also done to reduce the uncertainty associated with 

data from a single source (Schistad et al. 1994; Saraf, 1999; Simone et al. 2002).  Image 

fusion over the years has become a useful technique in the remote sensing field, not only 

making the interpretation process faster and more reliable, but also providing unique and 

accurate information for the extracted features (Wen and Chen, 2004).  There are distinct 

advantages of fusing radar with optical data, as the end product has the advantage of 

textural information (radar image), and spectral information from the optical and infrared 

bands. Hence, by fusing multiple datasets, an analyst has a single and more informative 

image (Pal et al. 2007).  

 In this study there are two procedures for fusing the different datasets together, 

PCA and layer stacking. Principal Component Analysis in the field of remote sensing is 

used quite sparingly due to the occasional loss of key spectral information in an image, 

where as layer stacking is commonly used to combine different datasets.  The primary 

motive in this study is to determine if overall classification accuracies can be improved 

without loss of key information. A comparison would be made between the accuracy 

attained using the two techniques, in order to determine which procedure is better suited 

for land cover/uses classification. The two techniques would be applied to the following 

datasets:  

1) original radar with Landsat;  

2) radar texture with Landsat.  
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  Each of these combinations of data were first analyzed using a traditional layer 

stacking procedure, which was followed by calculating PCA of the Landsat and 

combining it with the PCA of radar original and radar texture.  

 Layer stacking is a comparatively straight-forward image processing module as 

compared to PCA. Layer stacking is a process in which different bands are combined 

with each other to generate a single image with multiple bands. One of the advantages of 

layer stacking resides not only in its simplistic nature, but also in its efficiency and 

geometric accuracy to combine bands from different sensors. Secondly, layer stacking 

does not restrict the number of bands which can be evaluated at one time. This provides 

an option of stacking a large number of bands from different datasets together and 

evaluating separability or classification accuracy.   

 In a previous study by Idol et al. (2007), layer stacking was the primary method 

for combining different bands and datasets. In their analysis, layer stacking provided the 

platform for yielding good classification and separability results. Similarly, in a 

preliminary analysis conducted by Sheoran et at. (2007), layer stacking was also 

successfully used to combine different bands and datasets together.  

 Principal Component Analysis is the second technique used in this study for 

fusing datasets. One of the advantages of using PCA is its efficiency to summarize the 

most dominant spatial and spectral characteristic of the datasets (Henebry and Rieck, 

1996). This ability to extract the most valuable component within the imagery is one of 

the reasons for selecting PCA as part of this study. Secondly, PCA also helps in reducing 

the overall redundancy in the dataset by combining the Landsat and radar data bands to 
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create a single image which is more interpretable. PCA is able to extract the most 

dominant spectral characteristic by means of data compression, i.e., large amounts of 

information is compacted into fewer bands by reducing the dimensionality of the data  

(Jensen, 1986).  

 Principal Component Analysis in this study is used to evaluate its effectiveness as 

a classification technique by combining the spectral information from Landsat and the 

textural content of radar imagery. PCA has been successfully used in previous studies for 

land cover mapping and geological assessments (Pal et al, 2006; Chavez et al, 1991). 

However, this study will evaluate its effectiveness for land cover/use classification, 

ideally with little loss in spectral information. 

 In a recent study conducted by Nikolakopoulos (2008), PCA was evaluated in 

combination with eight other fusing techniques, and all techniques including PCA were 

found to improve the spectral resolution and the visual result.  However, the effectiveness 

of using PCA as a fusing technique for classification depends on the datasets being 

evaluated and also on the analysts experience with using the technique. Even though the 

use of PCA might result in good quality images, one of the limitations of this technique, 

as reported in many research papers is the concern over color distortion and loss of 

spectral information (Nikolakopoulos, 2008).   

 Similar to the methodology for layer stacking, PCA will be used on the original 

radar, radar texture, and Landsat imagery. Only one component from each of the datasets 

would be extracted and fused with the other dataset. For example, one principal 

component from the original radar (four bands) will be combined with the one 
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component of Landsat (six bands). Similarly, one component of Landsat will be 

combined with one component of radar texture (four bands). Originally, it was presumed 

that taking three principal components from each datasets would be better. However this 

was not the case as some of the land covers/uses for two of the three study sites were not 

successfully classified. Taking a larger number of principal components has been known 

to erode some of the finer spatial detail in an image (Henebry and Rieck, 1996) and this is 

one of the reasons the study only evaluates one component from each dataset, i.e., radar 

and Landsat. In a previous study, Chavez et al. (1991) successfully evaluated the spectral 

characteristics of multiple datasets based on one principal component.    

2.5 Classification 

 The final step in the analysis was to classify the images. The process of 

classification in essence is segmenting the images into unique classes or informational 

categories based on  land covers/uses.  In this study, signature extraction was used and a 

maximum likelihood decision rule was applied. It is essential to choose a decision rule 

which would effectively determine the likelihood of membership to each of the two, or 

more classes. The algorithm for maximum likelihood decision rule is based on means and 

variances of the different training spectral signatures. It analyzes each pixel individually 

and compares it to the signatures extracted via the decision rule algorithm.   Due to the 

nature of the decision rule each pixel is assigned to only one of the classes. In essence 

this algorithm evaluates and assigns a pixel within an area of overlap to a class which it is 

most likely a member off, based on its spectral signature value. The likelihood of a pixel 

being classified to the right class increases the probability of a correct classification 
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(Herold, 2000). Within each study site the maximum likelihood classifier was applied to 

a number of different datasets including the following: 

1. original radar; 

2.  radar texture; 

3.  original radar and radar texture; 

4. optical; and  

5. fused datasets.  

 The process of image classification can be divided into two steps. The first step is 

to define the criteria by which the images would be segmented and recognized, referred 

to as signature extraction. The second step entails evaluating these extracted signatures 

and assigning image pixels to classify the entire image using a statistical decision rule of 

maximum likelihood.  

 The process of signature extraction is based upon the analyst’s knowledge of a 

particular study area. Particularly in the case of supervised signature extraction, it is 

essential to have a good understanding of the land covers/uses present on the ground to 

identify particular AOIs for extracting signatures. For this study, four different land 

covers/uses were identified for each of the three study sites.  

 The AOIs from which the signatures are extracted are commonly referred to as 

training sites. Selection of the training sites is one of the most important aspects of the 

classification process. Ideally a training site would be homogeneous and would be 

representative of the overall land covers/uses. Selecting training sites for the three study 

sites was based on ancillary information from Google Earth and USGS Landsat images. It 
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is important not to misidentify a land cover/use in a training site because this will lead to 

misclassification during accuracy assessments.  

 The second step in the classification process is where all the image pixels are 

classified based on the training sites. The classification of image pixels is based upon the 

statistics, DN values of the training sites/spectral signatures, associated with each of the 

different land covers/uses. Based on the statistical values from the training sites, all 

image pixels are classified to a particular category, e.g., forest, water, residential or 

almond plantations. For example the decision as to whether or not a pixel is classified as 

a particular land cover/use, is dependent upon a particular decision rule set by the user 

(Herold, 2000). In this study the maximum likelihood decision rule was used across all 

three study areas. Once an entire image has been classified into different categories, 

based on the spectral signature extracted from the training sites, the next step is to 

evaluate accuracy.   

2.6 Accuracy Assessment 

 The process of determining accuracy for a classified image is one of the most 

important steps undertaken in post classification. A classified image for land cover/uses 

without an accuracy assessment is not considered reliable as it does not convey any 

scientific consistency.   

 To undertake an accuracy assessment it is essential to have ground truth or 

validation information. Validation sites identified in this study are polygons and not 

individual pixels. The decision to use polygons over pixels for validation purposes in 

most cases influences the accuracy results (Haack, 2007). Generally polygons tend to 
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provide relatively lower accuracies, as compared to taking individual pixels. However, 

when texture is applied to radar imagery, polygons tend to be better validation sites 

(Herold et al.2005). Considering texture is used in this study, polygons would serve as 

better validation sites as opposed to individual pixels.  

 These validation sites represent the known location for particular land covers/uses 

which are then used to evaluate the classified image. The accuracy of a classified image 

can be determined by comparing the classified image to the validation sites. Ideally, there 

should be multiple validation sites for each land cover/use to reduce any discrepancies 

during the accuracy assessment. For the purpose of this study, two validation sites were 

used for each of the four classes. Validation sites for Kenya and Bangladesh were based 

on ancillary information and also visual interpretation of the known land covers/uses. The 

validation sites for California were based on a 2007 USDA land cover thematic map. 

When selecting the validation sites it was particularly important to avoid any mixed 

pixels (pixels containing two or more land covers/uses), as they reduce the overall 

reliability of the accuracy assessment.  

 It was also crucial to avoid using the training or calibration pixels for validation 

purposes. Hence, different AOIs were created for validation purposes for all three sites. 

One of the reasons for selecting different AOIs for validation is to ensure there is no bias 

in the accuracy assessment, i.e., the validation pixels do not have a relationship to the 

pixels in the training AOI used for classification. Classification accuracies can be 

summarized in an error matrix or a contingency table. An example of a contingency table 

is in Table 1.   
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Table 1: Example of a contingency table for accuracy assessment. 

Example for radar data 
Land 
covers/uses Water Residential Agriculture Forest 

Users 
Accuracy 

Water 16264 4 1326 706 88.9 
Residential 0 4655 1073 109 79.7 
Agriculture 2 1852 1324 620 34.9 
Forest 9 236 1438 914 35.2 

 Producers 
Accuracy 99.9 69.0 25.7 38.9  
Overall 
Accuracy     

75.8 

 

 Each of the four land covers/uses are identified in the top columns and correspond 

to the same classes in the rows. The four classes have a number of correctly classified 

pixels, which are represented diagonally, e.g., 16,264 for water, 4,655 for residential. The 

number of pixels for each class in the nondiagonal column represents the misclassified 

pixels. Misclassified pixels in the columns are referred to as errors of omission, i.e., 

classification has occurred by omitting true area from the classified image. On the other 

hand, the misclassification in the rows is referred to as the error of commission, i.e., 

pixels have been wrongly classified and have been placed in their current class (Herold, 

2000).  

 In the case of water, both of these types of errors are present. Nine pixels have 

been omitted from being classified as water, and have been classified as forest. This 

misclassification corresponds to both the users error of commission and the producers 

error of omission. Both of the errors are interrelated, as every error is basically an 

omission from the correct class and a commission to the incorrect class. Another example 

of misclassification is to look at the pixel values for agriculture, where the majority of the 
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pixels have been misidentified as forest (1,438) and water (1,326), resulting in low 

producers and users accuracy. Overall agriculture has a high error of omission and a low 

error of commission, resulting in high users and low producers accuracy.  

 The overall classification accuracy is quite often used for comparison purposes; 

however, it alone is not reflective of the users and producers accuracy. It is quite common 

to find a high overall accuracy and low producers accuracy for certain classes as seen in 

Table 1. The overall accuracy is at 76%, however, the users and producers accuracy for 

forest and agriculture are exceptionally low.  Hence, for analysis purposes it is important 

not only to evaluate the overall classification accuracy, but also the users and producer 

accuracy.  

 Overall classification accuracies are calculated by summing all the diagonal 

values (correctly classified pixels) in the matrix and dividing them by the total number of 

pixels. Considering there are two different types of error, i.e., error of omission and error 

of commission, both the users and producers are calculated differently. The producers 

accuracy is reflective of how well a ground sample is likely to be classified, and is 

concerned with the errors of omission. The producers accuracy is calculated by dividing 

the correctly classified pixels for each cover type by the total number of pixels in the 

columns. On the other hand, the users accuracy is concerned with the error of 

commission and is calculated by dividing the total number of correctly classified pixels 

for a particular class by the total number of pixels in the row. The users accuracy is 

important because it represents the reliability of a map and how well it represents what is 
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really present on the ground. This information is important for any map users and is 

referred to as the users accuracy. 

 It is the combination of all three classification accuracies which help provides a 

detailed classification accuracy profile. It is important to report all three classification 

accuracies, as they all are reflective of how well a particular class is being represented. 
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3. Study Area and Datasets 

 

 The three study sites chosen for this study include two international sites and one 

U.S. site.  The sites are in central Bangladesh, the central valley of California, and 

southern Kenya (Nairobi). PALSAR imagery for all three sites was acquired between 

March and May of 2007.    

 All three sites are quite different, and hence this is one of the reasons that the four 

classes chosen for evaluation purposes are different from each other.  Considering the 

premise of this research is to determine the utility of using quad polarized radar and 

optical data for land cover/use classification, differences in land cover/use among the 

three study sites will not be a major impacting factor.  

3.1 Bangladesh  

 This study site is located 

approximately 35 kilometers 

northwest of the capital city of 

Dhaka and 16 kilometers east of 

the two major rivers of Jamuna 

and Ganga (Figure 2). The upper 

left corner of the image is 

located at 24o 09’ 32” N and 
Figure 2: Study site, Bangladesh 
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89o 48’ 46” E.  The bottom right corner of the image is at 23o 38’ 56” N and 90o 16’ 11” 

E. The PALSAR image (Figure 3) for Bangladesh was acquired on 23rd, March 2007, and 

the TM imagery (Figure 3) on 14th, March 2003.  

 

Figure 3: PALSAR image (65 Kilometers by 35 Kilometers) for Bangladesh 
Acquired 14th, March 2003 (polarization-HH, HV and VH; RGB). 

 

 The images for Bangladesh were acquired in different years. However, this would 

not be much of an impacting factor since both images were acquired in the same season. 

Secondly, there has not likely been any substantial change in the four land covers/uses. 

The four classes identified for Bangladesh are water, residential, agriculture and forest.  
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Figure 4: Subsampled Mosaic of TM images (76 Kilometers by 51 Kilometers) for 
Bangladesh. Acquired 23rd, March 2007 (Bands 4-3-2; RGB). 

  

Bangladesh typically has a monsoon climate, with a mean annual rainfall of 180 

centimeters (Islam and Weil, 2000). Primary seasons in Bangladesh include the hot and 

humid summer from March through June, the hot and rainy monsoon from July to 

November, and the warm-hot dry winter from December to February. 

 The majority of the study site is located in low lying areas of the country, with an 

average elevation of 10 meter above sea level. This region is rich in alluvial soils, making 

agriculture the primary occupation of the country.  During the summer monsoon, land is 

inundated with water, making rice paddies a common agricultural practice.  
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 The presence of water and moisture in Bangladesh influences the backscatter 

properties of the radar signal. Moisture content occasionally tends to mute the incoming 

radar energy, hence providing low backscatter. However, imagery used in this study was 

acquired in the pre-monsoon season and the presence of moisture was not as much of an 

impacting factor as it would be during the wet season.   

 The majority of high backscatter (light turquoise tones) on the radar image is from 

trees which are in close proximity to small houses. High returns are seen throughout 

Figure 3 because the study site is primarily agricultural with villages throughout. Almost 

all farming communities in the area have trees around their agricultural fields, resulting in 

high backscatter. Additionally, the presence of small houses with tin roofing among the 

trees strengthens the backscatter.  

 The agricultural fields are fairly evenly distributed throughout the image and can 

be seen in light red tones on the radar image. Forested areas comprised of mangroves can 

be seen in the top right corner of the image. There are also a few clusters of forest in the 

upper left portion of Figure 3. However, they are not large enough to be used for the 

purpose of this study. Rivers and other water bodies have a dark tone and are easily 

detectable in Figure 3. Water can be easily delineated from the surrounding land 

covers/uses due to its low backscatter. Water acts in a specular manner, i.e., reflecting 

energy away from the sensor, resulting in low backscatter.  

 The land covers/uses for agriculture, water and residential are clearly 

distinguishable on the Landsat image (Figure 4). As seen in the Figure 4, only the blue, 

green and the near infrared bands have been displayed creating a traditional color infrared 
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image. Due to sensitive nature of infrared bands to level of chlorophyll in vegetation, the 

agriculture fields have a vibrant red tone as seen throughout the image. Water can also be 

clearly delineated with light blue tones, particular on the lower left corner of the image. 

Residential class appears to have a turquoise tone which makes them visually quite 

different from the surrounding land cover/uses. Forests in the Landsat image are isolated 

to the top right corner, and have a green tone.   

3.2 California 

 The second site is located in 

the central valley of California. The 

upper left corner of the image is 

located at 37o 02’ 05”N and 120o 50’ 

15” W.  The bottom right corner of 

the image is at 36o 31’ 40” N and 

120o 18’ 26” W. The study area is 

approximately 180 kilometers 

southeast of San Francisco and 

situated between the Coast Range and 

the Sierra Nevada Mountains (Figure 5).  This part of California is known for its high 

agricultural productivity particularly for fruit and is commonly referred to as the “Fruit 

Basket of the World”. 

   

 

Figure 5: Study site, Central valley of California.
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The PALSAR imagery (Figure 6) for this study site was acquired on May 1st, 2007 

and the Landsat data (Figure 7) was acquired on  May 11th, 2007.   

 

 

Figure 6: PALSAR image (65 Kilometers by 35Kilometers) for California 
Acquired 1st, May 2007 (polarizations VV, VH, HV; RGB). 
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Figure 7: Subsampled Mosaic of TM images (76 Kilometers by 51 Kilometers) for California 
Acquired 11th, May 2007 (Band 4, 3, 2; RGB). 

 

 Unlike the previous study site, it was critical to have the same seasonality in 

images for California. The reason for having a common seasonality in the two images 

relates to the types of classes indentified in this section. As opposed to using generic land 

covers, this study site focuses on distinguishing individual agricultural crops. The four 
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land covers/uses identified for California included almonds, cotton, fallow/idle cropland 

and alfalfa. Considering that these areas of interest are quite specific, small changes in 

seasonality (temperature and moisture) would cause discrepancies during Transform 

Divergence and classification. Hence, it was essential to use imagery acquired for the 

same year and at the same time in growing season.  

 On the radar image one can see a variety of different tones, related to the diversity 

of various crop types grown in this part of California. Each crop has a unique spectral 

signature, resulting in the variation of tones.  According to the USDA there are well over 

100 different types of land covers/uses in this area (USDA, 2007). There is very little 

residential and urban land cover in this region, as the majority of the flat valley is used 

for agricultural purposes. This part of California has a typical Mediterranean climate, 

with hot and dry summers and cool and damp winters.  

 The imagery for this study site was acquired during late spring when there is very 

little fallow and bare ground surface. This is due to the intensive agricultural practices in 

the area. On the radar image, there are a few dark areas, and without ancillary 

information they could be confused with fallow or bare ground. However, this is not the 

case, as these dark areas are early-stages of cotton fields. Cotton fields have low radar 

backscatter due to the crop not being fully matured. A fully matured cotton crop would 

have higher radar returns. If the same imagery would have been acquired in September 

the cotton fields would have had a stronger radar signal and thus would have appeared 

brighter.  
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 Almonds and alfalfa can be clearly distinguished on the Landsat image (Figure 7). 

Both these classes have a vibrant red tone, which separated them form the surrounding 

land covers/uses. On the other hand, cotton and fallow visually look very similar to each 

other with light grey tones in the center of the image. Visually, it is rather hard to 

delineate these two classes, as they appear to have a blue-gray tone. It is after looking at 

DN values and ancillary information (field patterns in Google Earth) for these two classes 

that they were accurately identified.  

 Using California as one of the study sites is interesting because of the ancillary 

information known for the site. Detailed 2007 land cover/use classification maps were 

obtained from the USDA for calibration and validation purposes. Land cover/use maps 

provided by USDA were based on classification of Landsat and AWiFS imagery. These 

classified land cover/use maps provided reference information which was used regularly 

during the analysis of California. A direct comparison was made between the USDA 

Landsat classified image and the classification accuracies obtained in this study. More 

importantly for accuracy assessment the classified images were compared to independent 

validation/truth sites identified on the image itself.   

3.3 Kenya 

 The final study site is Nairobi (Figure 8), Kenya approximately 50 kilometers east 

of the Rift Valley. The upper left corner of the image is located at 1o 12’ 04” S and 36o 

43’ 09” E.  The bottom right corner of the image is at 1o 42’ 55” S and 37o 08’ 52” E.  
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Figure 8: Study site, Nairobi, Kenya.
 

  

The PALSAR imagery (Figure 9) was acquired during the rainy season on  

May12th, 2007. Due to the lack of cloud free optical data for the region, the TM image 

(Figure 10) was acquired on February 1st, 2000. The TM images were acquired during the 

hot and dry season. However, this difference in seasonality should not be much of an 

impacting factor, as most of the land covers/uses identified for this study site are not 

affected by seasonality. This region of Kenya has a tropical climate with variations in 

temperatures primarily due to the diverse terrain and altitude. 

The four land classes identified for this study site include residential areas, urban 

areas, savanna and bare ground. The lack of any major water bodies and agricultural 

fields in the areas resulted in them not being one of the classes. However, the four land 
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covers/uses provide sufficient variability to successfully evaluate the study site for 

separability and classification purposes. 

 

Figure 9: PALSAR image (65 Kilometers by 35Kilometers) for Nairobi, Kenya 
Acquired May12th, 2007 (polarization-HH, HV and VH; RGB). 
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Figure 10: Subsampled Landsat Image for Nairobi, Kenya 
Acquired February 1st, 2000 (Bands 4-3-2 RGB). 

  

 The major urban developments in this region are around the city of Nairobi, seen 

in the top left corner of images. With the exception of residential and urban areas in 

Nairobi, there are no other major cities in this study site.  The residential areas have a 
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vibrant turquoise tone as seen in the radar image (Figure 9). Most of these residential 

areas have a number of trees in close proximity which strengthens the radar signals. The 

presence of trees in residential areas can also be validated by looking at the top left corner 

of the Landsat image (Figure 10), where there are vibrant red tones. These red tones are 

correlated to the high reflectance of the infrared bands due to chlorophyll in the leaves.  

 The urban features provide extremely high backscatter resulting in a saturated 

white tone as seen on the radar image (Figure 9). The presence of cultural features such 

as buildings and houses in an urban setting strengthens the radar returns resulting in the 

bright areas. The urban areas in this part of the world are highly congested, particularly in 

cities such as Nairobi, which makes the return signal stronger for this study site as 

compared to another urban setting.  

 Land cover/use further south of Nairobi is typical of the overall landscape of this 

region.  The terrain in this part of Kenya is quite rugged, and this is one of the reasons for 

the  drastic variation in the backscatter on the radar image. As seen in Figure 9, there are 

a number of dark spots on the image, these are bare ground surfaces which act in a 

specular manner reflecting energy away from the sensor, this results in little energy 

making its way back to the sensor and hence the relatively darker spots. The light red and 

pink tones throughout the radar image are caused by backscatter from grass or other 

similar ground cover vegetation, which has a texture that  returns more energy back to the 

sensor.  In this study these areas of red tones are categorized as savanna. These savannas 

make up the Nairobi National Park, which is south of the city. Given the fact that the 

radar image was acquired in the rainy season, the savanna areas are quite healthy. These 



37 

 

healthy savannas areas are not seen on the Landsat image, as it was acquired in the dry 

season.   

 The turquoise tones seen in the central region of the radar image are caused by 

trees which are in close proximity to small streams and rivers. The main river in this area 

is the Nairobi River, which has a number of tributaries. Along these tributaries there is a 

high return of the radar signal resulting in the vibrant turquoise. These high returns from 

the trees in proximity to water bodies shows a clear pattern of riparian vegetation which 

is easily delineated from the surrounding areas as seen in Figure 9. 

 Residential and urban areas are easily visible on the Landsat image (Figure 10). 

Residential areas have a vibrant red tone, and can be seen in the top left corner of the 

image. Urban areas appear to have a dark blue tone. Particularly the city of Nairobi can 

be easily detected (top left) on the image, as it has a unique blue tone.  

 Bare grounds can be seen all throughout the Landsat image (Figure 10). They 

appear to have a cream tone and unique geographic shapes.  The bare ground class is 

more prominent further south of Nairobi, particularly towards the bottom of the Landsat 

image. Savannas are visually harder to see on the Landsat image as they have a light pink 

tone; however, they can be seen along the top right corner of the Landsat image. 
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4.0 Analysis and Results 

 

 The next sections present the finding of the three study areas. The methodology 

for each section is common to all three study areas. This methodology included the 

evaluation of original radar, followed by radar texture, fusion of radar texture, Landsat 

and sensor fusion.  Each of the datasets (radar and Landsat TM), have been analyzed 

separately and in combination with each other. Having a set methodology for all three 

study areas helped analyze the results in more detail, and also provided a more accurate 

representation for each of the three areas.   

4.1 Bangladesh 

 The first study site to be evaluated is Bangladesh. The next few sections discuss 

the findings for the radar and Landsat datasets. Both datasets were evaluated 

independently and in combination with each other.  

4.1.1 Original Radar 

 Prior to undertaking any analysis and subsetting the data, it is often useful to look 

at statistical values for the data.  Examining the mean and standard deviation of spectral 

signatures for different land covers/uses can provide unique and validating information 

about the image.  Spectral signatures for the four areas of interest (AOIs) were extracted 

and their statistics are presented in Table 2. 
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Table 2: AOI class statistics (DN values) from PALSAR scene. Mean and Standard Deviation. 

Band’s Land Cover/Use 
Classes 

 HH HV VH VV 
Water                X  

σ  
7.5 
6.4 

7.3 
5.4 

6.8 
5.2 

7.5 
6.6 

Agriculture X  
σ  

16.4 
7.0 

17.8 
7.5 

16.4 
7.2 

14.9 
6.8 

Residential X  
σ  

31.0 
14.6 

42.0 
16.8 

39.4 
16.1 

27.0 
12.5 

Forest X  
σ  

19.7 
8.5 

25.6 
10.3 

24.4 
9.8 

16.4 
7.5 

 

 
 Water as expected has low Digital Number (DN) values for all four polarizations, 

primarily because it acts in a specular manner, reflecting energy away from the sensor 

resulting in low backscatter. Water can easily be delineated from the surrounding land 

covers due to its low backscatter properties as seen in Figure 3. The lower left corner of 

the image is the approximate area where the Ganga and Jamuna rivers converge.  

 Agriculture also has low DN values. This is because the imagery date was during 

the sowing season, and crops (primarily rice) have not fully matured resulting in low 

backscatter. If the image had been acquired later in the growing and harvesting season for 

rice, the radiometric response would have been higher. 

 The high DN values for residential areas were what would be expected of any 

area with a number of cultural features such as houses. In Figure 3, high backscatter for 

the residential areas can be seen. This is related not only to the presence of trees, but also 
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due to slanting tin roof structures. As mentioned earlier, these slanting roof structures 

strengthen the radar backscatter. Cross polarization DN values for residential areas are 

higher when compared to like polarization. This relates to the phenomenon of measuring 

both amplitude and phase differences, rather than looking only at one component of the 

returned signal as is the case in like polarization. The residential areas have a high 

standard deviation, indicating the complexity of these features.  

 Similarly, DN values for forest, particularly cross polarization, are higher as 

compared to like polarization. The DN values for like polarization would have been 

higher if a different type of forest was selected. Forests in this study are identified as 

mangroves, and due to the presence of water the radar signal might be muted, resulting in 

low DN values.    

4.1.1.1 Transformed Divergence  

The next step in the analysis prior to undertaking classification is to evaluate the 

separability among the four classes. Evaluating TD values provides a framework for 

selecting the best bands for land cover classification. TD has been consistently used to 

not only evaluate separability, but has also proved useful in eliminating many of the 

redundancies of multiple classifications.  

Transform Divergence values for original PALSAR data are presented in Table 3.  

TD values for most class pairs are satisfactory (>1,500), with the exception of a few class 

pairs in like polarization (HH and VV).     
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Table 3: TD values for original radar scene, PALSAR. (Res = residential, Ag =agriculture). 

 

 As expected, water is highly separable from all other classes, primarily due to its 

specular characteristics resulting in low backscatter. On average water has a TD value of 

1,839 when paired with other classes.  

 The residential-agricultural class pair has a low separability for HH and VV 

polarization, with an average TD value of 1,265. However, TD values for cross 

polarization (HV and VH), are much higher with an average of 1,998. This is an increase 

of over 58% within the same class pair (residential-agriculture), when comparing cross 

and like polarization. The high cross polarization TD values for this class pair can be 

validated by looking at the DN values in Table 2. The DN value differences within cross 

polarization are higher for residential and agriculture, as compared to like polarization.  

 Similarly, when comparing separability between the residential-forest class pair,  

TD values for like polarization are much lower as compared to the cross polarization 

(Table 3).  There is an increase of over 100% in the TD values for the two classes, this 

too can be validated by looking at the statistical values (Table 2) which are significantly 

different from each other. Forests have higher DN values as compared to agriculture, 

making them highly separable using cross polarization.  

Bands Avg. Min. Water-
Res 

Water
-Ag 

Water-
Forest 

Res-Ag Res-
Forest 

Ag-
Forest 

HH 1345 140 2000 1664 1939 1411 917 140 
HV 1820 1100 2000 1883 2000 1998 1936 1100 
VH 1832 1214 2000 1961 2000 1998 1919 1214 
VV 1108 34 1997 1163 1470 1120 863 34 
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 TD values for the agriculture-forest class pair are very low in all four original 

radar polarizations. The class pair has a TD value of 140 and 34 for the HH and VV 

polarization, bringing the average for like polarization to 87, which indicated no 

separability. On the other hand, cross polarization has a relatively higher average TD 

value of 1,157 for the cross polarization HV and VH, but it is still not sufficient for 

successfully separating the two classes.  Theoretically, agriculture and forest would be 

highly separable; however, the DN values for the two land covers/uses are similar  as 

seen in Table 2, resulting in low TD values. 

4.1.1.2 Radar Classification 

 In order to derive the classification for the four classes a maximum likelihood 

decision rule was applied to the original radar dataset. The maximum likelihood decision 

rule was not only applied to single bands, but also multiple band combinations.  

Combinations for multiple bands were based on the classification accuracy of individual 

bands. To access the accuracy for classification, the classified pixels for the four classes 

were compared to areas of truth or validation sites. Two truth sites for each land 

cover/use were delineated.  

The classification results for the original radar data have been summarized in 

Tables 4, 5 and 6.  The classification accuracies for all four individual bands are quite 

good, ranging from 76% to 89%.  However, when all four bands are combined the overall 

classification accuracy increases to 91% (Table 6).  
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Table 4: Classification accuracies for individual radar bands (HH and HV), Bangladesh. 

PALSAR band HH 
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16258 1 441 360 95.3 
Res 2 5162 319 255 90.0 
Ag 7 1536 2334 902 48.8 
Forest 19 48 2067 832 28.1 

 Producers 
Accuracy 99.8 76.5 45.2 35.4  
Overall 
Accuracy  

80.5 

PALSAR band HV 
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16263 0 849 62 94.7 
Res 0 6333 40 254 95.6 
Ag 28 26 3655 1288 73.1 
Forest 0 388 617 745 42.6 

 Producers 
Accuracy 99.8 93.9 70.8 31.7  
Overall 
Accuracy  

88.4 

 

There is a direct relationship between the classification accuracies and TD values.  

The HV and VH bands yielded the best separability (Table 3), and hence resulted in the 

best accuracies among the four bands. 

Water, as expected, resulted in excellent classification accuracies across all 

individuals and four stacked bands.  These high classification accuracies for water can be 

validated by not only looking at the statistical values (Table 2), but also the separability 

values (Table 3). Water has low DN values (Table 2) as compared to other land 

covers/uses making it highly separable.  This highly separable characteristic is initially 

reflected in the TD value and eventually resulted in high classification accuracies.  
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Table 5: Classification accuracies for individual radar bands (VH and VV), Bangladesh. 

PALSAR band VH 
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16210 0 583 44 96.3 
Res 0 6269 59 275 94.9 
Ag 81 42 3965 1323 73.3 
Forest 0 436 554 707 41.7 

 Producers  
Accuracy 99.5 92.9 76.8 30.1  

Overall 
Accuracy  

88.9 

PALSAR band VV 
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16264 4 1326 706 88.9 
Res 0 4655 1073 109 79.7 
Ag 2 1852 1324 620 34.9 
Forest 9 236 1438 914 35.2 

 Producers 
Accuracy 99.9 69.0 25.7 38.9  

Overall 
Accuracy  

75.8 

 

Table 6: Classification accuracies for stacked radar bands (HH, HV, VH, VV). 

PALSAR band HH, HV, VH, VV 
Land 
 covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16236 0 280 24 98.2 
Res 2 6277 95 226 95.1 
Ag 16 91 3676 624 83.4 
Forest 37 379 1110 1475 49.2 

 Producers 
Accuracy 99.7 93.0 71.2 62.8  
Overall  
Accuracy  90.6 

 

Residential land cover/use is always relatively heterogeneous in nature, 

particularly in countries similar to Bangladesh. Residential land cover/use in this part of 

the region encompasses small agricultural fields and also trees. The classification 
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accuracies for residential land cover/use range from 69% to 94% for individual radar 

bands, and is 93% for all four bands taken together.  The classification accuracy of 69% 

was in the VV band, and this is directly reflective of the poor separability (Table 3) in the 

TD analysis. The high classification accuracies (94% and 93%) are seen in the cross 

polarization (HV and VH) bands. This again can be validated by looking at the 

separability values, where both HV and VH bands yielded a TD value of over 1,900.  

The classification accuracies for the agricultural class ranged from 26% to 77%, 

for the individual bands and 71% for all four bands. Cross polarization (HV and VH), 

were the only two individual bands that had an accuracy of over 70%.  The like 

polarization bands, HH and VV, had extremely low accuracies of 45% and 26%. This 

variability in accuracies is again reflective of the separability values. Agriculture when 

paired with other classes, particularly forest, had exceptionally low separability (140 and 

34) values for HH and VV bands, in turn resulting in poor classification. 

The agriculture class was among the few land covers/uses that had low 

classification accuracies. As seen in the classification tables, many agricultural land 

cover/use pixels have been misclassified. The majority of the misclassified pixels were 

from the forest class. This is directly related to topography and the heterogeneous 

landscape. Most of the agricultural fields in this part of Bangladesh have a number of 

trees in close proximity, resulting in misclassification. This type of misclassification is 

referred to as error of omission or under classification of the agricultural class (Herold, 

2000). Misclassification occurs when pixels that should have been classified as 
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agriculture get assigned to forest or other classes, resulting is low classification 

accuracies and reliability.  

Forest had the lowest classification accuracies of all four classes. The 

classification accuracies ranged from 30% to 39% for the individual bands, and 63% 

when all individual bands were combined. These accuracy values are exceptionally low 

and are not satisfactory for classification purposes. The majority of misclassification was 

with agriculture, i.e., pixels that should have been classified as forests were misidentified 

as agriculture. This misclassification is a result of the heterogeneous nature of the 

landscape.   

The DN values for forest and agriculture are quite similar to each other, and this 

in turn results in low separability among the two land covers. The result of similar DN 

values and low separability is reflected through the poor classification accuracies for the 

forest class.  

Overall, based on the classification results of individual and stacked original 

bands, cross polarization (HV and VH), yielded the best accuracies as compared to like 

polarization (HH and VV). This trend of cross polarization yielding better results is also 

the case for TD when evaluating the separability results. Similar to the classification 

accuracies, cross polarization yielded higher separability as compared to like polarization.   

Regardless of the number of bands and polarizations, certain classes such as forest 

had extremely low classification accuracies. Even when all four radar bands are stacked 

together, the classification accuracies for the forest class were low (63%). However for 
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agriculture, when all bands are stacked the classification accuracies increase to 71% from 

45% (HH) and 26% (VV). In general, all four bands stacked together yield higher 

classification accuracies, as opposed to each band taken individually.  

Based on past research, the overall classification accuracies can be increased by 

combining the best two and three band combinations. To evaluate the effectiveness of 

this technique; the best bands were combined based on their individual classification 

accuracies. The primary intent here was to determine if combining individual bands 

yielded higher classification accuracies as opposed to taking them individually (Table 7).  

Table 7: Classification accuracies, best two and three band combinations, Bangladesh.  

Best Two Bands ( HV and VH) 
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16218 0 655 39 95.9 
Res 4 6336 90 295 94.2 
Ag 69 27 3786 1261 73.6 
Forest 0 384 630 754 42.6 

 Producers 
Accuracy 99.6 93.9 73.4 32.1  
Overall 
Accuracy  

88.7 

Best Three Bands ( HH, HV and VH) 
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16265 0 558 28 96.5 
Res 3 6318 79 245 95.1 
Ag 12 77 3732 865 79.6 
Forest 11 352 792 1211 51.2 

 Producers 
Accuracy 99.8 93.6 72.3 51.6  
Overall 
Accuracy  

90.1 

 

Considering that HH, HV and VH yielded the highest classification accuracies 

when they have been stacked together. The classification accuracies for the best two band 
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combinations show marginal improvements over each band (HV and VH) taken 

individually. The overall classification for the two bands taken individually was at 89%.  

However, when a third band (HH) is added to the two band combination the overall 

accuracy increases to 90%, which is relatively higher than each band taken individually. 

The addition of an extra band does validate the fact that adding bands does indeed 

increase the overall classification accuracies.  

4.1.2 Radar Texture  

A total of four different texture measures (variance, skewness, mean euclidean 

distance, and kurtosis) at four window sizes ranging from 5 x 5 to 13 x 13 were evaluated 

for this study site. An evaluation of TD values for each of the four different texture 

measures is followed by a classification accuracy assessment of the best texture measure 

and window size.    

4.1.2.1 Variance  

Variance texture measure was calculated for the original radar data, using 

multiple window sizes. In Table 8, there is a significant increase of the TD values after 

variance texture is applied to the original radar image. The 7 x 7 window size yielded the 

best results when compared to the other three window sizes (5 x 5, 11 x 11, and 13 x 

13).The use of variance texture is appropriate for class pairs in like polarization where 

original radar TD values are lower as compared to cross polarization.  

Class pairs for agriculture-forest, which were inseparable using the original radar, 

are highly separable after applying variance texture at the 5 x 5 and 7 x 7 window sizes. 
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Similarly, the separability between other class pairs including water-agriculture, water-

forest, and residential-agriculture all show improvements in TD values. 

Table 8: TD values for variance texture, Bangladesh. 

 

The class pair agriculture-forest had a TD value of 34 (Table 3) in the original VV 

band and with the use of texture one can see an improvement of 1,592, yielding a TD 

value of 1,626 (Table 8). Similarly TD values in the HH band for the same class pair 

(agriculture-forest) increased by over 1,727, resulting in a TD value of 1,867. The TD 

values for cross polarization also showed improvements, when compared to the original 

radar data with the 7 x 7 texture window size.   

Bands Avg. Min Water-
Res 

Water-
Ag 

Water-
Forest 

Res-
Ag 

Res-
Forest 

Ag 
-Forest

TD values (5x5 Texture) for Bangladesh, PALSAR image 
HH 1900 1734 2000 1800 2000 2000 1868 1734 
HV 1998 1986 2000 2000 2000 2000 2000 1986 
VH 1998 1986 2000 2000 2000 2000 1996 1986 
VV 1873 1500 2000 1895 2000 2000 1841 1500 

TD values (7x7 Texture) for Bangladesh, PALSAR image 
HH 1932 1821 2000 1821 2000 2000 1906 1867 
HV 2000 2000 2000 2000 2000 2000 2000 2000 
VH 2000 2000 2000 2000 2000 2000 2000 2000 
VV 1909 1626 2000 1936 2000 2000 1893 1626 

TD values (11x11 Texture) for Bangladesh, PALSAR image 
HH 1779 1478 2000 1568 2000 2000 1626 1478 
HV 2000 1999 2000 2000 2000 2000 2000 1999 
VH 2000 1999 2000 2000 2000 2000 2000 1999 
VV 1722 911 2000 1780 1999 1999 1643 911 

TD values (13x13 Texture) for Bangladesh, PALSAR image 
HH 1513 819 2000 1117 1994 1981 1170 819 
HV 1998 1987 2000 2000 2000 2000 2000 1987 
VH 1997 1983 2000 2000 2000 2000 2000 1983 
VV 1428 359 2000 1235 1921 1901 1155 359 
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The use of texture on the two class pairs of water-agriculture and residential-

agriculture yielded higher separability, particularly for like polarization. There is an 

increase of 773 for the VV polarization in the water-agriculture class pair and an increase 

of 157 in the HH polarization. There is also an increase of 589 (VV) and 880 (HH) for 

the class pair of residential-forest after applying texture on the original radar image. The 

residential-forest pair also showed major improvement in the separability values, with an 

increase of 989 for the VV polarization and 1,030 for HH polarization.  

There are certain patterns which emerge when multiple texture window sizes are 

used. As the window size increases, average TD values also increase, however the values 

start to decrease at the 11 x 11 window size as seen in Table 8.  Similar results were also 

observed in previous studies conducted by Idol et al. (2007) where the TD values saturate 

at a particular window size, and reduce thereafter.  

This trend of TD values saturating at a particular window size and decreasing 

thereafter is related to the pixel size and also the ground feature characteristics. A larger 

texture window size correlates to an increased number of pixels being included during 

computation of the TD values.  Taking into account the heterogeneous nature of the study 

site, an increased number of pixels within a larger texture window did not yield better 

results.  

4.1.2.2 Skewness, Mean Euclidean Distance, and Kurtosis  

 Table 9, summarizes the average TD values for the other three texture measures, 

skewness, mean euclidean distance, and kurtosis. All average TD values for these texture 
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measures are exceptionally low as compared to variance texture. Considering that these 

texture measures are not capable of successfully distinguishing the land covers/uses, they 

will not be used for classification purposes. With the exception of mean euclidean 

distance, none of the other texture measures had TD values of over 1,500. As a larger 

window size was used, the average TD values increase, however the values were still 

well below 1,500 and would have yielded poor classification accuracies. The low TD 

values for these texture measures, was validated by looking at the images. There appears 

to be a substantial loss of textural information, which in turn makes the images appear 

washed out and pixilated resulting in poor separability among the classes.  

Table 9: TD values for the remaining texture measures, Bangladesh.  

 

 

Bands Avg. Min Avg. Min Avg. Min Avg. Min 
Skewness Texture Measure 

 5x5 7x7 11x11 13 x13 
HH 841    177   926 253 998 328 1012 302 
HV 797 82 884 97 1010 117 1049 123 
VH 786 69 868 79 967 93 994 92 
VV 878 169 983 263 1066 368 1084 396 

Mean Euclidean Distance  
 5x5 7x7 11x11 13 x13 
HH 1051 153 1053 170 1086 205 1096 218 
HV 1380 479 1449 591 1530 745 1555 796 
VH 1378 495 1446 603 1528 755 1555 807 
VV 882 78 916 81 937 88 942 90 

Kurtosis  
 5x5 7x7 11x11 13 x13 
HH 18 1 42 5 103 0 142 0 
HV 0 0 0 0 89 0 239 0 
VH 0 0 0 31 114 0 287 16 
VV 23 2 72 0 180 27 231 23 
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4.1.2.7 Radar Texture Classification 

 Variance texture measure yielded the best separability results, and hence it is 

selected for the next step of classification. In particular it was the 7 x 7 variance texture 

that showed the most improvements over the original radar dataset.  Classification was 

performed on each individual texture band, four stacked bands and also the best two and 

three band combinations.  

 For the individuals band HH, the overall classification after applying texture 

reduced to 68% (Table 10) from an original 80%. Most surprising was the drop in 

producers accuracy for the forest class for the HH band, which went from 35% in the 

original dataset to 5%, after texture was applied.  Similarly, classification accuracies for 

the other three classes (water, residential and agriculture), also decreased, after texture 

was applied. 

Table 10: Classification accuracies variance texture 7x7 (HH and HV), Bangladesh. 
HH radar texture 

Land 
 covers/uses Water Residential Agriculture Forest 

Users  
Accuracy 

Water 7728 0 1722 1059 73.5 
Residential 0 3963 0 105 97.4 
Agriculture 79 2088 3297 1058 50.6 
Forest 38 696 142 127 12.7 

     Producers 
 Accuracy 98.5 58.7 63.9 5.4  
Overall  
Accuracy  68.4 

HV radar texture 
Land 
covers/uses Water Residential Agriculture Forest 

Users 
Accuracy 

Water 16207 0 1462 226 90.6 
Residential 0 5008 13 102 97.8 
Agriculture 0 62 3513 1536 68.7 
Forest 0 1677 173 485 20.8 

     Producers  
Accuracy 100.0 74.2 68.1 20.6  
Overall 
 Accuracy  82.8 
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 The classification accuracies for the other three individual bands VV, HV and VH 

all reduced when texture was applied. The classification accuracies for certain classes 

reduced more than others, for example, forest has low classification accuracies for all 

bands in the original radar and texture datasets. However, in the VV band the producers 

accuracy drops to 0.3% from 39% when texture is applied. This was the most drastic drop 

among all classes after texture was applied (7 x 7).  

 Table 11: Classification accuracies variance texture 7 x 7 (VH and VV), Bangladesh. 

VH radar texture 
Land 
covers/uses Water Residential Agriculture Forest 

Users 
Accuracy 

Water 16241 0 1770 208 89.1 
Residential 0 5083 11 115 97.6 
Agriculture 0 42 3161 1507 67.1 
Forest 0 1622 219 519 22.0 

     Producers 
Accuracy 100.0 75.3 61.2 22.1  
Overall 
Accuracy  82.0 

VV radar texture 
Land 
covers/uses Water Residential Agriculture Forest 

Users 
Accuracy 

Water 5106 84 1384 1576 62.7 
Residential 0 2879 56 16 97.6 
Agriculture 47 3642 3649 749 45.1 
Forest 0 142 72 8 3.6 

     Producers 
Accuracy 99.1 42.7 70.7 0.3  
Overall 
Accuracy  60.0 

 

The classification accuracies for most classes reduced after texture was applied 

with the exception of agriculture. The use of texture on like polarization (HH and VV) 

were the only two bands that helped increase the producers accuracy for agriculture.  The 
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producers accuracy increased to 64% (HH) from 45% and also for the VV band they 

increased to 71% from 26% in the original radar dataset. 

 A similar pattern was also found when evaluating all four (HH, HV, VH and VV) 

texture bands (Table 12). The overall classification accuracy for variance texture drops to 

85% from 90% when all bands are combined. However, the producers accuracy for 

agriculture increased 2%, when all four bands were combined.  

Table 12: Classification accuracies for stacked variance texture bands. 
 

 

 

 

 

 

  

Table 13 shows the classification accuracies for the best two and three band 

combinations.  The classification accuracies for the two band combination comprise of 

HV and VH as the best two band combination in the original radar dataset. However, the 

classification values after applying texture decreased to 83% from an original 88%. The 

classification accuracies for the three band combinations dropped to 84% from an 

original 90%. 

 

 

 

HH, HV, VH, VV 
Land 
 covers/uses Water Residential Agriculture Forest 

Users 
Accuracy 

Water 16167 0 1273 318 91.0 
Residential 0 5354 1 106 98.0 
Agriculture 117 303 3800 1353 68.2 
Forest 6 1090 87 572 32.6 

     Producers  
Accuracy 99.2 79.4 73.6 24.4  
Overall 
 Accuracy  84.8 
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Table 13: Classification accuracies for best two and three band combination texture, Bangladesh. 

Best two bands (HV VH)  
Land 
covers/uses Water Residential Agriculture Forest 

Users 
Accuracy 

Water 16288 0 1514 181 90.6 
Residential 9 5025 3 67 98.5 
Agriculture 2 616 3458 1646 60.4 
Forest 0 1106 186 455 26.0 

     Producers 
Accuracy 99.9 74.5 67.0 19.4  

Overall 
Accuracy  82.6 

Best three bands (HH, HV and VH) 
Land 
covers/uses 

Water Residential Agriculture Forest 
Users 
Accuracy 

Water 16219 0 1546 267 89.9 
Residential 0 5420 1 64 98.8 
Agriculture 71 590 3449 1560 60.8 
Forest 0 737 165 458 33.7 

     Producers 
Accuracy 99.6 80.3 66.8 19.5  
Overall 
Accuracy 

 83.6 

  

Surprisingly, the use of texture was able to improve the overall separability 

among the classes. However, it was not very efficient in improving the overall 

classification accuracies. For most bands the use of texture reduced the overall 

classification accuracies.  This was surprising considering that variance texture greatly 

improved the overall TD values, it should have shown moderate improvements in overall 

classification accuracies. Previous studies (Haack, 2007) which focused on land 

covers/uses classification have shown improvements in classification accuracies after 

variance texture was applied. This however was not the case for this particular study area.  

One speculation for this might have to do with edge pixels being incorrectly classified 
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after texture is applied. Pixels along the boundary of an AOI might have been 

misclassified, resulting in lower accuracies.  

4.1.3 Radar Fusion: Original Radar with Radar Texture 

 Original radar data were combined with variance texture. The intent was to 

determine if the overall classification accuracies can be improved further by adding 

texture bands to the original radar bands.   

  Considering that 7 x 7 variance texture provided the highest separability among 

the classes, it is beneficial to examine the results obtained from fusing the two datasets, 

i.e., original radar with the 7 x 7 texture. Table 14, summarizes the classification 

accuracies for the two datasets, where all four bands are fused together. There is a 

marginal improvement in the overall classification accuracies. The overall accuracies 

increase to 92% from 90% (original radar) and 85% (variance texture).  The producers 

accuracy for agriculture showed the most improvement increasing from 71% (original 

radar) and 74% (variance texture) to 90%. However, the producers accuracy for forest 

reduced to 35% as compared to the 63% in the original radar dataset.  

Table 14:  Classification accuracies for original radar with radar texture (variance7x7), Bangladesh.  
 
 
 
 
 
 
 
 

   

 

HH, HV, VH,VV 
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16180 0 376 47 97.5 
Res 0 6286 5 116 98.1 
Ag 42 53 4668 1363 76.2 
Forest 69 408 112 823 58.3 

 Producers 
Accuracy 99.3 93.2 90.4 35.0  
Overall 
Accuracy  91.5 
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Overall, the fusing of the original radar datasets with radar variance texture did show 

minor improvements. However, there are certain land cover/use such as forest that have 

lower classification accuracies (below 70%). Even though the classification accuracies 

for variance texture did not yield good results, the combined accuracies for original radar 

and radar texture do look promising.    

4.1.4 Landsat Thematic Mapper 

 The Landsat sensor has been the source for many land cover/use classification 

practices. This section will explore its capabilities and efficiency to classify land 

covers/uses in Bangladesh.  

 Prior to evaluating classification accuracies using the Landsat sensor, it is 

essential to examine the statistical values. Similar to the original radar dataset, these DN 

values provide validating information, useful when examining the separability and 

classification results.  

 Table 15 contains the statistical values for spectral signatures extracted from the 

same AOIs using the TM image.  There are certain anomalies in these DN values, 

particularly when looking at the standard deviation for water. Water would be expected to 

have low standard deviations across all bands, however, this was not the case for this 

study area. The mean values for water are quite similar to other studies conducted in the 

past, with the exception in the second MIR (mid infrared) band, where the mean is low 

and standard deviation is comparatively higher. These anomalies might have been caused 

by the presence of plankton, sediments or aquatic vegetation.  
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Table 15: AOI class statistic (DN values), from TM image. Mean and Standard Deviation, Bangladesh. 
 

  

 

  

  

  

Residential areas have high DN values for the NIR (near infrared) band, because 

of the combination of trees, garden plots, and metal rooftops. In particular, it is the 

sensitive nature of infrared bands to the chlorophyll level in vegetation which yields high 

DN values across all bands and classes.    

 Similarly, the NIR band has the highest DN value for agriculture. One of the 

difficulties of using this Landsat imagery is the similarity between DN values for 

residential and agriculture land covers/uses, particularly when both classes are 

heterogeneous (Table 15). DN values for these land cover types are not separable which 

potentially might cause a problem during classification and accuracy assessment, due to 

misclassification of pixels.  

 Forest cover has  a high DN value across all infrared bands, due to the responsive 

nature of the infrared wavelengths towards healthy green vegetation. The DN value for 

forest indicates that it would be highly separable from the agriculture and residential, 

particular when using the two mid infrared bands.  

Bands Land 
cover/use  Blue  Green Red NIR MIR MIR 
Water X  

σ  
67.9 
6.6 

54.1 
8.3 

50.6 
12.9 

41.6 
16.4 

44.0 
26.7 

24.8 
23.9 

Residential  X  
σ  

58.9 
2.0 

45 
2.4 

39.1 
3.9 

63.1 
5.9 

47.1 
7.7 

28.7 
6.8 

Agriculture X  
σ  

57.1 
2.7 

44.5 
3.3 

37.2 
5.7 

77.2 
10.4 

49.5 
10.5 

27.7 
8.6 

Forest X  
σ  

58 
2.3 

45.7 
3.2 

43.6 
7.0 

66.5 
5.93 

62.7 
13.1 

39.8 
12.4 
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 The visible bands, particularly the blue band has high DN values for all four 

classes.  This is due to its short wavelength, which is most sensitive to reflection and 

scattering in the upper atmosphere due to the presence of moisture or clouds, resulting in 

some energy being reflected back to the sensor. Longer wavelengths, such as infrared are 

capable of penetrating these atmospheric conditions and in turn are more directly related 

to the ground conditions as compared to the shorter visible wavelengths. 

4.1.4.1 Transformed Divergence  

Table 16 summarizes separability results for the Landsat TM dataset. With 

exception of the first MIR band, water is highly separable when paired with residential 

and agriculture. The low TD values for water in the first MIR band is related to their 

(agriculture and residential) statistical DN values found in Table 16. The water AOI has 

high DN values in the visible bands, however its DN values for both MIR bands (44 and 

25)  are very similar to the DN values for residential (47 and 29) and agriculture (49 and 

28), hence resulting in zero separability, as seen in Table 16.  In particular, high standard 

deviation (27) for water in the first MIR band (Table 16) can be linked to the 0 TD 

values.   

Table 16: TD values for Landsat image, Bangladesh. 

Bands Avg. Min Water-
Res 

Water-
Ag 

Water-
Forest 

Res- 
Ag 

Res-
Forest 

Ag-
Forest 

Blue 1135 116 1998 2000 2000 522 116 176
Green 1117 189 2000 2000 1999 189 196 320
Red 1564 453 1999 2000 1676 453 1504 1756
NIR 1393 138 1944 1999 1974 1384 138 918
MIR 1036 0 0 0 1990 408 1977 1843
MIR 1367 79 1749 1747 746 79 1928 1952
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The residential-agriculture class pair has low separability across all six bands, 

making them inseparable. The highest TD value for the class pairs was 1,384 in the NIR 

band. It is the end of the dry season, and many agricultural fields are still fallow and have 

poor vegetation making them spectrally similar to residential areas. 

This is one of the difficulties of using an optical sensor, it is unable to efficiently 

differentiate between fallow agriculture and residential land covers/uses. This is indicated 

by low separability values for the residential-agriculture class as seen in Table 16. The 

DN values (Table 15) for agriculture and residential are similar to each other, hence 

validating the low separability for this particular class pair. If the same AOIs were used 

on imagery acquired during the monsoon and harvesting seasons, TD values would have 

been much higher for this class pair. Imagery acquired during the monsoon season would 

have had healthier vegetation, resulting higher DN values for agriculture. Ideally the 

presence of more vegetation on the agricultural fields would have resulted in both classes 

having unique DN values, resulting in high separability.   

 TD values for the fifth class pair; residential-forest are also lower than expected.  

Unlike the TD values for the previous class pair, residential-agriculture, both MIR bands 

yield good separability for residential-forest. The first MIR band has a TD of 1,977 and 

the second 1,928. However, the NIR band has a TD of only 138 as compared to 1,384 in 

the previous class pair for residential-agriculture. The red visible band had a TD of 1,504 

as compared to 453 for residential-agriculture. Once again the DN values in Table 15 for 

residential and forest are also quite similar to each other, with the exception of NIR and 

the red visible band which are significantly different.  These variations in DN values for 
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residential and forest land cover/use, are directly related to the low TD values for this 

class pair.   

TD values for the last class pair, agriculture-forest were  relatively higher as 

compared to the previous two classes. The MIR bands had TD values of 1,843 and 1,952; 

however, the NIR band had a TD value of only 918. The value for the NIR band was 

predicted to be higher because the DN value for agriculture was 77 and 66 for forest, 

which should have resulted in higher separability. The red visible bands had a TD value 

of 1,756 providing excellent separability for the class pair.  

  4.1.4.2 Classification Landsat Image 

 The next step in the analysis was to stack all six (blue, green, red, NIR, MIR, and 

MIR) Landsat bands together and evaluate the classification accuracies. Table 17 

summarizes the classification accuracies for all four classes. The accuracies from the 

stacked Landsat bands show significant improvement when compared to the original 

radar and radar texture bands.   

Table 17: Classification accuracies Landsat image, Bangladesh.  
 

 

  

 

 

Blue, green, red, NIR, MIR, NIR bands 
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 15731 75 0 8 99.5 
Res 2 5725 24 229 95.7 
Ag 558 339 5137 0 85.1 
Forest 0 608 0 2112 77.6 

 Producers 
Accuracy 96.6 84.9 99.5 89.9  
Overall 
Accuracy  94 
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The overall accuracy (94%) achieved using the Landsat sensor is better than the 

original four radar (91%) and variance texture (85%) bands stacked together. Of 

particular interest is the high users and producers accuracy for agriculture and forest.  

These are two classes which have consistently had the lowest classification accuracies, 

however, with the use of Landsat their accuracies are both well over 70 %.  The 

producers accuracy for forest is 90%, which is a vast improvement considering that the 

highest accuracy attained for this class was 62% using all four bands in the original radar 

dataset. Overall, the results from classifying the Landsat image look promising for future 

research. All four classes showed major improvements when classified using the optical 

sensor. Classes such as forest which have been consistently misclassified are now clearly 

distinguishable.  

4.1.5 Sensor Fusion 

 When comparing classification accuracies for the two original datasets, i.e., radar 

and Landsat, the Landsat data yields better results. It is evident from the results of this 

study site, optical data is better suited for classification. The next two sections examine if 

the overall classification can be improved further by using two fusing techniques, i.e., 

layer stacking and PCA. The intent is not only to determine if the overall classification 

accuracies can be increased, but to also document which procedure results in minimal 

loss of key spectral information.  
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4.1.5.1 Layer stacking  

 The next step was to evaluate the classification accuracies for original radar layer 

stacked with the Landsat dataset. All four original radar bands were layer stacked with 

the six Landsat bands for this part of the analysis. The classification accuracies for both 

datasets stacked are summarized in Table 18. 

Table 18: Classification accuracies for original radar and Landsat, Bangladesh. 
 

 

 

  

 

 

There is a vast improvement in accuracies when both datasets are stacked 

together. The overall accuracy is almost 100%, with all four land covers/uses above 98% 

producers accuracy. The overall accuracy with the original radar dataset was at 90% and 

when using the Landsat image by itself was 94%.  

 The classification accuracies for the two combined datasets provide reliable and 

validating results. The combination of the two datasets results in not only improved 

classification accuracies, but also makes the analysis more consistent for all four classes.   

 The next analysis was to layer stack the radar texture and Landsat images. 

Considering that the variance texture (window size 7 x 7) measure yielded the highest 

All 10 bands (Four radar and Six Landsat) 
Land 
covers/uses  Water Res Ag Forest 

Users 
Accuracy 

Water 16269 0 0 2 100.0 
Res 0 6611 40 11 99.2 
Ag 22 33 5121 34 98.3 
Forest 0 103 0 2302 95.7 

 Producers 
Accuracy 99.9 98.0 99.2 98.0  
Overall 
Accuracy  99.2 
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separability among the classes, it was used for this part of the analysis.  All four bands of 

radar variance texture were stacked with the Landsat bands. Table 19 summarizes the 

classification accuracies for the two datasets.  

Table 19: Classification accuracy for radar texture (variance7x7) and Landsat, Bangladesh. 
 

 
 
  

  

 

 

  

 The overall classification accuracies for the radar texture and Landsat (98%) are 

slightly lower than the previous combination of original radar and Landsat (99%). The 

accuracies from both these datasets layer stacked are better than the four radar texture 

bands stacked together (85%) and Landsat alone (94%). The combination of radar texture 

and Landsat also helps improve the overall consistency and reliability of the 

classification.  

 One of the reasons why the overall classification reduced when radar texture and 

Landsat are stacked is related to the lower accuracies obtained by the radar texture alone. 

Hypothetically, if the radar variance texture would have yielded higher accuracies for all 

four classes, the overall accuracy for this dataset (radar texture and Landsat), would have 

been higher.  

Blue, green, red, NIR, MIR, NIR bands 
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16195 0 0 37 99.8 
Res 0 6255 0 18 99.7 
Ag 96 73 5157 44 96.0 
Forest 0 419 4 2250 84.2 

 Producers 
Accuracy 99.4 92.7 99.9 95.8  
Overall 
Accuracy  97.7 
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4.1.5.2 Principal Component Analysis (PCA) 

 Next, PCA was used to evaluate the classification accuracies of the three datasets 

(original radar dataset, radar texture and Landsat). The intent here was to determine if 

classification accuracies can be increase by combining the principal component from the 

two datasets, i.e., radar and Landsat. The PCA algorithm is particularly useful for 

reducing the redundancies in either image by taking only the most dominant spectral 

characteristic. However, this process of combining the dominant characteristic from 

either image can result in loss of spectral information.  

 Similar to the previous section, first original radar data will be analyzed with 

Landsat data and thereafter radar texture with Landsat. One component of each dataset 

has been evaluated, as opposed to taking the first three components.  The reason for 

choosing only one principal component was to maintain consistency among all three 

study sites. Certain land covers/uses had exceptionally poor accuracies when more than 

one principal component was evaluated. This was true for Bangladesh and Kenya, and 

hence in order to maintain consistency only one component was taken.  

 PCA was done on the original four radar bands and then combined with the first 

PCA of the Landsat bands. The classification results of the original radar PCA and 

Landsat PCA are summarized in Table 20. The overall classification accuracies for the 

PCA dataset (94%), is higher than original radar (91%), but there is only an improvement 

of 0.02% over the original Landsat dataset.   
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Table 20: PCA of original radar and Landsat image, Bangladesh. 
 

 
 
 
  

  

 

  

When comparing the two procedures, i.e., layer stacking and PCA, for the same 

datasets, layer stacking yields higher overall accuracies (99%). This can also be validated 

by looking at Table 21, where the PCA (one component) of variance radar texture at 7 x 7 

window size is combined with the PCA (one component) of Landsat. The overall 

classification accuracy for this dataset is 94%, which is higher than both original datasets, 

i.e., radar texture and Landsat. However, when the same date sets are fused together 

using a simple layer stack the overall accuracies are 98%, which is higher than when 

using PCA.  

Table 21: PCA of Landsat and variance radar texture, Bangladesh. 
 

 
 
 
 
 

 

One component  
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16281 0 216 7 98.6 
Res 0 6601 398 34 93.9 
Ag 3 81 4540 952 81.4 
Forest 7 65 7 1356 94.5 

 Producers 
Accuracy 99.9 97.8 88.0 57.7  
Overall 
Accuracy  94.2 

One component  
Land 
covers/uses Water Res Ag Forest 

Users 
Accuracy 

Water 16243 0 410 116 96.9 
Res 0 6566 25 37 99.1 
Ag 34 148 4693 944 80.6 
Forest 14 33 33 1252 94.0 

 Producers 
Accuracy 99.7 97.3 90.9 53.3  
Overall 
Accuracy  94.1 
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Secondly, in both PCA datasets (Table 20 and Table 21) the producers accuracy 

for the forest is extremely low (58% and 53%). The producers accuracy for forest in the 

original radar (71%) and Landsat (89%) datasets was higher as compared to when they 

were combined using PCA.  One of the reasons of this might be the loss of key spectral 

information during PCA for the two datasets. The loss of key spectral information is one 

of the major drawbacks of using PCA (Chavez et al. 1991). Based on the results of this 

study site, layer stacking is a better technique for fusing data from different sensors.  

Overall, it can be concluded that the original radar data yielded moderate 

separability results for the four land covers/uses. However, the use of texture, greatly 

improved the overall separability among the classes. In particular, it was the variance 

texture measure at a 7 x 7 window size, which yielded the best TD values. Considering 

that the variance texture measure showed the most improvement, it was chosen for 

classification purposes. Surprisingly, the use of radar texture (variance, 7 x 7) did not 

yield any major improvement in the classification accuracies, but rather reduced the 

producers accuracies for some classes. On the other hand, the classification accuracies for 

the Landsat image were better than both the original radar and radar texture. When data 

from these different sensor (original radar and Landsat) are fused together the 

classification accuracies were the highest. 

4.2 California 

 The next study to be evaluated was the central valley of California. The same 

methodology used for Bangladesh was also applied to the California site.  
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4.2.1 Original Radar 

 Prior to undertaking the analysis and subsetting the data for the California radar 

scene, statistical values for AOIs were extracted and are presented in Table 22.  

Table 22: AOI class statistics (DN values) from the PALSAR scene. Mean and standard deviation, CA. 

Bands Land Cover/Use 
Classes  HH HV VH VV 
Almonds X  

σ  
15.42 
7.19 

32.27
18.24

35.06 
19.58 

14.11 
6.26 

Cotton X  
σ  

7.32 
2.37 

10.44
2.30 

14.19 
2.98 

7.16 
2.27 

Fallow/idle 
cropland 

X  
σ  

7.06 
2.10 

10.60
2.48 

11.80 
2.68 

7.02 
1.96 

Alfalfa X  
σ  

12.89 
3.93 

14.86
4.44 

15.988 
4.78 

12.03 
3.80 

 

 Almond plantations have a high DN value for all four polarizations. The DN 

values for cross polarization are higher, as compared to like polarization. The high DN 

values for almonds are caused by the strong return signal from the almonds trees which 

are larger as compared to other crops. Almond trees are in close proximity to each other, 

which strengthens the radar backscatter resulting in high DN values. The reason for the 

cross polarization having higher DN values can be attributed to the function of measuring 

both amplitude and phased difference as opposed to only the amplitude as the case in like 

polarization.  

 Cotton and fallow/idle cropland both have very similar DN values. Cotton 

planting in California starts in March or April and is harvested in September. Considering 

the time of the year when the radar imagery was acquired (May), the crop had not fully 

matured and hence the radar returns are weak. Similarly, for the fallow/idle cropland the 
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radar signal is weak, because there is not much present on the ground to return the signal, 

acting almost specularly. This low backscattering property of the ground surface results 

in both cotton and fallow/idle cropland having similar DN values. The similarity in DN 

values for both these land covers/uses can result in misclassification and low separability.  

 Alfalfa has high DN values across all four polarizations. Given the time of the 

year, the alfalfa crop had matured and resulted in high backscatter, providing the high DN 

values. In this part of the country the farming practices are quite intense and alfalfa fields 

are dense. A dense alfalfa crop results in a rough texture on the radar image and returns 

high DN values. 

4.2.1.1 Transformed Divergence (TD)  

 The next step in the analysis was to evaluate the separability values for each of 

the four classes. Table 23, summarizes the TD values for the each of the four land 

covers/uses based on the individual bands. 

Table 23: TD values for original radar scene, PALSAR, CA. 

 

 Almonds and cotton are highly separable using cross polarization because 

almonds have a much higher DN value as compared to cotton. Almonds-fallow/idle and 

almonds-alfalfa are also quite separable using cross polarization for the same reason, i.e., 

Bands Avg. Min Almonds- 
Cotton 

Almonds- 
Fallow 

Almonds
-Alfalfa 

Cotton- 
Fallow 

Cotton- 
Alfalfa 

Fallow- 
Alfalfa 

HH 1068 40 1012 1945 500 1325 40 1583
HV 1180 124 1998 2000 1975 124 284 699
VH 1152 149 1994 2000 1978 184 149 606
VV 925 0 559 1879 327 1399 0 1445
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almonds have a higher DN value as compared to that of fallow/idle cropland and alfalfa 

(Table 22). 

 Cotton-fallow yields separability which is higher for like polarization as 

compared to cross polarization, where the TD values are both below 200. The overall 

separability of this class pair is below 1,700. It is surprising that like polarization (HH 

and VV) yielded higher TD values as compares to the VH polarization. The VH 

polarization had the most distinct DN values of 14 for cotton and 12 for fallow/idle 

cropland. Ideally the VH polarization would have resulted in the highest separability for 

cotton-fallow/idle cropland; however this was not the case.  

  Similarly, the class pair for cotton-alfalfa has extremely low separability across all 

bands primarily due to the similarity in DN values. Fallow/idle-alfalfa also follows a 

similar pattern where like polarization yields higher separability, as compared to cross 

polarization. The separability value for fallow/idle-alfalfa in the cross polarization would 

have been expected to be higher because the DN values are quite different from each 

other.  

 4.2.1.2 Radar Classification 

 Classification accuracies for the original radar data have been summarized in 

Tables 24, 25 and 26. The overall accuracies for all four individual bands range from 

56% for the VH band (Table 25) to 73% for the HH bands (Table 24). The overall 

classification accuracy when all four radar bands (Table 26) are combined is 73%.  
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Table 24: Classification accuracies for individual radar bands (HH and HV), CA.  
 

 
 
 

 

 

 

 

 

 

 

 

While the overall classification accuracies appear to be satisfactory, the producers 

accuracy for fallow/idle croplands and alfalfa are relatively poor.  

Almonds, as expected, had excellent classification accuracies (above 90%) across 

all individual and the four stacked bands.  These high classification accuracies for 

almonds can be validated by looking at the high DN values in Table 22. The DN values 

for almonds are quite high, as compared to other land covers/uses, making them highly 

separable from other classes. 

PALSAR HH 
Land 
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 19986 4 156 3276 85.3 
Cotton 3 22993 4737 374 81.8 
Fallow/Idle 
Crops 1 1594 2346 470 53.2 
Alfalfa 629 1109 5864 4367 36.5 

 Producers 
Accuracy 96.9 89.5 17.9 51.5  
Overall 
Accuracy  73.2 

 PALSAR HV 
Land 
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 20594 0 37 21 99.7 
Cotton 0 14917 7223 1190 63.9 
Fallow/Idle 
Crops 0 9363 4877 2951 28.4 
Alfalfa 25 1420 966 4325 64.2 

     Producers 
Accuracy 99.9 58.0 37.2 51.0  
Overall 
Accuracy  65.8 
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Table 25: Classification accuracies for individual radar bands (VH and VV), CA.  
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Cotton was only accurately classified in the HH and VV bands, where the 

producers accuracy was above 78%. For all other individual and the four stacked bands 

the producers accuracy for cotton was quite poor. This poor classification of cotton 

relates back to the similarity in the DN values for cotton and fallow/idle. The majority of 

the misclassified pixels for cotton were fallow/idle cropland, hence emphasizing the 

importance of evaluating the similar DN values. 

Fallow/idle cropland was also misclassified with other pixels - primarily cotton 

and alfalfa.  The producers accuracy for fallow/idle cropland is extremely low across all 

bands, particularly the HH (20%) and VH (21%) bands. The producers accuracy for all 

PALSAR VV 
Land 
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 19590 7 308 3035 85.4 
Cotton 1 20219 2172 189 89.5 
Fallow/Idle 
Crops 29 5149 6450 1577 48.8 
Alfalfa 999 325 4173 3686 40.1 

     Producers 
Accuracy 95.0 78.7 49.2 43.4  

Overall 
Accuracy  73.5 

PALSAR VH 
Land 
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 20605 1 38 42 99.6 
Cotton 0 10350 9854 1322 48.1 
Fallow/Idle 
Crops 0 9677 2766 2498 18.5 
Alfalfa 14 5672 445 4625 43.0 

     Producers 
Accuracy 99.9 40.3 21.1 54.5  
Overall 
Accuracy  56.5 
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four bands was comparatively better than the individual bands, but it was still below the 

level of acceptability (70%).    

Table 26: Classification accuracies for stacked radar bands (HH, HV, VH, VV), CA. 

PALSAR HH, HV, VH, VV 
Land 
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 20616 1 82 1737 91.9 
Cotton 0 16364 3040 77 84.0 
Fallow/Idle 
Crops 0 7788 8778 2495 46.1 
Alfalfa 3 1547 1203 4178 60.3 

     Producers 
Accuracy 100.0 63.7 67.0 49.2  
Overall 
Accuracy  73.5 

 

Alfalfa was also very poorly classified across all band combinations. The 

producers accuracy ranged from 43% to 54% for the individual bands, and only 49% 

when all four bands are stacked together. The majority of the misclassification for alfalfa 

was with fallow/idle cropland pixels. This was quite surprising, because the statistical 

values for the two classes are quite different.  

 Considering that three land covers/uses (cotton, fallow/idle cropland, and alfalfa) 

had exceptional low producers accuracy. The next step in the analysis focuses on 

evaluating the effectiveness of fusing multiple bands to increase those accuracies. This 

part of the analysis looks at the best two and three band combinations. These 

combinations of best bands are based on the overall classification of the individual bands.  
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Considering that the HH and VV bands yielded the best overall accuracies, they 

have been chosen for classification purposes. Similarly the HH, HV and VV bands have 

also been selected for the best three band combination (Table 27).   

Table 27: Classification accuracies PALSAR scene. Best two and three band combination, CA 
 

 

 

 

 

 

 

 

 

 

 

The classification accuracies for the best two (Table 27) band combinations show 

marginal improvements over each band (HV and VH) taken individually. However, when 

a third band (HV) is added to the two band combination the overall accuracy increases to 

79%, which is relatively higher than each band taken individually. The addition of an 

HH VV Best two bands 
Land 
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 20387 4 198 3026 86.3 
Cotton 0 21419 3060 160 86.9 
Fallow/Idle 
Crops 0 2789 5414 1294 57.0 
Alfalfa 232 1488 4431 4007 39.4 

     Producers 
Accuracy 98.9 83.3 41.3 47.2  

Overall 
Accuracy  75.4 

HH, HV, VV best three bands 
Land 
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 20614 0 80 1769 91.8 
Cotton 0 20294 2987 108 86.8 
Fallow/Idle 
Crops 0 4321 8409 2443 55.4 
Alfalfa 5 1085 1627 4167 60.5 

     Producers 
Accuracy 100.0 79.0 64.2 49.1  
Overall 
Accuracy  78.8 
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extra band does validate the fact that adding bands increases the overall classification 

accuracies. 

Unlike the Bangladesh study site, there are no distinct patterns which emerged 

during the analysis of classification accuracies for the individual radar bands. However, 

there is a relationship between the statistical DN values and producers classification 

accuracies for the four classes. 

4.2.2 Radar Texture 

 This section highlights the separability values for the four different texture 

measures. As predicted the variance texture measure provided the best separability and 

was chosen for additional classification purposes.   

4.2.2.1 Variance Texture 

 Table 28, shows the separability values for the radar image when variance texture 

is applied.  The 13 x 13 window sizes yielded the best results as compared to the other 

three window sizes (5 x 5, 7 x 7, and 11 x 11). 

 The use of variance texture (13 x 13) is particularly helpful for class pairs which 

were inseparable using the original radar datasets. All class pairs showed improvement 

after texture was applied, except almonds-cotton and almonds-fallow/idle in the cross 

polarization. All bands which had opportunity for improvement, i.e., TD value of less 

than 2,000, did indeed yield higher separability after texture was applied. 
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Table 28: TD values for variance texture, CA. 

 
  

Class pairs such as almonds-fallow/idle and cotton-fallow, which were 

inseparable using the original VV and HH bands, were now almost saturated with TD 

values of close to 2,000. Similarly, the cross polarizations (HV and VH) also shows 

improvements in the overall separability after texture is applied at a 13 x 13 window size. 

Class pairs for fallow/idle-alfalfa and cotton-fallow were inseparable in the original cross 

polarization (HV and VH), but after texture (13 x 13) is applied, both class pairs are 

highly separable with saturated TD values of 2,000.   

Bands Avg. Min. Almonds
-cotton 

Almonds-
Fallow/idle 

Almonds-
Alfalfa 

Cotton-
Fallow 

Cotton-
Alfalfa 

Fallow/idle-
Alfalfa 

TD values (5x5 Texture) for California, PALSAR image 
HH 894 51 61 1878 451 1721 51 1204
HV 1533 228 2000 2000 2000 1270 228 1700
VH 1587 155 2000 2000 2000 1542 155 1823
VV 917 0 0 1877 139 1943 92 1589
HH    

TD values (7x7 Texture) for California, PALSAR image 
HH 1041 0 0 1956 680 1893 282 1438
HV 1680 328 2000 2000 2000 1782 328 1969
VH 1685 224 2000 2000 2000 1895 224 1988
VV 1010 0 0 1953 222 1989 332 1757

TD values (11x11 Texture) for California, PALSAR image 
HH 1344 140 140 1994 1213 1979 1091 1648
HV 1766 598 2000 2000 2000 1996 598 2000
VH 1701 208 2000 2000 2000 1999 208 2000
VV 1261 188 188 1996 411 2000 1034 1935

TD values (13x13 Texture) for California, PALSAR image 
HH 1458 278 278 1998 1460 1988 1305 1720
HV 1745 469 2000 2000 2000 2000 469 2000
VH 1674 47 2000 2000 2000 2000 47 2000
VV 1352 312 312 1999 578 2000 1248 1972
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 Even though there is a major improvement in overall TD values after texture is 

applied there are still a few classes which are inseparable. In particular, it is the class pair 

for cotton-alfalfa which is inseparable across all bands with an average TD value of 312.  

Cross polarization for this class pair is relatively higher when compared to like 

polarization, however they are not high enough to provided adequate separability.   In 

addition, the class pair for almonds-cotton has an average TD value of 156 for like 

polarization which makes them inseparable. 

 Variance texture was also calculated for the 5 x 5, 7 x 7, and 11 x 11 window 

sizes. There are certain patterns which emerge when multiple texture window sizes are 

used. As the window size increases, average TD values also increase. However, the TD 

value for VH starts to decrease as a larger window size is used as seen the Table 28. 

  The TD values for the 5 x 5 and 7 x 7 window sizes are better than the original 

TD values; however there are a few classes that have extremely low separability. The 

class pair for almonds-cotton has zero separability for the like polarization using the 7 x 7 

texture window size.  Similarly, the class pair of almond-alfalfa is also inseparable using 

like polarization in both texture window sizes. The class pair for cotton-alfalfa still 

remains inseparable across all bands for both texture window sizes.  

 Unlike the Bangladesh study site (7 x 7 window size), the best texture window 

size for this study site was 13 x 13. Even though there is an improvement in the overall 

separability values, there are still a few classes (cotton-alfalfa) which have poor 

separability across all bands after texture is calculated.  
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4.2.2.2 Skewness, Mean Euclidean Distance, Kurtosis  

 Table 29, summarizes the average TD values for the other three texture measures. 

Similar to the previous study area of Bangladesh, all field crops have minimum texture 

and hence are not separable. Cross polarization provides relatively better TD values, as 

compared to like polarization, however they are still quite low. None of these texture 

measures can provide good classification accuracies and hence are not considered for the 

next stage of analysis.   

Table 29: TD values for the remaining Texture Measures, CA. 

 

4.2.2.3 Radar Texture Classification 

 Variance texture measure yielded the best separability results, and hence it was 

selected for the next step of classification. In particular it was the 13 x 13 variance texture 

Bands Avg. Min. Avg. Min. Avg. Min. Avg. Min. 
Skewness Texture Measure 

 5x5 7x7 11x11 13 x13 
HH 103 0 81 0 75 0 105 0 
HV 355 56 368 72 365 0 354 0 
VH 401 33 454 27 553 0 583 0 
VV 144 0 148 0 146 0 176 0 

Mean Euclidean Distance  
 5x5 7x7 11x11 13 x13 
HH 407 0 422 0 434 0 441 0 
HV 858 91 893 97 943 97 963 98 
VH 858 56 898 62 955 67 977 68 
VV 360 0 376 0 393 0 399 0 

Kurtosis  
 5x5 7x7 11x11 13 x13 
HH 0 0 1 0 30 0 61 0 
HV 1 0 10 1 124 0 254 6 
VH 2 0 8 1 83 0 172 0 
VV 0 0 1 0 14 0 43 4 
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that showed the most improvement over the original radar. Tables 30, 31, and 32 

summarize the classification accuracies for the individual and multiple bands.  

 Similar to the classification results of Bangladesh, the use of texture did not help 

in improving the accuracies. Rather, there is a drop in the overall classification accuracies 

for most individual bands. The overall classification accuracy for the four bands (Table 

32) dropped to 72% from an original 73%.  Classification accuracies for certain classes 

such as alfalfa dropped drastically when texture is applied.   

 

Table 30: Classification accuracies variance texture 13x13 (HH and HV), CA. 

 

  

 

 

 

 

 

 

 

 

 

Cross polarization texture (HV and VH) were the only bands where the overall 

accuracies increase marginally as compared to the original radar dataset. The like 

PALSAR HH 
Land  
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 19744 20 165 3026 86.0 
Cotton 0 25552 12611 160 66.7 
Fallow/Idle Crops 0 0 0 1294 0.0 
Alfalfa 875 128 327 4007 75.1 

 Producers 
Accuracy 95.8 99.4 0.0 47.2  
Overall  
Accuracy  72.6 

PALSAR HV 
Land  
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 20618 0 154 1 99.3 
Cotton 0 25699 12808 7658 55.7 
Fallow/Idle Crops 1 1 46 476 8.8 
Alfalfa 0 0 95 352 78.7 

 Producers 
Accuracy 100.0 100.0 0.4 4.1  
Overall 
 Accuracy  68.8 
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polarization (VV and HH), showed a reduction in their overall classification accuracies 

after texture is applied. Almonds and cotton classes for cross polarization show 

improvements in producers accuracy when texture is used. However the other two 

classes, fallow and alfalfa, both have reduced their producers accuracy. A similar pattern 

is evident in the like polarization where almonds and cotton result in an increased 

producers accuracy when texture is applied, however for the other two classes (fallow 

and alfalfa) the producers accuracy drops when texture is examined.  

 
     Table 31: Classification accuracies variance texture 7x7 (VH and VV), CA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PALSAR VH 
Land 
 covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

Users 
Accuracy 

Almonds 20619 0 168 1 99.2 
Cotton 0 25649 12797 6211 57.4 
Fallow/Idle Crops 0 48 61 1704 3.4 
Alfalfa 0 3 77 571 87.7 

 Producers 
Accuracy 100.0 99.8 0.5 6.7  
Overall 
 Accuracy  69.1 

PALSAR VV 
Land 
 covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

 

Almonds 18867 9 154 2332 88.3 
Cotton 0 25553 11729 3382 62.8 
Fallow/Idle Crops 0 89 534 580 44.4 
Alfalfa 1752 49 686 2193 46.9 

 Producers 
Accuracy 91.5 99.4 4.1 25.8  
Overall 
 Accuracy  69.4 
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Table 32: Classification accuracies for stacked variance texture bands, CA. 

PALSAR Texture HH, HV, VH, VV 

Users 
Accuracy 

Land  
covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

 

Almonds 20611 0 160 675 96.1 
Cotton 0 25506 12220 3892 61.3 
Fallow/Idle Crops 2 27 637 1627 27.8 
Alfalfa 6 167 86 2293 89.9 
Producers 
Accuracy 100.0 99.2 4.9 27.0  

Overall  
Accuracy  72.2 

 

 Cotton and almonds were the two classes for which there is an increase in the 

producers accuracy when texture is applied to the original radar dataset.  Overall cotton 

and alfalfa had good producers accuracy ranging from 90% to 100% for the individual 

bands and close to 100% accuracy when all four bands are stacked together.  

 The producers accuracy for fallow/idle croplands were exceptional low ranging 

from 0% to 4% for the individual band and 5% when all four bands are stacked. This is 

possible due to the edge pixels which have been misclassified after texture is applied to 

the radar image. The majority of the misclassification that occurred for fallow/idle 

cropland were with cotton. All pixels that should have been classified as fallow/idle 

cropland were misidentified as being cotton, resulting in low producers accuracy for the 

land cover/use.  

 Considering that two classes, fallow/idle cropland and alfalfa, still have low 

producers accuracy the next step focuses on fusing multiple bands to improve these 

accuracies. Table 33 summarizes the classification accuracies for the best two and three 

band combinations.  
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 The overall classification for the best two and three band combinations is lower 

than when the bands are evaluated independently (original radar dataset). The overall  

classification for the best two (HH and VV) and three band (HH, HV and VV) 

combination dropped to 65% and 72% as compared to the original 75% and 79%. The 

drop in accuracies can be attributed to use of texture. Each of the individual texture bands 

yielded lower accuracies as compared to the original radar, and hence it is not surprising 

when these individuals texture bands are combined their accuracies are lower than the 

original radar dataset.  

Table 33: Classification accuracies for best two and three band combination, CA. 

HH, VV :  Best two bands 
Users 

Accuracy 
Land 
 covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

 

Almonds 16280 26 156 1691 89.7 
Cotton 0 25523 11714 3256 63.0 
Fallow/Idle Crops 2419 52 55 1153 1.5 
Alfalfa 1920 99 1178 2387 42.7 
Producers 
Accuracy 79.0 99.3 0.4 28.1  

Overall 
 Accuracy  65.2 

HH, HV, VV: Best three bands 
Users 

Accuracy 
Land 
 covers/uses Almonds Cotton 

Fallow/Idle 
crops Alfalfa 

 

Almonds 20614 0 155 763 95.7 
Cotton 0 25625 12142 3959 61.4 
Fallow/Idle Crops 4 39 708 1928 26.4 
Alfalfa 1 36 98 1837 93.2 
Producers 
Accuracy 100.0 99.7 5.4 21.6  

Overall  
Accuracy  71.8 

 
  

The patterns for overall and producers accuracy for the best two and three texture 

band combinations are very similar to those of texture bands taken individually. Almonds 
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and cotton provide good producers accuracy ranging from 79% to 100%. However, the 

two classes for fallow/idle cropland and alfalfa only yield producers accuracy ranging 

from 0.4% to 28%. 

 For classification purposes, radar texture did not yield any positive results but 

rather reduced the overall and producers accuracy for a few classes. This was surprising, 

considering that variance texture at a 13 x 13 window size, greatly improved the original 

TD value. It should have shown moderate improvements for classification. One of the 

reasons for this drop in classification accuracies might relate to the misclassification of 

the edge pixels. Similar misidentification of edge pixels (AOIs) was also noticed for the 

Bangladesh study areas, where the use of texture decreased the classification accuracies. 

4.2.3 Radar fusion: Original Radar with Radar Texture 

 Table 34 summarizes the classification accuracies for original radar 

combined with radar variance texture. 

Table 34: Stacked original radar with radar texture (variance7x7), CA. 
 

 

  

 

 

 

A total of eight bands are evaluated to determine if the classification 

accuracies for alfalfa and fallow can be improved. Unfortunately, there is only a 

HH , HV, VH, VV 
Land 
covers/uses Almonds Cotton Fallow Alfalfa 

Users 
Accuracy 

Almonds 20619 0 161 1562 92.3 
Cotton 0 19470 4929 228 79.1 
Fallow 0 5345 7678 2973 48.0 
Alfalfa 0 885 335 3724 75.3 

 Producers 
Accuracy 100.0 75.8 58.6 43.9  
Overall 
Accuracy  75.8 
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marginal improvement in the overall classification accuracies. The overall 

accuracies increase to 76% from 73% (original radar) and 72% (variance 

texture).   

Almonds and cotton both have good producers accuracies in the original and radar 

texture bands. Hence it is no surprise that when both datasets are fused the producers 

accuracies are quite good, i.e., 100% for almonds and 76% for cotton.  There is a pattern 

that emerges when looking at producers accuracy for fallow/idle cropland and alfalfa. 

The producers accuracy for these two land covers/uses is based on the averages of the 

two datasets combined. The original radar yielded higher producers accuracy for 

fallow/idle (64%) and alfalfa (49%), however when these values are fused with radar 

texture the overall producers accuracy drops down to 59% for fallow/idle and 44% for 

alfalfa. One of the reasons for this is related to the low producers accuracy within the 

individual radar texture bands for fallow/idle and alfalfa.  

 The fusing of original radar datasets with radar variance texture did show minor 

improvements. However, there are certain classes such as fallow/idle cropland and alfalfa 

that have low classification accuracies (below 70%) regardless of the number and 

combinations of original and radar texture bands. Based on the assessment of the 

previous study area, these two land covers would have good accuracies using the optical 

dataset. 

4.2.4 Landsat Thematic Mapper 

  The next focus of the study is to evaluate the statistical DN and separability 

values for the Landsat sensor. Similar to the original radar datasets, these DN values 
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provide validating information, which is useful when examining the separability and 

classification results. Table 35 contains the statistical values for spectral signatures 

extracted from the same AOIs using the TM image.   

Table 35: AOI class statistic (DN values), TM image CA. 

 

 

  

 

 

 

Almonds have high DN values for the NIR and MIR bands, this is related to the 

reflectance properties of the IR bands. Both NIR and MIR bands are very responsive to 

chlorophyll level in the tree leaves. Considering the time of the year, almonds trees are 

fully emerged, and therefore have high reflectance in the NIR bands. The visible bands - 

blue (B), green (G) and red (R), have moderate DN values. The BGR have a shorter 

wavelength as compared to the infrared bands, hence they are more susceptible to 

scattering from the mid atmosphere.   

 Cotton has a relatively high DN value for the first MIR band. However, the DN 

values for the remaining bands are low. One of the reasons for the low DN values in all 

other band values might be because the cotton crop was not fully matured. Given the time 

Bands Land 
cover/use  Blue  Green Red NIR MIR MIR 
Almonds X  

σ  
87.16 

12.64 

44.98 

9.69 

48.20 

16.87 

109.16 

16.41 

101.12 

25.38 

48.39 

21.57 

Cotton  X  
σ  

99.20 

3.97 

50.39 

3.08 

60.25 

4.34 

58.16 

4.54 

103.58 

10.54 

61 

7.74 

Fallow/idle 
cropland 

X  
σ  

107.95 

10.31 

58.49 

6.75 

72.87 

9.53 

71.81 

10.12 

129.82 

19.03 

79.19 

13.30 

Alfalfa X  
σ  

85.39 

8.61 

39.42 

5.90 

38.51 

10.77 

124.28 

30.74 

96.93 

11.24 

39.64 

11.06 
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of the year (May) the cotton crop has not fully matured, hence resulting in low 

reflectance and DN values particularly in the NIR. 

 Fallow/idle croplands have DN values ranging from 58 to 107 for the visible 

bands and 71 to 129 for the infrared bands. Based on USDA metadata, this type of land 

cover/classification comprises of bare ground with leftover material after crops have been 

harvested. Considering that there is no healthy vegetation with high chlorophyll present 

on these fields, the DN values for the infrared bands should have been lower. However, 

this is not the case and the DN values for the infrared bands are the highest as compared 

to the other land covers/uses. This suggests that there is probably some type of 

grass/vegetation that is present on the ground.  

Alfalfa as expected has high DN values for the first MIR bands. The first MIR 

band is most sensitive to green vegetation, and considering the time of the year, alfalfa is 

in full bloom and hence the high DN values for the first MIR bands. Similarly the NIR 

band also has high DN value for alfalfa. 

4.2.4.1 Transformed Divergence  

Table 36 summarizes the TD values extracted from the four AOIs. With the 

exception of almonds-alfalfa and cotton-fallow, most of the other class pairs are highly 

separable for all bands with TD values of well over 1,900.  



87 

 

Table 36: TD values for Landsat image, CA. 

 

 The class pair for almond-alfalfa is highly separable using the green, red, and 

second MIR bands. However in the blue and NIR channels, the separability ranges from 

only198 to 1,102.  Considering the DN values for the two land covers/uses in the blue 

band are quite similar, this results in them having low separability. However, the DN 

values for the two cover types in the NIR and MIR channel are quite different. Almonds 

in the NIR band have a DN value of 109, where as the DN value for alfalfa in the NIR 

band is 124. Ideally this difference in the DN values should yield high separability, 

however this is not the case as seen in the separability values (Table 36). 

 Cotton-fallow/idle croplands have distinct DN values for all six bands, but the 

separability values are quite low. The separability values for this class pair ranges from 

0 to176 in the infrared bands and 685 to 850 in the visible bands. In the previous section 

for radar classification, it was noticed that fallow/idle croplands were regularly 

misclassified as cotton. There appears to be pattern for these two cover types that makes 

them inseparable, resulting in poor classification accuracies (radar) and also low TD 

values as seen in Table 36.  

 

 

Bands Avg. Min Almonds- 
Cotton 

Almonds- 
Fallow/idle 

Almonds- 
Alfalfa 

Cotton- 
Fallow 

Cotton- 
Alfalfa 

Fallow/idle- 
Alfalfa 

Blue 1631 685 2000 1999 1102 685 2000 2000 
Green 1768 705 2000 2000 1901 705 2000 2000 
Red 1806 850 2000 2000 1988 850 2000 2000 
NIR 1419 0 1894 1997 664 0 1993 2000 
MIR 1381 91 1998 2000 198 91 1999 2000 
MIR 1664 176 2000 2000 1810 176 2000 2000 
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4.2.4.2 Landsat Image Classification 

  All six Landsat bands were stacked together in order to evaluate the 

classification accuracies. Table 37 summarizes the classification accuracies for all four 

classes.  The overall accuracy for the combined Landsat bands is 91%, which is a drastic 

improvement over the original radar (73%) and radar texture bands (72%). The stacking 

of Landsat bands is particularly useful for land covers which had extremely low 

producers accuracy in the radar bands.  

Table 37: Classification accuracies for Landsat image, CA. 
 

 

  

 

 

  

 

Alfalfa and fallow/idle crops both have producers accuracy of well over 90%.  

This is vast improvement considering that alfalfa in the original radar dataset had an 

accuracy of only 49% and 27% when texture was applied. Similarly fallow/idle cropland 

has an accuracy of 67% in the original radar dataset and 4% when texture was applied. 

The producers accuracy for almonds dropped to 78%, as compared to the 100% in the 

original radar and radar texture bands. However, it is still well above 70%, and will be 

sufficient for classification purposes.  

Blue, Green, Red, NIR, MIR, NIR 
Land  
covers/uses Almonds Cotton Fallow Alfalfa 

Users 
Accuracy 

Almonds 16064 0 484 241 95.7 
Cotton 78 24989 322 0 98.4 
Fallow 651 647 12268 3 90.4 
Alfalfa 3826 64 29 8243 67.8 

 Producers  
Accuracy 77.9 97.2 93.6 97.1  
Overall 
 Accuracy  90.7 
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 The classification accuracy results for California are quite similar to the previous 

study area of Bangladesh. Classes which have been consistently misclassified are now 

clearly distinguishable in the Landsat image.  

4.2.5 Sensor Fusion 

 Based on the results of previous accuracies it is evident that the Landsat sensor is 

better suited for the land cover/use classification.  Landsat imagery over the years has 

been an indispensible source of geographic information and its ability to accurately 

classify different land covers/uses makes it a good resource for scientific analysis.   In 

past research (Huang et al. 2007) the fusing of radar with optical data has yielded higher 

land cover/use classification accuracies as compared to evaluating them individually. 

Even though the classification accuracies attained using Landsat images are quite good, 

the next step will evaluate if there are any improvements that can be made by fusing radar 

and optical data.  

4.2.5.1 Layer stacking 

 The first dataset to be evaluated is the original radar layered stacked with Landsat. 

All four original radar bands (HH, HV, VH and VV) have been layer stacked with the six 

Landsat bands. The classification accuracies for both datasets stacked are summarized in 

Table 38. There is an increase in the overall classification accuracies (94%) when the two 

datasets are stacked, as compared to analyzing them independently. 
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Table 38: Classification accuracies for original radar and Landsat, CA. 
 

 

  

 

 

  

The producers accuracy for all four classes are excellent with all being over 90%, 

and only a few misclassifications for fallow/idle cropland and alfalfa. This is a vast 

improvement over the original radar datasets, where the two crops were regularly 

misclassified. The producers accuracy for alfalfa increased to 100% from 78% (Landsat). 

Similarly the users accuracy also increases to 92% from an original 68% (Landsat), when 

original radar and optical data are fused together. 

 The second data to be fused with Landsat is the radar variance texture (13 x 13). 

All four radar texture bands (HH, HV, VH and VV) have been layer stacked with the six 

Landsat bands. Table 39 summarizes the classification accuracies for the two datasets. 

The overall classification accuracies are at 97%, which is an increase of almost 

3% as compared to the previous combination of Landsat and original radar. Based on the 

overall classification accuracies of radar texture (72%) and radar (73%) it was expected 

that Landsat combined with original radar would have yielded higher accuracies, 

however this is not the case.  

All Ten Bands (Four radar and six optical) 
Land  
covers/uses Almonds Cotton Fallow Alfalfa 

Users 
Accuracy 

Almonds 20619 0 868 841 92.3 
Cotton 0 23638 196 0 99.2 
Fallow 0 1466 11989 9 89.0 
Alfalfa 0 596 50 7637 92.2 

 Producers  
Accuracy 100.0 92.0 91.5 90.0  
Overall 
 Accuracy  94.1 
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Table 39: Classification accuracies for radar texture (variance, 13x13) and Landsat, CA. 
 

 

  

 

 

  
Similar to previous combinations of Landsat and original radar, all classes that 

had low producers accuracies are now above 90%.  Once again there is little room for 

misclassified pixels as the accuracies for the land covers/uses are extremely high.  

 The combination of the Landsat data with radar and radar texture yields 

exceptionally good classification accuracies. These high accuracies can be directly 

attributed to the Landsat imagery.  None of the radar datasets were able to successfully 

classify all land covers/uses independently, however when fused with the Landsat data 

the results were drastically improved. Fusing data from multiple sensors helps reduce any 

inconsistency during classification. For example, a band might have good producers 

accuracy in the Landsat data but very poor values in the radar texture; however, when the 

two sensors are fused an average is taken of both values. The resulting producers 

accuracy is more consistent and reliable, as compared to using either of the original 

datasets.  

 

 

All Ten Bands (Four radar and six optical) 
Land 
 covers/uses Almonds Cotton Fallow Alfalfa 

Users 
Accuracy 

Almonds 20593 0 228 383 97.1 
Cotton 0 25204 664 0 97.4 
Fallow 0 432 12163 10 96.5 
Alfalfa 26 64 48 8094 98.3 

 Producers 
 Accuracy 99.9 98.1 92.8 95.4  
Overall  
Accuracy  97.3 
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4.2.5.2 Principal Component Analysis (PCA) 

  PCA was done on the original four radar bands and then combined with the PCA 

of the six Landsat bands. The classification results of the original radar PCA and Landsat 

PCA are summarized in Table 40. Similar to the study area for Bangladesh, only two 

PCA bands were analyzed at a time, i.e., one component of radar and one component of 

Landsat.  

 The overall accuracy for this combination of PCA is 89%, which is comparatively 

lower than when both datasets are combined using a simple layer stacking procedure. As 

seen in Table 38, when the same datasets are combined using layer stacking the overall 

accuracy is 94%. More importantly this procedure of fusing data results in loss of key 

spectral information and is the reason for the low producers accuracy for alfalfa (57%). 

Table 40: PCA of Landsat and original radar, CA. 
 

 
  
 
 

  

 

  

The second combination of PCA involves the fusing of Landsat data with the 

radar variance textures (13 x 13). Table 41, summarizes the classification accuracies for 

the fused datasets.  The overall classification for this dataset is 89%, which is lower than 

First PCA of four radar  and six Landsat bands 
Land  
covers/uses Almonds Cotton Fallow Alfalfa 

Users 
Accuracy 

Almonds 20609 0 60 1366 93.5 
Cotton 0 22042 47 242 98.7 
Fallow 0 871 12986 2032 81.7 
Alfalfa 10 2787 10 4847 63.3 

 Producers 
 Accuracy 100.0 85.8 99.1 57.1  
Overall  
Accuracy  89.1 
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the accuracies attained using traditional layer stacking for the  same dataset i.e. Landsat 

and  radar texture. Similar to the previous combination of PCA, there is loss of key 

spectral information, resulting in low producers accuracy for alfalfa (24%).  

Table 41: PCA of Landsat and variance radar texture, CA. 
 

 

  

 

 

 

  
During the execution of the PCA algorithm there appears to be loss of key 

spectral information, resulting in low producers accuracy. The overall classification 

accuracies for the PCA dataset (89%), is lower than both original datasets, i.e., original 

radar (91%) and Landsat (94%). However, in regards to fusing technique, layer stacking 

yielded better results as compared to PCA. 

 The overall patterns for classification accuracies for California were similar to 

Bangladesh. Radar yielded decent classification accuracies and separability values. The 

use of radar texture helped improve the overall separability among the land covers/uses. 

However, the use of texture for classification purposes did not prove beneficial. The 

classification accuracies were lower for the land covers/uses after texture was applied as 

compared to the original radar image. Landsat TM proved to be very useful in providing 

PCA of four radar  and six Landsat bands 
Land 
 covers/uses Almonds Cotton Fallow Alfalfa 

Users 
Accuracy 

Almonds 20619 0 153 2 99.3 
Cotton 0 25325 275 3719 86.4 
Fallow 0 365 12669 2750 80.3 
Alfalfa 10 10 6 2016 98.7 

 Producers  
Accuracy 100.0 98.5 96.7 23.8  
Overall 
 Accuracy  89.3 
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good classification for all four classes. Fusing datasets from the two different sensors 

resulted in the highest classification accuracies for all classes.    

4.3 Kenya 

4.3.1 Original Radar 

 Prior to undertaking TD and classification analysis, statistics for the four AOIs 

have been extracted and presented in Table 42.  These statistical values for the various 

land covers/uses have proved extremely valuable during the analysis of the previous two 

study sites, as they have helped establish patterns between separability values and 

classification accuracies.  

Table 42: AOI class statistics (DN values) from the PALSAR scene. Mean and standard deviation, Kenya. 

Bands Land Cover/Use 

Classes  HH HV VH VV 

Residential X  
σ  

24.58 

11.89 

12.10

4.65 

12.14 

4.67 

21.71 

10.29 

Urban X  
σ  

34.71 

24.75 

13.37

7.39 

13.57 

7.43 

29.88 

20.62 

Savanna X  
σ  

15.36 

4.14 

5.65 

2.06 

5.78 

2.08 

15.09 

3.88 

Bare ground X  
σ  

10.91 

4.16 

4.09 

1.59 

4.18 

1.61 

10.89 

3.82 

 

  The residential areas in this part of Kenya (Nairobi) have a high number of trees 

which are in close proximity to houses. This is one of the reasons for the high DN values 

ranging from 22 to 24 for cross polarization and 12 for like polarization. The presence of 
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houses along with trees strengthens the backscatter of the radar resulting in high DN 

values.  

 Urban areas identified in this study site are within Nairobi, and hence are heavily 

urbanized. These cultural features result in a high backscatter and high DN values. 

Similar to the residential class, cross polarization has lower DN values when compared to 

like polarization. This trend of cross polarization having lower DN values as compared to 

like polarization is common to all four classes.   

 Savannas in this part of the region are primarily comprised of shrubs and grass. 

The presence of small shrubs on the surface results in a high backscatter of the radar 

signal. Radar signals for savannas are strengthened because of the diversity of the ground 

features, which appear to have a rough texture.    

 Bare ground acts in a specular manner, reflecting energy away from the sensor. 

This is turn results in less energy backscattered to the sensor, causing the DN values to be 

comparatively low.  

4.3.1.1 Transformed Divergence  

 The use of TD values in this study has been the foundation for evaluating the 

classification accuracies.  Transformed divergence has not only helped select the 

optimum bands for classification, but has also provided a framework to better understand 

the various datasets. Table 43 summarizes the TD values for the radar datasets. The 

separability for all class pairs, with the exception of a few pairs, is satisfactory. There is 

room for improving these TD values by using texture measures.   
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Table 43: TD values for original PALSAR scene, Kenya. 

 

 With the exception of residential-urban, savanna-bare ground, and residential-bare 

ground, all other class pairs have separability of over 1,950.  The class pair for 

residential-urban has poor separability across all bands regardless of the type of 

polarization. These low separability values for residential-urban, relate to the similarity in 

their DN values. The TD values for like polarization would have been expected to be 

higher because the DN values are quite different. However, this is not the case and the 

class pair for residential-urban has poor separability. 

 Residential-savanna have excellent separability for cross polarization (1,990 and 

1,987), but relatively lower separability in the like polarization (1,645 and 1,323). This 

variability in the TD values to some extent is unjustifiable, because the DN values for 

like polarizations are quite different, which would generally provide good separability.   

 Residential-bare ground have excellent separability across all bands. The high TD 

values for this class pair correlate directly to the unique DN values for each land 

cover/use. The DN value for residential and bare ground are very different from each 

other, hence resulting is good separability in all bands. 

Bands Avg. Min Res- 

urban

Res-

Savanna

Res- 

Bare 

Urban- 

Savanna

Urban- 

Bare 

Savanna- 

Bare 

HH 1550 766 901 1645 1987 1999 2000 766

HV 1564 682 711 1990 2000 1999 2000 682

VH 1570 683 749 1987 2000 1999 2000 683

VV 1465 734 801 1323 1944 1990 2000 734
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 Similarly, the class pair for urban-savanna has excellent separability values. These 

high TD values are again reflected in the DN values for each of the two land covers/uses. 

The DN values for the two classes are very different from each other, which in turn 

results in achieving higher separability.   

 The class pair for urban-bare ground was able to achieve perfect separability with 

saturated TD values of 2,000 across all bands. This high separability was expected 

primarily because the backscatter from the urban areas is much higher as compared to 

that of bare ground. 

 Class pair savanna-bare ground is the least separable with extremely poor TD 

values across all bands. Theoretically this class pairs would be highly separable, however 

the DN values (Table 42) for the two cover types are similar to each other, resulting in 

low TD values.    

4.3.1.2 Radar Classification 

 Classification accuracies for original radar have been summarized in Tables 44, 

45 and 46.  The best individual band was HH, with an overall classification accuracy of 

71% (Table 44). When all four (HH, HV, VH and VV) are combined an overall accuracy 

of 77% (Table 46) is achieved.  
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Table 44: Classification accuracies for individual radar bands (HH and HV), Kenya. 

PALSAR HH 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 14983 7354 11621 43 44.1 
Urban 528 10261 2 6 95.0 
Savanna 4041 377 19334 1793 75.7 
Bare ground 29 2 1497 21888 93.5 
Producers 
Accuracy 76.5 57.0 59.6 92.2 

 
Overall 

Accuracy  70.9 

PALSAR HV 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 17159 14155 583 8 53.8 
Urban 1636 1756 1078 7 39.2 
Savanna 786 2076 28330 5180 77.9 
Bare ground 0 7 2463 18535 88.2 
Producers 
Accuracy 87.6 9.8 87.3 78.1 

 
Overall 
Accuracy  70.2 

 
 
 

The residential class has producers accuracy ranging from 67% to 85% for the 

individual bands (Table 44 and 45) and 94% when all four radar bands (Table 46) are 

stacked together. Other than the 67% accuracy in the VH band, there were very few 

misclassifications. Understandably, the majority of the misclassified pixels for the 

residential class were with the urban class. This can be validated by looking at the DN 

values for VH, where residential and urban land covers have similar spectral signatures. 

Surprisingly the users accuracy for residential class was quite low. Similar to the 

misclassification of the producer accuracy, the majority of the misidentified pixels in the 

user accuracy were with urban.  
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Table 45: Classification accuracies for individual radar bands (VH and VV), Kenya. 

PALSAR VH 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 16377 14473 1918 16 50.0 
Urban 2412 1672 0 0 40.9 
Savanna 792 1842 28445 7108 74.5 
Bare ground 0 7 2091 16606 88.8 
Producers 
Accuracy 83.6 9.3 87.6 70.0 

 
Overall 
Accuracy  61.9 

PALSAR VV 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 11465 7699 15822 21 32.8 
Urban 431 9218 119 4 94.3 
Savanna 7461 1056 15551 1856 93.7 
Bare ground 224 21 962 21849 94.8 
Producers 
Accuracy 58.6 51.2 47.9 92.1 

 
Overall 
Accuracy  84.7 

 
   

Urban land covers/uses had the worst producers accuracy, ranging from 10% to 

57% for the individual bands and 64% when all four bands are stacked together. The 

majority of the misclassified urban pixels were assigned to the residential class. The HV 

band yielded the lowest producers accuracy of 10%. Similar to the previous class, the DN 

values for residential and urban in the HV band are very similar. This similarity in DN 

values relates  to the low producers accuracy for the residential class.  

The class for savanna had reasonable producers accuracy for all individual bands, 

ranging from 60% to 90%. When all four radar bands are stacked together the producers 
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accuracy drops to 63%. The majority of the misclassified pixels for savanna were 

residential. 

Table 46: Classification accuracies for original radar bands, Kenya. 

HH, HV, VH, VV 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 18339 6183 4483 44 63.1 
Urban 603 11489 562 8 90.7 
Savanna 536 160 20345 1633 89.7 
Bare ground 103 162 7064 22045 75.0 
Producers 
Accuracy 93.7 63.8 62.7 92.9 

 
Overall 
Accuracy  77.0 

  

 Bare ground as expected yielded the highest producers accuracy for the individual 

bands ranging form 70% to 92%. When all four radar bands are combined the producers 

accuracy stays at the 92% level. One reason that the high producers accuracy for bare 

ground is its low DN value making is highly separable from the other classes.  

 The best two and three band combinations (Table 47) also follow a similar pattern 

in their classification accuracies. The best two bands are comprised of like polarizations 

(HH and VV) yielding an overall accuracy of 69%. The overall accuracy of the best two 

band combinations is lower as compared to when both bands are evaluated 

independently. Urban and savanna both have low producers accuracy of 56%. However 

the producers accuracy for residential and bare ground is quite good (72% and 92%).   

The best three band combination shows a moderate increase in the overall and 

producers accuracies. The overall accuracy when the third band (HV) is added increases 

to 77% as compared to the 69% for the best two band combination. Even though a third 
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band is added the producers accuracy for urban and savanna is below the level of 

acceptability (70%). 

Table 47: Classification accuracies, best two and three band radar combinations, Kenya. 

HH,VV Best two bands 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 14208 7316 10506 78 44.3 
Urban 507 10204 49 4 94.8 
Savanna 3463 311 18427 1678 77.2 
Bare 
ground 1403 163 3472 21970 81.3 
Producers 
Accuracy 72.6 56.7 56.8 92.6  
Overall 
Accuracy  69.1 

HH, HV, VV Best three bands 
     
Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 18391 6158 4494 43 63.2 
Urban 455 11501 457 8 92.6 
Savanna 607 160 20333 1602 89.6 
Bare 
ground 128 175 7170 22077 74.7 
Producers 
Accuracy 93.9 63.9 62.7 93.0  
Overall 
Accuracy  77.1 

 

 Looking at the DN, TD, and classification values, it can be concluded that there is 

a direct relationship among the three. Classes which have similar DN values did not yield 

good TD or classification results.  Classes which have distinct DN values provided higher 

separability and better classification results. The classification of radar data yielded 

satisfactory results; however, it would be beneficial to see if higher accuracies can be 

attained using texture measures on the original radar dataset.  
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4.3.2 Radar Texture   

 Following a similar pattern from the previous two study sites, variance texture 

measures provided the best separability results and hence was chosen for classification 

purposes. The other three texture measures were again unsuccessful in yielding any 

distinct separability values.  

4.3.2.1 Variance 

 The 13 x 13 window sizes yields the best results as compared to the other three 

window sizes (5 x 5, 7 x 7 and 11 x 11). The TD results for all window sizes have been 

summarized in the Table 48.   

Table 48: TD values for variance texture, Kenya. 

Bands Avg. Min Res- 
urban 

Res- 
savanna 

Res-Bare  
Ground 

Urban- 
Savanna 

Urban- 
Bare 
ground 

Savanna- 
Bare 
ground 

TD values (5x5 Texture) for Kenya, PALSAR image 
HH 1499 166 830 1998 2000 2000 2000 166 
HV 1733 397 1999 2000 2000 2000 2000 397 
VH 1736 414 1999 2000 2000 2000 2000 414 
VV 1523 261 881 1994 2000 2000 2000 261 

TD values (7x7 Texture) for Kenya, PALSAR image 
HH 1521 183 942 2000 2000 2000 2000 183 
HV 1762 573 2000 2000 2000 2000 2000 573 
VH 1764 587 2000 2000 2000 2000 2000 587 
VV 1557 330 1011 2000 2000 2000 2000 330 

TD values (11x11 Texture) for Kenya, PALSAR image 
HH 1547 210 1070 2000 2000 2000 2000 210 
HV 1817 901 2000 2000 2000 2000 2000 901 
VH 1813 879 2000 2000 2000 2000 2000 879 
VV 1605 451 1179 2000 2000 2000 2000 451 

TD values (13x13 Texture) for Kenya, PALSAR image 
HH 1559 235 1117 2000 2000 2000 2000 235 
HV 1838 1029 2000 2000 2000 2000 2000 1029 
VH 1833 999 2000 2000 2000 2000 2000 999 
VV 1620 481 1241 2000 2000 2000 2000 481 
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The use of texture on radar images is particularly useful for the two class pairs of 

residential-urban and grassland-bare ground. These two class pairs had very poor 

separability in the original radar bands, however when texture is applied, there is a vast 

improvement in the TD values.  The class pair for residential-urban had TD values of 711 

and 749 for cross polarization in the original radar datasets. After texture is applied, the 

TD values for the same class pair are either saturated at 2,000 or are close to saturation. 

This increase in TD for the residential-urban class is common across all window sizes.  

  Similarly, the TD values for residential-savanna in the like polarization have 

shown drastic improvements. The TD value for residential-savanna in the original radar 

dataset were relatively low, however after texture is applied, the TD values are close to 

being saturated.  It is these improvements in separability values for land covers/uses 

which make texture such a valuable tool. 

 For the third class pair (savanna-bare ground) which had the lowest separability in 

the original radar bands, there was only a marginal increase in TD values. While there are 

improvements in TD values for this class pair, the overall separability is below 1,700.  

 All window sizes helped increase the separability values for the classes. In 

particular it was the 13 x 13 window size that showed the most improvements over the 

original radar dataset. A larger window size was well suited for this study area, as it 

included a higher number of pixels, resulting in improved separability among the classes.  

 Overall there is an increase in TD values for most class pairs after variance 

texture is applied at multiple window sizes. However, there are still a few class pairs 

which have unsatisfactory separability values. The class pair for residential-urban was 
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highly separable in the cross polarization after texture was applied. However, the TD 

values for the same class pair in the like polarization were well below 1,700. Similarly 

the class pair savanna-bare ground is also inseparable.   

4.3.2.2 Skewness, Mean Euclidean Distance, Kurtosis 

 Table 49 summarizes the TD values for the remaining texture measures in 

ERDAS. Unfortunately none of these texture measures are capable of providing useful 

separability results. It is rather disappointing to see that only one texture measure in the 

ERDAS module is capable of providing good TD values.   

Table 49: TD values for the remaining texture measure, Kenya. 

 

The average separability for mean euclidean distance texture measures (Table 49) has 

been the highest among these three texture measures. Even though the average 

Bands Avg. Min Avg. Min Avg. Min Avg. Min 
Skewness Texture Measure 

 5x5 7x7 11x11 13 x13 
HH 1334 20 1397 8 1409 0 1409 0 
HV 1173 13 1378 13 1566 11 1610  
VH 1167 10 1374 10 1562 10 1606 10 
VV 1332 41 1397 38 1411 21 1410 9 

Mean Euclidean Distance  
 5x5 7x7 11x11 13 x13 
HH 1378 139 1414 136 1447 123 1454 113 
HV 1238 104 1333 123 1421 140 1445 142 
VH 1230 93 1326 108 1413 124 1437 126 
VV 1322 152 1365 155 1409 147 1420 142 

Kurtosis  
 5x5 7x7 11x11 13 x13 
HH 52 2 153 9 470 29 623 21 
HV 66 0 0 0 0 0 0 0 
VH 44 0 0 0 0 0 0 0 
VV 56 0 174 0 0 0 753 17 
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separability was good, it was still not able to clearly distinguish the individual classes. 

For this reason none of these texture measures were selected for classification purposes.  

4.3.2.3 Radar Texture Classification 

 The classification accuracies for variance texture at a 13 x 13 window size have 

been summarized in Tables 50, 51 and 52. In previous research studies (Huang et al, 

2007; Idol et al. 2007), the use of larger window size yielded higher classification 

accuracies as compared to smaller window sizes.  In this study site the classification 

accuracies for radar texture were quite variable. For some classes there is an increase in 

producers accuracy, however for others there is a drop.  During the classification of the 

four land classes, the HV band did not yield good accuracy results for bare ground, and 

hence the results for this band have not been included. 

 During the classification of bare ground there were a few anomalies. Pixels in the 

HV band were misclassified as 0 and hence were interpreted as the background, resulting 

in voids/data gaps on the imagery. There is a misidentification of bare ground with 

savanna, however there were no data gaps, as opposed to cross polarization where the 

pixels were misclassified as the background resulting in data gaps. This was validated by 

looking at the radar image after texture was applied. The image for bare ground was 

extremely dark with pixel values of zero, hence it was no surprise during classification 

that all bare ground pixels in the HV band were classified as background. For verification 

purposes classification was also undertaken on the other window sizes, however the 

results were similar, i.e., the HV band was not able to successfully classify bare ground.   
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Table 50: Classification accuracies variance texture 13x13 (HH and HV), Kenya. 

HH Radar Texture 
Users 

Accuracy 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground  

Residential 8714 706 135 187 89.4 
Urban 1976 17113 0 0 89.6 
Savanna 378 0 17134 23007 42.3 
Bare ground 8513 175 15185 536 2.2 
Producers 
Accuracy 44.5 95.1 52.8 2.3  
Overall 
Accuracy  46.4 

VV Radar texture 
Users 

Accuracy 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground  

Residential 6257 1888 626 142 70.2 
Urban 340 15950 0 0 97.9 
Savanna 1854 0 17206 1032 85.6 
Bare ground 11130 156 14622 22556 46.5 
Producers 
Accuracy 32.0 88.6 53.0 95.1  
Overall 
Accuracy  66.1 

 

Table 51: Classification accuracies variance texture 13x13 (VH), Kenya. 
 
  

 

 

 

 

 

 

As seen in Table 50, there is a drastic difference in the producers accuracy for 

bare ground. In the HH band the producers accuracy is much lower as compared to the 

VH Radar texture 
Users 

Accuracy 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground  

Residential 18442 15269 621 62 53.6 
Urban 1110 2722 0 0 71.0 
Savanna 0 0 28702 5639 83.6 
Bare ground 29 3 2799 149 5.0 
Producers 
Accuracy 94.2 15.1 89.4 2.5 

 
Overall 
Accuracy  66.2 
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VV band. One of the reasons for this might be the orientation of the wavelength, i.e., VV 

is able to provide a stronger signal as opposed to using the HH band. Similarly a function 

of orientation also influences the producers accuracy for savanna and residential classes. 

Measuring both the amplitude and phase differences, the VH band is able to provide a 

higher producers accuracy for residential and savanna, as compared to like polarization 

where the accuracies are both below 70%.  

 These fluctuations in producers accuracy for individual bands are reflected in 

Table 52, when all bands are combined. Residential has a high producers accuracy based 

on the VH band, as opposed to the like polarization where the producers accuracies were 

very low. Urban has a high producers accuracy in all bands with the exception of the VH 

band, and hence it is no surprise when all bands are combined that the producers accuracy 

are also high. Savanna has a similar producers accuracy across all bands, resulting in a 

producers accuracy of 58% when all bands are combined. The only reason for bare 

ground to have a high producers accuracy when all bands are combined is related to the 

high accuracy (95%) in the VV band.  

Table 52: Classification accuracies for stacked variance texture bands, Kenya. 
 

 

  

 

 

 

  

HH, HV, VH and VV 
Land 
covers/uses Res Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 18724 2289 196 191 87.5 
Urban 728 15705 0 0 95.6 
Savanna 25 0 18930 1766 91.4 
Bare ground 104 0 13328 21773 61.8 

 Producers 
Accuracy 95.6 87.3 58.3 91.8  
Overall 
Accuracy  

80.1 
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 The overall classification accuracy for the four radar texture bands is marginally 

better than the original radar dataset. The use of texture on the original radar data helped 

increase the accuracies from 77% to 80%. Even though there is an increase in the overall 

accuracies, the producers accuracy for savanna decreased to 58% from an original 63%. 

However, the remaining three land covers/uses all showed improvements in producers 

accuracy when texture was applied to the original radar dataset.   

 The majority of the misclassification for savanna was with bare ground. Pixels 

that should have been classified as savanna were misidentified as being bare ground, 

hence lowering the producers accuracy. Another interesting observation during the 

classification was the zero pixel values assigned to bare ground. The zero pixel values for 

bare ground were observed on all four window sizes. 

4.3.3 Radar Fusion: Original Radar and Radar Texture 

 The effectiveness of fusing original radar with radar texture has been addressed in 

this section. Considering that there were a few anomalies in the dataset for radar texture, 

classification accuracies summarized in Table 53 are good and provide useful results.  

Interestingly, the producers accuracy for bare ground stays at the 90% level, similar to  

when both datasets are analyzed independently.  

 There is a marginal increase in the overall classification accuracies when the two 

datasets are combined. The overall accuracies increase to 83%, as compared to the 77% 

in the original radar data and 80% for radar variance texture. There is also an increase in 

the producers accuracy for all classes when the two datasets are combined. With the 

exception for savanna, all other classes have a producers accuracy of well over 70%. 
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Table 53: Stacked original radar with radar texture (variance13x13), Kenya. 

HH, HV, VH and VV 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 18910 2814 671 178 83.8 
Urban 603 15180 81 6 95.7 
Savanna 47 0 21705 1714 92.5 
Bare ground 21 0 9997 21832 68.5 
Producers 
Accuracy 96.6 84.4 66.9 92.0 

 
Overall 
Accuracy  82.8 

 

  Savannas have a producers accuracy of only 67%. Once again there appears to be 

a misclassification of pixels. This misclassification for the savanna pixels was also seen 

in the original radar and radar texture. Pixels that should be classified as grassland are 

being misidentified as bare ground, lowering the producers accuracy for the cover type. 

This misclassification of pixels reverts back to the similarity in DN values for bare 

ground and savanna.  

 Overall the combined accuracy of fusing original radar with radar texture is quite 

good. However, there is still the one cover type, i.e., savanna which has low producer 

accuracy.    

4.3.4 Landsat Thematic Mapper 

 The statistical DN and TD values for Landsat have been evaluated, and the results 

appear to provide useful information for the four classes. Table 54 summarizes the 

statistical data for Landsat. 
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Table 54: AOI class statistic (DN values), TM image, Kenya. 

 

 

  

 

 

 

  

One of the drawbacks of the Landsat sensor is the similarity in spectral signature 

for residential and bare ground. The similarity in spectral signatures for these two land 

covers/uses is particularly true when there is substantial vegetation present in residential 

areas.   However, as seen in Table 54, both classes are quite different in DN values and 

this would not be an impacting factor during classification. The DN values for all four 

land covers follow a similar pattern as seen in the previous two study sites. Never-the-

less, it is crucial to uncover some of the underlying patterns in DN values to effectively 

evaluate a classified image. 

 Urban features have a high reflectance. This high reflectance is why there are high 

DN values across all bands. The DN values for urban range from 98 to 108 for the visible 

bands and 71 to 126 for the infrared bands. With the exception of the near infrared bands, 

there is a vast difference in DN values for urban and residential which would ideally 

make the two classes highly separable.  

Bands Land 
cover/use  Blue  Green Red NIR MIR MIR 
Residential 
 

X  
σ  

71.55 
9.47 

63.24 
11.89 

71.95 
21.6 

77.81 
11.92 

108.69 
26.16 

73.81 
24.42 

Urban  X  
σ  

97.81 
14.28 

89.88 
14.80 

107.84
19.77 

71.10 
12.62 

125.70 
23.75 

103.72 
22.46 

Savanna X  
σ  

85.01 
4.54 

78.67 
5.98 

102.74
11.08 

78.89 
6.11 

152.74 
12.25 

100.97 
10.26 

Bare 
ground 

X  
σ  

101.31
6.69 

95.54 
9.64 

124.35
15.68 

79.30 
9.90 

184.19 
22.55 

140.40 
17.01 
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 Savanna has high DN values for the infrared band. This can be attributed to the 

high reflectance from chlorophyll for the vegetated areas. The AOIs for savanna do 

include a few trees and this could also be increasing the overall DN values.  The presence 

of chlorophyll on tree leaves is one of the primary reasons the DN values for this class 

are high. This has also been the case for the study area of Bangladesh, where the presence 

of trees resulted in high DN values.  

 Bare ground has the highest DN values for the four land covers.  The values range 

from 95 to 124 for the visible bands and 70 to 184 for the infrared bands.  Bare ground is 

relatively dry, almost acting like a mirror reflecting high amounts of energy back to the 

sensor.  

4.3.4.1 Transformed Divergence  

Overall the DN values for the four classes are quite unique, and hence the high 

separability among the classes. Table 55 summarizes the separability values for the six 

class pairs. As expected most of the class pairs are highly separable across all bands, with 

TD values of well over 1,700. 

Table 55: TD values for Landsat image, Kenya. 

 

Bands Avg. Min Res- 
urban 

Res- 
Savannah 

Res-Bare  
Ground 

Urban-
Savannah 

Urban- 
Bare 
ground 

Grass- 
Bare 
ground 

Blue 1908 1484 2000 1980 2000 1985 1484 1998 
Green 1964 1812 2000 1998 2000 1976 1812 2000 
Red 1888 1379 1992 2000 2000 1379 1961 1996 
NIR 460 0 205 728 1093 1161 1802 0 
MIR 1817 952 952 2000 2000 1954 2000 1996 
MIR 1863 1400 1789 1989 2000 1400 1998 2000 
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 With the exception of the NIR band, all other bands have good separability 

values. The only class pair for which NIR did provide good separability was for urban-

bare ground with a TD value of 1,802. All other class pairs in the NIR band have TD 

values of less than 1,200, and in the case for savanna-bare ground there was zero 

separability. Overall the TD values for Landsat images provided good separability for 

most of the class pairs with the exception of the NIR band. The Landsat images were able 

to yield much higher separability values as compared to the original radar. The class pair 

of savannah-bare ground was inseparable with the radar dataset, however when using 

Landsat, the two cover types are quite separable with TD values close to 2,000. The only 

band in which this class pair did not yield good TD values was in the NIR band.  

4.3.4.2 Landsat Image Classification 

 The classification accuracies for the Landsat image have been summarized in 

Table 56. The classification accuracies for Landsat in the two previous study sites have 

shown great improvements over the radar dataset. Hence it comes as no surprise for this 

study site that the classification accuracies for Landsat are superior to the original radar 

and radar texture band combinations.   

Table 56: Classification accuracies for Landsat image, Kenya. 
 

Blue, Green, Red, NIR, MIR and NIR bands 
Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 17645 2711 620 6 84.1 
Urban 1904 14902 275 0 87.2 
Savanna 32 302 24124 0 98.6 
Bare ground 0 79 7435 23724 75.9 
Producers 
Accuracy 90.1 82.8 74.3 100.0 

 
Overall 

Accuracy  85.7 
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 The overall classification accuracies for the Landsat dataset is at 86%, and all 

producers accuracies are well over 70%. The classification accuracy for Landsat shows 

improvements over the original radar (77% overall accuracy), data by almost 8% and a 

5% increase over radar variance texture (80% overall accuracy). The increase in overall 

accuracy results for Landsat is quite good, but more importantly is the increase in 

producers accuracy for savanna.  

 The land cover for savanna had a producers accuracy of below 70% in the original 

radar and radar texture bands. The majority of the misclassification for savanna in the 

radar bands was with bare ground. Pixels that should have been classified as savanna 

were misidentified as bare ground bringing the producers accuracy to 62% for original 

radar and 58% for radar texture. However, the same cover type in Landsat has a 

producers accuracy of 74% with comparatively less misclassified pixels.  

 Once again the use of Landsat images for classification has been a valuable 

addition to the analysis. Classes with low or unsatisfactory producers accuracies are now 

all above 70%.  

4.2.5 Sensor Fusion  

 This section focuses on evaluating the classification accuracies for the three 

datasets. There are two procedures which are used to evaluate the classification 

accuracies.  The first procedure is a simple layer stacking procedure followed by PCA 

analysis.  
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4.3.5.1 Layer stacking  

  The first multisensor dataset to be evaluated using layer stacking is for the 

original radar stacked with Landsat data.  All four original radar bands were stacked with 

the six Landsat bands. Table 57 summarizes the results of this classification. 

Table 57: Classification accuracies for original radar and Landsat, Kenya. 

Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 18854 5169 1959 13 72.5 
Urban 721 12798 232 2 93.1 
Savanna 6 20 20944 1 99.9 
Bare ground 0 7 9319 23714 71.8 
Producers 
Accuracy 96.3 71.1 64.5 99.9 

 
Overall 
Accuracy  81.4 

 

 The overall accuracy of the combined datasets is 81%, which is a marginal 

increase when compared to the original radar dataset which had an overall accuracy of 

80%. However, the overall accuracy for Landsat by itself was higher at 86%.Similarly the 

producers accuracies for all classes were also higher when Landsat data were  classified 

independently.  In particular, the producers accuracy for savanna decreased to 64% from 

an original 74% when Landsat data were analyzed independently.  

 The second dataset to be evaluated was for radar variance texture and Landsat. All 

four radar texture bands were layer stacked with the six Landsat bands (Table 58).  
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Table 58: Classification accuracies for radar texture (variance, 13x13) and Landsat, Kenya. 

Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 18450 1731 115 130 90.3 
Urban 1131 16263 0 0 93.5 
Savanna 0 0 21849 11 99.9 
Bare 
ground 0 0 10490 23589 69.2 
Producers 
Accuracy 94.2 90.4 67.3 99.4  
Overall 
Accuracy  85.5 

 

 There are no vast improvements in classification accuracies by fusing the two 

datasets together. The producers accuracy for savanna is still below 70% and hence if 

selecting data for classification purposes it would be better to use Landsat by itself where 

the producers accuracy for savanna was 74%. Overall the original Landsat data had 

higher accuracies for all classes as compared to when it is combined with radar or radar 

texture. 

4.3.5.2 Principal Component Analysis (PCA) 

 The following section evaluates the classification accuracies of the three datasets 

(original radar dataset, radar texture, and Landsat) by taking their first Principal 

Components. The principal component of all six Landsat bands were taken and combined 

with the first principal component of the original four radar bands (Table 59). Thereafter, 

the first principal component of all six Landsat was combined with the first principal 

component of four radar texture bands (Table 60).  
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Table 59: PCA of original radar and Landsat image, Kenya. 

Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 17378 1813 21 0 90.5 
Urban 1531 15436 5838 8 67.7 
Savanna 391 184 21192 0 97.4 
Bare ground 281 561 5403 23722 79.2 
Producers 
Accuracy 88.7 85.8 65.3 100.0 

 
Overall 

Accuracy  82.9 

 

The combination for both datasets i.e. PCA of Landsat with radar, and 

Landsat with radar texture, did not yield any improvements in overall 

classification. Similar to the results of layer stacking, the producers accuracy for 

savanna is lower when the two datasets (radar and Landsat) are combined. It is a 

better option to analyze the Landsat data by itself as opposed to fusing it with 

radar or radar texture. 

Table 60: PCA of Landsat and variance radar texture, Kenya. 

Land 
covers/uses Residential Urban Savanna 

Bare 
ground 

Users 
Accuracy 

Residential 17529 426 2285 0 86.6 
Urban 1487 17487 130 120 91.0 
Savanna 164 0 21738 0 99.3 
Bare ground 401 81 8301 23610 72.9 
Producers 
Accuracy 89.5 97.2 67.0 99.5 

 
Overall 

Accuracy  85.7 

 

  As seen in Table 59 the overall accuracy of Landsat and radar (83%) is lower 

than the original Landsat and radar taken independently. However, there is a marginal 

increase in overall accuracy when comparing the PCA results to the layer stacking 
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procedure. Even though the PCA accuracies are higher as compared to layer stacking, 

they are lower than the original datasets.  A possible reason for the low accuracies 

attained using PCA might relate to the presence of noise on the radar data, and hence 

reducing the overall image quality (Roberts et al. 2008). The noise in this case was 

present in the radar data prior to undertaking any processing and this may have altered 

the PCA accuracies. It may be concluded that PCA and layer stacking of Landsat and 

radar data are not viable options for Kenya. The overall and producers accuracies are 

lower when both datasets are combined as opposed to when analyzing them individually. 

This is unlike the other two sites where layer stacking Landsat and radar yielded higher 

accuracies as compared to analyzing them individually. 
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5. Summary and Conclusion 

 

 Even though the findings in this study are limited to three sites, the results can be 

extended to other land cover/use studies. There are patterns which have been validated 

that can contribute to scientific research and knowledge in this area of geosciences. 

Considering that the use of radar imagery in the next few years will grow, it is important 

to assess and evaluate the functionality of this system individually and in combination 

with other traditional systems such as Landsat.  

 With an increase in the number of operational radar systems such as 

RADSARSAT-2 and TerraSAR-X, it is essential to gain a better understanding of some 

of the technological advancements in the application of remotely sensed data. In 

particular, it is the application of quad polarization radar data that remains in its nascent 

stages. It is only with a detailed understanding of this relatively new operational 

spaceborne quad polarization data that the scientific and application community can 

maximize the benefits of these technological innovations. This study has been able to 

provide some insight on the use of this technology for land cover/use classification. One 

of the major advantages of this research study is that the results are not based on any one 

particular study area, but rather encompassing three different regions across the world. 

Evaluating three study areas using the same methodology proved to be extremely 

valuable as it helped exclude discrepancies in the results and made it easier to compare 
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results across all three sites. Results for each of the three study areas have been 

summarized in the following sections.  

Radar Datasets 

 All three study areas had average separability for the various classes in the 

original radar datasets. The separability for a few land covers/uses in all three study sites 

was quite low, i.e., below 1,500. These were classes which had similar DN values 

(spectral signatures) resulting in poor separability. Evaluating the DN values for all three 

study sites helped to get a better understanding  for some of the patterns that existed. 

Without having a good understanding for the spectral signatures it would have been 

difficult to justify the low separability values for classes such as residential, forest, bare 

ground, and alfalfa to name a few.   

 The use of texture on all radar images proved to be an excellent procedure for 

increasing the separability among classes. Class pairs which were inseparable in the 

original radar dataset showed major improvements when texture was applied. In 

particular it was the variance texture measure that consistently provided the best 

separability for all three sites. The best texture window size for Bangladesh was 7 x 7, for 

California it was 13 x 13, and for Kenya is was also 13 x 13. Based on the results of this 

study, it can be concluded that a larger window size is better suited for land cover/use 

classification. Even though the 5 x 5, 7 x 7, 11 x 11 showed improvements in the 

separability values, it was 13 x 13 that provided the highest separability among the four 

classes for two of the three study areas.  
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 Based on previous literature reviewed, it was predicted that texture would have an 

important role in improving the classification accuracies. Unfortunately, this was not the 

case and, surprisingly, the use of texture reduced the overall classification accuracies for 

Bangladesh and California. However, the use of texture for Kenya did show marginal 

improvements. Considering that two of three study areas were negatively affected by the 

use of texture, it was not a viable option for land cover/use classification. One of the 

reasons for texture yielding poor classification accuracies was related to the 

misclassification that occurred in the edge pixels of the AOIs after texture was applied.  

 When datasets for original radar and radar texture are combined for all three sites, 

there is a marginal increase in the classification accuracies. The increase in classification 

accuracies can be promising for future research. This may potentially be an important 

technique used by analysts who are only working with radar imagery and do not  have 

optical data for classification purposes.  

Landsat Datasets 

 Landsat images provided exceptionally good results for all three sites, yielding 

high separability and classification accuracies. In the cases of California and Kenya, 

Landsat images were able to provide higher separability for the classes as compared to 

the original radar and radar texture. However, for Bangladesh, the separability values 

from Landsat images were lower as compared to the original radar and radar texture. 

Based on the results of this study it can be concluded that Landsat images were able to 

provide higher separability for two of the three sites.  
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 Classification accuracies attained using Landsat imagery were particularly 

helpful. Land covers/uses such as forest (Bangladesh), alfalfa and fallow/idle cropland 

(California) and savannas (Kenya) all had low producers accuracies (below 70%) for the 

original radar and radar texture combinations. The producers accuracies for all these 

classes were well above 70% using Landsat images.  

 The overall classification accuracies attained using Landsat images were superior 

to that of original radar and radar texture across all three study areas. Hence, based on the 

results of this study, it can be concluded that Landsat images were better suited for 

classification as compared to radar and radar texture.  

Radar and Landsat  

 The question of whether classification accuracies can be increased by fusing 

multisensor data has been a key issue in the remote sensing community. The results based 

on the three areas identified in this study suggest that combining radar with optical data 

can indeed increase classification accuracies.  

 The study site for Bangladesh had excellent classification accuracies using 

Landsat images.  Landsat images fused with original radar resulted in better classification 

accuracies as compared to when using radar texture. When comparing the two 

techniques, i.e., layer stacking and PCA, layer stacking was able to provided higher 

classification accuracies for the same datasets. California had similar results where fusing 

the multisensor data resulted in better classification accuracies (above 90%) as compared 

to taking either datasets individually. However, unlike Bangladesh, the combination of 
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Landsat and radar texture provided greater accuracies as opposed to original radar and 

Landsat. Using PCA as a fusing technique once again resulted in relatively lower 

classification accuracy as compared to layer stacking.  

 Unlike the other sites, the fusing of multisensor data for Kenya did not help 

increase the classification accuracies. The classification accuracies for Landsat evaluated 

independently were higher for all classes as compared to when it is combined with radar 

or radar texture. Hence for analysis purposes, it would be a better option to use the 

Landsat image by itself as opposed to fusing it with radar. The use of PCA for this study 

site resulted in marginal increases in classification accuracies compared to using layer 

stacking. Even though PCA provides slightly better classification accuracies, it is lower 

than the original Landsat and radar taken independently. Therefore, it is a better option to 

analyze the Landsat data by itself as opposed to fusing it with radar or radar texture.  

 Based on the results for these study sites it can be concluded that multisensor 

fusion is an excellent technique for increasing classification accuracies. Another 

advantage of fusing different datasets is the fact that it helps reduce any inconsistency 

during classification. For example, a band might have good producers accuracy for the 

Landsat data but very poor values for radar texture. However, when the two sensors are 

fused the resulting accuracies are more consistent and reliable as compared to using 

either of the original datasets.  

 It can also be suggested that layer stacking yields better classification accuracies 

as compared to PCA. During the execution of the PCA (algorithm) there appears to be 

loss of key spectral information which might be the reason for the relatively low 
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classification accuracies. One of the reasons for loss in key spectral information during 

PCA (algorithm) may relate to presence of speckle and noise in the original radar 

datasets. 

  The recent launches of multiple polarization spaceborne radar systems have made 

available to the geospatial industry a great wealth of data. Quad polarization radar data 

allows the scientific community to harness the potential of operational spaceborne radar 

data to assist projects in  academia and private enterprise for planning, research and 

development purposes. The goal of this study was to explore the possibilities that this 

recently available quad polarization radar data offers and its effectiveness in classifying 

land cover/use in diverse regions around the world. The results from this study can 

potentially be extended to other sites to improve classification accuracies by fusing 

different sensor technologies. 

Suggestions for Future Research  

 Having additional land cover/use classes could be beneficial for further research. 

Research oriented towards incorporating a higher number of complex land cover/use 

classes would be useful for uncovering some of the additional functionality of the quad 

polarization radar datasets. Secondly, evaluating the classification accuracies for larger 

texture window sizes would also be important.   

 Addition classification decision rules should also be investigated in order to 

compare the accuracies for the different procedures. Finally, evaluating different fusing 
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techniques such as Intensity Hue Saturation (IHS), Multiplicative Transform and Brovey 

Transform could also be examined in future research.   
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