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Abstract

DELAY AND TRAFFIC RATE ESTIMATION IN NETWORK TOMOGRAPHY

Neshat Etemadi Rad, Ph.D.

George Mason University, 2015

Dissertation Co-director: Dr. Yariv Ephraim

Dissertation Co-director: Dr. Brian L. Mark

Network tomography deals with estimation of computer network features from mea-

surements on links or terminal nodes. The area was pioneered with the work of Vanderbei

and Iannonou in 1994 and Vardi in 1996. Of particular interest are estimation of source-

destination traffic rates from link packet counts or from aggregated packet counts in input

and output nodes, and estimation of link delay from source-destination delay measurements.

Traffic rate estimation, and link propagation delay estimation, are inverse problems which

require the solution of under-determined sets of linear equations. Iterative solutions based

on moment matching and the expectation-maximization algorithm were proposed for traf-

fic rate estimation, and a maximum entropy approach was developed for link propagation

delay estimation. Traffic rate estimation was also performed using a Bayesian estimation

approach. Estimation of link delay densities commonly involves exponential mixture models

which entail independence of the delay on various links. Network tomography is useful for

monitoring the performance of a network, and thus maintaining and expanding the network.

Network tomography is equally applicable to other networks such as rails, roads, or social

network.



The main contribution of this thesis is a new approach for estimating the aggregated

delay density on each link of the network from source-destination delay measurements.

Our approach is based on modeling traffic over the network as a continuous-time bivari-

ate Markov chain, whereas nodes of the network are associated with states of one of the

two chains comprising the bivariate process. The sojourn time in each node of the net-

work is determined by the other chain of the bivariate Markov process. The density of

this sojourn time is phase type. The family of phase type densities is very rich and it

is closed under mixture and convolution operations. This approach is more general than

existing approaches which rely on independent link delays that are modeled as mixtures of

exponentials. Mixtures of convolutions of exponential densities are particular phase type

densities. We develop an expectation-maximization algorithm for estimating the parameter

of the model, which in turn is used to evaluate the density for each link. As by products

of this approach, the estimated parameter of the model can also be used to estimate rout-

ing probabilities in each node as well as the probability of any source-destination path in

the network. Another contribution of this thesis addresses estimation of source-destination

traffic rates from aggregated packet counts in input and output nodes of the network. We

develop a simple covariance-based solution, and an alternative approach which invokes the

maximum entropy principle. We have simulated a computer network and numerically stud-

ied the algorithms we developed and compared the results with other benchmarks in the

literature.



Chapter 1: Introduction

1.1 Overview of Network tomography

A telecommunication network consists of nodes and links. Each node may represent an

element such as a computer or a router. A link is a path connecting two nodes directly

and does not contain any other node. A source-destination route between a pair of nodes

can be composed of several links and nodes. The routing regime in the networks is either

random or deterministic. In a random routing network, there exist multiple routes for

each source-destination pair, and routes are chosen according to some distribution. In a

deterministic routing regime, there is a single route for each source-destination pair. Clearly,

the deterministic routing regime may be considered as a particular case of a random routing

regime. Network management requires monitoring the internal parameters of the network

such as source-destination traffic rates, link delay densities and link loss rates.

Packets traveling through the network may undergo four types of link delays: 1) pro-

cessing delay 2) queueing delay 3) transmission delay, and 4) propagation delay [3]. While

queueing delay is random, the other delay types can be treated as deterministic. Link de-

lay can adversely affect communication over the network such as that of video or speech

signals. Therefore, assessment and characterization of link delay are of great importance.

The source-destination traffic rates can also provide network administrators with vital in-

formation for re-routing and balancing traffic across the network. For example, the source-

destination traffic rates may be used by the internet service providers to charge the cus-

tomers according to their use of data. Hence, studying, modeling and analyzing of the traffic

is of considerable importance. While it is essential to study network internal characteristics,

it is not always feasible and efficient to measure the internal parameters directly in today’s

vast networks. For example, due to security reasons, some of the internal nodes may not

1



be accessible. Also, it is not computationally and economically efficient to measure and

store all the information provided by the internal routers. Therefore, the area of network

tomography has emerged. Vanderbei and Iannone [4], and Vardi [2], studied estimation of

internal parameters of a computer network from some measurements taken from accessible

nodes or links of that network. Vardi [2] coined the term “network tomography” following

Shepp and Vardi’s earlier work on positron emission tomography (PET) [5].

Network tomography has several aspects. In this thesis, we only study the two main as-

pects, namely, estimation of source-destination traffic rates from traffic count measurements

at some nodes or links of the network, and inference of link delay from source-destination

delay measurements. Other aspects of network tomography include link loss rate estima-

tion and topology identification from source-destination measurements. The link or source-

destination measurements can be done either passively or actively. In passive measurement,

the traffic flow of the network is monitored and used to obtain the measurements. In active

measurement, test probes are transmitted across the network to obtain the measurements.

We provide more details on active probing techniques in Section 2.1.2. A survey of research

related to various aspects of network tomography can be found in [6].

1.2 Thesis contribution

The present work makes several contributions to the problem of link delay and source-

destination traffic rates estimation from source-destination measurements, as follows.

• We formulate the problem of link delay density estimation from source-destination

delay measurements in an unstructured network with random routing regime. An

unstructured network may have any desirable structure such as the tree structure.

We do not distinguish between the random and deterministic components of delay

on each link. We propose to model traffic over the network as a partially observable

bivariate Markov chain. A bivariate Markov chain Z comprises a pair of random pro-

cesses (X,S) which are jointly Markov. The states of X-chain represent the nodes of

2



the network, while the S-chain controls the statistical properties of the X-chain, for

example, the sojourn time in each state of the X-chain. The two chains are hidden

since we only measure the source-destination delay. The sojourn time of the process in

each state of the X-chain is phase-type [7]. Phase-type distributions are rather general

and may be used to approximate any desirable sojourn time distribution. For exam-

ple, mixtures of convolutions of exponential distributions are particular phase-type

distributions. In the proposed model, the link delay density has matrix exponential

distribution which is a generalization of phase-type distribution [8]. The proposed

approach also provides the routing probabilities in the random routing regime, as well

as the probability of each source-destination path.

• We develop an EM algorithm to estimate the parameter of the bivariate Markov

chain based on the work in [9]. In [9], the parameter of a Markov chain with a single

absorbing state was estimated from independent absorbing times. We do not use

numerical integration in the E-step as in [9]; instead a fundamental result from [10]

is used to evaluate the integrals. Our proposed approach for estimating link delay

density from source-destination delay measurements is fairly general and does not

require any prior assumption regarding the topology of the network and the form of

the density on the link delay.

• We test the proposed model for link delay density estimation in both unstructured

and tree-structure network. We simulate the real data using a high order bivariate

Markov chain model. We use the simulated data to estimate the parameter of a low

order bivariate Markov chain. Then, we use the estimated parameter to evaluate the

delay density over various links as well as the packet routing probabilities. The present

work is compared with the work in [11] where tree-structured network with mixture

of exponentials were used. The numerical results show that the source-destination

delay density, link delay densities and routing probabilities are very well represented

using the proposed approach. We also discuss recursive implementation of the EM

3



algorithm using blocks of data in a sequential manner.

• We study the problem of source-destination traffic rates estimation from aggregated

traffic flow at some nodes of the network. We discuss the two main approaches pre-

sented in [2] and [4]. We re-formulate the model of [4] to estimate source-destination

traffic rates from aggregated traffic counts at input and output nodes, and discuss an

interesting feature of that model. In particular, we show that estimation of source-

destination rates could follow from a simple covariance matching approach. We also

develop a maximum entropy solution for the rate estimation problem of [4], and pro-

vide numerical results to evaluate and compare the performance of the proposed so-

lutions with the work of [4] and [2].

1.3 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2, we review existing models

and approaches for the two aspects of network tomography studied here. Chapter 3 provides

a review on the continuous-time bivariate Markov chains. In Chapter 4, we study the

problem of link delay density estimation from source-destination delay measurements and

develop a new parametric model. The performance of the proposed approach is evaluated

through several numerical examples. In Chapter 5, we re-formulate the rate estimation

problem of [4], and develop the covariance-based approach as well as the maximum entropy

solution. Numerical results are provided to demonstrate the performance of the proposed

solutions. Finally, Chapter 6 concludes the thesis and discusses additional research areas

which can be extended from the present work.
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Chapter 2: Literature review

In this chapter, we address several aspects of network tomography including estimation of

source-destination traffic rates, link delay and link loss rate, and topology identification from

accessible measurements in the network. Some of the existing challenges and techniques to

approach each of these aspects are discussed.

2.1 Delay network tomography

In this section, we address an important aspect of network tomography, namely, delay

network tomography which aims at link delay inference from source-destination delay mea-

surements. These measurements are collected through either passive or active probing the

network. In both passive and active probing schemes, a probe time-stamped packet is sent.

The destination node marks its own time stamp on the probe packet once it reaches the des-

tination. The difference between these two time stamps is recorded as the source-destination

delay, if the clocks of the nodes are synchronized.

2.1.1 Estimation of propagation link delay

Several authors studied the problem of estimation of link propagation delay from source-

destination delay measurements, see, e.g, [12] and [13]. The propagation delay, as mentioned

earlier, is one of the deterministic components of link delay.

In [12], an unstructured network was studied where the clocks of the nodes were not

synchronized, and the propagation delay on the links were estimated. In such a network,

the clocks of the nodes have some offset with respect to a “Universal Time”, and the time

it takes for a packet to travel along a closed path was referred to as the round-trip delay

[12]. Consider the network depicted in Fig. 2.1. The round-trip delay, however, does not
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Figure 2.1: An unstructured network with N = 5 nodes

include any clock offset since the clock drifts are cancelled along a closed path. In [12], the

propagation round-trip delay associated with each closed path was identified as the smallest

round-trip delay measured for multiple different packets along that path. Next, the authors

in [12] identified as many closed paths as possible, and constructed a set of under-determined

linear equations. Least square and maximum entropy approaches were studied in [12] to

estimate the propagation delay on the links from round-trip delay measurements. In some

network tomography applications, a network administrator is interested in identifying a

few links with higher propagation delay from source-destination delay measurements. This

problem was studied in [13] where the vector of propagation link delays was assumed sparse,

and compressed sensing principle was used to estimate that vector.

2.1.2 Estimation of link delay density

The study of link delay density from source-destination measurements was performed in,

for example, [14], [15], [16], [17], [18], [19], [20], [21] and [11]. Some authors have focused on

tree-structured networks in which packets may enter only at the root node and transverse

to one of the terminal nodes, see, e,g, [21], [15], [16], [19] and [11]. Both random routing as

well as deterministic routing are possible in tree-structured networks. In a binary tree, for

example, one of two branches is possible from each node, and a particular branch is chosen

according to a binary distribution. In a tree-structured network, some researches rely on

6



active network tomography in which test probes are transmitted across the network using

different probing schemes, see, e.g, [14], [15], [16], [17], [18] [20] and [21]. Next, we address

some of the active probing schemes including unicast and multicast probing. Consider the

tree-structured network depicted in Fig. 2.2. The unicast probing scheme is based on

sending a probe packet from a source node, say node 0, to a destination node, say node

2. In multicast probing, a probe packet is sent from a source node, say node 0, to a group

of destination nodes, say node 2 and node 3, as follows. The probe packet is sent on the

link follows from node 0 to node 1. At node 1, the packet is replicated and sent on the

link from node 1 to node 2 and on the link from node 1 to 3, and the source-destination

delays from node 0 to node 2 and from node 0 to node 3 are measured. The advantageous

of using multicast probing is that multicast probe packets observed at multiple destinations

experience the same delays on shared links among their path from root to the destination,

while independent unicast probing does not generate correlated measurements. On the

other hand, due to security reasons, the multicast scheme is not enabled in many networks.

Hence, a packet pair probing scheme was suggested in [22] and [23] in which a pair of unicast

probe packets are sent back-to-back from the root node along distinct paths. In [24], a new

probing scheme based on sending unicast packets to a group of receivers in tandem was

developed. A “flexicast” scheme was developed in [17] in which groups of destination nodes

used for probing have different sizes.

The study of queueing delay on links requires choosing an statistical model that best de-

scribes the behaviour of source-destination delay measurements. Due to the lack of knowl-

edge about link delay density, [14], [16], [17], [20] and [21] used non-parametric discrete

models for the link delay density where the packet was assumed lost if the delay is infinity.

Conditions for identifiability of the discrete models were given in [17]. In [14], multicast

probes were utilized, and link delay variances were estimated from the covariances of source-

destination delay measurements. In [20], a mixture model was studied for the link delay

density, and multicast probes were utilized. The model described in [20] was comprised

of three components: a point mass for zero delay, a discrete uniform distribution, and an

7



Figure 2.2: A tree network topology

exponential density. The proposed approach in [20] for link delay density estimation was

based on matching the Fourier transform of the source-destination delay density. In [19],

a discrete/continuous mixture model was studied for link delay density where the discrete

component was a point mass for zero delay and the continuous component was a Gaussian

mixture density. An EM algorithm was developed in [19] to estimate the link delay density.

In [21], a Markov model was studied to capture the dependencies among delays on different

links, and the discrete link delays were estimated.

Non-parametric models are not always a good approximation of true parametric ones.

Therefore, parametric models for link delay density have been proposed in some researches.

For example, Gaussian link delay densities were studied in [17] and exponential models

were developed in [11]. The necessary and sufficient conditions for identifiability of the

exponential link delay density estimation problem was established in [11]. However, the

Gaussian and exponential models are not suitable to describe the heavy tail of link delay

density [25]. This motivates the introduction of other models as more realistic ones. Gamma

models were developed in [18] where flexicast probes were utilized, and a moment matching

approach was studied.

In [11], a tree-structure network was studied, and the link delay density was modeled

by a mixture of exponential densities. The delays corresponding to different links were

8



assumed independent, and an EM algorithm was used to estimate the parameter of the

mixture model in [11]. The moment generating function of exponential density was used to

implement the EM algorithm in [11]. Our approach in link delay density estimation from

source-destination delay measurements in Chapter 4 can be regarded as a generalization of

the work in [11].

2.2 Traffic network tomography

Traffic network tomography aims at estimating source-destination traffic rates in a computer

network from measurements taken from that network. We next detail some of the existing

models and estimation approaches developed in the literature for estimation of the source-

destination traffic rates. Throughout this thesis, capital letters and lower case letters are

used to denote random variable and their realizations, respectively.

2.2.1 Vardi’s model

Vardi, who coined the term “network tomography”, studied estimation of traffic rate over

source-destination pairs from link counts in [2], for networks with deterministic routing

regime and networks with random routing regime.

Deterministic routing regime

We demonstrate the principle of Vardi’s model for deterministic routing through a simple

example from [2]. Consider the network with N = 4 nodes, c = 12 source-destination

pairs and q = 7 links, as depicted in Fig. 2.3 [2, Example 1]. In deterministic routing,

packets with a given source-destination travel on a pre-determined route. The jth source-

destination pair may be referred to as the (j1, j2) pair where j1 denotes the source node and

j2 denotes the destination node. For j ∈ {1, · · · , c}, let Uj denote the number of packets

originated from j1 and destined to j2. The random variable Uj was in [2] assumed to be a

Poisson random variable with rate λj . Let U = (U1, ..., Uc)
′ denote a column vector where

9



Figure 2.3: An example of a 4-node directed network [2, Example 1].

Table 2.1: Routing matrix A for network in Fig. 2.3.

(a, b) (a, c) (a, d) (b, a) (b, c) (b, d) (c, a) (c, b) (c, d) (d, a) (d, b) (d, c)

a → b 1 0 0 0 0 0 0 0 0 0 0 0
a → c 0 1 0 0 0 1 0 0 0 0 0 0
b → a 0 0 1 1 0 1 1 0 0 1 0 0
b → c 0 0 0 0 1 0 0 0 0 0 0 0
c → b 0 0 0 0 0 0 1 1 0 1 1 0
c → d 0 0 1 0 0 1 0 0 1 0 0 0
d → c 0 0 0 0 0 0 0 0 0 1 1 1

′ is the matrix transpose. The random variables {U1, . . . , Uc} were assumed statistically

independent in [2]. Let λ = (λ1, . . . , λc)
′.

Let A = {aij , i = 1, . . . , q; j = 1, . . . , c} denote a q × c routing matrix where aij = 1

if the path from j1 to j2 goes through link i, and aij = 0 otherwise. The routing matrix

for the network of Fig. 2.3 is given in Table 2.1. In this table, a → b represents the link

between node a and node b, and (a, b) represents the source-destination pair corresponding

to these two nodes.

For i ∈ {1, · · · , q}, let Vi denote the number of packets travelled on link i. Let V =

10



Figure 2.4: A sketch of 4-node directed network with random routing regime.

(V1, . . . , Vq)
′. We have that V = AU. Clearly, for i ∈ {1, · · · , q}, Vi is a Poisson random

variable, but the random variables {V1, . . . , Vq} are not statistically independent. This

presents a major difficulty in using this model.

Random routing regime

In a random routing network, packets with source-destination j may travel on different

routes selected according to some probability distribution. Deterministic routing regime

can be regarded as a particular case of random routing regime. In the random routing

model as described by Vardi [2], Markov chains are attributed to each source-destination

pair. The states of each Markov chain are a subset of the nodes of the network. For the

source-destination pair j, the transition probability from one node, say i1, to another, say

i2, is the probability that upon leaving node i1, the packet travels on the link i = (i1, i2).

This probability is simply aij . As an example, consider the network from [2, Example

5.1] depicted in Fig. 2.4 with N = 4, q = 9 links and c = 12 source-destination pairs.

The routing matrix for this example is shown in Table 2.2. The Markov chain for the

source-destination pair (a, d), for example, is shown in Fig. 2.5.

In the random routing network, let V j
i denote the number of packets that pass through

link i with source-destination address j, and P ji denotes the probability that link i will be

11



Table 2.2: Example of a random routing matrix A for the network of Fig. 2.4.

(a, b) (a, c) (a, d) (b, a) (b, c) (b, d) (c, a) (c, b) (c, d) (d, a) (d, b) (d, c)

a → b .8 .2 .2 0 0 0 0 0 0 0 0 0
a → c .2 .8 .8 0 1 1 0 0 0 0 0 0
b → a 0 0 0 1 .2 .1 1 0 0 1 0 0
b → c 0 .8 0 0 .8 .1 0 0 0 0 0 1
b → d 0 .2 1 0 0 .8 0 0 1 0 0 0
c → b .8 0 .2 0 0 0 .8 .8 .2 1 1 0
c → d .2 0 .8 0 0 1 .2 .2 .8 0 0 0
d → b 1 0 0 0 0 0 1 1 0 .8 .8 .2
d → c 0 1 0 0 0 0 0 0 0 .2 .2 .8

Figure 2.5: Markov chain for SD (a, d).
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Table 2.3: Link usage probabilities {P ji } for source-destination (a, d) in Fig. 2.5.

Link: a → b a → c c → b c → d d → b

Probability: .2 .8 .36 .16 .64

used by the source-destination j. By the thinning property of Poisson random variables

for i ∈ {1, · · · , q}, {V 1
i , · · · , V c

i } are mutually independent Poisson random variables with

corresponding rates {λ1P
1
i , · · · , λcP ci }. We have

Vi =

c∑
j=1

V j
i . (2.1)

Hence, for i ∈ {1, · · · , q}, Vi is a Poisson random variable with rate
∑c

j=1 λjP
j
i . Let P jii′

denote the probability that a packet with source-destination j passes through both link i

and link i′, then

cov(Vi, Vi′) =
∑
j

λjP
j
ii′ . (2.2)

The probabilities {P ji } could be evaluated by considering all paths that are used by

packets with source-destination address j and travel through link i. These probabilities are

shown in Table 2.4 for the Markov chain corresponding to source-destination pair (a, d) in

Fig. 2.5. The scheme proposed by Vardi to evaluate {P ji } as well as {P jii′} is described in

[2].

Tebaldi and West developed an alternative approach for modeling the traffic over a ran-

dom routing network as follows [1]. Consider, as before, a network with c source-destination

pairs and q links. As the routing is Markovian, packets leaving the source may take different

paths to their destination. Let kj denote the number of possible paths from j1 to j2 which

are numbered as t = 1, . . . , kj . Suppose that each packet with source-destination address
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j is routed through path t with probability πjt such that
∑kj

t=1 πjt = 1. Ujt denotes the

number of packets out of the Uj packets that are routed through path t such that

kj∑
t=1

Ujt = Uj . (2.3)

Given Uj , it follows from the thinning property of Poisson random variables, that

{Uj1, · · · , Ujkj} are mutually independent Poisson random variables with the corresponding

rates {λjπj1, · · · , λjπjkj}. Let Ã denote a q×
∑

j kj zero-one matrix which is established by

substituting each jth column of A with kj columns of zero-one entries, where a one entry in-

dicates that the link belongs to the jth path. Also, Ũ = (U11, · · · , U1k1 , · · · , Uc1, · · · , Uckc)′

can be obtained by replacing each jth entry of U by (Uj1, · · · , Ujkj )′. Hence, a set of

equations which is similar to the set V = AU in the deterministic routing regime can be

obtained. Here we have V = ÃŨ.

Thus, the random routing matrix is embedded in a larger zero-one deterministic routing

matrix, with a new parameter {λjπjt, j = 1, . . . , c; t = 1, . . . , kj}. The embedding of the

random routing matrix from Table 2.2 in a zero-one matrix is shown in Table 2.4. Denoting

the estimate of λjπjt as λ̂jπjt, and using (2.3), the estimate of λj , is given by

λ̂j =

kj∑
t=1

λ̂jπjt. (2.4)

In addition, the estimates of the routing probabilities of paths are given by

π̂jt =
λ̂jπjt∑kj
s=1 λ̂jπjs

, t = 1, . . . , kj . (2.5)

Alternatively, given the routing matrix A, the probability πjt is determined by the
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Table 2.4: The embedded zero-one matrix from the random routing matrix of Table 2.2 , Ã,
[1].

(a, b) (a, c) (a, d) (b, a) (b, c) (b, d) (c, a) (c, b) (c, d) (d, a) (d, b) (d, c)
.8 .16 .04 .8 .16 .04 .64 .2 .16 1 .8 .2 .8 .1 .1 .8 .2 .8 .2 .2 .8 .2 .8 .8 .2 .2 .8

a→ b 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a→ c 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
b→ a 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0
b→ c 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
b→ d 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
c→ b 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0
c→ d 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0
d→ b 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1
d→ c 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

product of the appropriate transition probabilities in the jth column of A. For example,

when j = (a, d) in Table 2.2, there are kj = 3 possible paths, {abd, acbd, acd}, which can

be chosen with probabilities {.2, .16, .64}, respectively. Hence, the elements of A, {aij},

can also be estimated from {π̂jt, t = 1, · · · , kj}, vice versa. As a result, drawing Markov

chains for the various source-destination pairs, the random routing problem could have been

treated in a similar way to deterministic case by utilizing an embedded fat zero-one matrix

derived from introduction of different paths.

2.2.2 Vanderbei and Iannone’s model

In [4], aggregated traffic counts at input and output nodes were measured, and the traffic

over a network with N nodes and c = N(N − 1) source-destination pairs was modeled as

follows. For i ∈ {1, · · · , N}, let Vi denote the number of packets originated from node i.

For i ∈ {N + 1, · · · , q = 2N − 1}, let Vi denote the number of packets destined at node

i − N . In the zero-one matrix A = {aij}, aij = 1 if Uj contributes to Vi, and aij = 0

otherwise. Hence, we have V = AU. An example of a network with N = 4 nodes and

c = 12 source-destination pairs is depicted in Fig. 2.6. The corresponding A matrix for the

network of Fig. 2.6 is given in Table 2.5. We discuss some of the interesting features of this

model in Chapter 5.
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Figure 2.6: A network of 4 nodes.

Table 2.5: Matrix A of the network in Fig. 2.6

(a, b) (a, c) (a, d) (b, a) (b, c) (b, d) (c, a) (c, b) (c, d) (d, a) (d, b) (d, c)

1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 0 0 0 1

2.2.3 Maximum likelihood parameter estimation

Recall that both Vardi’s, and Vanderbei and Iannone’s model led to similar sets of under-

determined linear equations of the form V = AU. In this section, we study the maximum

likelihood parameter estimation approach for estimating λ from V = AU given several

independent realizations of V. The approach was implemented using the EM algorithm

in [4]. We first address the identifiability issue and then discuss the details of the EM

algorithm.

Identifiability

A parametric model is said to be identifiable if distinct parameter values imply distinct

probability density function values for almost each observation. Vardi [2] showed that the

unknown source-destination traffic rates λ are identifiable provided that A does not contain
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duplicate columns or zero columns. Duplicate columns correspond to identical source-

destination pairs which need not be distinguished. Also, a zero column in A corresponds to

a useless source-destination pair which can be simply deleted. Clearly, the two conditions

are satisfied in any practical scenarios, and the models developed in [2] and [4] are both

identifiable.

The EM algorithm

The EM approach was developed by Vanderbei and Iannone in [4] for estimating λ from

K independent realizations of V. Let {v(1)
i , · · · , v(K)

i } and {u(1)
j , · · · , u(K)

j } denote K

statistically independent realizations of Vi and Uj , respectively. For k = 1, · · · ,K, let

v(k) = (v
(k)
1 , · · · , v(k)

q )′ and u(k) = (u
(k)
1 , · · · , u(k)

c )′. Thus, for k = 1, · · · ,K, v(k) = Au(k).

Let vK1 = {v(1), · · · ,v(K)}. We denote the associated density by pλ(·) and an expected

value with respect to pλ(·) by Eλ{·}. The EM algorithm requires evaluation of the log-

likelihood of the complete statistics U. Let the c × 1 column vector λ(ι) = (λ
(ι)
1 , · · · , λ(ι)

c )′

denote the parameter estimate at the end of the ι-th iteration. The algorithm starts from

some initial estimate of λ, say λ(0), and is terminated when
∑

j(λ
(ι)
j − λ

(ι+1)
j )2 falls below

a threshold. Another criterion for EM is that the relative difference of the log-likelihoods

from two consecutive iterations falls below a threshold. The EM auxiliary function is given

by,

Q(λ, λ(ι)) = Eλ(ι){log pλ(u) | vK1 }

=

c∑
j=1

[−λj + Eλ(ι){Uj | v
K
1 } log λj − Eλ(ι){logUj ! | vK1 }] (2.6)

A new parameter estimate at the end of the (ι + 1)-th iteration, λ(ι+1), is obtained by

maximizing Q(λ, λ(ι)) with respect to λ. Hence,
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λ(ι+1) = Eλ(ι){U | v
K
1 } =

1

K

K∑
k=1

Eλ(ι){U | v
(k)}, (2.7)

which follows from independence of {v(1), · · · ,v(K)}. The conditional mean estimate Eλ(ι){U |

v(k)} in (2.7) is given by,

Eλ(ι){U | v
(k)} =

∑
u:v(k)=Au

u
pλ(ι)(u)∑

u:v(k)=Au pλ(ι)(u)
. (2.8)

Evaluation of (2.8) requires finding all possible solutions of under-determined set of

equations v(k) = Au which is not a feasible task. To diminish the computational difficulty

of evaluation of (2.8), [4] proposed to evaluate (2.8) by assuming that {U(t), t = 1, 2, . . .}

evolves as a stationary ergodic Markov chain with uniform stationary distribution. A re-

alization of that Markov chain, which satisfies v(k) = Au(t) for each t, was generated

recursively. By using this realization, the conditional expectation in (2.8) is evaluated by,

Eλ(ι){U | v
(k)} = lim

T→∞

1
T

∑T
t=1 u(t)Pλ(ι)(u(t))

1
T

∑T
t=1 Pλ(ι)(u(t))

. (2.9)

Exact evaluation of (2.9) is not computationally feasible. Hence, a large enough value of

T is chosen in (2.9). A recursive approach was proposed to find {u(t); t = 1, · · · , T} in [4].

We first require to find u(1) = (u1(1), · · · , uc(1))′. The scheme developed by Vanderbei and

Iannone to find u(1) was described in [4]. An alternative approach developed in [1] may be

also utilized to find u(1). The procedure is based on the following argument. The routing

matrix A is full rank in any practical network tomography problem, since otherwise some

measurements (rows) are redundant and can be excluded. Hence, in the network model

V = AU, the columns of A can be reordered such that A = [Ac, Ad] where Ac is a q × q
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non-singular matrix. Similarly, from reordering the entries of U, we have U′ = (U′c,U
′
d).

Hence,

Uc = A−1
c (V −AdUd). (2.10)

Then, u(1) may be found as follows. First, the entries of ud are chosen randomly on

[0,maxj vj ]. Next, uc is obtained following (2.10). If uc contains any negative entries, a

new ud is chosen randomly and the process will continue, otherwise the resulting u will be

chosen as u(1). Let u(t) = (u1(t), · · · , uc(t))′ for t = 2, · · · , T . Next, given u(t), a random

walk was defined to find u(t + 1) in [4], recursively as follows. Choose four distinct nodes

i1, i2, j1, j2 ∈ {1, · · · , N} at random. Let l1 = (i1, j1), l2 = (i1, j2), l3 = (i2, j2), l4 = (i2, j1).

Select a random integer ζ between −min{ul1(t), ul3(t)} and min{ul2(t), ul4(t)}. For t =

1, · · · , T − 1, u(t+ 1) is given by

u(t+ 1) = u(t) + ζ1l1 + ζ1l3 − ζ1l2 − ζ1l4 (2.11)

where 1i is a column vector of an appropriate dimension with a one in its i-th component

and zero elsewhere.

2.2.4 Vardi’s moment matching approach

Vardi [2] proposed a moment matching approach for estimating λ from vK1 to bypass the

computational difficulty of implementing (2.8), as follows. The EM algorithm (2.7) was also

considered by Vardi [2, Eq. (9)]. The gradient equation of the likelihood function of V is

given by,
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λ =
1

K

K∑
k=1

Eλ{U | v(k)}, (2.12)

where λ is a fixed point of the EM algorithm and a stationary point of the likelihood of

the observable statistics V. Let η = (η1, · · · , ηq)′ denote a q × 1 column vector where

ηi = Eλ{Vi} =
∑c

j=1 aijλj . Hence, η = Aλ. Let the q × 1 column vector η̂ = (η̂1, · · · , η̂q)′

denote the sample average of V given by

η̂ =
1

K

K∑
k=1

v(k). (2.13)

Multiplying both sides of (2.12) by A shows that if λ is a fix point of the EM algorithm,

then

Aλ =
1

K

K∑
k=1

Eλ{AU | v(k)} =
1

K

K∑
k=1

v(k) = η̂. (2.14)

Thus, the EM algorithm (2.7) attempts to solve η̂ = Aλ. This under-determined system

of linear equations with positivity constraints {λj ≥ 0; j = 1, · · · , c} is referred to as a

LININPOS problem [2]. Vardi proposed a moment matching approach for estimating λ

which relies on a so-called canonical EM iteration for solving LININPOS problems. The

iteration was first introduced and discussed by Shepp and Vardi [5] for the positron emission

tomography (PET) problem under independence assumptions of {v(k)
1 , · · · , v(k)

q } for k =

1, · · · ,K. The independence assumptions hold for PET problem. The EM iterate used by

Vardi [2, Eq. (26)] for solving Aλ = η̂ is given by, for l = 1, · · · , c,
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λ
(ι+1)
l = λ

(ι)
l

1∑q
i=1 ail

q∑
i=1

ailη̂i∑c
h=1 aihλ

(ι)
h

. (2.15)

Another justification for iteration (2.15) can be found in [26]. This iteration has been

widely used in other applications such as image deblurring, see e.g., [26] and [27], and

emission tomography, see e.g., [5], [28] and [29].

Vardi [2] then proposed to estimate λ by matching both the first and second moments of

V to their sample values. Let ψ = {ψil; i = 1, · · · , q; l = 1, · · · , q} denote a q× q covariance

matrix where ψil = Eλ{ViVl} − Eλ{Vi}Eλ{Vl}. For i 6= l, ψil is given by,

ψil =
c∑
j=1

aijaljλj , (2.16)

For i = 1, · · · , q, ψii is given by

ψii =
c∑
j=1

aijλj . (2.17)

Let ψ̂ = {ψ̂il; i = 1, · · · , q; l = 1, · · · , q} denote the sample covariance matrix where,

ψ̂il =
1

K

K∑
k=1

v
(k)
i v

(k)
l −

1

K2

K∑
k=1

v
(k)
i

K∑
k=1

v
(k)
l . (2.18)

For i = 1, . . . , q; j = i, . . . , q, elements of the sample covariance matrix, ψ̂, are ordered

lexicographically, and arranged into an (1 + q)q/2 × 1 vector denoted by φ̂ = {φ̂j}. Let

B = {bij ; i = 1, · · · , q(q + 1)/2; j = 1, · · · , c} denote an (1 + q)q/2 × c matrix with rows
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given by element-wise product of rows of A ordered to match the indexing of φ̂. Thus,

matching the sample mean and covariance of V to their theoretical values, the following

matrix equation should be solved,

 η̂

φ̂

 =

 A

B

λ. (2.19)

Some equations in (2.19) are infeasible. For example when
∑

l ailajl > 0 while ψ̂ij < 0

or when ψ̂ij 6= 0 while
∑

l ailajl = 0. Such moment equations are removed from (2.19).

Some equations in (2.19) are inconsistent. For example η̂i and ψ̂ii express the mean and

variance, respectively, which are the same under Poisson model. Vardi let the “geometry

of Kullback-Leibler distance” determine the best trade-off between all these inconsistent

equations. An EM iterative solution to (2.19) could be attempted similarly to the solution

of (2.14) with the appropriate substitution of A by

 A

B

 and η̂ by

 η̂

ψ̂

.

The EM iterate used by Vardi [2, Eq. (28)] to solve (2.19) for l = 1, · · · , c is given by,

λ
(ι+1)
l = λ

(ι)
l

1∑q
i=1 ail

q∑
i=1

ailη̂i∑c
h=1 aihλ

(ι)
h

+ λ
(ι)
l

1∑(1+q)q/2
i=1 bil

(q+1)q/2∑
i=1

bilφ̂i∑c
h=1 bihλ

(ι)
h

. (2.20)

2.2.5 Tebaldi and West Bayesian approach

Tebaldi and West [1] studied the rate estimation problem of [2], and developed a Baysian

solution for estimation of the source-destination traffic rates from a single realization of V.

In this approach, the source-destination rates were assumed to be statistically independent

random variables drawn from specified marginal prior distributions. Let Λ = (Λ1, · · · ,Λc)′.
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The goal of [1] was to compute the posterior distributions which are the conditional prob-

ability of U = u given V = v and the conditional probability of Λ = λ given V = v. The

posterior distributions are used for inference on U and the associated source-destination

traffic rates. Since posterior computations are analytically difficult, iterative Markov Chain

Monte Carlo (MCMC) simulation methods were developed and implemented in [1]. It is

not clear that if the measurements are taken at multiple periods, i.e., K > 1, how the

sufficient statistics can be brought into the analysis. Thus, whereas the Baysian approach

is sensitive to the prior assumption on the distribution of Λ, it seems more applicable to

networks where prior knowledge of Λ is available and repeated measurements are hard to

achieve. The work of [1] was mainly concerned with the tomography problem arising in

road networks.

2.2.6 Other related works

In this section, we briefly address some other related researches to traffic network tomogra-

phy. In [30], the traffic over each source-destination pair was modeled by a normal random

variable with the variance be the mean raised to a constant power, and the time-varying

source-destination traffic rates were estimated from link counts in a network with deter-

ministic routing regime. In [30], a moving window was used to measure the aggregated link

counts within a certain time period, and an EM algorithm was developed to compute the

maximum likelihood estimation (MLE) of the source-destination rates.

In [31], traffic over the j = (j1, j2)-th pair was assumed constant and proportional to

the product of the traffic count originated from j1 and the traffic count destined at j2. This

model was referred to as the gravity model [31]. An information-theoretic approach was then

developed in [31] for estimation of the source-destination traffic counts. The rate estimation

problem of [2] was also studied in [32] where a pseudo maximum likelihood solution was

developed. The main idea in [32] was to construct independent sub-problems by choosing

pairs of rows in A.
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2.3 Other aspects of network tomography

Other aspects of network tomography include link loss rate estimation from source-destination

loss measurements and topology identification from source destination measurements. The

study of link loss rate from source-destination loss measurements was performed in, for

example, [24], [33], [34] and [35]. In [24], source-destination loss measurements were used

to identify the links with large loss rates. In [35], a striped unicast probing experiment was

described to imitate multicast probing. Link losses for packets of the same striped were

assumed correlated, and link loss rates were estimated in [35]. In [33] and [34], link losses

are described by Bernoulli processes, and multicast probes were utilized. A maximum like-

lihood estimator was developed in [33] to estimate link loss rates. An EM-based solution

to the link loss rate estimation problem of [33] was developed in [34] where the source-

destination loss measurements were missing at some of the destinations. Another aspect of

network tomography, namely, topology identification from source-destination measurements

was studied in [36], [37], [38], [39] and [23]. In [36], a semi-randomized probing technique

was developed to identify the topology of a multiple source-multiple destination network.

In [37], the source-destination loss measurements were utilized to infer the underlying topol-

ogy. In [23], source-destination delay measurements were used, and the underlying topology

of the network was then identified using an MCMC procedure. The topology of the network

is assumed known throughout this thesis.
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Chapter 3: Background on bivariate Markov chains

In this chapter, we review some aspects of the theory of bivariate Markov chains relevant

to our study. In [7], a detailed review of bivariate Markov processes and their estimation

techniques was provided.

3.1 Continuous-time Bivariate Markov chain

Let Z = {Z(t), t ≥ 0} denote a continuous-time homogeneous bivariate Markov chain. The

bivariate Markov chain comprises a pair of random processes, say Z = (X,S). The two

random processes X = {X(t), t ≥ 0} and S = {S(t), t ≥ 0} are jointly Markov while neither

of them is necessarily Markov. The S process is an underlying process that controls the

statistical properties such as the sojourn time in each state of the X-chain. The bivariate

Markov chain Z jumps whenever either S or X jumps, or X and S jump simultaneously. We

denote the state space of X by X = {1, · · · , d} and the state space of S by S = {1, 2, . . . , r},

for some finite d and r. The bivariate Markov chain Z takes values in Z = X×S = {(a, i); a ∈

X, i ∈ S}. The joint states {(a, i)} are assumed to be ordered lexicographically. We use the

notation P to denote a probability measure. For (b, j) 6= (a, i), let

gab(ij) = lim
ε→0

1

ε
P (Z(t+ ε) = (b, j) | Z(t) = (a, i)), (3.1)

and let gaa(ii) = −
∑

(b,j) 6=(a,i) gab(ij). The generator of Z is given by the matrix G =

{gab(ij); a, b ∈ X, i, j ∈ S}. The generator may be expressed as a block matrix G =

{Gab; a, b ∈ X} where Gab = {gab(ij); i, j ∈ S} is an r × r matrix. The generator ma-

trix G and the sub-matrices {Gaa, a ∈ X} are assumed to be irreducible. The off-diagonal
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elements of G are non-negative while the diagonal elements of G are non-positive. The

entries of G are assumed finite throughout this thesis. For a sufficiently small time, t, we

have [40]

P (Z(t) = (b, j) | Z(0) = (a, i)) =

 gab(ij)t+ o(t), (a, i) 6= (b, j)

1 + gaa(ii)t+ o(t), (a, i) = (b, j).
(3.2)

Let Pt denote the transition probability matrix of Z, i.e., Pt = {P (Z(t) = (b, j) | Z(0) =

(a, i)), (a, i) 6= (b, j)} for some t > 0. The transition matrix Pt and the generator of the

bivariate Markov chain satisfy the following set of equations,

Pt = eGt. (3.3)

The matrix Pt is continuous at t = 0 and

lim
t→0

Pt = I, (3.4)

where I is the identity matrix. The sojourn time of Z in state (a, i) ∈ Z is denoted by ∆Tai

and has exponential density with mean of −1/gaa(ii), i.e.,

P (∆Tai > τ | Z(0) = (a, i)) = egaa(ii)τ , τ ≥ 0. (3.5)

When the bivariate Markov chain jumps from state (a, i), the probability that it will jump

to state (b, j) is given by
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−gab(ij)/gaa(ii). (3.6)

The generator G can be partitioned as follows. For each a ∈ X, let the S-chain take val-

ues in Sa = {1, · · · , ra} where ra is known. Then {Gab; a, b ∈ X}, where Gab = {gab(ij); i ∈

Sa, j ∈ Sb} is an ra × rb matrix. The state space of the Z-chain is given by

Z =

d⋃
a=1

{(a, i), i ∈ Sa}. (3.7)

Recall that neither X nor S is necessarily Markov. The S-chain is Markov if and only

if ra is independent of a for a ∈ X, and [41]

Q =
d∑
b=1

Gab (3.8)

Suppose that the process Z is sampled at the jump points of X. Let T k denote the time

of (k + 1)st jump of the X process for k = 0, 1, · · · . Let Xk = X(T k), Sk = S(T k) and

Zk = (Xk, Sk). The sojourn time of X in state Xk−1 is denoted by Tk, and Tk = T k−T k−1

for k = 1, · · · . We assume that the first jump of X occurs at t = 0. Hence, T0 = 0.

The realizations of T k, Tk and Zk are denoted by tk, tk and zk, respectively. We refer to

the sequence {Zk} as the sampled bivariate Markov chain. Let νai(φ) = Pφ(Z0 = (a, i))

for a ∈ X, i ∈ S. Define the row vector νa(φ) = (νa1(φ), νa2(φ), · · · , νar(φ)) for a ∈ X,

and let ν(φ) = (ν1(φ), · · · , νd(φ)) denote the initial distribution of of Z. The parameter

of the bivariate Markov chain is denoted by φ and comprises the generator matrix G and

the initial distribution ν(φ). Let Pφ denote a probability measure of the process Z. The

Markov renewal property of the bivariate Markov chain applies to the jumps of X. This
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property implies that

Pφ(Tk≤ t, Zk=zk | Tk−1 = tk−1, Zk−1 =zk−1, . . . , T1 = t1,

Z1 =z1, Z0 =z0) = Pφ(Tk≤ t, Zk=zk | Zk−1 =zk−1). (3.9)

Define F abij (t;φ) = Pφ(Tk ≤ t, Zk = (b, j) | Zk−1 = (a, i)) for a 6= b. By homogeneity

of bivariate Markov chain F abij (t;φ) is independent of k. Let fabij (t;φ) denote the transition

density which is obtained from differentiation of F abij (t;φ) with respect to t, i.e.,

fabij (t;φ) =
∂

∂t
Pφ(T1 ≤ t, Z1 = (b, j) | Z0 = (a, i)), (3.10)

This density is given by [42]

fabij (t;φ) = [eGaatGab]ij , a 6= b, t ≥ 0. (3.11)

Let fab(t) = {fabij (t); i, j ∈ S} denote the r × r transition density matrix. For a 6= b,

fab(t;φ) = eGaatGab, a 6= b, t ≥ 0. (3.12)

The likelihood function of the sample path of X-chain , i.e., {X(t), t ∈ [0, tn]}, is given

by
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pφ(x(t), t ∈ [0, tn]) = pφ(x0, t1, x1, · · · , tn, xn)

= νx0(φ)

{
n∏
l=1

fxl−1xl(tl;φ)

}
1, (3.13)

where 1 denotes a column vector of all ones. We next introduce the forward and backward

recursions which simplify the calculation of the likelihood function (3.13) significantly. For

k = 1, · · · , n, define

L(k;φ) = νx0(φ)

k∏
l=1

fxl−1xl(tl;φ), (3.14)

to denote the forward density. Define

R(k;φ) =

n∏
l=k

fxl−1xl(tl;φ)1, (3.15)

to denote the backward density. For k = 0, L(0;φ) = νx0(φ), and for k = n+1, R(n+1;φ) =

1. The forward density can be calculated recursively as in the following

L(k;φ) = L(k − 1;φ)fxk−1xk(tk;φ). (3.16)

The recursion for the backward density is also given by

R(k;φ) = fxk−1xk(tk;φ)R(k + 1;φ). (3.17)
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Using (3.16) and (3.17) and for k ∈ {1, · · · , n+1}, the likelihood function (3.13) is given

by

pφ(x(t), t ∈ [0, tn]) = L(k − 1;φ)R(k;φ) (3.18)

The numerical stability of the forward and backward recursions is improved by recursive

scaling as follows [7, Section 3.4]. Define c0 = νx0(φ)1 and L̃(0;φ) = νx0(φ)/c0. For

k = 1, · · · , n, the scaled forward recursion is defined as

L̃(k;φ) =
L̃(k − 1;φ)fxk−1xk(tk;φ)

ck
(3.19)

where ck = L̃(k − 1;φ)fxk−1xk(tk;φ)1. Let R̃(n + 1;φ) = 1. For k = n, n − 1, · · · , 1, the

scaled backward recursion is defined as

R̃(k;φ) =
fxk−1xk(tk;φ)R̃(k + 1;φ)

ck
(3.20)

and the likelihood (3.18) is given by

pφ(x(t), t ∈ [0, tn]) = c0

n∏
k=1

ck. (3.21)

We next calculate the transition probabilities of the sampled bivariate Markov chain.

For a 6= b, the transition probabilities of {Zk} is given by
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Pφ(Zk = (b, j) | Zk−1 = (a, i)) =

[∫ ∞
0

fab(t)dt

]
ij

= [−G−1
aaGab]ij , (3.22)

and the transition matrix of the sampled bivariate Markov chain is defined by the block

matrix D = {Dab; a, b ∈ X} where,

Dab =

 −G
−1
aaGab, a 6= b

0, a = b.
(3.23)

The state (b, j) is said to be recurrent if the probability of eventual return is one. The

sampled bivariate Markov chain has one closed set of recurrent, possibly periodic, states,

while the remaining states are transient [43, Lemma 3]. Hence, the transition matrix D has

a unique stationary distribution with zero entries for the transient states. The stationary

distribution of D coincides with the initial distribution ν(φ) when ν(φ) = ν(φ)D, and the

sample bivariate Markov chain is said to be stationary.

Let νkai(φ) = Pφ(Zk = (a, i)) for a ∈ X, i ∈ S, k = 0, 1, · · · . Define the row vector

νka (φ) = (νka1(φ), νka2(φ), · · · , νkar(φ)) for a ∈ X, and let νk(φ) = (νk1 (φ), · · · , νkd (φ)). Note

that ν0
ai(φ) = νai(φ). For a ∈ X, we have

νkb (φ) =

d∑
a=1

νk−1
a (φ)Dab. (3.24)

If the sample bivariate Markov chain is initialized with its stationary distribution, νk(φ)

does not depend on k and satisfies ν(φ) = ν(φ)D. For simplicity throughout this thesis, we
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suppress the dependence of νkai(φ), νka (φ), and νk(φ) on φ, and we refer to the parameter of

the bivariate Markov chain as φ = (G, ν).
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Chapter 4: Delay Network Tomography using a Partially

Observable Bivariate Markov Chain

In this chapter, we study the problem of estimating link delay density from source-destination

measurements. We model the total delay on each link which is caused by queuing, prop-

agation, processing, and transmission delays. We propose a partially observable bivariate

Markov chain (BMC) to model the traffic over an unstructured network with random rout-

ing regime as well as a tree-structured network with deterministic routing. The properties

of the proposed model and the algorithm for estimating its parameter are discussed. Our

presentation in this Chapter follows the recently submitted paper [44].

4.1 Partially observable bivariate Markov chain model

We propose to model the traffic over an unstructured network with random routing regime

as a bivariate Markov chain Z = (X,S). In this model, the states of the X-chain represent

the nodes of the network. A subset of the state space X = {1, · · · , d} denoted by X1 =

{1, · · · , d1} represents the source states. The set of the remaining states denoted by X2 =

{d1 + 1, · · · , d} represents the destinations. Clearly, X = X1 ∪ X2. A packet travels from

a randomly selected source node towards its destination through random routing regime,

and the associated source-destination delay is measured. Upon leaving the destination

node, the packet will enter another randomly selected source node and propagate through

random routing regime towards its destination. We repeat this process to obtain a set

of independent source-destination delays. The underlying S-chain controls the statistical

properties of the X-chain. In particular, the X-chain is not set to be Markov, and the

sojourn time in each of its states has a phase-type density [7]. Phase-type distributions are

rather general and may be used to approximate any desirable sojourn time distribution.
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For example, mixture of exponential densities and the sums of exponential densities are

particular phase-type distributions. In the proposed model, the two chains X and S are

hidden, and we only measure source-destination delays. Therefore, we refer to the model

as a partially observable bivariate Markov chain.

We partition the generator of the bivariate Markov chain, G, into the class of source

nodes and the class of destination nodes,

G =



G11 . . . G1,d1

...
... h1 · · · hd2

Gd1,1 . . . Gd1,d1

e1 −ξ1

...
. . .

ed2 −ξd2


(4.1)

where {Gij , i, j = 1, . . . , d1} are r×r matrices, {hl, l = 1, . . . , d2} are rd1×1 column vectors

with d2 = d−d1, {el, l = 1, . . . , d2} are 1×rd1 row vectors, and {ξl} are positive scalars. We

can also incorporate any knowledge provided by network topology in the structure of the

generator. In particular, if there does not exist any physical link connecting node a ∈ X1 to

node b ∈ X, then the corresponding sub-matrix Gab = 0. The generator, G, can be written

as,

G =

 Hcc Hcd

Hdc Hdd

 (4.2)

where the subscripts c and d are associated with source and destination states, respectively.

We do not allow the traffic to flow from one destination node to another destination node.

Therefore, the sub-matrix Hdd is diagonal. Also, the bivariate Markov chain never starts
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from a destination node, and the initial distribution of the sampled bivariate, ν, is given by

ν = (ν1, . . . , νd1 ,0, . . . ,0). (4.3)

The sojourn time of the process in the i-th destination node is an exponential random

variable with the mean of 1
ξi

. We choose sufficiently large {ξi}. Hence, the sojourn time

in each destination node is negligible, and the process jumps from a destination node to a

source node instantaneously. The sojourn time of the process in each state of the X-chain

is phase-type [42]. Let ν̄x0 =
νx0
νx01

denote the initial conditional distribution of the S-chain

associated with x0, given that X0 = x0. For X0 = x0, by using ((3.12)) and ((3.23)), the

phase-type density is given by:

pφ(t | x0) =

∑
s0,s1,x1

pφ(z1, t | z0)pφ(z0)∫∞
0

∑
s0,s1,x1

pφ(z1, t | z0)pφ(z0)dt

=

∑
x1
νx0e

Gx0x0 tGx0x11∑
x1
νx0Dx0x11

= −ν̄x0eGx0x0 tGx0x01, (4.4)

where we have used
∑

x1
Dx0x11 = 1. Since X-chain is not Markov, for Xk+1 = xk+1,

Xk = xk and some k > 0, the density of (4.4) can be re-written as,

pφ(t | xk) =

∑
sk,sk+1,xk+1

pφ(zk+1, t | zk)pφ(zk)∫∞
0

∑
sk,sk+1,xk+1

pφ(zk+1, t | zk)pφ(zk)dt

=

∑
xk+1

νkxke
Gxkxk tGxkxk+1

1∑
xk+1

νkxkDxkxk+1
1

= −ν̄kxke
Gxkxk tGxkxk1, (4.5)

where νkxk is given by (3.24), and ν̄kxk =
νkxk
νkxk

1 . According to [45], every sojourn time density
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is either phase-type or can be approximated well enough by a phase-type density. The

number of phases of the phase-type density in (4.4) and (4.5) equals the number of states

in Sx0 . The estimation of the true phase-type density can be improved by increasing the

number of phases of the phase-type density.

Next, we use the parameter of a bivariate Markov chain to derive the source-destination

delay density, density of each link delay, and the random routing probabilities. An EM

algorithm is then used for estimating the parameter φ of the bivariate Markov chain from

K independent source-destination delay measurements. This EM algorithm was motivated

by the algorithm derived in [9] for estimation of the parameter of a univariate Markov chain

with one absorbing state from K independent absorbing times. We discuss the details of

the EM algorithm in Section 4.2.

Let Y = {Y1, Y2, . . . , YK} denote the K independent source-destination measurements,

and define µ = (ν1, . . . , νd1). We denote an infinitesimal interval of Yk by dy. By using

(3.12), for a ∈ X1 and b ∈ X2, we have,

Pφ(Yk∈dy, Z(yk)=(b, j) |Z(0)=(a, i))=1′aie
HccykHcd1bj , (4.6)

where 1ai denotes a column vector of an appropriate dimension with a one in its (a, i)

component and zero elsewhere. Hence,

Pφ(Yk ∈ dy, Z(0) = (a, i)) = νai1
′
aie

HccykHcd1, (4.7)

and the source-destination delay density is given by,

Pφ(Yk ∈ dy) = µeHccykHcd1. (4.8)
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The likelihood of the source-destination measurements is given by

Pφ(Y1 ∈ dy, . . . , YK ∈ dy) =
K∏
k=1

µeHccykHcd1. (4.9)

The delay on the link connecting node a to node b is the transit time of the process X from

state a to state b where a 6= b. For X1 = x1 and X0 = x0, the density of delay on the link

connecting these two nodes is given by,

pφ(t | x0, x1) =

∑
s0,s1

pφ(z1, t | z0)pφ(z0)∫∞
0

∑
s0,s1

pφ(z1, t | z0)pφ(z0)dt

=
νx0e

Gx0x0 tGx0x11

νx0Dx0x11
, (4.10)

where we have used (3.12) and (3.23). The link delay density (given in (4.10)) is a matrix

exponential density. The family of matrix exponential densities is very rich and includes

phase-type densities [8]. The random routing probabilities follow from (3.12), (3.23) and

(3.24). For z0 = (x0, s0) and z1 = (x1, s1), we have,

pφ(x1 | x0) =

∫∞
0

∑
s0,s1

pφ(z1, t | z0)pφ(z0)dt∑
x1

∫∞
0

∑
s0,s1

pφ(z1, t | z0)pφ(z0)dt

=
νx0Dx0x11∑
x1
νx0Dx0x11

=
νx0Dx0x11

νx01
, (4.11)

which is the probability that a packet reaches node x1 upon leaving node x0. Clearly,

Dx0x0 = 0. Therefore, we do not restrict the summation over x1 in (4.11) to x1 6= x0. The

probability of each path in the network is given by (3.18) which follows from the forward

backward recursions.
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4.2 Maximum likelihood parameter estimation

In this section, we develop the maximum likelihood parameter estimation approach for esti-

mating the parameter of the continuous-time bivariate Markov chain φ from K independent

source-destination delay measurements. The approach is implemented using the EM algo-

rithm. This EM algorithm was first developed in [9] for estimating the parameter of the

phase-type density arising in a univariate Markov chain with all but one transient states

and one absorbing state. Given K independent replications of the absorption time, [9] im-

plemented the EM algorithm for estimating the parameter of the Markov chain from which

the estimate of the phase-type density follows. The generator of the univariate Markov

chain discussed in [9] may be derived by setting d2 = 1 and ξ1 = 0 in (4.1) as,

G =



G11 . . . G1,d1

...
... h1

Gd1,1 . . . Gd1,d1

0 0


=

 Hcc Hcd

0 0

 . (4.12)

We next address the identifiability issue and discuss the details of the EM algorithm.

4.2.1 Identifiability

The proposed bivariate Markov chain model is said to be identifiable if distinct parameter

values imply distinct values for the density of almost all source-destination measurements.

If this condition does not hold, then the chain is said to be unidentifiable. In general, the

density of (4.8) is not identifiable [9]. For example, consider the generator given by [9],
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G =

 Hcc Hcd

0 0

 =


−λ 0 λ

0 −λ λ

0 0 0

 . (4.13)

By substituting (4.13) in (4.8), the source-destination delay density is given by Pφ(yk ∈

dy) = λe−λyk regardless of the choice of the initial distribution of the Markov chain ν.

However, the approach of fitting the bivariate Markov chain model to K independent mea-

surements is useful even if the measurements were not generated by the model.

4.2.2 EM algorithm

The EM approach is an iterative algorithm for estimating the parameter of a bivariate

Markov chain which aims at achieving the highest value of log-likelihood function of the

measurements. The algorithm starts from some initial estimate of the parameter and is

terminated when the relative change in consecutive likelihood values is negligible. The

parameter of the bivariate Markov chain model comprises the off-diagonal elements of Hcc,

the elements of Hcd and the initial distribution of the chain, µ. The elements of the diagonal

matrix Hdd are chosen to be positive large scalars {ξi}. The elements of the sub-matrix

Hdc are chosen as follows. By setting {ei = ξiµ, i = 1, · · · , d2}, the initial distribution of

Z would remain µ after bouncing back from any destination node. The initial parameter

estimate, and the estimate of the parameter at the end of the ι-th iteration, are denoted

by φ0 and φι, respectively. Let Eφι denote expectation under Pφι . We denote the bivariate

Markov chain in the interval [0, Yk] by Z̃k = {Z(t), 0 ≤ t ≤ Yk}. The EM procedure

requires the likelihood function of the complete statistics of the bivariate Markov chain,

i.e., {(Z̃k, Yk), k = 1, . . . ,K}. The estimate of the parameter φ at the end of the ι + 1-th

iteration is given by,
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φι+1 = argmaxφ

K∑
k=1

Eφι{log pφ(Yk, Z̃k) | Yk}, (4.14)

where we have used the independence of the measurements. Next, we calculate the likelihood

of the complete statistics, pφ(Yk, Z̃k), as given in [46, Theorem 3.1]. For a given k, let

Yk = yk. For {a, b} ∈ X1, let Mab
ij (yk) denote the number of jumps from state (a, i) to state

(b, j) in [0, yk], and let Da
i (yk) denote the total sojourn time of the bivariate Markov chain,

Z, spent in state (a, i) in [0, yk]. For a ∈ X1 and l̄ ∈ X2, let Mal̄
i1 (yk) denote the number of

jumps from state (a, i) to state (l̄, 1) in [0, yk]. Clearly, Mal̄
i1 (yk) is either zero or one. As

described earlier, the sojourn time in state (l̄, 1) is assumed negligible. Define the indicator

function

ϕai(t) =

 1, Z(t) = (a, i)

0, otherwise.
(4.15)

Hence, the log-likelihood of the complete statistics in [0, yk] is given by [46, Theorem 3.1],

log pφ(Yk, Z̃k) =
∑
(a,i)

ϕai(0) log νai +
∑
(a,i)

∑
(b,j)6=(a,i)

Mab
ij (yk) log gab(ij)

−
∑
(a,i)

Da
i (yk)

∑
(b,j)6=(a,i)

gab(ij). (4.16)

Given the parameter estimate at the end of the ι-th iteration, φι, the EM auxiliary

function in [0, yk] is given by,
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Q(φ, φι) = Eφι{log pφ(Yk, Z̃k)}

=
∑
(a,i)

Eφι{ϕai(0) | Yk = yk} log νai +
∑
(a,i)

∑
(b,j) 6=(a,i)

Eφι{Mab
ij (yk) | Yk = yk} log gab(ij)

−
∑
(a,i)

Eφι{Da
i (yk) | Yk = yk}

∑
(b,j)6=(a,i)

gab(ij). (4.17)

A new parameter estimate at the end of (ι+ 1)th iteration including a new estimate of

the initial distribution of the bivariate Markov chain, of the off-diagonal elements of Hcc,

and of the elements of Hcd, as obtained from (4.14), is given by

ν̂ai =
1

K

K∑
k=1

Eφι{ϕai(0) | Yk = yk}, (4.18)

ĝab(ij) =

∑K
k=1Eφι{Mab

ij (Yk) | Yk = yk}∑K
k=1Eφι{Da

i (Yk) | Yk = yk}
, (b, j) 6= (a, i). (4.19)

We define the conditional mean estimate of Mab
ij (yk) and Da

i (yk) as,

M̂ab
ij (yk) = Eφι{Mab

ij (Yk) | Yk = yk},

D̂a
i (yk) = Eφι{Da

i (Yk) | Yk = yk}. (4.20)

We next use the approach of [9] to evaluate the conditional mean estimates in (4.18)

and (4.19). The key to this approach is (3.12).

Using (4.7) and (4.8), the conditional mean estimate of ϕai(0) given Yk = yk can be

evaluated as,
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Eφι{ϕai(0) | Yk = yk} = Pφι(Z(0) = (a, i) | Yk = yk) (4.21)

=
Pφι(Yk ∈ dy, Z(0) = (a, i))

Pφι(Yk ∈ dy)
=
νai1

′
aie

HccykHcd1

µeHccykHcd1
. (4.22)

The total sojourn time of the bivariate Markov chain in state (a, i) in [0, yk] for a ∈ X1

is given by,

Da
i (yk) =

∫ ∞
0

ϕai(t)dt =

∫ yk

0
ϕai(t)dt, (4.23)

where we have used the fact that for t > yk, ϕai(t) = 0. Hence, the conditional mean

estimate of Da
i (yk) given Yk = yk is the integral of the conditional probability of Z(t) = (a, i)

given Yk = yk. This conditional probability is given by,

Pφι(Z(t) = (a, i) | Yk = yk) =
Pφι(Yk ∈ dy | Z(t) = (a, i))Pφι(Z(t) = (a, i))

Pφι(Yk ∈ dy)
, (4.24)

where the conditional probability of Yk ∈ dy given Z(t) = (a, i) follows from (4.7) and

is given by 1′aie
Hcc(yk−t)Hcd1. The probability density of Z(t) = (a, i) in (4.24) is also a

phase-type and is given by

Pφι(Z(t) = (a, i)) = νeGt1ai. (4.25)

Hence,
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D̂a
i (yk) =

∫ yk
0 [νeGt1ai][1

′
aie

Hcc(yk−t)Hcd1]dt

µeHccykHcd1

=
1′ai[
∫ yk

0 eHcc(yk−t)Hcd1νe
Gtdt]1ai

µeHccykHcd1
. (4.26)

The number of jumps from state (a, i) to state (b, j) for {a, b} ∈ X1 and (a, i) 6= (b, j)

in [0, yk] is given by [9]

Mab
ij (yk) = lim

ε→0

byk/εc−1∑
l=0

ϕai(lε)ϕbj((l + 1)ε)), (4.27)

where b·c denotes the floor function, and we have used the fact that ϕbj((l + 1)ε) = 0 for

(l + 1)ε ≥ yk. From Lebesgue’s monotone convergence theorem, M̂ab
ij (yk) for {a, b} ∈ X1 is

given by,

M̂ab
ij (yk) = lim

ε→0

byk/εc−1∑
l=0

Pφι(Z(lε)=(a, i), Z((l+1)ε)=(b, j) |Yk∈dy)

=
1

Pφι(Yk ∈ dy)
lim
ε→0

[yk/ε]−1∑
l=0

ε [Pφι(Z(lε) = (a, i))

· 1

ε
Pφι(Z((l + 1)ε) = (b, j) | Z(lε) = (a, i)) ·Pφι(Yk ∈ dy | Z((l + 1)ε) = (b, j))] .

(4.28)

The probability of Z(lε) = (a, i) follows from (4.25) and is given by νeG(lε)1ai. The

conditional probability of Z((l + 1)ε) = (b, j) given Z(lε) = (a, i) in (4.28) is given by

1′aie
Gε1bj . Furthermore, the conditional probability of Yk ∈ dy given Z((l + 1)ε) = (b, j)
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follows from (4.7) and (4.8) and is given by 1′bje
Hcc(yk−(l+1)ε))Hcd1.

Using the change of variable t = (l + 1)ε and

lim
ε↓0

eGε − I
ε

= G, (4.29)

in (4.28), for (a, i) 6= (b, j) and {a, b} ∈ X2, we have

M̂ab
ij (yk) =

∫ yk
0 [νeGt1ai] gab(ij) [1′bje

Hcc(yk−t)Hcd1]dt

µeHccykHcd1

=
gab(ij) 1′bj [

∫ yk
0 eHcc(yk−t)Hcd1νe

Gtdt]1ai

µeHccykHcd1
. (4.30)

The number of jumps from state (a, i) to state (l̄, 1) where a ∈ X1 and l̄ ∈ X2 in [0, yk]

is either 0 or 1 and is given by,

Mal̄
i1 (yk) = lim

ε→0
ϕai(yk − ε)ϕl̄1(yk). (4.31)

The conditional mean estimate of Mal̄
i1 is given by

M̂al̄
i1 = lim

ε→0
Pφι(Z(Yk−ε)=(a, i), Z(Yk)=(l̄, 1) | Yk∈dy)

=
1

Pφι(Yk ∈ dy)
lim
ε→0

[Pφι(Z(yk − ε) = (a, i))

·Pφι(Z(yk) = (l̄, 1), Yk ∈ dy | Z(yk − ε) = (a, i))
]
. (4.32)

The probability of Z(yk − ε) = (a, i)) in (4.32) follows from (4.25) and is given by

νeG(yk−ε)1ai. The conditional probability of Pφι(Z(yk) = (l̄, 1), Yk ∈ dy | Z(yk−ε) = (a, i)))
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in (4.32) is given by 1′aie
Hccεhl. Note that for a ∈ X1, i = 1, · · · , r and l̄ ∈ X2 where l = l̄−d1,

gal̄(i1) = hl((a− 1)r + i). Hence,

M̂al̄
i1 = lim

ε→0

[νeG(yk−ε)1ai][1
′
aie

Hccεhl]

µeHccykHcd1

=
[νeGyk1ai][1

′
aihl]

µeHccykHcd1
. (4.33)

We next discuss an efficient approach for evaluating the integrals in (4.26) and (4.30).

This approach involves matrix exponential without numerical integration. In particular, we

are interested in evaluating

J(y) =

∫ y

0
eHcc(y−t) ·Hcd1ν · eGtdt. (4.34)

Let

C =

 Hcc Hcd1ν

0 G

 . (4.35)

According to [10, Theorem 1], the upper right block of the matrix exponential eCy is J(y).

Other approaches for evaluating the matrix exponential includes Padé approximation

[47] and Runge-Kutta numerical integration [48]. The Padé approximation approach [47]

requires an order of r3 operations for a matrix of order r while this approach is much faster

than the approach of [48] which was used in [9] to evaluate (4.34).
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4.3 Tree-Structured Networks

In this section, we study the problem of link delay density estimation from source-destination

delay measurements in a tree-structured network. Some researchers have focused on net-

works whose topology can be represented by a tree. Some of these studies have been

addressed in Section 2.1.2. In a tree-structured network, packets enter at a root node and

are transmitted towards the terminal nodes. The partially observable bivariate Markov

model is applicable to the tree-structured networks as well. In such networks, both random

and deterministic routing regimes are possible. We next study a pre-determined route in

a tree-structured network. We number the nodes consecutively, i.e., the root node is num-

bered by 1, and the destination node is numbered by d1 + 1. Hence, X1 = {1, · · · , d1} and

X2 = {d1 + 1}. The generator of such a bivariate Markov chain model is given by

G =



G11 G12

. . .
. . . 0

Gd1−1,d1−1 Gd1−1,d1

Gd1,d1 h1

ξ1ν1 0 −ξ1


, (4.36)

where clearly the X-chain always jumps from node 1 to node 2, then from 2 to 3 and so on.

For i = 1, · · · , d1−1, all the Gi,i+1 matrices and Gd1d1 matrix are assumed to be r×r. Also,

h1 and ν1 are r× 1 and 1× r vectors, respectively. The bivariate Markov process described

by (4.36) never starts from any state (a, i) where a 6= 1. Hence, the initial distribution of

such a chain is given by

ν = (ν1,0, . . . ,0, 0). (4.37)

46



Recall that ν̄ka = νka
νka1

. Let ν̄ka (i) denote the i-th component of ν̄ka . A pre-determined

route in a tree-structured network with diagonal {Gaa} was also studied in [11]. In such

a network, the sojourn time of the process in state a given that Xk = a following (4.4) is

given by

pφ(t | a) =
r∑
i=1

−ν̄ka (i)gaa(ii)e
gaa(ii)t. (4.38)

The density of (4.38) is a mixture of r exponential densities. For Xk = a and Xk+1 =

a+ 1, the density of delay on the link connecting xk to xk+1 follows from (4.10) and using

Gaa1 = Ga,a+11, and is given by

pφ(t | a, a+ 1) =
νkae

GaatGa,a+11

νkaDa,a+11
=

νka
νka1

eGaatGa,a+11

=
r∑
i=1

−ν̄ka (i)gaa(ii)e
gaa(ii)t. (4.39)

Hence, the sojourn time in node a is the same as delay on the link connecting a to a+1.

The source-destination delay is the sum of sojourn times in the states of the X-chain, i.e.,

Y =

d1∑
l=1

Tl. (4.40)

In [11], {gaa(ii)} were assumed distinct and {Tl} were assumed independent. An EM

algorithm was developed in [11] for estimating the parameter of the mixture model of (4.39),

i.e., {gaa(ii)} and {ν̄ka}, from K independent realizations of Y . The key to the EM algorithm

as described earlier is the evaluation of the density of Y . We next summarize the approach
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of [11] where the moment generating functions were used to derive the density of Y . Assume

that for a given k, Yk = yk. Let ϕka = (ϕka1, · · · , ϕkar) where ϕkai = 0 if the indicator function

given in (4.15) ϕai(t) = 0 for all t ∈ [0, yk], and ϕkai = 1 otherwise. For a ∈ X1, ϕka has one

and only one non zero entry. Hence, given ϕkai is one, Ta has an exponential density with

parameter −gaa(ii). Therefore, the bivariate Markov chain as observed in [0, yk] interval

can be expressed by Z̃k = {(Ta, ϕka); a ∈ X1, }. The complete statistics for the EM algorithm

is given by {(Z̃k, Yk), k = 1, · · · ,K}. The density of Yk as evaluated in [11] is given by

pφ(Yk ∈ dy) = −
d1∑
a=1

r∑
i=1

βka(i)gaa(ii)e
gaa(ii)yk , (4.41)

where βka(i) is given by [11],

βka(i) = ν̄ka (i)

d1∏
b=1,b 6=a

r∑
j=1

−ν̄kb (j)gbb(jj)

gaa(ii)− gbb(jj)
. (4.42)

The density in (4.41) was then used to derive the conditional expectations required to

estimate {ν̄ka} and {gaa(ii)} in [11]. The density of Yk as evaluated in (4.8) does not require

{Tl} to be independent.

4.4 Numerical Results

In this section, a bivariate Markov chain was attributed to an unstructured network with

random routing regime as well as to a tree-structured network with deterministic routing

regime. We have compared our results for the tree-structured network with the mixture

modeling approach of [11].
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4.4.1 Unstructured Network

The generator of an unstructured network with random routing regime is given in Eq.

(4.1). We first demonstrate the accuracy of the estimation approach as follows. We have

used a bivariate Markov chain with d1 = 8 source states, d2 = 8 destination states, and

r = 4 for each source state. The elements of the initial distribution vector µ were first

chosen randomly on [0, 1] interval, and were then normalized so that µ1 = 1. The entries

of the generator G were selected as follows. The off-diagonal entries of Hcc as well as the

elements of Hcd were chosen randomly according to a uniform distribution on [0, 100]. For

i = 1, · · · , d2, ei was set to ξiµ where xi = 105. By choosing large values for {ξi}, the

sojourn time in each destination node would be negligible. The source-destination delay

was next generated as follows. The bivariate Markov chain was first initialized according

to µ. The chain spent some exponential time in each pair of states, until it reaches the

(a, 1) state for some a ∈ X2. The total sojourn time was then recorded, and the chain

was bounced back to one of the source nodes chosen according to µ. The K = 20, 000

source-destination delay measurements {Yk} were generated in this manner. We next used

a bivariate Markov chain with d1 = 8 source states, d2 = 8 destination states, and r = 4 for

each source state to model the traffic over the network. The EM algorithm developed in

Section 4.2.2 was used to find the maximum likelihood estimation of the model parameter

given the generated data {Yk}. The EM algorithm was initialized as follows. The entries

of the initial distribution µ were chosen randomly according to a uniform distribution on

[0, 1], and were then normalized. The off-diagonal entries of Hcc as well as the elements

of Hcd were chosen randomly according to a uniform distribution on [0, 200]. The EM

algorithm was allowed to run for 1000 iterations to estimate the parameter of the model

as the likelihood of the observation increases very slowly. Due to large dimensions of the

generator G, we only present the true and estimated values for the diagonal entries of Hcc.

Fig. 4.1 demonstrates the true and estimated values for the 32 diagonal elements of Hcc.

Next, we used a bivariate Markov chain with d1 = 8 source states, d2 = 8 destination
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Figure 4.1: True diagonal elements of Hcc depicted in ascending order, and their estimates.

states, and r = 10 for each source state to generate the source-destination delay measure-

ments. The entries of G and µ were chosen as described in the previous example. As the

generator G contains a large number of entries, we only specify the entries of G11 and ν as an

instance in Appendix A. We have used a relatively low order bivariate Markov chain model

with d1 = d2 = 8 and r = 4 to model the traffic over the network, and the EM algorithm

with the same initialization procedure as described earlier was used to estimate the param-

eter of the model. The EM algorithm was terminated after 1000 iterations. The link delay

density and the routing probabilities were then inferred given the estimated parameter. In

this unstructured network, the bivariate Markov chain model contains d2
1 − d1 = 56 links

connecting source nodes to one another, d1d2 = 64 links connecting source nodes to the

destination nodes, and d2d1 = 64 links connecting destination nodes to the source nodes.

We have already assumed a negligible delay on the links within the third set. Hence, we are

only interested in inferring the delay on the links of the first two sets which total 120 links.

Fig. 2.4 shows plots of the density of the overall source-destination delay, given by

Pφ(Yk ∈ dy) in (4.8), when φ is the true parameter and when φ is the estimated parameter.
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Figure 4.2: True and estimated overall source-destination delay densities.
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To further demonstrate the accuracy of the EM algorithm in estimating the source-

destination delay density, the divergence between the true and estimated densities has been

evaluated. According to [49], the Kullback-Leibler divergence between two densities f and

g is given by,

DKL(f ||g)=

∫ ∞
−∞

f(v) log
f(v)

g(v)
dv. (4.43)

The Kullback-Leibler divergence for the densities with at least .99 probability of the

more dispersed density concentrated in [0, u], was approximated as

DKL(f ||g)≈
bu/∆c∑
i=0

∆f(∆i) log
f(∆i)

g(∆i)
, (4.44)

where ∆ = 10−5 was chosen. In our study, we have assumed that f is the true density while

g is the estimated density. The estimated divergence value for the two densities in Fig. 4.2

was found to be 7.1819 · 10−6.

The true and estimated parameter of the bivariate Markov chain model were used to

find the true and estimated delay density on each link of the unstructured network following

(4.10). We have chosen two arbitrary links and plotted the true and estimated link delay

densities for those links in Fig. 4.3. The corresponding divergence values for the link delay

estimates in Fig. 4.3(a) and 4.3(b) are 4.038 · 10−5 and 0.012, respectively. Fig. 4.4 shows

the divergence values for all 120 link delay estimates.

We have also evaluated the packet routing probabilities using (4.11). Fig. 4.5 depicts

the mean squared error in estimating the packet routing probabilities.
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Figure 4.3: True and estimated link delay densities are shown in (a) and (b) for two of the
links.

Figure 4.4: Divergence values for the estimated link delay densities.
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Figure 4.5: Mean squared error for estimated packet routing probabilities on the various
links.

4.4.2 Tree-Structured Networks

In this section, we have implemented a tree-structured network, and applied a bivariate

Markov chain to model a pre-determined route of that network. The source-destination

delay measurements were generated using a bivariate Markov chain with d1 = 5, d2 = 1 and

r = 10. The off-diagonal entries of the generator as given in (4.36), and the entries of the

initial distribution ν1 were generated randomly as described in the unstructured network.

The value of ξ1 was set to 105 as before.

We have then used the EM algorithm to estimate the parameter of a bivariate Markov

chain with d1 = 5, d2 = 1 and r = 4 given the generated source-destination delays. The

same generated data was used to implement the mixture-based modeling approach of [11].

The delay density on each link was modeled by a mixture of four exponential densities.

The proposed EM algorithm for estimation of the parameter of the partially observable

bivariate Markov chain was initialized using two different procedures denoted by A and

B. In experiment A, the off-diagonal entries of G and the non-zero elements of ν were

chosen randomly as described in the unstructured network. In experiment B, the matrices

{Gaa} were assumed to be diagonal, and the non-zero and off-diagonal entries of G as well
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Table 4.1: Divergence between true and estimated densities in the tree-structured network.

DKL - A DKL - B DKL - C DKL - D DKL - E

Source-dest. 4.8082 ·10−5 7.6032 ·10−4 1.9929 ·10−5 2.123 ·10−4 9.8786 ·10−5

Link no. 1 0.0004 0.0016 0.0068 0.0035 0.2497
Link no. 2 0.001 0.1015 0.008 0.1047 0.2878
Link no. 3 0.0103 0.0166 0.021 0.0126 0.1181
Link no. 4 0.0079 0.0706 0.0521 0.0885 0.2623
Link no. 5 0.0017 0.0339 0.0096 0.0303 3.3571

as the entries of ν1 were chosen randomly as described in experiment A. The estimated

link delay density obtained from experiment B is the mixture density given by (4.39), and

this model does not rely on the assumption that the link delays are independent. The EM

algorithm of [11] was also initialized using several different procedures denoted by C-E. In

experiment C, the initial value of the parameter of the ith mixture component for the ath

link, where i ∈ {1, 2, 3, 4} and a ∈ {1, 2, 3, 4, 5}, was identical to the initial value of gaa(ii)

in experiment A. We have also used {ν̄ka (i)} from A to initialize the mixing probabilities in

[11]. In experiment D, the initialization was the same as B. The initialization in experiment

E was drawn randomly as in A. Fig. 4.6 depicts the true and estimated source-destination

delay densities obtained from experiments A-E. The true and estimated link delay densities

for the five links on the pre-determined route are plotted in Fig. 4.7. The divergence values

between the true and estimated link delay densities are provided in Table. 4.1.

Clearly, experiment A provides better or similar results to C where the two EM al-

gorithms in bivariate Markov chain model and the mixture-based modeling of [11] are

initialized similarly. The results provided by experiment B and experiment D are also com-

parable. We are not interested in the results obtained from experiment E as it performs

the worst.
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Figure 4.6: True and estimated source-destination delay densities in the tree-structured
network.

4.4.3 Recursive implementation of the EM algorithm

In this section, we discuss the recursive implementation of Eq. (4.18) and Eq. (4.19). In

recursive implementation of the EM algorithm, a new estimate of the parameter of the

model is obtained using the previous estimate and a block of the observation sequence.

We refer to the recursive implementation of the EM algorithm as the online algorithm.

In the online algorithm, the estimates are updating as the data becomes available, and

there is no need to store the entire sequence of observations. Online estimation of hidden

Markov models was previously studied in [50]. Suppose that we receive the observation

sequence {Y1, · · · , YK} in blocks of the same size, i.e., {Y1, · · · , YL}, {YL+1, · · · , Y2L}, · · · ,

{YK−L+1, · · · , YK} where L is the block size. In the online algorithm, the recursions (4.18)

and (4.19) at the end of the (ι + 1) iteration are updated using {YιL+1, · · · , Y(ι+1)L}, and

we use the previous estimate of the parameter of the model, φι, to derive the conditional

expectations in (4.18) and (4.19). Hence, new estimates of the off-diagonal elements of Hcc,

the elements of Hcd, and the initial distribution of the chain at the end of the (ι + 1)-th

iteration, are given by
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Figure 4.7: True and estimated link delay densities for the five different links in the tree-
structured network.

ν̂ai =
1

L

(ι+1)L∑
k=ιL+1

Eφι{ϕai(0) | Yk = yk}, (4.45)

ĝab(ij) =

∑(ι+1)L
k=ιL+1Eφι{M

ab
ij (Yk) | Yk = yk}∑(ι+1)L

k=ιL+1Eφι{Da
i (Yk) | Yk = yk}

, (b, j) 6= (a, i). (4.46)

We have studied the same unstructured network with the random routing regime as

in Section 4.4.1. We have used the same observation sequence generated in Section 4.4.1

from the bivariate Markov model with d1 = d2 = 8 and r = 10. A partially observable

bivariate Markov chain model with d1 = d2 = 8 and r = 4 was then applied to the

observation sequence, and the initial values for the parameter of that model was chosen to
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Figure 4.8: True and estimated overall source-destination delay densities obtained from
online algorithm.

be identical to the initial values used in Section 4.4.1. The value of ξi for i = 1, · · · , d2

was set to 105 as before. We next implemented recursions (4.45) and (4.46) using L =

10, 100 and 1000. Clearly, the online algorithm was run for K/L iterations in each scenario.

Fig. 4.8 demonstrates the true and estimated source-destination delay densities obtained

from the online algorithm using L = 10, 100 and 1000. Table 4.2 shows the corresponding

divergence values between the true and estimated source-destination delay densities. The

divergence values between the true and estimated link delay densities for the 120 links are

demonstrated in Fig. 4.9. Fig. 4.10 shows the mean squared error for estimated packet

routing probabilities on the 120 links. The online algorithm provides better results in

estimating source-destination and link delay densities as well as packet routing probabilities

with increasing the size of the block, L.
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Table 4.2: Divergence between true and estimated densities in the unstructured network
obtained from the online algorithm.

DKL;L = 10 DKL;L = 100 DKL;L = 1000

Source-dest. 0.0777 2.4144 ·10−4 6.4544 ·10−5

Figure 4.9: Divergence values for the estimated link delay densities obtained from online
algorithm with (a) L = 10 (b) L = 100 and (c) L = 1000.
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Figure 4.10: Mean squared error for estimated packet routing probabilities on the various
links obtained from online algorithm with (a) L = 10 (b) L = 100 and (c) L = 1000.
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Chapter 5: Source-destination traffic rates estimation

In this chapter, we study the problem of source-destination traffic rates estimation from

aggregated traffic flow at input and output nodes in the network. We detail a covariance-

based approach we developed for estimating the rates in the model of [4]. We also detail

a second rate estimation approach for the model in [4] which is based on the maximum

entropy principle. We then provide numerical results to compare the performance of the

proposed approaches with that of the approaches discussed in [2] and [4].

5.1 Covariance-based rate estimation

Consider the linear model, V = AU, described in Section 2.2.2 . Recall that aij = 1 if

Uj contributes to Vi, and aij = 0 otherwise. Next, we show that the source-destination

rates, λ, can be estimated uniquely from matching the covariance of the model to emprical

covariance measurements.

Consider a network with N nodes and c source-destination pairs. For source-destination

j = (j1, j2) where j2 6= N , Uj only contributes to the traffic flow originated from j1, Vj1 ,

and the traffic flow destined at j2, VN+j2 . In this case, aj1j = 1,
∑

l 6=j1 alj = 1. For source-

destination j = (j1, N), Uj only contributes to Vj1 . In this case, aj1j = 1,
∑

l 6=j1 alj = 0.

The covariance matrix of V, ψ, is given by Eq. (2.16) where aijalj = 1 if and only if Uj

contributes to both Vi and Vl, and aijalj = 0 otherwise. Clearly, for i 6= l, ψil = 0 if both

Vi and Vl represent the incoming traffic counts to some nodes in the network. The same

argument can be made if both Vi and Vl represent the outgoing traffic counts from some

nodes in the network. However, if Vi represents the outgoing traffic counts from some node

j1 and Vl represents the incoming traffic counts to some other node j2, ψil = λj where

j = (j1, j2).
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Hence, for j = (j1, j2), j2 6= N , λj is given by

λj = ψj1l, (5.1)

where l = j2 +N , and for j = (j1, N), λj is given by

λj =
∑
h

aj1hλh(1−
∑
l 6=j1

alh) = ψj1j1 −
∑
l 6=j1

ψj1l. (5.2)

It follows from Eq. 5.1 and Eq. (5.2) that the source-destination traffic rates can be

determined by {ψij}. We demonstrate this feature through a simple example. Consider the

network of Fig. 2.6 and the corresponding A matrix given in Table. 2.5. The covariance

matrix, ψ, for this network is given by,

ψ =



ψ11 0 0 0 0 λ1 λ2

0 ψ22 0 0 λ4 0 λ5

0 0 ψ33 0 λ7 λ8 0

0 0 0 ψ44 λ10 λ11 λ12

0 λ4 λ7 λ10 ψ55 0 0

λ1 0 λ8 λ11 0 ψ66 0

λ2 λ5 0 λ12 0 0 ψ77



, (5.3)
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where

ψ11 = λ1 + λ2 + λ3,

ψ22 = λ4 + λ5 + λ6,

ψ33 = λ7 + λ8 + λ9,

ψ44 = λ10 + λ11 + λ12,

ψ55 = λ4 + λ7 + λ10,

ψ66 = λ1 + λ8 + λ11,

ψ77 = λ2 + λ5 + λ12.

Next, we recursively estimate ψ by its empirical value. The sample covariance matrix,

ψ̂, is given by (2.18). Let ψ̂(ι) = {ψ̂(ι)
il } and η̂(ι) = {η̂i(ι)} denote the sample covariance and

mean of V at the end of the ι-th iteration, respectively. We set the initial values {η̂(0)
i } and

{ψ̂(0)
il } to zeros. Hence, for ι = 0, 1, · · · ,K − 1;i = 1, · · · , q; l = 1, · · · , q,

η̂i
(ι+1) =

1

ι+ 1
[ιη̂i

(ι) + v
(ι+1)
i ],

ψ̂
(ι+1)
il =

ψ̂
(ι)
il ι

ι+ 1
+

ι

(ι+ 1)2
[η̂i

(ι)η̂l
(ι) + v

(ι+1)
i v

(ι+1)
l − η̂i(ι)v(ι+1)

l − η̂l(ι)v
(ι+1)
i ]. (5.4)

The parameter λ can be estimated recursively by matching the covariance matrix, ψ,

to its empirical value, as follows. Let λ(ι) = (λ
(ι)
1 , · · · , λ(ι)

c )′ denote the estimate of λ at the

end of the ι-th iteration. For j = (j1, j2), j2 6= N ,
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λ
(ι)
j = max{0, ψ̂(ι)

j1l
}, (5.5)

where l = N + j2. For j = (j1, N),

λ
(ι)
j = max{0, ψ̂(ι)

j1j1
−
∑
l 6=j1

ψ̂
(ι)
j1l
}. (5.6)

5.2 Maximum-entropy approach

In this section, we use the maximum entropy principle and propose a new approach for

estimating λ from vK1 . The approach was adopted from [12] where it was applied for

estimation of propagation link delay as explained in Section 2.1.1.

5.2.1 Shannon’s Entropy

Entropy is a measure of uncertainty in a random variable. Let W denote a discrete random

variable with probability mass function pW (·). The alphabet of W is denoted by W. An

expected value with respect to pW (·) is denoted by EW {·}. The entropy of W is defined by

[51],

H(W ) = EW {− log pW (W )} = −
∑
w∈W

pW (w) log pW (w). (5.7)

5.2.2 Underlying framework

In this section, we develop the underlying framework for maximum entropy estimation of

traffic rates.

Let the network be observed in a sufficiently large time interval. Consider packets

originated in various nodes of the network during that interval. Label each of these packets
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with its source-destination address. Now, suppose that we put all the labelled packets into

a jar and randomly draw a packet from that jar. Let W denote the label of the virtual

packet. Let pj denote the probability of W = j for j = 1, · · · , c, and let p = (p1, · · · , pc)′.

Our goal is estimating {pj}. Once p is estimated, it can be used to estimate λ as we shall

discuss shortly. Clearly, for j = 1, · · · , c,

pj ≥ 0,

c∑
j=1

pj = 1. (5.8)

The maximum-entropy approach for estimating p aims at achieving the least informa-

tive solution that is consistent with the given constraints specified in (5.8). Entropy can

be regarded as a suitable function to measure the lack of knowledge about the proposed

conceptual experiment, and thus it is a suitable function to maximize in order to find {pj}.

Hence, we propose to estimate the desired p that maximizes the entropy of W subject to

the constrains of (5.8). The entropy of W is given by,

H(W ) = −
c∑
j=1

pj log pj . (5.9)

It is well known that H(W ) is maximized by a uniform distribution, i.e., for j = 1, · · · , c,

pj =
1

c
. (5.10)

Next, we derive the maximum entropy estimate of p under a new set of constraints.

Clearly, the larger λj is, the more packets of label j are present in the jar and the higher
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pj is. Hence, a reasonable choice for pj is given by

pj =
λj
C
, (5.11)

where the constant C =
∑c

j=1 λj .

As described earlier, for λ being a stationary point of the likelihood function of V, the

first moment equations are satisfied, i.e., η̂ = Aλ where η̂ is given by (5.1). The constant

C in (5.11) is given by

C =
∑
j

λj =
∑
j

λj

N∑
i=1

aij =

N∑
i=1

∑
j

aijλj =

N∑
i=1

η̂i, (5.12)

which follows from the model feature described in Section 5.1. Let β = (β1, · · · , βq)′ where

βi = η̂i
C . By dividing both sides of η̂ = Aλ by the constant C, the following set of equations

is obtained,

β = Ap. (5.13)

Thus, our goal is to estimate p which maximizes (5.9) under the constrains in (5.8) and

(5.13). Let α = (α0, · · · , αq)′ denote the vector of Lagrange multipliers. The Lagrangian is

given by,

L(p, α) = −
c∑
j=1

pj log pj − α0(

c∑
j=1

pj − 1)−
q∑
i=1

αi(
c∑
j=1

aijpj − βi). (5.14)

Setting the derivative of (5.14) with respect to {pj}, {αi}, and α0 to zeros, we have,

66



− log pj − α0 −
∑
i

αiaij = 0, j = 1, · · · , c, (5.15)

∑
j

aijpj − βi = 0, i = 1, · · · , q, (5.16)

∑
j

pj = 1. (5.17)

Thus, the desired probabilities {pj} and the Lagrange multiplier α0 are given by,

pj = e−(α0+
∑
i αiaij), j = 1, · · · , c, (5.18)

α0 = log
∑
j

e−(
∑
i αiaij). (5.19)

By substitution of (5.19) in (5.18) and the result in (5.16), the rest of Lagrange multi-

pliers, {αi}, satisfy the following equations,

∑
j aije

−
∑
i αiaij∑

j e
−

∑
i αiaij

= βi, i = 1, · · · , q. (5.20)

Define f(α) =
∑

j e
−

∑
i αiaij . The probabilities {pj} and the Lagrange multipliers are

determined by solving the following set of equations for α,

−∂ log f(α)

∂αi
= βi, i = 1, · · · , q. (5.21)

Hence,
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pj =
e−

∑
i αiaij

f(α)
, j = 1, · · · , c, (5.22)

α0 = log f(α). (5.23)

Iterative methods such as the CVX package were used in [12] to solve (5.21). The CVX

package was discussed in [52] and [53]. Once the probabilities {pj} are obtained, the source-

destination traffic rates can be estimated using (5.11). Let λ̂ = (λ̂1, · · · , λ̂c)′ denote the

estimation of λ given by,

λ̂j = Cpj , j = 1, · · · , c, (5.24)

where C is given by (5.12).

5.3 Numerical results

In this section, we studied two networks with N = 4 and N = 10 nodes. The performance

of the covariance-based and maximum entropy approaches are evaluated. We compared our

results with the approaches of [4] and [2]. The simulations were implemented in Matlab.

We tested the approaches on data generated by λ = (1, 2, · · · , c)′, and used K = 100 inde-

pendent realizations of V. The simulation set-up for each approach is described separately.

5.3.1 Simulation set-up

We implemented the approach of [4] and [2] given by recursions (2.7) and (2.20), respectively.

The initial values for the entries of λ were drawn uniformly from the integers in [0, 100]. The

recursions (2.7) and (2.20) were terminated when
∑

j(λ
(ι+1)
j −λ(ι)

j )2 was less than 10−8. The

conditional mean estimate in (2.7) was implemented using (2.9) where we choose T = 400.
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The covariance-based approach was implemented, as follows. First, the covariance ma-

trix ψ and the mean vector η were estimated recursively from (5.4). The initial entries of

ψ and η are set to zeros. The recursive estimation of source-destination traffic rates were

obtained using Eg. (5.5) and Eg. (5.6).

In the maximum entropy approach, we used the CVX package developed in [52] to solve

(5.21). The source-destination traffic rates were then estimated from (5.24).

5.3.2 Results

We evaluated the quality of the estimates obtained from each of the implemented ap-

proaches, as follows. First, a set of generated data, v100
1 , was used for estimating λ denoted

by λ̂1 = (λ̂1
1, · · · , λ̂1

c)
′. Next, we generate a new set of v100

1 , and denote the estimated source-

destination rates by λ̂2 = (λ̂2
1, · · · , λ̂2

c)
′. The process was repeated 50 times and the esti-

mated source-destination rates from the h-th set of data was denoted by λ̂h = (λ̂h1 , · · · , λ̂hc )′.

Let λ̄ = (λ̄1, · · · , λ̄c)′ and σ2 = (σ2
1, · · · , σ2

c )
′ denote the mean and the mean squared error

of {λ̂1, · · · , λ̂50} given by

λ̄ =
1

50

50∑
ν=1

λ̂ν , (5.25)

σ2
j =

1

50

50∑
ν=1

(λ̂νj − λj)2, j = 1, · · · , c. (5.26)

We evaluated and compared λ̄ and σ2 for different approaches. First, consider the

network in Fig. 2.6 with N = 4 nodes and c = 12 source-destination pairs. In Fig. 5.1,

we have plotted the true values of {λj} and {λ̄j} as obtained in our study from different

implemented approaches. In Fig. 5.2, the entries of σ2 were plotted. The maximum entropy

approach provides the best quality of estimation where λ is well estimated by λ̄ and the

smallest values for σ2
j were obtained for j = 1, · · · , c.
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Figure 5.1: The mean of estimated source-destination rates in a network with N = 4 nodes
and c = 12 source-destination pairs.

Figure 5.2: The mean squared error of estimated source-destination rates in a network with
N = 4 nodes and c = 12 source-destination pairs.
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Figure 5.3: The mean of estimated source-destination rates in a network with N = 10 nodes
and c = 90 source-destination pairs.

Next, we studied a network with N = 10 nodes and c = 90 source-destination pairs.

In Fig. 5.3 and 5.4, we illustrated λ̄ and σ2 as obtained from different approaches. It is

numerically difficult to implement the recursion developed in [4] as the number of nodes in

the network grows. Hence, this recursion was not implemented for the network with N = 10

nodes. Fig. 5.3 and Fig. 5.4 show that the source-destination rates are very well estimated

by λ̄ as obtained from the maximum entropy approach.

Clearly, there is a trade-off between computational complexity and quality of estimates.

The performance of any of the discussed schemes is improved by increasing the number

of independent realizations of V, i.e., K. However, the implementation becomes compu-

tationally ineffective for large values of K except for the covariance-based approach. The

covariance matrix, ψ, can be updated as the independent realizations of V become available

using (5.4). Next, we studied the network with N = 10 nodes and c = 90 source-destination

pairs. The source-destination rates were estimated using K = 100 and K = 100, 000 real-

izations of V. Fig. 5.5 shows that the quality of the estimates were improved significantly

by increasing K.
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Figure 5.4: The mean squared error of estimated source-destination rates in a network with
N = 10 nodes and c = 90 source-destination pairs

Figure 5.5: The mean and the mean squared error of the estimated rates as obtained from
the covariance-based scheme using K = 100 and K = 100, 000.
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Chapter 6: Conclusions and Future directions

In this chapter, we summarize the main contributions of this thesis, and address some of

the future directions.

6.1 Conclusion

We have studied two main aspects of network tomography, namely, the link delay density

estimation from source-destination delay measurements and source-destination traffic rates

estimation from aggregated input and output traffic counts.

We have studied link delay density estimation from source-destination delay measure-

ments in both an unstructured network with random routing regime and a tree-structured

network with deterministic routing regime. The traffic over the network was modeled as a

partially observable bivariate Markov chain. This model implies that the delay on various

links has matrix exponential density. The family of matrix exponential densities is rich and

includes the family of phase type densities. The approach also provides the packet routing

probabilities. We have adopted the EM algorithm of [9] for estimating the parameter of the

bivariate Markov chain model. Our approach in estimation of link delay density is general

and does not require an independence assumption for the delays on various links as is com-

monly done in the literature. We have evaluated the performance of the proposed approach

in a numerical study, and compared our results with the mixture fitting approach of [11]

for a single route of a tree-structure network. We have also developed an online algorithm

for implementation of the EM algorithm. The online algorithm applies to blocks of data in

a sequential manner.

We have formulated the problem of source-destination traffic rates estimation using

the model of [4]. We have developed a new covariance-based approach. This simple and
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practical approach relies of the relation between the covariances of the measurements and

the rates. We have also developed a maximum entropy approach for the rate estimation

problem. We have evaluated the performance of the two proposed approaches in a numerical

study, and compared our results with the EM algorithm of [4] and the method of moments

of [2].

6.2 Future directions

In this section, we address some possible extensions of the work presented in this thesis.

The delay network tomography problem can also be extended in the following directions.

In real scenarios, the delay on each link has finite support. Hence, we can consider using

Markov models with finite support phase-type distributions. The phase type distributions

with finite support was studied in [54].

The source-destination traffic rates estimation problem can be extended in the following

directions. In this work, we have assumed that the density of traffic count over various

source-destination pairs is Poisson. A possible extension of this work is to model the traf-

fic over source-destination pairs using Markov modulated Poisson process which is more

general than the Poisson process. Also, the source-destination traffic counts were assumed

independent. However, in some real networks, this independence assumption is impractical

as the traffic flow over various source-destination pairs may not be independent.
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Appendix A: An Appendix

Since the generator matrix G is a large matrix of size 88 × 88, we express only the first

10× 10 block, G11, as follows:

G11 =



−4099.7 83.1 58.5 54.9 91.7 28.6 75.7 75.4 38.05 56.8

57.5 −4179.3 23.5 35.3 82.1 1.5 4.3 16.9 64.9 73.2

67.9 39.5 −4394.6 98.8 3.8 88.5 91.3 79.6 9.9 26.2

26.9 42.3 54.8 −4190.3 41.8 98.3 30.2 70.1 66.6 53.9

63.8 95.8 24.08 67.6 −4339.7 67.2 69.52 6.8 25.5 22.4

40.4 44.8 36.6 76.4 62.8 −4576.5 93.3 97.3 19.2 13.9

0.06 86.6 61.3 99 52.8 47.96 −4273.9 22.8 49.8 90.09

46.7 64.8 2.5 84.2 55.9 85.4 34.8 −3891.2 5.4 17.7

78.02 33.8 60.8 74.1 10.5 12.8 54.96 48.5 −3936.8 79.9

42.3 65.6 72.3 53.1 10.9 63.2 12.7 13.4 9.9 −4030.2



Also, the initial distribution ν is given in blocks of 1× 10 vectors νa, a ∈ X as follows:

ν1 =
[
0.019 0.022 0.003 0.022 0.015 0.003 0.007 0.013 0.023 0.023

]

ν2 =
[
0.004 0.023 0.023 0.012 0.019 0.004 0.01 0.022 0.019 0.023

]

ν3 =
[
0.016 0.001 0.02 0.022 0.016 0.018 0.018 0.01 0.016 0.004

]
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ν4 =
[
0.017 0.001 0.007 0.002 0.003 0.02 0.017 0.008 0.023 0.001

]

ν5 =
[
0.011 0.009 0.018 0.019 0.005 0.012 0.011 0.016 0.017 0.018

]

ν6 =
[
0.007 0.016 0.016 0.004 0.003 0.012 0.023 0.008 0.014 0.006

]

ν7 =
[
0.018 0.006 0.012 0.017 0.021 0.023 0.013 0.004 0.004 0.006

]

ν8 =
[
0.02 0.006 0.019 0.006 0.022 0.009 0.005 0.006 0.015 0.012

]
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